IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 1, 2018, accepted August 5, 2018, date of publication September 10, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2869251

I Know What You Did Last Summer: New
Persistent Tracking Mechanisms in the Wild

STEFANO BELLORO' AND ALEXIOS MYLONAS “2, (Member, IEEE)

! British Broadcasting Corporation, London W1A 1AA, UK.

2Department of Computing and Informatics, Bournemouth University, Poole BH12 5BB, U.K.

Corresponding author: Alexios Mylonas (amylonas @bournemouth.ac.uk)

ABSTRACT As the usage of the Web increases, so do the threats an everyday user faces. One of the most
pervasive threats a Web user faces is tracking, which enables an entity to gain unauthorized access to the
user’s personal data. Through the years, many client storage technologies, such as cookies, have been used
for this purpose and have been extensively studied in the literature. The focus of this paper is on three newer
client storage mechanisms, namely, Web Storage, Web SQL Database, and Indexed Database API. Initially,
a large-scale analysis of their usage on the Web is conducted to appraise their usage in the wild. Then, this
paper examines the extent that they are used for tracking purposes. The results suggest that Web Storage is
the most used among the three technologies. More importantly, to the best of our knowledge, this paper is the
first to suggest Web tracking as the main use case of these technologies. Motivated by these results, this paper
examines whether popular desktop and mobile browsers protect their users from tracking mechanisms that
use Web Storage, Web SQL Database, and Indexed Database. Our results uncover many cases where the rel-
evant security controls are ineffective, thus making it virtually impossible for certain users to avoid tracking.

INDEX TERMS Web tracking, web security, privacy, indexed database, indexedDB, web storage, Web SQL

database.

I. INTRODUCTION

As of April 2018, the digital population has reached
4087 million users [1]. Most users access the web on a daily
basis for the most diverse array of tasks, from sending emails
and reading the news to browsing social media and accessing
any kind of content. The usage of the Internet has improved
the quality of our lives and provided us with opportunities
and information, which were previously accessible only to a
small percentage of people.

Nonetheless, such advantages do not come without a
price. While users navigate the web, they expose themselves
and share, willingly or not, personal information. Indeed,
users are exposed to different threats, such as tracking and
behavioral profiling, which directly violate their privacy.
Many websites deploy a variety of technologies to track
the users or profile them. These practices are used for a
number of reasons [2]. For instance, identifying the user and
knowing their characteristics enables a website to provide a
more personalized user experience. While this may sound
innocent and even desirable, the same techniques can be
used to profile a possible target of a social engineering
attack, gather personal information to either sell it, use it for

advertising or for any other kind of surveillance [3]. Many
client storage technologies have been used for tracking pur-
poses over the years; the most famous of all is HTTP cookies.

Almost a decade ago, the web community was galvanized
by the advent of HTMLS and the myriad of new primi-
tive APIs associated to it. Among them, client-side storage
APIs, such as Web Storage, Web SQL Database and Indexed
Database API, were bound to revolutionize the web and
eventually narrow the differences between web applications
and native apps. Since then, the web has certainty evolved, but
web applications are far from replacing native mobile apps.
Moreover, in some instances, trackers have adopted client-
side storage techniques as a way to enhance the capabilities
of HTTP cookies, as shown by [35], but until now their use
has been considered very limited.

In this context, this work focuses on Web Storage, Web
SQL Database and Indexed Database API and investigates
the usage of these client-side storage APIs as a tracking
vector. Contrary to previous results in the literature, our
results suggest that tracking is a major use case for these
APIs. Moreover, we investigate the user control over the data
that the aforementioned client-side technologies store on the

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission.

52779

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8819-5831

IEEE Access

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

user’s device. Our results uncover multiple cases where the
users are exposed to privacy violations, as: a) they are unable
to delete data created by the API of Web Storage, Web SQL
Database or Indexed Database API even though they are
attempting to clear locally stored data of their browsing, and
b) they unknowingly store potentially tracking data created by
these APIs while browsing the web in a private session. These
findings have serious privacy implications, as they highlight
that it is virtually impossible for certain users to avoid web
tracking.

Our contributions include:

o We perform a large-scale analysis of the usage of Web
Storage, Web SQL Database or Indexed Database APIs
on the web. We quantify their pervasiveness in the con-
text of tracking code and find that these technologies are
mostly used by trackers. To the best of our knowledge,
we are the first to uncover that the main use case of these
technologies is web tracking.

« We investigate the capability of modern, popular
browsers for desktops and mobile devices to delete data
that can be stored locally via these APIs. Moreover,
we examine if data from these APIs remain after
a private browsing session. In both cases, we find
instances where the users would be exposed to privacy
violations if a tracker uses Web Storage, Web SQL
Database or Indexed Database APIs as the tracking
vector, as we identified many cases that the relevant
security control has questionable effectiveness.

The rest of the paper is organized as follows. Section II
briefly provides the required background in client storage
technologies. Section III investigates how frequently and for
which purpose these APIs are used in the wild. Section IV
reviews the controls offered to the users over these APIs.
Finally, Section V presents the related work and Section VI
concludes the paper and discusses future work.

Il. BACKGROUND

Since the early days of the Web, HTTP cookies have been
used as a client-side storage mechanism. As the web evolved,
a desire for different and more capacious ways to store struc-
tured data on the web client started to emerge. Over the years,
several client-based storage technologies appeared. Most of
them, such as Local Shared object of Adobe Flash [10],
Oracle Java [11], Microsoft Silverlight [12] and Google
Gears (Google Code, 2008), were made available through
third-party plug-ins. However, with the advent of HTMLS,
browsers started to support native functionalities that could
replace these third-party plug-ins. Client-side persistent data
storage technologies were introduced, such as Web Stor-
age [13], Web SQL Database [15] and Indexed Database
API [20]. This section briefly introduces the aforementioned
three technologies, as well as cookies.

A. COOKIES
An HTTP cookie is a short piece of data (typically with
size 4K) that a website sends to a client, either via HTTP

52780

response headers or by using client-side scripting. The client
is expected to save this data and send it back to the server in
subsequent HTTP requests. Each cookie is associated to an
origin, i.e., a combination of the hostname, the port number
and the protocol used by the web application [5]. This is based
on a concept known as ‘same-origin policy’, which has been
the cornerstone of browser security since the early days of the
web [6].

For performance reasons, web browsers limit not only
the length of HTTP cookies, but also apply constraints
to their quantity, allowing only a few dozens per origin.
Several online studies provide an overall view of the limits
that different web browser vendors set to HTTP cookies
(81, [9].

Since a webpage can contain resources from multiple ori-
gins, HTTP cookies are often used to identify and track users,
not only across different browsing sessions, but also across
different websites. Over the years, both Internet users and leg-
islators have become more aware of the privacy implications
of third-party tracking [7].

B. WEB STORAGE

Web Storage [13] is a specification that allows web appli-
cations to create a persistent key-value store in the browser,
the content of which is maintained either until the end of a ses-
sion (i.e., sessionStorage), or beyond (i.e., localStorage). This
technology enables web applications to store a much greater
amount of data compared to HTTP cookies. Specifically,
the storage capacity provided by web storage varies from
SMB to 25MB, depending on the browser. An innovative
feature of Web Storage is that a web application can use a
client-side JavaScript API to retrieve locally stored data, even
when the browser is offline. Web Storage is in fact completely
based on client-side scripting and, unlike HTTP cookies, data
cannot be sent via HTTP headers.

Similarly to HTTP cookies, the security model of Web
Storage is based the same-origin policy. This means that each
origin has a unique storage object assigned to it. For this
reason, the specification does not recommended using this
technology on websites that use a shared host name or do not
use HTTPS. Otherwise, information leakage or spoofing may
happen, as for example in the case of DNS spoofing attacks.
Moreover, the specification recommends treating persistently
stored data as potentially sensitive, as they could contain
email addresses or calendar appointments, etc.

As with HTTP cookies, a third-party tracking agent
could use Web Storage to profile users across multiple ses-
sions [13]. The specification recommends browser vendors
to treat web storage content in the same manner as they
treat HTTP cookies. In particular, vendors are encouraged
to organize the user interfaces for clearing data in a way
that allows users to clear all different types of persistent data
simultaneously. It is also important to point out that, while
Web Storage is a much lesser known technology than HTTP
cookies, its usage is not exempt from regulations around
personal user data [14].

VOLUME 6, 2018

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

IEEE Access

C. WEB SQL DATABASE

Web SQL Database [15] is a deprecated specification, which
allows web applications to store large amounts of data in the
browser, using client-side transactional databases that can be
queried using SQL. The specification is based on SQLite,
an embedded relational database management system devel-
oped by Owens [17]. Since the beginning of 2010, a few
browser vendors started implementing experimental versions
of the Web SQL database API [18]. This was not a complete
novelty for some of them; Web SQL Database stores data in a
very similar way to Google Gears and both technologies are
based on SQLite. Other browser vendors like Mozilla [19],
instead, decided to avoid Web SQL database completely.
In November 2010, the W3C announced the decision to
abandon the Web SQL Database draft lamenting the lack of
multiple independent implementations. Web SQL Database
was deprecated in favor of Indexed Database API. Despite
the deprecation by the W3C, three major browser vendors
(Chrome, Safari and Opera) have continued supporting Web
SQL Database and have not yet announced any plan of
discontinuing it.

D. INDEXED DATABASE API (INDEXED DB)

The first draft of this specification was initially published
as WebSimpleDB API and it was renamed to Indexed
Database API the following year [16]. It defines a JavaScript-
based interface for an embedded transactional database
system. Similarly to Web Storage and Web SQL Database,
IndexedDB allows storing structured data in the browser and
the API provided is the only interface a web application
needs to access and manipulate them. The main difference
with Web Storage is in the scale and structure of the data
that can be stored. In fact, Web Storage provides a basic
key-value store that can be useful when dealing with simple
datasets. On the other hand, Indexed Database API enables
the storage of larger amounts of structured data and provides
advanced features, such as in-order key retrieval and storage
of duplicate values for a key. Fig. 1 includes a snapshot from
the console of Chrome that shows the client-side storage
mechanisms, namely Web storage, IndexedDB, Web SQL
and cookies, which are used by a Twitter Web application.
It can be noted that IndexedDB can store data in a much more
structured way compared to cookies and Web Storage, having
several databases associated to the same origin. Each database
has one or more object stores and their content can be sorted
through one or multiple keys. Unlike Web SQL Database,
IndexedDB is an object-oriented database. The interface for
adding and retrieving data does not use SQL queries, but keys
and indexes instead. The security recommendations for the
usage of Indexed Database API are not different to those
for Web Storage. The security model of IndexedDB still
gravitates around the principles of the same-origin policy.
A web application is allowed to access locally stored data
as long as the request’s origin matches the local database’s
origin. Unlike HTTP cookies, a maximum storage duration
does not have to be specified.

VOLUME 6, 2018

FIGURE 1. Representation of client-side stored data provided by the
console of Chrome.

IIl. EXPLORING THE USAGE OF CLIENT-SIDE

STORAGE IN THE WILD

This section discusses the methodology for investigating the
usage of Web Storage, Indexed Database API and Web SQL
Database as a tracking mechanism in the wild. In doing
so, we first investigate the frequency of the usage of these
technologies on a large-scale sample of the World Wide
Web. Then, we quantify their pervasiveness in the context of
third-party tracking code.

A. METHODOLOGY

In this subsection, we perform an analysis of a large-scale
dataset, which contains snapshots of client-side scripts used
by websites. The aim of our analysis is to demystify the per-
vasiveness of Web Storage, Indexed Database API and Web
SQL Database in the web and study their use as a tracking
vector. To this end, we perform static analysis on the dataset to
identify instances of client-side scripts that make use of any of
the three APIs by searching for code constructs that read and
write data in the client. We then identify which of the above-
mentioned scripts belong to well-known tracking domains.
Fig. 2 shows a high-level diagram of our test environment.

52781

IEEE Access

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

FIGURE 2. Architecture of the test environment.

The dataset in use comes from the HTTP Archive project
created by [21]. Every fortnight, it crawls a list of webpages,
which is loosely based on the Alexa Top Sites [22]. HTTP
Archive collects data, such as the payload content and logs
the interaction between the browser and the crawler. It also
captures the body of the responses for each subresource
(i.e. any file that is fetched by an HTML page such as scripts,
stylesheets) used by the website. Since the size of the dataset
generated by HTTP Archive can be up to several hundreds of
gigabytes, Google BigQuery [23] was used for its processing.

For each of the three client-storage APIs one matching
rule was used to create a series of SQL queries, which run
against the HTTP Archive dataset using Google BigQuery.
These rules, which are summarized in Table 1, were defined
by using constructs required to perform basic operations, such
as creating a data store, reading and writing data. Appendix A
lays out the constructs that have been identified in this work
in our matching rules.

TABLE 1. Matching rules used for each of api analyzed.

Primitive Matching rule
Web Storage “localStorage” AND (“setltem” OR “getltem”)
IndexedDB “indexedDB” AND “transaction” AND “objectStore”
Web SOL “openDatabase” AND “transaction” AND “executeSql”

In order to identify whether a subresource belongs to a
tracker, we created a database of tracking domains by aggre-
gating three well-known tracking blacklists, namely: Discon-
nect (2017), No Track [26] and Easy List (2017). To this aim,

52782

we have developed scripts that combine the domains that are
listed in the aforementioned blacklists after their files have
been properly parsed and sanitized.

We run our experiments against: a) the whole dataset pro-
vided by HTTP Archive on the 15th of May 2018 and b) the
Alexa top 10,000 sites. Table 2 summarizes the number of
websites, subresources and truncated or empty subresources
in our experiments. We highlight the low percentage of trun-
cated or blank subresources, since on those the matching rules
are not applicable.

TABLE 2. Data used from HTTP archive.

Whole Dataset Data matching
(May 2018) Alexa’s 10K sites
Number of websites in the 460099 9020
dataset
Total number of 18860393 505745

subresources in the dataset
Truncated or empty 3.15 5.26
subresources (%)

B. EXPERIMENTAL RESULTS

Table 3 shows the usage of the primitives considered, on the
whole dataset provided by HTTP Archive for the 15th of
May 2018. An interesting result is that more than two thirds
of the websites analyzed contain Web Storage related con-
structs. Another result worth noticing is that the constructs
analysed are very often found on third party subresources.
Similarly, Table 4, shows the results for the Alexa’s top
10,000 sites. It is interesting to notice that in this case,
the values for the usage of the Indexed Database API are

VOLUME 6, 2018

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

IEEE Access

TABLE 3. Results for the whole dataset.

Websites with
Websites with construct in 3rd

Client-side storage API construct in party

subresource (%) subresource
(%)
Web Storage 71.66 65.39
IndexedDB 5.56 5.15
Web SOL DB 1.34 1.18

TABLE 4. Results for the alexa top 10K.

Websites with
Websites with construct in 3rd

Client-side storage API construct in party

subresource (%) subresource
(%)
Web Storage 83.09 77.08
IndexedDB 11.39 9.89
Web SOL DB 2.12 1.61

almost double compared to the whole dataset. The use of Web
SQL remains low in our experiments, which is expected as
this API is deprecated.

Table 5 summarizes the number of domains that include
at least one tracking subresource, which is using one of the
three client-side storage APIs. As it can be seen, there is a
high percentage of websites containing at least one tracking
subresource where constructs that belong to Web Storage
(localStorage) can be found. The figures are much smaller
for Indexed Database API and considerably smaller for Web
SQL Database.

TABLE 5. Websites and tracking subresources.

API / Websites with at least

. Whole Dataset
one tracking subresource

Data matching

using API (%) (May 2018) Alexa’s 10K sites
Web Storage 57.72 67.21
IndexedDB 1.68 3.99
Web SOL DB 0.76 0.88

Finally, Table 6 highlights the usage of the client-side
storage techniques in the context of tracking from a different
angle. It shows amongst all the subresources that have been
analysed, the percentage of them containing the constructs
for the API considered that are used by a tracking domain.
In other words, this table answers the question: ‘“how fre-
quently are those storage techniques used as tracking vec-
tors?”’. In all cases, the frequencies are surprisingly high,

TABLE 6. Tracking subresources and primitives.

API/ Subresources using the

Whole Dataset Data matching
API El:f;cfeef?ig)ed as (May 2018) Alexa’s 10K sites
Web Storage 71.18 63.88
IndexedDB 31.87 36.14
Web SOL DB 53.59 39.90

VOLUME 6, 2018

starting from around 30% for Indexed Database API to more
than 70% for Web Storage (localStorage). This significant
finding suggests that currently user tracking is a major use
case for the APIs that have been examined. Surprisingly, this
is also the case for a deprecated standard, i.e., Web SQL DB.

C. DISCUSSION

This section has shown that a significant number of the
websites analysed contains at least one tracking subresource
having code constructs that belong to at least one of the three
APIs considered. More importantly, it has shown that tracking
scripts seem to currently be the major use case of the three
storage APIs considered. Indeed, in many cases, subresources
that contain the analysed APIs are often identified as trackers.
As our experiments used a dataset that represents a significant
portion of the World Wide Web, we consider that our results
shed some light on the usage of Web Storage, IndexedDB and
Web SQL in user tracking.

However, the usage of HTTP Archive as the dataset for
our experiments introduces a number of limitations to our
work. HTTP Archive can only provide snapshots of front
pages of openly available websites. The scanning engine
does not perform operations such as user log in or following
links on a menu. Considering that primitives such as the
Indexed Database API are designed to support advanced web
applications, it is reasonable to assume that there are cases of
websites in which those storage techniques are used only once
the user is logged in. However, this is an accepted limitation,
especially considering that in order to quantify the usage of
client-side storage techniques in the context of user tracking,
it is far more important to focus on the large-scale adoption of
the technologies in question rather than on specific use cases.

Another limitation of our work stems from the scanning
engine of HTTP Archive, as it truncates payloads that are
greater than 2 MBs. This means that if the constructs defined
in the matching rules happen to be in the part of the payload
that HTTP Archive could not capture, they will not be found
by our queries. However, as shown in Table 2 truncation
and empty subresources seldom appear in our dataset. More-
over, their absence does not invalidate our findings. On the
contrary, their successful capture from HTTP Archive might
provide additional subresources that match our rules, thus
reinforcing our results.

In addition, HTTP Archive does not contain snapshots
from each one of the Alexa Top one million sites. The set
of websites scanned is loosely based on the Alexa list, but
any private individual could send a request to HTTP Archive
to add or remove sites to the dataset. The actual number
of websites included in each scan is specified in the results
section.

Finally, this work suffers from a limitation that is common
in any static analysis approach. Our work verifies the pres-
ence of certain constructs in client-side scripts, but cannot
verify the actual usage of the primitives unless the actual web
application is executed in the browser, which falls outside the
scope of our work. For example, a website could include a

52783

IEEE Access

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

JavaScript library that relies on Web Storage, but never exe-
cute its code in the browser. Moreover, some websites include
third-party libraries that perform a set of basic operations
using a given primitive with the sole purpose of assessing
browser capabilities. This practice is known as ‘feature detec-
tion’ and one of the most well-known libraries used for this
purpose is Modernizr [27].

IV. USER CONTROL OVER LOCALLY STORED DATA

The previous section uncovers that currently Web Storage,
Indexed Database API and Web SQL Database are frequently
used as a tracking vector. In this context, this section exam-
ines: 1) whether popular desktop and smartphone browsers
support the three aforementioned APIs, ii) the effectiveness
of the deletion of the data stored by them as part of the
mechanism that clears browsing data, and iii) if data remain
when they are created in private browsing mode.

A. METHODOLOGY

As mentioned previously in section II.B, the specifications
recommend browser vendors to treat the data removal of
various client-side persistent data features in the same way
as HTTP cookies. This means that browsers are expected to
make it easy for users, or at least possible, to remove all
locally stored user data. In addition, nowadays all browsers
offer to their users the functionality to browse the web
through a private session (often referred to as private or incog-
nito mode). The primary aim of the private session is to allow
users to browse the web without the browser saving data
regarding the ‘private’ browsing history.

We built a simple web application, called Storage
Watcher,! in order to verify the: a) level of API support in
a given browser, and b) effectiveness of data deletion.

The tests were performed in June 2018, on a broad
selection of desktop (Windows, Mac OS) and smartphone
(Android, iOS, Windows Phone) browsers. These include
the most popular browsers in these platforms, such as
Firefox, Chrome, Safari, Opera, and Edge/Internet Explorer.
Tables 11 and 12 in Appendix B include the details of the
browsers that were analysed and the results of the abovemen-
tioned experiments.

B. EXPERIMENTAL RESULTS

Our results uncover inconsistencies with regards to the
support of the client-side storage APIs by the different
browsers (see Tables 11 and 12 in Appendix B). For example,
amongst the desktop browsers, Firefox and Edge, disable the
IndexedDB API when used in private browsing mode. In both
cases, the other two storage APIs remain available. In con-
trast, certain versions of iOS WebKit-based browsers (Safari,
Chrome and Firefox for i0S) and Firefox for Android, seem
to do the exact opposite, as they disable the Web Storage
and Web SQL Database APIs when in private mode, but not
the IndexedDB API. It is, however, worth mentioning that

! Available at: https://github.com/stefano-belloro/storage-watcher

52784

more recent versions of i0S-WebKit-based browsers have
introduced a more consistent approach on which all the three
APIs are disabled on private browsing mode.

Our results also uncover multiple cases in which current
popular browsers cannot protect the privacy of their users,
as they fail to delete or isolate data stored via the API of
Web Storage, Web SQL DB or IndexedDB. As summarized
in Table 7 our results suggest that: a) the process of removing
private data from a browser does not always delete data stored
in all of the three client-side storage APIs or requires an extra
step in the browser’s user interface and b) some browsers do
not fully isolate client-side stored data when used in private
mode.

TABLE 7. Results for user control over local stored data.

Issue 0SS Browser APIs
i0S 10.2.1 Safari, Chrome IndexedDB
62.0
Android 6 Firefox 57, IndexedDB
Firefox 60
Data persists after MiuiBrowser LocalStorage,
clearing local data 9.1.3 IndexedDB
Android 7 Firefox 54, IndexedDB
Firefox 57
Android 8 Firefox 60 IndexedDB
Windows Phone Internet IndexedDB
8.10 by HTC Explorer
Mac OS 10.12.5 Firefox 57.0 IndexedDB
(quantum),
Data deletion Firefox 56.0
requires extra step windows 10 Firefox 56 IndexedDB
in the UT
Windows XP Firefox 47 LocalStorage,
IndexedDB
Firefox 56, 57 IndexedDB
iOS 11.1.2 Opera 16 LocalStorage
Android 6 Opera 43.0 IndexedDB, Web
SQL
Data} per51§ts after MiuiBrowser LocalStorage,
closing private 9.1.3 IndexedDB
session .
Android 7 Opera 42.7, IndexedDB, Web
Opera 43.0 SQL
Android 8 Opera 46.3 IndexedDB, Web
SQL
Values from non- Android 6 MiuiBrowser IndexedDB
private session are 9.1.3
leaked
Data stored in Mac OS 10.10.5, Chrome 62 localStorage,

guest mode is Windows 10 IndexedDB, Web
deleted only after SQL
quitting the
browser
Specifically, certain versions of i0S-WebKit-based

browsers (Safari? and Chrome for i0S?) and some Android
2Reported: https://bugs.webkit.org/show_bug.cgi?id=188164

3 Reported https://bugs.chromium.org/p/chromium/issues/detail?id=
868857

VOLUME 6, 2018

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

IEEE Access

browsers (Firefox for Android* and MiuiBrowser) retain
IndexedDB API content even after a user requests data dele-
tion. In all the cases considered, the user interface not only
does not make clear that IndexedDB API content will persist,
but also gives the impression that all ‘offline web site data’
will be deleted (Fig. 3). Furthermore, in MiuiBrowser v.9.1.3,
Web Storage (localStorage) content is also maintained, after
a user requests the deletion of private data. Fortunately, in the
case of 10S browsers, this issue seems to be resolved in
the latest version of the software considered in this work.
However, this behavior can still be seen on other recent
browsers (i.e., Firefox 60 on Android 8).

FIGURE 3. Firefox 57 on Android 6.0. The user interface suggest that
offline data will be removed.

It is also worth pointing out that some browsers require the
user to perform an extra action in order to include IndexedDB
API content to the process of clearing private data. As a matter
of fact, on all the desktop versions of Firefox® in scope of this
work, whilst the user interface allows deleting data stored via
IndexedDB API using the same panel used to remove HTTP
cookies, this option is disabled by default. This means that
users would have to expand the ‘details’ dropdown menu and
manually add ‘offline website data’ if they wish to remove

4Reported: https://bugzilla.mozilla.org/show_bug.cgi?id=1479403
3 Reported: https://bugzilla.mozilla.org/show_bug.cgi?id=1479414

VOLUME 6, 2018

IndexedDB API content. On an earlier version of Firefox
analysed (Firefox 47 on Windows XP), this was also the case
for Web Storage (localStorage). This default setting could
be misleading for an inexperienced user and give a sense of
anonymity that cannot be guaranteed, especially considering
that the IndexedDB API could be used as a backdoor to
reinstate content of HTTP cookies [35].

Similarly, Internet Explorer for Windows Phone 8.10 by
HTC requires a separate action to remove IndexedDB API
content. In this case, the user needs to navigate to a different
menu item called “advanced settings” and choose the option
“manage storage”’.

Furthermore, Opera 43 on Android allows the persistence
of data stored using IndexedDB API and Web SQL Database
across different private browsing sessions.® Similarly, Opera
for i0OS exhibits the same behavior for Web Storage
(localStorage) and MiuiBrowser 9.1.3 for both Web Storage
(localStorage) and IndexedDB API.

Moreover, in Google Chrome’s guest mode, content stored
in each of the three APIs persists across different windows
opened in guest mode.” This means that a user would need
to quit Chrome completely in order to discard locally stored
data accumulated in a guest browsing session. This behavior
might be misleading for certain users who might assume that
simply closing the browsing window but not the application
might be enough to remove locally-stored private data.

Lastlyy, =~ when running the experiment on
MiuiBrowser 9.1.3, it was noticed that the browser carries
over the values of IndexedDB API content created while
using the application on normal browsing mode. As a result,
if a private browsing session is preceded by a regular usage of
the browser in its normal mode, MiuiBrowser allows a third
party tracker to resume and recreate tracking values set while
the user was browsing on previous non-private sessions and
identify them even if they are browsing in private mode.

C. DISCUSSION

Our findings suggest that in many cases web users are
exposed to privacy violations if the website they visit or any
of its 3rd party subresources use Web storage, IndexedDB
and Web SQL DB as a tracking vector. This holds true
as our experiments uncovered instances in which: a) data
persists after clearing local data or after closing a private
session, b) data persists unless the user configures the browser
appropriately,) persistent data from a non-private session are
leaked to the private session, and d) data stored in guest mode
is deleted only after quitting Chrome. It is worth stressing,
that non security and technically savvy users are more likely
to use the default settings of the data clearing, thus failing to
delete data that potentially violate their privacy in the cases
that are describe in Table 7.

6Reported: Bug reference: DNAWIZ-38391

7Reported: https://bugs.chromium.org/p/chromium/issues/detail?id=
868870

52785

IEEE Access

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

Our work also uncovers inconsistencies with regards to
disabling certain client-storage APIs in private mode. If the
reasoning for disabling the APIs is to prevent user tracking,
it should be noted that advanced tracking mechanisms employ
multi-tier approaches based on a combination of various
storage vectors [35]. Therefore, blocking certain APIs whilst
allowing the usage of others might not produce the desired
level of privacy. Another interesting aspect is the way that
browsers have implemented the security controls that han-
dle the data of the APIs, namely private browsing and data
clearing, is inconsistent across different versions of the same
browsers and across different platforms (c.f. Table 11 and
submitted bugs).

Moreover, our experiments include a) the most popu-
lar browsers of the popular operating systems for desktops
(i.e., Windows, Mac OS) and b) the most popular mobile
browsers, which can be found in different types of mobile
devices, such as smartphone and tablets, for the most popular
platforms (i.e., Android, iOS, Windows Phone). As these
browsers currently hold the majority of the user share,
we consider our results representative. Furthermore, as sum-
marized in Table 7, it is worth noting that the majority of our
findings concern popular mobile browsers, such as Chrome,
Firefox and Safari. Given the popularity of these browsers
and the fact that mobile devices are nowadays the primary
vector to access the web [28], this increases the impact of our
findings.

V. RELATED WORK
A. CLIENT-SIDE STORAGE SYSTEMS AS
TRACKING VECTORS
Krishnamurthy and Wills [29] studied the diffusion of private
user information performed by third-party trackers that use
a combination of HTTP cookies and other elements of the
DOM. The authors analysed a selection of 1200 popular web-
sites and collected statistical data over a period of four years.
The results showed that the collection of user data increased
over time, even in websites where the user is expected to
provide confidential information such as medical or financial
details. More specifically, during the latest period that was
analysed, September 2008, the penetration was 70%. Further-
more, it was discovered that 52% of the websites considered,
contained code from at least two third-party tracking entities.
Gonzalez et al. [30] performed a large-scale study on the
usage, content and format of HTTP cookies in the wild. Their
work analysed a large dataset of network data that comprised
of 5.6 billion HTTP requests. The authors determined the
reach of cookies by measuring the number of referrers that
generate an HTTP request to the same cookie-setting end-
point. They found that, while the vast majority of cookies
relate to a unique referrer domain, there is a long tail of
cookies whose originating requests come from a significantly
high number of different domains. Moreover, the authors
analysed the names of the cookies and found instances of
websites that use cookies whose names include a unique

52786

identifier of the user. Finally, they discovered instances of
cookies values containing personal identifiable information
such as users’ IP and email address, which, represent a serious
breach of privacy.

Soltani et al. [31] conducted a study on the usage of Flash
Local Shared Object, often referred to as ‘Flash cookies’, as a
tracking vector. They analysed the top 100 domains ranked
by QuantCast. On 31 of them, they found at least a case
of data overlap between HTTP cookies and Flash cookies,
meaning that the same value appeared on the data stored in
both technologies. Moreover, they found several occurrences
of what they defined as *“‘cookie respawning”’, in which the
value of a deleted HTTP cookie is restored in the background,
taken from a Flash cookie that keeps its back up. On a follow-
up study, Ayenson et al. [32] observed the emerging usage
of Web Storage (localStorage) as a tracking vector. While
the authors did not find if this storage system was directly
employed as part of respawning mechanisms, they noticed
several cases of matching values among HTTP cookies and
Web Storage data, which they named ‘HTMLS cookies’.

Roesner et al. [33] presented an in-depth investigation of
web tracking performed by third-party actors. The work anal-
ysed a corpus of around 1000 websites, spanning from very
popular to lesser-used websites, and found the presence of
over 500 unique trackers. The authors proposed a classifica-
tion of trackers that goes beyond the usual notion of first-party
and third-party trackers. Instead, they introduced a classifica-
tion system based on the tracking behavior that is observable
from the client. This system challenges the significance of
classifying cookies as either third-party or first-party. In fact,
all cookies could be classified as first-party in the context of
their own origins and often users visit those origins as ‘first-
party clients’, such as in the case of social networks. For this
reason, the authors suggested the usage of terms like ““tracker-
owned” cookies and ‘‘site-owned’’ cookies. The work also
documented the occurrence of ‘““cookie leaks”, in which
the contents of a cookie associated to a given origin are
passed as parameters in a request to another origin, with the
purpose of circumventing the browser’s same-origin policy.
Furthermore, the authors attempted to quantify the usage of
alternatives to HTTP cookies. The authors found ‘‘remark-
ably little use” of Web Storage (localStorage). In fact, out
of the 524 trackers identified, this storage mechanism was
used in only 8 cases. Moreover, only 5 of them were found to
contain unique identifies. All of those 5 cases were instances
of cookie respawning, meaning that the user identifiers were
copies of the values found on HTTP cookies. Finally, Flash
LSOs were used by 35 trackers, but only 9 of them were
identified as instances of cookie respawning.

Acar et al. [34] performed a large-scale analysis of a
selection of advanced persistent tracking mechanisms. They
reported the usage of Indexed Database API as a storage
mechanism of tracking data, albeit in a small number of
cases (20 out of the 100 000 analysed - 0.02%). The authors
claimed to be the first to document evidence of the usage
of IndexedDB as an evercookie vector. “Evercookie” is a

VOLUME 6, 2018

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

IEEE Access

technique that significantly increases the resilience of
tracking HTTP cookies [35]. The mechanism consists of a
client-side API that replicates the HTTP cookie data across
several types of client-side storage systems.

Derksen et al. [36] also discussed the usage of Web Stor-
age (localStorage) and Indexed Database API for tracking.
The authors analysed the behavior of twenty popular track-
ing services on a selection of about a thousand websites.
They found that localStorage was used by 15% of the
trackers analysed. Moreover, none of the websites analysed
showed the usage of Indexed Database API as a track-
ing vector. The authors also studied the implementation of
data deletion. They found that the browsers they analysed
allowed the deletion of both Web Storage (localStorage)
and IndexedDB data, via the same mechanism that removes
cookies. Similarly, Bujlow et al. [37], seem to imply that the
content of data stored using these techniques is automatically
emptied when the cookies are cleared. However, as this work
uncovers currently in some popular browsers, data deletion
requires either an extra step by the user in order to include
HTML5-related client-side storage techniques or does not
happen at all.

Another known practice used by trackers is cookie
matching (or cookie syncing). This technique is used in
real-time advertising bidding, allowing trackers to asso-
ciate different tracking profiles that relate to the same user.
Olejnik et al. [38] quantified both the frequency and the
breadth of data leakage related to cookie matching. They
analysed a sample of 100 user profiles and found that 91 of
them were subject to cookie matching, showing instances of
trackers leaking 27% of a user’s browsing history. Moreover,
they showed that the market value of parts of a users’ brows-
ing history can be as low as a fraction of a US dollar cent.

Englehardt [39] also discussed cookie-syncing, warning
that it can allow the sharing of personal data between
different tracking servers, without the user’s direct consent.
Cookie syncing can also further enhance the impact of cookie
respawning. In fact, while most major trackers do not use
mechanisms such as the aforementioned evercookie, they
might share user information with trackers that do use tech-
niques of cookie resurrection.

B. PREVENTIVE MEASURES AGAINST USER TRACKING
The ‘Do Not Track’ header was proposed by [40] as a
measure against undesired user tracking. Compliant tracking
agents are expected to refrain from identifying users and
perform their usual activities according to the preference
expressed by the user through the header. This proposal was
extremely impactful and most major browser implemented
the Do Not Track (DNT) header by the following year.
Moreover, in 2015, the W3C started the work of formalizing
this feature into a web standard called Tracking Preference
Expression (DNT) [41].

However, according to Roesner et al. in [33], the ‘Do
Not Track’ header does not seem to have any visible effect
in preventing tracking, as it is a policy that relies on the

VOLUME 6, 2018

goodwill of the tracker. Moreover, it appears that many of the
parties involved with user tracking argue that their behavior
should not be considered tracking as it is defined by the DNT
specification, and consequentially refuse to implement it.
Furthermore, the authors pointed out that neither blocking
third-party cookies is an effective method as some browsers
only block the writing operation of a cookie, but not the
reading. Therefore, the tracker would still be able to read the
value of a cookie that has been set on a previous visit to social
media sites or by advertising popups. Finally, the authors
mentioned that private browsing mode is not an effective anti-
tracking method because it is primarily designed to protect
users from attackers with physical access to the machine and
not necessarily from remote user tracking. As a method of
protecting users’ privacy, the authors propose ShareMeNot,
a browser extension that limits third-party tracking code
that belongs to social media sites, while making sure that
actual functionality visible to the user remains unaffected.
In practice, the extension allows tracking requests to be sent
only when the user clicks on an embedded social media but-
ton (such as Facebook’s “Like””). The solution proposed by
the authors has been subsequently incorporated into another
privacy tool named ‘“‘Privacy Badger”, a browser extension
that uses algorithmic methods to decide which resource is
tracking the user and verifies whether scripts that belong to
a given domain collect unique identifiers even after sending

TABLE 8. Constructs used by web storage (localstorage).

Web Storage

Usage
constructs &

localStorage Property of the ‘window’ object that needs to be used to

access the Storage assigned to each origin

setltem Method that adds a new item to the storage magnetic
induction
getltem Method that retrieves item to the storage

TABLE 9. Constructs used by indexed database API.

IndexedDB

API constructs Usage

indexedDB Attribute of the ‘window’ object that provides
applications a mechanism for accessing IndexedDB (of
type ‘IDBFactory’)

transaction Method needed to access the object store

objectStore Method that returns an object store in the scope of the

transaction

TABLE 10. Constructs used by web SQL database.

Web SQL
Database Usage
constructs
openDatabase ~ Method that opens a Web SQL database, or creates a
new one if none is found
transaction Method to access the database
executeSql Method that defines the SQL command to perform in a

given transaction

52787

IEEE Access

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

TABLE 11. API support and data deletion results in the examined mobile browsers.

OS Browser Mode API support Data deletion
localStorage | IndexedDB Web localStorage IndexedDB ‘Web SQL
SQL
default supported Supported supported | data deleted data persists data deleted
) after clearing
Safari local data
private disabled Supported disabled N/A data deleted N/A
default supported Supported supported | data deleted data persists data deleted
after clearing
Chrome 62.0 local data
incognito | disabled Supported disabled N/A data deleted N/A
i0S
102.1 default supported Supported supported | data deleted data deleted data deleted
Firefox 10.2 private disabled Supported disabled N/A data deleted N/A
default supported supported supported | data deleted data deleted data deleted
private supported supported supported | data persists data deleted data deleted
Opera 16 after closing
private session
Mini not not supported not N/A N/A N/A
supported supported
default supported supported supported | data deleted data deleted data deleted
Safari private | disabled disabled disabled | N/A N/A N/A
default supported supported supported | data deleted data deleted data deleted
Firefox 103 = veie [disabled disabled disabled | N/A N/A N/A
i0S default supported supported supported | data deleted data deleted data deleted
i
112 | Chrome 620 = e T disabled disabled disabled | N/A N/A N/A
default supported supported supported | data deleted data deleted data deleted
private supported supported supported | data persists data deleted data deleted
Opera 16 after closing
private session
Mini not not supported not N/A N/A N/A
supported supported
Windows default supported supported not data deleted needs"extra N/A
supported step: "advanced
Phone Internet P
settings'' >
8.10 by Explorer "manuge
HTC stora, é:'
ge
default supported supported not data deleted data persists N/A
. supported after clearing
Anéi:)md Firefox 60.0.1 local data
’ private supported not supported not data deleted N/A N/A
supported
default supported supported not data deleted data persists N/A
supported after clearing
Firefox 57 local data
private supported not supported not data deleted N/A N/A
supported
Firefox Focus | default supported supported not data deleted data deleted N/A
2.4 supported
default supported supported supported | data deleted data deleted data deleted
Chrome 66.0 incognito | supported supported supported | data deleted data deleted data deleted
default supported supported supported | data deleted data deleted data deleted
Chrome 62.0
incognito | supported supported supported | data deleted data deleted data deleted
default supported supported supported | data deleted data deleted data deleted
Opera 46.0 incognito | supported supported supported | data deleted data deleted data deleted
52788 VOLUME 6, 2018

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

IEEE Access

TABLE 11. API support and data deletion results in the examined mobile browsers.

default supported supported supported | data deleted data deleted data deleted
Opera 43.0 private supported supported supported | data deleted data persists data persists after
after closing closing private
private session session
Opera Mini default not not supported not N/A N/A N/A
31.0 supported supported
Microsoft default supported supported supported | data deleted data deleted data deleted
Edgel I;)rc(:)wew inPrivate | supported supported supported | data deleted data deleted data deleted
default supported supported not data persists data persists N/A
supported | after clearing after clearing
MiuiBrowser |— _ local data local data
913 incognito | supported carries over not data persists data persists N/A
o values from supported | after closing after closing
non incognito private session | private session
version
default supported supported supported | data deleted data deleted data deleted
Edge 1.0 inPrivate | supported supported supported | data deleted data deleted data deleted
default supported supported not data deleted data persists N/A
Firefox 57 supported after clearing
Android local data
7.0 private supported supported supported | data deleted data persists data persists after
Opera 43.0 after closing closing private
private session session
default supported supported supported | data deleted data deleted data deleted
Chrome 65.0 incognito | supported supported supported | data deleted data deleted data deleted
Firefox Focus | default supported supported not data deleted data deleted N/A
5 supported
default supported supported supported | data deleted data deleted data deleted
An7d. r101d Opera 42.7 private supported supported supported | data deleted data persists data persists after
after closing closing private
private session session
default supported supported not data deleted data persists N/A
supported after clearing
Firefox 54.0 local data
private supported not supported not data deleted N/A N/A
supported
default supported supported supported | data deleted data deleted data deleted
Chrome
66.0.3 incognito | supported supported supported | data deleted data deleted data deleted
Firefox Focus | default supported supported not data deleted data deleted N/A
. 5 supported
Angi{)md default supported supported supported | data deleted data deleted data deleted
Opera 46.3 private supported supported supported | data deleted data persists data persists after
after closing closing private
private session session
default supported supported not data deleted data persists N/A
supported after clearing
Firefox 60.0.1 local data
private supported not supported not data deleted N/A N/A
supported

a “Do Not Track” message. In this case, it automatically
disallows content from that third-party tracker [42].

Mayer [43] studied a series of technologies developed to
protect users from third-party trackers. The author found that
community-maintained blacklists are the most effective way
to prevent undesired user tracking. Those lists mainly consist
of URLs or domains and are generally used in conjunction

VOLUME 6, 2018

with browser extensions, such as AdBlock Plus [44]. The
author also claimed that tracking is often inextricably tangled
with third-party advertising, therefore often blocking trackers
also entails blocking code that provides advertisements.
Mylonas et al. [45] analyzed the security controls of several
mobile and desktop browsers. According to their results,
desktop browsers generally provide better protection, as the

52789

IEEE Access

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

TABLE 12. API support and data deletion results in the examined desktop browsers.

(O] Browser Mode API support Data deletion
localStorage | IndexedDB | Web localStorage IndexedDB ‘Web SQL
SQL
default supported supported not data deleted data deleted only | N/A
supported if 'Offline
website data’ is
Firefox 57.0 explicitly
(quantum) selected by the
user
private supported disabled not data deleted N/A N/A
Mac OS supported
10.12.5 default supported supported not data deleted data deleted only | N/A
supported if 'Offline
website data’ is
. explicitly
Firefox 56.0 selected by the
user
private supported disabled not data deleted N/A N/A
supported
guest supported supported supported | data deleted only data deleted only | data deleted only
after quitting after quitting after quitting chrome
chrome chrome
Chrome 62 default supported supported supported | data deleted data deleted data deleted
incognito | supported supported supported | data deleted data deleted data deleted
Mac OS
10.10.5 default supported supported supported | data deleted data deleted data deleted
Opera 49 private supported supported supported | data deleted data deleted data deleted
default supported supported supported | data deleted data deleted data deleted
Safari 10.1.1 private disabled supported disabled N/A data deleted N/A
default supported supported not data deleted data deleted N/A
supported
Edge 40 inPrivate | supported disabled not data deleted N/A N/A
supported
default supported supported supported | data deleted data deleted data deleted
guest supported supported supported | data deleted only data deleted only | data deleted only
Chrome 62 after quitting after quitting after quitting chrome
chrome chrome
incognito | supported supported supported | data deleted data deleted data deleted
Wml(i)ows default supported supported not data deleted data deleted only | N/A
supported if 'Offline
website data’ is
. explicitly
Firefox 56 selected by the
user
private supported disabled not data deleted N/A N/A
supported
default supported supported supported | data deleted data deleted data deleted
Opera 49 private supported supported supported | data deleted data deleted data deleted
Internet default supported supported not data deleted data deleted N/A
Explorer 11 supported
Chrome 62 default supported supported supported | data deleted data deleted data deleted
. incognito | supported supported supported | data deleted data deleted data deleted
Windows
XP default supported supported not data deleted only | data deleted only | N/A
supported | if 'Offline website | if 'Offline
. data’ is explicitly website data' is
Firefox 47 selected by the explicitly
user selected by the
user

controls available on them perform better than those avail-
able on their mobile counterparts. For example, users of
the mobile browsers do not have the option to opt-out of

third-party cookies and in many cases the interface that allows
the user to control security features can be confusing. Finally,
the authors found a number of security issues on two major

52790 VOLUME 6, 2018

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

IEEE Access

mobile browsers and also pointed out that in most of the
mobile browsers the ‘Do Not Track’ header is unavailable.

Virvilis et al. [46] compared the different protection mea-
sures against rogue sites offered by desktop and mobile
browsers. According to their results mobile browsers often
offer a lower level of protection compared to their desktop-
based counterparts and in some cases they offer no protection
at all. Furthermore, the authors introduced Secure Proxy,
a new browser-independent countermeasure that overcomes
the technical limitations related to each specific browser
without the need of browser extensions. Secure Proxy con-
sists of a HTTP forward proxy that operates at network
level to filter content before it reaches the user’s device. The
filtering mechanism is delegated to a third-party service that
assesses the reliability of the content providers, based on the
aggregation of multiple blacklists and Antivirus engines.

Building from the previous work, Nisioti et al. [47] revisit
the anti-phishing mechanisms available for users of mobile
browsers of three popular operating systems. The study
revealed that the protection provided by pre-installed web
browsers is still very poor and in most cases non-existent.
The only browsers that offer an adequate level of protection
are Firefox and Chrome on Android. Moreover, in iOS,
neither the default browser nor any of the third-party browsers
offer any protection against phishing attacks. In this context,
the authors proposed TRAWL (TR Ansparent Web protection
for alL), an extension of ‘Secure Proxy’. Similarly to ‘Secure
Proxy’, TRAWL is implemented outside the users’ device
in order to avoid resource consumption and to offer cross
platform compatibility. The tool provides DNS and URL
filtering based on a collection of curated blacklists, but
instead of delegating the filtering to a third-party service it
performs it locally. In this way, the user’s privacy is preserved
and any third party limitations are overcome.

Similarly, Kontaxis and Chew [48] present a new anti-
tracking mechanism of Mozilla Firefox, called Tracking Pro-
tection. The mechanism is similar to ad-blocking browser
extensions such as AdBlock Plus. It analyses all outgoing
HTTP requests and matches them against a blacklist, which
is based on a curated list of tracking origins. The authors
evaluated their approach against 200 popular news sites and
according to the results there was a 67.5% reduction in the
number of HTTP cookies. Moreover, this approach resulted
on a 44% median reduction in page load time and 39%
reduction in data usage for the testes sites.

VI. CONCLUSION

Online tracking is an everyday practice and, when it is per-
formed against the user’s will it is a major privacy violation.
While older client-side storage technologies such as cookies
have been studied extensively as tracking vectors, newer
technologies, i.e., Web Storage, Indexed Database API and
Web SQL Database, have not received the same level of atten-
tion. In this paper, we measure the frequency of use of these
technologies on a HTTP Archive dataset, which constitutes a
representative sample of the World Wide Web, and examine

VOLUME 6, 2018

the extent to which they are used for tracking purposes.
As shown by the results, currently there is a large fraction of
websites that utilize the three primitives, with Web Storage
being the most used. However, the most alarming result is
the frequency in which these APIs seem to used by trackers,
which for all three technologies seems to be higher than
30% and in particular almost 70% for Web Storage. Finally,
we examined whether the current popular web browsers for
desktops and mobile devices can protect their users from
privacy violations that use the aforementioned three technolo-
gies as the tracking vector. Our results suggest that in many
cases the relevant security controls (i.e., data clearing and
private mode) are ineffective in deleting the relevant data and
ensuring isolation of the data when used in private sessions.
The bugs that were identified in this work have been reported
to the relevant browser vendors as indicated in section 4.B.

APPENDIX A

MATCHING RULES USED IN STATIC ANALYSIS

The Web Storage API provides two storage mechanisms, one
for handling data within a current session (sessionStorage)
and another one that lasts beyond the current session (local-
Storage). In this work, only the constructs used by localStor-
age were considered, as content stored using sessionStorage
expires at the end of a browsing session. TABLE 8 shows
the constructs needed in order to read or write data using
localStorage.

The same process was followed for the Indexed Database
API. The constructs mentioned in TABLE 9 are part of the
steps necessary to create a local database containing an object
store and to access the store to either read or write data.

Similarly, Table 10 shows the constructs necessary to read
and write data using the now deprecated Web SQL Database
APL

APPENDIX B

FULL RESULTS OF SECTION IV

Tables 11 and 12 provide all the results from the experiments
that were described, summarized and discussed in Section I'V.

REFERENCES

[1]1 Types of Personal Information and Images Shared Digitally by Global

Internet Users as of January 2017. Accessed: Jan. 2018. [Online]. Avail-

able: https://www.statista.com/statistics/266835/sharing-content-among-

us-internet-users/

C. Castelluccia and A. Narayanan, “Privacy considerations of online

behavioural tracking,” Eur. Union Agency Netw. Inf. Secur., Heraklion,

Greece, Tech. Rep. Deliverable-2012-10-19, 2012.

S. Englehardt et al., “Cookies that give you away: The surveillance

implications of Web tracking,” in Proc. 24th Int. Conf. World Wide Web,

May 2015, pp. 289-299

T. Bujlow, V. Carela-Espaiiol, J. Solé-Pareta, and P. Barlet-Ros. (2015).

“Web tracking: Mechanisms, implications, and defenses.” [Online]. Avail-

able: https://arxiv.org/pdf/1507.07872.pdf

A. Barth. (2011). The Web Origin Concept 2011 IETF RFC6454. [Online].

Available: https://tools.ietf.org/html/rfc6454

E. Shepherd. (2017). Same-Origin Policy in MDN Web Docs. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/Security/Same-

origin_policy

[7] D. M. Kiristol, “HTTP cookies: Standards, privacy, and politics,” ACM
Trans. Internet Technol., vol. 1, no. 2, pp. 151-198, 2001.

2

—

3

—

[4

=

[5

—

[6

—

52791

IEEE Access

S. Belloro, A. Mylonas: | Know What You Did Last Summer: New Persistent Tracking Mechanisms in the Wild

[8]

[91

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

J. Manico. (2009). Real World Cookie Length Limits. Manicode. [Online].

Available: http://manicode.blogspot.hk/2009/08/real-world-cookie-
length-limits.html
I. Roberts. (2013). Browser Cookie Limits. [Online]. Available:

http://browsercookielimits.squawky.net/

Adobe Systems. (2012). What Are Local Shared Objects? Security and Pri-
vacy. [Online]. Available: http://web.archive.org/web/20121230094342/
http://www.adobe.com/security/flashplayer/articles/Iso/

Oracle. (2017). Java Documentation. [Online]. Available:
http://docs.oracle.com/en/java
Microsoft. (2017). What is Silverlight?. [Online]. Available:

https://www.microsoft.com/silverlight/what-is-silverlight/default

Web Hypertext Application Technology Working Group. (2017)
Web Storage in HTML Living Standard. [Online]. Available:
https://html.spec.whatwg.org/multipage/webstorage.html

European Commission. Cookies European Commission. Accessed: Jan.
2018. [Online]. Available: http://ec.europa.eu/ipg/basics/legal/cookies/
index_en.htm

1. Hickson. (2010). Web SQL Database. W3C Working Group Note 18
November 2010. Accessed: Jan. 2018. [Online]. Available: https://www.
w3.0rg/TR/2010/NOTE-webdatabase-20101118

N. R. Mehta. (2009). WebSimpleDB, A.PI., in W3C Working Draft.
[Online]. Available: https://www.w3.0rg/TR/2009/WD-WebSimpleDB-
20090929

M. Owens, Introducing SQLite. The Definitive Guide to SQLite. New York,
NY, USA: Apress LP, 2006, pp. 1-16.

Chromium Blog. (2010). More Resources for Developers. [Online].
Available: https://blog.chromium.org/2010/01/more-resources-for-
developers.html

A. Ranganathan. (2010). Beyond HTMLS: Database APIs and the Road
to IndexedDB. Mozilla Hacks. Accessed: Jan. 2018. [Online]. Avail-
able: https://hacks.mozilla.org/2010/06/beyond-html5-database-apis-and-
the-road-to-indexeddb

A. Alabbas and J. Bell. (2017). Indexed Database API 2.0, W3C Pro-
posed Recommendation. Accessed: Nov. 16, 2017. [Online]. Available:
https://www.w3.org/TR/IndexedDB-2

S. Sounders. (2011), Announcing the HTTP Archive, High Perfor-
mance Web Sites Blog, https://www.stevesouders.com/blog/2011/03/30/
announcing-the-http-archive/

Alexa Internet, Inc. (2017), Alexa Top 1,000,000 Sites. [Online]. Available:
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

I. Grigorik. (2013). HTTP Archive + BigQuery = Web Performance
Answers, in Author’s Blog. [Online]. Available: https://www.igvita.com/
2013/06/20/http-archive-bigquery-web-performance-answers/

Google Cloud Platform. (2017). SQL Reference. [Online]. Available:
https://cloud.google.com/bigquery/docs/reference/standard-sql/
Information Technology—Database Languages—SQL—Part 11: Informa-
tion and Definition Schemas, (SQL/Schemata), standard ISO/IEC 9075-
11:201, International Organization for Standardization IEC JTC 1/SC 32,
2011. [Online]. Available: https://www.iso.org/standard/53685.html
Quidsup. (2017). NoTrack. [Online]. Available: https://github.com/
quidsup/notrack

F. Ates. (2017). What is Modernizr? [Online]. Available: https://modernizr.
com/docs/#what-is-modernizr

R. V. D. Meulen and C. Pettey. (2012). Gartner Survey High-
lights Top Five Daily Activities on Media Tablets. [Online]. Available:
https://www.gartner.com/newsroom/id/2070515

B. Krishnamurthy and C. Wills, “Privacy diffusion on the Web: A lon-
gitudinal perspective,” in Proc. 18th Int. Conf. World wide web, 2009,
pp. 541-550.

R. Gonzalez et al., “The cookie recipe: Untangling the use of cookies in
the wild,” in Proc. IEEE Netw. Traffic Meas. Anal. Conf. (TMA), Jun. 2017,
pp- 1-9.

A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle, “Flash
cookies and privacy,” in Proc. AAAI Spring Symp., Intell. Inf. Privacy
Manage., Mar. 2010, pp. 158-163.

M. D. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J. Hoofnagle.
(2011). Flash Cookies and Privacy 1I: Now With HTMLS and ETag
Respawning. [Online]. Available: https://www.truststc.org/education/reu/
11/Posters/AyensonMWambachDpaper.pdf

F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending against
third-party tracking on the Web,” in Proc. 9th USENIX Conf. Netw. Syst.
Design Implement., Apr. 2012, pp. 1-12.

52792

(34]

(35]

(36]

(37]

(38]

(391

[40]

[41]
[42]

(43]

(44]

(45]

(46]

[47]

(48]

G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz,
“The Web never forgets: Persistent tracking mechanisms in the wild,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2014,
pp. 674-689.

S. Kamkar. (2010). Evercookie. [Online]. Available: http://samy.pl/
evercookie

1. Derksen, 1. E. Poll, and F. van den Broek. (2016). HTML5 Tracking
Techniques in Practice. [Online]. Available: http://www.cs.ru.nl/
bachelorscripties/2016/Ivar_Derksen___4375408___ HTMLS5_Tracking_
Techniques_in_Practice.pdf

T. Bujlow, V. Carela-Espaiiol, J. Solé-Pareta, and P. Barlet-Ros. (2015).
Web Tracking: Mechanisms, Implications, and Defences. [Online]. Avail-
able: https://arxiv.org/abs/1507.07872

L. Olejnik, T. Minh-Dung, and C. Castelluccia. (2013). Selling off Privacy
at Auction. [Online]. Available: https://hal.inria.fr/hal-00915249

S. Englehardt. (2014). The hidden perils of cookie syncing. Freedom to
Tinker. [Online]. Available: https://freedom-to-tinker.com/2014/08/07/the-
hidden-perils-of-cookie-syncing/

C. Soghoian. (2011). Slight Paranoia: The History of the do not Track
Header. Accessed: Jan. 2018. [Online]. Available: http://paranoia.dubfire.
net/2011/01/history-of-donot-track-header.html

R. Fielding and D. Singer. (2017). Tracking Preference Expression (DNT).
[Online]. Available: https://www.w3.org/TR/tracking-dnt/

(2017). Privacy Badger. [Online]. Available: https://www.eff.
org/privacybadger

J. Mayer. (2011). Tracking the Trackers: Self-Help Tools. The Cen-
ter for Internet & Society. [Online]. Available: http://cyberlaw.stanford.
edu/blog/2011/09/tracking-trackers-self-help-tools

Eyeo GmbH. (2017). Getting Started with Adblock Plus. [Online]. Avail-
able: https://adblockplus.org/getting_started#general

A. Mylonas, N. Tsalis, and D. Gritzalis, “Evaluating the manageability
of Web browsers controls,” in Proc. Int. Workshop Secur. Trust Manage.
Berlin, Germany: Springer, Sep. 2013, pp. 82-98.

N. Virvilis et al., ““Security Busters: Web browser security vs. rogue sites,”
Comput. Secur., vol. 52, pp. 90-105, 2015.

A. Nisioti, M. Heydari, A. Mylonas, V. Katos, and V. H. F. Tafreshi,
“TRAWL: Protection against rogue sites for the masses,” in Proc. 11th
Int. Conf. Res. Challenges Inf. Sci. (RCIS), May 2017, pp. 120-127.

G. Kontaxis and M. Chew. (2015). “Tracking protection in Firefox
for privacy and performance.” [Online]. Available: https://arxiv.org/
abs/1506.04104

STEFANO BELLORO received the M.Sc. degree
in software engineering and Internet architecture
with a dissertation in cybersecurity. He was lead-
ing the Web teams, where he was responsible for
the BBC World Service Web portfolio, providing
news in more than 40 different languages. He is
currently a Software Engineering Manager with
BBC. He also looks after the teams that build and
support software and tools for broadcasting.

ALEXIOS MYLONAS (M’09) received the B.Sc.
degree (Hons.) in computer science from the
Athens University of Economics and Business,
the M.Sc. degree in information security from the
Royal Holloway, University of London, and the
Ph.D. degree in information and communication
security from the Athens University of Economics
and Business. He was a Security Consultant with
VeriSign’s PKI Trust Network. He was a Lecturer
with Staffordshire University. He is currently a

Lecturer with Bournemouth University. He is also an expert in cybersecurity.
He has more than 20 publications that are well referenced and appear in
esteemed conference and journal publications. His current research interests
include cybersecurity, threat intelligence, and Web security. He is also a
member of ACM. He has served as a technical committee member for
conferences and journals.

VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND
	COOKIES
	WEB STORAGE
	WEB SQL DATABASE
	INDEXED DATABASE API (INDEXED DB)

	EXPLORING THE USAGE OF CLIENT-SIDE STORAGE IN THE WILD
	METHODOLOGY
	EXPERIMENTAL RESULTS
	DISCUSSION

	USER CONTROL OVER LOCALLY STORED DATA
	METHODOLOGY
	EXPERIMENTAL RESULTS
	DISCUSSION

	RELATED WORK
	CLIENT-SIDE STORAGE SYSTEMS AS TRACKING VECTORS
	PREVENTIVE MEASURES AGAINST USER TRACKING

	CONCLUSION
	REFERENCES
	Biographies
	STEFANO BELLORO
	ALEXIOS MYLONAS

