Faculty of Science & Technology

Investigating the functionality of the transmembranes in GusB by fusing it with LacY using the Polymerase Chain Reaction.

A dissertation submitted as part of the requirement for Masters by Research

Christine Ciocan

January 2018
This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.
ABSTRACT

“Investigating the functionality of the transmembranes in GusB by fusing it with LacY using the Polymerase Chain Reaction. “

Glucuronides are produced during the detoxification pathway and removed via the uric pathway. The *Escherichia coli* living within the gut acquire these glucuronides for their survival by utilising the glucuronide transporter (GusB). GusB is encoded by the *gusB* gene which is located within the *gus* operon along with two other structural genes. However, the substrate binding sites of GusB are not currently known and therefore this research project was focused on fusing GusB with a different well-studied secondary transporter known as lactose ‘permease’ (LacY). LacY is a protein which facilitates the movement of lactose molecules across a membrane against the concentration gradient. This protein is been thoroughly studied and its substrate binding sites are known as well as which transmembranes they are located in. Hence, LacY’s structure was used for comparison with GusB as they share structural similarity i.e. 12 transmembranes. For this project, the first 6 membranes of LacY was fused with the last 6 transmembranes of GusB by undergoing fusion polymerase chain reaction (PCR). The PCR method required two steps in which fragments were fused together through overlap extension. Initially, the fusion was successful until a primer design error became evident during restriction digest. This resulted in the primers being redesigned and the PCR was repeated. However, obtaining the fusion since the correction proved difficult and required numerous troubleshoots in which various factors such as MgCl₂ concentration, DNA concentration, temperature and extension time was altered. Due to this difficulty, the project did not progress further than PCR but has provided useful information for future troubleshooting and potential determination of the substrate binding sites.
CHAPTER 1: INTRODUCTION

1.1. Biological Transporters 12
 1.1.1. Primary transporters 13
 1.1.2. Secondary transporters 13

1.2. Major Facilitator Superfamily (MFS) 14

1.3. The Lac operon of *E. coli* 16

1.4. The lactose operon repressor in *E. coli* 16

1.5. β-galactosidase *in E. coli* 17

1.6. Lactose ‘permease’ transporter in *E. coli* 17
 1.6.1. Lactose ‘permease’ proton translocation sites 19
 1.6.2. Lactose ‘permease’ substrate binding sites 20

1.7. Thiogalactoside transacetylase *in E. coli* 21
1.8. Xylose- H+ transporter 22
1.9. *Gus* Operon in *E. coli* 23
1.10. β-D-glucuronidase in *E. coli* 23
1.11. Glucuronide transporter in *E. coli* 24
1.12. Synthesis of glucuronides 25
1.13. Glucuronidation 26
1.14. Rationale 26
 1.14.1. Aim 27
 1.14.2. Objectives 28

CHAPTER 2: MATERIALS AND METHODS

2.1. Chemicals, enzymes and commercial kits used 29
2.2. Equipment used 29
2.3. Preparation LB media and agar plates 30
2.4. Isolation of single colonies 31
 2.4.1. Inoculation and growth of bacteria 31
2.5. Plasmid DNA Extraction 31
2.6. PCR Primers 31
 2.6.1. PCR Primer Design 32
 2.6.2. Primer rehydration and dilution 32
2.7. PCR preparation 33
2.7.1. Preparation of Deoxynucleotide Triphosphate (dNTP)

2.8. PCR procedure

2.9. Gel extraction

2.10. Restriction Digest

2.11. Ligation

2.12. Making competent cells

2.12.1. Transformation

2.13. Transformant confirmation

CHAPTER 3: RESULTS

3.1. Open Reading Frame (ORF) analysis

3.2. Primer Design

3.3. Plasmid Extraction

3.4. First round PCR- Amplification of DNA fragments Attempt 1

3.5. DNA purification of successful samples from first round PCR

3.6. Evidence of successful fusions formed using two step PCR

3.7. Restriction Digest 1 of successful Fusion

3.8. Restriction Digest of plasmid

3.9. Restriction Digest repeat of PCR fusions

3.10. Restriction Digest repeat of PCR fusions
3.11. First round PCR- Amplification of DNA fragments (Attempt 2) 49
3.12. DNA purification of successful 1st step PCR samples (Attempt 2) 50
3.13. Evidence of successful fusions formed using two step PCR (Attempt 2) 51
3.14. First round PCR- Amplification of DNA fragments (Attempt 3) 52
3.15. Final second step PCR attempt (Attempt 3) 54

CHAPTER 4: DISCUSSION

4.1. Results 55
4.2. Challenges faced 59

4.2.1. Primer design error 59
4.2.2. Unwanted bands and smearing 59
4.2.3. Taq polymerase 60
4.2.4. Nanodrop 60

4.3. Future research 60

CHAPTER 5: CONCLUSION 63

CHAPTER 6: REFERENCES 64

CHAPTER 7: APPENDIX 76
LIST OF FIGURES

Number of Figure

Figure 1-1. Model of Lactose Permease.

Figure 1-2. Results from cysteine-scanning mutagenesis on Lactose Permease.

Figure 1-3. A model of the Xylose transporter XylE.

Figure 1-4. A model of the glucuronide transporter GusB.

Figure 3-1. Evaluation of first round PCR Products (#1, #2, #3, #4, #5) by agarose gel electrophoresis.

Figure 3-2. Evaluation of protein purification of the first round PCR Products (#2, #3, #4, #5) by agarose gel electrophoresis.

Figure 3-3. Evaluation of the second stage PCR Products by agarose gel electrophoresis.

Figure 3-4. Evaluation of the restriction digest of PCR samples

Figure 3-5. Evaluation of the restriction digest of plasmid pTTQ18.

Figure 3-6. Evaluation of the restriction digest repeat of PCR samples.

Figure 3-7. Evaluation of first round PCR repeat Products by agarose gel electrophoresis.

Figure 3-8. Evaluation of protein purification of the first round PCR Products by agarose gel electrophoresis.

Figure 3-9. Evaluation of the second stage PCR repeat products.

Figure 3-10. Evaluation of first round PCR repeat 3 products by agarose gel electrophoresis.

Figure 3-11. Evaluation of first round PCR repeat 3 gusB fragments by agarose gel electrophoresis.

Figure 3-12. Evaluation of the second stage PCR Products by agarose gel electrophoresis.
LIST OF TABLES

Number of Table

Table 2-1. The constituents for LB media and LB agar Media for 500 millilitres

Table 2-2. The various *E. coli* strains and their descriptions

Table 2-3. Table showing the various primers and amount of T₁₀E₁ added for dilution

Table 2-4. Components of first Step PCR equalling to 50 µl

Table 2-5. Components of second Step PCR

Table 2-6. The PCR settings used for this project- a gradient temperature was used

Table 2-7. Components for restriction double digest of the second step PCR product and Plasmid

Table 2-8. Components required for ligation of DNA fragment (H183D) and plasmid vector pTTQ18

Table 3-1. Forward primer designs for the LacY part of the fusion

Table 3-2. Reverse primer designs for the GusB part of the fusion

Table 3-3. Original forward and reverse (including the linker) primer designs

Table 3-4. Concentration, purity and dilution factors of genomic DNA JM109 and plasmid pMJB33 and pTTQ18

Table 3-5. Corrected forward and reverse (including the linker) primer designs
ACKNOWLEDGEMENTS

I would like express my gratitude to my supervisor, Dr Wei-Jun Liang, for all his teaching, support and guidance throughout this project. I appreciate the knowledge and the skills learnt from him. I would also like to thank my sister, Roxy, for her support and encouragement throughout my masters. Finally, I would like to thank Camilla and other fellow laboratory students for making this year enjoyable and lifting spirits through the difficult parts of the project.
List of Abbreviations

PCR polymerase chain reaction
ABC ATP-binding cassette
SGLT sodium glucose linked cotransporter
CPA cation- proton activator
LacY lactose ‘permease’
MFS major facilitator superfamily
TM transmembrane
CAP catabolite activator protein
cAMP Cyclic adenosine monophosphate
IPTG Isopropyl-thio-β-D-glucuronide
TDG beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside
LacA thiogalactoside transacetylase
XylE xylose H+ symporter
GusA β-D-glucuronidase
GusB glucuronide transporter
X-Gluc 5-bromo-4-chloro-3-indoyl glucuronide
PNPG p-nitrophenyl-β-D-glucuronide
PNP p-nitrophenol
UDP-GLcA Uridine 5’-diphosphate-glucuronic acid
UGT UDP-glucuronosyltransferases
G1P glucose-1-phosphate
UTP uridine triphosphate
UGDH UDP-α-D-glucose 6-dehydrogenas
Chapter 1. INTRODUCTION

A wide range of mammal gastrointestinal tracts, including humans, contains a variety of enterobacteria such as *Escherichia coli* (*E. coli*) (Beaud *et al.* 2005; Martinez-Medina *et al.* 2009). In the gastrointestinal tract, carbon sources such as glucose for metabolism are not readily available; hence, resulting in harsh conditions in which the *E. coli* have to survive (Wallace *et al.* 2010). As a result, *E. coli* have adapted to become scavengers to increase their chances of survival and capabilities to thrive in such difficult conditions (Liang *et al.* 2005). They do this by utilising biological transporters to acquire and metabolise the energy source.

1.1. Biological Transporters

Biological transporters are fundamental components within ion homeostasis as they are responsible for controlling the movement of ions and molecules across cell membranes. Cell membranes are composed of a semi permeable phospholipid bilayer which surrounds the cytoplasm (Cullis and De Kruijff 1979; Kučerka *et al.* 2011). This semi permeable membrane controls the movement of particular ions and molecules in and out of the cell. This movement is achieved by the transporters as they act as ‘gate keepers’ in areas of the membrane and control the movement of certain substances (Dubyak 2004). The transporters regulate homeostasis in two main ways:

1. Through passive diffusion across the membrane via a concentration gradient

2. Via active transport.

Facilitative transporters (also known as uniporters), are responsible for using passive diffusion as a mechanism for transport. In contrast to passive diffusion, active transport requires energy to control cellular movements as it goes against the concentration gradient. There are two forms of active transport; primary and secondary transport which is utilised by a group of transporters; primary and secondary transporters respectively.
1.1.1. Primary transporters

Primary transporters require energy to transport molecules against the concentration gradient. ATPases and ATP-binding cassette (ABC) transporters are examples of primary transporters that utilise ATP hydrolysis as their energy source (Hediger et al. 2004). ATPases are a family of membrane-bound proteins found in eukaryotes and prokaryotes and are responsible for harnessing the energy generated from the hydrolysis of ATP to control movements of substrates across the membrane (Pedersen and Amzel 1993; Finbow and Harrison 1997; Perzov et al. 2001). The ATPase group is comprised of multiple classes of enzymes which vary due to their function. These classes are P-Type, F-Type, V-type and A-type (Hilario and Gogarten 1993; Pedersen 2007). The other well studied primary transporter groups are the ABC transporters.

ABC transporters control the movement of ions across the cytoplasmic membrane against the concentration gradient by hydrolysing ATP to release energy for active transport (Higgins 1992; Linton et al. 1998; Law et al. 2008; Vasiliou et al. 2009). The ABC transporters can transport a variety of substrates and are separated into two categories; exporters and importers. The importers are categorised into a further three types: Type I, Type II and energy coupling factor (ECF) transporters. ABC importers are only present in prokaryotes, whereas ABC exporters are present in both prokaryotes and eukaryotes (Locher 2009; Ter Beek et al. 2014; Locher 2016). Despite primary transporters being well studied, their mechanisms and structure is different to the secondary transporter family, which is the focus for this project.

1.1.2. Secondary transporters

Contrarily, cotransporters (also known as secondary transporters), do not require ATP directly to control movements of molecules. Instead, they utilise the electrochemical gradient generated by active transport as the energy source. In addition to this, they couple with ions, for example H+ ions, to move molecules against their gradients. Additionally, there are two subgroups to divide secondary transporters: antiporters and symporters. Antiporters
transport the molecules in opposite directions and symporters transport molecules or ions alongside an ion in the same direction.

An example of a symporter is the sodium glucose linked cotransporter (SGLT). These transporters are mainly located in the kidneys and intestines (Crane 1965; Wright et al. 2011; Harada and Inagaki 2012), and play a fundamental role in the uptake of glucose from renal excretion and glucose homeostasis. In humans, the normal blood glucose concentration is 5.5 mmol/litre. When these levels start to decline, the SGLT’s continuously uptake glucose until levels reach the norm. Likewise, if the levels were higher than the normal, the SGLT’s would be inhibited to up taking glucose, thus maintaining the homeostasis (Poudel 2013; Poulsen et al. 2015). This cotransporter was first discovered by Crane (1965) when investigating glucose absorption. It was established that the sodium molecules require an electrochemical gradient to move down for the SGLT to uptake the glucose from the kidneys and intestines, and that in fact this electrochemical gradient is maintained by the sodium potassium pump (Lever 1992; Baud et al. 2016).

On the other hand, cation-proton antiporter (CPA) family members such as Na+/H+ antiporters are found prevalently. They play an important role in the regulation pH and ion homeostasis (Padan 2014; Paulino et al. 2014). Initially, their activity was discovered in bacterial cells (West and Mitchell 1974) and has since been identified in other organisms and more widely understood.

One of the most well studied secondary transporters is the lactose ‘permease’, also known as LacY. This transporter is a symporter responsible for transporting a lactose molecule and proton across the membrane. Numerous studies have shown that this protein structure is composed of 12 transmembranes helices (Abramson et al. 2003; Law et al. 2008). LacY shares this structural similarity with other transporters and they have been categorised together to form a family known as the major facilitator superfamily (MFS).

1.2. Major Facilitator Superfamily (MFS)

The major facilitator superfamily (MFS) is one of the largest families composed of various secondary membrane transporters which can be found
ubiquitously (Pao et al. 1998; Yan 2015). Each transporter is involved in a critical physiological process where it carries nutrients such as lipids, amino acids, substrates or ions across membranes by secondary transporter mechanisms (Saier et al. 1999; Yan 2013). Over time, the number of families belonging to the MFS has increased. There are over 70 proteins considered to be part of the MFS; each with a characterised role (Reddy et al. 2012; Quistgaard et al. 2016). In addition to transportation, various MFS members have vital roles in the signal pathway, metabolism, detoxification and excretion (Pao et al. 1998; Dassler et al. 2000; Peng et al. 2011; Augustin 2010; Chen et al. 2016). Furthermore, bioinformatics and biological investigations revealed that MFS proteins tend to have similar structures in terms of being composed of 12 transmembrane helices (TM) that are separated into two bundles comprised of 6 TM’s each. TM 1-6 forms the N-domain and TM 7-12 forms the C-domain of the protein (Law et al. 2008; Reddy et al. 2012; Bazzone et al. 2016). This knowledge has since been used to distinguish the structure of unknown proteins and classifying them.

Many of the MFS proteins genes, especially in prokaryotes can be found in clusters known as operons. They tend to have a promoter and repressor protein which controls the transcription and is influenced by the availability of the carbon source (Crasnier 1996; Beisel and Storz 2011). However, a phenomenon known as catabolite repression has been shown to positively regulate transcription (Wanner et al. 1978; Wong et al. 1997). A catabolite activator protein (CAP) binding site tends to be located before the promoter site. CAP is a protein which assists the RNA polymerase to enhance transcription and is regulated by a molecule known as cyclic adenosine monophosphate (cAMP). This molecule’s concentration is increased when the carbon source levels are low, thus activating CAP and enabling transcription. When carbon source levels are high, cAMP levels are reduced, hence, CAP is inactivated (Crasnier 1996). This repression is utilised as a form of control by E. coli in which it encourages usage of alternative carbon sources and has assisted with their survival in environments where glucose is not readily available (Brückner and Titgemeyer 2002; Kremling et al. 2015). This phenomenon been extensively studied in the lac operon located in E. coli.
1.3. The Lac operon of *E. coli*

The *lac* operon has been extensively studied and is one of the most understood operon systems and it demonstrates the typical operon structure. The *lac* operon is polycistronic as it is controlled by one promoter. In addition to this, there is an operator with 3 operator sites, the *lacI* gene which encodes for a repressor protein and 3 structural genes; *lacZ*, *lacY* and *lacA* (Jacob and Monod 1961; Oehler *et al.* 1990). For this operon to transcribe, the omnipresence of galactosides such as lactose are required within the environment. This is due to the crucial function the lactose fulfils in binding to the repressor protein. This prevents the repressor protein from binding to the operator which would otherwise inhibit gene expression (Garner and Revzin 1981; Oehler *et al.* 1990; Lewis 2013). A potential consequence of lactose scarcity in the environment would be the repression of the operator by the repressor protein *lacI*. This repression results in an operon that would not be expressed, hence, transcription would be inhibited (Gilbert and Müller-Hill 1967). This results in a negatively regulated lac operon as it is not consistently expressed.

1.4. The lactose operon repressor in *E. coli*

The *lacI* repressor was first isolated when experiments involving radioactive isopropyl-thio-galactoside (IPTG) were conducted to test the role of this protein. Gilbert and Müller-Hill’s (1966; 1967) findings demonstrated that in lactose depleted environments, transcription was inhibited due to the binding occurring between the protein and the operator. However, when IPTG (an allolactose imitator) was added to the reaction, the DNA was released, and transcription occurred due to the affinity for the operator being reduced and the repressor being induced (Hansen *et al.* 1998; Law *et al.* 2002; Fernández-Castané *et al.* 2012). This was detected and isolated using equilibrium dialysis. This transcription factor has since been extensively researched and has been used as a model for protein-DNA interactions (Stetz *et al.* 2016) and in the analysis of mutagenic specificity (Coulondre *et al.* 1978; Schaaper *et al.* 1986; You *et al.* 1999). Following the *lacI* gene is the gene for the first structural gene in this operon, *lacZ*.
1.5. β-galactosidase in E. coli

The lacZ gene encodes for β-galactosidase which is responsible for cleaving lactose and allolactose to monosaccharides (Broome et al. 2010). Furthermore, this enzyme can catalyse the transgalactosylation of lactose to allolactose which is the product that can repress the lacZ gene and in turn regulate the production of β-galactosidase (Huber et al. 1976; Juers et al. 2012). In addition to this, β-galactosidase has been commonly used as a reporter gene or as a marker in plasmid recombination. This is due to a scientific phenomenon known as α-complementation (Ullmann et al. 1967; Langley et al. 1975). β-galactosidase is a tetramer composed of four identical monomers which are comprised of two segments; lacZ-alpha and lacZ-omega. After their investigations, it was established that neither lacZ-alpha nor lacZ-omega would function unless both parts were present. This was first demonstrated when an inactive mutant β-galactosidase with a deleted sequence was able to function (Ullman 1992). This was due to the α-monomer fragments of the protein having the exact sequence but complete, thus overriding the deleted fragment and restoring the function of the mutant. The following structural gene in the operon is the lacY gene which has been extensively studied.

1.6. Lactose ‘permease’ transporter in E. coli

One of the members of the MFS which has been extensively studied is E. coli lactose ‘permease’ (LacY). LacY is encoded by the lacY gene and downstream of the lacZ gene. It is responsible for the uptake of galactosides such as lactose via active transport and transporting it across the membrane. LacY engages in active transport as a symporter; moving a lactose molecule and proton in the same direction across the membrane into the cell against the concentration gradient by utilising the energy created during downhill H⁺ translocation (Foster et al. 1983; Venkatesan and Kaback 1998; Kaback 2015). LacY is 417 amino acids long and its structure has been showed to comprise of 12 transmembrane helices with an amino and carboxyl terminal which are both located in the cytoplasmic side of the membrane (see figure 1-1).
In 2003, Abramson et al. investigated the crystal structure of this protein by focusing on a mutant of LacY known as C154G. X-ray crystallography at an approximate resolution of 3.6 Å were used to obtain the crystallisation of the mutant’s conformation. The X-rays crystallography revealed that in fact C154G has 12 transmembrane helices which are separated into two 6 helix bundles sharing pseudo symmetry. The first 6 transmembrane bundle forms the N domain and the last 6 forms the C domain. The 2 domains are linked by a salt bridge. In between these two bundles is a hydrophilic cavity facing the cytoplasmic side whilst the remained periplasmic side is tightly closed. Bound to this cavity is a lactose homolog known as beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside (TDG). This led to the understanding of the inward-facing conformation of this mutant as it was restricted to this specific conformation. It also became apparent that for conformational change to occur, a substrate such as galactoside has to bind to the binding site in the cavity to encourage the opening on the periplasmic side. Similar findings were found when the structure of a wild-type lactose permease from E. coli underwent an X-ray crystallography with a resolution of 3.6 ångströms (Å) (Guan et al. 2007). This mechanism has since become known as the alternating-access model (Smirnova et al. 2011; Kumar et al. 2013). Despite experiments such as site directed alkylation, cysteine residue replacements, and the alternating-access model suggesting an outward-facing conformation, there has been little success with obtaining the crystallisation of this conformation using X-ray. Nonetheless, these revelations have provided other important information regarding the residues required for proton translocation and potential sugar binding sites.
1.6.1. Lactose ‘permease’ proton translocation sites

During the alternating-access mechanism, β-galactoside is coupled with a H⁺ ion and is symported during the conformation change from inward facing to outward facing. The proton translocation binding sites have been widely studied. One of the experiments used to locate the possible residues was cysteine-scanning mutagenesis (Frillingos et al. 1998). During this procedure, all of the amino acids were changed to cysteine, each mutant was then expressed and functionality was tested. Only 18 mutants were unable to catalyse lactose, however based on their properties, only 6 mutants were found to be completely ‘irreplaceable’. They are predominantly found in the C-domain, specifically E126, R144, E269, R302, H322 and E325 (see figure 1-2). As this mechanism was being understood, previously suggested proton translocation residues were confirmed to be correct (Abramson et al. 2003; Guan and Kaback 2006). Further studies revealed that the deprotonation of E325 may be responsible with the inward to outward facing conformational change. Andersson et al. (2012) used molecular dynamics to compare the effect of protonated and deprotonated E325 residues on the confirmation of

Figure 1-1. Model of Lactose ‘permease’. Model illustrating the N- and C- domain which are coloured blue and red respectively. Green and orange coloured residues are the substrate binding and proton translocation sites respectively. The TDG is symbolised by the two black circles (Abramson et al. 2003).
LacY in a sugar substrate absent environment. Results demonstrated changes to the salt bridges formed between various residues as well as possible structural change. In addition to this, it became apparent that E269 may be involved with proton translocation and substrate binding.

1.6.2. Lactose ‘permease’ substrate binding sites

Numerous studies suggest that the majority of substrate binding residues are located within the N-domain. Some of these residues include E126, R144, W151 and E269 (Guan et al. 2007). Initially, the protein is in outward-facing conformation and the proton is attracted to the negatively charged amino acid, E269. This triggers the substrate to bind to a residue in the N-domain before a salt bridge is formed between R144 and E269. This salt bridge formation is then believed to cause the conformation change to inward-facing.
and releasing the substrate and H^+ (Abramson et al. 2003; Mirza et al. 2006; Smirnova et al. 2009). Therefore, E269 may be responsible for both the binding site and proton translocation.

By understanding the crystallisation of LacY as well as the proton translocation and substrate binding sites, scientists started investigating the binding loop and salt bridges between the N-domain and C-domain 6 TM bundles. Experiments focused on changing residues within the loop/ salt bridge participants to alter the overall charge revealed that in fact, either monomer (6 TM bundle) is still expressed and functions (Sahin-Toth et al. 1992; Guan et al. 2001; Abramson et al. 2003). This knowledge has modified the current understanding on MFS proteins as they theoretically share similar structures. However, this has proved difficult to test with other transporters as they are not as widely understood as LacY. Conversely, the lacA gene which is downstream of lacY is not fully understood.

1.7. Thiogalactoside transacetylase in E. coli

LacA is the final structural gene located within the lac operon, after the lacY gene. It encodes for an enzyme known as thiogalactoside transacetylase, also known as Galactoside acetyltransferase or LacA. It is approximately 202 amino acids in length and thought to be a trimer (Fowler et al. 1985; Lewendon et al. 1995). LacA is believed to be involved in the cellular detoxification process but scientists have yet to completely confirm this (Kenneth and Lin 1976; Roderick 2005 p. 568). LacA catalyses the transfer of an acetyl group from acetyl-CoA to the 6-hydroxyl position on a range of substrates such as glucosides and galactosides (Zabin et al. 1959; Wang et al. 2002). Despite the function of LacA not being completely understood, the lac operon is a widely understood system as similar theories have been applied to other transporters in the MFS.
1.8. Xylose- H+ transporter

LacY is not the only MFS protein to have its inward facing form crystallised, another secondary transporter also located in *E. coli* has had its structure crystallised. The xylose- H+ symporter, also known as XylE has been widely studied. This transporter is coded by the *xylE* gene which is located in an operon, downstream of *xylA* and *xylB* which encodes for xylose isomerase and xylulokinase respectively (Song and Park 1997). Like other members of the MFS including LacY, this protein is comprised of 12 transmembrane helices with a N- and C- domain based on the cytoplasmic side as shown in figure 1-3. (Davis and Henderson 1987; Henderson and Baldwin 2012). Unlike LacY, this protein has been crystallised in inward-facing conformation as well as outward-facing conformation at 2.6 – 2.9 Å resolution (Yan 2013; Henderson and Baldwin 2013). Furthermore, the proton translocation sites are located within the first 6 transmembranes and the substrate binding sites are within the last 6 transmembranes, yet XylE still utilises the alternating-access mechanism (Sun *et al.* 2012; Henderson and Baldwin 2013). Since this discovery, it has resulted in further investigation into MFS members’ transmembrane function as it demonstrates that despite sharing some structural similarities, the functions of each transmembrane can vary.

![Figure 1-3. A model of the Xylose transporter XylE. A model illustrating the 12 transmembranes of XylE (Davis and Henderson 1987).](image-url)
1.9. **Gus Operon in *E. coli***

The *lac* and *xylose* operon are not the only operons found in *E. coli* which requires suitable environmental conditions to operate. The *gus* operon requires the presence of glucuronides in order to function. In similar fashion to the *lac* operon, the *gus* operon is controlled by a repressor, *gusR*, which is located upstream of 3 structural genes; *gusA*, *gusB* and *gusC* (Wilson *et al.* 1992). The first structural gene, *gusA* encodes for β-D-glucuronidase which is responsible for hydrolysing glucuronides into aglycones and glucuronic acid. Downstream of this gene is *gusB* which codes for the glucuronide transporter (GusB) which transports the glucuronides. The final gene in this operon, *gusC*, encodes for an outer membrane associated protein which increases the activity of GusB (Liang *et al.* 2005). β-D-glucuronidase is currently the most extensively researched structural gene from the *gus* operon and has a variety of uses.

1.10. **β-D-glucuronidase in *E. coli***

β-D-glucuronidase, also known as GusA, is a hydrolase known to be found in prokaryotes and eukaryotes. In *E. coli*, this protein is responsible for the cleaving of glucuronides produced during glucuronidation into aglycones and glucuronic acid. Gus A is composed of 603 amino acids and its transcription is regulated by repressors; *uidR* (*gusR*) and *uxuR*. These repressors were confirmed when investigations by Novel and Novel (1976) revealed inhibition to the transcription of GusA when bound to the operon (Blanco *et al.* 1985). This also revealed the negative regulation of GusA as the repressors would only bind to the operon when there is a lack of glucuronide, similar to the mechanism of *lacI*.

E. coli, found in the gastrointestinal tract, utilise GusA in order to survive. As soon as an assortment of glucuronides is readily available in the environment, GusA hydrolyses the glucuronides into the aglycones and glucuronic acid components. When compounds are conjugated with glucuronic acid to form glucuronides during glucuronidation, their water solubility is increased and their ability to be absorbed into the bloodstream is reduced (Lee 1995; Prijovich *et al.* 2002; Kaushik *et al.* 2006). However, as GusA hydrolyses the
glucuronides, it separates the glucuronide into the two components. The glucuronic acid is metabolised by the bacteria whereas the aglycone moiety undergoes a phenomenon known as enterohepatic circulation (Wilson et al. 1992; Roberts et al. 2002; Gloux et al. 2011). This process involves the recycling of moieties entering the gastrointestinal tract. As the glucuronides are hydrolysed in the intestines, some of the aglycones moieties formed are absorbed by enterocytes located in the intestinal wall and released into the bloodstream. These moieties are then transported to the liver where they are reabsorbed by hepatocytes to undergo glucuronidation again. On the other hand, the remaining aglycones located in the intestines that were not absorbed continue to pass through the system to be excreted via urine or faeces.

GusA has been widely used as a reporter gene in plants (Jefferson et al. 1986). Similar to the theory behind blue/white staining, GusA is used in transgenic plants which contain substrates known to be cleaved by this enzyme. One such substrate that has been used frequently is chromogenic 5-bromo-4-chloro-3-indoyl glucuronide (X-Gluc) (Jefferson et al. 1987; Platteeuw et al. 1994; Wilson et al. 1995; Yamaguchi et al. 2001; Chen et al. 2007; Liu et al. 2013). Scientists have been able to identify the expressed regions as they would appear blue in colour if this enzyme is present. The application of this knowledge has led to the detection of various gene expressions and is still a commonly used method.

1.11. Glucuronide transporter in E. coli

Unlike the LacY transporter which has been extensively studied, the glucuronide transporter (GusB), found in E. coli, is not as understood. GusB is a key transporter involved in the survival of E. coli in the human intestinal tract. In 2005, Liang et al. determined the biological function and characteristics of this transporter as well as parts of its structure. It is predicted to have 12 transmembranes α-helices as well as an N- and C-terminal in the cytoplasmic side, similar to other MFS members. This protein is thought to be 457 amino acids long and is known to act as a symporter by coupling up with H+ ions to transport glucuronides across the membrane.
(Liang 1992; Liang et al. 2005). It does this by creating an electrochemical gradient and uses the proton motive force to drive the molecule into the cell.

As a transporter, GusB recognises a wide range of glucuronides formed during detoxification, despite structural differences in the aglycone part of the molecule. However, the function of the transmembrane helices for this protein is unknown and therefore the substrate binding sites locations are unknown. Investigations are being carried out in attempt to locate these sites by using knowledge from other transporters such as LacY and XylE. Moreover, studies are being carried out in attempt to reveal the 3-dimensional structure of GusB.

Figure 1-4. A model of the glucuronide transporter GusB. A model illustrating the 12 transmembranes of GusB and its amino acid residues (Liang 1992)

1.12. Synthesis of glucuronides

Glucuronides are carbohydrate compounds formed during a detoxification pathway known as glucuronidation. The glucuronide is composed of two parts; glycone and aglycone. Before glucuronides are formed, uridine 5'-diphosphate-glucuronic acid (UDP-GlcA) needs to be omnipresent as it forms the glycone component. UDP-GlcA is an active sugar substrate primarily found in hepatic tissue and is synthesized in a two-step reaction via the uronic
acid. During its synthesis, glucose-6-phosphate undergoes isomerisation to form glucose-1-phosphate (G1P). This reaction is catalysed by phosphoglucomutase which transfers the phosphate group from the 6 to 1 position. G6P then reacts with uridine triphosphate (UTP) to form uridine diphosphate glucose (UDPGlc). This is catalysed by the enzyme uridine diphosphate glucose pyrophosphorylase (Turnquist et al. 1974). UDPGlc is then oxidised by UGDH (UDP-α-D-glucose 6-dehydrogenase) to yield UDP-GlcA (Bar-Peled et al. 2004). This compound is then used in biosynthesizing of glucuronides in the process known as glucuronidation.

1.13. Glucuronidation

Glucuronidation is phase II of the detoxification pathway that occurs in mammals, predominantly in the liver. During this pathway, enzymes known as UDP-glucuronyltransferase (UGT) catalyse the conjugation of UDP-GlcA with endogenous/xenobiotics such as paracetamol, or endogenous compounds such as bilirubin to form the glucuronide (Burchell and Coughtrie 1989; Margaillan et al. 2015). UDP- GlcA does this by acting as a glucuronosyl donor towards a wide range of aglycones with various nucleophilic functional groups (Dutton 1956). Before glucuronidation, the aglycones tend to have higher polarity and are more active as they can penetrate cell membranes. Glucuronidation detoxifies these aglycones by altering their biological structure to form a negatively charged glucuronide. Due to the negative charge, the glucuronide cannot penetrate cell membranes and relies on transporters to transport them across the membrane (Yang et al. 2017). In addition to this, the glucuronide tends to have a lower half-life than the parent compounds. Moreover, this results in the reduction of the toxicity of these compounds and increases their water solubility due to the increase in hydrophilic properties, thus allow easier excretion via bile or urine (Jessen et al. 2003; Yang et al. 2017).

1.14. Rationale

Determining the possible transmembranes responsible for symporting the glucuronides in GusB could have a major effect in the medicine industry. By using other transporters (such as LacY and XylE) which share similar
structures with GusB and applying their findings, this could assist in narrowing down its molecular recognition sites. Once the GusB specific recognition of glucuronides is better understood, this protein transporter could have various uses.

Firstly, this research could impact the current level of knowledge surrounding major facilitator superfamily members. By fusing different parts of transporters (some already known structurally i.e LacY and others not i.e GusB) together which share similar homology, this could provide information regarding their recognition sites, crystal structures and function. Furthermore, the theory and results from this project could be applied to other MFS members to try and understand them more in depth.

Moreover, the research could contribute to the biosensor industry. By having the ability to specify GusB in order to narrow the range of glucuronides recognised, it can be engineering to detect ‘drug cheats’. Each drug produces a different type of glucuronide and the glucuronide transporter could be designed to recognise the glucuronides produced by the specific drugs that are being investigated.

By genetically engineering GusB in order to recognise certain glucuronides, this could be used in future disease or disorder detection. Certain glucuronide levels could be monitored based on the amount of transportation carried out by these biosensors. For example, kernicterus is a neurological damage caused to the brain when bilirubin is not detoxified and mostly affects newborns (Shapiro et al. 2006; Ahlfors 2010). Therefore by designing the biosensor to recognise bilirubin mono and di-glucuronides which are formed when bilirubin is conjugated with glucuronic acid during detoxification, the levels of this product could be measured and therefore indicate whether levels produced are in the expected range or not.

1.14.1. Aim

The aim of this research is determine the functionality of the transmembranes in the glucuronide transporter, GusB by fusing it with lactose ‘permease’ (LacY), a well-known protein and locating GusB’s possible substrate binding sites.
1.14.2. Objectives

The overall objectives for this research are:

- To design primers for the fusion between *gusB* and *lacY*
- To extract and purify plasmid DNA containing active *gusB* gene and genomic DNA containing the *lacY* gene
- To successfully form a fusion of *gusB* and *lacY* and amplify it through PCR
- To clone the transformants
- To assess the functionality of the transformants using chromogenic glucuronides/ lactose
Chapter 2. MATERIALS AND METHODS

2.1. Chemicals, enzymes and commercial kits used

Due to both genomic and plasmid DNA being used in this project, various kits were used to extract them. The DNeasy Blood and tissue kit (catalogue number 69504) was used to extract genomic DNA from JM109 whereas the QIAprep- Spin Miniprep Kit (catalogue number 27104) was used for plasmid pMJB33 and pTTQ18 extraction. Other kits used once PCR was completed were the QIAquick PCR Purification Kit (catalogue number 28104) in order to ‘clean’ the PCR products and QIAquick DNA Gel Extraction Kit (catalogue number 28704).

The enzymes required were: Taq Polymerase (catalogue number M780A) from Promega Ltd, DpnI (R0176S), restriction endonucleases EcoRI (catalogue number R0101S) and HindIII (catalogue number R0104S), T4 DNA ligase (catalogue number M0202S) from New England Biolabs.

Due to the nature of the project, a variety of chemicals were required in order to conduct the research; they were as follows: 1kb ladder, GoTaq® G2 Flexi DNA Polymerase (catalogue number M7801) which contained 5x Flexi Buffer, Green Flexi Colourless Buffer and Magnesium Chloride solution from Promega Ltd; ampicillin 100 mg/ml (catalogue number A5354), 5-bromo-4-chloro-3-indoyl glucuronide (catalogue number B5285), p-nitrophenyl-β-D-glucuronide (catalogue number N1627) and isopropyl-thio-β-D-glucuronide (catalogue number 42897) from Sigma-Aldrich; Ethanol absolute (catalogue number E/0650/17), agarose powder (catalogue number BP1356-500), tryptone (catalogue number BP1421-500), yeast extract (catalogue number BP1422-500) and agar powder (catalogue number BP1423-500) which were from Fisher Scientific; SYBR® safe gel stain (catalogue number S33102) from Invitrogen and NEBuffer 2 (catalogue number B7002S) from New England Biolabs.

2.2. Equipment used

The main equipment needed was as follows: Nanodrop 2000 Spectrophotometer, Peqstar thermocycler for PCR, Bio-Rad power pack for

2.3. Preparation LB media and agar plates

In order to grow the plasmid DNA (pMJB33 and pTTQ18) and genomic DNA (JM109), nutrient rich media’s were prepared according to the laboratory manual (Maniatis et al. 1982). As not many plates were required, the constituents for making 1 litre of media and agar was halved to make 500ml of each. Table 2-1 summarises the components for Luria-Bertani (LB) media and LB agar media in 500 millilitre.

Table 2-1. The constituents for LB media and LB agar Media for 500 millilitres (Maniatis et al. 1982)

<table>
<thead>
<tr>
<th>LB Media Components</th>
<th>Weight</th>
<th>LB agar Media Components</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacto-Yeast Extract</td>
<td>2.5g</td>
<td>Bacto- Yeast Extract</td>
<td>2.5g</td>
</tr>
<tr>
<td>Bacto- tryptone</td>
<td>5g</td>
<td>Bacto- tryptone</td>
<td>5g</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>5g</td>
<td>Sodium Chloride</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agar</td>
<td>7.5g</td>
</tr>
</tbody>
</table>

Both the LB Media and agar media were mixed in glass bottles. Half of the bottles were filled with distilled water and all the ingredients were added and placed on a hot plate for a few minutes using a magnetic stirrer to mix them together and remove the lumps of powder. The bottles were then filled to the 500 millilitre mark with distilled water and autoclaved.

Once the bottles had cooled down, around 25 ml of LB agar media containing no ampicillin was poured in 4 plates and set aside to cool. For the remaining 400ml of media, 400 microlitres (µl) of ampicillin was added to the agar media and mixed by inverting the bottle. As above, 25 ml of agar was then poured into the remaining plates and they were left to set before incubating them at 37 °C to dry them off for a few hours.
2.4. Isolation of single colonies

The dry agar plates were streaked using a loop. The loop was sterilised and then placed into the ‘deep’ strain (the ‘deep’ is from the frozen stock of the \textit{E. coli} strains) containing plasmids MC1061 (pMJB33) and MC1061 (pTTQ18) and the genomic DNA JM109, see Table 2-2. Once placed in the deep, the loop was then streaked on the agar plates and were then left overnight in the incubator at 37 °C. Once the bacteria colonies had grown, single colonies from each plate were used for inoculation.

<table>
<thead>
<tr>
<th>\textbf{E. coli Strains}</th>
<th>\textbf{Description}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1061 (pMJB33)</td>
<td>\textit{E. coli} expression vector which is ampicillin resistant and has an IPTG-inducible tac promoter</td>
</tr>
<tr>
<td>MC1061 (pTTQ18)</td>
<td>K-12 F– λ− Δ(ara-leu)7697 [araD139]Blr Δ(codB-lac)3 galK16 galE15 e14− mcrA0 relA1 rpsL150(StrR) spoT1 mcrB1 hsdR2(r–m+)</td>
</tr>
<tr>
<td>JM109</td>
<td>F– traD36 proA+B+ lacH Δ(lacZ)M15/ Δ(lac-proAB) glnV44 e14: gyrA96 recA1 relA1 endA1 thi hsdR17</td>
</tr>
</tbody>
</table>

2.4.1. Inoculation and growth of bacteria.

For the inoculation, 10 ml of LB media along with 10 µl of ampicillin was pipetted into a sterilised flask. Using the loop, a single colony from the plates was collected and placed into media, waiting a few seconds to allow the transfer. Once the colony was transferred, the flask was placed into an orbital shaking incubator overnight @ 37°C to allow the bacteria to grow.

2.5. Plasmid DNA Extraction

The bacteria strains from the flasks which contained the pMJB33 and pTTQ18 plasmids respectively underwent mini prep in order to extract the...
plasmids using the QIAprep Spin Miniprep Kit. In addition to this, the genomic DNA from the JM109 strains had to be extracted using the DNeasy Blood and tissue kit.

2.6. PCR Primers

2.6.1. PCR Primer Design

For this project, primers had to be designed in order to fuse the first 6 transmembranes helices of LacY with the last 6 transmembrane helices of GusB. In order to increase the success of this fusion, multiple primers were designed to improve the yield. The primer design followed a set of criteria (Reed et al. 2012 p.468) as well as being designed in the 5’-3’ direction:

- **Length**: 18-33 nucleotides base-long primers to increase the likelihood of the complementary strands to bind during amplification.

- **Base composition**: the GC content had to be <50% due to GC bonds higher annealing temperate compared to AT. Polypurine and polypyrimididine tracts were avoided when designing the primers.

- **Melting temperature**: the temperature at which both the forward and reverse primers can anneal with the template was calculated to not differ by 3 degrees in order to secure successful PCR reactions.

2.6.2. Primer rehydration and dilution

Upon delivery of the primers, they were lyophilised form and therefore needed rehydrating with \(\text{T}_{10}\text{E}_{1} \) (10 mM Tris-HCl pH8.0 and 1 mM EDTA.Na\(_2\), pH8.0), see table 2-3 for the respective volumes added to each primer. However, after rehydration of the primers, the final concentrations (100 µM) were too high for PCR and therefore required further diluting to 10 µM. This was done by a 1 in 9 dilution; for every 1 µl of primer, 9 µl water was mixed.
2.7. PCR preparation

Before carrying out the PCR reactions, the various components concentration had to be diluted to result in the correct concentration required for the PCR.

2.7.1. Preparation of Deoxynucleotide Triphosphate (dNTP)

One of the components for the PCR reaction is 1 mM of dNTP. This was made by diluting 10 µl of 10 mM dNTP with 90 µl of distilled water.

2.8. PCR procedure

For this project a two-step PCR was carried out; the first step PCR involved amplification of DNA composed of one flanking primer and one fusion primer with an overlapping region to create a fragment. During this process two fragments were produced to use in second step PCR. Second step PCR then fused the two separate fragments from 1st step PCR together in order to create a fusion between the first 6 transmembers of lacY and the last 6 transmembranes of gusB. Tables 2-4 and 2-5 shows the reagents required for first step and second step PCR respectively with the overall volume being 50 µl.

<table>
<thead>
<tr>
<th>Oligonucleotide Name</th>
<th>Vol added (100pmol/µl)</th>
<th>Final Concentration (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LacYF1</td>
<td>320</td>
<td>100</td>
</tr>
<tr>
<td>LacYF2</td>
<td>299</td>
<td>100</td>
</tr>
<tr>
<td>LacFY3</td>
<td>284</td>
<td>100</td>
</tr>
<tr>
<td>gusBR1</td>
<td>318</td>
<td>100</td>
</tr>
<tr>
<td>gusBR2</td>
<td>399</td>
<td>100</td>
</tr>
<tr>
<td>lacYgusBF1Y</td>
<td>216</td>
<td>100</td>
</tr>
<tr>
<td>LacYgusBF3Y</td>
<td>246</td>
<td>100</td>
</tr>
<tr>
<td>lacYgusBR1Y</td>
<td>229</td>
<td>100</td>
</tr>
<tr>
<td>lacYgusBR3Y</td>
<td>288</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2-3. Table showing the various primers and amount of T10E1 added for dilution
Table 2-4. Components of first Step PCR equalling to 50 µl

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled H20</td>
<td>33.5</td>
<td>-</td>
</tr>
<tr>
<td>5x Flexi Buffer</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>1mM dNTP</td>
<td>1</td>
<td>20µM</td>
</tr>
<tr>
<td>25mM MgCl2</td>
<td>2</td>
<td>1000 µM</td>
</tr>
<tr>
<td>*10µM Forward Flanking Primer</td>
<td>1</td>
<td>0.2 µM</td>
</tr>
<tr>
<td>*10 µM Reverse Mutagenic Primer</td>
<td>1</td>
<td>0.2 µM</td>
</tr>
<tr>
<td>DNA Template</td>
<td>1</td>
<td>42.7ng</td>
</tr>
<tr>
<td>Taq polymerase</td>
<td>0.5</td>
<td>5u/µl</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>

*PCR reactions were also set up using the Forward fusion primers and Reverse flanking primers

Before undergoing second step PCR, the PCR products from the first step PCR were loaded on a 1.5% agarose gel and underwent electrophoresis at 70 V for 40 minutes. The gel was then assessed using the ChemiDoc MP Imaging system in order to show the separate DNA bands based on their molecular weight. All of the successful fragments were then purified using the Qaigen PCR Purification kit. After purification, every sample was treated with Dpn1 by doing the following reaction; 5.5 µl cutsmart buffer and 1 µl of Dpn1 was added to the PCR product tube before being incubated at 80 °C for 20 minutes.

Once all the successful samples were treated with Dpn1, the successful fragments were paired up with its respective pair and undergone second step PCR in order to obtain a fusion. The products were then analysed via an electrophoresis gel and molecular sizes were checked by comparing them to the 1 Kb ladder.
Table 2-5. Components of second Step PCR

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled H₂O</td>
<td>32.5</td>
<td>-</td>
</tr>
<tr>
<td>5x Flexi Buffer</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>1 mM dNTP</td>
<td>1</td>
<td>20µM</td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>2</td>
<td>1000 µM</td>
</tr>
<tr>
<td>10 µM Forward Flanking Primer</td>
<td>1</td>
<td>0.2 µM</td>
</tr>
<tr>
<td>10 µM Reverse Flanking Primer</td>
<td>1</td>
<td>0.2µM</td>
</tr>
<tr>
<td>*DNA Template</td>
<td>2</td>
<td>30-50ng</td>
</tr>
<tr>
<td>Taq polymerase</td>
<td>0.5</td>
<td>5u/µl</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>

*1 µL of DNA template from each corresponding fragment in the relevant pair

After second stage PCR, the products underwent agarose gel electrophoresis in order to check the success of the fusion. The gel was run at 70 V for 40 minutes.

During PCR, the repeating cycles include denaturation, annealing and polymerization of the DNA. Table 2-6 shows the settings chosen.

Table 2-6. The PCR settings used for this project- a gradient temperature was used

<table>
<thead>
<tr>
<th>Steps</th>
<th>Temperature (°C)</th>
<th>Time (minutes)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
<td>5</td>
<td>Denaturation</td>
</tr>
<tr>
<td>*2</td>
<td>94</td>
<td>1</td>
<td>Denaturation</td>
</tr>
<tr>
<td>*3</td>
<td>63.5 ± 1.5</td>
<td>0.5</td>
<td>Annealing</td>
</tr>
<tr>
<td>*4</td>
<td>72</td>
<td>2</td>
<td>Polymerization</td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>4</td>
<td>Completion of the extension</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>60</td>
<td>Storage</td>
</tr>
</tbody>
</table>

Stages 2-4 is the cycle which was repeated 30 times.
2.9. Gel extraction

After running fusion PCR, the samples were loaded onto a gel and ran at 70 V for 1 hour in order to separate the bands as much as possible. The fusion bands were then excised from the agarose gel using sharp scalpels. The gel slices were then weighed in microcentrifuge tubes (refer to the appendix- lab book for results) and the QIAquick Gel Extraction Kit protocol was followed to isolate the DNA fragments, remove the agarose and purify the DNA. This resulted in 50 µl of samples.

2.10. Restriction Digest

In order to successfully ligate the PCR products, the DNA has to be cleaved with restriction enzymes EcoRI and HindIII to create sticky ends. In addition to this, the pTTQ18 vector had to be cleaved using the same restriction enzymes to prepare for insertion of the PCR product during ligation. The overall digestion time lasted 4 hours with both EcoRI and HindIII restriction enzymes being added at the start of the reaction and the reaction was incubated at 37 °C throughout.

Table 2-7. Components for restriction double digest of the second step PCR product and Plasmid

<table>
<thead>
<tr>
<th>Components</th>
<th>H183D (µl)</th>
<th>pTTQ18 (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled H20</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>10 X Buffer 2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>BSA 10mg/ml</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Plasmid pTTQ18</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>DNA fragments</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>EcoRI µ/ml</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HindIII µ/ml</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2.11. Ligation

Due to the digested pTTQ18 vector having phosphorylated areas, it had to be treated with Shrimp Alkaline Phosphatase (SAP) in order to remove them. This was done before ligation. The whole vector plasmid sample was treated
with 1 µl SAP and 5 µl cut smart buffer and was incubated 37 degrees for 30 minutes.

For ligation, the total volume was no more than 20 µl for each reaction (see Table 2-8 for the components). The reaction mixtures were kept overnight at 16°C before being used for transformation.

Table 2-8. Components required for ligation of DNA fragment (H183D) and plasmid vector pTTQ18

<table>
<thead>
<tr>
<th>Components</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector (30-50ng/µl)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Insert (30-50ng/µl)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10x Ligase Buffer</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T4 Ligase</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>H₂O</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

2.12. Making competent cells

To make competent cells, Bacterial strain MC1061 was grown in no ampicillin LB media overnight at 37 °C in an orbital shaker (250rpm). 250 µl of the overnight MC1061 culture was then inoculated into fresh no ampicillin LB media and grown for 2 hours at 37 °C with vigorous shaking (250rpm) to assist the bacteria to reach log phase (Light absorbance at A600 = 0.2-0.3). Immediately after reaching log phase, 1 ml of cells were harvested by centrifugation at 8000rpm and 4 °C for 2 minutes. The supernatant was discarded and the cells were resuspended in 0.5 ml of ice-cold sterile calcium solution (50 mM CaCl₂, 10 mM Tris-HCl, pH 8.0). The suspension was placed in an ice bath for 15 minutes before being centrifuged again at 10,000 rpm for 1 minute at room temperature. The supernatant was discarded and the cells were resuspended in 66 µl ice-cold calcium solution.

2.12.1. Transformation

During the transformation, 10 µl of the ligated samples (L1, L2, L3, C1 and C2) were pipetted into 200 µl of the previously made competent cells and
were left to incubate for 30 minutes on ice. These samples were then heat shocked at 42 °C for 2 minutes in a water bath before being immediately placed in a slushy ice bath to chill for 2 minutes. 330 µl of LB media containing no ampicillin was pipetted into each sample before incubating the cells at 37 °C with vigorous shaking of 250 rpm for 60 minutes. After incubation, 200 µl of the incubated cells were plated onto ‘pre dried’ Lb agar plates containing ampicillin and spread with glass beads to ensure the cells dispersion. The plates containing the cells were then incubated overnight at 37 °C before being examined the following day and photographed.

2.13. Transformant confirmation

Potential transformant colonies from the agar plates were inoculated overnight in LB media containing ampicillin. 1ml of cells was then harvested and extracted using the QIAprep Spin Miniprep Kit. Some of the extracted plasmid DNA underwent restriction digest using EcoRI or HindIII (refer to Section 2.9) in order to form a comparison between cut and uncut DNA on an agarose gel. If the plasmid was successfully cut, a linearized band of approximately 6 kb would be visible on the gel.
Chapter 3. RESULTS

3.1. Open Reading Frame (ORF) analysis

In order to design the primers, ORF’s for lacY and gusB had to be obtained. This was done by using online softwares and tools such as ExPASy translate tool (http://web.expasy.org/translate/) or NCBI (https://www.ncbi.nlm.nih.gov/). Another important feature of these tools is the start and stop codons are highlighted which assisted with identifying protein genomes within the sequences.

3.2. Primer Design

Primers were designed with some assistance from my supervisor. For this experiment, 11 primers were initially designed in order to increase the chances of getting a successful fusion; 3 forward flanking primers, 2 reverse flanking primers and 6 fusion primers. All of the primers were designed following the criteria mentioned in the methods chapter (Section 2.5.1). In addition to this, a third restriction enzyme recognition site (BamHI) was incorporated within the fusion primer linkers. Once all the primers were ordered, primers with the closest annealing temperatures were paired together to increase the potential of having successful fusions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer</th>
<th>Annealing temp</th>
<th>Designer</th>
<th>Synthesizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>LacYF1</td>
<td>5’ TAATGGAATTCGTATTTCGCG TAAGGAAATCCA-3’</td>
<td>62.6°C</td>
<td>CC*/WJL*</td>
<td>Eurofin Genomics</td>
</tr>
<tr>
<td>LacYF2</td>
<td>5’- TAATGGAATTCCTCCTAATTTCG CGTAAGG-3’</td>
<td>61.8°C</td>
<td>CC*/WJL*</td>
<td>Eurofin Genomics</td>
</tr>
<tr>
<td>LacYF3</td>
<td>5’ TAATGGAATTCCTCCTAATTTCG CGTAAGGAAAATC-3’</td>
<td>64.5°C</td>
<td>CC*/WJL*</td>
<td>Eurofin Genomics</td>
</tr>
</tbody>
</table>

*CC= Christine Ciocan
*WJL= Wei-Jun Liang
Table 3-2. Reverse primer designs for the GusB part of the fusion

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer</th>
<th>Reverse Complement</th>
<th>Annealing Temp</th>
<th>Designer</th>
<th>Synthesizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>gusBR1</td>
<td>GCAATTAAT</td>
<td>5'-TAATGAAGCTTTTTAA TTAGTGATATCGCT GATTAATTGC-3'</td>
<td>64.1°C</td>
<td>CC*/WJL*</td>
<td>Eurofin Genomics</td>
</tr>
<tr>
<td></td>
<td>CAGCGATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCACTAATTAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gusBR2</td>
<td>CAATTAATC</td>
<td>5'-TAATGAAGCTTTTTAA TTAGTGATATCGCT GATTAATTG-3'</td>
<td>62.1°C</td>
<td>CC*/WJL*</td>
<td>Eurofin Genomics</td>
</tr>
<tr>
<td></td>
<td>AGCGATATC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CACTAATTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CC= Christine Ciocan *WJL= Wei-Jun Liang

Table 3-3. Original forward and reverse (including the linker) primer designs

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer</th>
<th>Annealing Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>lacYgusB F1</td>
<td>5'-TAATGAATTGCTAGGTGCAACGTTGG ATCCTGGTCCGTCATTG-3'</td>
<td>65.3°C</td>
</tr>
<tr>
<td>lacYgusB F2</td>
<td>5'-TAATGAATTGCTAGGTGCAACGTTGG TGGATCCCGTATTGCGTCC-3'</td>
<td>66.8°C</td>
</tr>
<tr>
<td>lacYgusB F3</td>
<td>5'-TAATGAATTGCTAGGTGCAACGTTGG ATCCCGTCCGTCATTG-3'</td>
<td>63.9°C</td>
</tr>
<tr>
<td>lacYgusB R1</td>
<td>5'-TAATGAAGCTTCGATGACGGACCAGGA TCCACGTTGGCACCCTA-3'</td>
<td>65.3°C</td>
</tr>
<tr>
<td>lacYgusB R2</td>
<td>5'-TAATGAAGCTTTATTGACGGACTAG CGGATCCACCCACCGTGGCACCTA-3'</td>
<td>66.8°C</td>
</tr>
</tbody>
</table>
3.3. Plasmid Extraction

Before proceeding with PCR, the concentrations of plasmid DNA pMJB33 and pTTQ18 as well as the concentration of genomic DNA JM109 were measured with a DNA Nanodrop. It was important to keep the concentrations as close to 50 ng/µl as possible. In addition to this, the OD260 (Optical Density at 260 nm) reading was kept between 0.2-0.8 and the OD260/OD280 ratio was kept in between 1.8-2 as that is the acceptable ‘purity’ range. If any of these readings were too high, the DNA samples were diluted until the figures were in the necessary range. See Table 3-4 for the results from the Nanodrop.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Water (µl): DNA (µl) dilution ratio</th>
<th>Concentration (ng/µl)</th>
<th>OD260 Reading (Concentration of nucleic acid in sample)</th>
<th>OD260/OD 280 Ratio (Purity ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM109</td>
<td>-</td>
<td>19.7</td>
<td>0.395</td>
<td>1.86</td>
</tr>
<tr>
<td>pMJB33</td>
<td>-</td>
<td>157.3</td>
<td>3.074*</td>
<td>1.87</td>
</tr>
<tr>
<td>pMJB33</td>
<td>8:1</td>
<td>39.9</td>
<td>0.797</td>
<td>1.81</td>
</tr>
<tr>
<td>pTTQ18</td>
<td>-</td>
<td>17.6</td>
<td>0.352</td>
<td>1.84</td>
</tr>
</tbody>
</table>

*Reading was too high and therefore diluted
3.4. First round PCR- Amplification of DNA fragments Attempt 1

For the first round PCR, 5 fragments were amplified with 4 of the genes being successful amplified (samples 2, 3, 4 and 5). Bands 2 and band 5 were very faint but were visible to the human eye (refer to Appendix- lab book p.8 for pairings). A 1 kb ladder was loaded onto every gel in order to estimate weights for each band and compare the actual sizes with predicted sizes to confirm whether they are the desired fragments.

Figure 3-1. Evaluation of first round PCR Products (#1, #2, #3, #4, #5) by agarose gel electrophoresis. The visualised bands on the gel are the correct predicted size of each fragment, thus suggesting successful amplification. Lane 1: 1 kb ladder. Lane 2: No band visible. Lane 3: LacY fragment 2 (667 bp). Lane 4: LacY fragment 3 (661 bp). Lane 5: GusB fragment 1 (756 bp). Lane 6: GusB fragment 2 (755 bp).

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.5. DNA purification of successful samples from first round PCR

The successful fragments (#2, #3, #4 and #5) from first stage PCR were purified in order to remove impurities from the previous reaction (refer to Appendix p.8 for pairings). This was carried out in attempt to improve the chances of getting a successful fusion. As illustrated, there is a bit of smearing still evident after purification, however it was decided to progress onto the next step due to time constraints.

![Image of agarose gel electrophoresis](image)

Figure 3-2. Evaluation of DNA purification of the first round PCR Products (#2, #3, #4, #5) by agarose gel electrophoresis. The visualised bands on the gel are the purified samples from the first stage PCR. Lane 1: 1 kb ladder, Lane 2: LacY fragment 2 (667 bp). Lane 3: LacY fragment 3 (661 bp). Lane 4: GusB fragment 1 (756 bp). Lane 5: GusB fragment 2 (755 bp).

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.6. Evidence of successful fusions formed using two step PCR

As the project progressed, aims were being met such as forming a fusion between the two proteins by using two step PCR. As shown below, there were 4 successful fusions following four troubleshoots to improve the band quality and reduce smearing (see Appendix- lab book pages 13-17 for the gels from the other troubleshoots). Following the procedure, these bands were excised and extracted using the gel extraction kit and then underwent restriction digest.

Figure 3-3. Evaluation of the second stage PCR Products by agarose gel electrophoresis. After troubleshoot 4 consisting of reduced cycle numbers and reduced magnesium concentration, the smearing and unwanted band fragments have been reduced compared to the first troubleshoot (refer to Appendix- lab book 16). All four samples (circled above) were excised, extracted and purified. Lane 1: 1kb ladder. Lane 2: fusion formed between LacY fragment 2 and GusB 2. Lane 3: fusion formed between LacY fragment 3 and GusB 1. Lane 4: fusion formed between LacY fragment 2 and GusB 1. Lane 5: fusion formed between LacY fragment 3 and GusB 2.

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.7. Restriction Digest 1 of successful Fusion

Samples a•, b• and d• from fusion (see Figure 3-3) underwent restriction double digest. Similar to the digestion of the plasmid, the samples were cleaved with EcoRI and HindIII following the protocol stated in methods (Section 2.9). It was decided to not digest sample c• as after gel extraction, the band was extremely faint (refer to Appendix- lab book p.19). As bands were faint after gel extraction (refer to Appendix- lab book p.19), each sample had two sets which underwent restriction digest which were later combined into one sample to increase DNA concentration. As evident on the gel, there is still 1.4 kb estimated band sizes visible after restriction digest which indicates that the digest appeared successful. However, due to the multiple bands being visible, the restriction digest was repeated with new DNA sample from the PCR fusions.

Figure 3-4. Evaluation of the restriction digest of PCR samples. As evident on the agarose gel, the fusion bands for samples a•, b• and d• are still present after undergoing double digest. There is also other bands present which could indicate contamination. This prompted a repeat of digest with new samples.

Lane 1: 1 kb ladder. Lane 2 and 3: Fusion 1 double digested with EcoRI and HindIII. Lane 4 and 5: Fusion 2 double digested with EcoRI and HindIII. Lane 5 and 6: Fusion 3 double digested with EcoRI and HindIII.

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.8. Restriction Digest of plasmid

The plasmid pTTQ18 underwent restriction double digest according to the protocol mentioned in Methods (Section 2.9) to linearize the plasmid vector and prepare it for ligation by cutting it twice. The enzymes used to cleave the plasmid were EcoRI and HindIII and as expected, a linearized 4.5 kb estimated size band was present on the gel after restriction digest, indicating successful cleaving of the vector.

![Image of gel with bands at 5000, 4000, 3000, and 1000 bp]

Figure 3-5. Evaluation of the restriction digest of plasmid pTTQ18. A linearized band location in between 4000 bp and 5000 bp indicates a successful digest of the plasmid. As it was a double digest, the smaller fragment which was cut from the fragment was not visible on the gel due to it being smaller than 250 bp in size. Lane 1: 1 kb ladder. Lane 2 and 3: pTTQ18 plasmid double digested with EcoRI and HindIII (4.5 kb).

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.9. Restriction Digest repeat of PCR fusions

Despite the previous restriction digest of the PCR fusions being successful, the double digest was repeated with new samples and fresh enzymes to reduce the amount of unwanted bands and contamination. The enzymes used were EcoRI and HindIII. As evident below, the sample bands were no longer visible on the gel. However nanodrop confirmed that DNA was still present (see Appendix- lab book p.21). This prompted investigation as the fusion was no longer visible after digest when it was expected to have 1.4 kb bands present.

![Image](image.jpg)

Figure 3-6. Evaluation of the restriction digest repeat of PCR samples. The restriction digest was repeated in attempt to reduce the amount of bands visible on the gel. However, no bands are visible on the gel despite the expectation of 1.4 kb bands being present. This prompted investigation to identify the cause. Lane 1: 1 kb ladder. Lane 2, 3 and 4: no band evident after double digest with EcoRI and HindIII.

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.10. Restriction Digest repeat of PCR fusions

After further investigation into the cause of the digest bands no longer being present on the gel, it became evident that there was an error in the initial primer designs (see 3.2.). By error, there were more than 2 restriction sites on the fragment which resulted in the fragment being cleaved into more than two fragments. These primers were then corrected and redesigned along with the assistance of Dr WJ Liang- creating 4 new fusion primers.

Table 3-5. Corrected forward and reverse (including the linker) primer designs

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer</th>
<th>Annealing Temperature</th>
<th>Designer</th>
<th>Synthesizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>lacYgusB</td>
<td>F1Y</td>
<td>5' - TAGGTGCCAACGGTGG</td>
<td>65.3 °C</td>
<td>CC*/WJL *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATCCGGTCCGTCATTG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lacYgusB</td>
<td>F3Y</td>
<td>5' - TAGGTGCCAACAGTGTTGATCCGGTCCGTCATTG</td>
<td>63.9 °C</td>
<td>CC*/WJL *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAATA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lacYgusB</td>
<td>R1Y</td>
<td>5' - CAATGACGGACCGGAT</td>
<td>65.3 °C</td>
<td>CC*/WJL *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCACCCTTGCGACCTA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lacYgusB</td>
<td>R3Y</td>
<td>5' - TATTCATGACCGGACCCGTCACCACCTTGCGACCCTA</td>
<td>63.9 °C</td>
<td>CC*/WJL *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACCTA-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CC= Christine Ciocan
*WJL= Wei-Jun Liang

Key
- **gusB section**
- **lacY section**
- Linker with *Bam*HI restriction site included
3.11. First round PCR- Amplification of DNA fragments (Attempt 2)

Since redesigning the primers, the first step PCR was repeated to correct the design error. The previous fusion formed (see 3.6) was used as the template (refer to Appendix- lab book p.31 for pairings). During the first step PCR, 4 fragments were amplified and they were all successful as illustrated on the gel. This particular troubleshoot consisted of reducing the magnesium concentration.

![Figure 3-7. Evaluation of first round PCR repeat Products by agarose gel electrophoresis.](image)

The visualised bands on the gel are the correct predicted size of each fragment, thus suggesting successful amplification. Lane 1: 1 kb ladder, Lane 2: LacY fragment 1 (659 bp). Lane 3: LacY fragment 2 (666 bp). Lane 4: GusB fragment 1 (755 bp). Lane 5: GusB fragment 2 (758 bp).

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.12. DNA purification of successful 1st step PCR samples (Attempt 2)

The chosen successful fragments from first stage PCR were purified to ensure the samples are cleaner and impurities were removed. As seen below, there was some slight smearing and unwanted bands still visible. However due to time constraint it was decided to continue with the project. Samples 5 and d• are from two other troubleshoots that were carried out (refer to Appendix- lab book pages 28, 29 and 32).

Figure 3-8. Evaluation of DNA purification of the first round PCR Products by agarose gel electrophoresis. The visualised bands on the gel are the purified samples from the first stage PCR. Lane 1: 1 kb ladder, Lane 2: LacY fragment 1 purified (659 bp). Lane 3: LacY fragment 2 purified (666 bp). Lane 4: GusB fragment 1 purified (755 bp). Lane 5: GusB fragment 2 purified (758 bp). 1.5% agarose gel was used and ran for 40 minutes at 70 V
3.13. Evidence of successful fusions formed using two step PCR (Attempt 2)

The second stage comprised of first step PCR products being paired up together (refer to Appendix- lab book p.35 for pairings) and being amplified to produce the fusion. The expected fusion band should be around 1.4 kb in size. There were multiple troubleshoots done to ensure a successful fusion. The image below is the result of the third troubleshoot (see appendix- lab book p.33 and p.34 for the other troubleshoots) where a gradient temperature PCR was run. As evident on the gel, there are faint fusion bands of the correct estimated size as well as a lot of smearing and unwanted bands present.

![Image of gel with bands](image)

Figure 3-9. Evaluation of the second stage PCR repeat products. After 3 troubleshoots, there is still a lot of smearing and unwanted bands visible. Lane 1: 1kb ladder. Lane 2 potential fusion formed between LacY fragment 1 and GusB 1 at 58 degrees. Lane 3. No potential fusion band. Lane 4: No potential fusion band. Lane 5: potential fusion formed between LacY fragment 2 and GusB 2 at 60 degrees. Lane 6: No potential fusion band. Lane 7: potential fusion formed between LacY fragment 2 and GusB 2 at 62 degrees

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.14. First round PCR- Amplification of DNA fragments (Attempt 3)

It was decided to attempt first step PCR again for a final time and without using the previous fusion as the DNA template (refer to Appendix- lab book p.36 for pairings). In addition to this, this repeat was focused on reducing the smearing as much as possibly to ensure a successful fusion. This was done by altering the magnesium concentration between the samples (see Appendix- lab book p.36 for constituents). As seen below (Figure 3-10), only 2 out of 8 samples had the correct band sizes. The two bands visible are the lacY part required for the fusion, thus troubleshooting was required to ensure bands for the gusB half (Figure 3-11). The troubleshooting to obtain the gusB fragments consisted of altering the temperature. After all the troubleshooting attempts, the chosen fragments were then extracted and purified before continuing with the second step PCR.

![Figure 3-10. Evaluation of first round PCR repeat 3 products by agarose gel electrophoresis. Only two out of 8 samples had bands. Despite smearing still being evident, it had reduced as the magnesium concentration was decreased. Lane 1: 1 kb ladder. Lane 2: LacY fragment 1 (659 bp). Lane 3: LacY fragment 2 (666 bp). Rest of the lanes: No bands evident. 1.5% agarose gel was used and ran for 40 minutes at 70 V](image-url)
Figure 3-11. Evaluation of first round PCR repeat 3 *gusB* fragments by agarose gel electrophoresis. Out of 6 samples, 3 bands were successfully produced with the correct fragment size of 755 bp. There is some smearing evident but the fragments were excised, extracted and purified. Lane 1: 1 kb ladder. Lane 2, 4 and 6: GusB fragment (755 bp).

1.5% agarose gel was used and ran for 40 minutes at 70 V
3.15. Final second step PCR attempt (Attempt 3)

Various variables were altered in attempt to form a fusion during attempt 3. Nonetheless, after three second step PCR troubleshoots (refer to Appendix-lab book p.44 for pairings), no fusion band appeared and therefore attempts were unsuccessful (refer to Appendix- lab book p. 41-45). Figure 3-12 is the result from the third troubleshooting where a gradient temperature was run, along with an increase in GoTaq polymerase concentration. Despite obtaining an unsuccessful fusion, unwanted bands have been reduced as the troubleshooting progressed. Due to time constraint, ligation, transformation and the functionality testing could not be completed.

![Image of agarose gel electrophoresis](image)

Figure 3-12. Evaluation of the second stage PCR Products by agarose gel electrophoresis. After 3 troubleshoots, there has been no fusion band of 1.4 kb in size present. Unwanted bands are no longer visible, however, the smearing is still evident throughout the troubleshoot attempts. Lane 1: 1 kb ladder. Lanes 2-7: No fusion bands present.

1.5% agarose gel was used and ran for 40 minutes at 70 V
Chapter 4. DISCUSSION

The glucuronide transporter, a MFS family member, is a crucial transporter in ensuring *E. coli* survival in the mammalian intestines. GusB recognises a wide range of readily available glucuronides produced during the detoxification process of glucuronidation (Liang 1992; Liang et al 2005). This transporter then transports these across the bacterial membrane and into the cell where β-D-glucuronidase converts it into a carbon source (Wilson *et al.* 1992; Roberts *et al.* 2002). Understanding the protein interactions between GusB and the other proteins in the *gus* operon, has led to a more thorough understanding of the mechanism and importance of their interaction.

Moreover, understanding the mechanism and structure of one of the most well studied MFS proteins, LacY, has provided a fundamental part of this project. There has been in-depth studies on this transporter’s structure, specifically the N-domain being responsible for substrate binding and the C-domain containing the proton translocation sites (Frillingos *et al.* 1998; Abramson *et al.* 2003; Guan and Kaback 2006; Guan *et al.* 2007). As GusB and LacY are members of the MFS, known information can be applied to and compared between the two as they have similar structures i.e 12 transmembranes and cytoplasmic loop (Reddy *et al.* 2012). By using this knowledge and applying it to GusB, it may assist future deciphering of its molecular recognition sites.

4.1. Results

There has been some success in terms of achieving the objectives started in chapter 1. At the start of the project, progress was being made in terms of forming a fusion between the transmembranes of *lacY* and *gusB* using the PCR fusion method. As seen on Figures 3-1, 3-2 and 3-3, this was easily achieved with good results throughout as shown by DNA electrophoresis. However, the DNA bands were not as clean as hoped for and this was evident by the smearing. This could be an indication of possible contamination caused by equipment not being completely sterile or due to solutions and kits being shared by multiple students. However, after spending
a few weeks on running various troubleshoots in attempt to clean the bands, it was decided to persevere with the project.

The successful fusion formed between the *lacY* and *gusB* genes underwent double restriction digest to prepare the fragment for ligation. Initially, the double digest appeared to be successful as bands at approximately 1.4 kb in size was still visible on the agarose gel. However, smearing and unwanted bands were evident (see Figure 3-4), thus the digest was repeated to try and result in cleaner bands on the electrophoresis gel as it could impact the success of the ligation and transformation later in the project.

The double digest was repeated as shown on Figure 3-6. However, the fragment was no longer visible on the agarose gel after digest, especially as a 1.4 kb band was expected to be visible. Initially it was thought the restriction enzymes may have been the issue, however, this was quickly eliminated during the digest of the plasmid as the correct band size of approximately 4.5 kb was visible on the agarose gel.

To attempt to isolate the cause, additional restriction digests troubleshoots were carried out. The next restriction digest troubleshoot involved increasing the amount of DNA sample in the digest sample as it was thought the dilution factor from the gel extraction may have been an issue. The one band visible after gel extraction was quite faint and around 5 ng/µl. Initially 5 µl of DNA sample was added to a total volume of 50 µl. This resulted in a dilution factor of 10, thus reducing the DNA concentration and therefore the band may not be visible on the gel. In order to overcome this issue, more DNA volume was added to the reaction, however there was still no band evident on the gel which prompted further investigation.

This led to further investigation into the possible cause of the band no longer being present on the gel. After consulting with Dr Wei-Jun Liang, it became evident that there was an error with the primer design. The first set of fusion primers (refer to results) had more restriction sites designed within the sequence than it should have; overall there should have been 1 *EcoRI* restriction site and 1 *HindIII* site, however, there was in fact 3 restriction sites for each enzyme as restriction sites were added onto the end of the fusion
primers by human error. This issue resulted in the fusion fragment being cut into multiple small fragments, hence the fusion band no longer being visible on the gel. As this was a vital error, the fusion primers had to be redesigned to fix this mistake (refer to Results) by deleting the restriction sites on the end of each fusion primer and the project was repeated from first step PCR with the new primers.

The whole PCR procedure was repeated from the beginning. First step PCR was repeated with the corrected primers. For the DNA template in this PCR, the previous fusion formed (Figure 3-3) was used to improve the chances of a successful fusion. Numerous troubleshoots were required to achieve the correct estimated sized bands (see Appendix- lab book p.29-32). The correct bands were then paired up (refer to Appendix for the pairings) and underwent fusion PCR. Unfortunately, this proved to require various troubleshoots as the fusion bands were difficult to achieve. Based on previous troubleshoots findings, the MgCl₂ was the first factor to be altered. MgCl₂ is a cofactor for the Taq polymerase (GoTaq polymerase) and can affect its specificity and fidelity (Eckert and Kunkel 1991). Taq polymerase is a thermostable enzyme isolated from Thermus aquaticus and is responsible for DNA replication (Chien et al. 1976; Tindall and Kunkel 1988). However, for GoTaq polymerase to function, it requires a cofactor, in this case magnesium to assist in binding the dNTP to the DNA sequence (Lorenz 2012). Determining the optimal volume of MgCl₂ in the reaction is crucial as it can decrease the specificity of the enzyme and therefore reduce its efficiency, possibly resulting in incorrect fragments being replicated. Troubleshoots containing 1 mM and 0.5 mM MgCl₂ were carried out, however there appeared to be no significant differences between the bands (refer to Appendix- lab book p.33 and p.41-44).

Following this troubleshoot, multiple PCR gradients runs were done to find the optimal temperature to produce the fusion. Firstly, the PCR were carried out at the calculated average annealing temperature. However, this proved unsuccessful as very faint or no fusion bands were present, only smearing was evident. A gradient PCR was then performed on numerous occasions, ranging from 64-58 degrees. In addition to this, it was thought that the
extension time may have been too generic at first as each enzyme has its own extension rate. Taq polymerase replication rate is approximately 1 kb per minute (personal communication with Dr WJ Liang, September 2017) therefore the extension time was changed according to the size of the fragment, this case approximately 1.4 kb in size and therefore the PCR extension time was set to 1.5 minutes. This change made no significant difference to obtaining a fusion. As this continued to prove unsuccessful and it was decided to restart the whole PCR procedure again.

The PCR procedure was repeated again, starting with first step PCR. The DNA samples used were the original JM109 and pMJB33 samples instead of the previous fusion (see Figure 3-3 in Results). Similar conditions were used for this procedure based on the previous results and this was unsuccessful. In fact, the first step PCR had 4 troubleshoots and the most successful bands were chosen for the fusion PCR. However, to increase the chance of successful fusions, the chosen samples were purified followed by being gel extracted to clean the samples as much as possible. Once the corrected bands were achieved (see Results 3.14 and Appendix-lab book p. 36-39), fusion PCR was attempted once again.

The fusion PCR proved difficult again with further troubleshoots being carried out. Fusion bands were not visible on the agarose gels, despite Nano drop confirming DNA being present (see Appendix- lab book p.45). Altered factors included; temperatures ranging from 64-54 degrees and different magnesium chloride concentrations as before. Another factor which underwent troubleshooting was the amount of DNA sample pipetted into the reaction. As seen on Figures 3-10 and 3-11 in the results chapter, the gusB fragments were brighter than the lacY fragments, this suggesting more DNA was present. Due to this, it was decided to do a 2:1 ratio of DNA sample into the PCR mix in attempt to gain a fusion. In addition to this, to encourage the GoTaq enzyme to replicate and fuse the fragments, its concentration was increased by adding 1 µl instead of the usual 0.5 µl. As seen on Figure 3-12 in the results chapter, this still seemed to make no difference to obtaining a fusion. However, the amount of unwanted bands has reduced throughout the PCR troubleshooting. Unfortunately, due to time constraint the
troubleshooting had to be stopped. Nonetheless, understanding the theory of PCR and troubleshooting procedures have improved throughout the project and have been vital in understanding how to improve for future research.

4.2. Challenges faced

4.2.1. Primer design error

For designing the primers used in this project, a protocol was followed (refer to Method) to result in successful bands being present on the agarose gel. Initially this was a difficult task due to the high content of cytosine and guanine residues in the lacY and gusB genome. This in turn added a bit of complication as the primers were designed to be within 1 degree of each other in attempt to increase the chances of successful annealing during PCR. However, due to the different amount of guanine and cytosine bases in each primer, it led to annealing temperatures being within 2 degrees of each other.

One of the major challenges throughout this project was the struggle to obtain the fusion formed of lacY and gusB after correcting the primer design error (see Section 3.2. in Results). As there were numerous factors which could have influenced the success of the PCR, there were many troubleshoots involving altering these factors. However, it became evident that altering one factor made no significant difference to the lack of fusion and it may have been due to a combination of factors. It proved difficult as various factor combinations were tested, however it could be refined in future work.

4.2.2. Unwanted bands and smearing

Another challenge was having multiple unwanted extra bands within samples. Samples were treated with DpnI which targets the methylated areas on the DNA (Lacks and Greenberg 1975). They were also purified with the Qiagen PCR Purification kits. However, very faint extra bands were still visible on the gel. Consequently, this could have led to non-specific binding during PCR and result in an increase of extra bands. Moreover, smearing has been evident throughout the PCR results. Despite steps were taken to reduce this contamination, it remained unclear what was the exact cause of this. Therefore, samples underwent gel extraction after PCR purification in attempt
to reduce these two issues and get rid of unwanted DNA/ possible contaminants.

4.2.3. Taq polymerase

By running gradient PCR, the aim was to find the optimum temperature for GoTaq polymerase to fuse the two 1st step PCR fragments and replicate the fragment. As the gradient ranged from 64-54 degrees, this could have impacted Taq polymerase’s fidelity as lowering the temperature can encourage non-specific binding. Furthermore, GoTaq polymerase does not have proof reading ability, thus if an error was made in the sequence, it would still be amplified (Huang *et al.* 1992; Kunkel 1992; Cline *et al.* 1996). This may have resulted in the extra bands evident on the agarose gels.

4.2.4. Nanodrop

The nanodrop spectrophotometers was helpful for giving an indication on DNA concentration and purity. However, it may have not always been accurate with its readings. The A260/280 ratio gives an indication of the purity of the sample with ‘pure’ samples being around 1.8-2.0 (Teare *et al.* 1997; Desjardins and Conklin 2010). However, all proteins absorb a certain wavelength, thus when taking the PCR fusion attempt samples, it could have given an inaccurate reading due to additional proteins other than the fusion being present in the sample or due to contamination. Therefore the nanodrop readings was taken as estimations and used along with the estimation of DNA concentrations from the agarose gel bands.

4.3. Future research

Despite the aim of this project not being fulfilled, this project has provided useful information which would assist it progressing further and completing the aim in the future. The PCR troubleshoots carried out during this project have provided a good starting guideline for future work. In addition to this, the future work can focus on clearing up the DNA, reducing the extra bands and smearing and ensuring a fusion is formed with the first 6 transmembranes of *lacY* and the 6 transmembranes of *gusB*.
Furthermore, the functionality of potential transformants should be assessed using chromogenic substrates and spectrophotometric monitoring. The chromogenic substrates which would be used for this testing are 5-bromo-4-chloro-3-indoyl glucuronide (X-Gluc) and p-nitrophenyl-β-D-glucuronide (pNPG). If transportation is present, β-D-glucuronidase would cleave these glucuronides, resulting in a particular colour change; cleaved X-Gluc and pNPG resulting in a blue coloured aglycone sediment and yellow coloured soluble p-nitrophenol (pNP) respectively. The pNP colouring isn’t as evident to the naked eye as the X-Gluc, thus the absorbance intensity should be measured using a spectrophotometer at 405nm wavelength. These readings directly correlated to the concentration of pNP.

Another aspect on improving future work may be using a thermostable enzyme with polymerase function which has 3’-5’ proof reading abilities and higher fidelity than Taq polymerase. One potential enzyme may be the Pfu polymerase (Cline et al. 1996; McInerney et al. 2014). This could assist in reducing non-specific binding and mutational fragments and therefore increasing the chances of the correct fragment being replicated.

Future PCR runs should also be focussed on forming a fusion with the transmembranes swapped round i.e first 6 transmembranes of gusB and last 6 transmembranes of lacY. Furthermore, these fusions should be repeated but with XylE instead of LacY. LacY and XylE have substrate binding sites in different transmembranes (refer to Chapter 1), yet it is unknown in GusB. Therefore by fusing each half with GusB and testing its functionality using chromogenic glucuronides, this could narrow down the possible substrate binding sites by indicating which transmembranes they are located in.

Moreover, as structures of XylE and LacY have been crystallised, future experiments could indicate which structure GusB is more similar to as its 3D structure is currently unknown and could assist with crystallising GusB’s structure.

Additionally, future experiments should investigate the expression of N-domain (first 6 transmembranes) and C-domain (last 6 transmembranes) separately as this could give an indication to the possible 3D structure of GusB. In addition to this, if the domains can be independently expressed, it
could indicate that the cytoplasmic loop is not functionally significant and investigations could be focused on the specific transmembranes, their function and topology.

The biotechnology industry is a growing industry, especially in drug design and biosensors. Once the specific binding sites in the glucuronide transporter have been located, this could prove an important finding when designing biosensors. Genetically engineered GusB with specific binding sites could act as a biosensor to detect drug use/drug cheating. Glucuronides are products formed during the detoxification pathway and one way of disposing them is via urine. Biosensors could be designed to detect glucuronides produced by the detoxification of certain drugs in the urine, even in low concentrations. Furthermore, this method may become more favourable as it is less invasive than blood testing or taking saliva samples.
Chapter 5. CONCLUSION

This research project was designed in attempt to narrow down the possible transmembranes containing the substrate binding sites of the glucuronide transporter. Unfortunately, producing a fusion between the first 6 transmembranes of LacY and the last 6 transmembranes of GusB proved unsuccessful and therefore the aim could not be answered. Nonetheless, there was some success in terms of completing the objectives (see Chapter 1). Objectives 1 and 2, designing fusion primers and extracting DNA containing the *gusB* and *lacY* genes respectively were successfully completed. Objective 3, successfully forming a fusion between the *gusB* and *lacY* genes using the PCR method was partially successful. The fusion was formed before the primer error was corrected (see Results chapter). Unfortunately this proved difficult to achieve again after the correction. Further troubleshooting is required to obtain the fusion which could then be functionally tested and provide possible insight into the substrate binding site locations within GusB. As mentioned in the discussion, by understanding the importance of each 6 transmembrane bundle of GusB, it could bring scientists closer to determining the exact substrate binding sites locations and establishing the 3D structure of this protein which would impact the science industry.
Chapter 6. REFERENCES

Chen, NZ., Zhang, XQ., Wei, PC., Chen, QJ., Ren, F., Chen, J. and Wang, XC., 2007. AtHAP3b Plays a Crucial Role in the Regulation of Flowering Time in Arabidopsis during Osmotic Stress. *Journal of biochemistry and molecular biology* [online], 40 (6), 1083-1089.

Cline, J., Braman, J.C. and Hogrefe, H.H., 1996. PCR Fidelity of *Pfu* DNA Polymerase and Other Thermostable DNA Polymerases. *Nucleic Acid Research* [online], 24 (18), 3546-3551.

Cullis, P.R. and De Kruijff, B., 1979. Lipid polymorphism and the functional roles of lipids in biological membranes. *Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes* [online], 559 (4), 399-420.

Kučerka, N., Nieh, MP. and Katsaras, J., 2011. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. *Biochimica et Biophysica Acta (BBA) – Biomembranes* [online], 1808 (11), 2761-2771.

Padan, E., 2014. Functional and structural dynamics of NhaA, a prototype for Na⁺ and H⁺ antiporters, which are responsible for Na⁺ and H⁺ homeostasis in cells. Biochimica et Biophysica Acta (BBA) – Bioenergetics [online], 1837 (7), 1047-1062.

regulatory domain. *Protein Expression and Purification* [online], 123 (1), 75-82.

Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme. *Science* [online], 330 (6005), 831-835.

during *Arabidopsis* seed germination. *The Plant Journal* [online], 28 (4), 443-453.

Chapter 7. APPENDIX

Gus Operon

CTGGTCAGAAATATGGCGTTTGACCTGGGTGAAAAAAATATTCGGGTAA
ATGGCATTGCGCCCGGGGGGAATATTAACCAGATGCCCTGAATTCGTTAT
TACACCAGAAATTGAACAAAAATGTTCAGCAGCACAGCGATGACGCT
CTGGGCAACCCGCAAGATATTGCTAACGAGCGCTGTTCTTTGCCTGC
CTGTCCGAGCGCTGGGAAAGGGAGCTCAATACTCTACACTAGCGAGCTGT
GCTGCTGCGAGCTGGGTAAGCGGACAAATTCTCACCGTCTCCG
GTGGTG
GGTACAGGAGCTCAATTAAATACACTAACGACCCCGGAATACCCGAGT
GCCAAATACCGGCTATTGGGTTAACAATTTTCAGAGATGAAAAGTATACGAA
TAGAGTGTCCTTCCGACTATTAAACCAGCAATGATAGGCGCTCAGCTG
CAACGCAGTTAACAATGTTATTACCGGCTAATCTAATAGGTTTAAATGATGGA
TAACATGCAGACTGAAGCAACACCGCAACCGGAGCTCCTCAAATGCT
GCCAGAGAGATTTTTTCAGAAAATGGATTTCACAGTGCCTGCTGC
TCTCCCAAAGAACGCTGATTCAAGGGGATTATTTTACAGGAACAGAGAG
GGCGCTGGGGCCGTCTCCGAGGAGTTGATGAGGATTATAACGCATTTGAC
TATATGGTCAGTCCAATTGGTCTCTCTCTCCCACTAGGCGCTTGGGACACG
GCCGCTGGTGGTTGGAAATTATGGCGGAAGGGATGCGTAACCCACAGGT
CGCCGATATCGCCATGAAAAATAGCAGCATACAGGAAATTGTGGGC
CAGCGGATGCGGTGATGCCCGAGCAAAAAAAGGCCGAGTACCCACAGGAT
AACACGGCAATGACTTCACGCTATTGGCTT
CTGTCAACGCTGTTTTAA
AGATTAATGCGATCTATATCACGCTGTGGGTATTGCAGTTTTTGTTTGGTGA
GATCGCGGTGTCAGCCTTTTTTATTTCCATTTCTCTTCCATGTTCTCA
CAGATAACTGTGTGCAACACAGAATTGGTTAACTAATCAGATTAAAGGTT
GACCAGTATTATTATCTTAATGAGGAGACTGCTT
ATGTTACGTCCTCTGTAAG
AACCCCAACCCGGAATCAAATACTCGACGCGCCGTGACGATTTCGAGT
ACAGGGAGGATTGCTCGATTTCAATAGTGGTTATTATTCCAATATTATTGGCGT
TGTTGAAGGCAGGCGGAGGCTATTATATGTTGATGTGATAAAGGTGTTTCTGTTT
GGCCAGTAAAAATAAAAAACGCTGAAAAAATAGCGCTGTTAATTAGGTCG
CTTCGGGACGGAGTTAGTATTAGTTGAGTGCTTTACCTTATCCTATTCCCGTTAA
TGGCTGCGACGGTCGACCATTACATTACGGAGCTTTCTCGAAAGG
AGGTATTTGGGCTTTAACACCAAAATATTGATCTGTGGGGAATGTGGCCTT
TACGAGTATTTTATGGAATGTCTGATGTCAGTTCCCGTAAAGGG
GTGATAAAGGCAAGGACACGGGAGAAATACGATAAACATCGGCAGACGTTC
TTTTAGCGGCAGTTGGCAATGATGAGTTCTCCTGGG
ATCAGCAAGAAAAGATGTTTCCAATCGATACAAAAGTTATTCTCAGAAAA
GCATACCCGCTCGACCCGAATTATACGTCAGTTGAGTGCTTAC
TGATACCCGACATTGCCTTACAATTCCTGGGAGATGAATTGCTG
GTTAAGGGAATGCAAGTTGCAATTGGCGTCAACTATCGTTTAACGCCGA
AATTACCGTCAATTGCAACCGGATTGTGACTTCGCGGTATGATGAACGT
AAACGAAGATGTGCAGGCTAAGGGCAGGGTATTATTGTTGATGAGTT
ATCGCGGAAGGGGCGGTAGAAAAGGTAGGCTGATAAGCGTAGACAAAGGGGAG
ACGTTTTCATATGGCAGTTCCGACCCGAGAATTACTGCTGGCAATTGGCGTCA
TTCTAACGACATTTTGCAACCGGATGTTGACTTCGCGGTATGATGAACGT
AAACGAGATGTGCAGGCTAAGGGCAGGGTATTATTGTTGATGAGTT
ATCGCGGAAGGGGCGGTAGAAAAGGTAGGCTGATAAGCGTAGACAAAGGGGAG
TCTTTCCAGGAACAGCGACAGATTCCAGGGCACCTTTCACCCTTGACTGTGTGTTT
CCAGCTTACGCGGCGCGATAGTAATCACCAGGATCGCCTTTTCAGCATCAGC
GGCAGGGGCCTAAAGAAAGGCTTCCGTCACCTTTTCTCTGATAAAGTTCGG
GGTTGTGGCAATTCTCTGCTGCGACAGACGCCCTGAGGTTCGGTGGCAATTCT
TAAAGTCTCAGTTCCGCGATCTCCTCATGCCCTCCGACGAGGCGACCTTTG
CCTTCGACTGAATGGTCTATTCTTTTCCAGTGACAGTTTTTTGATTTTCTACA
CGCTCACCAAAAACTTGGCCAGCGTGGCGAAACCGTCGGTTTTTCAATTTAT
TAAAGGCTCAGTCCTCTGGATTTCTGGTATTCGTTAATCAGCGTCTATCCGA
ACCACCTTTCGCCCTCCGGAAGAGGAGATGGCCTTTGCTCTGTCAAGC
CATTTAACGGAACTGCACCTTGACTCTCAGCTTTTCATCTCTTTTGCTCGTAA
TCTCAATTCAATGGGAGGAGGAATATCGGAATCCAGGACTTTTGCTACTATCA
AACAGTGTTTTGCTTACCTGTATTAACCAGCGTAGGTTTTGAATTGATGTC
CATCGACGGAATCAGTTGTGTTAGAAGAGGAGATGGCCTTTGCTCTGTCAAGC
ACCAGTACCCAGGATTCCGTTGAAATGAGCGCCTCTGCGCCTGTTTAAATCC
ACGGATTTTCTTCTTCCCCGAATTGGTTCCACCAAGATCTCAGGTGCT
GCTGAATACGCGGCGAGTATAGTTTTGATAACTCATTCTGCTAGTTGGATT
CAGGAGCTGTCAGTTGAGTTGCGGGTCCTGCGCCGACCATGCTTCTC
GAGATGGGTTCATCTTTTCTGCTGATACCATGCGGCCGCTTGTCGCT
ACTACGCTAGCCGAACATGCCGCTACCGTACCAGC
GATTTATTCA
TAATGATTATTCCAAAATGAAATCAGGCGGACTGCGCCGCTGAAAGGTG
TTATAAGCCTTTTAAATAGCTT

Lac Operon

GACACCATCGAATGGCGCAAACCTTTCGCGGTATGGGATGGATAGCAGCC
CGGAAAGAGAGTCAATTCAAGGGTGGTGAAGTGGAAACCATGTAACGGGCA
CGATGTCGCGAGATAGCGGGTGTCTTTTACGACCGTTCCCCGCGTG
GTTAAAGCAGCGGAAACCGGAAACGCGGAAACAGTTGGAAG
GCGGCGATGGCAGAGCTGAAATTACATTTCCAAACCAGCGTTGGCACAACAA
CTGGCGGGCAACAGTGCGGGTGGGTTGCGCGACCTCAGCTGCTG
GCCCTGCAAGCCGGGTGGTAATGGGTACGTGCTTCTTGTGCGCCGACTAAATCTCGCGCC
CCACGCAGCGCGGGAGTGAATACCACGCGAACCGGAGTGGTTGTTGTCTT
GTGGGAAGAGGCGACCTCGCGGCGGCCTTTGCCCAACCACCGGCAAGA
GCGCAACAACGGCAGCCGACCACAGGCGAGTGTTTGTATACCAGGT
TTGCTATGTTGAAACTAACCAGGGCGTTATGGCAGGGCGACCAAGCCACCACGG
CCGCCCATCAGAGCGGACCACAGCCCCCATCACCAGTGGGCGTGCGC
TGCTGAAACCGCCGTGGAACTCCAGCAAGCATACCCGCGCGCTGTAATGGATGCCC
GATCCCCACCACCACAAGCAGTGGCGCTGCTAAGCAGCAGGCGACCTTTTG
CGGGTAAGCTCAGCTCAGCAGCAAGGCGAATCAGCAACAGACT
GATGCGGACACGCTGCAGCAGCTCAGCTGACATGCTGATGAAGCCAGCTTCCC
GGCCAGCGCCAGCAGCCCATGGGAACCACCGACAGCGGACGCTGAGC

Primer Design

>gusB
MGALFLSSYYTDVAGGVAAGTTMLLTVRFDAFAVFTAGRVVDSVNTRW
GKFRPPLLFGTAPLMIFSVLVLFWPVDWSHGSKVYAYLTYMLGLCSYLV
NIPYGLATAMTQQPSRAGAARGIAASLTFVCLAFLIGPSKSNSSPEMV
SVYHFWTIVLAIAMGMYLFICFXSTRENVVRIVAQPSLNISLQTLKRNPMLFML
CIGALCVLISTFAVSASSLFYVRYVNLDTGFTVLVLVQNLVTAVAPLVPG
MVARIGKNTFLIGHTCGYLLFFWVSVPWSLVALLAJAISIQGVTMTVM
MWALEADTVEYGEYLTGVRIGZLQFSFTRKCGQAIGGISPAFILGSLGY
ANQVQTEVIPVGRTSIALVPCGFMLAFVIIWFYPITDKKFKEIVVEIDNRKK
VQQQLSDITN

>lacY
MYYLKNTNFWMFGLFFFYFFIMGAYFPFFFPLWLHDINHIKSTDGIIFAAISLF
SLLFOPLFGLLSDKLGLRKYLWIIITGMVLVMFAPFFIFGPLLQYNILVGSIVG
GIYLCFCFTAGAPAVEAFIEKVSSRSNFEGRARMFGCGCGWALCASIIVGIMF
TINNOFVFWLGSCCLALILAVLFFAKTDPASSTVANAVGANHSASFLKLALE
LFRQPKGLWFLSFLVIGVSCYTDVFDOQFANEFTSSFATGEQGTRVFGYVT
MGELTNASIMFFAPLLINRIGGKNALLAGTIMSVRIIGSSFATSALVEVILKTLH
MFEVPFLLVGCFKYITSQF EVRSATIYLVCFCFFKQLAMIFMSVL AGNMYES
IGFOGAYLVGLVALGF TLISVFTLSGPPLSLLRQVNEVA

Fusion of first 6 transmembranes of lacY with last 6 transmembranes of gusB

MYYLKNTNFWMFG LFFYFFFMGAYFPPFPW LHDINHS KSDTI GIFEAISLF
SLLFOPLFGL LSDKLGLRKYL WIITGMLVMFAPFFEIFIFGPLLOYNILVGSI VG
GIYLGFCFNAGAPA VEAFIK VSRRSNEFGRAR MFQVGWALCASI VGIMF
TINQFVFWLG SGCALIVLFFAK TDAPSSATVANVGANPSLNI SLQTLK
RNRP LFMLCIGALCVL ISTFAVSAASLLF YVRYVLNDTGLFTVLV LQNLVGTV
ASAPlVPGMVARI GKNTLGIALLGTCG YLLFFFWSVWSLPVALAIALAI SGI
GGVTM TVMWALESADTEYGE YLTGVRIEGLT YSLFSFTRKCGQAIGGSIP
AFILGLSGYIA NQVQ PVEIMGIR TSIALVPCGFMLAFI WIWFYPTD KKFKEI
VVEIDNRRKVQQLISDITN
GusB and LacY LALIGN

Waterman-Eggert score: 85; 23.7 bits; E(1) < 0.013
19.7% identity (51.3% similar) in 304 aa overlap (1-278:23-298)

10 20 30 40

50

GusB MGALFLLS--YYTVAVGVAAAGTMLLLLVRVFADAFADVGRVVDSPNTR----

WG---

: : : : : :

LacY MGAYFPFPFIWLDHNDISGKSTDIIFAIASLFLSLLTFQPLGGLSDDLGLGKYLLWITG

30 40 50 60 70

80

GusB ---

KFRPFLLGHTAPILMIFSVLWVPTDWSHSGSKVYAYLTYMGLGCLSYLVNIYGSL

: : : . . : .

LacY MLVMFAPFPFIFGPPLLQYNILV----------GSIYGIIYL-----

GFCFNAGAPAVEAF

90 100 110 120

110 120 130 140 150 160

GusB ATAMTQQP---

SARGLGAARGAASLTFVCLAFLIGPSIKNSSPEEMVSYYHFWT---I

. :

LacY IEKVSRSNFEEGRARMFGCVGVALCASIVGIMF----TINQ--------

FVFWLGSGC

130 140 150 160 170

170 180 190 200 210

GusB VLAIAGMVLHYFCFKSTRELEERVAQ---SLNISLQLDKNRPLFM---

LCIGALCVL

. :

LacY ALILAVLFFAKTDAPSSATVANHSAFSKLALFLFRQPKLWLISLYIGVSCTY

180 190 200 210 220 230

220 230 240 250 260

270

GusB ISTFAVSASLLFYVRYVLNDT--

LFTVLVSLQLNLGTVASAPVLPVMVARIGKNTFLI

: .

LacY -DVFVQQFANFSTFATGEGQTRVFGYYTMEELLNA-

SIMFFAPLFINRGGKNALL

240 250 260 270 280

290
<--
Waterman-Eggert score: 61; 18.6 bits; E(1) < 0.36
22.1% identity (57.4% similar) in 68 aa overlap (227-285:86-153)

\[
\begin{array}{cccccc}
230 & 240 & 250 & 260 & 270 \\
gusB & LFYVRYVLNDTGLFTVVLVQNLVGTV-\text{----------} & \text{ASAPLVPGMVARIGKKNTFLIAG-} \\
lacY & MFAPFFIFIFGPLLQYNILVGSIVGGIYLGF\text{CFNAGAPAVEAFIEKVSRRSNFEPGRARM} \\
\end{array}
\]

\[
\begin{array}{cccccc}
280 \\
gusB & LGTCGYLL \\
lacY & \text{FGCVGWAL} \\
\end{array}
\]

-->
Waterman-Eggert score: 51; 16.5 bits; E(1) < 0.86
26.7% identity (60.0% similar) in 75 aa overlap (194-264:316-389)

\[
\begin{array}{cccccc}
200 & 210 & 220 & 230 & 240 \\
gusB & ISLQTLKRPLFMLCIGALC\text{LISTFAVSASSL}FYVRYV- \\
lacY & \text{VILKTLHMF}VFP\text{L}L- \\
\end{array}
\]

\[
\begin{array}{cccccc}
320 & 330 & 340 & 350 & 360 \\
gusB & TVA--\text{SAPLVPGMVA} \\
lacY & \text{SIGFQGAYLVLGLVA} \\
\end{array}
\]
Tm for PCR reaction (GIBCO-BRL)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.3</td>
<td>48.1</td>
<td>48.6</td>
<td>49.8</td>
<td>51.3</td>
<td>52.7</td>
<td>53.9</td>
<td>54.5</td>
<td>55.1</td>
<td>56.1</td>
<td>56.1</td>
<td>56.4</td>
<td>56.7</td>
<td>57.1</td>
<td>57.1</td>
</tr>
<tr>
<td>2</td>
<td>48.6</td>
<td>50.3</td>
<td>51.9</td>
<td>53.3</td>
<td>54.7</td>
<td>55.7</td>
<td>55.4</td>
<td>55.1</td>
<td>54.7</td>
<td>54.1</td>
<td>54.1</td>
<td>54.1</td>
<td>54.1</td>
<td>54.1</td>
<td>54.1</td>
</tr>
<tr>
<td>3</td>
<td>50.8</td>
<td>52.4</td>
<td>53.9</td>
<td>55.2</td>
<td>56.2</td>
<td>57.5</td>
<td>57.4</td>
<td>57.3</td>
<td>57.1</td>
<td>56.8</td>
<td>56.8</td>
<td>56.8</td>
<td>56.8</td>
<td>56.8</td>
<td>56.8</td>
</tr>
<tr>
<td>4</td>
<td>53.1</td>
<td>54.6</td>
<td>56.0</td>
<td>58.0</td>
<td>59.0</td>
</tr>
<tr>
<td>5</td>
<td>55.4</td>
<td>56.8</td>
<td>58.0</td>
</tr>
<tr>
<td>6</td>
<td>57.7</td>
<td>58.9</td>
</tr>
<tr>
<td>7</td>
<td>59.9</td>
<td>61.1</td>
</tr>
<tr>
<td>8</td>
<td>62.2</td>
<td>63.2</td>
</tr>
<tr>
<td>9</td>
<td>64.5</td>
<td>65.4</td>
<td>66.2</td>
<td>66.9</td>
</tr>
<tr>
<td>10</td>
<td>66.8</td>
<td>67.6</td>
<td>68.3</td>
<td>68.9</td>
</tr>
<tr>
<td>11</td>
<td>69.1</td>
<td>69.7</td>
<td>70.3</td>
<td>70.8</td>
</tr>
<tr>
<td>12</td>
<td>71.3</td>
<td>71.9</td>
<td>72.4</td>
<td>72.8</td>
</tr>
<tr>
<td>13</td>
<td>73.6</td>
<td>74.0</td>
<td>74.4</td>
<td>74.7</td>
<td>75.0</td>
</tr>
<tr>
<td>14</td>
<td>76.2</td>
<td>76.5</td>
<td>76.7</td>
<td>76.9</td>
<td>77.1</td>
<td>77.3</td>
<td>77.5</td>
<td>77.7</td>
<td>77.9</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
</tr>
<tr>
<td>15</td>
<td>78.2</td>
<td>78.3</td>
<td>78.5</td>
<td>78.6</td>
<td>78.8</td>
<td>79.0</td>
<td>79.1</td>
<td>79.2</td>
<td>79.3</td>
<td>79.4</td>
<td>79.4</td>
<td>79.4</td>
<td>79.4</td>
<td>79.4</td>
<td>79.4</td>
</tr>
</tbody>
</table>

\[Tm = 81.5 + 41 \times CG\% - 675/\text{mers}\]

Annealing Temperature = Tm – 5 degree C
Circular Sequence: pTTQ18 Plasmid

Sequence digested with: EcoRI, HindIII

Cleavage code
- I blunt end cut
- i 5' extension
- III 3' extension
- I cuts 1 strand

Enzyme name code
Available from NEB
Has other supplier
Not commercially available
*: cleavage affected by CpG methylation
#: cleavage affected by other methylation
(enz. name): ambiguous site

ORFs:
a. 363 aa
b. 286 aa
c. 133 aa
d. 110 aa
e. 108 aa

4563 bp
Bournemouth University COSHH ASSESSMENT FORM

1. Assessor:
WJ Liang

2. Assessment Date:
16/02/2017

3. Assessment Review:
Next Review Date:
Reviewed on:
Reviewed By:

4. Summary of process or method (or make specific reference to written protocol to be used):
Culturing bacteria, DNA extraction from bacterial cultures, PCR amplification and fusion, electrophoresis, making **transformants**, restriction digest, functionality test

5. Key Activity/Task (in relation to exposure potential e.g. mixing, filling, spraying, etc.):
Mixing chemicals using pipettes, handling bacteria, weighing powders

6. People who **could** come to harm (number & roles e.g. students):
Staff and students in lab

7. Duration of Exposure (minutes, hours and how often):
3-8 hours – 3 days a week

8. Location and Conditions of Use (e.g. lab, room, temp etc.):
Dorset House DNA Lab

9. Hazardous ingredients: (copy form/add more rows as **required**)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multiple E. coli strains</td>
<td>100ml</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>LB agar</td>
<td>2L</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>CaCl₂</td>
<td>500g</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>Ampicillin</td>
<td>10g</td>
<td>N/A</td>
</tr>
</tbody>
</table>

10. Quantities Used

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multiple E. coli strains</td>
<td>100ml</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>LB agar</td>
<td>2L</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>CaCl₂</td>
<td>500g</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>Ampicillin</td>
<td>10g</td>
<td>N/A</td>
</tr>
</tbody>
</table>

11. Workplace Exposure Limit (WEL)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multiple E. coli strains</td>
<td>100ml</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>LB agar</td>
<td>2L</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>CaCl₂</td>
<td>500g</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>Ampicillin</td>
<td>10g</td>
<td>N/A</td>
</tr>
</tbody>
</table>

12. Risk/safety phrases

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multiple E. coli strains</td>
<td>100ml</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>LB agar</td>
<td>2L</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>CaCl₂</td>
<td>500g</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>Ampicillin</td>
<td>10g</td>
<td>N/A</td>
</tr>
</tbody>
</table>

13. Actual Potential Route of Exposure (E.g. by inhalation)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multiple E. coli strains</td>
<td>100ml</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>LB agar</td>
<td>2L</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>CaCl₂</td>
<td>500g</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>Ampicillin</td>
<td>10g</td>
<td>N/A</td>
</tr>
</tbody>
</table>

14. Datasheet Attached? Y/N

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multiple E. coli strains</td>
<td>100ml</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>LB agar</td>
<td>2L</td>
<td>N/A</td>
</tr>
<tr>
<td>C</td>
<td>CaCl₂</td>
<td>500g</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>Ampicillin</td>
<td>10g</td>
<td>N/A</td>
</tr>
<tr>
<td>Letters</td>
<td>Description</td>
<td>Quantity</td>
<td>Hazard</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>E</td>
<td>DNTP (10mM)</td>
<td>>10mL</td>
<td>N/A</td>
</tr>
<tr>
<td>F</td>
<td>Restriction enzymes such as EcoRI, HindIII and BamHI</td>
<td>10mL></td>
<td>N/A</td>
</tr>
<tr>
<td>G</td>
<td>Agarose</td>
<td>100g</td>
<td>N/A</td>
</tr>
<tr>
<td>H</td>
<td>TAE</td>
<td>2-4L</td>
<td>N/A</td>
</tr>
</tbody>
</table>

15. Control Measures

Following Lab procedures - no eating or drinking in lab, tie your hair back, wipes spillages and clean surfaces, wear protective equipment, wash hands at the end of the lab session.

16. Indication of Danger

<table>
<thead>
<tr>
<th>Very Toxic</th>
<th>Irritant</th>
<th>Corrosive</th>
<th>Toxic</th>
<th>Harmful</th>
<th>Biological Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitiser</td>
<td>Carcinogen</td>
<td></td>
<td>Mutagenic</td>
<td>Toxic to reproduction</td>
</tr>
<tr>
<td></td>
<td>Skin Contact</td>
<td>Eye Contact</td>
<td></td>
<td>Swallowing</td>
<td>Injection</td>
</tr>
</tbody>
</table>

17. Route of Exposure

<table>
<thead>
<tr>
<th>C, D, H</th>
<th>Inhalation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

18. Chemical State

<table>
<thead>
<tr>
<th>All</th>
<th>Solid</th>
<th>A, B, G</th>
<th>Flammable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
</tbody>
</table>

19. Flammability

<table>
<thead>
<tr>
<th>All</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Volatility

<table>
<thead>
<tr>
<th>All</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. Dust rating

<table>
<thead>
<tr>
<th>All</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
22. First Aid Procedures (as advised from Material Safety Data Sheet)

<table>
<thead>
<tr>
<th>If inhaled</th>
<th>If skin contact</th>
<th>If eye contact</th>
<th>If swallowed</th>
<th>If injected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply fresh air and seek medical advice</td>
<td>Wash immediately with water and rinse thoroughly</td>
<td>Rinse open eye for a few minutes under running water. If symptoms persist seek medical advice</td>
<td>Wash mouth with water and seek medical advice</td>
<td>Seek urgent medical attention</td>
</tr>
</tbody>
</table>

23. Spillage Procedures: Ensure sufficient ventilation and clear up as stated in lab procedure if possible

24. Disposal Arrangements

<table>
<thead>
<tr>
<th>Collection</th>
<th>Swill down sink</th>
<th>Evaporation</th>
<th>In normal waste</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

25. Are the risks adequately controlled? (Write 'Yes' or 'No'): Yes

If you decide that the controls in Section 15 are sufficient, skip to section 27. If you decide that the risks are NOT adequately controlled (or you're not sure), then you will need to give special instructions to control the risk.

26. Special Instructions to control the risk:

27. Ensure those affected are informed of the Risks & Controls - Confirm how this will be done e.g. by issuing written instructions:

- Briefing before practical
- Supervisor has acknowledged this assessment
Initial Review

Notes: The 1st Review is an important milestone in the programme of study, which must be completed by 6 months (FT) or 12 months (PT).

The purpose is to enhance the original proposal, to demonstrate your understanding of the research project, to identify any H&S / ethical issues; and to establish the timescale for the research and agreed research plan and future activities. Progress is discussed with and reviewed by the Supervisory Team and assessed by an Independent Academic.

Continuation is dependent on successful completion of this stage.

Text fields will expand as required. Use the TAB key to move to the next field.

1. POSTGRADUATE RESEARCHER DETAILS

<table>
<thead>
<tr>
<th>Student number</th>
<th>4538459</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full name</td>
<td>Christine Ciocan</td>
</tr>
<tr>
<td>Mode of study</td>
<td>Full Time ✓ Part Time</td>
</tr>
<tr>
<td>Date of registration</td>
<td>23/01/2017</td>
</tr>
</tbody>
</table>

2. INITIAL REVIEW: RESEARCH TO DATE

Abstract (c. 500 words)

The major facilitator superfamily (MFS) is composed of various membrane transporters which can be located ubiquitously. Each transporter is involved in a crucial physiological process where it carries molecules across membranes by differing transport mechanisms. The transporters act as symporter, antiporter or uniporter in order to transport the molecules. In this research project, the focus will be on two secondary membrane transporters which share similar homologies but are involved in different processes. They are: Lactose permease LacY and the glucuronide transporter GusB. LacY is a well-known
secondary transport protein which facilitates the movement of lactose molecules across a membrane by utilising the movement of H⁺ ions down the concentration gradient. GusB on the other hand plays a role in acquiring glucuronides for enterobacteria *Escherichia coli* for their survival. Contrarily, the structure of GusB is not as fully understood. In this project, the first 6 membranes of LacY will be fused with the last 6 transmembranes of GusB by undergoing fusion PCR. The functionality of this fusion would then be tested. If the results are successful and the fusion still transports molecules, it could suggest that; as previously predicted, the structures of GusB and LacY are similar. Therefore, this discovery (if successful), could bring scientists a step closer to understanding the glucuronide transporter and other MFS members.

Title of thesis

Investigating the functionality of a fusion between two major facilitator superfamily members; LacY and GusB using a fusion Polymerase Chain Reaction.

Background to the topic *(This is the context to your research and should include reference to the academic literature c. 500 words)*

The major facilitator superfamily (MFS) is one of the largest secondary carrier superfamilies in the natural world. It is compiled of various membrane transporter families that can be found in both prokaryotic and eukaryotic cells organisms. Examples of transporters which are members of the MFS include; glucose transporters (GLUT), lactose permease (LacY), xylose transporter (XylE), glucuronide transporter (GusB) and melibiose transporter (MelB). The members of the MFS can act as symporters, antiporters or uniporters in order to transport ions, substrates and other molecules across membranes (Reddy *et al.* 2012; Yan 2015; Quistgaard *et al.* 2016). Each transporter is involved in a different physiological process, yet structurally they can be quite similar. For this project two members of the MFS will be fused together and the functionality will be tested. The two MFS members
focussed on in this project are lactose permease and the glucuronide transporter.

Lactose permease is a well-studied transporter located in *Escherichia coli* (*E.coli*). It is a symporter that carries lactose across the phospholipid layer by utilising the movement of H\(^+\) ions down the concentration gradient. This transporter is composed of twelve transmembrane helices with N and C terminal domains (Abramson *et al.* 2003). Due to the fact that this protein has been well studied, scientists have been able to formulate a crystal structure (Stroud 2007) and reveal its conformation and binding sites when transporting lactose.

On the other hand, GusB is not as well-known as LacY. *E.coli* which survive in the human gut have used this transporter in order to survive. GusB transports glucuronides, which are formed during glucuronidation, into the *E.coli* to use as a carbon source. Similarly to LacY, GusB has twelve transmembrane α-helices (Liang 1992; Ishii 2013 p.199) with N and C domains. However the substrate recognition sites are not yet known for this protein. Therefore, by applying the existing knowledge from LacY, the aim of this study is to narrow down the possible recognition site locations.

Research questions – the aims of the research (*This should take the form of a short, achievable statement(s) informing the reader of the purpose of the study c. 500 words*)

The aim of this research is to assess the functionality of a fusion formed between two members of the major facilitator superfamily (MFS) members; in this case the fusion composed of LacY and GusB.

Objectives of the research (*These must be measurable and achievable c. 500 words*)

The overall objectives for this research are:
- To design primers for the fusion between *gusB* and *lacY*
- To extract and purify plasmid DNA containing active *gusB* and *lacY* genes
- To successfully form a fusion of *gusB* and *lacY* and amplify it through PCR
- To clone the transformants
- To assess the functionality of the transformants using chromogenic glucuronides/ lactose
Outline of proposed methodology *(Including data collection, analysis and sampling, c. 500 words)*

This research will occur in a laboratory. It will consist of fusing two separate transporters genes (*lacY* and *gusB*) that belong to the same family. This will be carried out using two step PCR to fuse the first half (6 transmembranes) of LacY with the last 6 membranes of GusB. The first stage of PCR involves fusing the forward primer of *lacY* with the reverse primer of *lacY/gusB* linker and the *lacY/gusB* linker forward with the *gusB* reverse respectively by using appropriate annealing temperatures. Once these fragments have been formed, the second stage of PCR will be carried out in an attempt to fuse the two separate fragments formed previously. Electrophoresis would be performed after every PCR in order to confirm base pair sizes of the fragments and to illustrate the DNA quality. This fused gene will then be ligated into a vector which had previously undergone restriction digest. Once the gene is successfully ligated, cloning will be the next part of the process in which functionality would be tested and the clone will be sent for sequencing.

Please describe any ethical, health & safety or risk issues related to your proposed study *(Outline what they are and how they will be addressed c. 250 words each)*

| Ethical issues | N/A |
| Health & safety issues | Using *E.coli* strains, using chemical reagents, using biological reagents |
| Other risk Issues |

Proposed timescale for the work *(Outline the plan for completing the work within the period of registration. Identify all major milestones of the work and indicate how long each will take. c. 250 words)*
The milestones achieved so far are:

- Decided on topic and project aim
- Primers for the fusion have been designed
- Lab work has started - Miniprep has been completed, DNA extraction has been completed, the current stage of this project is using PCR in order to obtain a fusion.

For this project, the aim is to hand in the final piece of work in November. As it currently stands the project is achievable due to existing experience with the methodology, lab procedures and troubleshooting from previous undergraduate IRP research. The idea is to complete the practical work by August/September time to allocate enough time for the write up.

Agreed research plan and activities for the forthcoming months

(Outline what you are planning to achieve in the forthcoming months, identify all major milestones of the work and indicate how long each will take c. 250 words)

In the next few months, the main focus will be to complete the practical work as well as focusing on completing the introduction for the thesis. The major milestones are:

- Undergo stage 1 and stage 2 of PCR in order to fuse the two transporters (2-4 months)
- Once the transporters are fused, performing a restriction digest and carry out ligation (1 month)
- Start writing up the thesis - working on the introduction and method (2-4 months)
- Continue reading papers

How will your research contribute to new knowledge in this field?

(c. 250 words)

This research could impact the current level of knowledge surrounding major facilitator superfamily members. By fusing different
parts of transporters (some already known structurally and others not) together which share similar homology, information could be applied to the less understood proteins such as GusB and other transporters in order to understand their functions and crystal structures. Furthermore, the theory and results from this project could be applied to other MFS members to decipher their structure.

In addition to this, the research could contribute to the biosensor industry. Biological sensors could be engineered to detect ‘drug cheats’ or disorders by monitoring levels of molecules that are transported by certain sensors. For example, a biosensor which is designed with LacY or GLUT 2 could be used to detect glucose/galactose malabsorption as the functionality rate of the biosensor could indicate the molecule levels.

3. COLLABORATIVE RESEARCH

<table>
<thead>
<tr>
<th>Do you intend conducting fieldwork or research using private archives or working in collaboration with others?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes ☑ No ✗ If relevant, a letter signifying appropriate permission will need to be appended.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collaborating Establishment</th>
<th>A letter of support from the collaborating establishment confirming agreed arrangements must be attached. If no collaboration has been arranged, a brief explanation should be given in all cases.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address of Collaborating Establishment</th>
</tr>
</thead>
</table>

| Relationship between work to be undertaken in the collaborating establishment and at the University |
1982 - T Manatis → molecular cloning

LB media - per litre

- Bacto-tryptone 10g
- Bacto-yeast extract 5g
- NaCl 15g

1. Pour 500 ml of distilled water into autoclaved glass bottle and place on hot plate (with stirrer inside).
2. Add the powders from above to the bottle and stir—after mixing fill to 1 litre with distilled water.
3. Autoclave media.

LB agar media - per litre

- Bacto-tryptone 10g
- Bacto-yeast extract 5g
- NaCl 15g
- Agar 15g

Steps are the same as for LB media!

After autoclaving media cool down media and then add ampicillin (if needed) before pouring into petri dishes.

per litre of media = 1000 μL ampicillin

* Only use ampicillin plasmid DNA (pM1B33)*

- Pseudobacteria were left to cool on the side.
Transfer & extraction

1. The loop is placed in the "heat loop first to
 the love" and then streaked
 on agar plate (3 streaks)
2. The loop is then placed into flame to sterilize
 (blue flame) and then dip in centre of petri dish
 before streaking again => plate lid after each streak
3. Repeat 2 more times

4. Incubate overnight (37°C) => lid down, jelly up

* Gas wasn't working in air lab so
we used ethanol burners

Inoculation: 11/4/17 - 12/4/17

- Pour 10ml of LB media into a sterile centrifuge tube / flask
 (add ampicillin for PM1833 but not JM1091)
- Place foil on top (not too tight) and label strain
- When observing colony from plates choose the colony of
 similar color to the rest
- Sterilize loop first (in flame) => then place and
 pick a colony and collect with loop. Then place
Loop into flask, leaving it for a few seconds before transferring colony by rotating loop into media quickly.

Once completed, place flasks in orbital shaker incubator for overnight @ 37°C.

Blood and tissue kit - extracting genomic DNA

1. Place 1 ml of overnight media into autoclaved eppendorf - do 415 eppendorfs

2. Centrifuge for 5 mins at 3000 x g (1900rpm). Resuspend in 200 μl PBS. Add 20 μl protease K

3. Add 200 μl Buffer AL. Mix thoroughly by vortexing

4. Add 200 μl ethanol. Mix by thoroughly vortexing

5. Pipette the mixture into a Qiagen Mini spin column placed into a 2 ml collection tube. Centrifuge at ≥ 6000 x g (5600 rpm) for 1 minute. Discard the flow-through collection tube

6. Place the spin column in a new 2 ml collection tube. Add 550 μl Buffer AW1. Centrifuge for 1 min at ≥ 6000 x g. Discard the flow-through and collection tube.

[Signature and date:]

12/4/17

[Signature and date:]

12/4/17
7. Place the spin column in a 2 ml collection tube, add 500 μl Buffer AE2, centrifuge for 3 min at 20,000 xg (14,000 rpm). Discard the flow-through and collection tube.

8. Transfer the spin column to a new 1.5 ml to 2 ml microcentrifuge tube.

9. Elute the DNA by adding 200 μl Buffer AE to the center of the spin column membrane. Incubate for 1 min at room temperature (15-25°C). Centrifuge for 1 min at 16,000 xg.

Miniprep 13/4/17

1. Pellet 1-5 ml bacterial overnight culture by centrifugation at >8000 rpm for 3 min at room temp.

2. Resuspend pelleted bacterial cells in 250 μl buffer P1 and transfer to a microcentrifuge tube by vortex.

3. Add 250 μl buffer P2 and mix thoroughly by inverting the tube 4-6 times until the solution becomes clear. Do not proceed more than 5 mins if using lyse blue reagent the solution becomes blue.

4. Add 350 μl buffer N3 and mix immediately and thoroughly by vortexing (head first, upside down) and then place in ice bath for 30-60 mins.

If using lyse blue reagent the solution will turn coloured.

Performed by
Date
Countersigned by
Date
Continued on page number

104
5. Centrifuge for 10 mins @ 13000 rpm.
6. Apply 50µl supernatant from Step 5 to the spin column by pipetting. Centrifuge for 30-60s and discard flow through.
7. Wash the spin column by adding 0.75ml Buffer PB. Centrifuge for 30-60s and discard flow through.
8. Wash the spin column by adding 0.75ml 75µl buffer PE. Centrifuge for 30-60s and discard flow through.
9. Centrifuge for 1 min to remove residual wash buffer (PE).
10. Place the spin column in a clean 1.5 ml eppendorf tube. Incubate for 5 mins and then to elute DNA add 50µl buffer E23 to the center of the spin column. Let stand for 1 min and then centrifuge for 1 min.

- P1 buffer = Tris, EDTA, glucose, RNase, Lyse blue
- P2 buffer = SDS, alkaline
- N3 buffer = sodium/potassium acetate at neutralised immediately → place on ice after vortexing
- DNA is stable
- Plasmid DNA to mix into solution = “swimming all”
- PB = binding buffer
- PE = wash buffer
Diluting primers

Need to make T.E., to dilute primers

• 2 μl EDTA (0.5 M), 10 μl Tris (1 M), 0.88 μl water

• Add the various volumes according to the primer sheet

• Volume added is T.E.

• After adding solution, leave for at least 20 mins before starting PCR

<table>
<thead>
<tr>
<th>Oligo name</th>
<th>volume added (10 pmol/μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lac4 F1</td>
<td>320</td>
</tr>
<tr>
<td>Lac4 F2</td>
<td>299</td>
</tr>
<tr>
<td>Lac4 F3</td>
<td>284</td>
</tr>
<tr>
<td>gusBR1</td>
<td>318</td>
</tr>
<tr>
<td>gusBR2</td>
<td>399</td>
</tr>
<tr>
<td>lac4gusBF1</td>
<td>299</td>
</tr>
<tr>
<td>lac4gusBF2</td>
<td>258</td>
</tr>
<tr>
<td>lac4gusBF3</td>
<td>290</td>
</tr>
<tr>
<td>lac4gusBR1</td>
<td>321</td>
</tr>
<tr>
<td>lac4gusBR2</td>
<td>311</td>
</tr>
<tr>
<td>lac4gusBF3</td>
<td>266</td>
</tr>
</tbody>
</table>

Dilute 10X

Performing DNA with DNA Nanodrop

Concentration of DNA

Place 1 μl distilled water on the 2 stands and take a blank reading.
Wipe first stand and place 1uL of DNA and click measure

<table>
<thead>
<tr>
<th>Plasmid name</th>
<th>conc (ng/μL)</th>
<th>260 reading</th>
<th>260/280 ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM109 1</td>
<td>19.5</td>
<td>0.390</td>
<td>1.87</td>
</tr>
<tr>
<td>JM109 2</td>
<td>23.6</td>
<td>0.472</td>
<td>1.92</td>
</tr>
<tr>
<td>JM109 3</td>
<td>16.9</td>
<td>0.339</td>
<td>1.92</td>
</tr>
<tr>
<td>JM109 4</td>
<td>17.9</td>
<td>0.359</td>
<td>1.94</td>
</tr>
<tr>
<td>JM109 5</td>
<td>19.7</td>
<td>0.395</td>
<td>1.86</td>
</tr>
<tr>
<td>JM109 6</td>
<td>13.9</td>
<td>0.277</td>
<td>1.94</td>
</tr>
<tr>
<td>PTTQ8 1</td>
<td>17.6</td>
<td>0.352</td>
<td>1.84</td>
</tr>
<tr>
<td>PTTQ8 2</td>
<td>11.5</td>
<td>0.230</td>
<td>1.68</td>
</tr>
<tr>
<td>MJB33 1</td>
<td>157.3</td>
<td>3.074</td>
<td>1.87</td>
</tr>
<tr>
<td>MJB33 2</td>
<td>156.7</td>
<td>3.134</td>
<td>1.87</td>
</tr>
<tr>
<td>MJB33 3</td>
<td>174.7</td>
<td>3.495</td>
<td>1.87</td>
</tr>
<tr>
<td>MJB33 4</td>
<td>153.3</td>
<td>3.066</td>
<td>1.87</td>
</tr>
<tr>
<td>MJB33 5</td>
<td>150.8</td>
<td>3.017</td>
<td>1.88</td>
</tr>
<tr>
<td>MJB33 6</td>
<td>146.5</td>
<td>2.930</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Making dNTP: 10mM → 1mM
Divide 10μL to make 1μM = 9μL + H2O, 10μL dNTP

- Performed by [Signature] 19/4/17
- Countersigned by [Signature] 20/8/17 19/4/17
PCR (first step PCR)

Setting up PCRs:

1. $H_2O = 335 \mu l$
2. 5× Flexi buffer = 10 \mu l
3. 1xM dNTP = 1 \mu l
4. 75 mM MgCl$_2$ = 2 \mu l
5. 10 mM forward primer = 1 \mu l
6. 10 mM reversed primer = 1 \mu l
7. DNA sample = 1 \mu l
8. Go Taq Polymerase = 0.5 \mu l

Ran PCR at 2 temperatures:
1, 2, 5 were run at 63.4°C
3, 4 were run at 64.3°C

Gel electrophoresis:
5 TAE 1x solution
5 40 ml TAE, 0.64 g agarose, 14 ml SYBR safe
- Run gel for 40 mins at 70V
Protein purification (Wizard) 25/4/17

1. Add 5 volumes buffer PB to 1 volume of the PCR reaction and mix. If it is orange, violet red and odd.
2. To bind DNA, apply the sample to the column and centrifuge for 30-60's. Discard flow through and place the column back in the same tube.
3. To wash, add 750 μl buffer PE to the column and centrifuge for 30-60's. Discard flow through and place the column back in the same tube.
4. Centrifuge the column once more for 1 min to remove residual wash buffer.
5. Place each column in a 1.5 ml microcentrifuge tubes.
6. To elute DNA, add 50 μl buffer EB (10mM MOPS, pH 8.5) or water (pH 7-8.5) to the center of the column and centrifuge the column for 1 min. For increased DNA concentration, add 30 μl elution buffer to the center of the membrane, let stand for 1 minute, and then centrifuge.

Purified sample #2, #3, #4, #5 as they had bands. → treated with DNase: 5.5 ml extractive, 1 μl DNase and incubate at 37°C for 20 min.

Fusion PCR

32.5 μl = H2O
10 μl = 5x flexi buffer
1 μl = 1mM dNTP
2 μl = 25mM MgCl2
2 μl = PCR product forward
2 μl = PCR product reverse DNA ligase
8.5 μl = Go Taq polymerase

PCR run @ 63°C: a, c, d
64.3°C: b

WRONG = N/D DIDN'T ADD TEMPLATE PRIMERS

Performed by: [Name]
Date: 25/4/17
Countersigned by: [Name]
Date: 25/4/17
- Ran gel from fusion PCR from last week
- only sample d had a band but it might be the wrong size → band seems to be ~750-bp?

Fusion Troubleshoot #1

3.5 μl H₂O
10 μl flexi buffer
1 μl dNTP (1mM)
2 μl MgCl₂ (25mM)
2 μl PCR product forward
2 μl PCR product reverse
0.5 μl Go Taq

Temperatures were changed for this troubleshoot:

60.7°C and 65°C were the two chosen temperatures

\(a' = \text{sample 2} \cdot \text{sample 5} \)
\(b' = \text{sample 3} \cdot \text{sample 4} \)
\(c' = \text{sample 2} \cdot \text{sample 4} \)
\(d' = \text{sample 3} \cdot \text{sample 5} \)

\(a^2 = \text{sample 2} \cdot \text{sample 5} \)
\(b^2 = \text{sample 3} \cdot \text{sample 4} \)
\(c^2 = \text{sample 2} \cdot \text{sample 4} \)
\(d^2 = \text{sample 3} \cdot \text{sample 5} \)

\(\text{ran at 60.7°C} \)
\(\text{ran at 65°C} \)
fusion troubleshooting

11.5 μl or 33.5 μl H₂O
10 μl Flexi buffer
1 μl dNTP
3 μl or 1 μl MgCl₂
2 μl forward
2 μl reverse
0.5 μl Taq

Sample #1 = sample 2 + 5
#2 = 3 + 4
#3 = 2 + 4
#4 = 3 + 5

#5 = 2 + 5
#6 = 3 + 4
#7 = 2 + 4
#8 = 3 + 5

3 μl MgCl₂
33.5 μl H₂O

WRONG = DIDN'T ADD FLANKING PRIMERS

4 could explain the streaks
4 could explain the band in the incorrect locations

Performed by: [Signature]
Date: 9/5/17

Countersigned by: [Signature]
Date: 9/5/17

Continued on page number: 112
Trouble shoot H3 - fusion PCR

H₂O = 30.5 µL
flexi buffer = 10 µL
dNTP = 1 µL
MgCl₂ = 2 µL
PCR forward flanking = 1 µL
PCR reverse flanking = 1 µL
DNA template = 4 µL (2 of each strand from H3)
Taq = 0.5 µL

fused PCR started from scratch as realised that outer primers weren’t being added in fusion when it needed to be.

a² = sample 2 + sample 5 + lacF3 + gusR1
b² = sample 3 + sample 4 + lacF3 + gusR1
c³ = sample 5 + sample 4 + lacF3 + gusR1
d³ = sample 3 + sample 5 + lacF3 + gusR1

e² = sample 2 + sample 5 + lacF3 + gusR1
f = sample 3 + sample 4 + lacF3 + gusR1
g² = sample 2 + sample 4 + lacF3 + gusR1
h² = sample 3 + sample 5 + lacF3 + gusR1

* see page 15 for gel images.

Performed by:
Date: 11/5/17
Counter signed by:
Date: 11/5/17

112
Troubleshoot 4

11/5/17

30.5 µl H₂O	32.5 µl H₂O
10 µl Flexi buffer	10 µl Flexi buffer
1 µl DNTP	1 µl DNTP
+ 2 µl MgCl₂	2 µl MgCl₂
1 µl PCR forward flanking	1 µl PCR forward flanking
1 µl PCR reverse flanking	1 µl PCR reverse flanking
4 µl DNA template	2 µl DNA template
0.5 µl Go Taq	0.5 µl Go Taq

Not running gel due to realisation that PCR programming has been wrong

Fusion PCR from scratch 8/6/17

30.5 µl H₂O	32.5 µl H₂O
10 µl Flexi buffer	10 µl Flexi buffer
1 µl DNTP	1 µl DNTP
2 µl MgCl₂	2 µl MgCl₂
1 µl PCR forward	1 µl PCR forward
1 µl PCR reverse	1 µl PCR reverse
4 µl DNA	2 µl DNA
0.5 µl Go Taq	0.5 µl Go Taq

1 - 3 ran @ 62.6°C
4 ran @ 63.1°C
9 - 11 ran @ 64.3°C
12 ran @ 64.9°C
5 - 7 ran @ 62.6°C
8 ran @ 63.1°C
13 - 15 ran @ 64.3°C
16 ran @ 64.9°C

Performed by: [Signature]

Date: 8/6/17

Countersigned by: [Signature]

Date: 8/6/17
PCR Troubleshoot #2

14/6/17

Samples a-d ran @ 64°C

- 31.5 μl H2O
- 10 μl flexi buffer
- 1 μl dNTP
- 1 μl MgCl2
- 1 μl forward primer
- 1 μl reverse primer
- 4 μl DNA
- 0.5 μl Go Taq

Samples a'-d' ran @ 58°C

- 30.5 μl H2O
- 10 μl flexi buffer
- 1 μl dNTP
- 2 μl MgCl2
- 1 μl forward primer
- 1 μl reverse primer
- 4 μl DNA
- 0.5 μl Go Taq

Samples a2'-d2' ran @ 58°C

- 31.5 μl H2O
- 10 μl flexi buffer
- 1 μl dNTP
- 3 μl MgCl2
- 1 μl forward primer
- 1 μl reverse primer

Note: The gel picture shows the bands with the correct bands size and lack of the PCR troubleshoots. However, it appears that the gel was not of high quality.
4 μl DNA
0.5 μl GoTag

Gel images from fusion PCR from scratch (2/6/17)

- There are bands present, however they are incorrect sizes, which indicates that there was no fusion for these PCR troubleshooting. Number 9 and 15 had no fusion or even bands.

- Fusion PCR - changing DNA amount 2/6/17
- Option a, b, c, d worked best from last PCR

<table>
<thead>
<tr>
<th>T</th>
<th>33.5 μl H2O</th>
<th>10 μl Taq</th>
<th>1 μl DNTTP</th>
<th>1 μl MgCl2</th>
<th>1 μl forward</th>
<th>1 μl reverse</th>
<th>2 μl DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>58 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>64 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Performed by [Signature] 2/6/17
- Countersigned by [Signature] 2/6/17

Continued on page number
d^+ : 32.5 μl H₂O
10 μl flexi
1 μl DNTP

d^+: 58°C 2 μl MgCl₂
1 μl forward
1 μl reverse
2 μl DNA
0.5 μl GoTag

If you can see faint band on gel then its about 5 ng.

Options following PCR (seen above):
- Increase cycle number in order to improve faint bands.
- Lower cycle numbers to 35 or less.
- Play around with annealing temps.
- Repeat with unchanged MgCl₂ + DNA.
- Maybe reduce template concentration to try and reduce smear?

PCR troubleshooting - reduced cycle numbers (50-75)

for a, b, c = 58°C
33.5 μl H₂O
10 μl flexi
1 μl DNTP
1 μl MgCl₂
1 μl forward
1 μl reverse
2 μl DNA
0.5 μl GoTag

Performed by:
Date: 6/7/17
Countersigned by:
Date: 6/7/17
For d° = 64°C
32 μl H2O
10 μl flexi
1 μl DNTP
2 μl MgCl2 (not sure if pot
1 μl forward 1 μl or 2 μl by
1 μl reverse
2 μl DNA
0.5 μl Go Taq

PCR troubleshooting using PCR mix(2x) 6/7/17

*For this PCR reaction a pre prepared PCR master
mix (2x) #K0171 from Thermo Fisher was used.

-Mix contains: 0.05 μl Tag DNA polynuclease
reaction buffer, 4μM mgCl2, 0.1μM of each DNTP
water (nuclease free) was used

30 cycles used

Samples 1°-4° = 25 μl PCR mix

1°: 58°C
4°: 64°C

1 μl forward primer
1 μl reverse primer
2 μl DNA template
2 μl H2O

Samples 1°-4° = 25 μl PCR mix

1°: 58°C
5°: 64°C

1 μl forward primer
1 μl reverse primer
4 μl DNA template
2 μl H2O

Performing by
Date Countersigned by Date
6/7/17 6/7/17
Gel extraction of fusions

- Run gel for 60 mins @ 70V
- Only put 4 μl of DNA as the previous bands were good bands (bands were smeary 2/8/17, will run another gel)
- Gel to then be cut with sharp scalpel and gel extraction kit (Cat No 28704) protocol followed

Protocol:
1. Excise the DNA fragment from the agarose gel with a clean, sharp
2. Weigh the gel slice in a colorless tube/sprayer: Add 3 volumes Buffer QG to 1 volume gel
3. Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). Vortex the tube every 2-3 min to help dissolve gel. After the gel slice has dissolved completely, check that the color of the mixture is yellow (similar to Buffer QG without dissolved agarose)
4. Add 1 gel volume isopropanol to the sample and mix
5. RNAse: Apply sample to the QIAquick column and centrifuge for 1 min. Discard flow-through and place the column back in the tube
6. If the DNA will subsequently be used for sequencing, in vivo transcription or minicircularization, add 500 μl Buffer PE to the spin column and centrifuge for 1 min. Discard flow-through
7. To wash, add 750 μl Buffer PE to the column and spin for 1 min.
8. If the DNA will be used for self-sensitive applications (e.g., sequencing, blunt-ended ligation), let the column stand 2-5 min after addition of Buffer PE then
Place column in a clean equivalent. To elute DNA, add 50 μL Buffer EB to the center of the column and centrifuge for 1 min. For increased DNA concentration, add 50 μL Buffer EB to the center of the column, let the column stand for 1 min, then centrifuge for 1 min. After the addition of Buffer EB, to the membrane, increasing the incubation time to up to 4 min can increase the yield of purified DNA.

Gel extraction of fractions

30/8/17

- Tired extraction on 24/6 but gel fell apart
- Ran gel for 1 hr today and loaded the following:
 - 2 bands of sample b: a (8 μL DNA + 2 μL Go Tag)
 - 1 band of sample b: (8 μL DNA + 2 μL Go Tag)
 - 2 bands of sample c: (8 μL DNA + 2 μL Go Tag)
 - 1 band of sample d: (8 μL DNA + 2 μL Go Tag)

It was then decided to cut out bands sample a, b, and d.

Sample c had very faint bands and it was decided to leave it. A scalpel was used to cut the bands on light box.

Performing: [Name]
Date: 30/8/17

Countersign: [Name]
Date: 30/8/17
<table>
<thead>
<tr>
<th></th>
<th>eppendorf without gel inside</th>
<th>eppendorf with gel inside</th>
<th>Difference</th>
<th>QG amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.988</td>
<td>1.262</td>
<td>0.274</td>
<td>0.822</td>
</tr>
<tr>
<td>2</td>
<td>0.994</td>
<td>1.108</td>
<td>0.114</td>
<td>0.342</td>
</tr>
<tr>
<td>4</td>
<td>0.993</td>
<td>1.103</td>
<td>0.110</td>
<td>0.330</td>
</tr>
</tbody>
</table>

Samples in blue box in freezer — next step is R digest.

Restriction digest of PCR product + 15/9/17
Plasmid [HindIII]

37 μl H₂O
5 μl 10x Buffer 2
5 μl BSA
5 μl plasmid Pif18 / PCR product
5 μl EcoRI
5 μl HindIII

Digest was incubated at 37°C for 14 hours
and a gel was run
Δ Pif18 had 1 band on gel - digest went well
PCR products had no bands visible = too little DNA in digest or DNA is lost
Decision is to run gel extracted samples on a gel to confirm DNA is still present and then digest will be done with more PCR product sample.

Pedro of Digest for PCR products, 21/9/17

- ran gel extracted samples from 30/8/17 on gel at 78V for 40 mins to see if DNA is present.
- there were no bands visible on the gel so a nanodrop was done to see if any DNA present.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Some ng/ul</th>
<th>OD 260</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' (PCR)</td>
<td>44.2</td>
<td>0.883</td>
<td>1.71</td>
</tr>
<tr>
<td>b' (PCR)</td>
<td>38.4</td>
<td>0.767</td>
<td>1.75</td>
</tr>
<tr>
<td>d' (PCR)</td>
<td>44.2</td>
<td>0.883</td>
<td>1.73</td>
</tr>
<tr>
<td>a' (extracted)</td>
<td>5.3</td>
<td>0.106</td>
<td>4.52</td>
</tr>
<tr>
<td>b' (extracted)</td>
<td>6.2</td>
<td>0.123</td>
<td>4.64</td>
</tr>
<tr>
<td>d' (extracted)</td>
<td>5.9</td>
<td>0.119</td>
<td>2.52</td>
</tr>
<tr>
<td>a' (R digest)</td>
<td>24.5</td>
<td>0.490</td>
<td>0.72</td>
</tr>
<tr>
<td>b' (R digest)</td>
<td>17.9</td>
<td>0.358</td>
<td>0.72</td>
</tr>
<tr>
<td>d' (R digest)</td>
<td>17.6</td>
<td>0.351</td>
<td>0.67</td>
</tr>
<tr>
<td>PRAS8 (R digest)</td>
<td>19.2</td>
<td>0.384</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Possible attempt to clean DNA:
- re precipitation followed by ethanol wash
- extended air drying and resuspension in fresh volume of TE or pure water.

Performed by: [Signature] 21/9/17

Countersigned by: [Signature] 21/9/17
It was decided to attempt restriction digest on PCR products before extraction.

- 37°C for 4 hours
- Gel ran for 50 minutes @ 70V
- Loaded 8µl DNA (2 µl Green Tag)
- Bands were visible for all samples - PCR product bands were quite faint.

Gel Extraction

<table>
<thead>
<tr>
<th>Sample</th>
<th>g without gel</th>
<th>g with gel</th>
<th>Difference</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.983</td>
<td>1.177</td>
<td>0.194</td>
<td>0.582</td>
</tr>
<tr>
<td>2</td>
<td>0.985</td>
<td>1.117</td>
<td>0.132</td>
<td>0.376</td>
</tr>
<tr>
<td>3</td>
<td>0.994</td>
<td>1.112</td>
<td>0.118</td>
<td>0.356</td>
</tr>
<tr>
<td>4</td>
<td>0.984</td>
<td>1.025</td>
<td>0.041</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Extracted gel as instructed on protocol - ran gel for 40 mins @ 70V - no bands present.

Plan: reamplify DNA via PCR

- Run gel + extract DNA (loading lots of wells)
- Digest for 4 hours
- Run gel + extract
- Ligation

PCR

- dNTPs: 33.5 µl H2O
- 10 µl Flexi Buffer
- 1 µl dNTP
- 1 µl MgCl2

- 58°C

Performed by: [Signature], Date: 27/9/17

Counter signed by: [Signature], Date: 27/9/17
1 μl forward (lacYF3)
1 μl reverse (GUSR1)
2 μl DNA (fusion PCR products)
0.5 μl CoTaq

D** = 32 μl H2O
10 μl PCR buffer
1 μl MgCl2
1 μl forward
1 μl reverse
2 μl DNA
0.5 μl CoTaq

For gel, each sample is going to be loaded into 3 wells:
2 X 16 μl sample + 4 μl Green Tag
1 X 8 μl sample + 2 μl Green Tag

Gel image example:

- = 16 μl DNA
- = 8 μl DNA
- = 4 μl Dye
- = 2 μl Dye

Date: 27/9/17
Countersigned by: [Signature] 27/9/17
for gel extraction:

<table>
<thead>
<tr>
<th>without gel (g)</th>
<th>with gel (g)</th>
<th>difference</th>
<th>QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.995</td>
<td>1.181</td>
<td>0.186</td>
<td>0.558 3 bands</td>
</tr>
<tr>
<td>0.994</td>
<td>1.223</td>
<td>0.229</td>
<td>0.687 3 bands</td>
</tr>
<tr>
<td>0.996</td>
<td>1.130</td>
<td>0.134</td>
<td>0.402 3 bands</td>
</tr>
</tbody>
</table>

Gel extraction had one definite band (sample d)

R. digest of PCR 28/9/17

\[a^\ast \text{ dig } 1, b^\ast \text{ dig } 1, d^\ast \text{ dig } 1 = 37 \mu l \text{ H}_2\text{O} \]
\[5 \mu l \text{ Buffer 2} \]
\[1 \mu l \text{ BSA} \]
\[5 \mu l \text{ DNA} \]
\[1 \mu l \text{ EcorI} \]
\[1 \mu l \text{ HindIII} \]

\[a^\ast \text{ dig } 2, b^\ast \text{ dig } 2, d^\ast \text{ dig } 2 = 32 \mu l \text{ H}_2\text{O} \]
\[5 \mu l \text{ Buffer 2} \]
\[1 \mu l \text{ BSA} \]
\[10 \mu l \text{ DNA} \]
\[1 \mu l \text{ EcorI} \]
\[1 \mu l \text{ HindIII} \]

Samples are incubated for 4 hrs @ 37°C

-ran gel: 2X 16ul DNA + 4 ul Dye
1X 8ul DNA + 2 ul Dye

- Sample d had a very faint band at 4kb

Performed by: [Signature] 28/9/17
Countersigned by: [Signature] 28/9/17

Continued on page number
<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc</th>
<th>OD 260</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>a extracted</td>
<td>7.9</td>
<td>0.157</td>
<td>4.81</td>
</tr>
<tr>
<td>b extracted</td>
<td>12.4</td>
<td>0.248</td>
<td>2.97</td>
</tr>
<tr>
<td>c extracted</td>
<td>10.1</td>
<td>0.202</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Run gel after extraction - samples had no visible bands except for PTTQ18 R dig 1 → decided to still go ahead with ligation.

Ligation

- Before ligation, vector PTTQ18 was digested with rSAP (result of phosphorylation):
 - 1 μl rSAP - shrimp alkaline
 - 5 μl cut smart buffer

<table>
<thead>
<tr>
<th></th>
<th>1:1 (L1)</th>
<th>1:2 (L2)</th>
<th>1:3 (L3)</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Insert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10X ligase buffer</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T4 ligase</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Ligation incubated at 16°C overnight for 16 hrs before moving onto Transformation.

Performed by: [Signature] Date: 28/9/17
Countersigned by: [Signature] Date: 28/9/17
<table>
<thead>
<tr>
<th>Without gel</th>
<th>With gel</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.995</td>
<td>1.487</td>
<td>0.558</td>
</tr>
<tr>
<td>0.994</td>
<td>1.223</td>
<td>0.229</td>
</tr>
<tr>
<td>0.996</td>
<td>1.130</td>
<td>0.134</td>
</tr>
</tbody>
</table>

Tube 1 = Sample of R. digested
Tube 2 = PTTQ18 1 R. dig
Tube 3 = PTTQ18 2 R. dig.

Transformation prep 3/10/17

Inoculation of MC1061 (no amp)
15 mL LB media no amp used
5.15 mL of media measured and put into a Falcon tube, then one colony from MC1061 plate was put into media using pipet tips and left in orbital shaker overnight (37°C, 250 rpm)

Making competent cells 4/10/17
1. 250 mL from overnight culture pipetted into 25 mL of LB no amp media
2. Placed in orbital shaker for 2 hrs (37°C, 250 rpm) to get to log phase (A600 = 0.2 - 0.3)
3. After 2 hrs, 1 mL of E. coli harvested and put into a cuvette to measure log phase in a spectrophotometer (measure absorbance)
4. Chill culture on ice and harvest 1 mL of cells by quick centrifuging at 8000 rpm for 2 mins at 4°C
4. Discard the supernatant then resuspend cells in 50 μl of ice-cold calcium (step 1) - (50 mM CaCl₂, 10 mM Tris HCl pH 7.0)
5. Place the suspension in an ice bath for 15 mins then centrifuge at 10,000 rpm for 1 minute at room temperature.
6. Discard the supernatant and resuspend the cells in 1/5 (6 μl) of ice-cold (step 1) calcium solution.

Transformation

7. 10 μl of DNA sample (ligated samples) added to 200 μl competent cells on ice
8. Incubate on ice for 20-30 mins
9. Heat shock the cells at 42°C for 2 mins in a waterbath and immediately return the tubes into an ice bath to chill for 1-2 mins
10. Add 330 μl SOC or LB (no ampicillin) media and incubate the cells at 37°C with vigorous shaking for 60 mins
11. Plate 200 μl of incubated cells onto "pre-dried" amp LB agar plates using glass beads
12. Grow the cells on the plate overnight at 37°C

Took 54 efficiencies to make 4 ml of competent cells.

Checked plates and there was no growth on any plates.

Decided to redo restriction digest as used all of sample from last time to increase success rate.

22 μl HAP
5 μl Buffer 2
1 μl BSA
20 μl DNA - decided to double DNA amount due to having very faint bands previously (used sample d"extender"
1 μl ECORI
1 μl HindIII

No Growth on plates

Performing Date Countersigned by Date

4/10/17 2/10/17 9/10/17

Continued on page number
Never drop

Sample conc (ng/µl) 0.250 260/280
d extracted 10.7 0.419 1.74
(5/10/17)

d1. Redy 2 7.2 0.145 0.58
(5/10/17)

The reason to why the fusion was being lost after digest is due to the primer design—there were more restriction sites than there should have been and therefore the fragment was cut more than it should be → New primers were designed.

Redo from scratch 18/10/17

1st step PCR

Sample 1 = Lcy YF + Lcy YR
Sample 2 = Lcy YF + Lqy ayBR
Sample 3 = GshBR1' + Lqy ayBF1 YS
Sample 4 = GshBR' + Lcy YF3 YS

PCR set up:

H2O = 25.5 µl
Flexi buffer = 10 µl
1 mM DNTP = 1 µl
25 mM MgCl2 = 2 µl
10X AMF Primer = 1 µl
10X ARM Primer = 1 µl
Fusion template = DNA sample = 1 µl

v. PCR

Perform by 18/10/17

Countersigned by 18/10/17
Before doing PCR, the primer primers had to be diluted

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Volume for 10μl well</th>
</tr>
</thead>
<tbody>
<tr>
<td>lacIgus BF1Y</td>
<td>216</td>
</tr>
<tr>
<td>lacIgus BR1Y</td>
<td>229</td>
</tr>
<tr>
<td>lacIgus BF3Y</td>
<td>246</td>
</tr>
<tr>
<td>lacIgus BR3Y</td>
<td>288</td>
</tr>
</tbody>
</table>

Primers were then diluted to make 10μM = 1μl Primer + 9μl H2O

Samples 1 - 4 contain the fusion template (sample d1 extracted) 5' as DNA template

Sample 6 contains SM109 5 (see pg 7) as template

Samples 7 + 8 contain WSB3318; 1 (see pg 7) as template

Gradient PCR

<table>
<thead>
<tr>
<th>Temp</th>
<th>Sample 1 + 4</th>
<th>Sample 2 + 3</th>
<th>Sample 5 + 8</th>
<th>Sample 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.4</td>
<td>Ran gel at 70 V for 40 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td>Order in gel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.3</td>
<td>1, 2, 3, 4, 5, 6, 7, 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.7</td>
<td>= Very bright bands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.1</td>
<td>too much DNA + contamination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0</td>
<td>Surviving → to reduce DNA or increase # of cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performed by [Name] Date 18/10/17 Countersigned by [Name] Date 18/10/17
Run gel for sample d'' reamplified.
- gel extract band (if too bright then read diluting)
- dilute 1 in 50?

Use gel extraction as template for 1st step PCR
- also change MgCl₂ to 1 µl

<table>
<thead>
<tr>
<th>Without gel</th>
<th>With Diff</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.993</td>
<td>1.045</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.104</td>
</tr>
</tbody>
</table>

Reamplified previous fusion (d'' + d'')

Sample d' = 32.5 µl H₂O
10 µl Flexi buffer
1 µl DNTP
2 µl MgCl₂
1 µl F Primer
1 µl R Primer
2 µl DNA sample
0.5 µl GoTag

Sample d' = 33.5 µl H₂O
10 µl Flexi buffer
1 µl DNTP
2 µl MgCl₂
1 µl F Primer
1 µl R Primer
1 µl DNA sample
0.5 µl GoTag

Both samples were run at 64°C
- Sample d
- fusion has been successfully amplified.
- Sample d
- gel extraction has also been successful with a faint band being present. No dilution was required.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CMC</th>
<th>OD 260</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.2</td>
<td>0.103</td>
<td>1.84</td>
</tr>
<tr>
<td>2</td>
<td>3.8</td>
<td>0.075</td>
<td>1.79</td>
</tr>
</tbody>
</table>

First-step PCR re-run

Sample 1*: Lac4F3 + Lac4GusBR14 = 62°C
Sample 2*: Lac4F3 + Lac4GusBR34 = 62.9°C
Sample 3*: GusBR1 + Lac4GusBF114 = 62.9°C
Sample 4*: GusBR1 + Lac4GusBF341 = 62°C

PCR setup:
- 34.5 µl H2O
- 10 µl Buffer
- 1 µl DNTP
- 1 µl DNTP
- 1 µl MgCl2
- 1 µl F Primer
- 1 µl R Primer
- 1 µl DNA sample (d extracted)
- 0.5 µl Go Taq

Performed by: [Signature]
Date: 19/10/17
Countersigned by: [Signature]
Date: 19/10/17
PCR troubleshhot #3 - change MgCl₂ + DNA

3.5 ul H₂O
10 ul Buffer
1 dNTP
0.5 ul MgCl₂
1 ul F Primer
1 ul R Primer
0.5 ul DNA template (0.5 ul etc)
0.5 ul Go Taq

Samples were run at gradient temp

<table>
<thead>
<tr>
<th>Temp</th>
<th>Sample</th>
<th>a + a</th>
<th>b + c</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.9</td>
<td>sample b + c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.1</td>
<td>sample a + d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0</td>
<td>sample b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20/10/17

Samples chosen to purify from the 3 troubleshoot:

Sample 5 (19/10/17) = LacY F3 + LacY GusBR1 Y
Sample 2 (19/10/17) = LacY F3 + LacY GusBR8 Y
Sample 3 (19/10/17) = GusBR1 + LacY GusBF1 Y
Sample d (19/10/17) = GusBR1 + LacY GusBF3 Y

Samples were purified but some fragments + smearing inside = went astray anyway.

Performed by: [Signature] 20/10/17
Countersigned by: [Signature] 20/10/17

Continued on page number...
Purified samples were heated with DEPC: 1 ul DEPC and 5.5 ul Cutsmart buffer @ 80°C for 20 mins.

PCR fusion #1

32.5ul H2O	33.5ul H2O
10ul Buffer	10ul Buffer
1ul MgCl2	1ul MgCl2
1ul dNTP	1ul dNTP
1ul E Primer	1ul E Primer
1ul R Primer	1ul R Primer
2ul DNA	2ul DNA
0.5ul GoTag	0.5ul GoTag

sample 5 + sample 3' = f1
F3 = 63.5

sample 2'' + sample 3'' = f2
F4 = 63.5

First step amplification

F1 F2 F3 F4

Both samples ran at 63.3
Troubleshoot 2 - Fusion PCR

23/10/17

F1' + F2' = 32.5 μl 1×Q
10 μl Buffer
2 μl MgCl₂
1 μl DNA
0.5 μl Taq

31.5 μl H₂O

F2+ F2' = 63 s
32.5 μl 1×Q
10 μl Buffer
2 μl MgCl₂
1 μl DNA
0.5 μl Taq

F5 + F5' = 65 s
32.5 μl 1×Q
10 μl Buffer
2 μl MgCl₂
1 μl DNA
0.5 μl Taq

Ran gel - all samples have smearing and no fusion bands visible.

F1' + F2' F3 F4' F5 F5'
Troubleshoot 3 - fusion PCR

Decided to run PCR @ 3 temps: 98°C, 60°C, 62°C.

- 32.5 µl H2O
- 10 µl Buffer
- 2 µl MgCl2
- 1 µl dNTPs
- 1 µl Primer (F)
- 1 µl Primer (R)
- 2 µl DNA
- 0.5 µl GoTag

Samples X + Y = 58°C - sample 5 + sample 3
Samples X + Y = 60°C - sample 4, Y, Y' + sample 2 + sample 4
Samples X'' + Y'' = 62°C
Nanodrop of Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>conc (mg/µL)</th>
<th>OD260</th>
<th>2.60/280</th>
<th>H2O ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8.8</td>
<td>0.175</td>
<td>1.08</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>0.076</td>
<td>0.97</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>7.0</td>
<td>0.140</td>
<td>1.12</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>0.081</td>
<td>1.05</td>
<td>1:1</td>
</tr>
<tr>
<td>3</td>
<td>5.9</td>
<td>0.118</td>
<td>0.97</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.050</td>
<td>0.82</td>
<td>1:1</td>
</tr>
<tr>
<td>1</td>
<td>6.2</td>
<td>0.124</td>
<td>0.97</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>0.045</td>
<td>0.88</td>
<td>1:1</td>
</tr>
</tbody>
</table>

1st step PCR again

<table>
<thead>
<tr>
<th>33 µL Sssl Buffer</th>
<th>10 µL Buffer</th>
<th>34 µL H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µL D NTP</td>
<td>1 µL DNTP</td>
<td></td>
</tr>
<tr>
<td>0.8 µL MgCl2</td>
<td>1 µL MgCl2</td>
<td></td>
</tr>
<tr>
<td>1 µL F Primer</td>
<td>1 µL F Primer</td>
<td></td>
</tr>
<tr>
<td>1 µL R Primer</td>
<td>1 µL R Primer</td>
<td></td>
</tr>
<tr>
<td>0.5 µL DNA</td>
<td>0.5 µL DNA</td>
<td></td>
</tr>
</tbody>
</table>

1. → 4. 1. → 4. → 65.1

1. = LactF3 + LactGusBR 14 + JM109 → ran at 65°C
2. = LactE3 + LactGusBR 34 + JM109 → ran at 65°C
3. = GusBF1 + LactGusBF14 + 3 MJ833 → ran at 65°C
4. = GusBR + Lact Gus BF 34 + MJ833 → ran at 65°C

Performed by: [Signature]
Date: 31/10/17

Verified by: [Signature]
Date: 31/10/17

Continued on page number
ran gel from yesterday's PCR - 2 bands evident and moving evident across samples with 2 μl MgCl₂

4) Too much Mg₂⁺ in compared to DNA (1 μl)?
3) Possibly possibly too long extension time?
2) Not enough DNA sample?

Plan: repeat PCR with 1 μl MgCl₂ and 2 μl DNA with the same programme.

1st step PCR - troubleshooting #2:

33.5 μl H₂O
10 μl Buffer
1 μl dNTP
1 μl MgCl₂
1 μl f Primer
1 μl r Primer
2 μl DNA
0.5 μl GoTag

1°: Lac4 F3 + Lac4 GUSR1 + JM109 → 65.1
2°: Lac4 F3 + Lac4 GUSR3 + JM109 → 64.3
3°: GUSR1 + Lac4 GUSF1 + M5833 → 64.3
4°: GUSR1 + Lac4 GUSF3 + M5833 → 64.3

Can gel - no bands evident; trying going to lower temp on next PCR to see if may not be annealing.
1st step PCR troubleshooting #3

Plan is to do PCR at 3 different temps (temp gradient) to see if annealing improves (62, 60, 58)

- 33.5 µl H2O
- 10 µl buffer
- 1 µl dNTP
- 1 µl MgCl2
- 1 µl F primer
- 1 µl R primer
- 2 µl DNA → w/ FJM109.5
- 0.5 µl GoTag

W, X, Y, Z1 = 62
W', X', Y', Z1 = 60
W2, X2, Y2, Z2 = 58

Samples W, X, W', X', W2, Y2 and Z2 had bands.

W, W', W2 = LacYF3, LacYGusBR14, FJM109
X, X', X2 = LacYF2, LacYGusBR34, FJM109
Y, Y', Y2 = GusBR1 + LacYGusBE31, MD833
Z, Z', Z2 = GusBR1 + LacYGusBE31, MD833
1st step PCR troubleshooting - Gus fragments

10/11/17

Plan is to run 2 separate PCRs today:

1) More 4 Gus DNA concentration sample at 62°, 60°, and 58° = 6 samples (PCR)

2) Run previous Gus sample + new concentration sample at 62°, 60°, and 58° but with 1 min polymerization instead of 2 = 12 samples

Decided to hold fire with this and attempt fusion instead

33.8 µl H2O
10.0 µl buffer
1.0 µl Dntp
1.0 µl MgCl2
1.0 µl F Primer
1.0 µl R Primer
2.0 µl DNA → used MGB331 T1
0.5 µl GoTag

1.2 = 62
3.4 = 60
5.6 = 58

Plan for the rest of the day =

- Run successfully last fragments → do any gel extraction needed to clear bands
- Run fusion PCR
Decided to purify samples:

\[W, X, W', X' \]

\[\text{very faint bands visible on gel after purification} \]

Decided to do gel extraction on gus samples from previous retake (pg 32) = sample 3 + sample 1

Loaded: 1 x 16 μl DNA + 4 μl Dye

1 x 8 μl DNA + 2 μl Dye

For each sample

Haven't got time to do fuzzy PCR or run gel after gel extraction = will do this next week

Gel Extraction

<table>
<thead>
<tr>
<th>Sample</th>
<th>Initial</th>
<th>After</th>
<th>Diff</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3''</td>
<td>0.998</td>
<td>1.098</td>
<td>0.100</td>
<td>0.300</td>
</tr>
<tr>
<td>3'</td>
<td>1.1145</td>
<td>1.1145</td>
<td>0.000</td>
<td>0.351</td>
</tr>
</tbody>
</table>

Will run gel extraction gel next week.
Plan =
- DPN1 treatment to purified samples from 10/11/17
- RNA gel of gel extracted samples from 10/11/17
- RNA PCR fusion (temp gradient, diff MgCt amounts, diff DNA amount)

DPN1 treatment of samples W, X, Y, Z
1 ul DPN1, 5ul CutSmart buffer @ 80°C
for 20 mins.

CutSmart buffer needs to be 1X, not 5X.
Dilute by doing 1ul sample and 49ul water

How to calculate concentration with dilution factor:
initial conc * 1 = final conc
dilution factor

PCR Fusion Table:

<table>
<thead>
<tr>
<th>3ul H2O</th>
<th>33.5ul H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>10ul buffer</td>
<td>10ul buffer</td>
</tr>
<tr>
<td>1ul DNTP</td>
<td>1ul DNTP</td>
</tr>
<tr>
<td>1ul MgCl2</td>
<td>1ul MgCl2</td>
</tr>
<tr>
<td>1ul F Primer</td>
<td>1ul F Primer</td>
</tr>
<tr>
<td>1ul R Primer</td>
<td>1ul R Primer</td>
</tr>
<tr>
<td>2ul DNA</td>
<td>2ul DNA</td>
</tr>
<tr>
<td>0.5ul GoTaq</td>
<td>0.5ul GoTaq</td>
</tr>
</tbody>
</table>

Performed by: [Name]
Date: 15/11/17
Counter-signed by: Camilla O
Date: 15/11/17
Samples

$F_1 = \text{sample } 3' + \text{sample } W$

$F_2 = \text{sample } d' + \text{sample } X$

$F_3 = \text{sample } 3' + \text{sample } W$

$F_4 = \text{sample } d' + \text{sample } X$

$F_5 = \text{sample } 3' + \text{sample } W$

$F_6 = \text{sample } d' + \text{sample } X$

$F_7 = \text{sample } 3' + \text{sample } W$

$F_8 = \text{sample } d' + \text{sample } X$

$F_9 = \text{sample } 3' + \text{sample } W$

$F_{10} = \text{sample } d' + \text{sample } X$

$F_{11} = \text{sample } 3' + \text{sample } W$

$F_{12} = \text{sample } d' + \text{sample } X$

$F_{13} = \text{sample } 3' + \text{sample } W$

$F_{14} = \text{sample } d' + \text{sample } X$

$F_{15} = \text{sample } 3' + \text{sample } W$

$F_{16} = \text{sample } d' + \text{sample } X$

Rain gel of PCR fusion attempts + gel extraction from last week.

- Gel extractors have good faint bands (correct size) with no smearing.
- No fusion bands formed from PCR, there's a lot of smearing throughout (across the whole column). Bands visible are $3\mu B$ fragment size. Not sure why - temp + MgCl2 differences doesn't appear to have made much difference.

Plan: do PCR with $2\mu B$ last half and $1\mu B$ half at different temps with $2\mu B$.
PcL fusion Troubleshoot

Plan - run PCR with 2μl Lac4 and 1μl G418 at 4 different temps (64, 62, 60, 58)

31.5 μl H2O
10 μl Buffer
1 μl DNA
2 μl MgCl2
1 μl F Primer
1 μl R Primer
3 μl DNA
0.5 μl GoTo

F1 = sample 1 + sample X
F2 = sample 1 + sample Y
F3 = sample 3 + sample W
F4 = sample d + sample X
F5 = sample 3 + sample W
F6 = sample d + sample W
F7 = sample 3 + sample W
F8 = sample d + sample X

Plan - 8 mins extension time
- 1 μl MgCl2 and 0.5 μl MgCl2
- 1 μl GoTo - agarose (after fusion)
- 28 cycles
- 60 - 54 °C temp gradient (SSC)

NCBS - map drawing
plasmid 32, draw
PCR fusion Troubleshoot 3

32µl H2O
10µl Buffer
1µl MgCl2
1µl F Primer
1µl R Primer
3µl DNA → 1µl Go part, 2µl Lack part
1µl Go Taq

F1 = sample 3' + sample W 756°C
F2 = sample 3' + sample X
F3 = sample 3' + sample W 755°C
F4 = sample 3' + sample X
F5 = sample 3' + sample W 754°C
F6 = sample 3' + sample X

Change cycles from 30 to 28
Extension time is back to 2 mins

To make 1Kb ladder:

300µl TE, 100µl DNA ladder
150µl 5X Lxavi buffer Go Taq (green) → C571A 3157.2704 1Kb DNA ladder Promega

© 2017 Camilla O. 29/11/17
<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc ng/l</th>
<th>OD 260</th>
<th>260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>3° (1X1110)</td>
<td>8.0</td>
<td>0.160</td>
<td>1.85</td>
</tr>
<tr>
<td>d° (1X1110)</td>
<td>9.4</td>
<td>0.118</td>
<td>1.65</td>
</tr>
<tr>
<td>W (1X1110)</td>
<td>3.8</td>
<td>0.077</td>
<td>1.40</td>
</tr>
<tr>
<td>X (1X1110)</td>
<td>4.4</td>
<td>0.089</td>
<td>1.43</td>
</tr>
</tbody>
</table>