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Sign-Correlation Subspace For Face Alignment
Dansong Cheng, Yongqiang Zhang, Feng Tian, Ce Liu and Xiaofang Liu

Abstract—Face alignment is an essential task for facial per-
formance capture and expression analysis. Current methods
such as random subspace Supervised Descent Method, Stage-
wise Relational Dictionary and coarse-to-fine shape searching
can ease multi-pose face alignment problem, but no method
can deal with the multiple local minima problem directly. In
this paper we propose a sign-correlation subspace method for
domain partition in only one reduced low dimensional subspace.
Unlike previous methods, we analyze the sign correlation between
features and shapes, and project both of them into a mutual
sign-correlation subspace. Each pair of projected shape and
feature keep their signs consistent in each dimension of the
subspace, so that each hyper octant holds the condition that
one general descent exists. Then a set of general descents are
learned from the samples in different hyperoctants. Requiring
only the feature projection for domain partition, our proposed
method is effective for face alignment. We have validated our
approach with the public face datasets which include a range of
poses. The validation results show that our method can reveal
their latent relationships to poses. The comparison with state-
of-the-art methods demonstrates that our method outperforms
them especially in uncontrolled conditions with various poses,
while enjoying the comparable speed.

Index Terms—sign-correlation, Sparse Representation, Super-
vised Descent Method, Face alignment

I. INTRODUCTION

FACE alignment is an important computer vision task, and
plays a key role in many facial analysis applications,

such as face recognition, performance-based facial animation,
and expression analysis. It aims at locating predefined facial
landmarks (such as eye corners, nose tip, mouth corners) in
face images automatically. Face alignment usually takes a face
bounding box from a face detector as input, and fits initial
positions of landmarks into optimal locations.

Since the ground truth of shape is unknown during test, its
very difficult to predict the shape increment from initial shape
to real shape. Generally, the global or local face appearance
is considered as extra constraints for optimization. Sufficient
labeled face images are also very important for learning a
reliable face alignment model. Recently many methods have
been proposed for face alignment. Most of them can be
categorized into two groups according to their underlying
model: generative models and discriminative models.

Typical generative models include Active Shape Model
(ASM) [1], Active Appearance Model (AAM) [2] and their
extensions [3], [4], [5], [6]. In this type of methods, the
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optimization target is model parameters. It means seeking
the best parameters to generate the most fitting shape (facial
landmarks). These methods mitigate the influence of various
poses and illumination. Due to sub-optimization problem, they
are however sensitive to initialization and often tend to fail in
the wild condition.

Recently discriminative models have shown better perfor-
mance for face alignment. Some discriminative methods are
based on local classifiers or response maps for landmarks [7],
[8]. These methods deal with each landmark independently
and ignore the relationship between them. Different from
these methods, the cascaded regression-based methods take
all landmarks as a whole and solve a nonlinear optimiza-
tion problem by the cascaded regression theory [9]. The
main difference between the cascaded regression and related
boosting regression is that the former uses shape-indexed
features extracted from the image according to the current
estimated shape. Cascaded Pose Regression (CPR) [10] for
pose estimation has been widely extended into face alignment
in recent works, represented by Explicit Shape Regression
(ESR)[11] and Supervised Descent Method (SDM)[12]. It
is noticed that SDM provides a theoretical explanation of
the cascaded regression from the view point of optimizing
a nonlinear problem, as a significant achievement in cascaded
regression methods.

Following the cascaded regression framework, many re-
searchers focus on improving its efficiency and accuracy in
uncontrolled conditions, including various poses, expressions,
lighting and partial occlusions. Some of them can handle
partial occlusions [13], [14], [15]. Some works mainly aim
at speeding up the prediction process while keeping high
accuracy [14], [16]. The choice and learning of shape-indexed
features are also studied [16], [17], [18]. A series of regression
methods have been employed into the cascaded regression
framework to deal with over-fitting and local minima problems
in the wild condition, including ridge regression [19], Support
Vector [20], Gaussian process [21], [22], Random Forest
voting [23], [15], [24], Deep Neural Nets [16], [25], and
project-out cascaded regression [26].

Although these works have produced remarkable results
on nearly frontal face alignment, it remains hard to locate
landmarks across large poses and expressions under uncon-
trolled conditions. The variation of poses leads to non-convex
and multiple local minima problems. To address the issue,
Xiong et al.[27] theoretically address the limitation of SDM
and proposes descent domain partition in feature and shape
PCA space separately. Though their scheme works well for
face tracking and pose estimation, it is not suitable for face
alignment across various poses because the ground truth of
shapes or features are unknown and it is unable to find
approximation due to lack of previous frame. A few recent
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works[13], [14], [28], [29], [30], [31] begin to consider the
influence of multiple poses. Most of them deal with the
problem indirectly by random schemes or data augment, and
they can only handle small changes in poses.

Inspired by Xiong’s work [27], we proposed a novel sign-
correlation subspace method for partitioning descent domains
to achieve robust face alignment across poses. The main
contributions of our work are: 1) The inherent relationship
between poses space and appearance features or shapes space
is explicitly obtained by sign-correlation reduced dimension
strategy. The whole features and shapes spaces are projected
into a mutual sign-correlation subspace, which mainly repre-
sents the variation of poses. 2) The decent domains partition
is produced according to the signs of each dimension in this
sign-correlation subspace. For decent domains partition, we
only need to project features space into joint sign-correlation
subspace and split whole sample space into different hyperoc-
tants as decent domains. 3) Our method is validated on some
challenging face datasets, which include face images from
different poses. The results show that we can split complex
sample space into homogeneous domains related to poses, thus
a mutual manifold of feature and shape spaces is obtained.
The experiments results demonstrate that our method achieves
state-of-the-art performance for nearly frontal face images, and
it is more robust on datasets with multiple poses, compared
with current methods.

The rest of this paper is organized as follows. In Section
II, we briefly introduce the related work, such as Cascaded
Regression to Face Alignment and Multi-Pose Face Align-
ment. The key idea of the paper is given in Section III, where
we describe our proposed approach. Experimental results
and analysis are presented in Section IV, followed by the
conclusion in Section V.

II. RELATED WORK

A. Cascaded Regression to Face Alignment

Both generative models and discriminative models have
been studied for face alignment. As a typical generative model,
ASM [1] is proposed to take advantage of prior knowledge
from training datasets, which is one of the earliest data-
driven model for shape fitting. PCA is used to build a linear
combination model of major shape basis, and local textures
around control points are also used for fitting the shape well.
AAM [2] considers the global appearance rather than only
local textures in ASM, and a PCA model is trained for global
appearance while the shape PCA is trained at the same time.
AAM can warp the initial shape and appearance into the
current face very well due to both its shape constraint and
appearance constraint. There are also many methods based
on them, like multi-view ASM [3], CLM [4], bilinear AAM
[5] and tensor-based AAM [6]. Since these methods are
parametric models, it is hard to avoid a sub-optimization
problem. Unexpected results often occur in the wild condition
due to an inappropriate initialization.

Among discriminative models, the cascaded regression
based methods have shown more promising performance than
local classifiers or response map based methods [7], [8]

and generative models. ESR[11] uses shape indexed intensity
difference features for face alignment based on CPR [10].
Moreover, SDM extracts shape-indexed SIFT features and
learns a sequence of general descent maps from supervised
training data, providing a solution when it is hard to apply
Newton Descent method for a not analytically differentiable
nonlinear function or when Hessian matrix is too large and not
positive definite. Since SDM tends to average conflict descent
directions over whole non-convex space, it is still limited in
the wild scenes such as large poses, extreme expressions and
partial occlusions.

Later research mainly focuses on performance improvement
based on ESR and SDM. Burgosartizzu et al.[13] integrates
partial visibility term into landmarks and presents interplolated
shape-indexed features to tackle with occlusions and high
shape variances. Kazemi et al.[32] estimates facial landmarks
by learning an ensemble of regression trees (ERT) directly
from a sparse subset of pixel intensities. Their ERT achieves
millisecond performance and can handle partial or uncertain
labels, but the correlation of shape parameters has hardly been
taken into account. Instead of least squares regression, Xing
et al.[14] learns sparse Stage-wise Relational Dictionary(SRD)
between facial appearances and shapes, which improves the
robustness under different views and severe occlusions. Some
recent research aims at choosing or learning shape-indexed
features. Yan et al.[17] compares the performance of different
local feature descriptors for face alignment, including SIFT,
HOG, LBP and Gabor, and HOG shows best results in their ex-
periments. Ren et al.[33] builds local binary features by learn-
ing regression random forest for each landmark independently,
and then learns a global cascaded linear regression with pre-
built binary features. Deep Neural Networks [25], [34], [16]
have also been studied for face landmark detection. DNNs-
based methods fuse the feature description and networking
training in a unified framework, but it is still very challenging
to tune many free parameters.

B. Multi-Pose Face Alignment

Xiong et al.[27] analyze the drawbacks of SDM and splits
whole sample space into descent domains by PCA in both
feature and shape spaces. However, the approach cannot be
used for face alignment across various poses due to unknown
real shapes or features, which can be approximated by previous
frame for face tracking and pose estimation tasks. There have
been some works done to improve the SDM for face alignmen-
t. Feng et al.[28] proposes random cascaded-regression copse,
learning a set of cascaded strong regressors corresponding
to different subsets of samples and averaging all predictions
of them as final output. Similarly, Yang et al.[29] proposes
random subspace SDM, randomly selecting a small number of
dimensions from whole feature space and training an ensemble
of regressors in several feature subspaces. Liu et al.[19]
modifies traditional SDM with multi-scale HOG features,
global to local regression of features and rigid regularization
to improve the accuracy and robustness. L2,1 norm based
kernel SVR is presented by Martinez et al. [20] to substitutes
the commonly used least squares regressor, which improves
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the performance of face alignment across views. Gaussian
process [21], [22] and Random Forest voting [23], [15], [24]
are also introduced into cascaded regression framework. Zhang
et al. [35] and Zhu et al. [30] further study hierarchical or
coarse-to-fine searching for face alignment. Feng et al. [31]
combine synthetic images with real images to train cascaded
collaborative regression with dynamic weighting, handling the
pose variations better. Fan et al. [18] combine projective in-
variant characteristic number with appearance based constrains
and solve a quadratic optimization by the standard gradient
descent. Though their method shows well pose invariant, it
can only handle a small number of landmarks. Tzimiropoulos
presents project-out cascaded regression(PO-CR) [26] and
extend the learn-based Newtons method further: Instead of
learning directly a mapping from appearance features to non-
parametric shapes, PO-CR learns a sequence of Jacobian and
Hessian matrices based on parametric shape model. It shows
noticeable improvements on the challenging datasets.

Some methods among them have begun to deal with the
impact of poses, like RPCR [13], SRD [14], CCR [31],
hierarchical localization [35] and coarse-to-fine searching [30].
However, few of them can give a clear interpretation for the
correlation between poses and feature or shapes. Most of these
methods alleviate the problem by different strategies, but how
to achieve robust and accurate face alignment across poses
remains a challenging task. To tackle these limitations, our
work focuses on analyzing the underlying relationship between
feature space and shape space, finding a joint pose related
subspace for global supervised descent domains partition, and
finally improving the performance of face alignment under
challenging conditions.

III. SIGN-CORRELATION SUBSPACE FOR DESCENT
DOMAINS PARTITION

A. Descent domain partition in SDM

To facilitate the discussion of our proposed approach, we
first review SDM and the sign-correlation condition for exis-
tence of a supervised descent domain. According to SDM, by
setting one image d, p landmarks ~x = [x1, y1, . . . , xp, yp] ,
a feature mapping function ~h(d(~x)) corresponding to image
d, where d(~x) indexes landmarks in the image d, the face
alignment can be regarded as a optimization problem,

f(~x0 + ∆~x) = ‖~h(d(~x0 + ∆~x))− φ∗‖22 (1)

where φ∗ = ~h(d(~x∗)) represents the feature extracted ac-
cording to correct landmarks ~x∗, which is known in the
training images, but unknown in the testing images. For initial
locations of landmarks ~x0, we solve ∆~x, which minimizes
the feature alignment error f(~x0 + ∆~x). Since the feature
function is usually not analytically differentiable, it is hard to
solve the problem with traditional Newtons descent methods.
Alternatively, a general descent mapping can be learned from
training datasets. The supervised descent method form is,

~xk = ~xk−1 −Rk−1(φk−1 − φ∗) (2)

Since φ∗ of a testing image is constant but unknown, SDM
modifies the objective to align with respect to the average φ∗
over training set, the update rule is then modified,

∆~x = Rk(φ∗ − φk) (3)

Instead of learning only one Rk over all samples during one
updating step, the global SDM learns a series of Rt, one for
a subset of samples St, where the whole samplesare divided
into T subsets S = {St}T1 .

A generic DM exists under the two conditions: 1) R~h(~x) is
a strictly locally monotone operator anchored at the optimal
solution; 2) ~h(~x) is locally Lipschitz continuous anchored at
~x∗. For a function with only one minimum, these normally
hold. But a complex function might have several local minima
in a relatively small neighborhood, thus the original SDM
tends to average conflicting gradient directions. Therefore, the
global SDM proves that if the samples are properly partitioned
into a series of subsets, there is a DM in each of the subsets.
The Rt for subset St can be solved with a constrained
optimization form,

min
S,R

T∑
t=1

∑
i∈St

‖∆~x∗ −Rt∆φ
i,t‖2 (4)

s.t. ∆~xi∗Rt∆φ
i,t > 0,∀ t, i ∈ St (5)

where ∆~xi∗ = ~xi∗ − ~xik, ∆φi,t = φ
t

∗ − φi, and φ
t

∗− average
all φ∗ over the subset St. Eq.(5) guarantees that the solution
satisfies DM condition 1. It is NP-hard to solve Eq.(4), so a
deterministic scheme is proposed to approximate the solution.
A set of sufficient conditions for Eq.(5) are given:

∆~xi∗∆Xt
∗ > ~0,∀ t, i ∈ St (6)

∆Φt∆φi,t > ~0,∀ t, i ∈ St (7)

where ∆Xt
∗ = [∆~x1,t∗ , . . . ,∆~x

i,t
∗ , . . . ], each column is

∆~xi,t∗ from the subset St; ∆Φt = [∆φ1,t, . . . ,∆φi,t, . . . ],
each column is ∆φi,t from the subset St.

Since the dot product of any two vectors within the same
hyper octant (the generalization of quadrant) is positive, an
ideal sufficient partition can be like that each subset St occu-
pies a hyperoctant both in the parameter space ∆~x and feature
space ∆φ. However, this leads to exponential number of DMs.
Assuming ∆~x is n-dimension, and ∆φ is m-dimension, the
number of subsets will be 2n+m. Moreover, if the number of
all samples is small, there will be many empty subsets, and
also the volume of some subsets will be too small to train.

It’s known that as ∆~x and ∆φ are embedded in a lower
dimensional manifold for human faces. So the dimension
reduction methods( e.g. PCA) on the whole training set ∆~x
and ∆φ can be used for approximation. The Global SDM
projects ∆~x onto the subspace expended by the first two
components of ∆~x space, and projects ∆φ onto the subspace
by the first component of ∆φ space. So there are 22+1 subsets
in their work. It is a very naive scheme and not suitable
for face alignment. The correlation-based dimension reduction
theory can be introduced to develop a more practical and
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efficient strategy for low-dimension approximation of the high
dimensional partition problem.

B. Sign-correlation Subspace Partition

Xiong et al. [27] have proved that if one subset St sat-
isfies: For any two samples {∆~xi,t,∆φi,t}, {∆~xk,t,∆φk,t}
within St, the signs of each corresponding jth dimension
{∆xi,tj ,∆φ

i,t
j } between the samples keep the same,

sign(∆xi,tj ,∆φ
i,t
j ) = sign(∆xk,tj ,∆φk,tj ),

∀i, k ∈ St, j = 1 : min(n,m)
(8)

Then there must exist a DM Rt in one updating step. Eq.(8)
provides a possible partition strategy: all the samples that
follow Eq.(8) can be put into a subset, and there would be
2min(n,m) subsets in total. Notice that there are two limitations
of this partition strategy: 1) it cannot guarantee the samples
lie in the same small neighborhood. In other words, even
if {∆~xi,t,∆φi,t}, {∆~xk,t,∆φk,t} keep Eq.(8), the ∆~xi,t,
∆~xk,t may be very far from each other; 2) it only considers
the dimension-to-dimension correlation of the first min(n,m)
dimensions in the ∆~x space and ∆φ space, and ignore other
dimension. The correlation of any jth dimension of ∆~x with
a non-corresponding j

′ − th dimension j
′ 6= j of ∆φ is also

ignored.
Considering the low dimensional manifold, the ∆~x space

and ∆φ space can be projected onto a medium low dimen-
sional space with the projection matrix Q and P, respectively,
which keeps the projected vectors ~v = Q∆~x, ~u = P∆φ being
correlated enough: 1) ~v, ~u lie in the same low dimensional
space. 2) For each jth dimension, sign(vj , uj) = 1. If the
projection satisfies these two conditions, the projected samples
{~ui, ~vi} can be partitioned into different hyperoctants in the
medium space only according to the signs of ~ui, thanks to the
condition 2. Since samples in a hyperoctant are close enough
to each other, this partition can well hold the small neighbor-
hood. It is also a compact low dimensional approximation of
the high dimensional hyperoctant-based partition strategy in
both ∆~x space and ∆φ space, which is a sufficient condition
for the existence of a generic DM.

For convenience, we re-denote ∆~x as ~y ∈ <n, and ∆φ as
~x ∈ <m. Ys×n = [~y1, . . . , ~yi, . . . , ~ys] is all the ~yi of training
set while Xs×m = [~x1, . . . , ~xi, . . . , ~xs] is all the ~xi of training
set. The projection matrices are

Qr×n = [~q1, . . . , ~qj , . . . , ~qr]T , ~qj ∈ <n,
Pr×m = [~p1, . . . , ~pj , . . . , ~pr]T , ~pj ∈ <m,
Projection vectors are ~v = Q~y, ~u = P~x. Here we denote

projection vectors ~wj , ~zj along the sample space: ~wj = Y~qj =
[v1j , . . . , v

i
j , . . . , v

s
j ]T , ~zj = X~pj = [u1j , . . . , u

i
j , . . . , u

s
j ]

T . This
problem can be formulated as a constrained optimization form,

min
P,Q

r∑
j=1

‖Y~qj −X~pj‖2 = min
P,Q

r∑
j=1

s∑
i=1

(vij − uij)2 (9)

s.t.

r∑
j=1

s∑
i=1

sign(viju
i
j) = sr (10)

It can be seen that ~wj and ~zj are the projected values of
all the samples Y or X along a special direction ~qj or ~pj .

For a fixed projected jth dimension, assuming that ~wj and
~zj are normalized, which means that the mean of {vij}i=1:s

is zero, and its standard deviation is 1/s, so {uij}i=1:s is.
Thus ~wT

j ~wj = 1, ~zTj ~zj = 1, ~wT
j ~e = 0, ~zTj ~e = 0, where

~e = [1, 1, . . . , 1]T , then Eq.(9) can be simplified as,

min
P,Q

r∑
j=1

‖~wj − ~zj‖2 = max
P,Q

r∑
j=1

~wT
j ~zj (11)

For a fixed projected jth dimension, the constrain-
t
∑s

i=1 sign(viju
i
j) = s means that all the pairs {vij , uij} of

samples in jth dimension keeps the consistence of sign.There
is a fact: if the angle θj between ~wj and ~zj is 0, the term
~wT
j ~zj will reach maximum, so the sign condition must hold;

and if the angle θj is π/2, the Eq.(12) will reach 0, so the
sign condition will fail completely. Moreover, fixing the |vijuij |,
the cos θj will get larger while the

∑s
i=1 sign(viju

i
j) rises,

and
∑s

i=1 sign(viju
i
j) tends to go up with the cos θj growing.

Given some constraints, it can be proved that the cos θj can
be taken as an approximation of the sign summation function
for optimization,

1

s

s∑
i=1

sign(viju
i
j) ≈ cos θj = ~wT

j ~zj (12)

When the samples {~yi}i=1:s and {~xi}i=1:s are normal-
ized(by removing means and dividing standard deviation dur-
ing pre-processing), the sign-correlation constrained optimiza-
tion problem will be solved with the standard Canonical-
Correlation Analysis(CCA). The CCA problem for normalized
{~yi}i=1:s and {~xi}i=1:s is,

max
~(p)j ,~qj

~qTj cov(Y,X)~pj (13)

s.t. ~qTj var(Y,Y)~qj = 1, ~pTj var(X,X)~pj = 1 (14)

Based on CCA, the max sign-correlation dimensions ~p1 and
~q1 are solved at first. Then one seeks ~p2 and ~q2 by maximizing
the same correlation subject to the constraint that they are to be
uncorrelated with the first pair ~w1, ~z1 of canonical variables.
This procedure may be continued up to r times until ~pr and
~qr are solved.

After all ~pj and ~qj are solved, we only need the projection
matrix P in ∆~x space. Subsequently we project each ∆~xi

into the sign-correlation subspace and get reduced feature
~ui = P∆~xi. Then we partition the whole sample space into
independent descent domains by judging the sign of each
dimension of ~ui and group it into corresponding hyperoctant.
Finally, in order to solve Eq.(4) at each iterative step, we learn
a descent mapping for every subset at each iterative step with
the ridge regression algorithm. To test a face image, we also
use the projection matrix P to find its corresponding decent
domain and predict its shape increment at each iterative step.

IV. EXPERIMENTS AND EVALUATION

Since our work mainly focuses on face alignment across
poses, we focus on our experiments especially on this task
to analyze and evaluate our sign-correlation partition method.
Firstly, we validate our method on multi-pose dataset and
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(a)Sign-Correlation

(b)PCA
Fig. 1. Pose validation on MTFL. In each subfigure: First column shows
average faces of two subsets, and first or second row shows samples in subset
1 or 2.

compare our approach with the PCA partition scheme. Then
we test our method on common datasets for general face align-
ment and compare it with state-of-the-art methods. According
to Yans research [17], the multi-scale HOG outperforms multi-
scale SIFT and other typical local descriptors HOG, SIFT, LBP
and Gabor. Thus we adopt multi-scale HOG as feature map-
ping function in our sign-correlation partition SDM algorithm.
The two domains are enough for partition, so we only use
the first sign-correlation projection component in appearance
feature space.

A. Sign-correlation partition validation

In this section, we validate the underlying relationship
between our sign-correlation partition and the variation of
poses. Two widely used benchmark datasets are used in our
validation: MTFL [36] and 300W [37]. MTFL dataset contains
labeled face images from AFLW [38], LFW [39] and Internet.
This dataset annotates 5 landmarks and labels 5 different left-
right poses with the flags of gender, smile and glasses. Here we
only focus on non-frontal poses to verify our partition method.
There are 2550 non-frontal face images in the original MTFL
dataset, and the number of left ones is not equal to that of
right ones. For fairness, we augment these non-frontal images
by a horizontal flip, so that we get the same numbers of left
and right images. The 300W dataset is mainly made up of
images from LFPW [40], HELEN [41], AFW[42] with 68 re-
annotated landmarks. The 3148 images from training dataset
are chosen in our validation. The flip augment is also used
for obtaining the same number of left and right images. The
left or right poses are estimated by a typical pose estimation
which takes known landmarks as input.

We partition the multi-poses images into two domains
by the first sign-correlation projected dimension. The PCA
partition by the first principle component is also tested as
comparison. The results in Fig.1 and Fig.2 show that each sign-
correlation domain mainly contains left or right pose images.

(a)Sign-Correlation

(b)PCA
Fig. 2. Pose validation on 300W. In each subfigure: First column shows
average faces of two subsets, and first or second row shows samples in subset
1 or 2.

TABLE I
POSE ACCURACY VALIDATION ON MTFL AND 300W

Datasets Left/Right Number PCA Sign-Corr
MTFW 2550 0.7780 0.9275
300W 3148 0.5179 0.9319

The accuracy of pose partition is high, as shown in Table
I. It indicates that our sign-correlation partition method can
construct descent domains highly related to pose variations
only with face appearance features. On the contrary, the PCA
partition only with face appearance features cannot capture the
pose variation well, and the partition result is nearly random.

B. Comparison of face alignment

We evaluate the proposed sign-correlation partition SDM
method on the challenging 300W dataset, and compare it
with state-of-the-art methods ESR [11], SDM [12], ERT [32],
and LBF [33]. As mentioned above, there are 68 labeled
landmarks in this dataset. Its training part contains 3148
images form AFW and training parts of LFPW, and HELEN
dataset. The testing part of the dataset consists of 689 images
from testing parts of LFPW, and HELEN and IBUG. Among
them, the LFPW dataset, although more challenging than
other near-frontal datasets, is mainly made up of small pose
variations, and the result on it nearly reaches limitation. The
HELEN dataset contains faces of different genders, poses, and

TABLE II
COMPARISON WITH CURRENT METHODS ON 300W DATASET

Datasets Full Common Challenging
ESR 7.58 5.28 17.00
SDM 7.52 5.60 15.40
ERT 6.41 5.22 13.03
LBF 6.32 4.95 11.98
Ours 5.88 5.07 10.79
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Fig. 3. CED curves over 300W

expressions. The IBUG testing dataset is the most challenging
one due to extreme poses, expressions and lighting.

We conduct three experiments by testing different parts
of the 300W dataset: common subset (LFPW and HELEN),
challenging dataset (IBUG) and full dataset. Following the
standard [39], the normalized inner-pupil distance landmark
error is used in our evaluation. The inner-pupil errors of
different methods are given in Table II. The cumulative error
distribution (CED) curves are also plotted, as shown in Fig.3.

The results has clearly illustrated that our method outper-
forms most of current methods over the full datasets, while
achieving comparable results on common LFPW and HELEN
datasets. In fact, our method works particularly well on the
challenging IBUG dataset with large variations of poses.

C. Computation Complexity Analysis
Compared with a standard SDM [12], the additional com-

putation load of our proposed approach mainly lies on the
Canonical Correlation Analysis for learning sign-correlation
projection matrix during training and the sign-correlation
projection for descent domain partition during testing. Since
each independent domain has its special descent mapping,
the computational cost of learning multiple descent mappings
at each stage during our training is T times as the cost of
learning a global descent mapping at each stage during SDM
training, assuming there are total T domains in our model.
Note that our model will degrade to SDM when T = 1. During
our testing, only is one descent mapping in its corresponding
domain activated at each stage. In fact, given a test image,
once its domain is decided, the subsequent prediction will run
just like a standard SDM progress. Therefore, despite of extra
costs during our training, the testing cost of our approach
is just slightly higher than that of SDM, because the main
operation for sign-correlation projection is the multiplication
of the projection matrix with a feature vector, which is very
fast.

We compare the time costs of our method and SDM on the
300W dataset. As shown in Tab.III, for a T = 2 model, our

TABLE III
TIME COSTS COMPARISON BETWEEN OUR APPROACH AND SDM ON

300W DATASET(SECOND)

Porgress Train cca Train dm Train total Test
SDM 0.0 1052.044 1052.044 0.0242728
Ours 82.8152 2074.7446 2157.5598 0.0248737

training cost is over 2 times as SDM, while our test cost is at
the same order of magnitude as SDM.

V. CONCLUSION

In this paper we propose a novel sign-correlation partition
method for global SDM algorithm, and achieve promising
results for face alignment on the challenging datasets. We
analyze the underlying relationship between shape/feature
space and pose space by sign-correlation reduced dimensional
projection. Taking advantage of the inherent connection of
shapes with features within a mutual pose-related subspace, the
global descents partition can be operated according to different
hyper octants in the projected sign-correlation subspace. Due
to the high consistence of sign between shapes and features
in this subspace, the proposed approach can partition the
descent domains only depending on features and learned sign-
correlation projection components. Our method extends the
global SDM method into face alignment task, the original
partition scheme of which is not suitable for face alignment.
The experiments on the widely used multi-pose dataset have
demonstrated that our sign-correlation partition method can
divide the global complex space into several pose-related
descent domains only with appearance features rather than
PCA partition in both shape and feature spaces. Our method
also achieves noticeable improvements for face alignment
on challenging datasets, compared with well-known methods.
In our future work we will consider introducing the kernel
method into sign-correlation analysis to further increase the
partition acuracy.
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