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Abstract 

An in-shoe laser Doppler sensor for assessing 

plantar blood flow in the diabetic foot. 

Jonathan Edwin Cobb 

Plantar ulceration is a complication of the diabetic foot prevalent in adults with type 11 

diabetes mellitus. Although neuropathy, microvascular disease and biornechanical 

factors are all implicated, the mechanism by which the tissue becomes pre-disposed to 

damage remains unclear. Recent theories suggest that the nutritional supply to the tissue 

is compromised, either by increased flow through the arteriovenous anastomoses 

('capillary steal' theory) or through changes in the micro vascu I ature (haemodynamic 

hypothesis). Clinical data to support these ideas has been limited to assessment of the 

unclad foot under rest conditions. A limitation of previous studies has been the 

exclusion of static and dynamic tissue loading, despite extensive evidence that these 

biornechanical factors are essential in the development of plantar ulceration. The 

present study has overcome these problems by allowing assessment of plantar blood 

flow, in-shoe, during standing and walking. 

The system comprises a laser Doppler blood flux sensor operating at 780nm, load 

sensor, measurement shoe, instrumentation, and analysis software. In-vitro calibration 

was performed using standard techniques. An in-vivo study of a small group of diabetic 

subjects indicated differences in the blood flux response between diabetic neuropaths, 

diabetics with vascular complications and a control group. For example, following a 

loading period of 120s, relative increases in response from rest to peak were: Control 

(150% to 259%), Vascular (-70% to 242%), Neuropathic (109%-174%) and recovery 

times to 50% of the peak response were: Control (33s to 45s), Vascular (43s to >120s), 

Neuropathic (>120s). Dynamic re-perfusion rates (arbitrary units per millisecond) 

obtained for the swing phase of gait were: Control (6.1 a. u/ms to 7.9 a. u/ms), Vascular 

(4 a. u/ms to 6.2 a. u/ms), Neuropathic (2.3 a. u/ms to 4.5 a. u/ms). 
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Chapter 1 Introduction 

1.0 Introduction 

This thesis documents a research project to develop and characterise a system capable 

of monitoring pressure and blood flow, at the plantar surface of the human foot, within 

a shoe. 

1.1 Rationale 

Plantar ulceration in the diabetic foot is a serious complication of diabetes mellitus, 

which can result in gangrene and may require amputation of the affected limb. In 1989, 

the St Vincent declaration (World Health Organisation 1990 - Appendix A) included a 

five year target for Europe to reduce the rate of limb amputations arising from diabetes 

mellitus by 50% (Campbell and Lebovitz 1996). Despite improvements in the 

prevention and treatment of diabetic foot complications, the incidence remains 

unacceptably high. Williams (1994) estimates that of approximately 750,000 people in 

the United Kingdom diagnosed with diabetes 4% (30,000) have already undergone 

amputation of all or part of the limb and 6% (45,000) have plantar ulcers. 

Microvascular and neuropathic factors have been proposed as the principal factors in 

the pathogenesis of plantar ulceration (Flynn and Tooke 1995, Netten et al. 1996, 

Vigilance et al. 1997, Shaw and Boulton 1997). There is also considerable evidence that 

abnormal plantar pressures occur in the diabetic foot (Boulton et al. 1983, Lord et al. 
1986, Stess et al. 1997). Plantar ulcers do not normally occur in the absence of pressure 

and a reduction in pressure is the normal pre-requisite for healing (Cavanagh and 
Ulbrecht 1994). Consequently, plantar pressure is an important contributory factor in 

the development of ulceration (Ulbrecht et al. 1988, Brand 1990, Grunfeld 1992). 

The precise role of pressure in the development of plantar ulceration is unknown. It has 

been suggested that the mechanical properties of skin may be altered in the diabetic 

(Elkeles and Wolfe 1991, Nikkels-Tassoudji et al. 1996). Abnormally high plantar 

pressures may affect skin blood flow in plantar tissue. Although pressure does have a 

significant affect on skin blood flow in normal tissue (Daly et al. 1976, Tsay 1991, 

Kabagambe et al. 1994) a temporary reduction in blood flow is compensated for by the 
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hyperaernic response. However, in the diabetic, this response is frequently impaired 

(Rayman et al. 1986b, Flynn and Tooke 1995). 

To the author's knowledge, there has not been a clinical study of the affect of plantar 

pressure on microcirculatory blood flow in the diabetic foot, at typical sites of 

ulceration. This is in part due to the difficulty of making non-invasive, skin blood flow 

measurements, particularly in-shoe. The recent availability of low cost, miniature laser 

diodes together with photodiodes and thin film pressure sensors, provides the basic 

technology for an in-shoe sensor to give a simultaneous indication of plantar skin blood 

flow and plantar pressure. The realisation of this type of sensor could be of use to the 

clinician seeking to further understanding of ulceration in the diabetic foot. 

1.2 Diabetes Mellitus 

1.2.1 Introduction 

Diabetes Mellitus is a chronic, incurable disease of man arising from various metabolic 

disorders; each having the common feature of elevated blood glucose levels 

(hyperglycaemia). Variations occur in the aetiology, presentation and complications of 

the various forms of the disease. In order to distinguish between these, a standardised 

classification has been promoted by the World Health Organisation. The two most 

prevalent sub-classes, which occur in developed countries, are: 

1. Type I (Insulin-dependent diabetes mellitus). 

2. Type 11 (Non-insulin dependent diabetes mellitus). 

Type I diabetes mellitus occurs primarily in Caucasian children. The peak onset age 

range is 10 to 13 years (Kelleher 1988). It is a consequence of the destruction of Beta 

cells in the islets of Langerhans, generally considered an autoimmune reaction, and 

triggered by environmental factors in those genetically predisposed to the disease. 

Treatment is by regular injection of insulin to restore blood glucose back to normal 

levels. 

Type 11 diabetes mellitus is the most common form of the disease accounting for about 

80 per cent of all cases of diabetes (Campbell and Lebovitz 1996). This form typically 

affects those in middle to old age, and the incidence increases with age. The causative 



18 

mechanisms are not well understood although increased insulin resistance and reduced 

Beta cell function are widely implicated (Corbett and McDaniel 1995, Sinagra et al. 

1997). Treatment is typically by diet and orally administered anti-hyperglycaernic 

medication. 

1.2.2 Epidemiology and outlook 

In the west, the number of people with diabetes mellitus is typically estimated at 2-6% 

of the population. However, the prevalence for those over the age of 65 is typically 

10-20% of the population (Cambell and Lebovitz 1996). 

The 1998 estimate of 143 million diabetics world wide, is expected to double by 2025, 

as life styles in developing countries become similar to those in the west (International 

Diabetes Federation 1998). 

The use of insulin and anti-hyperglycaemic treatments has greatly improved the life 

expectancy of the diabetic. However, the disease pre-disposes the long-term diabetic to 

a number of acute and chronic complications, which reduce the life expectancy of the 

diabetic by about ten years for both, type I and type 11. The insidious nature of type 11 

diabetes mellitus often results in complications being present at the time of diagnosis. 

The nature of these complications is often severe, leading to a reduced quality of life for 

the individual and imposing high costs on the health care service. 

1.2.3 Complications 

Chronic complications of diabetes mellitus affecting the microvascular system are 

retinopathy, nephropathy and neuropathy. These complications are specific to the 

disease. Complications affecting the macrovascular system are cardiovascular, 

cerebrovascular and peripheral vascular disease. These macrovascular conditions also 

occur in non-diabetic groups, although are more likely to coexist and exhibit accelerated 

development in the diabetic. With respect to the diabetic foot, the most important 

complications of diabetes are neuropathy and peripheral vascular disease. 

Diabetic neuropathy is thought to occur as a result of demyelination due to metabolic 

change, or ischaenfia due to haemodynan-& change (Ellenberg 1990). In chronic 

peripheral neuropathy, sensory function is particularly affected, and the loss of 
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sensation frequently results in ulceration of the foot due to repeated unrecognised 

trauma. Peripheral vascular disease is up to six times more common in the diabetic than 

in the non-diabetic population (Levin and O'Neal 1988). Peripheral vascular disease can 

impair the nutritional supply to and within the foot, often resulting in ulceration which, 

if untreated may become gangrenous. 

1.3 The Diabetic foot 

1.3.1 Introduction 

Complications, assessment techniques and methods of treatment of the diabetic foot are 

summarised. 

1.3.2 Symptoms and complications of the diabetic foot 

The term 'diabetic foot' refers to complications of the foot specific to the diabetic, as 

distinct from those that occur in the diabetic because of peripheral vascular disease. In 

the latter case the foot is very painful, ischaernic and exhibits patches of gangrenous 

tissue typically on the dorsum of the foot. This condition is rare under sixty years of 

age. However, the incidence increases with age because of accelerated atherosclerosis. 
In contrast the true diabetic foot appears distended, is warm to the touch and appears 

well perfused. Tissue damage frequently affects the plantar aspect of the foot and is 

particularly prevalent under the heads of the metatarsal bones (Lord et al. 1986, 

McKeown 1994). The incidence increases above forty years of age to reach a peak of 
14% in the eighty plus age group (Connor 1994). The most important distinguishing 

feature is the absence of pain accompanying these symptoms, due to sensory 

neuropathy. Photograph 1(a, b) shows two examples of plantar ulceration in the 

neuropathic diabetic foot. 
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(a) 

(b) 

Photograph I Plantar neuropathic ulceration in type 11 diabetes mellitus. 

(a) Under 4 th metatarsal head in 65 year old male, 

(b) Under I" Metatarsal head, in 53 year old female. 
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Sensory neuropathy, affecting the foot of the diabetic, increases the risk of further tissue 

damage, as the absence of pain can prevent the subject from seeking treatment. For this 

reason, diabetic clinics advocate that patients adopt a policy of regular inspection of 

their feet. However, the foot surface may exhibit only superficial damage during the 

early phases of ulceration, whilst considerable damage is occurring in deeper tissue 

(Levin 1988, Elkeles and Wolfe 1991). If the condition continues to progress, gangrene 

can spread within the foot and the skin eventually ruptures, leading to an increased risk 

of infection. This process typically occurs over a period of several weeks to several 

months, and results in a build up of toxins, leading to a rapid deterioration in health, 

which can be fatal. In the past, the standard treatment for the advanced diabetic foot was 

amputation of foot or lower limb. Following the St Vincent declaration (Appendix A), 

considerable effort has been applied to reduce the number of amputations resulting from 

diabetic foot disease. The most important factor in preventing the severest 

complications of diabetic foot disease is identification of those most at risk, together 

with regular inspection and routine screening of this group. The risk factors leading to 

ulceration have been identified as: Previous occurrence, age, peripheral vascular 
disease, neuropathy and structural deformity (Connor 1994). The most important step to 

prevent further ulceration and allow healing is to reduce or remove the biomechanical 

forces acting on the affected region (Levin 1988, Cavanagh and Ulbrecht 1994). 

Methods of assessment and treatment of the diabetic foot are considered in more detail 

in the following sections. 

1.3.3 Assessment techniques for complications of the diabetic foot 

A number of techniques have been applied to screening and monitoring of the diabetic 

foot and these are routinely employed in diabetic clinics and in hospitals 

During a routine inspection, an initial manual assessment is made of the whole foot. 

Symptoms of swelling, increased temperature, ischaernia, reduced sensitivity, the 
formation of callus, dry fissured skin and changes in the structure of the foot, are all 

signs of a deterioration in foot status (Hill 1987, Connor 1994) and should be 

monitored. It is recommended that plantar callus be removed (McInnes 1994, Steed et 

al. 1996) as this is known to increase pressure within plantar tissue (Young et al. 1992, 

Murray et al. 1996). If a patient has a history of ulceration, sites of previous ulceration 



22 

should be carefully assessed, as recurrence is common (Grunfeld 1992, Apelqvist et al. 

1993). If possible the insole of the patients shoes should be inspected for signs of 

excessive wear as this indicates a localised increase in pressure. The shoes should be 

checked for embedded objects such as stones and the adequacy of fit checked, as these 

are frequent causes of damage to the insensitive diabetic foot. 

Non-manual techniques are also used to assess the diabetic foot. Plantar pressures can 

be monitored using one of the several commercially available systems (Cobb and 

Claremont 1995 - Appendix E). Increases in pressure or the duration for which pressure 

is applied, as well as changes in the overall pressure distribution, require careful 

evaluation and preventative measures to reduce the risk of ulceration. Assessment of the 

progression of sensory neuropathy can be achieved using sensory stimulators (Grunfeld 

1992), for example, the Semmes-Wienstein monofilaments, Biothesiometer or thermal 

probe. The patients perception of the applied stimuli provides an indication of the extent 

of sensory neuropathy (Brand 1990, Lavery et al. 1998) and can be useful as part of the 

overall assessment of the risk of ulceration. The presence and extent of peripheral 

vascular disease can be assessed using Doppler ultrasound (Hill 1987, Williams et al. 

1993), plethysmography (Levin 1988) or laser Doppler flowmetry (Stevens et al. 1993), 

to determine systolic pressure at the ankle or great toe respectively. 

Where a routine assessment of the diabetic foot gives an indication of ulceration, 

structural changes in the foot, inadequate blood supply or infection the patient can be 

referred for radiological assessment (Dyet 1994). Application of magnetic resonance 
imaging is increasing (Patton 1991, Weinstien et al. 1993, Edelman et al. 1997), as the 

technique is capable of resolving between skin, soft tissues, blood vessels and bone, and 
has proved useful in identifying areas of oedema and infection (Cook et al. 1996). 

1.3.4 Methods of prevention and treatment of diabetic foot complications 

Regular inspection by the informed patient and attendance at a diabetic foot clinic are 
important in reducing the risk of developing complications of the diabetic foot. 

There are several preventative measures that the diabetic patient can employ to reduce 

the risk of complications of the foot. Some clinics advise patients adopt a routine of 

soaking of the feet (Grunfeld 1992) together with application of moisturising creams, to 
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prevent dry skin. Prescription treatments rather than commercial treatments are required 

for fungal infections such as Athlete's feet, due to the increased risk of secondary 

infection in the diabetic. Similarly, corn plasters should not be used, as there is a risk of 

increased pressure. Regular cutting of toenails is necessary to avoid ingrown toenails, 

which are a particular hazard for the insensitive foot. Minor cuts and abrasions should 

be carefully cleansed, treated with an antiseptic, and monitored until fully healed. 

Correct choice of footwear is important (Cavanagh et al. 1996, Mueller 1997) and in 

many cases, orthopaedic shoes and insoles are prescribed for the diabetic patient. These 

may reduce the risk of ulceration by reducing peak plantar pressures (Schaff and 
Cavanagh 1990). In the design of orthopaedic shoes for the diabetic, an indication of 

the plantar pressure distribution needs to be obtained, so that an insole can be designed 

to reduce pressure in regions prone to ulceration. Fitting by a specialist is required to 

ensure that a safe pressure distribution has been achieved under the whole foot. 

Unfortunately, despite the benefits of regular care many diabetic patients, through a lack 

of awareness or inclination, fail to adopt simple preventative measures to protect their 

feet (Knowles and Boulton 1996, McCabe et al. 1998). This factor coupled with the 

presence of sensory neuropathy, often results in the symptomatic diabetic foot being 

ignored prior to ulceration (Brand 1990). The undesirable consequence is that treatment 

must be started immediately to stem progress of the ulcer and this may require 
hospitalisation. 

The first step in the treatment of the ulcerated diabetic foot is to assess sufficiency of 
the vascular supply to the foot (Edmonds and Foster 1994). If this is found to be 

inadequate the ulcer can fail to respond to treatment, and furthermore, the trauma of 

surgical intervention can lead to permanent tissue damage and gangrene. To avoid such 

complications, the patient can be referred for vessel revascularisation using procedures 

such as arterial reconstruction (Stonebridge and Murie 1993) or angioplasty (Faglia et 

al. 1996). 

Treatment of a neuropathic plantar ulcer commences with removal of the protective 

callus to allow underlying necrotic tissue to be excised (McInnes 1994). A sample of 
the tissue is analysed by the pathology lab and if the foot is infected, an appropriate 

antibiotic administered (Jeffcoate and Finch 1994). A suitable dressing is applied to the 
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wound and progress routinely monitored. Mobilisation of the patient typically requires 

immobilising the foot to avoid loading of the ulcerated region. For example, Brand 

(1990) describes the application of a total contact plaster cast with a rocker base, which 

covers the foot and lower limb, extending to below the knee. A limitation of this 

approach arises from the difficulty of assessing the progress of healing. This problem 

has been solved by the introduction of orthopaedic footwear, which performs an 

equivalent reduction of loading under the site of ulceration, for example the Darco 

healing shoe (Orthopaedic Systems Ltd, Widnes, Cheshire). 

Following successful healing, the location in which the ulcer occurred should be 

routinely assessed to reduce the risk of recurrence. 

1.4 Summary 

The most important consequences of the diabetic foot are the risk of amputation to the 

patient and the high cost of treatment to the health service. Early detection of risk 

factors is important in preventing the development of ulceration. Current methods for 

assessment of vascular, neuropathic and biornechanical complications of the diabetic 

foot are limited by difficulty of application and of clinical interpretation. The highest 

incidence of plantar ulceration occurs in type 11 diabetics with sensory neuropathy. In 

these subjects, it is reasonably straightforward to quantify the degree of neuropathy and 

plantar pressures but threshold levels for ulceration are not well defined. The basic 

problem in stating threshold levels for ulceration is the difficulty of assessing the affects 

of increased plantar pressures on plantar skin tissue. However, it is generally considered, 

that the nutritional supply to the tissue is impaired. In the majority of cases, this is made 

worse by additional vascular complications, which may include macrovascular and 

microvascular disease and autonomic neuropathy. Assessment of plantar vascular status 

in the diabetic foot is complicated by the problem of obtaining data during normal 

conditions of loading i. e. for standing and walking. The objective of this research is 

therefore to enable such measurements to be made in order to gain further insight into 

the underlying mechanisms of ulceration. It is hoped that this will provide a basis for 

improving the accuracy with which ulceration in the diabetic foot can be predicted. 

Consequently, the aims of the project are now stated. 
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1.5 Aims 

The aim of this research is to design and evaluate a sensor for assessment of plantar 

blood flow in-shoe, during standing and walking. 



26 

Chapter 2 Theoretical background 

2.0 Aims and introduction 

The aim of this chapter is to review the general background and relevant theory. In the 

first section, the osteology and angiology of the foot are described, with emphasis on 

the plantar and metatarsal regions of the foot. The second section considers the structure 

of the skin and the effects on the cutaneous microcirculation of compression and shear. 

Risk factors in the development of pressure sores are stated. The final section considers 

the theory of laser Doppler flowmetry and shows the basis for obtaining an estimate of 

blood flux from measurements of the optical field, backscattered from the skin. 

2.1 The foot 

The foot comprises 26 bones and II muscles, which together with various ligaments 

and tendons support the body weight and provide leverage during walking (Palastanga 

et al. 1994). 

2.1.1 Anatomy of the plantar aspect of the foot 

The skeletal structure of the foot includes the posterior tarsus (hindfoot), central 

metatarsus (midfoot) and anterior phalanges (forefoot), (Whittle 1991). Figure I 

illustrates the skeletal structure of the foot. 

2.1.2 Osteology 

Two bones of the hindfoot provide the structural link between the foot and the bones of 

the lower leg. The largest is the oblong calcaneous, which projects rearward to form the 

heel. A large number of ligments form a strong connection between the calcaneous and 

the bones of the midfoot and forefoot. Body weight is transmitted downward through 

the calcaneous to the ground. To protect the calcaneous against these forces, the plantar 

surface of the bone is covered with the fibrous cushioning tissue of the heel pad. The 

internal structure of the bone is also adapted for weight bearing. The anterior surface 

articulates with the cuboid bone of the midfoot. The second hindfoot bone, the talus, 

lies above the calcaneous. It is angled slightly forward and medially, providing a 
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coupling of force between the tibia and the calcaneous. The anterior aspect of the talus 

connects to the navicular bone of the midfoot. 

The cuboid and navicular bones, together with three anterior cuneiform bones form the 

structural midfoot. The navicular articulates with the talus and the three cuneiform 
bones. The cuboid is located inferior and lateral of the navicular and cuneiforms. The 

anterior surface articulates with the two minor metatarsals of the forefoot. Both long 

and short plantar ligaments connect to the cuboid. The largest of the cuneiforms, the 

anterior medial cuneiform, articulates the first metatarsal bone. The second and third 

metatarsals are articulated by the anterior of the intermediate cuneiform and lateral 

cuneiform, respectively. 

The forefoot of each foot has five metatarsal bones, which articulate at their basal end 

with the bones of the hindfoot and through a cylindrical shaft to a head, which connects 

to the phalanx of the associated toe. The metatarsal heads are convex in both the lateral 

and transverse planes. To the rear on either side are a tubercle and a small depression to 

which ligments attach. The phalanges of the forefoot form the toes. 

2.1.3 Arthrology 

At the rear of the foot, the ankle joint acts as a hinge allowing dorsiflexion and 

plantarflexion of the foot, as well as limited lateral sway. Seven joints form the 

intertarsal group, which support movement of the foot including inversion, eversion and 

some rotary movement and contribute to weight bearing. The tarsornetatarsal and 
intermetatarsal joints determine movement of the metatarsals, which is limited by 

bounding tendons, except for the first metatarsal, which can exhibit considerable 
freedom of movement. The metatarsophalangeal joints occur at the interface between 

the metatarsal heads and the posterior phalanges. Considerable transverse movement is 

possible, whereas, lateral movement of only a few degrees is normal. Movement of the 

phalanges is determined by the digitorum brevis muscle (Van De Graff and Fox 1992), 

situated in the dorsum of the foot. Movement of the rest of the foot is determined by 

various plantar muscles, active at different times during the gait cycle. These muscles 

provide propulsion, balance and maintain the arches of the foot. 
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2.1.4 Arches of the foot 

The arches of the foot arise from the curved nature of the ligaments and tendons, 

binding the bones of the foot. The resulting structure provides a spring like suspension 

mechanism, that results in the transmission of body weight primarily through the 

calcaneous and metatarsal bones (Lord 1986). The medial and lateral arches reach from 

the calcaneous to the heads of the metatarsals, reducing the transmission of body weight 

through the midfoot region. Load bearing capability is increased by a transverse arch 

across the base of the metatarsals. 

2.1.5 Angiology 

The arterial supply to the foot is provided by posterior and anterior tibial arteries 

(Sarrafian 1993). The posterior tibial artery joins the foot at the medial mid-heel and 

divides into the medial and lateral plantar arteries, close to the heel. The lateral plantar 

artery continues, proximal with the centre line of the foot, to the nfidfoot, where it 

branches into the four plantar metatarsal arteries. This branching segment forms the 

deep arterial plantar arc, which continues transversally across the foot to meet the 

continuation of the medial plantar artery. The first plantar metatarsal arteries extend to 

form arterial loops. For example, the junction of the deep arterial plantar arc and the 

medial plantar artery, branches medially, as a continuation of the first plantar metatarsal 

artery and transversally, as the comirnon digital artery. These branches are joined at the 

beginning of the great toe by the transverse hallucal anastornotic branch. The lateral and 

medial plantar arteries supply the extensive vessels of the plantar skin tissue, the Planta 

pedis. The plantar surface can be divided into four arterial regions of which the region 

under the metatarsal heads is referred to as the distal region. In this region, perforating 

arteries arise from the plantar metatarsal and digital arteries, which are situated above 

the plantar fascia. They pass vertically through the plantar fascia to reach the subdermal 

plexus. Figure 2 illustrates the distribution of the plantar arteries. 

The venous network of the Planta pedis forms an extensive mesh of vessels over the 

entire superficial surface of the foot. This mesh extends through the subdermal plexus 

and into the derniis. The superficial venous system converges into the medial and lateral 

veins of the dorsal venous system. These plantar veins do not have valves and the 

direction of blood flow in the foot is determined by the veins of the dorsum. 
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Figure 2 Distribution of the plantar arteries. 
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2.1.6 Anatomy of the metatarsal head region 

Although the skin under the metatarsal region is relatively thick, the metatarsal heads 

are easily felt through the skin. Between the skin and the bone are adipose cushions that 

provide protection from external forces. Similar fat bodies occur in the separations 
between each metatarsal bone. These oblong fat bodies are retained by layers of 

collagenous sheet, the plantar aponeurosis, located in the inter-metatarsal head regions 

and subcutaneously. The lower bands connect intermediately with the dermis forming a 

strong bond, consequently, the skin in this region exhibits little movement. 

The sub-metatarsal adipose bodies, directly under the metatarsal heads contain 

collagenous fibres, which extend from the plantar aponeurosis, and local tendons and 

ligaments. The superficial plantar arteries and plantar nerves traverse only those sub- 

, metatarsal adipose bodies located between the metatarsal heads. The plantar arteries are 

located deep within the fat body and are well protected. Figure 3 illustrates the anatomy 

of the metatarsal head region. 
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Figure 3 Anatomy of metatarsal head region. 
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2.2 The skin 

2.2.1 General structure 

The skin is the largest organ of the human body, accounting for 7% of body weight. The 

two main layers are the epidermis and dermis. Figure 4 illustrates the structure of the 

skin and microvasculature. The surface of the epidermis, the stratum corneum, is 

composed of dead keratinised cells, which protect the body from the environment. This 

layer is continually produced by keratinocytes in the lower epidermal, stratum basale 

layer. Macrophages within the epidermis provide protection from ingress of bacteria 

and debris. 

The dermal or corium layer below the epidermis contains a network of vessels, 

supporting fibres and nerves. As well as performing localised functions, the dermis is 

important in regulating body temperature and blood pressure. 

Lying below the dermis is the hypodern-fis or subcutaneous tissue, which binds the skin 

to underlying structures. There is a high proportion of lipid storing adipose cells in this 

region, providing thermal insulation for the body. 

The thickness of the skin varies over the body, the normal range for the epidermis is 

0.007-0.12mm, and for the dermis 1-2 millimetres, (Van De Graff and Fox 1985). At 

locations of high wear such as the soles of the feet and palms of the hands, the skin 

thickness can increase to about 6mm (Palastanga et al. 1994). 

2.2.2 Plantar sensory system 

The dermis is extensively innervated with effectors and sensory receptors. The latter are 

represented by tactile, pressure, thermal or pain sensitive, nerve cells. In some areas of 

the body, including the soles of the feet, the concentration of sensory receptors is 

relatively high (Van De Graaff and Fox, 1985). Three types of receptor respond to 

mechanical stimulus of the skin (Schmidt and Thews, 1987). These are referred to as 

slowly adapting (SA), rapidly adapting (RA) and very rapidly adapting. The SA fibres 

in the sole of the foot are sensitive to the intensity of plantar pressure. Both types of 2 

rapidly adapting receptors only respond to dynamic changes in plantar pressure. 

Dynamic pressure changes, due to tissue deforming with constant velocity, are sensed 
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by the RA fibres. Tissue deformations with increasing velocity (acceleration) are sensed 
by the very rapidly adapting receptors. Each of the receptors relays signals to the central 

nervous system, which continually alters stance and gait, to optimise the distribution of 

body weight. Response times of these receptors are are typically within 50 to 500ms 

(Schmidt and Thews 1989). 
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Figure 4 Structure of the skin and microvasculature. 
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2.2.3 Structure of the cutaneous microcirculation 

The arterioles that supply the microcirculation terminate in meta-arterioles and 

capillaries, which are thin walled vessels with diameters of less than 100gm. The meta- 

arterioles form a link between arteriole and venule. The capillaries are looping 

structures that extend orthogonal from the meta-arterioles, to perfuse tissue, before 

entering a draining venule. Each meta-arteriole supports several capillaries. Each 

capillary is a single layer of endothelial cells supported by a thin basement membrane. 
Nutrients pass through intracellular channels in the capillary wall and diffuse into local 

tissue cells. At some sites on the body arteriole-venule linking structures, the 

arteriovenous anastomoses are observed. These differ from the meta- arterio les, being 

larger diameter vessels with prominent, smooth muscle walls. These vessels are the 

primary heat exchange mechanism in the thermoregulatory control of body temperature 

and do not participate in tissue nutrition (Little and Little, 1989). The arteriovenous 

anastomoses (AV-shunts) occur in large numbers in the skin of the fingers, toes, palms 

and face. 

2.2.4 Regulation of microvascular blood flow 

Nutritional blood flow in the microcirculation is controlled by arterioles. The diameter 

of the arterioles is determined by stimulation of the muscular walls off the vessel. The 

degree of stimulation is primarily governed by local factors including; temperature, pH, 

tissue deformation, oxygen and carbon dioxide levels in the blood and local interstitial 

fluid. In contrast the thermoregulatory flow through the AV-shunts is primarily 

controlled by the hypothalamus in response to thermoreceptor signals (Green, 1987). 

The smooth muscular walls of the arterioles are normally in a state of partial 

contraction. This allows blood flow to be determined, via a sympathetic response alone, 

via increased or decreased stimulation about the rest level. The rest level varies 

continuously about a mean, depending on the nutritional requirements of the tissue 

(Strackee and Westerhof 1993). In the skin, periods of complete arteriole closure and a 

consequent cessation of capillary blood flow are observed (Little and Little 1989). This 

periodic variation in flow is termed vasomotion and has a typical frequency in skin of 

5-6 times per minute (Fagrell et al. 1977). 
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Increased tissue activity leads to a rise in the by-products of metabolism, many of which 

are vasoactive substances (Guyton 1992). These act as a trigger, resulting in 

vasodilation of arterioles. The heightened blood flow satisfies the additional nutritional 
demands of the tissue and diminishes the concentration of by-products, thus reducing 
the stimulus for further vasodilation. The same autoregulatory mechanism also helps to 

isolate local blood flow from changes in main arterial blood pressure, so that a 

relatively constant perfusion pressure is maintained throughout the capillary bed. 

The transient phase of this autoregulatory, blood flow mechanism is termed 

hyperaernia. If blood flow to skin tissue is occluded for a short time, the build up of 

vasoactive substances can trigger a period of full arteriole vasodilation, termed reactive 

hyperaernia (Michel and Gillott 1990). This also occurs in response to abnormal tissue 

deformation, induced for example, by shear forces and following skin trauma, such as a 

sting. In the case of abnormal forces, the trigger mechanism is the stretching of the 

muscular walls of the arterioles, whereas for trauma, the trigger is the release of a 

vasoactive compound, such as histamine (Guyton, 1992). 

Localised control of nutritional blood flow by metabolic factors is dominant for skin 

surface temperatures of 25-300C (Scott, 1986). Below this range, cellular activity in 

skin tissue falls considerably and the degree of centralised control of microcirculatory 

blood flow is increased to avoid a reduction in core temperature. Above this range, 

thermoreceptors in the skin activate a parasympathetic triggering of sweat glands, which 

release the vasodilator bradykinin. The increased microcirculatory blood flow helps to 

radiate heat from the body in addition to that lost via the AV-shunts. This mechanism is 

necessary, as the AV-shunts do not exhibit autoregulatory behaviour in response to 

local physical or metabolic factors. 

2.2.5 Nutritional exchange between blood and tissue 

The junction between arteriole and capillary is termed the pre-capillary sphincter. When 

fully dilated the cross sectional area of the orifice is only 0.2mrný. For this reason, blood 

flow in the capillaries is by singular or small chains of red blood cells (RBC), which are 

separated by pockets of plasma. Capillaries typically vary in length from 0.4-0.7mm 

(Schmidt and Thews 1989) and have a typical diameter of 0.008mm (Van De Graff and 

Fox 1992). 
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The parallel structure of the capillary network reduces perfusion pressures to relatively 
low levels, with mean RBC velocities in the range of 0.07-2mm. s-1 (Nilsson and 
Tenland 1980). These conditions are adequate for the exchange of nutrients between 
RBC, and plasma and the interstitial space. Cellular by-products also diffuse into the 

vessels. Nutrients in the interstitial space quickly reach active cells because the mean 
distance from a capillary is only 20gm (Little and Little, 1989). The rate of diffusion is 

high due to the large surface area of capillaries. The skin as a whole receives between 

150n-d and 500ml of blood per minute (Green 1987) with each capillary supplying from 

0.04 to 0.27mmý of the dermis (Nilsson et al. 1980). 

The anaton-fical structure of the microcirculation exhibits considerable variation at 
different body sites and between individuals (Ryan 1985). 

2.2.6 Biomechanics of the skin 

Skin is one of the most complex soft tissues of the body. The layers of the epidermis 

and dermis are interconnected meshes of collagen, elastin, blood, nerve and lymphatic 

vessels surrounded by interstitial fluid. The thick keratinised stratum corneurn of the 

upper superficial epidermis is important in determining the mechanical strength of the 

skin of the palms and soles. In general however, the mechanical strength of the skin is 

determined by collagen, elastin and the properties of the subcutaneous tissue to which 

these fibres attach (Scales 1990). 

The mechanical strength of the skin can be assessed in vivo by application of vertical 

stress to tension the skin. These tests indicate a nearly exponential increase in extension 

with applied force. If the skin is relaxed and re-tensioned, the extension is increased, 

indicating a significant time-rate dependence or creep (Kennedi, 1980). The particular 

results obtained also depend on the orientation of the skin in tension, so that the 

mechanical properties of the skin are anisotropic. 

Forces acting on the skin can occur as result of external loading or from internal loading 

by bony prominences. In general, a load will act over a definite area, and the ratio of the 

magnitude of load to area is termed pressure. The effect of pressure on skin is to induce 

stresses within the skin tissues (Bader 1990). These induced stresses depend on the 
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direction in which load is applied. Compressive stress results from the application of a 
perpendicular load and shear stresses from horizontal loading. 

2.2.7 Development of pressure sores 

The effect of applying relatively low level forces to the skin is a reduction in perfusion, 
evidenced by a visual paling termed blanching. This type of response requires the 

collapse of capillaries, suggesting that the external force is greater than the normal 

capillary pressure of 30-32mmHg (Kabagarnbe et al. 1994). If excessive pressures are 

applied for long periods, there is inadequate tissue nutrition, and the result is a pressure 

sore or., more properly, a decubitus ulcer (Huether 1998). Pressure sores predominate in 

those over seventy years of age (Pfeffer 1991) and this may be as a result of the altered 

mechanical properties of the skin in the elderly, for example reduced collagen synthesis 
(Phillips 1997). 

Pressure sores tend to occur in specific regions of the body and these correspond to 

positions with bony prominences near to the skin. In particular the lower back (sacrum), 

the medial and lateral upper thigh, the rear and lateral heel, are all prevalent sites 
(Barton and Barton 198 1). 

Loss of nutritional blood flow, with pressure, normally occurs in the capillaries of the 

dermal layer, which extend upward from subcutaneous tissue. The looped structure of 

these capillaries makes them susceptible to collapse (Pfeffer 1991). This problem is 

compounded by shear forces, which cause the skin to move laterally over the 

subcutaneous tissue. This tissue is composed mainly of fatty adipose tissue, which 

distributes applied load over a larger area, reducing pressure. The amount of fatty tissue 

depends on the body location and upon the individual. Thus, the cushioning effect is 

variable. 

The start of pressure sore formation is normally indicated by a region of under perfused, 

blanched tissue that fails to reperfuse following removal of external pressure (Simpson 

et al. 1996). Biopsies of this tissue indicate substantial structural damage to vessels 

including capillary haemorrhaging (Reddy 1990). The consequent loss of nutrition can 

result in tissue necrosis, occurring typically within 24 hours (Daniel et al. 198 1). If the 

necrotic tissue becomes infected rapid breakdown of tissue can occur, spreading 



38 

through subcutaneous tissue and resulting in destruction of muscle and bone (Sandeman 

and Shearman 1999). 

Although the magnitude and duration of applied pressures are important indicators of 
the risk of a pressure sore, the actual values required for ulceration, depend largely on 
the distribution of forces within the tissue. In general, the microcirculation of the skin 
does not exhibit ordered structure and individual vessels are, therefore, susceptible to 

varying levels of compressive and shear force, depending on their location and 

orientation. For this reason, both types of force are considered to contribute to pressure 

sore formation (Pfeffer 1991). 

2.2.8 Pressure sore risk factors 

Several other factors can contribute to the development of a pressure sore. The normal 

composition of the bulk tissue space of skin is a slightly gelatinous semi-fluid, which 

provides some structural strength (Kenedi 1980). In many pathological conditions 

excess water collects in skin tissue resulting in oedema. Pockets of fluid within the skin 

may increase the risk of ulceration by lowering resistance to pressure (Robertson et al. 

1990). The presence of oedema is also thought to modify tissue nutrition (Mani et al. 

1995). 

The metabolic demands of skin tissue vary considerably with temperature. Small 

increases in temperature result in a rapid increase in the nutritional demands of the 

tissue (Scott 1986). For this reason, the duration for which an excessive pressure can be 

tolerated reduces with increasing temperature because the tissue becomes hypoxic at a 

faster rate. At lower temperatures, the metabolic demands of tissue are reduced. 

However, if pressure induced ischaernia occurs, the required hyperaernic response can 

be offset by the reduced blood flow arising from thermal vasoconstriction. 

The malnourished and the obese are at greater risk of developing pressure sores. If body 

fat reserves are low, the regions of skin under the bony prominences are not well 

protected by a cushioning layer of fat, leading to increased pressures. In the obese, the 

higher incidence of cardiovascular complications is thought to be associated with the 

higher incidence of pressure sores in this group (Simpson et al. 1996). 
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In some types of injury or disease, the risk of pressure sore formation is increased by 

absent or reduced sensitivity, for example spinal cord injuries (Basel 1991) and diabetic 

neuropathy (Sandeman and Shearman 1999). In these cases, pain associated with 
ischaernic tissue is not present, and shifting of body weight to relieve the affected 
region, does not occur. Pressure sores in diabetics are particularly serious, as there is an 
increased risk of infection, inflammation of adjacent tissue and septicaernia (Huether 
1998). 

2.2.9 Assessment of skin pressure 

Quantification and analysis of pressure distribution and the effects of pressure on skin 

are important in developing understanding of pressure sore formation. Compressive 

stresses under bony prominences have been shown (Tsay 1991) to act vertically from 

the point of load application, through tissue to bone. Shear forces affect deep tissue 

(Simpson et al. 1996), particularly where high-pressure gradients occur, for example at 

tissue-bone and tissue-muscle interfaces. 

Measurement of compressive loads on tissue is relatively straightforward if the 

transducer can be applied to a nominally flat region of skin. Measurement of pressures 

over curved surfaces and of shear stresses is normally impractical, due to the difficulty 

of designing suitable transducers. Determination of the distribution of stresses within 

tissue is complicated by the difficulty of measurement and specification of reliable 

models because of the structural complexity of skin tissue. Some data has been provided 

by using phantoms or through invasive animal studies (Tsay 1991). 

The basic equation for determining pressure at the skin surface is P=F/A where F is 

the force in Newtons and A is the area in square metres, resulting in normal SI units for 

pressure of N/m2. The SI name for the unit of pressure is the Pascal (Pa). 

In the literature, the large pressures acting under the foot are generally quantified in 

units of kPa - MPa, or in terms of static loading by the body weight, in units of Kg /M2 

Useful conversion factors for these quantities are (Sykes et al. 198 1): 

IOOON/M2 = 101.9Kg/m2= I kPa = 7.50 1 nunHg. 
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The preceding values are only valid for static loading. In dynamic studies, the additional 
acceleration of the foot under motion requires consideration (Whittle 1991). 

The use of force sensors to measure skin pressure requires careful consideration of 

several factors: reducing sensor size is important to avoid altering the pressure 
distribution in the region (Ferguson-Pell 1980), the area of the sensor over which the 
force is applied should remain constant, and the sensor should respond only to 

compression or to shear, so that each force can be independently quantified (Laing et al. 
1992). 

2.2.10 Methods of assessing skin pressure 

Measurement of pressure at the body-support interface can be achieved using null-type 

pressure sensors normally based on an air bladder, or by deflection type sensors based 

on the principle of deformation of a material. The null-type of sensor is normally 

considered more accurate than the deflection type (Morris 1993). 

A typical application of a bladder pressure sensor is in measurement of interface 

pressure between the skin and a support cushion. The principle of operation is inflation 

of a bladder until electrical connections on the upper and lower surfaces become open 

circuit, at which point the bladder pressure is determined from a connected air gage. 

Zhou (1991) states the main advantages of this type of sensor as: good compliance with 

curvature of soft tissues, good repeatability and insensitive to shear forces and 

temperature variations. 

For some clinical measurements including in-shoe measurement of plantar pressures, a 

bladder pressure sensor is unsuitable. It is then necessary to use or adapt a conventional 

deflection type of sensor for interface pressure measurement. An important constraint is 

that the device should have a thickness of less than 0.5mm (Ferguson-Pell 1980) to 

avoid redistribution of pressure. Sensors for measuring skin pressure are characterised 

by a number of standard parameters: linearity, hysterisis, accuracy, frequency response, 

range, creep and repeatability. Additionally factors such as temperature, humidity and 

fatigue are often important. Cobb and Claremont (1995) have reviewed the sensor 

technologies for determination of skin pressure with particular emphasis on foot 
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pressure measurement (Refer to Appendix E). The basic types of deformable sensor are 

summarised in the following paragraphs. 

Semiconductor and metal strain gages mounted on a metallic diaphragm offer the 
highest levels of performance in terms of repeatability, linearity and hysterisis. 

However these devices require thermal compensation and produce incorrect responses 
for off-axis loading. 

Capacitive pressure sensors, based on a change in capacitance between two or more 

electrodes in parallel, with deformation of an elastomer dielectric offer good 

measurement performance and some compliance over curved surfaces. However, they 

are difficult to use because the small changes in capacitance (-IOOpF) are difficult to 

measure and the connection leads provide additional stray capacitance. Capacitive 

pressure sensors for plantar measurement, have been described by Kothari et al. (1988) 

and Zhu and Spronck (1992). 

Piezoelectric transducers based on polyvinylidene flouride (PVdF) film can provide 

accurate measurement of skin pressures and are easily scaled to suit a specific area or 

constructed into arrays. The different axes of the material respond to either vertical or 

horizontal loads and it is therefore feasible to simultaneously measure both 

perpendicular and shear stress (Akhlagi and Pepper 1996). Such sensors can be difficult 

to use because of the difficulty of electrical connection to the polymer film and the 

generation of additional charge with temperature. Furthermore, the technique is only 

responsive to dynamic loading and is therefore unsuitable for static assessment. A 

complete plantar monitoring system based on this technology has been described by 

Nevill (1991). 

For reasons of cost, size and ease of use, the pressure sensor used in the plantar 

monitoring system is a Force Sensing Resistor. This device is discussed in detail in the 

following section. 
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2.2.11 The Force Sensing Resistor 

Transducers based on Force Sensing Resistor (FSR) technology are routinely used in 

foot pressure measurement (Cavanagh et al. 1992). These are thin, 0.25mm - 0.7mm, 

circular devices with diameters from 10-30mm. They are capable of measuring 

orthogonal pressures over a range of 0-4MPa. This range includes the maximum 

pressures observed under the diabetic foot of 3MPa (Whittle 1991). The FSR has the 

advantage of being insensitive to shear forces in the typical range for skin, has 

measurement repeatability per device of 2% and a frequency response to I kHz over the 

full measurement range. Previous studies (Lord et al. 1992, Akhlaghi and Pepper 1996) 

indicate that a frequency response extending to 20OHz is sufficient to track the dynamic 

forces under the foot during walking. 

Disadvantages of the FSR are: 

A logarithmic response - giving reduced sensitivity at high loads. 

A response, temperature dependence of 0.1% per Kg-1. OC. 

A device to device repeatability of +1-15% for loads above IMPa. 

These limitations can be overcome by compensation circuitry or software. However, 

this requires individual calibration of each sensor over the full load and temperature 

ranges. Calibration of the Force Sensing Resistor used in the plantar monitoring system 

is discussed in Chapter 5. 

2.2.12 Assessing the affects of pressure on the microcirculation 

It is difficult to determine the effect on tissue blood flow of compressive and shear 

stresses induced by external loading. The 133 Xenon-clearance technique (Chittenden and 

Shami 1993) is a reliable but invasive method that can be used to determine blood flow 

during external loading (Daly et al. 1976). Using this method Daly et al. (1976) found 

blood flow to reduce rapidly for pressures up to 10mmHg and then at a slower rate until 

cessation at systolic pressure. More recently, non-invasive techniques have been 

investigated in clinical studies, including Transcutaneous oxygen tension (Kabagarnbe 

et al. 1994) and laser Doppler flowmetry (Castronuovo et al. 1987). 
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2.2.13 Methods of measuring skin blood flow 

Techniques for assessment of the skin microcirculation are either invasive or 
non-invasive. 

Invasive methods allow accurate measurement of flow based on clearance of 
radioisotope isotopes or of tissue perfusion based on fluorescent dyes. The application 

of these methods usually results in a degree of trauma at the measurement site. 
Detection of isotope clearance is made using a scintillation detector; distribution of 
fluorescent dye can be studied under ultraviolet illumination. None of these techniques 
is suitable for continuous monitoring (Obied 1989). 

Non-invasive techniques support qualitative assessment through capillaroscopy or 

absolute or comparative measurement using thermal techniques (skin thermometry and 
thermal clearance), evaluation of pressure (Skin perfusion pressure and transcutaneous 

oxygen tension) and optical methods (Photoplethysmography and laser Doppler 

flowmetry) (Fronek 1989). 

In static capillarosopy, the microcirculation is viewed directly using a microscope, 

which is usually connected to a television camera to allow recording. Dynamic 

capillaroscopy extends this technique to include electronic synchronisation and 

processing of the image to allow quantification of red blood cell velocities (Fagrell et al. 
1977). System size restricts application to easily assessable regions of the skin. 

Thermal techniques employ thermistors or thermocouple probes to measure the 

clearance or conductance of heat in the skin, which is related to cutaneous blood flow 

(Challoner 1975). Careful control of ambient temperature is required and the response is 

slow (-<IHz). 

Skin perfusion pressures provide an indication of the volume of blood in tissue and 

therefore provide an indirect assessment of the adequacy of blood flow to the region. 

Sensitive p lethsymo graphic sensors based on strain gage, capacitive or electrical 

impedance techniques are used in this application (Fronek 1989). 

Determination of transcutaneous oxygen tension (tCP02) is a quantifiable method of 

assessing skin blood flow (Romanelli and Falanga 1999). A Clark-type platinum 

electrode provides a current proportional to P02 (oxygen tension) at the skin surface. At 
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normal skin temperature P02 at the skin surface is close to zero mmHg. Heating of the 
skin usually in the range of 37-45'C results in an increase in blood flow and a 

consequent increase in P02 at the skin surface to measurable levels (50-120mm. Hg 
dorsal forearm). 

Optical methods are increasingly used for assessment of the rnicrocirculation because of 
the ease of use and fast response. Photoplethsymography relates changes in intensity to 

changes in blood volume (pulsatile) in the sample tissue (Challoner 1979). Both 

transmissive and reflective modes of operation are possible. The dependence of the 

response on the optical geometry of the sensor and uncertainty regarding the 

physiological origin of the photplethys mo graphic signal are important limitations 

(Lindberg et al. 1991). Laser Doppler flowmetry provides a response that increases 

linearly with changes in both mean red blood cell velocity and red blood cell 

concentration in a sample of tissue. The response is not quantifiable and the technique is 

sensitive to movement artefact. Despite these limitations it has been widely used to 

study the microcirculation and has previously been used to demonstrate 

microcirculatory abnormalities on the dorsum of the neuropathic diabetic foot (Stevens 

et al. 1993). 

Justification for the use of laser Doppler in the present study is discussed in section 3.8 

and a detailed discussion of the technique is presented in the following sections. 

2.3 Determination of skin blood flow by laser Doppler flowmetry 

2.3.1 Haemodynamics of the microcirculation 

Determination of blood flow is complicated by the non-homogenous composition of 

blood and the pulsatile nature of flow. The viscosity of blood is dependent on the shear 

forces, exerted on the fluid at it moves (Evans et al. 1989). This dependence is most 

significant in small vessels of less than 100 microns, which includes the arterioles and 

capillaries of the microcirculation. In terms of flow, the fluid in these vessels is 

considered as non-Newtonian (Francis 1976). The evaluation of this type of flow 

requires a complex model incorporating details of shear rate, blood viscosity and non- 

linear flow effects such as plasma skimming (Little and Little 1989). An estimate of 

blood flow rate can be obtained using a simplistic model that ignores these effects 
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(Strackee and Westerhof 1993). Empirical studies (Slaaf et al. 1993) indicate that this 

approach can overestimate flow rate by up to 25%. However, equations (1) to (4) given 
below are useful for obtaining approximate values for the red blood cell velocity range 
in small vessels. 

In the case of vessels for which mean particle velocities are low, and particle size is 

small, relative to vessel diameter, laminar flow is predominant (Marion and Hornyak 

1985). Steady flow is defined by constant velocity and pressure conditions at each 

point, within a vessel, and with respect to time. Arteriole flow is intermittent but during 

active periods, the flow is laminar at a rate proportional to the metabolic demands of the 

tissue. In this situation, the velocity profile across the vessel becomes parabolic, so that 

blood in the centre is moving with maximum velocity and is stationary at the vessel 

walls. This is referred to as Poiseuille flow and the velocity of any particle within the 

vessel can be determined from (Evans et al. 1989): 

v(r) = vm,., (I 
-r2 IR 2) (1) 

Where, v(r) is the velocity of a particle, at distance r from the centre of the vessel. 

vm,,, is the maximum particle velocity in the vessel, which is the centre velocity. 

R is the radius of the vessel. 

The volumetric flow Q of blood within the vessel is then defined as the number of 

particles passing through a cross section of the vessel, in a given time, and thus is 

dependent on mean particle velocity: 

-v. 

Where Q is the volumetric flow in m'/s. 

A is the cross sectional area of the vessel A=nR 2 
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Determination of the mean particle velocity, requires integration of the velocities of 

each particle at each radial position r, for all r, averaged over the cross sectional area A. 

R 

v= 117rR 2f 
vm,,, (I -r2/R 

2) 
. 27rr dr 

r=O 

R 
I/ IrR2 . 21rvMax fr- (r 3 IR 2 dr 

r=o 

RR 
117rR 2.21rvmax fr-fr3 dr 

_r=O 
R 
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rR2 2R 
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(3) 

(4) 

The preceding equations are particularly useful for estimating the particle velocities that 

occur in an idealised vessel such as a blood flow phantom. The half-maximum value for 

the mean velocity is a consequence of the uniform distribution of velocities that occur in 

an idealised vessel, for laminar flow. 

2.3.2 Optical properties of the skin and blood 

Colouration of the skin is largely determined by the pigments melanin and carotene, and 

by haernoglobin (Matcher and Cooper 1994). The concentration of the two pigments is 

determined by exposure to sunlight and varies around the world. Absorption by skin 

pigments occurs mainly below 600nm, above this wavelength scattering processes 

dominate (Duck 1990). 

If light is incident on the skin, 4-7% is diffusely scattered directly from the surface, due 

to the change in refractive index, from unity in air, to 1.55 in the stratum corneum (Van 

der Zee 1993). This process is independent of wavelength and pigmentation levels 

(Anderson and Parrish 1981). 
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The remainder of the light penetrates into the epidermis and dermis, to a depth 
dependent on wavelength and pigmentation (Gush and King 1991). In studies of the 

skin, wavelengths in the visible and near infrared regions are normally used (Schmitt et 
al. 1986). 

The transmittance and scattering of light by blood depends significantly on the 

erythrocyte concentration (Fronek 1989). In large arteries, red blood cell concentrations 

can reach 45% by volume, compared to around 4.5% in small vessels, such as the 

arterioles of the skin (Bonner and Nossal 1990). The penetration depths achieved at 

wavelengths of 500nm and 1000nm are, 50grn and 400ýtrn for the larger vessels and 
500ýLrn and 250ORm for the smaller vessels (Duck 1990). These figures are based on an 

oxygen saturation of 100% and increase slightly at reduced oxygenation levels. 

2.3.3 Optical scattering in skin tissue 

Anderson and Parrish (1981) found that the scattering processes in the dermis were 

mainly determined by erythrocytes, blood vessels, and structural fibres such as collagen. 

The size and topology of non-erythrocyte cells ensures that light is scattered in all 

directions within the tissue (Cheong 1990). For this reason, the instantaneous 

distribution of light within tissue does not correlate with structural order in the tissue. 

The scattering process itself occurs as a result of a change in direction of a photon, 

following interaction with matter. With elastic scattering there is no change of energy. 

With inelastic scattering a change of energy occurs, which results in a change in the 

wavelength of the photon (Weidner and Sells 1980). The scattering of near infrared 

electromagnetic waves by tissue, including red blood cells, is generally considered an 

elastic scattering process (Bonner and Nossal 1990). This provides the basis for 

measurement of blood flow by laser Doppler techniques. The direction of propagation 

of a scattered wave depends on the shape of the scattering particle. For non-spherical 

particles, including red blood cells, the scattering direction can be estimated using the 

Rayleigh-Gans method (Van der Zee 1993). Using this method, Bonner and Nossal 

(198 1) estimated a mean value for the scattering angle from erythrocytes of 5.4', in the 

forward direction. This low scattering angle reduces the probability of scattering from 

multiple erythrocytes, which improves accuracy of the laser Doppler technique. 
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2.3.4 Physical basis of the Doppler shift of light in tissue 

If the light from a single mode, monochromatic source illuminates skin tissue, 

penetration into the tissue will occur, if the wavelength is within the therapeutic window 

of 600-1200nm (Duck 1990). If the wavelength of the source is greater than about 
600nm, absorption by chromophores in the tissue is relatively low, and scattering 

processes will dominate. Absorption spectra for the skin are given in figure 5. The 

structure and composition of skin tissue results in a very high coefficient of scattering 
(Van der Zee 1993) with a mean distance between scattering events, termed the 

scattering length of -10ORm (Bonner and Nossal 1981). Consequently, light is 

scattered diffusely within the tissue forming a scattered field. If the incident radiation is 

spatially and temporally coherent, then the scattered field will resonate with the incident 

field and exhibit spatial and temporal coherence (Bonner and Nossal 1990). These 

conditions give rise to electromagnetic waves of the same frequency as the incident 

radiation. Conversely, if a moving particle, such as a red blood cell traverses a coherent 

field, electromagnetic waves scattered by the particle will exhibit a shift in frequency, 

due to the Doppler effect (Drain 1980). 

Some of the electromagnetic waves scattered in the tissue will be backscattered to the 

skin surface and can be detected using a photodetector. Response times of practical 

photodetectors prevent direct measurement of optical frequencies. However, optical 

beating occurs between those electromagnetic waves scattered solely from static 

structures and the waves scattered by moving particles within the tissue. For the range 

of red blood cell velocities that occur in skin tissue, the corresponding optical beat 

frequencies have a typical range of 20Hz-12kHz (Barnett et al. 1990) and are easily 

detected as intensity fluctuations in the optical field incident on the detector. 
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2.3.4 Derivation of the photocurrent for light scattered from skin tissue 

The output from a single, longitudinal mode laser is an electromagnetic wave: 

-i(ot E(t) =EA (t) -e 

Where: 

EA is the mean amplitude of the wave over one cycle. If the laser output is stabilised, 
the mean amplitude is constant and is denoted by EA. 

(0 is the angular frequency of the wave. 

If this field is incident upon the skin and the wavelength is within the therapeutic 

window photon scattering will occur within the tissue. A small proportion (<I%) of the 

scattered photons will be detectable at the surface of the skin. 

The backscattered optical field comprises of waves scattered from static tissue 

structures and from moving particles within tissue, predominantly red blood cells 

(Bonner and Nossal 1980). 

The field scattered from static tissue incident on a photodetector at a position u and at 

time t is: 

ERef (t, U) = 
EARef (t, u) -e- 

i(o 
Re ft (5) 

For this case, there is no frequency shift due to the Doppler effect and the field 

oscillates at the same frequency as the incident wave: 

(t)Re f= 
(t) 

The field backscattered from moving structures within the tissue is: 

EAShift U) = EAShift e 
0) Scat t 
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For this case, a frequency shift occurs as a result of interactions with moving red blood 

cells within the tissue. 

By the principle of superposition, the total field, ETotal, is the algebraic sum of the 
individual fields (Wilson and Hawkes 1989), thus combining equation (5) and equation 
(6) gives: 

ETotal(t, U) = EARef (t, U)-e- 
J (o Ref t+ 

EAShift (t, U) -e 
-jo)Scatt 

(7) 

The slow response times of standard photodetectors prevent direct measurement of the 

frequencies in an optical field such as ETotal- In practical terms, a photodetector 
integrates the optical field over many cycles so that the photocurrent is dependent upon 

the intensity of the incident light. Intensity is proportional to the square of the optical 
field and for a complex field such as ETotalq the resultant photocurrent can be determined 

from: 

ETotal (t, U) - ETotal 

Where the * operator denotes the complex conjugate. 

Substitution of equation (7) in equation (8) yields an expression for the photocurrent in 

terms of the frequency unshifted and frequency shifted fields. 

u) (E (t, u) e- 
J. O)Ref t+E -icoShiftt (E* (t, u) eJ. 

('ORe ft 
+E* u) -e 

jo)Shiftt 

ARef AA ift (t, u) -e ARef A Shift (t, 

Expanding this equation and simplifying yields: 

i(t, u) = EA Re f (t, u) - EA Re f (t'u) + 

EE* (9) 
AShift(tlu)* AShift(tlu)+ 

(E (t, u) E* (t, u) ej 
(0) Re f -(OShift )t 

+EE (t, u) e 
((OR 

ef -0) Shift )t 

AShift ARef AShift (t, u) ARef 

In equation (9), the first term represents the contribution to the photocurrent due to 

backscatter from static tissue structures. The second term represents the contribution to 

the photocurrent due to homodyne mixing of waves backscattered solely from red blood 

cells in motion. In the capillary layer of cutaneous tissue the volume of red blood cells 

per unit volume of tissue is <0.5% (Nilsson and Tenland 1980) and the homodyne term 
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can be neglected (Bonner and Nossal 1990). The third term in equation (9) represents 
the heterodyning (optical beating) of the field backscattered from static tissue structures 
with the field backscattered from red blood cells in motion. By application of Euler's 

relation the complex exponentials in the third term of equation (9) can be written in 

terms of sinusoids: 

9ZIe -j 
. (O)Re f -(OShift )t 

=COS(O)Ref +O)Shift)t 

9ZIe 
i(O)Ref -OShift)t 

= COS(O)Ref - (t)Shifdt 

If the first term is removed with a low pass filter, the shift in frequency due to the 

Doppler effect is obtained: 

Aw = O)Re f- O)Shift 

To find the total photocurrent due to the intensity at each position U within the 

photosensitive area of the detector requires integration of equation (9). It is also 

necessary to include a factor, TI, to represent the differences in the phase at each point, 

u, of the optical field, due to differences in the optical pathlength traversed by each 

photon. These phase differences result in variations in the spatial coherence of the field, 

over the detector, and result in a reduction in the efficiency of the heterodyning process. 

A further factor, P, is incorporated to account for the quantum efficiency of the 

photodetector. 

-77 - (E -E* (t) + E* -E 'Total W= 'Re 
fW+ 

'Scat W+P AScat 
W 

ARef AScat 
WA 

Re f 
(0) 1 0) 

where: 

P Is the quantum efficiency of the photodetector. 

0!! ý 77 :! ý I Represents the efficiency of the heterodyning process (Nilsson et al. 1980) 
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2.3.5 Determination of blood flux from Doppler photocurrent 

In cutaneous tissue the erythrocyte concentration typically accounts for 4.5% of the 

total tissue volume (Anderson and Parrish 1981). The erythrocytes are non-uniformly 
distributed in tissue due to vessel containment. Consequently, the contribution made by 

the homodyne term in (10) is very small (<0.01%). The heterodyne term makes a more 

significant contribution to the total signal current (-I%). Bonner and Nossal (1990) 

investigated how the spectral information of the scattered field, encoded in the 
heterodyne term, was affected by the mean number of photon scattering events and the 

mean speed of the red blood cells. They found that provided the mean number of 

scattering events is low, as is the case for skin tissue, the effects of multiple scattering 

were small. The fluctuations in the width of the optical spectrum of the scattered field 

were proportional to mean RBC speed and could be used to determine blood flow. As 

the distribution of RBC velocities is assumed a Gaussian (Nilsson and Tenland 1980), 

the width of the optical spectrum of the scattered light will vary randomly in time. It is 

therefore necessary to obtain a mean value, which for a random variable is given by the 

first moment <(o> of the power spectrum (O'Flynn 1982). As the power spectrum is 

obtained over a finite measurement time, the number of scattering events encountered 

for a given RBC depends on the transit time through the illuminated tissue. Therefore, 

higher speed RBC will undergo fewer scattering events, contributing less to the power 

spectrum, and blood flow will be underestimated. To compensate for this low frequency 

bias, the power spectrum is weighted by the frequency o), (Obied 1993). 

In terms of the weighted power spectrum, of the fluctuating portion of the photocurrent, 

the first moment can be expressed as: 

(t)H 

o)p(a»da) 
0)L 

(11) 

In equation (11), the lower limit represents the cut-off frequency of a low pass filter 

used to discriminate against motion artefact, arising from tissue and probe motion. The 

upper limit represents the cut-off frequency of a high pass filter used to reject any 

frequencies above the maximum Doppler shift expected for a given tissue type or 

particular study. In commercial systems these parameters are typically 20Hz and 
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12kHz,, respectively (Barnett et al. 1990). The maximum flow rates obtained in the 

microvascular correspond to frequency shifts of a few kHz, and for studies of the 

microcirculation, the upper cut-off frequency is typically 4kHz (Obeid 1993). 

2.3.6 Normalisation of blood flux 

Several other factors require consideration before equation (11) can be applied to real 

measurements. The blood flow parameter <(o> is dependent on the RBC concentration 

in the illuminated tissue sample (Fronek 1989). As the precise concentration is normally 

unknown the actual output obtained is a product of both mean RBC velocity and RBC 

concentration, and is termed Blood flux. To correctly interpret mean flow values, 

careful consideration must be given to RBC concentrations. This limits comparison to 

similar tissue types and may require equal tissue temperatures to allow for variations 

due to thermoregulatory arteriovenous shunting. For comparable RBC concentrations, 

blood flux is proportional to blood flow, minus a constant term, VNoise, representing the 

shot and dark noise sources of the photodetector, determined by calibration. The 

intensity of the photocurrent can vary between tissue types and individuals, due to 

variations in pigmentation. To account for these variations the blood flux value is 

normalised through scaling by the mean photocurrent, ":: ýiRef> 
2. The RBC flux for the 

microcirculation is then ftilly expressed by: 

4kHz 
f o)p (w) do) -V Noise 

VRBCFlux - 
20Hz 

< 'Ref >2 

(12) 

A theoretical study of Doppler scattering in the microcirculation by (Bonner and Nossal 

1990), showed that the algorithm of equation (12) provides a linear response to blood 

flow for low RBC concentrations, such as those found in the microcirculation. This was 

verified empirically by Nilsson et al. (1980) and Obied (1993). 
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2.4 Summary 

The foot is well adapted to load bearing with an anatomical structure that results in the 
transmission of the body weight through the calcaneous and metatarsal heads. 
Consequently the plantar surface of these bones is protected by a cushioning layer of 
relatively thick (-5mm. ) skin tissue. The integrity of the tissue in these regions is 

essential to protect the underlying bone. Changes in plantar pressure distribution, 

trauma or an impaired vascular supply would normally result in compensatory changes 
in loading and perfusion of the tissue. However, sensory and autonomic neuropathy in 

the diabetic foot can result in continued loading and impaired regulation of blood flow, 

respectively. A frequent consequence is a breakdown of the tissue followed by 

infection, which may spread within the foot. 

Previous studies have demonstrated impaired autoregulation of blood flow in the skin of 
diabetics evidenced by a reduced or absent hyperaernic response following a short 

period of occlusion e. g 4 minutes. Although this type of impairment has been 

demonstrated on the dorsum of the diabetic foot, it has not previously been 

demonstrated at prevalent sites of neuropathic ulceration. This is because of the 

difficulty of measuring plantar blood flow, particularly during the normal loading 

conditions of standing and walking with the foot in-shoe. In order to assess the 

adequacy of the blood supply to tissue during functional loading it is necessary to 

simultaneously determine blood flow through and the magnitude of the load upon the 

tissue. This is complicated by necessary limitations on the maximum size of the sensor, 

even when located in the insole of a measurement shoe, that ensure normal gait. The 

specification of the load sensor can be simplified by restricting assessment of blood 

flow to conditions of zero and full loading which allows a thin film passive sensor such 

as a Force Sensing Resistor to be employed. The techniques available for determination 

of plantar blood flow are limited by the requirement of small size and for continuous 

and non-invasive assessment of rapid changes in blood flow. A review of the available 

techniques suggests that laser Doppler is the only method that can satisfy all of these 

criteria. 

In vivo calibration of laser Doppler systems is not feasible due to the difficulty of 

making simultaneous measurements of the same tissue sample using a quantifiable 
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method such as isotope clearance. This requires an in vitro calibration method based 

upon a model of the skin microcirculation. Representation of the vascular dynamics of 
the microvessels is complicated and approximations based upon Poiseuille flow, 

provide a basis for the design of a calibration flow rig and a basis for specifying the 
design parameters for the laser Doppler system. Further design parameters can be 

established from knowledge of the optical properties of the skin. The high coefficient of 

optical absorption below 600nm and the increase in the depth of penetration with 

wavelength suggest operation at visible / near-infrared wavelengths. A further factor 

arises from the variation in response with differences in optical absorption between 

oxygenated and deoxygenated haernoglobin. This can be overcome by operating at the 

isobestic wavelength of 805nm where the spectra for the two states of haernoglobin are 

equal. In practice, the nearest wavelength for which laser diodes are widely available is 

780nm. 

Specification of the operational laser Doppler wavelength combined with calculations 

of velocities in the rt-ýicrocirculation provides a basis for estimating frequency shifts due 

to Doppler scattering by red blood cells. Optical heterodyning between the shifted 

frequencies and incident frequency result in intensity variations with a spectrum in the 

audio band which can be detected by a photodiode. The power spectrum of the resultant 

photocurrent contains equivalent information regarding the distribution of red blood cell 

velocities. Previous studies have demonstrated that the first moment of the power 

spectral density of the photocurrent scales linearly with particle velocity and 

concentration for the typical ranges found in the microcirculation. With suitable scaling 

and normalisation, a parameter termed 'blood flux' can be calculated which allows 

relative comparison between subjects. The dependence of this term on both velocity and 

concentration results in arbitrary units, which prevent a quantifiable measurement. 
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Chapter 3 Literature Review 

3.0 Introduction 

Plantar ulceration in the neuropathic diabetic foot and assessment of blood flow in the 

cutaneous microvasculature are central to this project. In the first half of this literature 

review, factors implicated in the development of ulceration in the diabetic foot are 
considered. The second half focuses on the development of the laser Doppler technique 

as a tool for assessing blood flow in the skin. 

3.1 Introduction to the diabetic foot 

Evidence linking structural change, microvascular disease, neuropathy and 
haemorheo logical changes to ulceration in the neuropathic diabetic foot is reviewed. 
Two recent theories on the pathogenesis of ulceration in the neuropathic diabetic foot 

are discussed. 

3.2 Structural change and undetected trauma in the neuropathic foot 

3.2.1 Plantar pressure changes in the diabetic foot 

During the last two decades clinical studies employing pressure transducers have 

provided substantial evidence to suggest that diabetic plantar ulceration occurs as a 

result of changes in plantar pressure distribution. The difficulties associated with this 

type of measurement and the development of the technology have been reviewed in the 

literature (Lord 1981, Alexander et al. 1990, Cobb and Claremont 1995). A detailed 

review of clinical findings is given in Lord et al. (1986). These studies have 

demonstrated that vertical force, anterioposterior shear and mediolateral shear, are 

important in the development of plantar ulceration, particularly when sensation is 

reduced by neuropathy. More evidence is available to support the role of vertical forces 

in the development of plantar ulceration, as shear forces are inherently more difficult to 

measure. There is however, little agreement on the vertical pressure thresholds that 

result in ulceration at specific locations under the foot. By considering the findings from 

several clinical studies, Cavanagh and Ulbrecht (1992) have suggested several factors 

that may affect the pressure thresholds for plantar tissue breakdown: variation between 
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different plantar sites; adequacy of the vascular supply, and tissue perfusion; 

glycosylation of the tissues; the presence of scar tissue; the duration for which pressure 
is applied rather than peak pressure. 

Boulton et al. (1983) first concluded plantar pressure in the diabetic could increase with 
time. This is supported by the findings of Veves et al. (1992) who measured plantar 

pressure in three subject types over a thirty-month period. They found average peak 

plantar pressure increased by 21% in a neuropathic diabetic group, 20% in a non- 

neuropathic diabetic group and by 2.5% in a non-diabetic control group. Both diabetic 

groups included subjects with type I and type 11 diabetes mellitus. In these tests, 

changes in body mass were ruled out, as a previous independent study Cavanagh et al. 
(1991) had demonstrated this factor to be unimportant in relation to changes in plantar 

pressure distribution. The conclusion drawn was that increases in localised pressure 
levels occur as a result of changes in plantar anatomy. Findings from other studies 

(Ulbrecht et al. 1988, Grunfeld 1992) lend support to this conclusion. For example, in a 

random radiographic study of neuropathic diabetic feet (Ulbrecht et al. 1988), 22% of 

subjects with a history of ulceration were found to have evidence of traumatic fracture 

in the foot. In many cases this had not been previously diagnosed, due to neuropathy. 

This incidence was significantly higher than for a nondiabetic control group, a diabetic 

control group without neuropathy, and a diabetic control group with neuropathy but 

without history of ulceration. In a study by Grunfeld (1992) of 92 diabetic subjects 

(20% type 1,80% type 11) 68% of patients with a history of ulceration had structural 

abnormalities and in many cases multiple deformations were observed. These studies 

suggest that changes in bone structure due to trauma are important in the redistribution 

of plantar pressure. Trauma induced structural changes in the insensitive neuropathic 

foot may, therefore, lead to localised pressure points without compensatory changes in 

gait. Consequently, plantar tissues would be exposed to increases in average peak 

pressure and/or the duration for which load is applied. 

3.2.2 Plantar soft tissue changes in the diabetic foot 

Structural changes in musculoskeletal and soft tissue mechanics occur in diabetes 

mellitus, which can increase plantar pressure and reduce tolerance to biornechanical 

stress (Brash et al. 1999). The majority of plantar ulcers, accounting for around 80% of 
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hospitalised cases, occur in superficial soft tissues i. e. the epidermis and dermis (Norton 

et al. 1975). The remaining 20% occur in subcutaneous tissue and may extend to affect 

tendon and bone. Neuropathy affecting the muscles of the foot can transfer load bearing 

from the toes to the metatarsals resulting in the toe claw deformity (Elkeles and Wolfe 

1991). Ulbrecht et al. (1988) suggests that the toe claw deformity may result in 

displacement of the soft tissue that normally protects the metatarsal heads. A reduction 

in tissue thickness under the metatarsal heads has been demonstrated in diabetics 

(Young et al. 1995). 

Altered structure and function of soft tissue has been demonstrated in diabetes mellitus 

(Brash et al. 1999). Normally, soft tissues subjected to mechanical forces are able to 

resist distortion by distributing the forces over the network of skeletal proteins that bind 

the soft tissues of the skin to deeper tissue and bone (Ryan 1990). Studies (Brownlee et 

al. 1988, Marova et al. 1995) have shown that several skin proteins are impaired by 

nonenzymatic glycosylation (NEG). The elasticity of the skin tissues appears to be 

reduced by NEG and this may affect the ability to redistribute plantar pressure 

effectively during walking. Delbridge et al. (1985) demonstrated that the keratin in the 

stratum corneum of the foot is glycosylated in comparison to the skin of the non- 

diabetic. Both collagen and keratin are known to become stiffer when glycosylated 

(Brownlee et al. 1984, Delbridge and Ctercteko 1985) and this is probably detrimental 

to the mechanical properties of the skin. Metabolic changes may also affect the healing 

rate of ulceration. Glycosylated tissues reduce the activity of leucocytes and 

macrophages producing insufficient fibroblasts to synthesise collagen and other proteins 

(Elkeles and Wolfe 1991). When healing eventually occurs the reduced compliance of 

scar tissue may be a factor in the high incidence of recurrent ulcers. 

Plantar soft tissue damage is also linked to the increased risk of keratosis associated 

with neuropathy (Sage 1987) and evidenced by the build up of callus frequently 

observed in the diabetic foot. A study of 92 diabetic subjects (20% type 1,80% type 11) 

by Grunfeld (1992) found evidence of callus formation in 51% of patients with a history 

of ulceration. The presence of callus often results in the formation of a fluid filled 

cavity, which if infected may result in rapid tissue necrosis (Hill 1987). The risk of 

infection is increased by autonomic neuropathy, which may prevent the foot from 
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perspiring (Brand 1990); consequently, the skin becomes dry and fissured, presenting 
ideal conditions for infection (Levin 1988). 

3.3 The role of microvascular disease in the diabetic foot 

Peripheral vascular disease affecting the blood supply to the foot may occur at any level 

within the hierarchy of vessels supplying the pedal tissues (Levin and ONeal 1988). 

There is an increased incidence of small vessel disease in the diabetic, which often 

results in a more distal impairment of the blood supply than in the non-diabetic 

(Vermillon 1986). As the rate of progression of atherosclerosis varies, throughout the 

peripheral vascular tree, both macrovascular and microvascular disease can exist at 

different levels of development (Levin 1988). Consequently, an adequate dorsalis pedis 

or posterior tibial pulse is a poor indicator of the adequacy of the vessels within the foot 

(Stevens et al. 1993). The prevalence of microvascular disease differs between type I 

and type II diabetics and it has been suggested that the pathogenesis of microvascular 

disease in the two forms is different (Jaap and Tooke 1995). However, in both type I 

and type 11 diabetes mellitus the complications that occur as a result of microvascular 

disease are similar, there is however a particularly high prevalence of foot ulceration in 

type 11 (Jaap and Tooke 1995). 

A thickened capillary basement membrane (microangiopathy) is indicative of diabetic 

microvascular disease, becoming more pronounced with age and the duration of 

diabetes and is common in subjects with a history of ulceration (Grunfeld 1992). The 

mechanisms involved in this change are not well understood, although several 

contributory factors have been identified: endothelial cell damage (Hilsted and 

Christensen 1992), increased platelet adhesions (Manduteanu et al. 1992), migration of 

atypical cells to the site of injury and accumulation of cholesterol and fats (Sargent 

1988). Impaired microvasculature regulatory mechanisms are also implicated in the 

development of microangiopathy (Flynn and Tooke 1995). The high incidence of 

microangiopathy in diabetic subjects is thought to be an important factor in some of the 

complications observed in the diabetic foot. The permeability of the membrane is 

increased and it has been suggested that this may account for some of the oedema 

commonly observed (Levin and O'Neal 1988). Flynn and Tooke (1995) agree with this 

suggestion, for the earlier stages of diabetes, however they point out that oedema is rare 
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in the advanced neuropathic foot. Furthermore, they argue that oedema is due to a 
reduction in fluid filtration across the capillary membrane that deteriorates with the 
duration of diabetes. 

3.4 Neuropathy and the regulation of blood flow in the diabetic foot 

In addition to microvascular disease, several studies have identified neuropathy as 
important in the impairment of blood flow in the diabetic foot (Rayman et al. 1986b, 

Flynn et al. 1988). In these studies, type I diabetic subjects with neuropathy and without 

clinically detectable peripheral vascular disease exhibit increased blood flow in the foot. 

Flynn et al. (1988) also demonstrated increased blood flow in some subjects apparently 
free of neuropathy, giving support to previous suggestions that peripheral denervation 

may occur before neuropathy is clinically detectable (Watkins and Edmonds 1983). The 

importance of neuropathy in the pathogenesis of diabetic plantar ulceration is 

emphasised by the findings of the study by Grunfeld (1992) and other studies, which 

provide estimates indicating: 60-70% diabetic foot ulcers are purely neuropathic; 15- 

20% are purely vascular lesions; 15-20% are mixed lesions. However, the same study 
indicated a higher incidence of peripheral vascular disease and neuropathy in subjects 

with a history of ulceration. Although the rate of progression of each of these factors 

may vary with individuals Flynn and Tooke (1995) have argued that both vascular and 

neuropathic disease are interdependent. They suggest that a detrimental cycle may 

persist in which changes in the microcirculation affect the regulatory mechanisms 

controlling blood flow, leading to further changes in the microcirculation. It is, 

therefore, appropriate to consider the affect of neuropathy on regulation of blood flow, 

in the foot. 

Neuropathy affects both peripheral and autonomic nerves, which regulate the non- 

nutritive, thermoregulatory flow of the arteriovenous anastomoses and the nutritional 

flow of the cutaneous capillaries, respectively. Both neuropathies are implicated in the 

development of plantar ulceration (Flynn and Tooke 1995). In a study, by Flynn et al. 

(1988) of 39 neuropathic, type 1, diabetic subjects free of peripheral vascular disease, 

nutritive capillary blood flow under the toe pulp was assessed. In comparison to control 

subjects, it was found that diabetics with peripheral and autonomic neuropathy 

exhibited substantially increased blood flow. A further link between vascular and 
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neurogenic factors is suggested by changes in vasomotion observed in diabetic subjects 

with neuropathy (Flynn and Tooke 1995). These changes can result from reduced vessel 

elasticity, micro angiopathy, or neuropathy affecting the vasomotor nerves, all of which 

would have a significant effect on regulation of local tissue perfusion and fluid 

exchange. This may explain the non-uniformity of tissue perfusion observed in diabetic 

subjects (Flynn and Tooke 1995) and commonly presented by an impaired hyperaernic 

response (Vigilance et al. 1997). This impairment has been investigated by Rayman et 

al. (1986b), in a study of 23 type I diabetic subjects with no evidence of peripheral 

vascular disease, who were exposed to minor thermal injury on the skin of the foot. The 

response of the n-&rovasculature was assessed using laser Doppler flowmetry and 

compared to that from a control group of 21 healthy subjects. The response to thermal 

injury was significantly reduced in the diabetic group and was independent of skin 

capillary density and diabetic control. It was concluded that an impaired hyperaernic 

response is significant in the development of ulceration following minor trauma. 

3.5 Haemorheological changes in diabetes mellitus 

Haemorheo logical changes in the blood supply are a widely observed complication of 
diabetes mellitus (Levin 1988). It is unclear whether these changes are a consequence of 

vascular disease, or result in accelerated microvascular disease e. g. n-&roangiopathy 

(Sargent 1988). Several factors have been identified as being contributory to increased 

plasma viscosity and hence reducing blood flow. In pre-capillary vessels, increases in 

red blood cell concentration occur due to high levels of blood clotting factors such as 

fibrinogen (Elkhawand et al. 1993, Giansanti et al. 1996). This finding is important 

because changes in blood viscosity are known to result in a substantial reduction in 

blood flow (Muller 1981), due to the formation of roleux. Within the capillaries, blood 

flow is largely determined by deformability of red blood cells, which change shape to 

reduce their effective diameter from 7.4gm to 4-5grn to match the capillary diameter 

(Chien 1967). The ability of the red blood cell to deform is controlled by the cell 

membrane. Changes in: pH (Goodman and Shiffer 1983), red blood cell adenosine 

triphosphate content (Marchesi 1983), concentrations of metabolic end products (Shohet 

and Lux 1984) and nonenzymatic glycosylation of the erythrocyte membrane (Watala 

1992), all affect the ability of the red blood cell to deform. 
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3.6 The pathogenesis of ulceration in the neuropathic diabetic foot 

It is widely agreed in the literature that microvascular disease and neuropathy are the 

underlying complications that pre-dispose the diabetic foot to ulceration and slow 
healing (Tooke and Brash 1996, Shaw and Boulton 1997). However, ulceration is 

always preceded by some form of trauma, such as minor injury to the surface of the 
foot. For the particular case of the plantar ulcer, there is considerable evidence that 

abnormal pressure is the initiating factor. However, the primary reason for ulceration is 

that the metabolic demands of tissue are not satisfied. The most recent theories 

developed to explain the link between these complications and ulceration are the 

'capillary steal' theory (Leslie et al. 1986) and the haemodynamic hypothesis (Jaap and 

Tooke 1994). 

3.6.1 The capillary steal theory 

In the 'capillary steal' theory, it is postulated that blood bypasses the nutritive capillaries 

and instead flows almost entirely through the arteriovenous anastomoses, due to 

neuropathic impairment of regulatory mechanisms (Uccioli et al. 1992). Furthermore, it 

has been suggested that this might occur as a normal thermoregulatory response to the 

increased temperature frequently observed in the neuropathic foot (Leslie et al. 1986). 

However, these ideas are in contradiction to findings from other studies (Stevens et al. 

1993, Netten et al. 1996) that have demonstrated normal or elevated perfusion in 

nutritional capillaries. 

3.6.2 The haemodynamic hypothesis 

In contrast, the haemodynamic hypothesis (Jaap and Tooke 1994) suggests that 

anatomical and functional changes within vessels are important. Chittenden and Shami 

(1991) identify these changes as, vessel wall thickening, proliferation of vessels, 

capillary basement membrane thickening, changes in vessel permeability and, reduced 

elasticity of the vessel wall. Recent studies support this hypothesis; for example 

Rayman et al. (1995) assessed microvascular structure using electron microscopy and 

identified structural abnormalities in superficial capillaries. Comparison with pre- 

biopsy, in vivo measurement of blood flow, using laser Doppler flowmetry confirmed 

that blood flow was reduced during reactive hyperaernia in the tissue. 
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Netten et al. (1996) used laser Doppler flowmetry to investigate if increased flow 

through thermoregulatory vessels resulted in decreased or increased flow in nutritional 

capillaries. They concluded that nutritional capillaries were overperfused, a finding in 

contradiction to the 'capillary steal' hypothesis. Although changes in blood rheology 

could explain changes in blood flow and perfusion, it is thought that haemodynamic 

abnormalities precede changes in microvascular rheology (Japp and Tooke 1994). 

3.6.3 Importance of changes in the capillary wall 

Evidence for increased nutritive flow does not invalidate the idea that the metabolic 
demands of plantar tissue are unsatisfied because changes in the capillary wall 

membrane could impair the diffusion of nutrients into tissue. The high incidence of 

micro angiopathy, the frequently observed abnormal perfusion and an impaired 

hyperaernic response are all indicative of an impaired capillary membrane (Chittenden 

and Shami 1991). An important factor implicated in this impairment is the increased 

adherence of diabetic platelets to endothelial cells (Manduteanu et al. 1992). 

Furthermore, with an increased blood flow rate, the diffusion of oxygen could be 

reduced, due to the flow dependency of oxygen exchange (Rayman et al. 1986a). 

However, in a recent study, of type I diabetic subjects, with minimal evidence of 

micro angiopathy, the mean capillary filtration coefficient was significantly increased 

(Jaap et al. 1993). Insulin has been demonstrated to have acute effects on capillary 

permeability, the exact mechanism is unknown, although thought to be linked to 

changes in endothelial cell morphology (Hilsted and Christensen 1992). An increased 

capillary filtration coefficient suggests, that the metabolic demands of supplied tissue 

can be met and, there is a possibly increased risk of oedema (Rayman et al. 1994). 

Currently, endothelial dysfunction is emerging as one of the most important areas of 

research in diabetic n-&rovascular disease (Pham et A 1998). With improved 

understanding in this area, a full explanation of the pathogenesis of ulceration in the 

neuropathic diabetic foot may become possible. 
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3.7 Introduction (laser Doppler) 

In section 3.8 common techniques for assessing the microvasculature are identified and 

arguments given for the use of laser Doppler flowmetry in the present study. In section 
3.9, the development of laser Doppler flowmetry is summarised. Sections 3.10 to 3.12 

review the important issues of calibration, sampling depth and the affects of external 
loading of the skin. 

3.8 Justification for use of laser Doppler in the present study 

Various methods of studying cutaneous blood flow were considered for the present 

study. Invasive techniques, for example clearance of isotopes and radioactive 

microspheres were considered inappropriate, as they are not suitable for continuous 

monitoring. Non-invasive microscopy techniques tend to be limited to directly 

observable blood vessels and are not well suited to miniaturisation. The very slow 

response time of the thermal clearance method was considered unsuitable for 

assessment of rapid changes in blood flow that occur during post occlusive reactive 

hyperaernia. All of these methods are well documented in the literature and are not 

considered further. 

The measurement of partial pressures of oxygen (tCP02) as been successfully applied to 

assessing micro vasculature status of the dorsum of the diabetic foot (Romanelli and 

Falanga 1999) and the rate of healing of ulceration is known to be correlated with local 

tCP02 (Japp and Tooke 1994, Mani and White 1988). An important advantage of this 

method compared to laser Doppler flowmetry is that results are quantifiable. This 

technique was considered inappropriate for the present study because although suitable 

for post occlusive reactive hyperaernia study, typical response times of 10s to 50s 

(Fronek 1989) were considered too slow to track the rapid changes in tissue perfusion, 

during walking. 

In the present study a prototype reflective mode Photoplethysmo, graph (PPG), based on 

a modified probe from a pulse oximeter (Nellcor type D-20) was developed and 

evaluated by the author. The construction of this type of sensor is relatively simple 

compared to the laser Doppler technique. 
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Although the techniques are not directly comparable, the Photoplethysmo graph signal 
had, in general, a much lower sensitivity to intensity variations in plantar skin than the 
laser Doppler signal. Although this problem may have been overcome by developing a 
laser based photoplethysmograph, the PPG signal has greater dependence on the optical 

properties of the probe and is difficult to interpret in comparison to the laser Doppler 

flux signal (Lindberg et al. 1991). Furthermore, laser Doppler flowmetry has been used 

successfully in numerous studies of blood flow in the skin of the diabetic. 

3.9 Evolution of laser Doppler systems for blood flow measurement 

3.9.1 Early development of laser Doppler flowmetry 

The application of laser Doppler techniques to the measurement of blood flow in the 

cutaneous n-&rovasculature was first proposed by Stern (1975). By illuminating the 

skin with a Helium-Neon laser and monitoring the back-scattered signal, it was possible 

to demonstrate differences in the frequency spectrum at rest and during occlusion of the 

brachial artery. This original system was unsuitable for clinical study due to 

incorporation of fixed optics and the use of a photomultiplier tube as the detector. 

Subsequently a portable, laser Doppler system suitable for clinical application was 

developed by Holloway and Watkins (1977) using optical fibres and an integrated 

photodetector. Evaluation of this and another similar system (Nilsson and Tenland 

1980) revealed two important problems, excessive laser noise and poor correlation with 

existing techniques. The use of a He-Ne laser resulted in interference of multiple output 

modes producing beat frequencies in the same band as the blood flow signal. A 

comparative study with the 133 Xe-clearance technique demonstrated the difficulty of 

obtaining measurements at the same site, furthermore, the laser Doppler response also 

depended on the red blood cell concentration. These issues were addressed by Nilsson 

et al. (1980) who introduced a dual detection system capable of rejecting laser and other 

sources of common mode noise via a differential amplifier. To evaluate this technique 

in vitro models of fluid flow in the skin were developed to allow independent 

calibration. These developments motivated further refinement and clinical application 

of the technique. 
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3.9.2 Evolution of laser Doppler signal processing algorithms 

The signal processing algorithms used in these early systems were based on empirical 

studies of different in vitro models. Subsequently, the results obtained for identical 

measurement conditions were found to differ from one system to another. To overcome 

this problem a theoretical model of light scattering in tissue was developed by Bonner 

and Nossal (1981). This work resulted in an algorithm that produced a single output 

parameter 'blood flux' that scaled linearly with red blood cell velocity and concentration 

over a limited range. The blood flux value was determined by calculation of the first 

moment of the power spectral density of the Doppler signal. The validity of this 

approach depends on the contribution made by each back-scattered photon to the power 

spectral density, which is dependent on the number of red blood cell scattering events 

and the type of mixing at the photodetector surface. For red blood cell tissue 

concentrations of less than 0.2%, the model predicts single scattering will dominate and 

in this situation wave mixing at the photodetector surface is primarily heterodyne in 

nature (Nilsson et al. 1980). At higher concentrations, the probability of multiple 

scattering increases and homodyne mixing occurs at the detector surface resulting in a 

non-linear flux response. Nilsson (1984) extended the linear operating range of the 

Bonner and Nossal algorithm by correcting the transfer function to match the idealised 

response. It was then possible to demonstrate a linear response for high flow rates and 

for red blood cell concentrations to 0.6% of tissue volume. This approach is used in the 

Perimed laser Doppler flowmeter, which has found widespread clinical application. 

3.9.3 The problem of movement artefact 

An important limitation of the use of laser Doppler flowmetry in the clinical 

environment is the need for static measuring conditions to reduce movement artefact. 

This problem arises from intensity fluctuations due to optical fibre or tissue movement 

that results in the addition of considerable noise to the blood related Doppler spectrum. 

One approach to overcoming this problem is to eliminate the fibre optic delivery and 

detection optics and use a direct contact probe. In order to implement such a system the 

relatively large Helium-Neon laser has to be replaced by a laser diode source. This was 

achieved by De Mul et al. (1984) who reported a compact integrated probe containing a 

visible laser diode and two photodiodes. This solution has not been widely adopted in 

conu-nercial systems, primarily because the use of fibre optics allows the use of 
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interchangeable probe heads that are optimised for particular sites on the body. 

Therefore, considerable effort has been applied to overcoming the problem of fibre 

movement artefact by other means. For example, Gush and King (1987) investigated 

how optical fibre size, probe geometry and fibre cladding could be varied to reduce 

artefact. They suggest that the probe geometry should be designed to prevent overlap of 

the optical fields of the source and detection fibres, at the skin surface. The use of 

mechanical dampening of the fibres by application of a suitable cladding material is 

also recommended by the authors. Small diameter optical fibres support less 

transmission modes, which has beein shown to reduce motion artefact Newson et al. 

(1986). However, precise optical alignment is necessary to ensure adequate coupling 

into these small fibres. Furthermore, the smaller tissue sampling volume decreases the 

probability of a scattering event and thus the signal to noise ratio is reduced. It is 

possible to identify fibre movement artefact within the signal processing subsystem and 

this is used in the Perimed PF2 commercial system to control the output. In this author's 

experience, artefact elimination using a differential amplifier is not possible due to the 

lack of a common noise component in each fibre. Simple filtering is not a viable 

solution because the artefact noise and blood flow signals occupy the same bandwidth. 

3.9.4 Current status 

With the fundamental design issues of laser Doppler flowmetry resolved by the late 

eighties a number of second generation commercial systems were available, for 

example, Perimed's Periflux PF2b (Nilsson 1990) and TSI's Laserflo system (Borgos 

1990). Several operational problems remained to be solved, which prompted continued 

research into development of the technique in addition to applied clinical studies. Some 

of these issues are considered in the following sections. 

A relatively recent and important advancement of laser Doppler flowmetry is the 

development of Laser Doppler Imaging (Mani 1999). This technique allows non-contact 

imaging of blood flow over large areas of skin, through use of raster scanned source and 

detector optics. 
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3.10 Calibration methods 

There is no 'gold standard' for quantifying continuous blood flow in tissue (Oberg 
1990), therefore calibration of any measurement technique for this application is 

normally achieved by absolute or comparative methods. For laser Doppler flowmetry, 

absolute calibration in vivo cannot be achieved unless a section of skin can be isolated, 
for which total blood flow can be determined. Comparative calibration, with 

microscopy and clearance methods requires simultaneous measurement on the same 
tissue sample, which is difficult to achieve. Often, for the laser Doppler technique, the 

only viable solution is the use of an in vitro calibration phantom. This approach, 
however, raises a number of questions regarding construction and accuracy of the 

model. 

The basic requirements for a calibration model are: an interface that mimics the optical 

scattering of the epidermis; a scattering media to represent red blood cells; and a 

method of varying the velocity of the scattering particles. 

Static scattering ensures that the angles of incidence of the photons entering the 

vascular part of the model have random directions as in real tissue. Furthermore, some 

of the incident photons are scattered back directly to the photodetectors providing the 

unshifted reference beam. A block of polyacetal (Bogett et al. 1986) is typically used to 

meet this requirement. 

3.10.1 Scattering media for calibration 

The scattering media used to represent red blood cells can be whole blood, treated to 

prevent coagulation. However, this can be difficult to obtain, requires special safety 

precautions and remains prone to aggregation. Alternatives include whole milk and 

particles in suspension; for example, graded latex microspheres are routinely used by 

manufacturers including Perimed and Moor Instruments. The scattering particles should 

have dimensions close to those of red blood cells to ensure that the scattering angle is 

highly directional (Bonner and Nossal 198 1). If this condition is not met, the proportion 

of incident light scattered from moving particles can be much greater than for the in 

vivo case. An important issue regarding scattering media in suspension is the difficulty 

of maintaining a stable and homogeneous solution over a long period. One approach to 
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overcoming this problem is the use of particles such as aluminium oxide (Oberg 1990) 
dispersed evenly within a moulded acrylic block. In any of these methods, it is usual to 

predetermine the concentration of scattering particles at the time of preparation of the 

medium. 

3.10.2 Methods of obtaining particle velocities for calibration 

To simulate the flow of blood in vessels, one or more plastic tubes are normally used, 

through which the scattering medium is pumped (Barnett et al. 1990, Liebert et al. 

1998). The flow rate is normally controlled using a syringe pump or via a gravity fed 

valve arrangement. As Borgos (1990) points out, the use of tubes with diameters greater 

than 20ýtrn is likely to result in an overestimate of blood flux due to the increased 

probability of multiple scattering. Conversely, Obied (1993) suggests that the Doppler 

signal obtained from large tubes is predominately due to scattering from slower 

particles close to the tube wall, so that multiple scattering is not a problem in practice. If 

the scattering system is implemented as a solid block with embedded particles, a 

rotational or linear actuator is required to provide motion. For example, Mito (1992) 

used a simple rotating turntable to obtain a Doppler signal, whereas Cai et al. (1996) 

employed a complex linear drive table. A major benefit of using a rotational scattering 

block is the ease of reproducibility and control of particle velocity. This approach, 

therefore, seems to be the most suitable for realising a standardised method of 

calibrating laser Doppler systems. 
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3.11 Determination of sampling depth 

3.11.1 Operating wavelength 

From a clinical perspective, determination of sampling depth is an important factor in 

interpreting laser Doppler blood flux. A flux value that reflects conditions in the 

superficial vessels alone may be useful in estimating the extent of microvascular 
disease. Selective sampling is not easily attainable because the standard available 

wavelengths of 632.8nm for He-Ne and 780nm for near infrared are capable of 

penetrating deep into the dermal and possibly into the sub-dermal layers (Anderson and 
Parish 1981). Obied et al. (1988), investigated the use of a green He-Ne laser with a 

wavelength of 543nm and obtained results that were consistent with a sampling depth 

restricted to the capillary beds of the skin. The problem with adopting a green He-Ne 

laser for general use is the lower power available, and the increased absorption by skin 

pigments, which result in a poor signal to noise ratio. Furthermore, laser diodes 

operating at this wavelength and with sufficient power are not widely available. In a 

study by Gush and King (199 1), a photomultiplier tube was used to amplify the Doppler 

signal from a low power Green He-Ne laser. The authors then implemented a signal- 

processing algorithm based on the intensity autocorrelation technique, which was able 

to resolve between blood flow in capillaries and larger microvascular vessels. 

3.11.2 Geometry of delivery and sensing optics 

A second factor that affects sampling depth is the geometry of the optics used to guide 

light to and from tissue. Mito (1992) compared three commercial systems with differing 

optical arrangements and found large differences in the minimum and maximum 

sampling depth of each system. In this study, a wedge section of tissue with depth 

ranging from zero to 6mm was perfused from a reservoir of heparinised blood. The 

author suggests that depth of penetration increases with distance between the emitting 

and detecting optics and may depend on numerical aperture. In a study by Jakobsson 

and Nilsson (1993), a Monte Carlo simulation was developed to predict photon- 

sampling depth. The results of this study also indicated that sampling depth was 

increased if the separation, in their case of optical fibres, was increased. The authors 

point out that a greater source to detector distance also increases the probability of 
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multiple scattering which tends to reduce the linearity of the response. A more 

comprehensive investigation of this problem has been achieved by the recent 
development of a multiple depth flow model and multi-channel probe (Liebert et al. 

1998). In this system, detection fibres were located at multiples of 200gm from an 

emitting fibre. The more distant fibres were sensitive to deeper flows in the model, and 
in vivo the maximum hyperaernic response and the biological zero were dependent on 
fibre spacing. 

3.12 Effects of external pressure on response 

Typical laser Doppler probes, have small contact areas, which combined with the force 

required to maintain the probe in position can result in pressures that affect skin blood 

flow (Obied 1990). For general measurements, this undesirable effect can be reduced by 

increasing probe area and ensuring the applied force is small. However, in several 

clinical applications it is useful to be able to assess the affects of applied pressure on 

blood flow. Castronuovo et al. (1987) used laser Doppler to compare the skin perfusion 

pressures (blood flux) in the lower limbs of non-diabetic subjects and diabetics with 

complications including rest pain, ulceration and amputation wounds. In this study, 

blood flow was controlled by applying a blood pressure cuff around the limb at the 

measurement site and inflating to 200mmHg for two minutes. Using this approach, the 

author reported differences in skin perfusion pressures between ischaemic and normal 

limbs, which were particularly significant at the dorsal and plantar toe. The results of 

this study should be treated with some caution, however, because of the difficulty of 

specifying a reliable flux baseline that equates to the biological zero flow condition. 

Sacks et al. (1988) recorded flux at 30 percent above the instrument baseline, for an 

applied cuff pressure of 300mmHg. The same problem was also observed by 

Kabagambe et al. (1994) who concluded that laser Doppler measurement is not 

applicable to assessing skin blood flow during application of external pressure. More 

recently Zhong et al. (1998) performed a mathematical analysis of this problem and 

suggested a method of correction that was shown to provide reliable flux values at low 

flow rates. 
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3.13 Summary 

Previous studies have demonstrated average increases in plantar pressure of around 
20% in diabetic subjects independent of diabetic complications. Although the 

mechanisms for these increases are not well established, the consequences are most 
important in the insensitive neuropathic foot because of the risk of ulceration resulting 
from failure to redistribute the load. The protective tissues under points of plantar 
loading normally adapt to withstand increases in pressure, however in the diabetic 

structural changes can occur in soft tissues that are detrimental to this process. 

Furthermore, changes can occur in the microcirculation of diabetics, which further 

reduces tolerance of these tissues to pressure. These changes can be physical including 

microangiopathy or functional for example impaired regulation due to autonomic 

neuropathy. Evidence for both physical and functional changes in the microcirculation 

of the diabetic are well documented in the literature. A further factor, generally 

considered a consequence of these changes, are haernorheological abnormalities 

resulting in increased blood viscosity and reduced blood cell deformability, which 

compound the problem. Clinical evidence has led to the formation of theories to 

explain the development of ulceration in the neuropathic foot. The most successful of 

these is the haemodynamic hypothesis, which identifies physical changes in the 

microcirculation as the basis for a failure to satisfy the metabolic demands of tissue. 

This in turn affects nutrition of the autonomic nerves and consequently leads to 

impaired regulation of the microcirculation. 

Laser Doppler flowmetry has been used previously to demonstrate changes in the 

microcirculation of the diabetic. Techniques have been developed to reduce the 

significance of the inherently poor signal to noise ratio and problem of movement 

artefact. Various in vitro calibration techniques have been proposed to validate the 

linearity of the system response in relation to changes in velocity and concentration of 

scattering particles. The simplest approach involves comparison with absolute 

measurement of the scattering medium collected over time for different concentrations 

of scattering particles. For in-vivo studies, interpretation of the response is complicated 

by the difficulty of ascertaining the depth of sampling in tissue and of specifying a 

biological zero level. 
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Chapter 4 Development of a plantar monitoring system 

4.0 Introduction 

The development of a plantar monitoring system for determining plantar blood flow is 

described. The system comprises a laser Doppler and load sensor, a measurement shoe, 
instrumentation and software. Section 4.1 discusses the initial work used to establish the 

design constraints. Development of the sensor and instrumentation is described in 

sections 4.2 and 4.3. The approach adopted to realise a complete measurement system, 

including system software, is detailed in sections 4.4 and 4.5. In section 4.6, the 

techniques used to calibrate the system are described. 

4.1 Pre-development work 

4.1.1 Design of initial prototype system 

Two commercial systems (Moor Instruments model MBF3 and Perimed model P173) 

were assessed for the intended application and were found unsuitable because: 

They were not sufficiently portable to allow measurement during walking. 

They were sensitive to motion artefact, requiring the subject to be static. 

The probe heads were not suitable for in-shoe measurement. 

The cost was prohibitive within available budget constraints. 

To evaluate the feasibility of producing a custom sensor an evaluation rig was 

developed, figure 6. This comprised a simple probe head, constructed by arranging 

eight plastic optical fibres concentric about a central fibre. To contain the fibres in the 

correct geometric orientation an outer sleeve of silicone rubber tubing of length 30mm 

and internal diameter of 2.8mm was used. The tubing was expanded to allowing 

insertion of the fibres. The fibres extended 5mm from the end of the tube and this 

section was inserted into a 3mm hole in a piece of 3mm thick polycarbonate sheet of 

dimensions 25MM2 . The fibres were bonded into position using epoxy adhesive. After 

curing, the exposed section of the fibres was made flush with the surface of the block 

using an abrasive, and polished using a mandril. The instrumentation end of the fibres 

were terminated at a length of 500mm and polished. Eight Imm-diameter holes were 

drilled through a block of 6mm thick polycarbonate sheet and a circular recess of depth 



75 

IBM Computer 

Instrumentation 
Labview implementation 

and Laser PSU of laser Doppler Algorithm 

ýn. fr", I I wulw- 

Eight photodiodes 

ne plastic optical fibres Imm diameter Huntleigh 
Ultrasound 

Silicone unit Laser diode 
tubing Model MD2 

A 
Polycarbonate blocks 

8MHz 

_Tý 
Ultrasound probe 

Peristaltic grade Scattering solution silicone rubber 0.2% Soluble starch in water ID=5mm. 

Peristaltic pump 
I Watson-Marlow 
I Model 503 Fluid 

r V( 
Vibration isolation 01 

resevoir 
--------------j 

o... Lt. 

12 15 0 1, ý52 60 2 ý- 5 260 T in e Vn j-- Yo se co nd s) 

Uhasoimd "V^\ý: 

LaserDopphr 

Figure 6 Block diagram of early evaluation system and comparison of response with 

Doppler ultrasound. The pump rate is 100 RPM giving an output waveform with 

a frequency of -80us corresponding to a Doppler shift of - 12.5KHz. The laser 

Doppler signal is shown before signal processing. 
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3mm drilled along each centre line to accommodate a standard photodiode package. 
Each detection fibre was bonded into this block. A similar arrangement was used to 
house the laser diode and emitting fibre. With this approach, it was possible to evaluate 
different laser diodes, photodiodes and instrumentation 

Sample laser devices were evaluated in closed loop mode, by applying a reflector to the 
probe head and monitoring the output voltage from a photoamplifier. Details of the 
types of laser and measured noise figures are given in Appendix F. Near-infrared lasers 

operating at 780nm wavelength were used, as for commercial systems. The lasers were 
operated across a range of optical output powers and at different ambient temperatures. 
The gain of the photoamplifier was adjusted to avoid DC saturation at each output 
power. These tests indicated considerable variation in the output noise generated by the 

various sample lasers, in all cases optical output noise increased with output power and 
increasing ambient temperature. Of the nine devices tested, the three lowest noise 
devices were retained for further evaluation. 

4.1.2 Evaluation of initial prototype system 

To test the effectiveness of detecting flow, a scattering medium was made by dissolving 

soluble starch (Sigma-Aldrich) in water. Pre-boiling the water was essential to drive out 
dissolved air bubbles, which were found to cause intensity variations that affected the 

output signal. The cooled solution was pumped around a closed loop of silicone rubber 

tubing, using a peristaltic pump (Watson-Marlow, model 503). A venting system was 
introduced and the system pumped for several minutes to force out residual air. The 

output from the photoarnplifier was connected to an oscilloscope and audio amplifier. 

The laser Doppler probe was located orthogonal to the silicone tubing and the probe of 

a Doppler ultrasound unit (Huntleigh, model MD2) was placed onto the tubing at an 

adjacent position. The output signals from both systems were compared. Both outputs 

were sinusoidal waveforms, the laser Doppler signal had a phase lead of 30 degrees 

compared to the ultrasound Doppler signal. This was the first real indication that the 

system was responding to flow due to Doppler scattering, as opposed to changes in 

optical intensity. One of the laser devices failed to provide a suitable response at this 

stage and this was attributed to the multiple mode output characteristics. The remaining 
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two devices were single longitudinal mode output types and it was concluded that this 
was an essential characteristic for this application. 

It was noted that the whole probe assembly had to be isolated from vibration. The cause 
of this sensitivity was identified as the optical coupling fibres. Various methods 
proposed by Gush (1987) for reducing fibre sensitivity to movement artefact were 
evaluated. Although these techniques are useful for static measurements, the same 
techniques were ineffective for the levels of tissue movement that occurred during 

walking. Elimination of movement artefact noise by electronic means was only possible 
if the optical fibres were matched and this required several hours to achieve. The use of 

single-mode glass fibres was discarded as a possible solution, due to the difficulty of 

construction. Furthermore, the risk of exposure of tissue to glass fibre under sensor 
loading was unacceptable. It was concluded that fibre optic connection between the 

sensing site and detection system was not feasible. This imposed considerable 

constraints on the design of the system specifically it required that the laser diode and 
detection system be situated adjacent to the foot to allow direct optical coupling 
between the laser, tissue and detector. 

The evaluation rig was modified to eliminate free moving optical fibres and an initial in 

vivo evaluation made by applying the probe to the underside tip of the index finger. To 

comply with safety standards the optical output power at the tip of the emitting fibre 

was adjusted to I mW, using an optical power meter (Melles Griot, model Pocket power 

meter). The presence of a Doppler signal could be easily established if monitored with 

an audio amplifier capacitively coupled to the laser Doppler output signal. The same 

signal viewed on an oscilloscope exhibited no discernible features. Once a reliable 

audio signal had been obtained, a spectrum analyser (Hewlett Packard, model E441 IB) 

was used to assess the characteristics of the signal. It was evident that the signal to noise 

ratio of the system was reduced compared to that observed in vitro. In the flow rig a 

minimum of two detection fibres, equivalent to a detection area of 2mm 2, were required 

for an acceptable signal to noise ratio. However, in vivo four fibres were required to 

obtain a comparable signal to noise ratio. This was attributed to a reduction in power 

due to scattering, attenuation in the skin and the non-homogenous distribution of the 

vessels within the sampled volume. This last factor is thought to result from a lower 

scattering rate per unit volume, whereas, in the flow rig the distribution of scatterers is 
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uniform. It was possible to demonstrate the detection of blood flow in cutaneous tissue 
under the first metatarsal head using the same approach. 

4.1.3 Determination of the maximum dimensions of the sensor 

To establish an acceptable upper limit for sensor area, tests were carried out using 
acrylic models of the sensor housing. These were affixed in-shoe under the first 

metatarsal head using double-sided surgical tape. Ten adult male subjects were asked to 
comment subjectively on the effect of the insert after several minutes of walking. It was 
concluded that the maximum lateral dimension allowing normal flexing of the foot was 
30mm. (range 10-50mm), for both circular and square inserts. The acceptable height 

range of the insert was 2-3mm, with lower values fracturing and higher values 
uncomfortable. 

Using the same study group, the size of the first metatarsal head and movement of the 
bone during walking was evaluated. The bone was identified by palpation (Nevill et al. 
1995) and the centre and circumference marked. The mean diameter was estimated as 
18mm (range 14-22mm). A piece of white gloss card was cut to fit the subjects shoe. 
The metatarsal circumference line and centre marks were inked and the subject 

carefully placed their foot in-shoe and walked a number of steps. A maxim lateral 

deviation of 5mm occurred, which was biased toward the rear of the foot. This value is 

in reasonable agreement with a published value for metatarsal head movement of 7MM 

(Maalej et al. 1989). 

Based on these findings, a maximum sensor dimension of 30mm was considered the 

optimum value to maintain normal gait and support the metatarsal head during maximal 

deviation. This was important to prevent shear between the edge of the sensor and tissue 

under the metatarsal head. 

4.1.4 Selection of pressure sensor 

Two proprietary pressure sensors were identified as suitable for measuring plantar 

pressure in-shoe and for compatibility with the sensor housing. The Entran EFLIOOO-26 

is a linear, silicon based bridge sensor with a measurement accuracy of 1%. The device 

was considered too costly for the present study (020) and produces erroneous readings 
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for off axis loads. The height of 3mm was also a limiting factor. By contrast, the Force- 
Sensing Resistor (Steadlands International, type FSR174NS) is a thin film logarithmic 
device with accuracy of 10%. The benefits are low cost (<F-10) and a thickness of 
0.7mm. 

The Force Sensing Resistor (FSR) was found to exhibit thermal dependence and 
hysterisis. Instrumentation was developed to compensate for these deficiencies and to 
translate the logarithmic characteristic to a linear function. Despite these improvements, 

the device proved unsuitable due to poor measurement repeatability. For this reason, 

and FSR device was used only as an indicator of zero and full load. 

4.2 Sensor development 

An attempt was made to construct a thin sensor that could be located within normal 
footwear. This was complicated by the problem of accommodating a laser diode within 

the required thickness of 3mm. Although unpackaged laser diodes are available, they 

require special bonding, hermetic sealing and mechanical stress relief, making them 

unsuitable for the present requirement. 

This problem was overcome by development of a measurement shoe, in which the 

sensor could be mounted within the insole. This allowed the height of the sensor to be 

increased allowing standard components to be used. The draw back of this approach 

was the requirement to construct a measurement shoe for each test subject. 

4.2.1 Development and evaluation of first prototype sensor 

The first prototype sensor contained a 5.6mm diameter laser diode (Hitachi, type 

HG7806G), four photodiodes with integral daylight filter (Siemens, type SFH203PFA), 

a Peltier heat pump (Radio Spares, rating 5.3Watt), integrated thermal sensor (Radio 

Spares, type LM35) and a strain gauge (Radio Spares, 2mrn aluminiurn foil), within a 

cylindrical aluminium housing. A drawing of the first prototype is given in figure 7. 

In order to simplify fabrication of the sensor housing, the machine shop scaled the 

diameter up from 30mm to 36mm. The total sensor height of 18mm was determined by 

the aluminium housing, an integral instrumentation printed circuit board and two end 

caps. 
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The Peltier heat pump and integrated thermal sensor provide a mechanism for 

regulation of the laser diode temperature. These three components were mounted in an 
integral chamber, which was filled with a ceramic powder, to provide thermal insulation 
between the hot and cold faces of the Peltier device. The strain gauge bonded to the 
inner wall of the housing allowed evaluation of sensor compression. The laser Doppler 

signal path was coupled from tissue by four short segments of IMM diameter, plastic 
optical fibre (Edmund Scientific Ltd), spaced regularly about a central emitting fibre. 
These collimate light to and from the sample tissue. All fibre segments were bonded to 
the sensor housing using epoxy to eliminate the problem of movement artefact. Each 

photodetector was aligned with the corresponding detecting fibre via a milled recess 

within the housing. The photodetector leads were then connected to a small PCB, 

resident on the sensor, which contained a single transimpedance stage, with the four 

photodiodes connected in parallel to the input. The photoamplifier stage was 
implemented using surface mount components. The PCB was mounted on the sensor to 

reduce electrical noise pickup. Three sensor units were fabricated and evaluated in vitro. 

It was apparent that the hot and cold faces of the Peltier heat pump could not be 

efficiently isolated within the small dimensions of the housing. At the maximum 

operating current of two amps, a temperature reduction of only seven degrees below 

ambient was achievable, which had an insignificant affect on laser noise. It was 

possible, however, to use the heat pump to maintain a constant laser operating 

temperature. This was important as the laser wavelength varied as a function of 

temperature and small variations in wavelength appeared as noise in the Doppler signal. 

However, the thermal dependence of the wavelength was a non-linear series of discrete 

steps. The laser diode selected for the sensor exhibited wavelength stability over the 

range of 26'C to 34'C. This encompasses the optimum measurement temperature of 

300C for which thermoregulatory blood flow is minimal, for normal nutritional flow 

(Scott 1986). 

Experiments were made to determine if a constant temperature could be maintained for 

a reasonable measurement period without the use of thermal regulation. It was found 

that a foot pre-warmed in water could be maintained at a temperature of 30+/-3'C, if 

placed on an insulating surface of neoprene. For static measurements, the target 

temperature could be maintained for in excess of forty minutes. During walking 
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however, the target temperature could only be reliable maintained for about ten minutes. 
Given the findings it was decided to eliminate the Peltier device from further 

prototypes, the temperature sensor was retained however for monitoring of skin 
temperature. 

A standard strain gauge amplifier (Radio Spares No. 846-17 1) was connected to the 

sensor and the signal recorded during static and dynamic loading. Compressive 

distortion of the housing was immeasurably small. 

The prototype sensor was evaluated in vivo on the underside of the fingertip. To obtain 

an acceptable signal level an increase in the laser operating power to 3mW was 

required. It was also noted that the mean photoamplifier output level increased with 

tissue loading. Both of these factors necessitated a reduction in the value of the 

transimpedance stage gain to avoid amplifier saturation. The increase in the laser output 

power was undesirable for reasons of safety. Furthermore, the increased power 

dissipation of the laser heated the sensor housing to an extent that could affect the 

measurement, by invoking a thermoregulatory increase in blood flow. 
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Figure 7 Cross sectional and plan views (plantar) of first prototype. 
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4.2.2 Development and evaluation of second prototype sensor 

An improved device was designed to overcome the problems of the first sensor. By 
increasing the number of detection fibres to eight, the Doppler channel gain was 
improved. This allowed the laser output power to be reduced to lrnW. In isolation, this 

measure is counterproductive, as the increase in intensity requires a concomitant 
decrease in the stage gain to avoid saturation. To solve this problem a differential stage 
was used to amplify the output of two transimpedance stages, each of which was 
coupled to four photodiodes. By ensuring uniform illumination of the sample tissue and 

matched transimpedance stages, the DC intensity signal was rejected. This allowed a 

substantial increase in Doppler signal gain whilst also rejecting power line interference. 

However, the level of improvement depended on matching of the optical path and 
transimpedance stages. To simplify fabrication the differential gain was set to a 

relatively low value of five, allowing an input DC imbalance up to a hundred millivolts 
before output saturation. 

Despite the addition of four extra photodiodes, the overall size of the sensor housing 

was reduced by eliminating the Peltier heat pump and thermal isolation chamber. The 

laser diode also became available in a smaller, 3mm package. The height of the sensor 

was reduced by making the instrumentation remote from the sensor although the PCB 

was retained for electrical connection. The connection PCB also supported a 

temperature sensor to allow monitoring of skin temperature. The dimensions of the 

second housing were 30mm diameter by 12.5 mm. Figure 8 is a drawing of the second 

prototype sensor. Photograph 2, is an exploded view of the sensor. Technical drawings 

for the second prototype are given in Appendix C. 

The depth of the sensor was selected to match the orthopaedic insoles (Orthopaedic 

Systems, type 2013N-MXL) used to construct the measurement shoe. By running the 

laser diode at low power, the thermal dissipation was negligible and alternative 

materials to aluminiurn were evaluated for the housing to simplify component bonding 

and reduce sensor weight. Acrylic was prone to cracking and nylon-66 had poor 

dimensional stability with deformation after several hundred loading cycles. Silica 

doped nylon (Radio Spares, type Glass filled nylon-66) was found to be the optimum 

material with good strength, dimensional stability, resistance to thermal shock, low 
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moisture absorption and ease of bonding. The disadvantage of this material was the 
requirement for hardened machine tools for processing. A moulded housing was 
considered, however the tooling cost was prohibitive for the small number of units 
required. The change of material and the decrease in sensor size, resulted in a 50% 

reduction in sensor weight down to 15g. The strength of the sensor was maintained by 
incorporating eight 8BA stainless steel securing bolts. There was a slight increase in the 
material cost of the housing. The fabrication time increased significantly, requiring 
around twenty hours, over several days, to allow curing at successive bonding stages. 

Five devices were constructed and electrical connections were made to three leads. To 

reduce noise, the two signal leads were isolated and shielded from the laser supply 

connection. In vivo evaluation of the second prototype indicated two problems. First, an 

acceptable signal to noise ratio could not be achieved if the signal connections were 
longer than 500mm, due to external interference. This problem was solved by moving 

the instrumentation from the waist to a unit strapped above the heel as shown in 

photograph 3. The second problem was coupling of interference directly into the 

photodiode leads, from the subject. This was not observed in the first prototype due to 

the integral instrumentation and the signal shielding afforded by the grounded metal 

housing. To overcome this problem an insulated metal sleeve was fabricated to fit the 

outside circumference of the sensor housing. The sleeve was grounded to act as a shield 

and a subject lead was introduced to ground the subject via a self-adhesive electrode 

worn on the dorsurn of the foot. 

Five devices were evaluated extensively in vitro and in vivo. The repeatability of the 

sensors over time was within 10%. However, device to device repeatability was poor 

with response variations approaching 25%. This was attributed to the difficulty of 

matching and alignment of the fibre optic segments within the sensor housing. 

Despite these limitations, the second prototype sensor was used to obtain some initial 

data from five non-diabetic subjects, for a range of test procedures. A real-time signal 

processor was developed based upon a standard laser Doppler algorithm (Bonner and 

Nossal 198 1) and evaluated in vitro. Using the processor it was possible to demonstrate 

that the sensors responded as expected, for example, tracking blood flow reduction 

during inflation of a pressure cuff. 
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Photograph 3 Heel mounted instrumentation unit 
for second prototype sensor. 
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4.2.3 Development and evaluation of final prototype sensor 

To improve device to device repeatability a third prototype was designed. This 

eliminated the use of fibre optics entirely by employing large area surface mount 
photodiodes (Siemens BPW34S) directly adjacent to plantar tissue. These photodiodes 
comprised a photosensitive area surrounded by a small border region. They were 
abutted and aI mm hole drilled at the centre point, through the border to avoid exposing 
the active area to moisture. By incorporating the photoarnplifier within the sensor the 

signal to noise ratio was improved sufficiently to eliminate the heel instrumentation 

unit. Connections were then made directly to an interface unit worn at waist level. With 

this approach, it was possible to obtain a level of performance equal to that of the 

concentric fibre technique. Additionally a device to device repeatability of better than 
10% was achieved. 

The third (final) prototype was fabricated in a square geometry from copper clad 
fibreglass board and acrylic sheet, using the artwork shown in Appendix D. The length 

was maintained at 30mm and height set to 12.5mm to match the measurement shoe 
insole depth. The plantar end-cap implemented a copper electrode for direct tissue 

connection, eliminating the requirement for a separate subject ground. This approach 

reduced the construction time and cost of the sensor and the modular design made the 

sensor serviceable. The on board instrumentation was realised using surface mount 

technology. The FSR device was bonded to the ground end-cap as in the previous 

prototypes. Figure 9 illustrates the third prototype device. Photographs 4 and 5 show 

exploded views of the final prototype sensor. 

To simplify the system and increase portability the real time signal processor was 

eliminated and data was recorded directly to an instrumentation recorder (Sony, model 

PC208A). Data was downloaded off-line for processing, allowing different signal 

processing approaches to be evaluated. 
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4.3 Development of sensor instrumentation 

4.3.1 Signal to noise ratio of the laser Doppler channel 

Achievable signal to noise ratios in laser Doppler flowmetry systems are inherently low 
(Drain 1980, Oberg 1990), De Mul (1984) for example, states a SNR power ratio of 10. 
To obtain reliable estimates of blood flux, instrumentation and signal processing was 
designed to optimise this parameter. 

In theory the signal to noise ratio can be improved by repeated signal averaging over 
time (Tagare 1993) to realise an improvement of N 1/2 where N is the number of sets of 

samples averaged. In practice, the number of samples that can be averaged is dependent 

on the desired update rate of the output signal, in this case the blood flux value. This 

value depends on the nature of the flow being observed, with typical rates in the range 

of 100 milliseconds (Borgos 1990) to 1.5 seconds (Dryden et al. 1992). 

In the present study, blood flux was evaluated over a Doppler signal bandwidth 

compatible with the range found in commercial systems of 20Hz to 4KHz (Obied 1990) 

for studies of the microcirculation. However, the upper frequency limit of the system 

was extended to 20KHz to allow for the possibility of a wider signal bandwidth 

resulting from increased flow during reactive hyperaernia. This upper frequency was 

limited by the maximum 40kHz per channel sampling rate of the instrumentation 

recorder. 

To resolve frequency components down to 2011z requires a minimum of 50ms of 

sampling time, thus for a blood flux update rate of 100ms, two sets of samples could be 

obtained and averaged, giving an SNR improvement factor of root two. By reducing the 

update rate to once per second, twenty sets of samples were averaged giving an SNR 

improvement factor approaching five. However, for the required application, fast 

changes in flow due to post occlusive reactive hyperaernia were expected. It was 

therefore necessary to design the instrumentation without relying on an improvement in 

SNR by means of averaging. Thus, a low-noise transimpedance stage was developed to 

implement the photometric amplifier. The circuit employed is shown in figure 10. 
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Figure 10 Schematic diagram of transimpedance amplifier. 
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The photodiode generated a photocurrent in response to incident light, which was 
converted to an output voltage proportional to the product of the photocurrent and 
feedback resistance. The feedback capacitor provided first order low pass filtering, 
f-3db= 28.2kHz, to reduce the signal bandwidth. 

4.3.2 Design of low noise photocurrent amplifier and the laser power supply 

The main criteria in the design and implementation of the transimpedance stage were 
low noise and availability in surface mount technology. The BPW34S (Siemens) 

photodiode was selected, as this device could be abutted to form an almost continuous 
detection region. A low-noise, dual oparnp AD712 (Analog Devices) was used for the 

current to voltage conversion. An estimate of the noise performance of the 

transimpedance stage was obtained as follows. An output level of 2.8 volts, representing 

the mean intensity across a sample of subjects with varying skin pigmentation was 
determined. The corresponding photocurrent, Ip wasVmean / Rf = 233x 10-6 A. For the 

selected photodiode, the conversion factor S, at 780nm was 0.4 A/W, so that an 

estimated total optical power incident on the photodiode was Ip /S= 582x 10-6 Watts. 

A typical estimate for the fraction of the total backscattered light that has been Doppler 

shifted is <0.1% (Bonner and Nossal 1981), corresponding to 582xlO-9 Watts for the 

present case and generating a photocurrent of 1.45uA. The output signal level from the 

transimpedance stage is thenIsignal x Rf = 17.5 rnV. 

Intrinsic noise sources within the signal path were found to originate from the laser 

diode, photodiode and transimpedance amplifier. The principle noise sources of the 

laser diode were variations in optical output power due to injection current noise and 

wavelength drift with temperature, which can result in heterodyne mixing of output 

modes (Nilsson and Tenland 1980). To quantify these noise sources, the output of the 

laser was passed through a collimating lens and focused onto a large area photodiode 

(Sharp 1997), (Radio Spares, type OSD15-5T). The photodiode was cooled using a 

Peltier heat pump and operated in photocurrent mode to minimise photodiode noise 

(Wilson and Hawkes 1989). The photocurrent was converted to a signal voltage using a 

low noise, wide bandwidth oparnp OP47IG (Analog Devices) configured as a 

transimpedance amplifier. The laser diode operated in continuous wave mode with a 
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small (-lOOmV) sinusoidal signal coupled into the DC bias to modulate the output, 
about a mean value of I mW. The laser was mounted in a thermally insulated chamber 
and the ambient temperature adjusted via a heating resistor adjacent to the device. The 

power spectrum of the output signal was monitored on a spectrum analyser over a 
frequency band from DC to I OOkHz with a resolution of I OHz. 

Figure II shows the measured power spectrum and demonstrates the bias signal at 
IkHz and the laser noise, which is reasonably uniform across the band. A worst case 
signal to noise ratio of -42dB was established using this method. To improve 

performance an automatic power control (APQ circuit was introduced and the laser was 

operated in a constant temperature chamber at 30+1-0.5'C. The resulting spectrum is 

shown in figure 12. 

The APC circuit is based on a standard design modified for use with the ML40123N 

laser diode (Mitsubishi) and has the benefit of battery operation to reduce injection 

current noise. The design was implemented in surface mount technology to improve 

portability. The circuit diagram of the APC circuit is given in Figure 13. The internal 

monitoring photodiode of the laser is used as a feedback element to the input of the 

oparnp, which varies the bias across the laser diode to maintain constant output power. 

The remaining components provide supply filtering, and surge protection for the laser. 

Optical output power is set manually via the potentiometer. 

With these improvements, the SNR as measured by the preceding technique was 

improved to a value of -88dB. Further improvement would have required a more 

complicated controller with expensive low noise components (Libbrecht and Hall 

1993). Further improvement could have been obtained using an opamp with a lower 

noise figure, however the NE532 (National semiconductor) was retained for the 

advantages of single supply operation and low drain current. 
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The optical output noise power (P) for the measured signal to noise ratio (M), was 
determined from (Sharp 1997): 

SNR = 10 log 
6p 

p 

Where 8P is the fluctuation in the optical power output. 

Resulting in a value of 40nW, a corresponding noise current of l6nA and contributing 
192uV of noise to the output signal. 

For the detection system the total noise current is given by (Bertone and Webb 1998): 

'n(Total) = 
ý'n(Diode) )2 

+ 
ý'n(Rfeedback) )2 

+ 
ý'n 

(Opamp) 
)2 Amps / VjHT 

The operating configuration for the photodiodes used in the sensor was photocurrent, 

which resulted in superior noise performance at signal frequencies below 1OOkHz 

(EG&G Optoelectronics 1998). In this mode, the equivalent noise generated by the 

device was due to intrinsic shunt resistance. Therefore, both the photodiode noise and 

the noise generated by the feedback resistor have a Johnson spectrum with a flat 

characteristic from DC to the cut-off frequency. For this type of source the noise current 

is given by (Horowitz and Hill 1984): 

'n(Johnson) Amps / V-Hz 
(15) 

Where: 

K is Boltzmann's constant (1.38x 10-23 Joules/'K). 

T is absolute temperature in degrees Kelvin. 

Af is the bandwidth in Hz. 

R is the resistance in Ohms (12K Ohms) 
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For operation at 30'C over a signal bandwidth of 30kHz equation (15) yields a value of- 
11.2nA/Hz 1/2 for the photodiode and 204.5nA/Hz 1/2 for the feedback resistor. 

The noise generated by the operational amplifier was given by (Jung 1989): 

'n(Opamp) "::: 
Fý 

Amps / V-Hz 
(16) 

'(Leakage) + 
ýV(Noise) 

O)C(Total) 

For the AD712 opamp, used for the transimpedance stage the input leakage current 
i(Leakage) is O-OlPAJHZ 1/2 and the input noise voltage, V(Noise) is 45nV/Hz 1/2 

. The total 
input capacitance C(Total) at the input of the amplifier is dominated by the junction 

capacitance of the photodiode which has a total value of 72pF at 250C. Using these 

values, and for a bandwidth of 30KHz, equation (16) gives a value of lOfA/Hz1/2 
. 

From the values obtained for the noise sources of the transimpedance stage, it was 
evident that the photodiode noise current dominated the other sources. The total noise 
estimated for the contribution by the detector and transimpedance stage was 
45nA/Hz 1/2 

, which corresponds to a noise power of I 12.5nW. 

4.3.3 Optimisation of the laser Doppler instrumentation 

Using the preceding figures for signal and noise power, the estimated SNR was +7dB. 
However, when the SNR was evaluated in vitro, using a calibration rig, and in vivo, it 

was impossible to distinguish the Doppler signal from background noise. The spectrum 

also included significant components at the supply frequency and harmonics. A number 

of design modifications were made to improve performance. Guard electrodes were 
introduced around the photodiode and oparnp input junction to reduce leakage current 
into the opamp (Jung 1989). The single-ended evaluation circuit was converted to a 
differential stage by introducing a second photodiode and transimpedance stage and an 
instrumentation amplifier. The instrumentation amplifier provided rejection of common 

mode noise sources from the laser diode and external line interference. In practice, the 

50Hz component of the power line was not fully rejected by the instrumentation 

amplifier due to strong coupling directly from the subject. It was therefore necessary to 

incorporate an electrode to ground the subject. The improved detection circuit is shown 

in figure 14. 
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The output of the instrumentation amplifier was band pass filteredf-MB " 16Hz - 20kHz, 
to separate the signal component, which was subsequently amplified to produce a signal 
with maximum swing (+/-4.5V p-p), within the supply rails. To prevent signal clipping 
the gain of the instrumentation amplifier was adjusted empirically during calibration. It 

was noted that clipping occurred during movement artefact and this was exploited in the 
signal processor, by rejecting data for short, isolated periods of clipping. 

With these modifications, it was possible to observe a laser Doppler signal amplitude of 
20mV p-p above the 5mV p-p of background noise, at the instrumentation amplifier 
output. Application of the laser Doppler algorithm to this signal provided a blood flux 

value that tracked changes in flow. However, the blood flux graphs obtained for 

constant flow and concentration test conditions were considered too noisy for clinical 
interpretation, figure 15. It was possible, to demonstrate that the transient changes in 

blood flow during reactive hyperaernia, occurred on a scale of seconds. Given this 

observation and the difficulty of improving the instrumentation without substantially 
increasing the sensor size, the blood flux update rate was reduced to one second. Signal 

averaging was then introduced to improve the signal to noise ratio. The resulting 
improvement in the graphs was of an acceptable quality to allow clinical assessment of 
blood flux, 16. 

Photograph 6 shows the implementation of the instrumentation unit used with the 

second prototype sensor. Location of the transimpedance stage remote from the sensor 

simplified sensor construction. However, the instrumentation unit had to be situated at 

the heel to obtain an acceptable signal to noise ratio. By including the front-end 

amplification within the final prototype sensor, a simplified instrumentation unit, 

photograph 7, was achieved that could be worn at waist level. 
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Figure 15 Graph of flux obtained from Doppler signal (without averaging), in vitro at a 

mean velocity of 2mm. s-1 and concentration of 0.2%. 
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Figure 16 Graph of flux obtained by averaging 20 sample sets of Doppler data obtained 

for identical conditions to those stated for figure 15. 
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4.4 System development 

4.4.1 System implementation 

The full plantar monitoring system consisted of a sensor, measurement shoe, interface 

and power supply unit and an instrumentation recorder carried by the subject. 
Additionally, a data acquisition system and software were used to download and 

process the data. Figure 17 is a block diagram of the plantar monitoring system. 

Photographs 8 and 9 shows the implementation of the basic system and the method of 

securing the foot in the measurement shoe. 

The load signal was amplified in the instrumentation unit mounted at waist level. This 

unit provided an interface to the instrumentation recorder for the laser Doppler and 

intensity signals, together with a load amplifier and a regulated laser diode power 

supply. Two high capacity 9-volt alkaline batteries powered the unit, providing up to 

four hours of continuous use. 

The instrumentation recorder (Sony, model PC208A) was configured to sample the 

three signals at a rate of 40 K/samples per channel. An input gain factor of two on all 

channels provided additional gain, and each channel was calibrated prior to 

measurement using an autocalibration function. An integral rechargeable battery 

afforded continuous recording for 50 minutes. The data was recorded to digital 

audiotape (BASF, type 4D-90M) with a capacity of 90 minutes. During recording, the 

signals were monitored using the audio output and visual displays on the unit. The 

lightweight instrumentation recorder was carried by the subject using a shoulder strap. 

Prior to measurement, trailing connection leads between the sensor and instrumentation 

were located at the rear of the leg and adjusted in length to suit the subject. 

Recorded data was download to computer using a high speed, multi-channel, data 

acquisition card (National Instruments, type AT-MIO-16F-5). This card was configured 

to re-sample the three signals output from the instrumentation recorder. The data 

acquisition also incorporated programmable antialiasing filters and a large data buffer, 

which allowed continuous, asynchronous downloading of data. 
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4.4.2 Construction of the measurement shoe 

The measurement shoe was developed around a standard orthopaedic insole made of 

plastazote foam (Orthopaedic systems, Widnes, Cheshire). The insole was encapsulated, 

using contact adhesive, between two sheets of neoprene rubber of thickness 1.5mm. The 

whole assembly was flexible eliminating abnormal bending stresses on the foot, during 

walking. The ground side neoprene layer protected against foreign matter such as grit 

penetrating the insole. The plantar side neoprene layer provided thermal insulation for 

the foot during the measurement period and prevented the normally permanent 

compression of the plastazote with time. The measurement shoe was fixed to the foot 

using neoprene straps laced through a plastic buckle. The straps were fixed to the walls 

of the plastazote insole using blunted self-tapping screws that were bonded into the 

material using a cycroanylate adhesive. A piece of neoprene rubber was mounted at the 

rear of the measurement shoe onto which an ankle strap was bonded and fixed using a 

press-stud. Photograph 10 shows the method of locating the sensor within the insole of 

the measurement shoe. 

Software was developed using National instruments Labview version 5.0 development 

system. The plantar monitoring system required a fast access hard disk, with capacity of 

500 Mbytes per hour of measurement time. A Pentium 20OMHz processor and 

32Mbytes of RAM were required for data acquisition and signal processing. 
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Figure 17 Block diagram of plantar monitoring system. 



106 

eas 

Instri 
unit 

Photograph 8 Final prototype system. 

Photograph 9 Method of fixing for measurement shoe. 



107 

Plastazote foam llllýujv 

Photodiodes 
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108 

4.5 Software 

4.5.1 Data acquisition and pre-processing 

Software developed for the plantar monitoring system realised acquisition, processing 
and analysis of Doppler and load signals obtained from the sensor. Different approaches 
were required to deal with static and dynamic data. 

Data acquisition was performed using a spool-to-disk routine, which sampled each of 
the three analog to digital channels sequentially and stored all of the data in a single file. 

This approach was required to prevent overflow of the data input buffer during disk 

write cycles. Additionally, the buffer memory on the acquisition card was expanded to 
IMbyte and time critical elements were achieved through assembly level, hardware 

calls. These methods allowed real time storage of up to 2Gbytes (68 minutes) of test 

data onto a pre-formatted hard disk without loss of data. 

The raw data file, tagged as test-number. dat, was separated using a channel-separator 

routine to extract the Doppler, intensity and pressure signals. The raw data for each 

signal was stored in three files: test-number. lac, test-number. ldc and test-number. lod, 

respectively. 

Each of the raw data files was processed using a verification routine to identify 

segments of dropout in the data. For the Doppler and intensity signals, the maximum 

permissible dropout for which the signal remained at 0 volts was set to Ims. Tolerance 

of longer dropout segments resulted in significant under estimation of blood flux. For 

the load signal, the permissible duration at minimum value depended on the time taken 

for the swing phase of the step, which was proportional to walking speed. A value of 

two seconds was used. The Doppler signal was also assessed for saturation by 

thresholding the data at five volts. During development, signal dropout was found to 

occur during occlusion of the optical path and for loss of contact between foot and 

sensor. Both problems were overcome by using double-sided surgical tape to retain the 

foot in contact with the sensor. Saturation of the Doppler signal occurred at transient 

points of loading and unloading, due to movement artefact induced by tissue 

compression during dynamic studies. To overcome this problem, blood flux was only 

determined using data recorded during the swing phase of gait, when the signal was 

stable. As the duration of these periods was inversely proportional to the speed of 
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walking, the averaging period and hence the signal to noise ratio, decreased with 
walking speed. For this reason, dynamic studies were restricted to walking rates below 
80 steps per minute. 

4.5.2 Determination of blood flux 

Computation of blood flux was based on the standard theoretically derived algorithm of 
Bonner and Nossal (198 1). A diagram of the algorithm is given in figure 18. 

Doppler data was processed by a Hanning window to reduce spectral leakage and 
filtered to match the required bandwidth. Each Doppler sample was normalised through 
division by the instantaneous, intensity value. This corrected for fluctuations in the laser 

output power and for variations in total backscattered light due to differences in skin 

pigmentation. 

Filtered data was grouped into sets, each containing 2000 samples, and representing 50 

milliseconds of real measurement time. The corresponding minimum frequency 

resolution was 20Hz. The power spectrums, of twenty successive samples sets, were 

averaged to achieve a signal to noise improvement factor of 4.5 . The averaged power 

spectrum was amplitude weighted by frequency to compensate for the inherent low 

frequency bias. 

The weighted power spectrum was integrated over the frequency range, to provide a 

single blood flux value. This value overestimated flow to an extent dependent on noise 

generated by the detector and instrumentation. As it was not practical to determine the 

noise contribution during the measurement period, look up tables were used to store 

mean noise reference levels obtained for a range of temperatures. The measurement 

temperature was entered manually prior to processing, to allow the correct 

compensation value to be subtracted from the blood flux value. Processed data was 

displayed on a graph depicting blood flow versus time. To allow the load signal to be 

superimposed on the blood flow graph a mean value was obtained, for each second of 

raw load data. This approach supported observation of the relationship between changes 

in load and corresponding changes in blood flow. 

The coding of the blood flux algorithm is given in Appendix B. 
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Figure 18 Block diagram of the laser Doppler processing algorithm. 



III 

4.6 Calibration 

The main objective of calibrating a laser Doppler flowmetry system is to demonstrate a 
linear response across the physiological range of flow rates for the target tissue. This 

requirement is complicated by the lack of a standard reference technique for 

determination of cutaneous blood flow and by the difficulty of developing reliable in 

vitro models. Such models are generally realised at scales much greater than 

physiological tissue dimensions and using substitute scatterers with differing sizes and 

geometries to those of red blood cells (Borgos 1990). However, as these techniques are 

widely used in commercial systems, similar techniques were used in the present study. 

4.6.1 Construction of calibration flow rig 

In the following descriptions, the scattering solution is soluble starch (Merck Ltd) 

dissolved in boiling water by stirring for one minute. Concentrations by weight of 0.1%, 

1%, 5% and 8% were prepared in 250ml of water. Solutions were stored in a 

refrigerator and allowed to warm to room temperature before use. A solution of 8% was 

the highest concentration that could be achieved without congealing. For reasons of 

safety, real blood was not used for in vitro assessment. Full fat milk was evaluated, 

however it has a limited lifetime compared to the starch solutions, which could be 

maintained for up to two weeks with the addition of sodium citrate as a preservative. 

The initial flow rig comprised a 50n-fl glass syringe (Sigma-Aldrich, Perfektum glass 

syringe), a precision valve assembly (Merck Ltd, type stainless Luer lock valve) and a 

500mm column of capillary tubing (Merck Ltd, type PEEK tubing). A low friction 

platform supporting a lKg weight was used to drive the syringe piston at a constant 

rate, determined manually by a valve. Various flow ranges were afforded by using 

tubing of different diameters from 170gm to Imm. For higher flow rates, an absolute 

flow calibration was obtained by measuring collected fluid in a finely calibrated 

measurement cylinder over a known duration. At low rates, where droplet flow 

occurred, the mean droplet mass was established using an electronic balance, followed 

by droplet counting. 

The probe assembly was located at the mid-point of the tubing column in an opaque 

chamber to eliminate interference from external light sources. A small square of 
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polyacetal sheet (Tufhol Ltd, Birmingham, England) was placed in the optical path to 

act as an analog for the optical diffusion that occurs in the epidermis (Liebert et al. 
1998). The probe assembly was carefully aligned with the tube and the end located in 

the collecting receptacle. The signal level was increased by addition of a mirror at the 

opposing side of the tubing. 

An important limitation of the flow rig was the relatively short period during which 

consistent flow rates could be achieved. It was observed that the flow varied in the 

syringe due to start and end effects, which required the first and final 10ml of flow to be 

ignored. This resulted in flow periods of between 20s and 180s, depending on flow rate. 

It was however possible to demonstrate flow rates and calculate mean particle velocities 

with a range close to those found in the microvasculature of 0.04-7.5mm. s-1 (Barnett et 

al. 1990). This was limited at the low end by the difficulty of obtaining a consistent 
II 

flow and the measurement range for calibration was limited to 0.5mm. s- to lomm. s- 

To simplify adjustment, a graduated scale plate was added to the valve assembly. To 

overcome the problem of short measurement duration the flow rig was modified to 

include a pump and fluid reservoir to replace the syringe, figure 19. 

The reservoir was designed to ensure a head pressure equivalent to that obtained by the 

weight in the syringe model and the output from the reservoir was controlled by the 

same valve assembly. With careful adjustment of the pumping rate it was possible to 

balance the reservoir level and hence obtain consistent flow at a rate set by the control 

valve. In practice, it was essential to isolate the laser Doppler probe from vibrations 

induced by the fluid pump and to eliminate air bubbles by purging the system. Using 

this technique three minutes of data was obtained over the full range of flow rates and 

for different scatterer concentrations. The procedure was repeated on three separate 

days and variations in temperature in the probe chamber were investigated. The 

recorded data was processed and a graph of response versus flow rate obtained. 

4.6.2 Alternate methods of calibration 

Although the preceding method of calibration was useful for validating the linearity of 

the system, an obvious drawback is the total time required to perform the procedure. For 

this reason, a simple method was developed for routine checking of the probe response. 

A calibration kit was obtained from a commercial laser Doppler company (Moor 
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instruments Ltd, type PFS). This comprised solutions of graded latex microspheres at 
specific concentrations. The microspheres exhibit Brownian motion determined 

precisely by temperature. Thus given a specific set of conditions a singular response of 
the laser Doppler system could be determined and compared to the corresponding point 

obtained during full calibration. The equivalence of one or preferably several such 

points (obtained by altering temperature) was taken as an indication that the system 

remained in calibration. 

The single point type assessment was unsuitable for evaluating the prototype sensors 
because of the lower manufacturing tolerance compared to commercial systems, 

requiring each sensor to be fully calibrated prior to application. To reduce the 

calibration time to an acceptable level whilst allowing a range of particle velocities and 

concentrations, an alternative calibration rig was required. Syringe pumps and linear 

actuators have been used for calibration (Cai et al. 1995) and were evaluated but were 

considered too costly and difficult to construct, respectively. The system developed in 

this study was a simple, low cost approach using a motor to rotate a platter, onto which 

the scattering solution was mounted, figure 20. The scattering solution was contained in 

a tubular ring constructed by bonding the ends of a segment of silicone rubber tubing. 

This material was self-sealing following injection of the scattering solution by syringe. 

Care was taken to avoid introducing air bubbles and the tube was completely filled to 

prevent lateral movement of the solution. A polyacetal disk was placed above the tube 

to act as an optical diffuser. 

The mean particle velocity was determined by the rotational speed of the platter, which 

was controlled by the DC excitation of the motor. A motor speed controller was 

essential to obtain consistent revolution rates at low speed. The period of revolution was 

determined via a frequency counter coupled to a photodiode (D) that was illuminated by 

an LED (E), via a reflector on the underside of the platter. To perform routine 

calibration of each sensor, following fabrication, and prior to in vivo measurements the 

response to ten velocities over the range 1-10mm-s-1 were obtained. The total time to 

perform the procedure, process the data and obtain a calibration graph was reduced 

from around three hours to 30 minutes. 
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4.6.3 Comparison with Doppler ultrasound 

In most clinical situations, laser Doppler systems are not required to track continuously 
changing flow rates, whereas for the intended application this situation could arise 
during walking. As it was not feasible to simulate a continuously varying change using 
the calibration systems previously discussed, an alternative approach was developed. A 

peristaltic pump (Watson Marlow, model 503) was used to drive scattering solution 

around a closed loop of silicone rubber tubing, of differing diameters, depending on the 

required flow rate. To obtain a comparative reference signal a Doppler ultrasound probe 
(Huntleigh, model MD2) was placed adjacent to the sensor on the tubing. To prevent 

coupling of mechanical vibrations from the pump into the optical path, the monitored 

section of tubing was isolated and clamped to a second bench. The unfiltered laser 

Doppler flux signal was compared to the analog output waveform obtained from the 

ultrasound unit, using an oscilloscope. Using this approach, it was possible to 

demonstrate that the laser Doppler system could track pulsatile flow at different flow 

rates without distortion, refer to figure 6 on page 75. 

4.7 Summary 

Existing laser Doppler systems were found unsuitable for the proposed study and a new 

system was developed to allow in-shoe assessment of plantar blood flow during 

walking. The laser Doppler sensor was specifically designed for location under the first 

metatarsal head because of the high incidence of diabetic plantar ulceration in this 

region. Optimum signal to noise ratio was achieved using eight segments of optical 

fibre, which collimated light from tissue onto eight photodiodes. However, the difficulty 

of matching the optical characteristics of the fibres resulted in a device to device 

repeatability approaching 25%. To overcome this problem the optical fibres were 

eliminated and photodiodes were mounted adjacent to tissue. This resulted in a device 

to device repeatability of better than 10%. However, to obtain a comparable signal to 

noise ratio amplifiers had to be mounted within the sensor. Consequently, it was not 

possible to reduce the size of the device for incorporation in normal footwear and a 

custom-made measurement shoe was required for each subject. The design of the 

measurement shoe was complicated by the requirement to achieve relatively constant 



117 

temperature of the plantar skin and of maintaining the sensor in contact with the foot 

whilst allowing normal flexion during walking. The design of the instrumentation 

integral to the sensor was based on the standard laser Doppler differential amplification 

scheme. Compromises were required in order to mount the instrumentation within the 

sensor and signal averaging techniques were required in software to achieve an 

acceptable signal to noise ratio. The system also included a small power supply for the 

sensor and an instrumentation recorder mounted at waist level. Battery operation 

allowed data to be collected during walking and provided electrical isolation. Doppler, 

optical intensity and load signals were recorded onto the instrumentation recorded and 
download off-line to computer for analysis. Software was developed for the acquisition 

and processing of the data to extract the blood flux parameter. 

In vitro calibration was achieved by developing a flow rig to allow the system response 

to be obtained for a range of particle velocities and concentrations. Graded latex 

microspheres or soluble starch dissolved in water were suitable substitutes for blood as 

the calibration scattering medium. 
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Chapter 5 In vitro results 

5.0 Introduction 

Results of in vitro evaluation and calibration of the plantar monitoring system are 
presented. 

The primary objective in determining operational performance was to allow reliable in 

vivo estimates of blood flow to be obtained and compared. An exhaustive in vitro study 

was not practical; however, sufficient data was acquired to ensure representation of 

systematic and random errors. 

Calibration of the Force Sensing Resistor is also discussed. 

5.1 Sensor calibration 

5.1.1 Methodology 

Laser Doppler systems are difficult to calibrate in vivo (Oberg 1990), consequently a 

number of in vitro techniques have been developed (Mito 1992, Cai et al. 1996, Liebert 

et al. 1998). These models do not reflect the scale, complexity or variability of skin 

tissue, site to site or subject to subject. However, they are routinely used to assess the 

response to changes in flow rate and concentration (Barnett et al. 1990). A simple flow 

rig of the type described in chapter four was used to calibrate the plantar monitoring 

system. To facilitate comparison with published data, flow and concentration variables 

were matched to those used by Obied (1993), in evaluation of the signal processing 

algorithm of Bonner and Nossal (1981). The same frequency weighted algorithm is 

used for calculating the flux response in the present system. 

A polyacetal disk with a thickness of 400gm was used to simulate the optical scattering 

of the epidermis (Boggett et al. 1986). One side of the disk was attached to the contact 

face of the sensor and the other abutted to a polythene tube (internal diameter = 3. Omm, 

wall thickness = 0.5mm) in the flow rig. The flow rate was determined by a pre- 

calibrated in-line control valve. This arrangement allowed the mean particle velocity to 
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I be adjusted from 0-10mm. s-1, in steps of 0.5mm. s- .A homogeneous solution of latex 

microspheres or dissolved starch was pumped through the flow rig. The scattering 
medium was diluted with pre-boiled water to achieve concentrations from 0%-0.5% by 

volume in steps of 0.05%. This range corresponds to the maximum haernatocrit value 
encountered in the microvasculature (Barnett et al. 1990). To exclude ambient light 

effects, and allow localised control of temperature and humidity, the sensor and 

sampled segment of the flow tube were enclosed in an opaque plastic chamber. Within 

the chamber the flow tube was bent, to form a u-shape with the sensor perpendicular to 

the right angled bend. This arrangement placed the optical path in line with the direction 

of flow to maximise the Doppler scattering angle, providing the maximum frequency 

shift of the Doppler signal. 

5.1.2 Estimation of maximum frequency shift 

General characteristics of the Doppler signal were identified by averaging the frequency 

spectra of 100 sets of data, for each test. During calibration, the Doppler signal was 

monitored on a spectrum analyser. The signal was continuous and decayed with an 

exponential type profile, to the background noise level. Bandwidth and amplitude 

varied with flow rate and scattering particle concentration, respectively. The baseline of 

the analyser was adjusted to exceed the noise floor and the maximum frequency 

determined for each test. 

For comparison, estimates of the frequency shift were calculated using the general 

Doppler equation (Barnett et al. 1990): 

Af = (2nv / X, ) cosO (17) 

Where: n= Refractive index of scattering medium (Approx. 1.4 in tissue). 

Velocity of the scattering particle. 

X= Wavelength of incident photon (780nm +/- l0nm at 25'C). 

Angle between incident photon and scattering particle (-0'). 

The value of 0 can be estimated by geometric consideration of the optical path and the 

maximum penetration depth, which for near infrared is 1-2mm (Johnson 1990). The 
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optical arrangement of the sensor allows detection for values of 0 close to 0'. Thus cosO 
tends to unity and the maximum frequency shift predicted by equation (17), is possible 
for real measurements. 

Estimates of the maximum frequency shift, Af, at the minimum and maximum flow 
rates, achievable in the calibration rig, were: 

For a mean particle velocity of 0.5nun. s-1, 

Af = (2 x 1.4 x 0.5 x 10-3 )/ 780 x 10-9 = 1.8kHz 

For a mean particle velocity of 10nim. s-1, 

Af =(2x1.4 x 10 x 10-3 )/ 780 x 10-9 = 35.9kHz 

Measured values of Af were consistently higher than the estimated values, by 2% at the 

lower flow rate and 4% at the higher flow rate. These differences remained after the 

estimates were refined to include the refractive index of the polyacetal disc. When a 
flow regulator was substituted for the flow control valve, the difference at the higher 

flow rate was reduced to <2%. The original error was attributed to the difficulty of 

calibrating the flow control valve. However, using a set of flow regulators was 

impracticable, due to the difficulty of construction for lower flow rates. Furthermore, 

substitution of a regulator substantially increased the set-up time for each test. 

The sensor instrumentation has an upper cut-off frequency of 28.2kHz, which can be 

shown, by equation (17), to limit the maximum resolvable particle velocity to a value of 

8mm. s-1. This value encompasses the range of red blood cell velocities found in the 

capillaries of the skin, which extends to 3.5mm. s-1 (Barnett et al. 1990) for rest 

conditions. 
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5.1.3 Linearity of blood flux response versus mean particle velocity 

Figure 21 shows the system response versus flow rate, for a particle concentration of 
0.2% by volume, determined over the range of 0-10mm. s-I . The sensor response is 

linear for mean particle velocities of 0.5mm. s-1 to 6mm. s-1, above which the response is 

limited by the bandwidth of the instrumentation. For a bandwidth of lOOkHz, the same 

blood flux algorithm has been demonstrated to be linear for mean particle velocities up 

to 14mirn. s-1 (Obied 1993). The maximum non-linearity for any sensor, defined as the 

maximum deviation from the best straight-line fit, was 3.7%. At zero flow, an offset 

was present, which varied with the scattering media and test conditions. The magnitude 

of this offset suggests a contribution due to random agitation of scattering particles in 

addition to instrumentation noise. 

Latex microspheres (Moor Instruments) of diameter lOgm were used in the experiment 

to approximate red blood cell dimensions. It was not possible to use this scattering 

medium for all of the calibration work due to the high cost. The experiment was 

repeated using soluble starch (Sigma-Aldrich) with an estimated particle size range of 

50-300gm. The responses for the two types of media were equivalent within +/-10% 

over the full working range, which justifies the use of soluble starch as a scattering 

medium for calibration. 
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Figure 21 Graph of normalised flux response ( flux / flux(m,, x) ) for a scattering solution 

of 0.2% by volume, of latex microspheres. The best straight-line fit, is described by 

0.09x+0.04. 
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5.1.4 Linearity of the blood flux response versus particle concentration 

In the preceding tests, the minimum deviation from the ideal best straight-line fit 

occurred at a mean particle velocity of 2mm. s-1. This flow rate was used to assess the 

system response for different particle concentrations. Figure 22 shows the 

corresponding normalised flux response. Figure 22 indicates a linear response for 

particle concentrations comparable with those expected in the capillary beds of the skin 
(Nilsson 1990). A best straight-line fit is superimposed for concentrations !! ý 0.2% by 

volume. At higher values, particle concentration is increasingly underestimated due to 

the inherent nonlinearity of the processing algorithm (Obeid 1993). This type of 

response is in good agreement with the findings of similar studies (Nilsson et al. 1980, 

Nilsson 1984, and Obied 1993). No attempt was made to increase the linear range of the 

concentration response, because the in vivo requirement was limited to assessing flow 

in superficial vessels, where concentrations are normally within the linear range of the 

system. 

Figure 23 shows normalised flux response versus mean particle velocity for different 

particle concentrations. This graph verifies that the flux increases linearly, with 

scattering particle velocity and concentration, over the required range for the 

micro vascu lature. Outside of this range, a non-ideal response is obtained due to under- 

estimation of particle concentration and instrumentation bandwidth limitations. 
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5.1.5 Operating region and hysterisis 

Several commercial systems quote a general scale factor for quantification of in vivo 

measurements (Borgos 1990). However, this approach is considered unreliable in the 
literature (Oberg 1990) as significant site to site and subject to subject variations occur 
in skin. For the linear region of the present system, it was possible to estimate a scale 
factor of 20mV per mm. s-1, for each gram of starch dissolved in 250ml of water, this 

conversion proved useful for checking in vitro measurements. 

The calibration data indicated a full-scale output of 3.8 volts over the full calibration 

range. For the limited range representing the velocities and concentrations found in 

skin, a maximum output of two volts was adequate, this value is subsequently referred 

to as the full-scale working range. 

In the calibration experiments, flux responses were evaluated for both increasing and 

decreasing flow. When compared, the graphs exhibited small systematic differences due 

to hysterisis. Values for increasing flow produced a flux response up to 170mV greater 

than for decreasing flow, at the corresponding mean particle velocity. This important 

error is equivalent to 8.5% of the working range. To evaluate this problem further, a 

microsphere motility standard (Moor Instruments type PFS) was placed in a test 

chamber, and the temperature increased from 22'C to 35'C in steps of PC, followed by 

cooling. The flux response was recorded at corresponding values for both directions of 

the thermal cycle. Results from this experiment exhibited negligible hysterisis. It was 

concluded that the hysterisis error was inherent in the flow rig valve. 

5.1.6 Calibration of the Force Sensing Resistor 

The Force Sensing Resistor (FSR) used in the plantar monitoring was calibrated to 

allow blood flow to be assessed over a continuous range of plantar pressure between 

zero and full static loading during standing. The FSR174NS is a circular FSR with an 

outer diameter of 28mm which provides the closest match to the laser Doppler sensor 

housing diameter of 30mm. The resistance of the device varied over a range of 

IIAMQ at zero load to 4.2kQ at maximum load. An amplifier was used to buffer the 
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device and provide a useful output voltage signal with a range of 0-5V. The circuit is 

shown in figure 24. 

For calibration, metal weights and water filled containers (IL=lKg) were used to load 

the device via a platform, supported by a wooden pole of diameter 30rrun, incident on 
the device. A total load range of 0 to I OOKg corresponding to a pressure of 0-1600kPa 

was used. The response was obtained at ambient temperatures of 22'C and 30T. The 

response is shown in figure 25, which includes both unloading and loading cycles. 

The response of the sensor was logarithmic with a sensitivity range of 40mV/kPa at low 

load (I OkPa) increasing to 0.1 rnV/kPa at high load (I OOOkPa). It was straightforward to 

compensate for this non-linear response using lookup-tables implemented in Labview 

software. However. ) for accuracy simultaneous measurement of temperature using an 

LM35 sensor (Radio Spares) proximal to the FSR was required because of an estimated 

temperature related drift of 1%10C. Measurement repeatability was assessed over five 

loading cycles and was within 5% of full-scale. The sensor response exhibited a 

maximum hysterisis of 6% of full-scale at 300C. 

Off-axis loading was not assessed as the FSR is bonded to the laser Doppler sensor 

housing in the plantar monitoring system. 
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5.2 Sensor resolution 

To establish the sensitivity of the system to changes in mean particle velocity, the flow 

control valve in the calibration rig was replaced by fixed aperture flow regulators. These 

were constructed from plastic pipette tips (Merck Ltd, PK series) and calibrated to 
II provide mean particle velocities in steps of O. Imm. s- over the range from 3 to 4mm-s- 

Lower flow rates could not be achieved with precision due to the difficulty of obtaining 

small diameters accurately. At tested particle concentrations of 0.1% and 0.5% the 

incremental changes were resolvable, giving step increases in flux of 50mV± 15mV. 

This is equivalent to an increase of 2.5% of the full-scale range. At the lowest test 

concentration of 0.05%, the resolution was reduced, requiring increments of 0.2- 

0.3mm. s-1, to produce the same change in output as for the higher concentration. 

The capability of the system to resolve changes in particle concentration was evaluated 

by preparing concentrations of scattering medium in steps of 0.01% (100gl) by volume, 

over the ranges from 0-0.05% (0-50ORI) and 0.15%-0.2% (1.5n-fl-20MI). These small 

concentrations were prepared by introducing saturated solutions of the scattering media 

into 1000ml volumes of cooled, pre-boiled water using calibrated fixed volume micro- 

pipettes (Merk Ltd, type 4900). For example, a concentration of 0.01% by volume 

required use of a 100gl micro-pipette. 

The lower range was included to investigate the reduced particle velocity resolution, at 

low particle concentrations. It was not possible to resolve concentration changes of less 

than 0.05% for mean particle velocities of less than Imm-s-1. For the higher 

concentration range, incremental changes of 0.01% were resolved over a range of 

particle velocities from Imm. s-1 to 4mm. s-'. The corresponding increase in output flux 

voltage was 67mV± 5mV per increment. A satisfactory explanation for the reduced 

sensitivity at small values of particle velocity or concentration has not been established. 
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5.3 Sensor repeatability 

During calibration, sensor to sensor measurement repeatability was assessed for five 

prototype sensors. The limited size of the measurement enclosure and problems of 
optical cross-talk, prevented sensors from being mounted in parallel. It was however, 

straightforward to substitute each sensor without affecting flow conditions in the rig. 
Only the excitation voltage required readjustment. A worst case difference of 220mV 

occurred across the five sensors, corresponding to an error of I I% of the full-scale 

working range. This error could not be reduced in the prototype devices without 
improving manufacturing tolerance or modifying instrumentation, to allow the gain of 

each sensor to be adjusted. For the studies detailed here, the effect of this error was 

reduced by compensation, in software, on a per sensor basis. 

Sensor measurement repeatability over time was evaluated for a six month period at 
intervals of zero, three and six months. Calibration conditions were identical to those 

used to assess sensor to sensor repeatability. As exact conditions were difficult to 

recreate, a method of isolating changes in the sensor from those in the calibration rig 

was devised. A sinusoidal signal from a frequency generator (Thandar, model 

IGC2230) was injected into the anode of the laser diode. The magnitude of this signal 

was made adjustable, to provide a variation in optical output power of 1-50RW about 

the mean output power of lrnW. The laser output was reflected backward into the 

photodetection path, via glossed white card, located at a suitable distance to avoid 

detector saturation. The transfer function for each sensor was plotted manually by 

sweeping the output frequency of the signal generator from DC to 40kHz. Use of 

internally compensated operational amplifiers at moderate gain resulted in a flat 

response in the passband with a gradual roll-off imposed by the single pole filters of the 

front-end stage. With this approach, a total drift in stage gain, equivalent to an increase 

in flux response of 20mV (1% of full scale), was established for the six month period. 

This compared to values obtained using the calibration rig, of +60mV (3% of full-scale) 

for the zero to three-month period and +100mV (5% of full-scale) for the three to six 

month period. 
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5.4 Sensor response time 

Red blood cell velocities greater than those observed in the skin at rest were expected 
following the end of a period of cessation of blood flow. To ensure that the sensor could 
respond to the increased Doppler frequency bandwidth, evaluation of response time was 
required. This was achieved by injecting a pulsatile signal into the anode of the laser 
diode and monitoring the signal, reflected from white card. A value of 40gs was 
established, which is consistent with the bandwidth of the instrumentation. This 

experiment independently confirmed, by manipulation of equation (17), that the sensor 
was capable of responding to mean particle velocities up to 8mm. s-1. 

The maximum in vivo red blood cell velocities were expected to occur at the peak of the 
hyperaernic response. Measurements were made during this period under the first 

metatarsal head of five non-diabetic test subjects (Mean age 28 years, range 25-35 

years). Tissue ischaernia was induced by standing for periods of two, four, six, eight and 
ten minutes. The results from this experiment indicated that flux response during 

hyperaernia increased in proportion to duration of loading. However, within the group, 
flux responses exceeded the full-scale working range of the system for mean loading 

periods of 6.5 minutes (range 6-8 minutes). This is an important result as it sets an 

upper limit on the duration for which static loading can be applied in vivo. In practice, a 

maximum load period of five minutes was specified to ensure that the flux response 

remained within the linear operating region. 

5.5 Environmental factors 

To evaluate the affect of temperature on response, calibration experiments were 

repeated, with the addition of a sealed thermostatically controlled heating element, 

introduced into the measurement chamber. The flux responses at the limits of the 

operating range (26-34'C) were compared and a mean difference of 8.4% noted. As the 

photodiodes are exposed at the contact face of the sensor, it is likely that this variation 

arises from the thermal dependence of the response of these devices. Within the range, 

the flux response was observed to increase non-linearly with temperature. To reduce 

this error, correction factors were calculated for each VC step, over the operating range 

and encoded in system software. It therefore became essential to record the ambient or 
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skin temperature, during in vitro and in vivo measurement, respectively. In practice, 
skin temperature measurements were recorded manually at the start and end of each 
test. The mean of the two values was used to determine the required compensation 
factor. This approach does not account for changes, which occur during a test, for 

example the increase in skin temperature during the hyperaernic response (Kabagambe 

et al. 1994). It is for this reason that the initial sensor specification included a 

requirement for continuous temperature measurement. 

For in-shoe measurement, the sensor must operate in an environment with a high 

relative humidity (Nevill 1991). When water vapour was introduced into the 

measurement chamber, the output from the laser diode eventually became intermittent. 

This problem was resolved by sealing the connection port to the instrumentation, with 

epoxy resin. 

5.6 Measurement uncertainty 

An estimate of measurement uncertainty was made using the 'square root of the sum of 

squares' method (Fraden 1997). This estimate was limited to the main uncertainty 

components as identified in table 1 and calculated using equation (18). 

UC = U2 +u2+... U2 + U2 
41 

2in 
(18) 

Where Uc is the combined standard uncertainty and U,, is the standard deviation from 

the mean for the nth source of uncertainty. 

For calibration purposes, measurement uncertainty is 8.7% of the full scale working 

range. With the uncertainty associated with setting the calibration flow rate excluded, 

the measurement uncertainty for a single sensor, is reduced to 6.3%. For comparative 

studies, the sensor to sensor variability increases the measurement uncertainty to 12.5%. 

This figure is interpreted as the typical variation in flux response across the five 

prototype sensors, for identical in vivo flow conditions. The value is slightly higher than 

the original aim of 10% of the full scale working range. 
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Source of uncertainty 

Calibration 

Standard uncertainty 
(Millivolts) 

Single sensor 

Standard uncertainty 
(Millivolts) 

Multiple sensor 

Standard uncertainty 
(Millivolts) 

Setting flow rate 120 N/A N/A 

Non-linearity 74 74 74 

Sensor repeatability N/A N/A 220 

Concentration sensitivity 100 100 too 

Sensor noise 20 20 20 

Combined uncertainty 

(% of full-scale) 

174 

(8.7%) 

126 

(6.3%) 

253 

(12.6%) 

Table I Estimated measurement uncertainty for calibration, single and multiple sensor 

measurements. 
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5.7 Effects of other physical parameters 

Although particle velocity and concentration are the primary factors that determine the 
response of a laser Doppler system, several other factors require consideration. The 

most important being movement artefact, sampling depth and blood oxygen levels. 

5.7.1 Movement artefact 

Three forms of movement artefact can arise during measurement of skin blood flow, by 
laser Doppler flowmetry. The first, is associated with use of optical fibres, an approach 
not employed in the final prototype sensor. The second mechanism arises from lateral 

movement of the sensor, relative to sample tissue. In the present system, the 

measurement shoe incorporates a sensor recess, elasticated straps and an adhesive tape, 

to restrain the position of the foot relative to the sensor. The effectiveness of the 

approach was assessed by monitoring the Doppler signal on an oscilloscope. Compared 

to the relatively low-level and continuous blood flow signal, noise due to lateral 

movement artefact tended to occur in discrete bursts, with much greater amplitude, 

typically limited by the supply rails. It was therefore, possible to identify periods of 
lateral artefact noise. Furthermore, the characteristics of this noise could be analysed in 

isolation, by loading the foot to reduce blood flow, and inducing relative movement 
between the foot and sensor. For poor sensor-fit, omission of adhesive tape, or low strap 

tension, the Doppler signal was swamped by movement artefact noise. At moderate 

strap tension, this noise was reduced to a low level, of typically ten millivolts. Thus, by 

ensuring that the sensor and sample tissue remained in good alignment the error in the 

flux response, due to lateral movement artefact, was limited to around 0.5% of full 

scale. 

The third type of movement artefact noise arises from movement within the tissue 

sample volume during external mechanical loading or internal anatomical movement. 

For the majority of clinical applications this error can be minimised by ensuring 

measurements are made on subjects at rest, and with minimal probe pressure applied. 

During walking, substantial artefact noise can be expected during tissue loading 

transients. Analysis of the transient signal indicated that the blood flow and noise 

signals were not easily distinguished. It was therefore, evident, that a reliable estimate 

of blood flux could not be achieved, continuously, throughout the full gait cycle. The 
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solution to this problem was to restrict analysis to the unloaded, swing phase of the gait 
cycle. The period of the total swing phase during which valid measurements could be 

achieved was limited by an initial unloading transient. Extraction of a segment of the 
Doppler signal about the centre point of the swing phase was used to exclude the 

unloading transient. 

5.7.2 Simulation of dynamic loading using a pressure cuff 

An alternative method of obtaining dynamic data, by simulated loading, was 
investigated as a possible method of eliminating movement artefact noise. The 

technique used by Castronuovo (1987) of applying load at a measurement site using a 

pressure cuff was evaluated. The plantar sensor was affixed under the first metatarsal 
head using a double-sided adhesive ring and a pressure cuff wrapped around the foot, 

enclosed the sensor. Cuff pressure was increased in increments of 20mnfflg, at intervals 

of one minute, up to the cessation level of 200mmHg (Sacks et al. 1988). Continuous 

recording of the Doppler signal was made for the duration of the experiment and flux 

responses were subsequently calculated for each of three test subjects. The response 
began to reduce at a mean pressure, for these subjects, of 55mrnHg and fell rapidly to a 

minimum value. This suggests that relatively small increases in skin pressure are 

sufficient to stop skin blood flow -a finding compatible with results previously 

published in the literature, for other measurement sites (Obied 1990). This technique 

proved useful, for comparing some characteristics of walking response with an artefact 

free response. However, several problems were identified, that limited the clinical 

validity of the results obtained using this method. For example, the effect of the 

pressure cuff on overall blood flow in the foot could not be established. It was also 

difficult to maintain a constant load, necessitating continuous adjustment of cuff 

pressure. Furthermore, latency associated with inflating and deflating the cuff reduced 

the dynamic range of the simulated loading. 

5.7.3 Sampling depth 

Depth of optical penetration into tissue also alters the characteristics of the Doppler 

spectrum. As the sampling depth increases, a greater contribution is made by red blood 

cells from deeper, larger vessels, which exhibit higher mean particle velocities 
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compared to superficial vessels. As blood flux is normally interpreted as representing 
conditions in the capillary bed, significant contribution from deep vessels result in an 
overestimate, for this region. The magnitude of this error is dependent on skin thickness 
at the measurement site. Some control of the sampling depth can be achieved by: 
Operating at a suitable source wavelength (Gush and King 1991); excluding Doppler 
frequencies above those normally found in the cutaneous microvasculature (Borgos 
1990); increasing source to detector separation (Jakobsson and Nilsson 1993). In the 
present study, the thickness of the epidermal and dermal layers under the metatarsal 
heads was expected to prevent significant contribution from subcutaneous vessels. This 

was supported by the observation that the maximum Doppler frequencies obtained in 

vivo were well below 12.5kHz, the upper limit of red blood cell velocity in the 

capillaries. 

5.8 Summary 

In vitro calibration of the plantar monitoring system was made using a simple variable 
flow rate rig with different pre-determined concentrations of scattering particle. The 

response to changes in mean particle velocities over a range of 0.5mm. s-1 to 6mm. s-1 

was linear to within 3.7% of the best straight line fit for a particle concentration of 

0.2%. The response to changes in particle concentration over the range of 0 to 0.25% 

was linear to within 2% of the best straight line fit for a mean particle velocity of 

2mm. s-1. The drift in these values over a six- month period was 1% of the full scale 

working range. The stated linear operating range of the sensor includes the range of red 

blood cell velocities and concentrations typically found in the microcirculation of the 

skin. Outside of this range, the response becomes increasingly non-linear due to the 

effects of multiple scattering. At particle concentrations of 0.1% to 0.5% changes in 

mean particle velocity of 0-Imm-s -1 were resolved. At lower concentrations, the 

resolution reduced to 0.3mm. s-1. Sensor response time is limited by the components of 

the transimpedance stage, which impose an operational bandwidth of 28.2kHz. This 

limited resolvable mean particle velocity to less than 8mm. s-1. Consequently, a 

maximum occlusion time of 6.5 minutes was required to prevent saturation during 

reactive hyperaernia. The variation in response over the operational temperature range 

of 26-340C was 8.4% this required ambient and skin temperature measurements to be 

recorded to allow for compensation in software. Measurement uncertainty was 



136 

estimated as 6.3% for a single sensor increasing to 12.6% across five devices. The use 

of double-sided tape to attach the sensor to the skin and correct tensioning of the 

restraining straps of the measurement shoe was required to minimise artefact arising 

from lateral movement of the foot relative to the sensor. Movement artefact due to 

tissue compression/decompression prevented assessment of blood flux during dynamic 

loading/unloading and restricted analysis to the swing phase of gait. 
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Chapter 6 In vivo results 

6.0 Introduction 

This chapter is divided into two main sections. Section 6.1 discusses pre-clinical in vivo 
assessment of the system. Section 6.2 describes the clinical measurement protocol and 
presents results from a clinical evaluation of the plantar monitoring system. 

6.1 Effect of physiological factors on blood flux 

A pre-clinical in vivo assessment of the system was performed, to evaluate sensitivity to 

physiological factors, including the effects of load, skin temperature and heart rate. 
These tests were performed on a group of five, non-diabetic male subjects (Mean age 28 

years, range 25-35 years). 

6.1.1 Relationship between blood flux and load 

The Doppler signal was recorded under the first metatarsal head, for a period of ten 

minutes, at 0% and 50%±10% of the static load value during standing. The half load 

value was maintained manually by the subject via feedback from the load signal 
indicator on the instrumentation recorder. The mean Doppler spectrum for each load 

was obtained by averaging five hundred spectra. An example for a single test subject is 

shown in figure 26. Similar results were obtained from other subjects. 

The frequency response range extended to 4-6kHz at 0% of full load, falling to 3-4kHz 

at 50% of full load, for the group. This was interpreted as a reduction in blood flow with 

tissue loading. The reduced amplitude at the higher load is consistent with a reduction 

in the number of blood cells in the sample volume due to loading of tissue. The 

amplitude of the DC component, however, increased with load -a proposed explanation 

is that total light reflected from skin tissue is inversely proportional to the number of red 

blood cells present. This finding has important consequences for the DC scaling 

required for subject to subject comparison, and suggests a need for compensation, that 

takes into account the subject specific dependency, of intensity on load. For the present 

study, this difficulty was overcome by restricting comparison between subjects to zero 

and full load. At zero-load, tissue perfusion must be independent of load. By 
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considering body weight, the size of the foot and the area of the sensor it was estimated 
that the external vertical load at the measurement site during standing exceeded a value 
of 35mnfflg for each subject. This value is sufficient to cause closure of skin capillaries 
(Pfeffer 1991). The results obtained for all subjects during static loading have a blood 

flux level within a few percent of the instrument baseline. Therefore, it was considered 
that at full load, blood flow was minimal and valid comparison could be made between 

subjects. Under these conditions the mean intensity will be determined by skin 

pigmentation and the standard method of compensation - scaling by the mean intensity, 

remains valid. 

6.1.2 Relationship between blood flux and skin temperature 

Bircher (1993) states that 'Exercise has a considerable effect on cutaneous blood flux' 

and 'Undoubtedly among the important factors which influence cutaneous blood flux is 

skin temperature'. In clinical laser Doppler studies, these influences are controlled by 

making measurements on subjects at rest and at stable ambient temperatures, typically 

in the range of 25-30'C, for which thermoregulatory flow is low. For these stable 

conditions, variations in blood flux can be considered as due predominately, to changes 

in nutritional flow - the normal parameter of interest. Although this approach is 

applicable to static measurements in plantar tissue, there are obvious difficulties in 

interpreting flux values acquired during walking. Consequently, an in vivo evaluation of 

the effects of exercise and skin temperature on blood flux during walking was made. 

The effect of skin temperature on response was assessed by cooling and warming of the 

foot, in water, for ten minutes, which resulted in measured, mean skin temperatures of 

12.5'C and 41.2'C across the group. Measurements were made at a constant ambient 

temperature of 230C. The dried foot was placed in the measurement shoe, for thermal 

insulation, and a mean Doppler spectrum averaged over five minutes, calculated as 

shown in figure 27. The experiment was performed on other test subjects under similar 

conditions. For all subjects, the individual responses demonstrated a clear dependence 

on skin temperature. The increased amplitude and bandwidth of the spectrum at the 

higher skin temperature can be explained by normal thermoregulatory mechanisms of 

the skin. Specifically., total cutaneous blood flow increases with temperature, and due to 

arteriovenous shunt flow, the concentration of red blood cells within the sample volume 
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Figure 26 Characteristics of the Doppler spectrum acquired from under the first 

metatarsal head, at 0% and 50%(+/- 10%) of the full load value for the subject. 
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is likely to increase. The result of this experiment confirmed the need for close 

matching of skin temperature between test subjects. 

6.1.3 Relationship between blood flux and heart rate 

Exercise data for the test group was acquired in-shoe, at the start and completion of a 
five-minute period of normal walking, following rest. The initial heart rate across the 

group was mean 64 BPM (range 58-70 BPM) rising to mean 79 BPM (range 66-84 

BPM). Doppler spectra and corresponding blood flux values, for the two heart rates, 

were compared for each subject. Within the group, the maximum difference in the two 

flux values for an individual was 11% of full-scale. The experiment was repeated, with 

addition of an initial two minutes of normal walking, to allow the heart rate to stabilise 

at a relatively constant value throughout the measurement period. The variation in 

individual heart rates measured at the start of the third minute and on completion, fell to 

within five beats per minute and the maximum difference between the two flux values, 

to less than 3% of full-scale. 

The results demonstrated that it is possible to establish stable measurement conditions 

for periods of five to ten minutes during walking for a non-diabetic test group. 

However, this is only correct for small variations in heart rate (<+/-10 BPM) and skin 

temperature (+/- 30C) over the test period. A further important advantage was the need 

for continuous monitoring of heart rate and skin temperature was replaced by 

quantification at the start and end of a test, only. This considerably simplified the 

acquisition system and measurement protocol. 

Studies published in the literature have emphasised the significance of alcohol 

consumption, smoking and antihistamine on laser Doppler flux response (Li Kam Wa et 

al. 1990, Bircher et al. 1993). These factors were not considered in this study, however, 

subjects were requested to abstain from these and other stimulants, for a minimum of 

two hours prior, to participation. 
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6.2 Clinical evaluation of the plantar monitoring system 

6.2.1 Study group 

The main objective of clinical evaluation of the plantar monitoring system was to verify 
safe operation in vivo and to obtain in vivo data for analysis. Ethical approval was 
obtained from the Royal Bournemouth Hospital for a preliminary clinical evaluation of 
the system on diabetic subjects without previous plantar ulceration or prior foot trauma. 
A full longitudinal prospective study is needed to establish correlation between 

measured values and symptoms but this is beyond the scope of the present study. The 

hospital requested that the study group be restricted to a small group of ten patients, 

with follow up at 12 months. Furthermore, it was recommended that a diverse group be 

assessed to ensure reliable and safe operation across a range of neuropathic and vascular 

complications. One of the subjects was excluded at initial assessment due to an injured 

great toe proximal to the measurement site. The remaining subjects were all Caucasian 

males with a mean age of 61 years (range 53-72 years). All subjects had type 11 diabetes 

mellitus, minimum duration 12 months. These factors are important because subjects in 

this age range with type 11 diabetes mellitus have a high incidence of plantar ulceration 

(Williams 1994). Five nondiabetic Caucasian males, mean age 55 years (range 51-60 

years), were used as a control group. The upper age limit was set to ensure a reasonable 

level of mobility for the dynamic test. All subjects were non-smokers and in otherwise 

good health, excepting the complications of the diabetic groups. The measurements 

were scheduled to avoid concurrent participation in pharmaceutical trials. All tests were 

carried out under controlled conditions at Bournemouth University and at the Diabetes 

and Endocrine Centre of the Royal Bournemouth Hospital. A summary of the 

composition of the study group is given in table 2. 

Signals for subjects Control 1, Control 5 and BC exhibited drop out in some sections. 

This was traced to a particular sensor subsequently found to have an intermittent 

connection on the sensor PCB. Results for these subjects were excluded. 
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6.2.2 Protocol for construction of measurement shoe 

A manual inspection of the unclad right foot of each subject was performed to evaluate 
anatomical condition with emphasis on the plantar aspect of the first metatarsal head. 
Normal procedures were used to minimise cross infection. The height and weight of 
each subject was recorded and added to the patient record. A sheet of A3 matt paper 
was placed under the foot and an outline obtained, by drawing around the circumference 
of the foot with a marker pen. The pen was held vertical, such that the foot was 
contained within the outline, and the mark width was selected to be clearly visible to the 
seated subject. The foot was placed vertically onto a support stool and the first 

metatarsal head located manually, by palpation. The estimated centre of the bone was 
marked using a soluble marker pen. The heel was then placed to correspond with the 

outline and the foot carefully lowered, to transfer the centre mark to paper. This 

procedure was repeated three times to establish the accuracy of alignment, which was 

within 4mm across the whole group. Subjects JCC and RC had difficulty in aligning the 
foot with the outline, requiring assistance to guide the foot into position. As both 

subjects had peripheral sensory neuropathy this was attributed to an impaired tactile 

sensory or lower-leg muscular, function. 

After foot size and location of the measurement site had been determined, the 

measurement shoe for each subject was constructed using the outline of the foot as a 

template. The centre position of the sensor was determined using the spatial average of 

the first metatarsal centre marks. The template was aligned with the orthopaedic insole 

such that a minimum clearance of 5mm was achieved between the sensor and outer 

edge of the insole. This was necessary to ensure that the sensor was adequately retained 

within the insole. The foot restraining straps were located immediately to the rear of the 

sensor location, on both sides of the insole. This provided optimum contact between the 

sensor and foot. A ring of double-sided adhesive tape was located on the sensor to 

provide adhesion to plantar skin. 

Each measurement shoe was constructed to completion, except for bonding of the upper 

neoprene layer. Just prior to measurement, the sensor was located within the insole and 

the upper neoprene layer mounted using double sided adhesive tape. Tests were 
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performed using a set of three, final prototype sensors, in rotation. These devices were 
calibrated at five days prior to the first test date. 

Subjects were given a prior verbal and written description of the test objectives and 

procedure, and formal consent was obtained. Most subjects expressed apprehension 

with regard to the laser, which was overcome by applying a standard laser pointer to 

their skin to demonstrate the technique painless. 

6.2.3 Pre-test clinical assessment of study group 

A qualified research nurse specialising in diabetes and familiar to the diabetic subjects 

assisted throughout the clinical evaluation. A cornPrehensive clinical evaluation of all 

subjects was performed within 14 days prior to the present study. Evaluation of 

peripheral sensory neuropathy was assessed subjectively using graded monorilamcnts 

and quantitatively using a vibration perception test (Biothesiometcr). Tests were made 

at rive sites on the foot with the biothesiometer threshold for neuropathy taken as 30V 

in accordance with previous studies (Cavanagh and Ulbrecht 1994). Two simple tests 

were used to detect autonomic neuropathy. The difference between maximum heart rate 

and minimum heart rate was counted for each of three ten second cycles with the 

subject inhaling deeply at a rate of six times per minute. The mean difference over the 

three cycles was calculated and a value of 15 used as the normal value. The second test 

measured blood pressure with the subject supine and then at one minute after standing. 

A drop of 10mmHg or less was considered normal and a drop of 30mmlIg or more was 

considered indicative of autonomic neuropathy. The test was repeated three times and 

the mean recorded. Valsalva's manoeuvre was not used because of the possible risk to 

subjects with cardiovascular complications. Peripheral vascular disease was assessed by 

determination of the ankle: brachial index, with values at or above unity takcn as 

normal. Urine testing of microalburnin was performed and an Albumin: Crcatininc ratio 
(ACR) >2.5 considered an indication of microalburninuria. 

Data for glycosylated haemoglobin HBAI was not available and blood glucose control 

was assessed from recent data on fructosamine levels. Concentrations highcr then 

360gmol/L indicated poor control. All of the subjects in the present study had good 

control achieved by diet. 
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None of the test subjects had a history or current evidence, of oedema in the right foot. 

Full details regarding the pre-evaluation clinical assessment of these subjects is given in 

table 3. 
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6.2.4 Measurement protocol 

The testing procedure commenced with a rest period of ten minutes, after which plantar 
skin temperature, pulse and blood pressure were recorded. Blood oxygenation levels 

were assessed using a pulse oximeter (Nellcor model NIOO). The foot was then warmed 
in water at 30'C, for 3 minutes. During this period, the upper seal of the double-sided 

adhesive tape on the sensor was removed. The foot was dried and the heel located in the 

measurement shoe. The forefoot was lowered into position manually to ensure 
alignment of the first metatarsal head with the sensor. The foot restraining straps were 

adjusted to obtain a close and comfortable fit and a nominal signal level of two volts. 
The skin temperature of the foot was determined by inserting an electronic thermometer 

under the foot close to the first metatarsal head. The subjects heart rate was determined 

by counting the pulse manually at the wrist. 

For static tests, the recorder and instrumentation were located on the floor close to the 

foot. For dynamic measurement the equipment was suspended from the left shoulder via 

a strap, the length of the sensor cable was adjusted, by coiling to suit each subject. The 

laser was activated and adjusted to an operating current of 50mA, corresponding to an 

optical power of I mW at the skin. At rest and during recovery the subject was seated 

with the heel on the floor and the forefoot slightly elevated to prevent loading. For static 

loading the subject stood normally without support. Dynamic data was obtained during 

walking at normal speed. The following data was obtained: Three minutes at rest, two 

minutes static loading, two minutes recovery, one minute at rest, three minutes static 

loading, three minutes recovery, one minute at rest, four minutes static loading, four 

minutes recovery, five minutes walking. This protocol provided a means of determining 

if the blood flux response was proportional to the duration of loading. Between each 

loading cycle a further five minutes of recovery was allowed to ensure clearance of 

residual vasodilators and a return to rest level. Prior to dynamic measurement, a three- 

minute period of acclimatisation was used to stabilise the heart rate. Data was not 

acquired during these periods because of the limited capacity of the recording 

equipment. 

During measurement, an indication of signal validity was available from the signal 

meter of the instrumentation recorder and audibly via headphones. It was not possible to 
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monitor the signals using an oscilloscope due to the requirement for electrical isolation 
of the subject, as stipulated by the Royal Bournemouth Hospital. After completion of 
the test sequence, the laser was switched off and the foot carefully removed from the 
shoe to avoid damage to the skin by the double-sided tape. It was noted that the sensor 
induced some weak marking of the skin at the location of the photodiodes and the foot 
was monitored visually until these marks disappeared. The longest period for post 
measurement recovery of skin was twelve minutes, (mean =4 minutes, range 2- 
12minutes). 

6.2.5 Processing and analysis of test data 

Total test duration was limited by the capacity of the instrumentation battery, available 
disk space and the performance of the software. The test sequence typically generated 
750 Megabytes of data and required four hours to download and process, per subject. 

The laser Doppler algorithm was applied to extract the blood flux signal and a one 
Hertz averaging filter applied to the load signal. Additional signal processing was 

required, to remove noise, due to movement artefact and for extraction of event times. 

Some base line drift of both load and blood flux signals was observed, although this was 

less than 5% of the full-scale range, for both signals, across the study group. 

It was noted that movement artefact could be observed directly from the load signal and 

was correlated with noise present in the blood flux signal. The amplitude of the 

movement artefact varied considerably from subject to subject. This was attributed to 

subject sway as part of the normal balance mechanism during standing. Consequently, 

load and blood flux signals were filtered using a first order, low pass Butterworth filter, 

with a cut-off of 5Hz, implemented in software. 

Observation of the load signals from different subjects, indicated variation in the time at 

which loading and unloading occurred (within +/-10s), relative to the start of the static 

loading test, and in the duration of each load and recovery period. These variations 

occurred because of differences in subject response due to the method of manually 

specifying times of loading and unloading. Precise times of each event were obtained 

from the unfiltered load signal by applying a software comparator with an upper 
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threshold set at 75% and a lower threshold set at 25% of maximum load. These times 
were then used as indices to extract the blood flux signal corresponding to the unloaded 
recovery periods. This provided a method of identifying the regions of interest relative 
to loading and unloading events. 

Mean resting blood flux values for each rest period were compared and found to differ 
by less than 10% for each subject for different loading times. This was considered to 
indicate that sufficient time had been allowed for a return to resting levels prior to each 
test. To simplify analysis the mean resting blood flux value for all tests was used to 
indicate the mean resting level. 

Static data obtained for the study group was analysed and several important 

measurement limitations and signal characteristics were identified: 

The restricted duration of the recovery period, for which data was obtained, was 
insufficient to show a return to resting levels. Other studies involving assessment of 

reactive hyperaernia have identified the rise time to the peak and the time to recover to 

50% of the peak value, as the parameters of interest (Fagrell 1991). The results of the 

present study indicate a reduction close to 50% of the peak for most subjects, within the 

recorded portion of the recovery period. 

6.2.6 Definition of biological zero 

The general form of the recovery period of the blood flux signal following loading, is a 

rapid increase to a peak value, followed by a slow decay toward rest levels. This 

response is typical of a reactive hyperaernia following pressure-induced occlusion of the 

microcirculation (Fagrell 1991). Changes in optical intensity proportional to loading 

were noted. This was an important finding because the blood flux signal is directly 

proportional to optical intensity. This problem has been overcome in other studies by 

varying the laser output power to maintain constant intensity during loading (Sacks et 

al. 1988). However, in the current study these variations were observed to be subject 

specific. It could be argued therefore that varying the output intensity of the laser would 

invalidate the standard normalisation process, required for comparison between 

subjects, because of differences in pigmentation. To overcome this difficulty amplitude 
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scaling was done on a per sample basis rather than by mean intensity taken over a 
period equal to the update rate (Obied 1993). The approach used in the present study 
results in a consistent baseline and is considered a reliable representation of 'biological 
zero' because as previously estimated, the pressure on the skin is sufficient for capillary 
closure during full load. Therefore, comparisons in terms of amplitude of the blood flux 
signal were considered valid. This is important because it overcomes the difficulty 
associated with laser Doppler studies of tissue under load, which have been commented 
on by Sacks et al. (1988) and Kabagambe et al. (1994). For example Sacks et al. (1988) 
found that during expected zero flow conditions the instrument response was 30-40% 

above the instrument base line, and attributed this to random RBC movement within 
tissue. It is important to stress that the arguments given here in support of the instrument 
baseline being equal to 'biological zero' are based on estimates and manual observation 
that the pressure on the skin is sufficient to cause capillary closure. As there is no way 
of confirming the validity of these estimates, other forms of evaluation were also 
devised. The most obvious solution and one routinely used in general laser Doppler 

studies is to make comparisons based on changes in blood flux measured relative to the 

mean resting flux (Fagrell 1991). 

6.2.7 Determination of minimum load period for a hyperaemic response 

In the present study it was considered that the blood flux at peak hyperaernic response 

represents a well-defined physiological state - that of maximum flow. It could be argued 

that the impaired hyperaernic response that can occur with autonomic neuropathy would 

prevent identification of the peak in some subjects. However, an absent hyperaernic 

response is consistent with advanced autonomic dysfunction, which results in constant 

dilation of the affected vessels (Boulton 1994). Therefore, the maximum value of the 

blood flux could be considered similar to the hyperaernic peak for these cases. The 

results for the present study show a clearly discernible peaked response for all subjects. 

However, the duration of occlusion required to obtain a definite hyperaernic response 

under the foot was unknown. To estimate this value, a collateral study was performed 

on five healthy volunteers (mean age=32 years, range 25-60 years) using the plantar 

monitoring system. Static loading was applied for periods of 30 seconds to 300 seconds, 

in increments of 30 seconds, with a rest period of five minutes between each cycle. In 

all cases, the type of response obtained for load periods in excess of 90 seconds was a 
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rapid increase to a well-defined peak value. For load periods less than 90 seconds, the 
nature of the response was less well defined. For this reason, the minimum loading time 
used in the clinical evaluation was 120 seconds. 

6.2.8 Physiological interpretation of the response 

Following unloading, blood flux increased linearly from zero to maximum, at a rate that 
varied across the group. This type of response can be explained by considering the 
reperfusion of tissue following removal of load. During this period, the RBC 

concentration in the sample region must increase. This increase is intrinsically linked to 
RBC velocity and blood flow. It is therefore only possible for the blood flux to increase 
linearly if the RBC concentration is increasing linearly and the rate of blood flow is 

constant. It is suggested that the rate of increase of blood flux after unloading is 

proportional to mean blood flow into the tissue -a parameter of clinical interest. 

Conversely, in the period following the hyperaernic peak, the sample volume has been 

re-perfused and the RBC concentration can be considered to have attained a relatively 

constant, nominal value. The character of the response during this period is, therefore, 

predominately determined by flow rate. Across the study group, this response was 

characterised by a consistent decay in blood flux for periods of between 40 and 100 

seconds after the peak. Subsequent oscillations are observed in the response with 

considerable variation in amplitude and frequency between subjects. Although these 

oscillations are normal during a hyperaernic response (Fagrell 1991) it is unclear if they 

are important clinically. Therefore, analysis was restricted to the initial non-oscillatory 

period of the recovery. It is suggested that the response during this period is more likely 

to arise from the period of loading alone, whereas subsequently, local metabolic factors 

may become increasingly significant. 

6.2.9 Problem of specifying blood flux measurement units 

The remaining analysis problem relates to quantifying the results. As there is no 'gold 

standard' method of determining mean blood flow in a comparable sample of cutaneous 

tissue, in vivo calibration of a laser Doppler system is not generally feasible. One study 

(Simonen et al. 1997) has provided data on the normal variation in cutaneous RBC 

concentrations and RBC velocities, however this was based on a relatively small (n=28) 
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group of unmatched normal subjects. Changes in the rheology of blood in diabetes 

mellitus can occur which affect plasma viscosity (MacRury 1990) and nonenzymatic 

glycosylation can affect the deformability of the RBC membrane (Watala 1992). Either 

of these conditions could result in RBC velocities and concentrations outside the normal 

range for non-diabetics. It is therefore not valid in the present study to extract values for 

RBC velocity from the blood flux, without independent measurement of RBC 

concentration. Results are therefore expressed in terms of the standard laser Doppler 

parameter - blood flux, which has arbitrary units. 

Figure 28 Indicates the parameters assessed in the static study. The rise time is defined 

as the time for the blood flux to reach maximum, relative to the time at which the load 

signal reaches zero. The recovery time is defined as the time for the blood flux to fall to 

50% of the maximum value. The relative increase is defined as the percentage increase 

in blood flux from the mean resting level to the maximum value. 
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6.2.10 Results of static tests 

The results for evaluation of the system during static loading are presented in this 
section. Table 4 (page 157) surnmarises general clinical data obtained at the time of 
testing. Changes in heart rate from rest to test conditions were low, indicating subjects 
were not stressed by testing. Blood pressures for some subjects were elevated consistent 
with existing hypertension noted in the hospital database. Values for oxygen saturation 
(Sa02) are above 95%, for all subjects, which suggests that RBC concentrations are 
normal and comparisons of blood flux are valid. 

Table 5 (page 157) Summarises data regarding plantar skin temperature at the 

measurement site at rest, after pre-warming and on test completion. In all cases, the 

relative increase (Final temperature minus Pre-warm temperature) was sufficiently low 

to satisfy the measurement criteria for thermal stability (<+/-3'C). 

Figures 29a-29c (page 158) show the blood flux response under the first metatarsal head 

for a non-diabetic control, diabetic neuropath and diabetic vascular subject for equal 
loading times of 120 seconds. The response for the control and neuropathic subjects 

show a hyperaernic response with a rapid rise to a well-defined peak followed by a 

gradual recovery. In contrast, the response for the vascular subject is a slower rise to a 

much broader peak. The control subject recovers to 50% of peak value within less than 

half of the recovery period, whereas the diabetic subjects have blood flux greater than 

50% of peak at the end of the recovery period. Note that resting blood flux is 

substantially lower for the control subject than for the diabetic subjects. 

Figure 30a, b (page 159) compares the response to different loading times for a control 

subject. Both graphs show a similar type of response. 

Figures 31a-31c (page 160), compare the response to different loading times for a 

diabetic with neuropathic complications. All three graphs show similar features. The 

blood flux remains above the 50% peak value for all cases. 

Figure 32a-32c (page 161) compares the response to different loading times for a 

diabetic with vascular complications. All three graphs show similar features. An 
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important observation for this subject is that the response in each case is substantially 
lower than the mean resting flux level. 

Table 6 (page 162) summarises the results from the static loading study for all subjects. 

Figure 33 (page 163) shows mean resting blood flux for all subjects. This data is 
included as it indicates increased resting flux in the diabetic foot in comparison to the 

normal foot, which is consistent with the findings of other studies (Flynn et al. 1988, 

Barnes et al. 199 1, Shaw and Boulton 1997). 

Figure 34 (page 163) shows the rise time to the peak of the response from the time at 

which the load falls to zero, for the various load times. The results suggest that the rise 

time is independent of load duration. The maximum difference in rise time is 3s in the 

control group and 9s in the neuropathic group. The rise time following loading for 180s, 

for subject BP was found to be due to a partial reloading of the foot during the recovery 

period. With this value excluded, the maximum difference in rise time is 14s in the 

vascular group. 

The relative increase in blood flux from mean resting flux to the peak was assessed, 

figure 35 (page 163) compares the results for different loading times. Five subjects 

show a greater relative increase for the longer load time. Subject SS has a negative 

relative increase indicating that blood flux falls below mean resting levels following 

loading, a consistent finding for this subject. 

6.2.11 Repeatability of static results 

Measurement repeatability was assessed for one control and two diabetic subjects. 

Results are surnmarised in table 7 (page 164). The first two tests were made 

sequentially during which the subject continued to wear the measurement shoe. The 

third test was made on the following day with both the sensor and measurement shoe 

refitted. The same sensor was used for each subject in all tests. Differences in 

physiological factors including heart rate and plantar skin temperature were minimised 

as far as possible. These results suggest that repeatability is better than 10% for 

consecutive measurements without refit of the measurement shoe, increasing to 25% 
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after refit. The latter figure also includes the effects of physiological changes over the 

24-hour period separating the non-consecutive tests. The control subjects exhibited 

repeatability of better than 5%. This difference in repeatability could relate to the 

impaired microcirculation in the diabetic subjects. 

Figures 36 to 38 (page 165) show the variation in mean rest flow, rise time and relative 

increase from mean rest to peak, respectively, for different tests. 
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Subject Heart rate 
(Rest - BPM) 

Heart rate 
(Test - BPM) 

Blood pressure Sa02 

(mmHg) M) 
Contro12 60 63 155/72 98 
ControD 76 71 149/74 98 
Contro14 62 64 150/79 99 
BP 68 70 152/77 97 
GL 89 84 140/71 98 
JCC 74 72 168/77 98 
RC 82 81 159/81 97 

SF 81 78 160/75 99 

SS 58 65 180/86 96 

Table 4 Clinical data obtained at time of testing. 

Subject Rest 

(00 

Pre-warm 

(00 

Final 

(OC) 

Contro12 27.8 29.1 28.4 

Contro13 27.6 28.8 28 

ControI4 28.6 29.7 30.3 

BP 28.5 29.4 29.9 

GL 30.8 30.4 30.5 

JCC 29.4 30.2 29.8 

RC 28.2 29.1 29.7 

SF 27.6 29.1 30 

SS 27.2 29.3 29.7 

Table 5 Plantar skin temperatures measured under the metatarsal head. 



158 

(a) 

(b) 

(c) 

50% of peak 
----------------------------- 

----------------------------- Mean rest level 

01- 
0 10 20 30 40 50 60 70 80 90 100 110 120 

Time (seconds) 

BP response for two minute loading cycle 

2 

50% of peak 
-------------- 

Mean rest I-evel 

0 
0 10 20 30 40 50 60 70 80 90 100 110 120 

Time (seconds) 

Figure 29(a-c) Hyperaernic response under first metatarsal head for (a) control, 

(b) diabetic with neuropathy, (c) diabetic with vascular complications. 
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Figures 30(a, b) Hyperaernic responses under first metatarsal head for a control subject 

following removal of load after standing for (a) two and (b) three n-finutes, respectively. 

N. B. results of the four-minute loading were obtained under different experimental 

conditions and are excluded. 
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Figure 31(a-c) Hyperaernic responses under first metatarsal head for a diabetic subject 

with neuropathy, following removal of load after standing for (a) two, (b) three and 

(c) four minutes. 
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Figure 32(a-c) Hyperaernic responses under first metatarsal head for diabetic subject 

with vascular complications following removal of load after standing for (a) two, (b) 

three and (c) four minutes. 
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Figure 33 Mean resting flux measured under first metatarsal head for all subjects. 
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Figure 34 Comparison of rise time to peak of blood flux after unloading, for different 

loading times. (Value for BP for Load= I 80s is invalid due to movement artefact). 
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Figure 35 Comparison of relative increase from mean rest flux to peak flux for 

different loading times. 
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Figure 36 Mean resting blood flux for three subjects assessed for three separate loading 

tests. Note: test I and test2 are sequential, test3 follows refitting of measurement shoe. 
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Figure 37 Rise time to peak of blood flux after unloading for three separate loading 

tests of 180s. Note: test I and test2 are sequential, test3 follows refitting of measurement 

shoe. 
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Figure 38 Relative increase in flux from rest to peak following unloading, for three 

separate loading tests each of 180s. Note: test I and test2 are sequential, test3 follows 

refitting of measurement shoe. 
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6.2.12 General features of dynamic test results 

Dynamic load, intensity and Doppler signals were, in general, well-defined continuous 
signals. The load data for each step commenced with the forefoot contacting the ground, 
the load signal then increases to the full load value. Subsequently the forefoot is lifted 

and the load signal falls to the unloaded value throughout the swing phase. This cycle 
repeats for each step. The load signal offset was -0.03 to +0.02 volts across the group, 
thus the load is effectively zero throughout the swing phase. The load data for each step 
was characterised in terms of, rise-time, step duration, fall-time, and swing duration. 

Mean values for the step and swing duration were used to establish normal values. Steps 

having duration of fifty percent less or greater than these mean values were excluded. 
Such steps tended to occur at the beginning of the data during the period of 

acclimatisation to the footwear and correlated with noted times of changes of direction, 

at the ends of the test corridor. Steps with reduced amplitude were also excluded. The 

process for identifying valid steps was straightforward to code into system software 

allowing automatic extraction of each sample set from test data. The intensity signal 

exhibited a relatively constant level for each individual, with small variations occurring 

in phase with the load signal. This was considered as verification that the sensor 

remained in contact with tissue during walking. On average, this signal was 10% larger 

during loading than the unloaded value. This is thought to occur as a result of reduced 

absorption by blood, with the fall in perfusion under load, so that tissue reflectance is 

increased. 

Load signals for thirty valid steps were analysed for each test subject and mean values 

of the load parameters compared. The ratio of the step to swing duration was also 

determined. Figures 39 and 40 show the mean rise and fall times of the load signal, 

obtained from thirty randon-fly selected steps for each test subject. 

Figures 41 and 42 show the duration of the step (loaded) and swing (unloaded) phases 

of gait. No clear differences were observed, between the groups for these parameters, 

for the example set or alternative sets of thirty steps. Histograms of duration of step and 

swing phases revealed that some subjects exhibited a normal distribution whereas others 
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Figure 39 Rise times of dynamic load signal averaged over thirty steps. 
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Figure 40 Fall times of dynamic load signal averaged of thirty steps. 
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Figure 41 Duration of step (loaded) phase of gait averaged over thirty steps. 
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Figure 42 Duration of swing (unloaded) phase of gait averaged over thirty steps. 
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exhibit singled sided or uniform distributions. The form and range of the distribution 
was consistent throughout the test data for individuals. The results of this study allowed 
sets of data to be selected based on specified matching criteria. By restricting the size of 
the sample to ten steps, it was possible to obtain close matching of step parameters 
within each set. 

6.2.13 Processing and interpretation of dynamic results 

Doppler signals for each step within each sample were extracted and processed using 
the laser Doppler algorithm previously described. Figure 43 illustrates the Doppler 

signal during the swing phase of a step for a control subject; similar graphs were 
obtained for all subjects. The important characteristic of this data is the transient in the 
Doppler signal at the beginning and end of the swing phase. These transients are 

attributed to movement artefact caused by decompression of tissue and motion of the 
foot relative to the sensor. 

Thus, there is a limited period within the swing phase, during which the Doppler signal 
is representative of blood flux. Furthermore, the duration of the transient following 

unloading was found to vary considerably (14ms to 76ms) from step to step and was 

independent of load parameters. These characteristics further complicated interpretation 

of blood flux. In the static case qualitative measurements of recovery times, were made 

relative to a well-defined biological reference - the peak hyperaemic response. For the 

dynamic data, the time at which the load fell to zero and the end of the Doppler- 

unloading transient were evaluated as suitable reference points. The Doppler flux at 

successive instants in time, relative to these points, were then compared for matched 

steps for each test subject. There was considerable variation (+/-40% of full scale) in the 

flux values, suggesting that the blood flux was independent of the loading parameters. 

However, blood flux was found to increase linearly within the swing phase before 

reaching a steady level. Furthermore, the flux value at the end of the Doppler-unloading 

transient was non-zero. By extrapolating the flux backward in time from this point, it 

was possible to predict that the blood flux starts to increase at a time within the transient 

period. Therefore, neither of the proposed event times were acceptable as reference 

points. The predicted time at which the blood flux signal began to increase was also 



169 

discarded as no valid physiological statement could be made regarding blood flux 
during the transient period. 

Solution of the preceding problem required consideration of the rate of increase of the 
blood flux during the swing phase. A sample set of ten unmatched steps was obtained 
for each test subject. Blood flux values were calculated at successive 25ms intervals 

during the valid portion of the Doppler signal within the swing phase. This value was 
determined by the lower Doppler cut-off frequency. The mean value of the blood flux 

for each interval for the ten steps was established and plots produced of mean blood 

flux versus time. The linearly increasing portion of the blood flux was approximated by 

a best straight-line fit based on five data points. The number of data points is limited by 

the minimum period of flux increase of 125ms across the group. The slope of the linear 

fit was compared for different sample sets and was consistent to within 10% for each 

subject. Figure 44 is a comparison of these best straight-line fit approximations, to the 

mean increases in blood flux, calculated for the values obtained during the swing phase 

of ten random steps for each subject. 

The variation in heart rate and plantar skin temperature for the dynamic tests were 

within the allowable range of +/-3'C. 
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6.2.14 Summary 

For static loading during normal standing, blood flux was equal to the instrument 
baseline. Therefore, the instrument baseline is interpreted as the biological zero in the 
present study. When the same sensor was applied to the forearm and a flow cessation 
load of 27kPa (200mmHg) applied, using weights, the biological zero level was on 
average 17% above the instrument baseline. This finding is typical of the results of 
other studies of the blood flux signal under load reported in the literature. The proposed 
explanation for the response obtained under the first metatarsal head is that the bone 

acts as an optical boundary preventing any contribution to the Doppler spectrum from 
deeper vessels. 

Increasing skin temperature under the first metatarsal head by nearly 30'C, resulted in 

an increase in the area under the Doppler spectrum of approximately 50%. A much 

greater increase could be expected in response to this large temperature increase, due to 

additional thermoregulatory shunt flow, leading to an increase in RBC concentration in 

the tissue. However, thermoregulatory flow is normally mediated centrally by the 

hypothalamus and as the ambient temperature was not affected in this experiment the 

observed increase can be considered to reflect the true response to warming of the foot. 

The greater mean resting blood flux observed in the neuropathic subjects compared to 

the control subjects is consistent with the generally increased blood flow in the 

neuropathic diabetic foot reported in other studies. This increased perfusion is usually 

attributed to autonomic neuropathy affecting the sympathetic regulation of blood flow. 

However, this mechanism cannot explain the relatively high mean resting levels 

observed in the vascular subjects. Subject SS in particular has established peripheral 

vascular disease. Inspection of the plantar skin of this subject revealed a mottled 

colouration suggesting an impaired distribution of blood. The mean rest value could 

then be explained by the sensor being located over a highly perfused region. However, 

this explanation cannot explain the relatively high resting blood flux in the vascular 

subjects BP and SS because plantar skin perfusion appeared normal in these subjects. 

The rise times for the neuropathic subjects (mean =18s, load=120s) were slower than 

those of the control subjects (mean=10s, load=120s). However the linear form of the 
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increase in blood flux for both cases suggests that reperfusion following unloading is 
relatively normal for the neuropathic group. In contrast, the times for the vascular 
subjects (mean=30s, load=120s) exhibit a different type of response, with an initially 
rapid increase to within 50-80% of the peak, followed by a much slower rate of increase 
to the peak response. As these subjects have no clinical evidence of neuropathy but 
clinical evidence of vascular disease, the physiological basis of this response is more 
likely to be related to the physics of the vascular system rather than to poor functional 

regulation. Further evidence of compromised blood flow for the vascular group is 

provided by the lower relative increase rest to peak of the response (mean=83%, 
load=120s) when compared to the controls (mean=211%, load=120s) and neuropaths 
(mean=134%, load=120s). Under these conditions of reduced flow in the vascular 
group, a relatively longer period would be required for clearance of vasodilators from 

the blood stream. This may explain why the recovery period is at least twice as long in 

the vascular group than for the controls. In contrast, the general features of the response 
for the neuropathic group suggest that the physical response of the vascular system 
following unloading is normal. However, the extended recovery period, which is at least 

three times greater than for the control group, suggests that autoregulation of blood flow 

is impaired consistent with the clinical evidence of autonomic neuropathy. 

Assessment of repeatability indicates that the observed findings are consistent for 

closely matched measurement and physiological conditions. The variation in response is 

up to 30% for tests performed on separate days when the sensor is relocated. For 

sequential tests during which sensor position is maintained the variation in response 

falls to typically 10%, (excluding subject SF where a failure in reperfusion occurred 

between two sequential tests). This level of variation is consistent with the findings of 

other laser Doppler studies at other sites on the body. 

Due to the short time scales involved in tissue reperfusion during the swing phase, the 

results of the dynamic study are considered to relate only to the vascular physics and 

not too functional regulation. It could therefore be expected, given the findings of the 

static study that the neuropathic subjects would exhibit a faster rate of reperfusion. 

However, the dynamic results indicate a mean reperfusion rate of 3.4 a. u/ms (Arbitrary 

units per millisecond) compared to 5.1 a. u/ms for the vascular group. For the vascular 

subjects the difference between the static and dynamic rates may be related to the 
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duration of loading with failure in reperfusion only becoming evident after a relatively 
long loading period i. e 120s. For the neuropathic subjects a possible explanation for the 

slow rates of reperfusion during walking is that the tissue remains partially perfused 
during the loading phase. Then the volume of blood re-entering the tissue during the 

swing phase would be comparatively low. A possible basis for this is the observation of 
over perfusion commonly observed in the neuropathic diabetic foot. The differences 

between the findings of the two studies also suggest that both static and dynamic data is 

required to fully assess the diabetic foot. 

Given the current findings the plantar monitoring system appears to be capable of 

providing an indication of the status of the microcirculation under the first metatarsal 
head. Further clinical data is required to investigate the physiological basis for these 

findings and identify if the findings have clinical use in predicting the risk of ulceration. 
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Chapter 7 Conclusions 

7.0 Introduction 

A critical review of the development of the plantar monitoring system is presented in 
summary form. Results of the in vivo clinical evaluation of the system are discussed. 
Recommendations for further work are given. In the final section, the overall 
contribution of the work is considered. 

7.1 Summary 

The project is reconsidered in terms of the theoretical background and review of the 
literature made after the initial proposal. Justification is given for in-shoe measurement 
of blood flux by laser Doppler at the plantar surface of the diabetic foot during standing 
and walking. Such a study could not be performed using existing techniques and the 

requirement for a plantar monitoring system is identified. A critical review of the 
development of such a system is given in summary form. 

7.1.1 Review of justification for the study 

Previous studies have demonstrated changes in the blood supply to the foot of the 

diabetic at both macrovascular (Shaw and Boulton 1997) and microvascular levels 

(Japp and Tooke 1995). If the blood supply to the foot is reduced, by atherosclerosis, 

painful ischaernic ulcers can occur, which typically affect the dorsum of the foot and the 

toes. Ulceration is, however, considerably more prevalent in the neuropathic foot 

(Grunfeld 1992), occurring on the plantar surface at sites where tissue is subject to 

loading by bones such as the calcaneous and heads of the metatarsals (Lord 1986). In 

the ischaernic foot, the risk of ulceration can be estimated by assessing blood flow at the 

ankle by Doppler ultrasound and blood flux at the great toe by laser Doppler (Stevens et 

al. 1993). When these techniques are applied to the neuropathic foot, a normal or 

elevated blood flow is frequently observed suggesting that the vascular supply is 

adequate, both to and within the foot. Therefore, in the neuropathic foot, risk of 

ulceration is routinely assessed, by measurement of plantar pressure and determination 

of the extent of sensory neuropathy. However, the usefulness of the results obtained is 

limited by a lack of consensus on the levels of pressure/duration that cause ulceration 
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(Cavanagh and Ulbrecht 1994). Furthermore, the mechanisms that lead to tissue damage 
and initiate ulceration cannot be established using these techniques. An impaired 
nutritional supply to tissue is usually proposed as the underlying cause of neuropathic 
ulceration. This stems from observed similarities with the formation of pressures sores 
(decubitus ulcers) which often occur in otherwise healthy tissue if the product of the 
magnitude and duration of applied pressure exceeds a certain level. Damage to tissue 
can normally be avoided if pressure is removed within a reasonable time. Following 

unloading, a period of increased blood flow, reactive hyperaernia compensates for the 
nutritional deficit. This mechanism has been previously demonstrated to be impaired in 
the neuropathic diabetic foot (Rayman et al. 1986b). However, there is no conclusive 

evidence of increased loading times under the neuropathic foot. The basis for the 
depletion in the nutritional supply could therefore be considered to arise from increased 

plantar pressure together with impaired vascular regulation due to autonomic 

neuropathy, preventing a compensatory increase in blood flow to the region. Previous 

studies have demonstrated increased plantar pressure (Lord 1986), and impaired 

regulation of perfusion has been demonstrated on the dorsum and at the great toe 

(Stevens et al. 1993) of the neuropathic diabetic foot. This evidence cannot be 

considered sufficient to validate the preceding hypothesis because plantar ulceration in 

the neuropathic diabetic foot is normally a singular, localised event, classically 

presenting under the metatarsal head (Edmonds and Foster 1994). One previous study 

has simultaneously attempted to assess both pressure and perfusion on the plantar 

surface (Castronouvo 1987). However for reasons previously discussed, the methods 

used were, in the opinion of the present author, inappropriate. In particular the blood 

supply at the surface of the foot appeared to be altered by application of a pressure cuff 

around the foot, when this procedure was replicated. Furthermore, previous studies have 

only assessed blood flow for the unclad foot during static conditions. Clinical evidence 

suggests that ulceration is linked to dynamic loading of the foot (Cavanagh and 

Ulbrecht 1994). It can therefore be argued that such a study should obtain results during 

normal walking, with the foot in-shoe. 
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7.1.2 Re-evaluation of objectives 

The preceding discussion provides justification for the focus of the present study on 
assessing the effect of pressure on plantar cutaneous blood flow) at a prevalent site of 

ulceration in the neuropathic diabetic foot. The original objective was to perform a 

clinical trial to satisfy this requirement. Initially this appeared to be a straightforward 

clinical measurement problem. The laser Doppler technique was identified as most 

appropriate for this application because of the fast response time, the small size and 
flexible geometry of the probe head and ability to obtain data continuously and non- 
invasively. The technique has also been used successfully, in other studies of cutaneous 

blood flow in diabetes mellitus (Chittenden and Shami 1993). However, commercial 

laser Doppler systems were found to be unsuitable, because the use of fibre optic 

connections to the probe head resulted in the Doppler signal being swamped by 

movement artefact noise. In the present study, it has been confirmed that this problem 

cannot be resolved by mechanical restriction of the optical fibres or by signal 

processing. 

Consequently, the objective of the project became the development of a system capable 

of assessing plantar blood flow, in-shoe during normal walking. 

7.1.3 System development 

The problem of movement artefact noise was substantially reduced by eliminating 

optical fibre connections to the laser Doppler probe head. This required that the laser 

diode and photodetectors were situated at the measurement site. Furthermore, without 

amplification at the measurement site, an acceptable signal to noise ratio could not be 

achieved. With these constraints, the construction of an integrated probe containing 

these components and sufficiently small to fit into normal footwear proved difficult to 

realise. To solve this problem a measurement shoe was developed that because of 

variation in the size of the foot and location of the metatarsal head, had to be custom 

made for each test subject. This solution was acceptable for the small clinical study 

used to verify operation of the probe and to obtain initial results. However, for a large 

clinical trial the time required to construct the measurement shoes would be prohibitive. 



177 

Development of the laser Doppler probe required solving of a number of problems. An 
adequate signal to noise ratio (SNR) could not be achieved using the smallest available 
photodiodes because the optical output power of the laser diode had to be limited to 
ImW for safety. To operate at this power level, photodiodes with a large photosensitive 
area were necessary. The SNR was further improved by using a low noise, laser diode 
with a single longitudinal output and by implementing automatic power control in the 
laser diode power supply. Low noise amplifiers were also used in the Doppler signal 
path. Electrical interference coupled through the subject was avoided by making the 
plantar contact face a conductive path to the instrumentation ground. These techniques 
only gave an acceptable signal to noise ratio provided the probe was maintained at a 
constant temperature. It was not feasible to regulate the probe temperature using a 
Peltier heat pump and measurements were made on pre-warmed feet that were insulated 

within the measurement shoe. This required lining the plantar surface of the 

measurement shoe with neoprene rubber. The temperature to which the foot is pre- 

warmed is determined by physiological considerations. It is, therefore, essential that the 

operating wavelength of the laser diode is stable at the selected measurement 
temperature. 

To allow the foot normal flexion during walking the maximum plantar dimension of the 

probe was determined as 30mm. It was demonstrated that this value also provides 

adequýte support for the first metatarsal head during walking. This was important to 

avoid abnormal loading and to prevent shear between the edge of the probe and the 

skin. By locating the probe in a compressible insole, normal loading was maintained 

throughout the gait cycle. Plastazote foam was the most suitable material for 

construction of the insole, however this material was observed to reduce in thickness 

after use. This resulted in short term marking of the skin of some test subjects. The use 

of properly tensioned straps together with adhesive tape was essential to maintain the 

probe in contact with plantar tissue and to minimise lateral movement between tissue 

and probe. 
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7.1.4 Limitations of system hardware 

The preceding techniques allowed a Doppler signal to be obtained from the plantar 

surface of the foot, during walking. However, the Doppler signal was subject to 

spurious noise, which could not be eliminated by signal processing remote from the 

sensor. For this reason, the instrumentation within the probe was further modified to 

include a differential amplification scheme. This resulted in a reliable Doppler signal of 

sufficient amplitude to allow coupling directly from the probe to an instrumentation 

recorder worn by the subject at waist level. Use of a multi-channel, high capacity, 

instrumentation recorder was necessary to record the Doppler, optical intensity and load 

signals. Recording of the raw Doppler signal allowed different laser Doppler signal 

processing algorithms to be evaluated, off-line. However, the approach had several 

disadvantages compared to a real-time processor: The test subject was required to carry 

a bulky instrumentation recorder; the signal could not be effectively monitored during 

the measurement period; several hours were required to download and process the data 

for each test subject. 

7.1.5 Limitations of the software system and signal processing 

To obtain an acceptable level of performance system software was developed as a set of 

modules, each optimised for a given task by using an optimising compiler and low- 

level programming. Using these techniques total processing time for the data for each 

subject was reduced to two hours. During the downloading phase, data from the 

instrumentation recorder is obtained in real-time and stored to hard disk. The 

implementation of this routine is critical to avoid data loss because of the asynchronous 

nature of the transfer. Downloaded data was inspected, for the entire test period, to 

ensure integrity of the signals and to identify any anomalies. In the majority of cases, 

the characteristics of the signals were consistent throughout the test period. The signal- 

processing phase involves the application of a standard laser Doppler, processing 

algorithm, to extract the blood flux signal from the raw data. The signal to noise ratio of 

the system can be improved at this stage by averaging several sets of Doppler data, 

however the update rate of the blood flux signal is then reduced. In the present study, an 

update rate of one second was acceptable for static measurements and an update rate of 

once per hundred milliseconds, for dynamic measurements. The final stage of the signal 
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processing is normalisation by the optical intensity signal. The intensity signal obtained 
from static and dynamic studies varied with loading and required normalised values to 
be calculated on a sample by sample basis. This considerably increases the total time 
required for processing of dynamic data. 

7.1.6 Limitations of calibration and measurement 

The signal-processing algorithm used in this system was selected to simplify calibration 
by allowing comparison with published data. This approach was necessary because of 
the lack of a standard calibration technique for laser Doppler and the difficulties 

associated with performing an empirical study. The algorithm is only linear over a 
limited range of red blood cell concentrations, which limits application to assessment of 
the microvasculature. An important limitation of the present study is that the red blood 

cell concentration is not determined independently at the measurement site. This gives 

rise to a potential error because the expectation of normal red blood cell concentrations 

may be invalidated by changes in the haernatocrit that can occur with diabetes mellitus 
(Bell 1994). In other systems, the operating range has been extended by use of 

empirically derived algorithms or by techniques to linearise the response. This requires 

calibration phantoms that are generally poor models of the microcirculation and the 

methods used to calibrate the present system are only sufficient to verify the linearity of 

the system. It must be stressed, however, that the original derivation of the algorithm 

used in this system includes a dependency on the non-spherical geometry of the red 

blood cell. The use of scattering particles with different geometries can increase the 

probability of multiple scattering, resulting in an overestimate of blood flow. 

7.1.7 Operational measurement limitations 

Refinement of the sensor resulted in individual measurement repeatability with a worst 

case drift 5% of full scale over a period of six months. However, the sensor to sensor 

measurement repeatability is relatively poor at I I% of full scale, across five devices. 

This value could be substantially improved by adding extra instrumentation, within the 

probe to allow the gain to be adjusted to compensate for differences in optical 

sensitivity. This was not possible in the present design due to the lack of space imposed 

by the upper limit on the probe size. Sensitivity to changes in flow rate and 
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concentration has been assessed over a limited range. For normal physiological 
monitoring, the response is adequate, however the response to small changes in either 
parameter was poor. This was not a problem in the present study because large 

variations in blood flux are associated with the hyperaemic response and during 
dynamic loading of tissue. A more important parameter under these conditions is the 

sensor bandwidth, which was shown to extend to 25kHz. This value imposes a limit on 
the maximum particle velocity that can be resolved by the system. This is important 

because the maximum particle velocity occurring during reactive hyperaemia, was 
demonstrated as being proportional to the duration of loading, for periods up to ten 

minutes. Consequently, it became necessary to limit the maximum duration for static 
loading to five minutes, to ensure the sensor remained within the linear operating 

region. The variation in sensor response with operating temperature was compensated 

for by introducing correction factors into the processing algorithm. Skin temperatures 

were determined manually at the beginning and end of each test and the mean value 

used to determine the compensation factor. The validity of this approach is questionable 

because changes in temperature during a test are not taken into consideration. 

The response of the system was demonstrated to be consistent with expected 

physiological behaviour during increases in skin temperature and loading of tissue. It 

was shown that a period of two minutes of normal walking is required to eliminate the 

affects of variations in heart rate on flux response. Characterisation confirmed that 

reliable assessment of blood flux from the plantar surface of the foot could be obtained 

under controlled conditions. 
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7.2 Discussion 

7.2.1 Measurement validation - types of vessel sampled 

It is important to stress that the small size of the study group prevents any general 
conclusions being made with regard to these results. 

The focus of the clinical evaluation of the system was assessment of blood flux in the 
superficial capillaries of plantar skin. This is justified by the high incidence (around 
80%) of ulcers originating within the upper dermis (Grunfeld 1992). The affect of 
vertical loading was considered, as this is a higher impact on superficial blood flow than 
shear, which tends to affect flow deeper in the dermis (Tsay 1991). 

This study has assessed total blood flux in plantar cutaneous tissue, which comprises 
thermoregulatory blood flow through arteriovenous anastomoses and nutritional blood 
flow through superficial capillaries. It is the flow in the nutritional capillaries, which is 

of clinical interest because thermoregulatory vessels are not active in tissue nutrition. 
However, nutritional capillaries only account for about 15% of total blood flux (Fagrell 

1991). As it is not possible to separate information on blood flow for each type of vessel 
from the Doppler signal (Chittenden and Shami 1993), the blood flux is dominated by 

the contribution from thermoregulatory vessels. In the present study, thermoregulatory 

blood flow has been controlled by maintaining the sampled tissue in a temperature 

range that minimises thermoregulatory flow for normal nutritional flow levels (Stevens 

et al. 1993, Netten et al. 1996). Under these conditions, it is proposed that changes in 

blood flux reflect changes in nutritional flow. An important limitation of this approach 

is that thermoregulatory flow is predominantly controlled centrally by the 

hypothalamus. Changes in ambient and core temperature could affect thermoregulatory 

flow independent of constant local temperature. For this reason, measurements were 

made at closely matched ambient and skin temperatures for each subject and over 

relatively short time scales. There remains, however, some doubt that the changes in 

blood flux observed are due solely to nutritional flow. The importance of this 

uncertainty on interpreting the results of the present study depends on the extent to 

which both types of vessel are affected by neuropathy and/or microvascular disease, in 

the diabetic foot. If both types of vessel are equally affected, changes in blood flux are 

representative of general functional and/or physical changes in the vessels of the sample 
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tissue. This would, however be contrary to the 'capillary steal' hypothesis in which 
sympathetic denervation affects only the thermoregulatory vessels. Conversely, a study 
by Netten et al. (1996) found that nutritional blood flow under the nail fold of the great 
toe, which is absent of arteriovenous anastomoses, was increased in diabetic feet. In the 
same subjects blood flow in the skin under the great toe, which is rich in arteriovenous 
anastomoses was also increased. This together with the increasing consensus in favour 

of the haemodynamic hypothesis (Japp and Tooke 1995) suggests that measurement of 
changes in total blood flow do reflect general impairment of the micro vasculature in the 
diabetic foot. 

7.2.2 Measurement validation - types of response 

It is important to state that changes in blood flow assessed by laser Doppler can only be 

properly compared if detailed knowledge of capillary density and red blood cell 

concentration in the sample volume is available. As this information is normally 

unavailable, comparison must be made based on responses to events that induce local 

changes in cutaneous blood flow, for example by thermal injury (Rayman et al. 1986b). 

Although this type of approach is useful in demonstrating an impaired response, it does 

not represent the typical environment of the diabetic foot. For example, in plantar 

assessment the subject is normally supine, which due to postural vasoconstriction 

affects blood flow in the foot (Khodabandehlou et al. 1997). Furthermore, the normal 

extrinsic stimulus for changes in plantar blood flow is from partial or full occlusion due 

to variations in plantar skin pressure. Consequently, changes in blood flow due to skin 

pressure have both a physical and a physiological basis. The physical basis arises from 

the movement of blood out of a loaded region of tissue and the return of blood when the 

load is removed; this is a short-term transient response. The physiological basis arises 

from the hyperaemic response that compensates for the nutritional deficit that occurs 

during loading, and requires a longer period of reduced blood flow. It is suggested that 

the transient response is likely to be determined primarily by the properties of the 

sample tissue and vessels, whereas the hyperaernic response reflects the adequacy of the 

regulation of blood flow. If correct, this could allow vascular and neuropathic 

complications to be separately assessed at the same site. The current study has 

demonstrated that sufficiently stable conditions can be achieved to allow both the 

transient and hyperaemic responses to be assessed in vivo. 
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7.2.3 Other physiological measurement limitations 

Despite these justifications for the general validity of the study, several other factors 
require comment. The in vivo tests to establish the effect of physiological factors such 
as load, skin temperature and heart rate were performed on a younger age group and the 
findings may not apply to the study group. In particular the mechanical properties of 
skin are known to alter with age. The study group itself although diverse, was not a 
random sample of diabetic subjects. Although this was partly by design, further bias 

was imposed by recruitment of the subjects, from a study of dietary control. Therefore, 

unlike the wider diabetic population, none of the test subjects used metabolic control or 
vasodilators. The marking of the skin is of some concern, but seemingly unavoidable 
because the sensor must remain in contact with the skin to reduce movement artefact. 
No adverse affects have been reported by the hospital in the intervening eight months 
since the study was performed. 

7.2.4 In vivo static results 

It is important to stress that the small size of the test group and the nature of the study 

prevented application of statistical inference methods and therefore no clinical 

significance can be attributed to the results presented in chapter six and discussed in this 

section. However, some general comments can be made regarding the results. For all 

subjects the form of the response was similar for different loading times. Similar 

responses were obtained for all subjects in the control group and similar responses were 

obtained for all subjects in the neuropathic group. The responses of subjects in the 

vascular group were more variable. There are clear differences between the responses 

obtained from each group. The control subjects exhibit a rapid rise to a peak followed 

by a fast recovery to 50% of peak within 30-50seconds. The neuropathic subjects 

exhibit a fast rise to peak followed by a slower recovery rate than the controls. The 

vascular subjects exhibit a much slower rise, to a broad maximum followed by a slow 

recovery. In most cases, the time to recover to 50% of the peak increases for longer 

loading times. This is consistent with the requirement to maintain a higher flow rate, for 

longer, to compensate for the greater nutritional deficit (Fagrell 1991). These results 

provide preliminary evidence to suggest that the system can demonstrate differences in 

blood flux responses between non-diabetic subjects, diabetic subjects with neuropathy 

and diabetic subjects with vascular complications. 
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The values for mean resting blood flux are substantially higher in the diabetic subjects 
than the controls. This is consistent with microvascular ovcr-pcrfusion observed in the 
diabetic foot at rest (Japp and Tooke 1995). It is interesting to note that despitc clinical 
evidence of an ischaernic foot, vascular subject SS has a high rest flux. 

The rise times for the control and neuropathic subjects are all less than 20 seconds, 

whereas the minimum rise time for the vascular group is 18 seconds and is typically in 

the range of 20s to 60s. These values are broadly comparable to values stated by r-agrcll 

(1991) for rise times measured at the ankle of greater than thirty seconds for subjects 

with macrovascular disease and less than thirty seconds for controls. In the present 

study, rise times for the vascular subjects do not appear to correlate with the extent of 
vascular impairment. Subject SS for example shows fast rise times despite having the 
lowest ankle: brachial index (0.6). It is possible that this is due to the difficulty of 
determining valid ankle pressures in some diabetic subjects due to calcification of lower 

limb arteries which can prevent closure at normal pressures (Sandcman and Shcarman 

1999). 

The relative increase in blood flux from mean rest to peak is reasonably consistent for 

the control and neuropathic groups. The low relative increase for ncuropaths GL and 

JCC, compared to the'control group, is consistent with the impaired hypcracmic 

response previously observed in the ncuropathic foot (Rayman ct A 1986). Conversely, 

neuropath RC has a similar relative increase to the control group despite clinical 

evidence of autonomic neuropathy. The relative increases in the vascular group differ 

considerably. Vascular subject SS has a consistent response below the mean resting 
level. As the mean resting level for all tests for this subject was relatively constant it is 

suggested that the response represents a failed re-perfusion that eventually recovers to 

normal rest levels. 

Repeatability of the static loading results is good, however these results are for a small 

number of subjects under well matched conditions. The values obtained for tile same 

fitting are generally closer than after refitting of sensor and shoe, which suggests that 

repeatability is affected by this procedure. 
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7.2.5 In vivo dynamic results 

The results of the dynamic assessment of the study group are based on the rate of flux 
increase (re-perfusion) during the unloaded swing phase of gait. To allow comparison, 
flux values, normalised by the maximum flux during the swing phase, are expressed as 

arbitrary units per millisecond (a. u)/ms. The control group demonstrated the fastest 

rates of increase (range 6.1 a. u/ms to 7.9 a. u/ms), the vascular group has intermediate 

rates (range 4 a. u/ms to 6.2 a. u/ms) and the neuropathic group the slowest rate of 
increase (range 2.3 a. u/ms to 4.5 a. u/ms). Some overlap occurs between the groups. A 

possible explanation for these differences is that the properties of plantar tissue are 

changed in the diabetic foot so that decompression of tissue after unloading is slower 

leading to a consequent reduction in the rate of re-perfusion. This idea is supported by 

existing evidence of changes in the mechanical properties of skin in the diabetic foot 

(Brash et al. 1999). To test this idea, the duration of the Doppler-unloading transient, 

which is considered proportional to the rate of de-compression of the tissue, was 

measured over thirty steps for each subject. Mean values were calculated, giving a 

range of 130ms to 240ms across the group. The range for the control group was 140MS 

to 235ms, for the neuropathic group 130ms to 180ms and for the vascular group 160MS 

to 240ms. Thus, the decompression rate of plantar tissue, quantified by measuring the 

unloading transient, does not indicate clear differences between the groups. Additional 

work is required to investigate these findings further. 

7.3 Recommendations for further work 

Application of the plantar monitoring system for a full clinical trial requires further 

integration of the sensor to allow location within normal footwear. This could be 

achieved by locating the sensor within the type of insole that can be inserted in-shoe. 

These typically have a depth of 3mm are widely available and low cost. To implement 

the sensor within this depth, surface mount components would be required. All of the 

components of the present sensor are available in this technology. Encapsulation within 

a rigid or semi-flexible compound would be required to prevent ingress of moisture and 

protect the skin. To eliminate the requirement of pre-warming of the foot, a continuous 

temperature sensor would need to be incorporated. However, the problem of 

maintaining a consistent operating temperature to stabilise operating wavelength 
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remains. Improved matching of the transimpedance stages is necessary to overcome the 
variations in device to device response that arise from small differences in photodiode 
sensitivity and the coherence parameter P. 

The ability to independently determine red blood cell concentration at the measurement 
site would allow blood flow to be separated from the blood flux value. This would 
normally require some form of optical spectroscopy across several wavelengths and 
would not be easy to integrate within a small probe. A method of selective sampling of 

nutritional capillary flow is desirable. This cannot simply be achieved using a lower 

wavelength laser because at wavelengths below 600nm absorption by chromophores 
increases significantly. 

The present study has been limited to assessment of plantar blood flow under the first 

metatarsal head and the size of the sensor housing is specific to this measurement site. 

Furthermore, the reliable biological zero is thought to result from compression of the 

sample tissue volume, between the metatarsal bone and the external load. The same 

argument can be applied to other bony prominences such as under the calcaneous, 

another prevalent site of neuropathic ulceration. However, for general studies, the 

contribution from deeper vessels during loading of the skin is likely to invalidate the 

biological zero signal and requires further consideration. 

A telemetry system is proposed to eliminate the need for the subject to carry an 

instrumentation recorder. This is complicated by the need to encode Doppler, load and 

optical intensity signals on the transmission channel. The bandwidth of the signals 

would require a large transmission and storage overhead. This problem could be solved 

by performing real-time processing of the data before transmission, using an integrated 

processing for example a Digital Signal Processor such as the TMS320 series (Texas 

Instruments). It is likely that the processing and telemetry system would need to be 

situated external to the shoe, possibly mounted on the heel. A telemetry system would 

provide a real-time indication of blood flow and reduce the time currently required to 

download and process the data. 
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It is recommended that the Force Sensing Resistor is retained and instrumentation 
included to linearise the response, so that blood flow can be reliably assessed across a 
range of static loads. 

To further improve the signal to noise ratio of the Doppler signal a low-noise constant 
current controller could be developed to replace the present automatic power control 
approach. However, this would increase the cost and complexity of the controller. 

The present study has not included diabetic subjects without complications, this group 
needs to be represented in a full clinical study. 

7.4 Contribution 

A laser Doppler system has been developed which has been shown through standard in 

vitro, calibration techniques to have a level of performance comparable to commercial 

systems. The system extends application of the technique to assessment of blood flux 

in-shoe during standing and walking. Despite the constraints imposed by movement 

artefact, results have been obtained for the unloaded swing phase of gait. Clinical 

evaluation has demonstrated that the system can be applied safely to assessment of the 

asymptomatic diabetic foot. Initial results for a small study group indicate differences in 

the hyperaernic response, following a period of static loading, and in rates of tissue re- 

perfusion during walking, between control, neuropathic and vascular subjects. 
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Appendices. 

Appendix A. The St Vincent Declaration. 

Appendix B. Details of system software. 

Appendix C. Technical drawings for second prototype. 

Appendix D. Artwork for final prototype. 

Appendix E. Supporting publications. 

Appendix F. Noise figures for evaluated laser diodes. 



189 

Appendix A 

The St Vincent Declaration 
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Appendix to The 

Government St Vincent 

Response Declaration 

To promote: 

detection and control of diabetes and its complications 

awareness among public, patients and health care professionals of present 

opportunities and future potential for prevention of diabetic complications 

specialised paediatric care for children with diabetes 

reinforcement of existing centres of excellence for diabetes care, education and 

research and creation of new ones 
independence, equity and self-sufficiency for all people with diabetes 

fullest possible integration of the diabetic citizen into society 

prevention of severe diabetic complications by ensuring better use of measures 

currently known to be effective, thereby: 

reducing new blindness due to diabetes by one third or more 

reducing number of people entering end stage diabetic renal failure by at 

least one third 

reducing by one half the rate of limb amputations for diabetic gangrene 

cutting morbidity and mortality from coronary heart disease in the 

diabetic by vigorous programmes of risk factor reduction 

achieving pregnancy outcome in the diabetic woman that approximates 

that of the non-diabetic woman 

establishment of modern information technology systems to monitor the quality 

of the health care provided for diabetes and the validity of laboratory and 

technical procedures used in diagnosis and self-management 

collaboration in diabetes research and development in Europe and 

internationally, through appropriate agencies and in partnership with national 

diabetes patient organisations 
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Appendix B 

Labview 'G-code' for laser Doppler flux extraction algorithm. 
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Appendix C 

Technical drawings for second prototype. 
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Appendix D 

Artwork for final prototype. 
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Appendix E 

Supporting publications. 
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Review 

Transducers for foot pressure 
measurement: survey of recent 

developments 
J. Cobb D. J. Claremont 

Department of Applied Computing and Electronics, Bournemouth University, Fern Barrow, Poole, 
Dorset BH12 5BB, UK 

Abstract-Recent advances in the development of transducers for the measurement 
of vertical and shear forces acting on the plantar surface of the foot are reviewed. Barefoot and in-shoe discrete and matrix transducers are reviewed in terms- of 
structure, operation, performance and limitatiohs. Examples of capacitive, piezo- 
electric, optical, conductive and resistive types of transducer are presented. Where 
available, the current clinical status is specified. 

Keywords-Foot pressure measurement, Force, In-shoe measurement, Pressure 
transducers 

I Introduction 
THE Aim of this review is to summarise the performance of 
recent barefoot and in-shoe plantar pressure transducers to 
enable medical physicists, biomedical engineers and research- 
ers to assess the suitability of devices and techniques for their 
particular applications. Previous reviews (LORD, 1981; 
ALExANDER et aL, 1990; CAVANAGH et aL, 1992) have 
described the technology, operation and clinical applications 
of plantar pressure transducers. without quantiPying perfor- 
mance in detail. An excellent review of clinical findings can be 
found in Lord and Reynold's work (LORD and REYNOLDS, 
1986). 

Knowledge of the forces acting under the foot is important in 
the assessment of various foot pathologies (LORD and 
REYNOLDS, 1986). In diabetic neuropathy, measurement of 
plantar forces has indicated a relationship between excessive 
localised pressure and ulceration of the foot (CAVANAGH et aL, 
1985). These abnormally high pressures occur as a result of a 
failure to achieve optimum load distribution, a consequence of 
the reduced sensitivity of the f6ot The information obtained 
from these measurements can allow preventative measures to 
be undertaken to reduce the risk of further complication. 

Other clinical applications where knowledge of plantar 
forces is of use include monitoring the affect of degenerative 
diseases on the foot such as leprosy (PATIL and SRINATH, 1990); 

analysis of changes in gait due to injury or deformity, for 

example, spina bifida. (B=s et aL, 1980b); and post-operative 
assessment following corrective surgery for conditions such as 
hallux rigidus (BEiTs et aL, 1980b). 

Correspondence should be addressed to Dr. D. Claremont 

First received 20 December 1993 and in final form 9 December 1994 
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2 Methods of measuring vertical forces under the 
foot 

2.1 Barefoot load distribution measurement 
Static and dynamic studies of plantar forces can be achieved 

efficiently, using force and load distribution measurement 
platforms. Force platforms have been developed to a high level 
of performance. For example, the Kistler force plate* provides 
independent measurement of total vertical and shear forces 
with an accuracy of greater than I %, nonfinearity and hystersis 
of <1 % and sensitivity to 0.05 Pa, over ffill-scale ranges of 
typically 200 kPa for vertical forces and +1-50 kPa for shear 
forces. The system is primarily used for gait analysis and is not 
capable of measuring plantar load distribution. However, the 
high specification, good repeatability and long-term stability 
have resulted in the use of the Kistler force plate as the 'Gold 
standard' against which other systems are evaluated. 

Since the early 1980s, several improved methods of 
measuring plantar load distribution under the barefoot have 
been developed. The cormnercially available Musgrave Foot- 
print systemt uses force-sensing resistors, comprising two 
polymer sheets, one with deposited pectinate electrodes and the 
other coated with the semiconducting material (molybdenum 
disalphide). Contact area . 

between the electrodes and the 
semiconducting material increases with applied force, resulting 
in a large change in resistance. The devices are between 0.25 
and 0.7 mm thick- The characteristic is logarithmic, with 
precise response dependent on substrate type, conductor 
geometry and the semiconducting material used. The structure 
of a basic force sensing resistor is depicted in Fig. 1. 

* Kistler Instruments Ltd., Whiteoaks, The Grove, Hartley Wintney, 
Hants, UK 
t Musgrave Footprint, Preston Communications Ltd., Llangollen, 
Clwyd, UK 
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applied 
pressure 

Fig. 1 Structure offorce-sensing resistor (characterised by AIfAALEJ 
et al., 1988): reproduced with kind permission of the LEEE, 
0 1988 LFEE, Proc. IEE Engineering in Medicine & 
Biology Society 10th Ann. Int. Conf 

The Musgrave system incorporates a matrix of 2048 
Interlink§ 3x3 min force-sensing resistors, with a measure- 
ment range of 0-4 MPa per sensor. The devices can be used 
within the range of II kPa to I 10 kPa, giving a typical 
variation in resistance from I MQ to 2 kQ. Above 110 kPa, a 
sensor's response to a given load can vary by +/-2 % per 
loading cycle. Above I MPa, the response of different sensors 
to the same load can vary by +/- 15 %. The temperature 
coefficient is load-dependent, typically around 0-1 % per 
Kg 'C-1. A possible clinical limitation is the reduction in 
sensitivity with increasing load. 

Several clinical studies have been undertaken using this 
system Bennet and Duplock undertook clinical trials on 86 
asymptomatic subjects and obtained results comparable with 
other methods (BENNET and DUPLOCK, 1993). Roggero et al. 
investigated the effectiveness of reconstructive surgery result- 
ing from a wide range of foot pathologies (ROGGERO et al., 
1993). In all studies, a period of accustornisation was normally 
required. 

In some clinical applications, such as the early detection of 
ulceration, high-resolution imaging of plantar load distribution 
is desirable to pinpoint sites of excessive pressure (LORD and 
REYNoLDs, 1986). Optical techniques have provided the 
highest levels of resolution for barefoot measurement. In the 
pedobarograph (BETTS et al., 1980a, b; FRANKs et al., 1983), 
the upper surface of a glass plate is covered with a thin opaque 
material, typically a plastic sheet. Under load, variations in the 
level of contact at the glass/plastic interface result in a change 
in the refractive index and attenuation of light propagating in 
the glass plate. When viewed from below, areas of contact are 
seen as low-intensity regions. The structure of the pedobaro- 
graph and the behaviour at the plastic/glass interface are 
depicted in Fig. 2. 

With careful selection of the transducer sheet material, it is 
possible to obtain an almost linear relationship between applied 
pressure and light intensity. Criteria for the selection of the 
transducer material are described by Franks and Betts, who 
identify several problems occurring across a range of materials: 
nonhueafity; adhesion to the glass plate; saturation within the 

range of interest; material deformation and wear-, poor dynamic 

response time; image intensity and uniformity dependent on 
surface granularity (FRANKs and BETTS, 1988). The depen- 
dence of sensitivity on temperature is particularly significantý 
varying by 10- 15 % over the range 20-3 00 C. The importance 

Cryodom Europe, Coulsdon, SOrrey, UK 
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of load-dependent variations in light intensity in the waveguide 
has not been quantified. 

Several clinical studies have been undertaken using the 
pedobarograph. Betts et al. investigated load distribution for 
two subjects with foot deformity resulting from spina bifida, 
and they undertook a post-operative assessment of four subjects 
with hallux rigidus (BETrS et al., 1980b). Mims used the 
pedobarograph for static measurement in an evaluation of 
direct printing methods and noted that a stabilisation period of 
30 s was required before obtaining an image, due to creep of 
the transducer material (MINNS, 1982). Image-processing 
techniques to overcome the low-intensity, low-contrast image 
obtained from the pedobarograph have been developed by Patil 
(PATiL, 1990). Pedobarograph unages from 92 normal subjects 
have been analysed and objectively compared by Facey (FACEY, 
1993). 

The pedobarograph is now routinely used by Orthopaedic 
departments in Sheffield*. 

A high-resolution imaging technique has been developed by 
Rhodes et al. using a 500 x 380 x 2.4 mm photoelastic sheet 
(polyurethane) and a polariser, bonded to a walkway con- 
structed from 19 mm. thick transparent acrylic (RHODES et al., 
1988). A thin sheet of silver-sprayed polycarbonate above the 
photoelastic sheet acts as a reflector. The load is transmitted to 
the photoelastic sheet through a3 mm pitch corrugated plastic 
indenter to provide a maxiinum. difference in the two 
orthogonal directions of strain to which the photoelastic effect 
is proportional. With increasing load, the light transmitted 
through the photoelastic sheet is rotated about the axis of 
propagation and can pass through the polariser to form a 

* Personal , communication: Dr R. P. Betts 
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Table I Summary ofbarefoot measurement transducers 

reference transducer 
type 

number. Of 
sensors 

sensor 
size 

full- scale 
range/sensor 

nonlinearity hysterisis sensitivity ftequency 
response 

Musgrave Interlink 2048 3 min' 0-4 MPa 7% 2% reduces with > 50 Hz Footprint force-sensing i i 
resistor ncreas ng 

load 
AsSENTF- et aL, piezoelectric 1024 10 x7 min not not not not 0-1-100 Hz 
. 
1985 PVDF film x3 min specified specified specified specified 
Pedo- optical full-field each pixel >100 kPa, material- material- 2.5 kPa. material- barograph waveguide mapped to per mrn2 dependent dependent dependent 

2-3 nun area typically 
<20 Hz 

RHODES, optical fiffl-field each pixel not <3% not dependent not 1988 photoelastic mapped to specified specified on thickness specified 
3 mrn area of photo- 

elastic sheet 
Kistler piezoelectric 4 load force plate vertical 
platform total vertical cells/ area = 200 kPa, 1% 1% 0-05 Pa >100 Rz 
(type 9284) asid shear 3 quartz 500 mm2 shear 

forces rings per +/-50 kPa 
cell 

parallel line image of the indenter, with point intensity 
proportional to applied force. The image is captured by a 
camera adjacent to the walkway, with each pixel representing a 
physical area of 0.96 x 0-79 mn-L To filter out surface 
irregularities and simplify interpretation, pixels are assigned 
the average intensity value within each 3 =2 area. 

Calibration typically indicated nonlinearity errors, of <3 %. 
Sensitivity is controlled by the thickness and hardness of the 
photoelastic sheet The significance of spatial and temporal 
distortion (LORD, 1981) introduced by the polycarbonate 
reflector is not considered. With f1arther evaluation, this 
technique may provide comparable performance to the 
pedobarograph with several advantages, particularly tempera- 
ture-independent response. 

Transducers employing piezoelectric materials are not well 
suited to static measurements due to the charge leakage arising 
from the non-ideal characteristics of charge amplifiers. The 

unacceptably high time constant required for accurate static 
measurements imposes a typical low-frequency limit of around 
0.1 Hz on systems using piezoelectric materials (Kynar 
Technical Manual, 1987). 

Assente et aL constructed a 580 x 380 mrn platform using 
poled 40 um piezoelectric PVDF (polyvinylidene fluoride) 
film, bonded to a double-sided printed circuit board containing 
7x 10 mm rectangular copper Pads (AssENTE et aL, 1985). 
Each of the - 1024 pads is capacitively coupled to the 

piezoelectric film and connected to the instrumentation on 
the reverse side of the board via, through hole plating. The 

upper side of the fibn is pre-plated with aluminium to provide a 
common groýmd reference. Charge amplifiers sample the 

output from each transducer at a rate of 100 Hz. Details of 
the transducer performance are not presented. 

A summary of barefoot pressure transducer characteristics is 

given in Table 1. 

2.2 Discrete sensors for in-shoe pressure measurement 

Two significant disadvantages of barefoot measurement 
systems are the inability to assess behaviour at the foot-shoe 
interface (CAVANAGH et al., 1992) and the diffaculty of 
synchronising measurement to specific phases of the gait cycle 
(HENNIG et aL, 1994). In-shoe discrete transducers for 

measurement at selected plantar sites overcome these problems, 
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while introducing the problem of locating the transducers at the 
appropriate sites of interest (LORD et aL, 1992). An accurate 
and repeatable method of aligning discrete sensors has recently 
been described by Akhlaghi et aL (AKHLAGHI et aL, 1994). 

Kothari et aL evaluated the commercially available Orthoflex 
Hercules capacitive pressure transducer to measure pressure at 
seven locations under the foot (KcYrHARI et aL, 1988). The 
transducer structure comprises five corrugated metal electrodes 
in parallel, separated by mica. The structure is formed as a thin 
cylinder, with a depth of 2.44 mm and a diameter of 18 mm- 

Compression of the structure results in a change in 
capacitance from 230pF to 460pF over the full load range of 
0-1-3 MPa. Maximum nonlinearity of 11 % and hysterisis of 
10 % are stated for the range 0-700 kPa- Sensitivity varies over 
sensor area, reducing nonlinearly from a value of +/-5 kPa at 
the centre to +/-30 kPa at the periphery. The accuracy of the 
output is therefore dependent on load distribution. The 
transducer bandwidth is 12 Hz, limiting measurement to slow 
walking speeds. Kothari et aL intend to use these transducers 
in an 'electrotactile' feedback system to restore sensation to 
subjects with diabetic neuropathy. 

Gross and Bunch constructed discrete piezoelectric ceramic 
(lead-zirconate-titanate) transducers, of dimensions 4-83 mrn2 
x 1-3 mm, sealed in a polyurethane casing to provide 
protection from moisture, uniform load distribution and 
minimal sensitivity to lateral strain (GROss and BUNCH, 
1988). Maximum nonlinearity of 3.4 % and maxnnurn 
hysterisis of 5-8% are stated. Transducer-to-transducer sensi- 
tivity can vary by 20 % due to the difficulty of connection at the 
ceramic surface, requiring individual calibration of each 
transducer. 

A clinical evaluation of transducer performance was under- 
taken on an unspecified number of asymptomatic subjects. For 
day-to-day tests, the combined error due to subject variation, 
transducer displacement and random factors, averaged over 
eight transducers, was 9.9 %. For single-day tests where 
transducers did not require 'relocation, the combined error 
was reduced to 3-1 %. Maximum errors were found to occur 
under the medial-midfoot and hallux. due to the difficulty in 

attachment at these sites. 
Discrete in-shoe transducers can introduce errors by causing 

the load to become concentrated at the measurement site, 
leading to high readings or saturation (NEVrLL, 1991). The 
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situation can be improved by reducing transducer thickness, 
ideally below 0-5 mm (FFRGusoN-PEr., L, 1980). However, the 
mechanical properties of the transducer, the use of an insole 
and the insole of the shoe can also significantly affect the load 
distribution. 

The Electrodynagrain systerrit provides seven discrete 
sensors with a thickness of only 0.3 nim. These sensors are 
suitable for both in-shoe and barefoot measurement. Each 
sensor is an integrated circuit containing a resistive bridge 
(NEW SCMNTIST, 1985) with temperature compensation. 
The measurement range is 0-1.5 MPa with sensitivity of 
+/-30 kPa. The sensors exhibit nonlinearity of 5-10 %, a high 
hysterisis error of 15-20 % and drift of 8% after I min. 
Readings are stored in a waist-mounted instrumentation unit 
with the ability to sample at up to 200 Hz; Per sensor. 

This system has been used in assessing variations in load 
distribution as a result of limb length discrepancy (D'AMICO et 
aL, 1985), diabetic foot ulceration (SMUH et aL, 1989) and 
assessment of the affect of varying shoe heel height on foot 
function (GAsTwTRTH et al., 1991). 

Nevill et aL developed piezoelectric transducers using 
P(VdF-TrFE) copolymer film (NEvILL et aL, 1991). Discrete 
10 x 10 x 2.8 mm transducers were cut from a laminate 
formed by bonding 500 ym non-electroded copolymer film 
between an upper brass sheet and a lower double-sided copper- 
clad board. The laminate provided sufficient stiffiess to prevent 
significant errors caused by lateral stretching and bending of 
the film. 

Transducers were located in recesses cut into a3 mm thick 
rubberised cork insole at eight sites. An instrumentation unit 
containing eight charge amplifiers is strapped to each ankle. A 
further waist-mounted unit provides power to the two ankle 
units and an interface to the host computer. 

The unit was calibrated by applying weights up to 10 k9 
through a loading piston. To simulate bending stresses, 
different types of test head were employed. Over the 
measurement range of 0-1 MPa, the transducers are linear to 
within 1- 5% and have a hysterisis error <I-5%. Sensitivity is 
+/- 1 kPa withim the calibration range. Errors due to lateral or 
transverse bending of the transducers resulted in a worst case 
reduction in sensitivity of 3 %. The frequency response extends 
from 0.008 Hz to 250 Hz. 

The upper brass plate was found to reduce pyroelectric 
charge generation by conducting heat away from the film. 
Temperature compensation is applied to the data to account for 
differences between the calibration and measurement tempera- 
tures. The tr-ansducers require periodic re-laquering to reduce 
charge leakage arising from in-shoe humidity. 

Clinical trials were undertaken with 41 normal subjects to 

assess pressure distribution and with seven asymptornatic 
subjects to assess hindfoot pain, knee failure and the 

effectiveness of pressure relief insoles. Transducers were sited 
under the heel, lateral arch, metatarsal heads and hallux. The 

results were comparable to those obtained for the same subjects 
using a dynamic pedobarograph (BET-rS et aL, 1991). 
Variations in peak pressures occurring within single and 
between repeated tests required an average of ten footsteps 

per test to achieve an acceptable measurement repeatability. 
The significance of these variations have been assessed by 
Akhlaghi et al. (AyHLAGm et aL, 1994). Measurement 

repeatability averaged across transducers was within 16 %. 

Reliability was excellent, with no transducer failure and a 

single connection failure in 10 000 fOOtstePs- Clinical applica- 
tion maybe restricted by the need to make the i. nsoles for each 

t Langer Biornechanics Group Ltd., The Green, Cheadle, Stoke-on- 
Trent, UK 

individual subject, which is both time-consuming and requires 
experience to mount the transducers. 

The Gaitscan system ansing from this work is currently in 
use as a clinical and research tool at Dundee Roval infirmary 
and the Department of Podiatry, Leaf Hospitaf, Eastbourne 
(personal communication: Dr M. G. Pepper). 

A discrete in-shoe electro-optical force transducer has been 
described by Maalej et aL, which employs an asymmetric U- 
shaped steel spring, mounted in an extra depth shoe (MAALFi et 
aL, 1988). The spring has a lower beam length of 4 mm, upper beam length of 3.5 mm and radius of curvature of 1.5 mm. The 
upper beam has a curved end, which under load, acts to occlude 
transmission of light between an LED and photodetector 
mounted on the lower bearn- The transducer is encapsulated in 
silicone rubber to provide even loading and protect against 
ingress of moisture and dirt. The load range is 0-1.6 M[Pa, 
giving a maximum deflection of 0.11 mm; good sensitivity is 
reported. Figures for nonlinearity of +/-2.5 % and hysteresis of 
1.5 % are stated. 

The use of this transducer in a clinical environment is limited 
by the need to use speciaiised footwear and the difficulty of 
aligning the sensors. Care is also required to exclude any 
external light. The silicone rubber used was found to break- 
down at around 1000 loading cycles, and a stronger elastomer 
is required. By employing fibre optics, Maalej et aL claim that 
a large increase in spatial resolution is possible. 

A summary of discrete plantar pressure transducer char- 
acteristics is given in Table 2. 

2.3 Matrix insoles for in-shoe measurement 
Several of the problems associated with the use of discrete 

transducers can be overcome by incorporating transducers in an 
insole; for example, the affect on gait is minimised and lateral 
displacement from the measurement location is reduced 
(NEVM4 1991). This 'matrix insole' approach has resulted in 
several commercial developments. However, there are several 
difficulties: repeatability between elements within an insole and 
between insoles; the problem of crosstalk between elements; 
errors due to bending forces; and the difficulty of calibration. 

Nicol and Hennig developed a barefoot measurement mat 
using a flexible, capacitive sensor matrix; an improved version 
is employed in the Emed Pedar§ system. 

This system provides 99 sensors on a2 min thick insole, 
with individual sensors occupying an area of 17 n=?. Sensor 
measurement range is 30 kPa-0-6 Wa with sensitivity of 
I kPa varying by +1-5 % over the temperature range 10- 40'C. 
Significant improvements in performance over other types of 
capacitive transducers are the low hysterisis of <3 %, 
frequency response to 50 Hz and good day-to-day repeatability. 
Mechanical decoupling of the sensing elements allows 
performance to be maintained when bending forces are applied- 
The instnimentation is located in a portable waist-mounted 
unit. 

Using this technology, Hennig et aL compared the barefoot 
pressure distributions of 125 children and. 111 adults with no 
history or indication of pathology, and obtained comparable 
results with other methods, despite some difficulty in targeting 
the sensor area (HENMG et al., 1994). 

Hennig et aL also constructed an insole containing an array 
of 499 piezoelectric ceramic 

, 
Gead-zirconate-titanate) trans- 

ducers, 4-7 mm: 2 x 1.2 mm, embedded in silicone rubber 
(HENNIG et aL, 1982). Over the measurement range of 
0-1 -5 MPa, sensitivity is 0.5 kPa varying by 1-5 % over 
10-400C. Excellent figures for nonlinearity of +/-2 % and 

Novel Gmbh, 80802 MUnchen, Germany 
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Tabie2 Summary of discrete fqot pressure transducers 

reference transducer number of sensor full-scale non- hysterisis sensitivity fi-equency 
type sensors size range/ linearity response 

used sensor 
KoTHARi et aL, capacitive 7 18 mm 
1988 diameter 

x 2-4 mm 
GRoss and piezoelectric 8 483 mm2 
BUNCH, ceramic x 1.3 mm 
1988 

Electrodynograrn polysilicon 7 10 mrný 
(Langer) resistive x 0.3 mm 

bridge 

MAALEJ et aL, optical 4 5x6x3 
1988 LED & mm 

photodiode 

NEvu-L, piezoelectric 8 10 x lox 

1991 PVDF film 2.8 mm 
LORD et aL, magneto- 6 16 mm 
1992 resistor diameter 

(shear x4 mm 
transducer) 

., 0-1.3 MPa 11% 10% +-5 kPa 12 Hz 

3-40/a 5-8% not >50 Hz 
2 MPa specified 

0-1.5 Wa 5-10% 15-2(r/. ±30 kPa 200 Hz 

0- 1 .6 MPa =LZ-5% 1.5% very high >20 Hz 

0-1 NVa 1-5% < 1-5% 1 lcPa 0.008-250 Hz 

0- not not high 500 Hz, 
250 kPa specified specified 70 Hz used 
over area in practice 
200 MM2 

hysterisis. of I% were achieved. The variation in the sensitivity 
of the sensors within the matrix, resulting from material and 
fabrication tolerances, was sufficient to require individual 
calibration of each sensor. Several sources of error were 
identified: pyroelectric charge generation, susceptibility to elec- 
trical interference and sensitivity to lateral strain. 

A charge amplifier converts the output from each transducer 
to a proportional output voltage at a sampling rate of up to 
200 Hz. The sensor was used to monitor one asymptoinatic 
subject; no significant problems were reported. 

Transducer arrays employing piezoelectric ceramic Materials 
can be difficult -to construct and can be subject to rapid 
mechanical fatigue; both problems may be reduced by using 
piezoelectric polymer film (NEVILL, 1991). 

Pedotti et aL produced an insole from a film of the 
piezoelectric polymer, polyvinylidene fluoride (PVDF) 
(PED07ri et al., 1984). Circular aluminium discs of 6 mm 
diameter were deposited onto the film to form transducer 
electrodes at 16 sites. Aluminium tracks transfer the output 
signal from each transducer to the periphery of the insole for 

connection to remote mstrumentation. A 20 ym unpoled PVDF 
film was silver sprayed and bonded to the film to provide 
shielding from electrical interference. 

The transducer is linear to within +/-0 -2% over the full load 

range of 0-4 MPa. Repeatability of response between the 16 

transducers on the insole is within +/-3 %. Sources of error 
were identified as additional charge generation due to lateral 

stretching, pyToelectric charge generation arising from com- 
pressional heating of the polymer and from frictional heating 
during gait. 

A clinical evaluation was undertaken with a single symptom- 
free subject; no problems were reported. Pedotti et aL claim 
excellent repeatability between tests. This technique is not 
appropriate for routine clinical use because of the need to mak 

Ie the insoles for each individual subject. 
Several examples of transducer arrays based on conductive 

and re; istive technologies have been developed during the last 
five years. Perachon et al. fabricated an insole to measure the 

variation in conductance of a conductive polymer under load 

(PERucHoN et aL, 1989). A cross-sectional diagram of the 

transducer is shown in Fig. I 
Electrodes are etched on a copper-plated flexible, printed 

circuit substrate (polyimide) to form an array of 127 elements 
with centre-to-centre spacing of I cm- Conductive tracks from 
each transducer converge at the periphery of the insole for 
connection to a waist-mounted instrumentation unit. The insole 
is 2.5 mm thick. 

v_ ring, 
potential 

-Hi' 

force 

piezoconductive 
rubber 

9060aa0Q00a 

Ignal 
output 

resislor 

Fig. 3 Cross-sectional diagram of multiple sensor insole (developed 
by PF-RucHON et al., 1989) 

metal 

electmde 
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Fig. 4 Tekscan F-scan insole; each resistive ink sensing element is 
formed between overlapping transverse and longitudinal 
conductors 

Each trzansducer element consists of a circular ground 
electrode and a concentric, isolated, outer reference electrode. 
Current flow between electrodes MCreases with compression of 
the polymer. 

The calibrated measurement range is 0-300 kPa; from 0 to 
225 kPa material compression is 15 %, nonlinearity 16 % and 
hysterisis 12 %. For material compression in the range 15- 
25 %, nonlinearity increases -to 26 %, requiring a look-up table 
to provide compensation. The resultant sensitivity is +/ 

-20 kPa- Transducer bandwidth extends to 100 Hz. Response 
is tempemture-independent in the range 15-35'C. 

Sealing the conductive polymer in a polyurethane film 
increases its operational lifetime by reducing abrasion of the 
copper tracks. Compensation is required to reduce errors due to 
charge leakage between different elements. The limited range 
of conductive polymers is a problem; response times are 
typically low. 

Clinical trials were undertaken on ten asymptomatic 
subjects; poor-reliability was found to be a significant problem. 

The F-Scan system* uses conductive and resistive inks on a 
flexible mylar substrate to form a matrix of 960 sensors on a 
disposable, 0.1 inin thick, insole (SENSORS, 1991). Each 
5 min 2 sensing element is formed by depositing a layer of 
resistive ink between two orthogonal conductors. Aluminiurn 

tracks deposited on the external surfaces provide connection to 

a small instrumentation unit worn on the ankle. These tracks 

are routed along the longitudinal centre line, allowing the 
insoles to be cut to size. A photograph of the insole is given in 

Fig. 4. 
The matrix is scanned at 165 Hz per sensor with a resolution 

of 8 bits, yielding a sensitivity of +/-4 kPa- Data are 
transmitted over a lightweight cable to a host computer. 

* Tekscan Inc., 307 West First Street, South Boston, Massachusetts, 
USA 
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Details of the performance of the device are not given lin the 
Tekscan literature. An evaluation of these insoles (ROSE et aL, 
1992) indicated closely reproducible static and dynamic 
measurements for normal test subjects under certain conditions. 
However, calibration between sensors was found to be poor and 
the sensors showed significant wear with use. The thermal 
coefficient of the resistive ink may also be significant. 

Clinical studies of one subject with a plantar callus below the 
second metatarsal head and a second subject with submeta- 
tarsaglia pain have been reported by Young (YOUNG, 1993). 

The recently developed Podo-Dyno-Gram systernt uses a 
matrix of 64 circular Interlink force-sensing resistors deposited 
onto a mylar film to form an insole. The measurement range is 
0-0-8 M[Pa with a sensitivity of +/-20 kPa. Nonlinearity is 
less than 10 %. 

A summary of matrix insole characteristics is given in 
Table 3. 

3 Methods of measuring shear forces under the foot 
To investigate the possible effect of shear forces on various 

foot pathologies, a discrete shear transducer was developed by 
Tappin and Pollard (TAPPiN and POLLARD, 1980). The same 
principle is used in the transducer designed by Lord et aL 
(LORD et aL, 1992), illustrated in Fig. 5. 

Movement of the permanent magnet relative to the magneto- 
resistive element results in a change in resistance proportional 
to applied force. The elasticity of the silicone rubber bonding 
the two halves of the transducer provides a restoring force to 
return the magnet to its equilibrium position. The maximal 
excursion of 0.6 mm corresponds to a shear stress of 250 kPa. 
By aligning the locking groove in either a longitudinal or 
transverse direction, relative to the foot, the related shear 
component can be measured. A bridge circuit provides a 
temperature-compensated output voltage. The frequency re- 
sponse extends to 500 Hz. In clinical tests, a high-frequency 
cut-off of 70 Hz was found to be acceptable. Shear measure- 

stainless steel - disc 
magnet LJ- 

silicone rubber - 

:) 

stainless steel 
disc 

eiement 
Fig. 5 Exploded view of shear Ounsducer (designed by LORD et al., 

1992) based on magneto-resistive shear tnmsducer (devel- 

oped by TAPPbV, 1980) 

PKS Electronics, Belgium 
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Table3 Summary of transducer matrix insoles forfoot Pressure measurement 
reference trawducer 

type 
number of 
sensors/ 
insole 

sensor 
size 

fiffl-scale 
range/ 
sensor 

nonlinearity hysteris; is sensitivity firquency 
response 

Emed Pedar capacitive 99 17 mm' 30 kPa- not <3% 1 kPa 50 Hz (Novel Gmbh) 
0-6 MPa stated 

PERUCHON et conductive 127 10 Mm 0-300 kPa 16% @ 12% @ 20 kPa 100 Hz 
aL, 1989 polymer diameter x 75% fiffl- 75% full- 

2.5 mm scale scaie 
F-Scan resistive 960 5 MM2 0-1 MPa not not ±4 kPa 165 Hz/ (Tekscan Inc. ) ink x 0.1 mm specified specified sensor 

sample rate 
Podo-Dyno- piezo-electrical 64 5 mm diameter 0-300 k: Pa <10% not available ± 20 kPa 150 Rz 
Gram. force sensing x 0--7 mm 
(PKS Electronics) resistor 

HmiMG ef al., piezoelectric 499 4.78 mm2 > 1500 2% 1% 0.5 kPa >50 Hz 
1982 ceramic x 1.2 mm kPa I 

PEDOTrI et aL, piezoelectric 16 6 mm diameter 
1984 PVDF fibn < 0.1 mm 

0-4 Wa 0.2% not not >50 Rz 
specified specified 

ments from four asymptomatic subjects were obtained, accurate 
placement of the transducers was found to be critical. 

Results of clinical tests for differing footwear using this type 
of transducer were reported by Pollard et aL for ten normal 
subjects (POLLARD et aL, 1983). Tappin and Robertson 
undertook barefoot measurements on a group of 20 normal 
subjects and in-shoe measurement for a variety of footwear on 
ten normal subjects (TAPPIN and ROBERTSON, 1991). Their 
results indicated that the magnitude of the vertical forces 
required to occlude blood flow can be reduced by up to 50 % 
when sufficient shear force is simultaneously present. 

Further developments of this type of shear transducer are 
curently under investigation (LAiNG et al., 1992), including 
possible improvements to instramentation§. Modification to 
allow simultaneous measurement -of vertical and shear forces 
has been made by Williams et aL in order to investigate stresses 
at the prosthetic interface of lower limb amputees (WILLL'\MS et 
aL, 1992). A shear transducer using copolymer piezoelectric 
film has been reported and is currently being clinically 
evaluated (AKHLAGIII and PEPPER, 1993). 

4 Conclusions 

In assessing and presenting results from clinical studies 
involving measurement of plantar pressure, it is important to 
identify and qýumtify the limitations of the devices used to 
allow an objective comparison to be made with the findings 
from other studies. This review has detailed the performance of 
several plantar pressure transducers designed during the last 15 

years. The most significant developments are summarised 
below. 

The Musgrave Footprint provides high-resolution imaging 
and is well suited for inclusion in a walkway. There are some 
inherent problems with the force-sensing resistors employed, in 
particular poor measurement repeatability and nonlinear 
sensitivity. The Dynamic Pedobarograph provides very high 

gnifi . resolution images; sources of error include si cant 
temperature dependence and creep of the transducer material. 

The Electrodynagram system provides reasonable perfor- 
mance and uses very thin h-, msducers; there are some problems 
with drift and hysterisis. 

Personal communication: Dr M. Lord 

The Emed-Pedar insoles use specially developed capacitive 
elements, yielding improved performance compared to pre- 
vious capacitive transducers. The Tekscan insoles allow high- 
resolution imaging using a very thin low-cost insole which can 
be scaled in size; there are possible problems with repeatabilityý 

The majority of these commercial devices have been 
evaluated in clinical studies with comparable results between 
systems. Most have wide clinical applicability. There have been 
several non-commercial transducer developments. 

In the Gaitscan systemý the use of discrete piezoelectric film 
transducers in an insole provides good performance and 
reliability. However, the need to fabricate the insole for each 
individual subject may limit the extent of its clinical 
applications. This system is being evaluated clinically and 
may soon be a commercial option. 

A photoelastic sheet has been used in a walkway, providing 
high resolution at low cost and possible advantages over the 
pedobarograph. 

An exceptionally accurate discrete piezoelectric ceramic 
transducer has been developed with a repeatable response. 
However, the difficulty of realignment affects day-to-day 
repeatability. A miniature electro-optical discrete transducer 
has been designed and provides good accuracy at low cost, with 
the complication of requiring special footwear. 

The development of a reliable transducer for measunng 
plantar shear forces has provided evidence to support the 
hypothesis that shear forces are significant in the development 
of plantar ulcers. 

Future devilopment of plantar pressure transducers may 
include insoles with the capability of simultaneous measure- 
ment of vertical and shear forces. Better calibration methods 
need to be developed to allow the effect of f-actors such as 
bending forces and temperature on transducer performance to 
be assessed. Standardised methods of evaluating and defining 
the performance of plantar pressure transducers need to be 
developed. 
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JE Cobb, DJ Claremont 
Department of Electronics, Bournemouth University, Fern Barrow, 
Poole, Dorset 

Aý prototype instrument is described for the simultaneous noninvasive evaluation of 
microvascular blood flow and plantar pressure. A miniature laser diode and surface mount 
photodiode are integrated in the sensor together with instrumentation. A Force Sensing 

-or (FSR) load. II is Resist bonded to the probe measures applieU he probe temperature 
measured using a small thermocouple to provide compensation for the FSR. 

The system is calibrated using a low friction syringe, driven by different weights to control 
the weight of flow of the scattering media, a linear response was obtained over the range 
of interest from 20KHz to 12KHz. 

The laser Doppler, pressure and temperature signals from the sensor are connected to an 
external instrumen 

- 
tation unit worn by the subject, to provide further amplification and 

filtering prior to the data being recorded onto a portable digital audio recorder attached to 
the subject. 
The recorded data is analysed off line using specially developed software implemented 
using the Labview program. The power spectrum of the photocurrent is coherently 
averaged and signal processing applied to allow evaluation of different laser Doppler 
algorithms. 
The probe is designed to be incorporated into the sole of a surgical shoe, sited under one 
of the metatarsal heads. This type of sensor could be of use in the study of plantar 
ulceration in diabetic patients. 

55 

lbb, 
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PRELIMINARY 
PLANTAR 

EVALUATION 
BLOOD - FLOW 

MEASUREMENT. 

u OF A SENSOR FOR 
AND PRESSURE 

JE Cobb &DJ Claremont, Dept of Electronics, Bournemouth University, 
Fern Barrow, Poole. 

To gain further insight into the pathopsychology of diabetic plantar ulceration, a monitoring 
system has been developed. A sensor of diameter 30mm is embedded in a measurement 
shoe sited under the first metatarsal head. An indication of blood flow is obtained using laser 
Doppler flowmetry and load data is obtained using a force sensing resistor. We conducted a 
pilot study of the system in a groul of five non-diabetic subjects. 
The test group had no history of foot problems or vascular disorders. and were all non- 
smokers. The group had a mean age of 28.2 years +/- 5 years. The location of the sensor 
was identified by palpatation, marked and transferred to a template for construction of the 
measurement shoe. The location of the alignment mark was repeatable to within +/- 3mm. 
To ensure changes in blood flow were independent of variation in skin temperature, the foot 
was warmed to 30 deg C. A static test consisted of a sequence of blood flow obtained from 
the unloaded foot, two minutes under standing load and a further three minutes from the 
unloaded foot. The mean time for the blood flow to fall from rest to cessation level was 18.2 
seconds (range 16-19.6 secs). Following removal of load a hyperaernic type response was 
noted. The mean duration for the blood flow to rise from cessation to the peak of the 
response was 12.4 seconds (range 11.6-13.85 secs). The mean duration from the peak of 
the hyperaemic response for a return to resting levels was 64.1 secs (range 59.7-80.0 secs). 
The measured response times were found to be inversely proportional to the mean heart 
rate during the test. 
A dynamic test consisted of a continuation period of five minutes of dynamic gait. The mean 
blood flow, during the swing phase of the gait was determined. The standard deviation for 
each individual was <0.2 over thirty steps. Across the group the calculated normalised blood 
flow value ranged from 0.705-0.840. The variation within the values for four sets of 30 steps 
obtained from a single five. minutes measurement period was <1 0%. 

Seýsion 13 Chair Stuart Smith 
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Appendix F 

Noise figures for evaluated laser diodes. 
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Device Manufacturer Measured noise figure Action 
HL7806G Hitachi -56dB Excluded 
HL7836G Hitachi -62dB Retained 
LT022MS Sharp -65dB Retained 
LT023MS Sharp -60dB Excluded 
ML40123N Mitsubishi Electric -75dB Retained 
RLD78MC ROHM -45dB Excluded 
RLD78NP10 ROHM -40dB Excluded 
SLD231VC Sony -55dB Excluded 
SLD1121VS Sony -47dB I Excluded 

NB This tables gives noise figures for the for the evaluated laser diodes, refer to the 

discussion on page 76. 
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Glossary 

Antialiasing filter Input filter restricting signal bandwidth to satisfy Nyquist criteria. 
Arteriovenous The vessels of the skin supporting thermoregulation 
anastomoses also referred to as AV shunts. 

Automatic power Regulation of optical output from laser diode by feedback 
control 

Avascular Without blood, for example the epidermis. 

Backscattered Light reflected outward from tissue to the skin surface. 

Biomechanical Physical stresses acting on tissue. 

Blood flux Product of mean red blood cell velocity and concentration. 

Coherence Measure of temporal and spatial correlation of optical waves. 

Cutaneous Of the skin. 

Erythrocyte The red blood cell. 

Force sensing A thin film resistance device for measuring load. 
resistor 

Haemodynamic Relating to physical characteristics of blood flow. 

Heparinised Addition of anticoagulant to blood. 

Heterodyne Difference frequency when two different frequencies are summed 

Hysterisis Difference in dependent response at same values, for increasing 
and decreasing values of the independent variable. 

Ischaemic Inadequacy of blood supply. 

Laser Doppler Method of assessing skin blood flow. 
flowmetry 

Linearity A measure of the difference between the actual response and the 
ideal linear response. 

MicrosPheres Microscopic beads used to simulate red blood cells in-vitro. 

Microvasculature The small vessels supporting blood flow in the skin. 

Microangiopathy Thickening of capillary membrane in disease. 
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Neuropathy Disease of peripheral nerves especially in diabetes mellitus. 

Non-enzymatic Abnormal molecular linking with glucose in diabetes mellitus. 
glycosylation 

Peltier device Method of cooling by electrical current. 

Plastazote foam High density foam used in orthopaedic applications. 

Haemorheology Study of blood flow in relation to constituents of blood. 

Heterodyne Production of audio frequency by combining higher frequencies. 

Heterogeneous Diversification of structure / composition. 

Swing phase Period of the gait cycle when the foot is not in ground contact. 

Thermoregulatory Control of body core temperature by varying skin blood flow. 

Type I Insulin dependent diabetes mellitus. 

Type 11 Non-insulin dependent diabetes mellitus. 

Vasomotion Changes in blood vessel contraction and dilation. 
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