

WIDELY DISTRIBUTED RED ALGAE OFTEN REPRESENT HIDDEN INTRODUCTIONS, COMPLEXES OF CRYPTIC SPECIES OR SPECIES WITH STRONG PHYLOGEOGRAPHIC STRUCTURE

Journal:	Journal of Phycology
Manuscript ID	JPY-18-070-ART.R2
Manuscript Type:	Regular Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Díaz Tapia, Pilar; Universidade da Coruna, BioCost Research Group Maggs, Christine; Queen's University Belfast, Portaferry Marine Laboratory Macaya, Erasmo; Universidad de Concepcion, Oceanografía, Facultad de Ciencias Naturales y Oceanográficas Verbruggen, Heroen; University of Melbourne, School of BioSciences
Keywords:	Macroalgae, molecular, rbcL, Rhodophyta, seaweed, biogeography, cryptic species
Alternate Keywords:	new record, phylogeography, Rhodomelaceae, Polysiphonieae, Pterosiphonieae, Herposiphonieae, rbcL, species boundaries, species complexes, introductions

SCHOLARONE[™] Manuscripts

1	WIDELY DISTRIBUTED RED ALGAE OFTEN REPRESENT HIDDEN
2	INTRODUCTIONS, COMPLEXES OF CRYPTIC SPECIES OR SPECIES WITH
3	STRONG PHYLOGEOGRAPHIC STRUCTURE
4	
5	Pilar Díaz-Tapia ²
6	Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced
7	Scientific Research (CICA), University of A Coruña, 15071, A Coruña. Spain
8	School of BioSciences, University of Melbourne, Victoria 3010, Australia
9	Christine A. Maggs
10	Portaferry Marine Laboratory, Queen's University Belfast, Belfast BT22 1PF, Northern
11	Ireland
12	Erasmo C. Macaya
12	
12	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía,
13 14	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción,
13 14 15	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
13 14 15 16	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)
12 13 14 15 16 17	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI) Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas
12 13 14 15 16 17 18	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI) Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)
12 13 14 15 16 17 18 19	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI) Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) <i>Heroen Verbruggen</i>
12 13 14 15 16 17 18 19 20	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI) Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) <i>Heroen Verbruggen</i> School of BioSciences, University of Melbourne, Victoria 3010, Australia
12 13 14 15 16 17 18 19 20 21	Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI) Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) <i>Heroen Verbruggen</i> School of BioSciences, University of Melbourne, Victoria 3010, Australia ² Author for correspondence: e-mail pdiaz@udc.es

23 ABSTRACT

24	Despite studies suggesting that most seaweeds are poor dispersers, many red algal
25	species are reported to have circumglobal distributions. Such distributions have mostly
26	been based on morphological identifications, but molecular data have revealed a range
27	of issues with morphologically defined species boundaries. Consequently, the real
28	distribution of such reportedly circumglobal species must be questioned. In this study,
29	we analysed molecular datasets (rbcL gene) of nine species in the Rhodomelaceae for
30	which samples were available from widely spaced geographical locations. Three overall
31	patterns were identified: 1) species showing strong phylogeographic structure (i.e.
32	phylogenetic structure similarity correlates with geographical provenance), often to the
33	point that populations from different locations could be considered as different species
34	(Lophosiphonia obscura, Ophidocladus simpliciusculus, Polysiphonia villum and
35	<i>Xiphosiphonia pinnulata</i>); 2) $\frac{3}{2}$ species with a broad distribution that is explained, in
36	part, by putative human-mediated transport (Symphyocladia: dendroidea and -:
37	<u><i>Polysiphonia</i></u> , <u>devoniensis</u>); and 3) non-monophyletic complexes of cryptic species,
38	most with a more restricted distribution than previously thought (Herposiphonia tenella,
39	<i>Symphyocladia. dendroidea</i> and the <i>X. pennata</i> complex that includes the species <i>X.</i>
40	pinnulata and S. spinifera);-3) species with a broad distribution that is explained, in part,
41	by putative human-mediated transport (S. dendroidea and . P. devoniensis). This study
42	shows that widely distributed species are the exception in marine red algae, unless they
43	have been spread by humans.
44	
45	Key words: introductions, new record, phylogeography, Rhodomelaceae,

46 Polysiphonieae, Pterosiphonieae, Herposiphonieae, *rbc*L, species boundaries, species

47 complexes

48 INTRODUCTION

Phylogeography of marine organisms is influenced by barriers to dispersal and 49 geographical distance, as well as by aspects of their life-history, physiology and ecology 50 51 (Jackson 1974, Palumbi 1994, Riginos et al. 2011). The dispersal ability of seaweeds is 52 generally very limited, of the order of tens of meters or less (Santelices 1990, Kinlan 53 and Gaines 2003, Destombe et al. 2009). However, long-distance dispersal is known in 54 brown seaweeds with buoyant structures (Fraser et al. 2009, Macaya and Zuccarello 55 2010), which can act as rafts promoting in turn the dispersal of the epiphytic species 56 that they host (Fraser et al. 2013, Macaya et al. 2016, López et al. 2017, 2018). Still, a large proportion of macroalgae are epilithic, so their expected dispersal ability is very 57 limited and consequently their distribution range is expected to be relatively small. 58 Paradoxically, many macroalgal species are reported to be very widely or even globally 59 distributed. 60

61 Records are usually based only on morphological identification, which can be inaccurate due to morphological plasticity within species as well as similarity between 62 63 cryptic species (e.g. Verbruggen 2014, Schneider et al. 2017). Closer investigation of material from distant regions using DNA data commonly leads to the discovery of 64 65 cryptic species (e.g. Won et al. 2009, Bustamante et al. 2014, Schneider et al. 2017). 66 Even though studies combining morphological and molecular data are increasing, DNA 67 databases are still very limited for most algal groups and molecular data are often 68 available only for some regions. As a consequence, the true distribution of many seaweed species should be regarded as uncertain. Few studies have reassessed the 69 70 distribution of widely reported red algal species using molecular data from a broad 71 sampling area. -Complexes of look-alike species, as well as widely distributed species, have been detected (Zuccarello et al. 1999, Zuccarello et al. 2002a, Zuccarello & West 72

2003, Won et al. 2009). Among the widely distributed species, some exhibit high
genetic variability and strong phylogeographic structure that often distinguishes
populations from different basins (Zuccarello et al. 2002a, b, Won et al. 2009). Other
widely distributed species lack phylogeographic signal, suggesting long-distance
dispersal processes by unknown mechanisms (Zuccarello et al. 2002a, Fraser et al.
2013). Therefore, red algal phylogeographic patterns are highly heterogeneous and
depend on evolutionary histories and dispersal abilities.

80 In addition to natural dispersal mechanisms, human-mediated vectors can transport 81 seaweeds from native areas to other world regions and rapidly alter distribution patterns (Straub et al. 2016). More than 208 red algal species have been considered as introduced 82 83 or cryptogenic in one or several regions (Thomsen et al. 2016). Cryptic introductions are common in the red algae and non-native species often remain unnoticed until 84 diversity surveys use molecular tools (McIvor et al. 2001, Zuccarello et al. 2002b, Díaz-85 Tapia et al. 2013b, 2017a). Considering the low dispersal ability of non-buoyant 86 87 epilithic red algae, we hypothesize that the distribution of most truly cosmopolitan species can be explained by human-mediated transport – which is frequently provided 88 as a potential explanation for wide distributions of species (Zuccarello et al. 2002a,b, 89 Fraser et al. 2013). 90

The Rhodomelaceae, with >1,000 recognized species, is the most diverse red algal
family (Guiry and Guiry 2018). It includes numerous examples of widely reported
species and, as in most red algal groups, cryptic diversity is common (e.g. Zuccarello et
al. 2002a, Díaz-Tapia and Bárbara 2013, Bustamante et al. 2014, Savoie and Saunders
2016, Zuccarello et al. 2018). Furthermore, a<u>A</u>mong the red algae the Rhodomelaceae
accounts for the largest number of introduced species (Williams and Smith 2007).
Members of this family are often major components of algal turfs where canopy-

98	forming brown algae with buoyant structures are rare as a consequence of the stressful
99	conditions imposed by the presence of sediment (Airoldi 1998, Díaz-Tapia et al. 2013a).
100	This makes the family a good candidate to test hypotheses about species distributions
101	and phylogeographic patterns.
102	The objective of this paper is to reassess the wide reported distributions of nine turf-
103	forming species of the family Rhodomelaceae using DNA sequences. Using molecular
104	data from distant locations within each species' reported distribution range, we evaluate
105	whether these are indeed widely distributed species, analyse the observed
106	phylogeographic patterns, and consider whether these species may have been introduced
107	into one or several regions by human activities.
108	
109	MATERIALS AND METHODS
109 110	MATERIALS AND METHODS Material of Herposiphonia tenella, Lophosiphonia obscura, Ophidocladus
109 110 111	MATERIALS AND METHODS Material of Herposiphonia tenella, Lophosiphonia obscura, Ophidocladus simpliciusculus, Polysiphonia villum, P. devoniensis, Symphyocladia spinifera, S.
109 110 111 112	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United
109 110 111 112 113	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United Kingdom, France, Spain, Portugal, Italy, Brazil, Chile, Australia and South Africa
109 110 111 112 113 114	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United Kingdom, France, Spain, Portugal, Italy, Brazil, Chile, Australia and South Africa during general sampling surveys of the family Rhodomelaceae (Table S1). All these
109 110 111 112 113 114 115	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United Kingdom, France, Spain, Portugal, Italy, Brazil, Chile, Australia and South Africa during general sampling surveys of the family Rhodomelaceae (Table S1). All these species form epilithic turfs, most of them on intertidal sand-covered rocks (Womersley
109 110 111 112 113 114 115 116	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United Kingdom, France, Spain, Portugal, Italy, Brazil, Chile, Australia and South Africa during general sampling surveys of the family Rhodomelaceae (Table S1). All these species form epilithic turfs, most of them on intertidal sand-covered rocks (Womersley 2003, Díaz-Tapia & Bárbara 2013). <i>Lophosiphonia obscura</i> was found in North
109 110 111 112 113 114 115 116 117	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United Kingdom, France, Spain, Portugal, Italy, Brazil, Chile, Australia and South Africa during general sampling surveys of the family Rhodomelaceae (Table S1). All these species form epilithic turfs, most of them on intertidal sand-covered rocks (Womersley 2003, Díaz-Tapia & Bárbara 2013). <i>Lophosiphonia obscura</i> was found in North Atlantic brackish water coastal lagoons or estuaries, and <i>Symphyocladia dendroidea</i>
109 110 111 112 113 114 115 116 117 118	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United Kingdom, France, Spain, Portugal, Italy, Brazil, Chile, Australia and South Africa during general sampling surveys of the family Rhodomelaceae (Table S1). All these species form epilithic turfs, most of them on intertidal sand-covered rocks (Womersley 2003, Díaz-Tapia & Bárbara 2013). <i>Lophosiphonia obscura</i> was found in North Atlantic brackish water coastal lagoons or estuaries, and <i>Symphyocladia dendroidea</i> was collected in Australian and Chilean shallow subtidal turfs. Distribution maps of
109 110 111 112 113 114 115 116 117 118 119	MATERIALS AND METHODS Material of <i>Herposiphonia tenella</i> , <i>Lophosiphonia obscura</i> , <i>Ophidocladus</i> <i>simpliciusculus</i> , <i>Polysiphonia villum</i> , <i>P. devoniensis</i> , <i>Symphyocladia spinifera</i> , <i>S.</i> <i>dendroidea</i> , <i>Xiphosiphonia pennata</i> and <i>X. pinnulata</i> was collected in Norway, United Kingdom, France, Spain, Portugal, Italy, Brazil, Chile, Australia and South Africa during general sampling surveys of the family Rhodomelaceae (Table S1). All these species form epilithic turfs, most of them on intertidal sand-covered rocks (Womersley 2003, Díaz-Tapia & Bárbara 2013). <i>Lophosiphonia obscura</i> was found in North Atlantic brackish water coastal lagoons or estuaries, and <i>Symphyocladia dendroidea</i> was collected in Australian and Chilean shallow subtidal turfs. Distribution maps of records for these species (Figs 1-3, lines) were drawn up based on information available

DNA was extracted from silica gel-dried material following Saunders and McDevit

121

122 (2012), using the Qiagen DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany) or the Promega Wizard Magnetic 96 DNA Plant System kit (Promega Corporation, 123 124 Madison, USA), following the manufacturer's instructions. PCR amplification was carried out for the *rbcL* gene using primers F7/RrbcStart, F7/R893 or F57/rbcLrevNEW 125 126 (Freshwater and Rueness 1994, Mamoozadeh and Freshwater 2011, Saunders and Moore 2013), as well as the newly designed primers F2 127 128 (TGTCTAACTCTGTAGAACAACGGA), F8 (ACTCTGTAGAASAACGGACAMG), R1008 (AACTACTACAGTACCAGCATG), R1464 129 (AACATTAGCTGTTGGAGTTTCYAC) and R1452 130 (TGGAGTTTCYACRAAGTCAGCTGT). Names of these primers indicate their 131 position in the *rbcL* gene (e.g. first base of F2 primer corresponds with the second base 132 133 of the *rbc*L gene). PCR reactions were performed in a total volume of 25 μ l₃ consisting containing of 5 μ s MyTagTM reaction buffer, 0.7μ 100.28 μ M of forward and 134 reverse primers, 0.125 µl 1U/µlunits My TaqTM DNA Polymerase (Bioline, London, 135 UK), 17.475 µl MilliQ® water and 1 µl template DNA. The PCR profile consisted of 136 137 initial denaturation (93°C for 3 min), 35 cycles of denaturation (94°C for 30 s), primer annealing (45°C for 30 s), and extension (74°C for 90 s) and final extension (74°C for 5 138 139 min). The PCR products were purified and sequenced at Queen's University of Belfast 140 on an AB3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA) or 141 commercially by Macrogen or the sequencing service of the University of A Coruña. A total of 128 new *rbcL* sequences were generated in this study and an additional 142 91 sequences were downloaded from GenBank (Table S1). Length of sequences ranged 143 144 from 585 to 1467 (Table S1). Sequences were aligned using Muscle in Geneious 6.1.8 (Kearse et al. 2012). As a first stage, we analysed these sequences in taxon-rich datasets 145

146	for the tribes Herposiphonieae, Pterosiphonieae, Polysiphonieae and Streblocladieae to
147	verify that the target species were monophyletic. Based on the resulting trees, we
148	selected all sequences corresponding to the species (or group of closely related species)
149	that are the focus of this paper. These datasets were analyzed species by species using
150	the unweighted pair group method with arithmetic mean (UPGMA). For two complexes
151	of unrelated non-sister species in our initial taxon-rich trees (Symphyocladia dendroidea
152	and Herposiphonia tenella), we included wider species sampling considering the
153	available data for the respective genera (Table S1). We performed maximum likelihood
154	(ML) analyses separately for each of the two genera using RAxML 8.1.X (Stamatakis
155	2014). GTR-Gamma was used as the nucleotide model and branch support was
156	estimated with 1000 bootstrap replicates. Three species of Xiphosiphonia and
157	Dipterosiphonia were selected as the respective outgroups for the Symphyocladia and
158	Herposiphonia trees based on our phylogenomic analyses of the major lineages of the
159	Rhodomelaceae (Díaz-Tapia et al. 2017b).
160	
161	RESULTS
162	The taxonomy of several of the studied species is complex and details are provided in
163	Supplement 1.
164	Ophidocladus simpliciusculus
165	Ophidocladus simpliciusculus was collected in four out of the six world regions where it
166	has been reported (Fig. 1a). In Australia, its previously known distribution included
167	South and Western Australia and our collections from Tasmania and Victoria (Table
168	S1) are new records for these states. The UPGMA analyses included 15 newly

- 169 determined *rbc*L sequences and two downloaded from GenBank (Table S1). Sequences
- 170 comprised four haplotypes (Fig. 1b): haplotype 1, seven samples from Europe (Atlantic

and Mediterranean); haplotype 2, six samples from Australia; haplotype 3, one sample
from South Africa; and haplotype 4, three samples from Brazil. The South African
sample differed by only 0.1% (1 bp) from the Australian samples, while Brazilian
samples were the most divergent (up to 0.8% and 11 bp) from samples from other
regions. Our results indicate that *O. simpliciusculus* has a unique *rbc*L haplotype in each
region, but it has a strong phylogeographic structure.

178 Lophosiphonia obscura

179 Lophosiphonia obscura has been reported in the Atlantic and Indo-Pacific and

180 | sequences are available from Europe and Australia (Fig. 1c). In Australia, it had been

181 previously recorded only in Southern Australia and our collection from Victoria is a

182 new record for this state. Furthermore, our dataset also included *Polysiphonia*

183 *hemisphaerica* from Norway and *P. boldii* from Texas, USA <u>which may be conspecific</u>

184 as suggested by the low *rbc*L divergence with L. obscura (see Supplement 1). We

analysed six newly determined *rbc*L sequences and two downloaded from GenBank for

186 Lophosiphonia obscura, Polysiphonia hemisphaerica and P. boldii (Table S1). Four

187 haplotypes were found (Fig. 1d): 1) four samples from Spain (Atlantic and

188 Mediterranean) and Norway; 2) a sample from the United Kingdom; 3) a sample from

189 USA; and 4) two samples from Australia. Atlantic samples differed by 0.1-0.2% (1-2

bp), while Australian samples were 0.7-0.9% (8-11) divergent from the Atlantic

samples. Our results indicate that the lineage formed by these three taxa is moderately

192 variable in the North Atlantic, and is clearly separated from the Australian

193 haplotypepopulations.

195

Journal of Phycology

196	Molecular data were obtained from two regions where Polysiphonia villum (as P.
197	scopulorum var. villum, see Supplement 1) had previously been reported (Fig. 1e).
198	Furthermore, it was also sampled in Spain, the French Mediterranean and Australia,
199	where it is here newly recorded. The 13 sequences determined for P. villum and the two
200	downloaded from GenBank (Table S1) belong to three haplotypes (Fig. 1f): 1) four
201	samples from Australia, 2) three samples from Brazil and 3) eight samples from the
202	North Atlantic (North Carolina, Spain and France). Australian samples were 0.5-0.6%
203	(4-7 bp) divergent from the Atlantic samples and the Brazilian sequences differed by
204	0.2% (2 bp) from the North Atlantic samples. Thus, P. villum shows a clear
205	phylogeographic structure.

206

207 Polysiphonia devoniensis

Polysiphonia villum

Our dataset included samples from the previously recorded distribution in Atlantic 208 Europe, as well as from the northwestern Mediterranean (Italy and France), the Adriatic 209 Sea (Italy) and Victoria (Australia), from where P. devoniensis is here recorded for the 210 211 first time (Fig. 2a, Table S1). Furthermore, sequences of *P. kapraunii* from North 212 Carolina were also included in our dataset (see Supplement 1). Analyses including an rbcL sequence of P. kapraunii from GenBank and 21 newly determined sequences of P. 213 devoniensis (Table S1) showed eight haplotypes (Fig. 2b). One haplotype was found in 214 the northwestern Mediterranean, Atlantic Spain and Australia; one occurred in the 215 Adriatic Sea and the northwestern Mediterranean; and six haplotypes were each 216 represented by a single sample (two from Wales, two from the Adriatic Sea, one from 217 the northwestern Mediterranean and one from North Carolina). The North Carolina 218

219	sample identified as <i>P. kapraunii</i> was 0.2-0.3% (3-4 bp) divergent from two of the
220	European samples (PD301 and PD2430). These three samples differ from the others by
221	sequence divergences of 1-1.4% (12-18 bp), while divergence between the other five
222	haplotypes is $0.1-1\%$ (1-9 bp). The lineage formed by samples assigned to <i>P</i> .
223	devoniensis and P. kapraunii has a high genetic diversity and the distribution of
224	haplotypes lacks geographic structure. The discovery of P. devoniensis in Victoria
225	(Australia), exhibiting a single haplotype that is also present in Europe, suggests that
226	this species has been introduced into this country from Europe, possibly Atlantic Spain
227	or the NW Mediterranean.
228	

229 *Symphyocladia dendroidea* complex

230 Sequences of *Symphyocladia dendroidea* are available from most of the previously

231 known distribution (British Columbia, California, Chile, Peru, Japan and the

232 Mediterranean). Some of these sequences were labelled as *Pterosiphonia tanakae* (see

233 Supplement 1). Furthermore, we collected this species in a Galician marina

(northwestern Spain) and in Australia (Victoria), where it is here recorded for the firsttime (Fig. 2c).

236 The *rbcL* data for *Symphyocladia dendroidea* reveal cryptic diversity in the

237 Americas, as specimens from Peru and Chile and specimens from British Columbia

238 (here referred as *S. dendroidea* 2) do not constitute a clade (Fig. S1, Table S1). In

addition to these regions, both were recorded in California. S. dendroidea is resolved as

- sister to S. parasitica with high support, while S. dendroidea 2 is placed in a moderately
- supported clade together with S. brevicaulis and S. baileyi (Fig. S1). Molecular data
- show that S. dendroidea has a wide distribution in the Pacific and occurs in some

European locations, while *S. dendroidea* 2 is apparently restricted to Pacific NorthAmerica.

In total, 28 rbcL sequences were analysed for Symphocladia dendroidea (some 245 246 sequences labelled as S. tanakae, see Supplement 1) including 13 newly determined and 15 downloaded from GenBank (Table S1). The UPGMA dendrogram shows seven 247 haplotypes (Fig. 2d) of which five comprise samples from Pacific South America, one 248 249 includes samples from Australia and Japan, and the other consists of samples from 250 California and Europe. Maximum variability between South American haplotypes is 251 0.6% (8 bp), and sequence divergence between them and the two other clades is 0.4-1%(3-9 bp). These levels of *rbcL* variation suggest that this entity may consist of multiple 252 253 species or highly differentiated populations.

Symphyoeladia dendroidea was recorded as an introduced species in the French
Mediterranean in 2005 (as *P. tanakae*) and our recent discovery of the same haplotype
in a marina in Atlantic Spain probably represents a secondary introduction and suggests
that the species is spreading in Europe via hull fouling. The presence of several
genetically separated lineages in Pacific South America contrasts with the occurrence of
a single haplotype in Japan, Australia and California. Furthermore, Japan and Australia
have the same haplotype, suggesting that one or both populations could be introduced.

Xiphosiphonia pennata complex, including *X. pinnulata* and *Symphyocladia spinifera Xiphosiphonia pennata* has been reported in the Atlantic and Indo-Pacific (Fig 2e) and
this morphological species is a complex of at least three <u>unrelated-non-sister</u> species.
<u>Their taxonomy has been resolved with the clarification of the identity of including-X.</u>

pinnulata and *S. spinifera* that have been misidentified as *X. pennata* (see Supplement
267 1).

268	At present, 39 rbcL sequences (16 newly determined and 23 downloaded from
269	GenBank) are available for Symphyocladia spinifera from California, Pacific South
270	America, Australia and Korea (Fig. 2f). The UPGMA shows 10 haplotypes of which
271	four correspond to Korean samples, four to Peruvian samples, one to Australian samples
272	and one to a Washingtonian sample (Fig. 2f). Sequence divergence among haplotypes is
273	up to 0.9% (7 bp). Australian samples match the morphological concept of
274	Xiphosiphonia pennata, but our molecular data reveal that none of them grouped with
275	the European X. pennata but instead are mostly closely related to S. spinifera.
276	Therefore, X. pennata should be excluded from the recorded Australian flora and
277	replaced by S. spinifera. Interestingly, all the Australian samples belong to a single
278	haplotype, which contrasts with the four haplotypes found in both Peru and Korea.
279	Xiphosiphonia pinnulata sequences were resolved as three haplotypes of which
280	two were found in European samples and one in Brazilian samples (Fig. 2g). Sequence
281	divergence among them is up to 0.7% (9 bp) and between the two European clades is up
282	to 0.3% (3 bp). X. pennata was only found in the Atlantic Iberian Peninsula. Therefore,
283	the widely reported X. pennata (as Pterosiphonia pennata) is apparently restricted to
284	European shores. X. pinnulata is restricted to the Atlantic, where it has a strong
285	phylogeographic structure with divergences that may even suggest they are separate
286	species. S. spinifera is restricted to the Pacific and it has a high genetic variability
287	between regions and within regions in Korea and South America.

Herposiphonia tenella complex

290	In total, 27 rbcL sequences were obtained for samples morphologically identified as
291	Herposiphonia tenella from Europe, North America and Queensland (Australia) (Fig.
292	3). They were analysed together with the available <i>rbc</i> L data for the genus (15 species).
293	The phylogeny_(Fig. 4) resolved <i>H. tenella</i> in seven eladeslineages, four from the
294	Atlantic and three from Queensland (Fig. 4). Sequence divergence among the lineages
295	was at least 1.9%, while divergence within them was up to 0.7%. Only two of these
296	clades_lineages_were resolved as sisters (1.9-2.1% sequence divergence), while the
297	others, despite morphological similarities, were more closely related to other
298	cladeslineages. Thus, Herposiphonia tenella is a large species complex that requires
299	taxonomic revision to better understand its cryptic diversity and the distribution of the
300	resulting new species. Its type locality is in the Mediterranean, where three of the four
301	European species-lineages were collected.
302	

303 DISCUSSION

304 Species complexes

305 In this work we distinguish betweendetected several complexes of non-sister species 306 (Xiphosiphonia pennata, Symphyocladia dendroidea and Herposiphonia tenella). Also, 307 we found and species-level taxa that represent monophyletic lineages containing several 308 haplotypes that in most cases are distributed in accordance with geographical patterns regions. The second group They could also be classified as species complexes, as 309 310 sequence divergences between haplotypes are often large (up to 1.4%), possible 311 evidence for multiple species. Interpretations of genetic divergences when delineating species boundaries vary among authors. For example, Melanothamnus 312 313 harveyi/japonicus and other closely related species have been interpreted as a single

314	species with an intraspecific variability in the <i>rbc</i> L gene $\leq 2.1 \%$ (McIvor et al. 2001, as
315	Polysiphonia) or as a species complex in which interspecific variability in the <i>rbcL</i> gene
316	is 0.3-0.7 % (Savoie and Saunders 2015, as <i>Neosiphonia</i>). The species concept has been
317	hotly debated, but there is a general consensus that speciation is a process that takes
318	place when gene flow is interrupted as a consequence of isolation of populations (Coyne
319	et al. 1988, Leliaert et al. 2014). In the present work, assessing species boundaries was
320	not always straightforward, and we used information based on genetic divergences,
321	species distribution and, in one lineage, interbreeding experiments described by
322	<u>Rueness (1973)</u> . The first scenario we encountered consists of species with a variety of
323	haplotypes separated by large geographical distances found in distant locations. Genetic
324	isolation by distance seems obvious considering our data and, in some cases, where the
325	divergences between distant populations are particularly relatively large (\leq up to 0.9%),
326	one might consider them different species (Ophidocladus simpliciusculus from Europe
327	vs. Brazil vs. Australia/South Africa, Lophosiphonia obscura from the North Atlantic
328	vs. Australia, Polysiphonia villum from the Atlantic vs. Australia, and Xiphosiphonia
329	pinnulata from Brazil vs. Europe). However, the low number of samples in some
330	regions or species, as well as the lack of sampling in other regions where these species
331	were recorded or may be still unknown precludes a definitive conclusion. Perhaps the
332	observed large sequence divergences between the lineages within these species would
333	be less evident with larger datasets. A second scenario is similar to the former, as it
334	consists of species with a variety of haplotypes, but in this case several haplotypes share
335	the same distribution (P. devoniensis, Symphyocladia dendroidea, S. spinifera). Thus,
336	despite <i>rbc</i> L divergences among some haplotypes (\leq up to 1.4%) being even larger than
337	in the previous group (\leq up to 0.9%), whether they are at present reproductively isolated
338	and should be considered as distinct species is uncertain. Interbreeding experiments

339	may assist to clarify if these species should be considered as distinct or not. While
340	successful reproduction may have multiple interpretations (Leliaert et al. 2014),
341	unsuccessful reproduction indicates reproductive incompatibility. The third scenario we
342	found in this work is represented by Lophosiphonia obscura whose eastern and western
343	Atlantic populations have low genetic distances (0.1-0.2 %) in the <i>rbc</i> L gene, and also
344	in the more variable <i>cox</i> 1 marker (0.6-1.2 %, HQ412544-5 as <i>P. hemisphaerica</i> and <i>P.</i>
345	boldii, MF094025). Despite this, crossing experiments demonstrate that isolates from
346	Texas and from Norway fail to produce fully fertile progeny (Rueness 1973, as P.
347	hemisphaerica and P. boldii). This suggests that these two populations are
348	reproductively isolated, and that divergent selection may be acting on these populations
349	but <i>rbcL</i> and <i>cox1</i> gene sequences do not reflect this isolation (Nosil et al. 2009). These
350	three scenarios show different evolutionary patterns even among closely related species
351	(e.g. P. villum vs. P. devoniensis). Therefore, application of genetic distances in
352	delineating species boundaries should be evaluated on a case by case basis. While these
353	are very interesting issues from a taxonomic perspective, they are not the focus of this
354	paper. From a phylogeographic point of view, whether these closely related
355	monophyletic lineages are different species or not is of minor importance, because
356	either way they share a common ancestor from which several genetic entities evolved.

357

358 *Phylogeographic patterns*

The paradox between expected dispersal limitation (Santelices 1990, Kilan and Gaines 2003) and wide reported species distributions led us to hypothesize that such widely distributed species would either have strong phylogeographic structure or were spread by humans. Our results confirmed these hypotheses and exposed a third optionscenario,

where the morphologically defined species was in fact a complex of non-sister crypticspecies.

365	Three of the species or groups of species form monophyletic lineages and exhibit
366	genetic variability with clear phylogeographic structure in Australia, and the North and
367	South Atlantic (Ophidocladus simpliciusculus, Lophosiphonia obscura and
368	Polysiphonia villum). Genetic divergences of sequences of these species from Australia,
369	North and South Atlantic reflect geographical separation. This result is not unexpected
370	considering that genetic divergence is promoted by the isolation among populations
371	separated by large geographic distances (Palumbi 1994). However, the observed genetic
372	divergence is relatively low (\leq up to 0.9%) considering that <u>Australia and the North and</u>
373	South Atlanticthese regions have been separated since about 80 My (Jordan et al. 2016).
374	Therefore, rather than this genetic divergence resulting from an 80 My old vicariant
375	evolution, long-distance dispersal processes acting on a common ancestor and
376	subsequent divergence into differentiated populations are invoked to explain the
377	observed patterns. Mechanisms responsible for this long-distance dispersal are obscure
378	considering that these species either occur in coastal lagoons/estuaries or on sand-
379	covered rocks where buoyant macroalgae that can act as rafts are rare (Airoldi 1998,
380	Díaz-Tapia et al. 2013a). Molecular data have provided evidence for long-distance
381	dispersal in other red algal species but mechanisms remain unknown (Zuccarello et al.
382	2002a, Fraser et al. 2013). The genetic separation among geographically distant lineages
383	may indicate that long-distance dispersal occurs at a low rate. Alternatively, density-
384	dependent processes are involved and once a population colonizes a new region it
385	prevents the establishment of latecomers (Waters et al. 2013). Furthermore, available
386	data for the three species mentioned above indicate different evolutionary histories
387	and/or dispersal paths. For instance, in L. obscura and P. villum the largest sequence

388	divergences are between Australian and Atlantic populations, whereas in O.
389	simpliciusculus the Australian haplotype is relatively close to South African and
390	European haplotypes but the divergence across the Atlantic (Brazil vs. Europe) is much
391	larger.
392	Several species showed a diversity of haplotypes sharing the same region: the
202	Desifie Sumphyseladia aninifora and S. dondusidea, as well as the Atlentic Debusinhousia
393	Pacific Symphyociaala spinifera and S. aenarolaea, as well as the Atlantic Polysiphonia
394	devoniensis. The origin of this diversity must be related to processes of isolation that led
395	to genetic differentiation, followed by local dispersal events. As in for Ophidocladus
396	simpliciusculus, Lophosiphonia obscura and Polysiphonia villum the examples
397	mentioned above, dispersal mechanisms for S. spinifera and P. devoniensis are
398	unknown. In contrast, S. dendroidea has been reported growing on stranded holdfasts of
399	the floating alga Durvillaea antarctica (Macaya et al. 2016, López et al. 2017, 2018),
400	which could contribute to dispersal after genetic differentiation influencing influenced
401	its genetic structure.
402	The disjunct distribution of a second group of species (Polysiphonia devoniensis
403	and Symphyocladia dendroidea) can be explained by human-mediated introduction
404	events. The human transport of species from native (donor) to introduction (recipient)
405	regions causes the rapid expansion of species' distribution and alters natural
406	phylogeographic patterns (Straub et al. 2016). The discovery of P. devoniensis in
407	Victoria (Australia), exhibiting a single haplotype that is also present in Europe,
408	suggests that this species has been introduced into this country from Europe, possibly
409	Atlantic Spain or the NW Mediterranean. Symphyocladia dendroidea was recorded as
410	an introduced species in the French Mediterranean in 2005 (Boudouresque and
411	Verlague 2008, as <i>P. tanakae</i>) and our recent discovery of the same haplotype in a

412 marina in Atlantic Spain probably represents a secondary introduction and suggests that

413	the species is spreading in Europe via hull fouling. The presence of several genetically
414	separated lineages of S. dendroidea in Pacific South America contrasts with the
415	occurrence of a single haplotype in Japan, Australia and California. Japan and Australia
416	have the same haplotype, suggesting that one or both populations could be introduced.
417	Genetic diversity of seaweeds in the introduced regions is either similar or reduced
418	relative to the native area (McIvor et al. 2001, Provan et al. 2008, Voisin et al. 2005,
419	Geoffroy et al. 2016). The finding of diverse haplotypes in the introduced region is
420	indicative of an introduction involving several haplotypes or multiple introductions,
421	depending on the phylogeographic structure in the native area (McIvor et al. 2001,
422	Voisin et al. 2005, Geoffroy et al. 2016). A single haplotype of both S. dendroidea and
423	<u>P. devoniensis has been detected in the areas where the introduction of these species is</u>
424	certain, suggesting that their introduction is the result of a single event in which a single
425	haplotype was involved. However, much more complex scenarios could explain the
426	observed patterns and a better understanding of the phylogeographic patterns in native
427	and introduced areas would be needed to elucidate the introduction dynamics.
428	P. devoniensis in Australia is represented by only one haplotype, compared to eight
429	in the North Atlantic, suggesting that the introduction could be the result of a single
430	event in which a single haplotype was involved. Symphyocladia dendroidea was
431	recorded as an introduced species in the French Mediterranean in 2005 (as P. tanakae)
432	and our recent discovery of the same haplotype in a marina in Atlantic Spain probably
433	represents a secondary introduction and suggests that the species is spreading in Europe
434	via hull fouling. The presence of several genetically separated lineages in Pacific South
435	America contrasts with the occurrence of a single haplotype in Japan, Australia and
436	California. Furthermore, Japan and Australia have the same haplotype, suggesting that
437	one or both populations could be introduced.

438	Our study showed that in the regions where S. dendroidea (Europe) and P.
439	devoniensis (Australia) are known to be introduced, each species is represented by a
440	single rbcL haplotype. Genetie diversity of seaweeds in the introduced regions is either
441	similar or reduced relative to the native area (Melvor et al. 2001, Provan et al. 2008,
442	Voisin et al. 2005, Geoffroy et al. 2016). The finding of diverse haplotypes in the
443	introduced region is indicative of an introduction involving several haplotypes or
444	multiple introductions, depending on the phylogeographic structure in the native area
445	(McIvor et al. 2001, Voisin et al. 2005, Geoffroy et al. 2016). P. devoniensis in
446	Australia is represented by only one haplotype, compared to eight in the North Atlantic,
447	suggesting that the introduction could be the result of a single event in which a single
448	haplotype was involvedLikewise, only one haplotype was found in Europe for S.
449	dendroidea, showing reduction of genetic diversity if South America were the native
450	area, but this is uncertain and much more complex scenarios could explain the observed
451	patterns. An alternative hypothesis is that South America is a centre of diversification of
452	lineages and that two of them established naturally in other Pacific regions, where the
453	genetic diversity of the <i>rbc</i> L gene remains low, and that it has been introduced in
454	Europe from one of these locations. Thus, a better understanding of the
455	phylogeographic patterns in native and introduced areas would be needed to elucidate
456	the introduction dynamics.
457	The third group of species analyzed here involved species complexes of non-sister
458	cryptic species (Xiphosiphonia pennata including X. pinnulata and Symphyocladia
459	spinifera; S. dendroidea; and Herposiphonia tenella)-in which specimens
460	morphologically identified as a single species were resolved as complexes of non-sister
461	eryptic species. In both cases species found in the Atlantic and Pacific basins differ, but
462	in addition several species were found with overlapping distributions in some regions of

: 1 . 1

C /1

....

T1

c

11

1. . .1

463	each basin. Therefore, the distribution of these widely reported species is much
464	narrower than previously thought. Cryptic algal species often involve a group of
465	morphologically similar species that are genetically differentiated, but resolve as a
466	monophyletic group (Zuccarello et al. 2002a, Won et al. 2009, Payo et al. 2013).
467	However, examples of non-monophyletic cryptic "species" have also been documented
468	in the red algae (Zuccarello et al. 2018). Morphological similarity among non-
469	monophyletic groups of cryptic species can be explained by evolutionary convergence,
470	morphological stasis or developmental constraints (Leliaert et al. 2014, Zuccarello et al.
471	2018). X. pennata, S. spinifera and S. dendroidea are placed in a tribe (Pterosiphonieae)
472	with high morphological variation ranging from filiform to foliose species (Díaz-Tapia
473	et al. 2017b). The body plan of both species is filiform, among the simplest observed in
474	the tribe, and morphological stasis is a plausible explanation for their similarity. In the
475	tribe Herposiphonieae all species are very similar in morphology, with limited
476	differences in their body plans (Díaz-Tapia et al. 2017b) and the cryptic diversity in
477	Herposiphonia tenella might result from morphological stasis or developmental
478	constraints.

479 Understanding the processes underlying phylogeographic patterns requires the 480 study of numerous specimens from across the entire distribution of the species. In this 481 regard, we recognize important limitations in our work that prevent us from fully elucidating causes of the observed phylogeographic patterns, leading to some tentative 482 conclusions about the potentially introduced status of some of the analysed populations. 483 However, most of the species treated here are rare in all or part of their known 484 distribution range so improving the datasets would be very difficult. For example, 485 Lophosiphonia obscura, despite being widely reported, is very rare in the regions here 486 487 studied: the sample from the UK used in this study is the first one collected since 1970

488	(Maggs and Hommersand 1993). In Spain, we found it only once in the Atlantic and
489	once in the Mediterranean, and the species is here recorded for only the third time in
490	Australia. Our work should thus be interpreted as one of the first attempts to understand
491	phylogeographic patterns of widely distributed red algal species. Even though some of
492	the nuances of their evolutionary history remain unknown is not well known, our
493	analyses provide clear examples of 1) species with wide distributions and strong
494	phylogeographic structure that reflects the geographical distancespecies complexes in
495	which non-monophyletic cryptic diversity has been found; 2) species with a broad
496	distribution that can be only explained by human-mediated transport; and 3)-species
497	complexes in which non-monophyletic cryptic diversity has been found species with
498	wide distributions and strong phylogeographic structure that reflects the geographical
499	distance. This study indicates that widely distributed species are the exception in red
500	algae, except when they have been spread by humans.

501

502 Acknowledgements

503 We thank Francis Bunker, Fabio Rindi, Iara Chapuis, Jan Rueness and Max 504 Hommersand for providing samples and Joana Costa, as well as other researchers 505 included in Table S1, for assistance in the field. We thank Marisa Pasella for carrying 506 out part of the molecular work. PDT acknowledges support by the postdoctoral program "Axudas de apoio á etapa de formación posdoutoral", as well as the funding program 507 "Axudas para a consolidación e estruturación de unidades de investigación competitivas 508 do SUG", grant GPC2015/025 (Xunta de Galicia). Field work in the Mediterranean Sea 509 was funded by a grant awarded to PDT by the British Phycological Society. Part of the 510 511 research presented here was funded through the Australian Biological Resources Study (ABRS), including participation in a Bush Blitz expedition, a Bush Blitz Strategic 512

- 513 Taxonomy Grant (TTC216-03) and a National Taxonomy Research Grant (RFL213-
- 514 08). Sampling in Western Australia, Queensland and Tasmania was made possible
- through funding from the Holsworth Wildlife Research Endowment. ECM
- acknowledges support by the Chilean Millennium Initiative (NC120030) grant.

517

518 **References**

- 519 Airoldi, L. 1998. Roles of disturbance, sediment stress, and substratum retention on
- 520 | spatial dominance in algal turf. *Ecology* 79:2759–70.
- 521 Boudouresque, C.-F. & Verlague, M. 2008. Biological pollution in the Mediterranean
- 522 Sea: invasive versus introduced macrophytes. *Mar. Pollut. Bull.* 44:32-8.
- 523 Bustamante, D.E., Won, B.Y. & Cho, T.O. 2014. *Polysiphonia dokdoensis* sp. nov.
- 524 (Rhodomelaceae, Ceramiales) based on a population previously known as *Polysiphonia*
- 525 *atlantica sensu* Kim and Lee from Korea. *Bot. Mar.* 57:281-9.
- 526 Coyne, J.A., Orr, H.A., & Futuyma, D.J. 1988. Do we need a new species concept?
- 527 Syst. Biol. 37:190–200.
- 528 Destombe, C., Godin, J., Lefebvre, C., Dehorter, O., Vernet, Ph. 2009. Differences in
- 529 dispersal abilities of haploid and diploid spores of *Gracilaria verrucosa* (Gracilariales,
- 530 Rhodophyta). *Bot. Mar.* 35:93-8.
- 531 Díaz-Tapia, P. & Bárbara, I. 2013. Seaweeds from sand-covered rocks of the Atlantic
- 532 Iberian Peninsula. Part. 1. The Rhodomelaceae (Ceramiales, Rhodophyta). *Cryptog*.
- 533 *Algol.* 34:325-422.

- 534 Díaz-Tapia, P., Bárbara, I. & Díez, I. 2013a. Multi-scale spatial variability in intertidal
- benthic assemblages: Differences between sand-free and sand-covered rocky habitats,
- 536 *Estuar. Coast. Shelf Sci.* 133:97-108.
- 537 Díaz-Tapia, P., Kim, M.S., Secilla, A., Bárbara, I., Cremades, J. 2013b. Taxonomic
- 538 reassessment of *Polysiphonia foetidissima* (Rhodomelaceae, Rhodophyta) and similar
- 539 species, including *P. schneideri*, a newly introduced species in Europe. *Eur. J. Phycol.*
- **540 48:345-62**.
- 541 Díaz-Tapia, P., Bárbara, I., Cremades, J., Verbruggen, H. & Maggs C.A. 2017a. Three
- new cryptogenic species in the tribes Polysiphonieae and Streblocladieae
- 543 (Rhodomelaceae, Rhodophyta). *Phycologia* 56:605-23.
- 544 Díaz-Tapia, P., Maggs, C. A., West, J. A. & Verbruggen, H. 2017b. Analysis of
- chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae
- 546 (Rhodophyta). J. Phycol. 53:920–37.
- 547 Fraser, C.I., Nikula, R., Spencer, H.G., & Waters, J.M. 2009. Kelp genes reveal effects
- of subantarctic sea ice during the Last Glacial Maximum. *Proc. Natl. Acad. Sci. U.S.A.*
- 549 106:3249-53.
- 550 Fraser, C.I., Zuccarello, G.C., Spencer, H.G., Salvatore, L.C., Garcia, G.R. & Waters,
- 551 J.M. 2013. Genetic affinities between trans-oceanic populations of non-buoyant
- macroalgae in the high latitudes of the southern hemisphere. *PLoS ONE* 8:e69138.
- 553 Freshwater, D.W. & Rueness, J. 1994. Phylogenetic relationships of some European
- 554 *Gelidium* (Gelidiales, Rhodophyta) species based upon *rbc*L nucleotide sequence
- analysis. *Phycologia* 33:187-94.

- 556 Geoffroy, A., Destombe, C., Kim, B, Mauger, S., Raffo, M.P., Kim, M.S. & Le Gall, L.
- 557 2016. Patterns of genetic diversity of the cryptogenic red alga *Polysiphonia morrowii*
- 558 (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations. *Ecol.*
- *Evol.* 6:5635-47.
- 560 Guiry, M.D. & Guiry, G.M. 2018. *AlgaeBase*; World-Wide Electronic Publication,
- 561 National University of Ireland: Galway, UK, 2018; Available online:
- http://www.algaebase.org (accessed on 6 January 2018).
- Jackson, J.B.C. 1974. Biogeographic consequences of eurytopy and stenotopy among
- marine bivalves and their evolutionary significance. *Amer. Nat.* 108:541–60.
- Jordan, S.M.R., Barraclough T.G. & Rosindell, J. 2016. Quantifying the effects of the
- 566 break up of Pangaea on global terrestrial diversification with neutral theory. *Phil. Trans.*
- 567 *R. Soc. B* 371:20150221.
- 568 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton,
- 569 S, Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. &
- 570 Drummond, A. 2012. Geneious Basic: An integrated and extendable desktop software
- platform for the organization and analysis of sequence data. *Bioinformatics* 28:1647–9.
- 572 Kinlan, B.P. & Gaines, S.D. 2003. Propagule dispersal in marine and terrestrial
- environments: a community perspective. *Ecology* 84:2007–20.
- 574 Leliaert F., Verbruggen H., Vanormelingen P., Steen, F., López-Bautista J.M.,
- 575 Zuccarello, G.C. & De Clerck O. 2014. DNA based species delimitation in algae. *Eur.*
- 576 J. Phycol. 49: 179–96.
- 577 López, B.A., Tellier, F., Retamal-Alarcón, J.C., Pérez-Araneda, K., Fierro, A.O.,
- 578 Macaya, E.C., Tala, F. & Thiel, M. 2017. Phylogeography of two intertidal seaweeds,

- 579 *Gelidium lingulatum* and *G. rex* (Rhodophyta: Gelidiales), along the South East Pacific:
- patterns explained by rafting dispersal? *Mar. Biol.* 164:188.
- 581 López, B.A., Macaya E. C., Rivadeneira M., Tala F., Tellier F. & Thiel M. 2018.
- 582 Epibiont communities on stranded kelp rafts of *Durvillaea Antarctica* (Fucales,
- 583 Phaeophyceae) do positive interactions facilitate range extensions? *J. Biogeogr*, in
- 584 press.
- 585 Macaya, E.C. & Zuccarello, G.C. 2010. Genetic structure of the giant kelp *Macrocystis*
- *pyrifera* along the southeastern Pacific. *Mar Ecol Prog Ser* 420:103–12.
- 587 Macaya, E.C., López, B., Tala, F., Tellier, F. & Thiel, M. 2016. Float and raft: role of
- 588 buoyant seaweeds in the phylogeography and genetic structure of non-buoyant
- associated flora. In Hu, Z.M. & Fraser, C.I. [Eds.] Seaweed phylogeography. Springer,
- 590 Dordrecht, pp. 97–130.
- 591 Maggs, C.A. & Hommersand, M.H. 1993. Seaweeds of the British Isles. Volume 1.
- 592 Rhodophyta. Part 3A. Ceramiales. HMSO, London, 444 pp.
- 593 Mamoozadeh, N.R. & Freshwater, D.W. 2011. Taxonomic notes on Caribbean
- 594 Neosiphonia and Polysiphonia (Ceramiales, Florideophyceae): five species from
- 595 Florida, USA and Mexico. *Bot. Mar.* 54:269-92.
- 596 McIvor, L., Maggs, C.A., Provan, J. & Stanhope, M.J. 2001. *rbc*L sequences reveal
- 597 multiple cryptic introductions of the Japanese red alga *Polysiphonia harveyi*. *Mol. Ecol.*
- 598 10: 911–9.
- 599 Nosil, P., Funk, D.J. & Ortiz-Barrientos, D. 2009. Divergent selection and
- 600 heterogeneous genomic divergence. *Molec. Ecol.* 18:375–402.

- 601 Palumbi, S.R. 1994. Genetic divergence, reproductive isolation, and marine speciation.
- 602 Annu. Rev. Ecol Syst. 25:547-72.
- Payo, D.A., Leliaert, F., Verbruggen, H., D'hondt, S., Calumpong, H. P. & De Clerck,
- 604 O. 2013. Extensive cryptic species diversity and fine-scale endemism in the marine red
- alga *Portieria* in the Philippines. *Proc. R. Soc. Lond. B Biol. Sci.* 280: 20122660.
- Provan, J., Booth, D., Todd, N.P., Beatty, G.E. & Maggs, C.A. 2008. Tracking
- biological invasions in space and time: elucidating the invasive history of the green alga
- 608 *Codium fragile* using old DNA. *Divers. Distributions* 14:343–54.
- 609 Riginos, C., Douglas, K. E., Jin, Y., Shanahan, D. F. & Treml, E.A. 2011. Effects of
- 610 geography and life history traits on genetic differentiation in benthic marine fishes.
- 611 *Ecography* 34:566-75.
- 612 Santelices, B. 1990. Patterns of reproduction, dispersal and recruitment in seaweeds.
- 613 Oceanogr. Mar. Biol. Ann. Rev. 28:177-276.
- 614 Saunders, G.W. & McDevit, D.C. 2012. Methods for DNA Barcoding Photosynthetic
- Protists Emphasizing the Macroalgae and Diatoms. *In* Kress, W. & Erickson, D. [Eds.]
- 616 DNA Barcodes. Methods in Molecular Biology (Methods and Protocols). Humana
- 617 Press, Totowa, USA, pp. 207-22
- 618 Saunders, G.W. & Moore, T.E. 2013. Refinements for the amplification and sequencing
- of red algal DNA barcode and RedToL phylogenetic markers: a summary of current
- 620 primers, profiles and strategies. *Algae* 28:31-43.
- 621 Savoie, A. M. & Saunders, G. W. 2015. Evidence for the introduction of the Asian red
- 622 alga Neosiphonia japonica and its introgression with Neosiphonia harveyi (Ceramiales,
- 623 Rhodophyta) in the Northwest Atlantic. *Mol. Ecol.* 24:5927–37.

- 624 Savoie, A.M. & Saunders, G.W. 2016. A molecular phylogenetic and DNA barcode
- assessment of the tribe Pterosiphonieae (Ceramiales, Rhodophyta) emphasizing the
- 626 Northeast Pacific. *Botany* 94: 917-39.
- 627 Schneider, C.W., Quach, P.K. & Lane, C.E. 2017. A case for true morphological
- 628 crypsis: Pacific *Dasya anastomosans* and Atlantic *D. cryptica* sp. nov. (Dasyaceae,
- 629 Rhodophyta). *Phycologia* 56:359-68.
- 630 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-
- analysis of large phylogenies. *Bioinformatics* 30:1312–13.
- 632 Straub, S.C., Thomsen, M.S. & Wernberg, T. 2016. The dynamic biogeography of the
- anthropocene: the speed of recent range shifts in seaweeds. *In* Hu, Z.-M. & Fraser, C.
- [Eds.] *Seaweed Phylogeography*. Springer, Amsterdam, pp. 63–93.
- 635 Thomsen M.S., Wernberg T., South P.M. & Schiel D.R. 2016. Non-native seaweeds
- 636 drive changes in marine coastal communities around the world. In: *In* Hu, Z.M. &
- 637 Fraser, C.I. [Eds.] Seaweed phylogeography. Springer, Dordrecht, pp. 147-185.
- 638 Verbruggen, H. 2014. Morphological complexity, plasticity, and species diagnosability
- in the application of old species names in DNA-based taxonomies. J. Phycol. 50:26-31.
- 640 Voisin, M., Engel, C.R. & Viard. F. 2005. Differential shuffling of native genetic
- 641 diversity across introduced regions in a brown alga: Aquaculture vs. maritime traffic
- 642 effects. Proc. Natl. Acad. Sci. USA, 102:5432–7.
- 643 Waters, J.M., Fraser, C.I. & Hewitt, G.M. 2013. Founder takes all: density-dependent
- 644 processes structure biodiversity. *Trends Ecol. Evol.* 28:78-85.
- 645 Williams, S.L. & Smith, J.E. 2007. A global review of the distribution, taxonomy, and
- 646 impacts of introduced seaweeds. Annu. Rev. Ecol. Evol. Syst. 38:327–59.

- 647 Womersley, H.B.S. 2003. The marine benthic flora of southern Australia Part IIID
- 648 Ceramiales Delesseriaceae, Sarcomeniaceae, Rhodomelaceae. Australian Biological
- 649 Resources Study and State Herbarium of South Australia, Canberra and Adelaide, 533

650 pp.

- 651 Won, B.Y., Cho, T.O. & Fredericq, S. 2009. Morphological and molecular
- 652 characterization of species of the genus *Centroceras* (Ceramiaceae, Ceramiales),
- 653 including two new species. J. Phycol. 45:227-50.
- ⁶⁵⁴ Zuccarello, G., West, J. & King, R. 1999. Evolutionary divergence in the *Bostrychia*
- 655 *moritziana/B. radicans* complex (Rhodomelaceae, Rhodophyta): molecular and
- hybridization data. *Phycologia* 38:234–44.
- 657 Zuccarello, G.C., Sandercock, B. & West, J.A. 2002a. Diversity within red algal
- 658 species: variation in world-wide samples of Spyridia filamentosa (Ceramiaceae) and
- 659 *Murrayella periclados* (Rhodomelaceae) using DNA markers and breeding studies. *Eur.*
- 660 J. Phycol. 37:403-18.
- 661 Zuccarello, G. C., West, J. & Rueness, J. 2002b. Phylogeography of the cosmopolitan
- red alga *Caulacanthus ustulatus* (Caulacanthaceae, Gigartinales). *Phycol. Res.* 50:16372.
- 664 Zuccarello, G.C. & West, J. 2003. Multiple cryptic species: molecular diversity and
- 665 reproductive isolation in the *Bostrychia radicans/B. moritziana* complex
- 666 (Rhodomelaceae, Rhodophyta) with focus on North American isolates. J. Phycol.
- **667 39:948–59**.
- 668 Zuccarello, G.C., West J. A. & Kamiya, M. 2018. Non-monophyly of Bostrychia
- 669 simpliciuscula (Ceramiales, Rhodophyta): Multiple species with very similar

- 670 morphologies, a revised taxonomy of cryptic species. *Phycological Res.*, in
- 671 press<u>66:100-7</u>.
- 672

673 Figure legends

Figure 1 Distribution and UPGMA unrooted distance phylogram based on *rbc*L

675 sequences of Ophidocladus simpliciusculus (a, b), Lophosiphonia obscura (as

676 Polysiphonia hemisphaerica and P. boldii in Norway and Texas, respectively, see

677 Supplement 1) (c, d) and *P. villum* (e, f). In figures a, c and e, circles indicate the

regions from which sequences are available and their colors indicate the distribution of

haplotypes. Areas outlined in red are regions where the species is recorded for the first

time. Coastline in black shows the reported distribution (Guiry and Guiry 2018). In

figure c, black coastlines represent the recorded distribution of *Lophosiphonia obscura*,

red line *P. hemisphaerica* and yellow line *P. boldii*. Scale bars: 5 mm in (a), 8 mm in

683 (c), 6 mm in (e).

Figure 2 Distribution and UPGMA unrooted distance phylogram based on *rbc*L

685 sequences of *Polysiphonia devoniensis* (as *P. kaprauni* in North Carolina) (a, b),

686 *Symphyocladia dendroidea* (c, d) and *S. spinifera/Xiphosiphonia pennata/X. pinnulata*

687 (e, f, g). Symbols are as in Figure 1, and pie divisions in Figures a, c and e indicate

688 proportions of each haplotype when multiple haplotypes were present. In figure e,

689 circles with white border correspond to *S. spinifera* and the ones with black border to *X*.

690 *pinnulata*. Encircled areas marked with red color are regions where the species are here

recorded for the first time. In figure a, black lines represent the recorded distribution of

692 *P. devoniensis* and red line the distribution of *P. kapraunii*. In figure c, black lines

represent the recorded distribution of *S. dendroidea*, blue lines the regions where it was

694 recorded as *S. tanakae*, red line the region where molecular data demonstrated that *S.*

695 *dendroidea* 2 is present, the asterisk indicates the area where both S. *dendroidea* 2 and

- 696 *S. tanakae* were reported based on molecular data, and plus symbols the regions from
- 697 which sequences of *S. dendroidea* 2 are available. In figure e, black lines represent the

698	recorded	distribution	of X.	pennata;	yellow	lines	the	regions	where	molecular	data
-----	----------	--------------	-------	----------	--------	-------	-----	---------	-------	-----------	------

- 699 showed the presence of *S. spinifera* instead *X. pennata*, red lines regions where only *X.*
- 700 *pinnulata* has been recorded based on molecular data and blue line the region where
- both *X. pinnulata* and *X. pennata* have been recorded based on molecular data. Scale
- 702 bars: 6 mm in (a), 7 mm in (c), 4 mm in (e).
- **Figure 3** Distribution of *Herposiphonia tenella*. Asterisks indicate the regions from
- which sequences are available. Scale bar: 1 mm.
- Figure 4 RAxML tree based on *rbc*L sequences of the genus *Herposiphonia*. Samples
- that morphologically correspond with *Herposiphonia tenella* are in bold. Bootstrap
- values are indicated on the nodes when > 80. BE (Belize), CA (Canada), CI (Canary
- 708 Islands), FR (France), IN (India), IT (Italy), KO (Korea), NC (North Carolina), PO
- 709 (Portugal), QL (Queensland), SP (Spain), WA (Western Australia), VIC (Victoria).

Figure 1 Distribution and UPGMA unrooted distance phylogram based on rbcL sequences of Ophidocladus simpliciusculus (a, b), Lophosiphonia obscura (as Polysiphonia hemisphaerica and P. boldii in Norway and Texas, respectively, see Supplement 1) (c, d) and P. villum (e, f). In figures a, c and e, circles indicate the regions from which sequences are available and their colors indicate the distribution of haplotypes. Areas outlined in red are regions where the species is recorded for the first time. Coastline in black shows the reported distribution (Guiry and Guiry 2018). In figure c, black coastlines represent the recorded distribution of Lophosiphonia obscura, red line P. hemisphaerica and yellow line P. boldii. Scale bars: 5 mm in (a), 8 mm in (c), 6 mm in (e).

Figure 2 Distribution and UPGMA unrooted distance phylogram based on rbcL sequences of Polysiphonia devoniensis (as P. kaprauni in North Carolina) (a, b), Symphyocladia dendroidea (c, d) and S. spinifera/Xiphosiphonia pennata/X. pinnulata (e, f, g). Symbols are as in Figure 1, and pie divisions in Figures a, c and e indicate proportions of each haplotype when multiple haplotypes were present. In figure e, circles with white border correspond to S. spinifera and the ones with black border to X. pinnulata. Encircled areas marked with red color are regions where the species are here recorded for the first time. In figure a, black lines represent the recorded distribution of P. devoniensis and red line the distribution of P. kapraunii. In figure c, black lines represent the recorded distribution of S. dendroidea, blue lines the regions where it was recorded as S. tanakae, red line the region where molecular data demonstrated that S. dendroidea 2 is present, the asterisk indicates the area where both S. dendroidea 2 and S. tanakae were reported based on molecular data, and plus symbols the regions from which sequences of S. dendroidea 2 are available. In figure e, black lines represent the recorded distribution of X. pennata; yellow lines the regions where molecular data showed the presence of S. spinifera instead X. pennata, red lines regions where only X. pinnulata has been recorded based on molecular data and blue line the region where both X. pinnulata and X. pennata have been recorded based on molecular data. Scale bars: 6 mm in (a), 7 mm in (c), 4 mm in (e).

Figure 3 Distribution of Herposiphonia tenella. Asterisks indicate the regions from which sequences are available. Scale bar: 1 mm.

0.02

Supplement S1. Taxonomic notes.

Lophosiphonia obscura, Polysiphonia hemisphaerica and P. boldii

The taxonomic history of *Lophosiphonia obscura* is complex (Silva et al. 1996, Díaz-Tapia and Bárbara 2013), involving several names that have been proposed in different regions. Among these names are *Polysiphonia hemisphaerica* from Scandinavia (Rueness 1971) and *P. boldii* from USA (Wynne and Edwards 1970). Rueness (1973) showed that male and female gametophytes of these two species successfully interbreed, producing carpospores from which tetrasporophytes germinate. However, the viability of tetraspores obtained from these tetrasporophytes was reduced. Thus, despite their high *cox*1 similarity, *P. boldii* and *P. hemisphaerica* failed to produce fully fertile progeny and the taxonomic status of these two species remained unresolved (Rueness 1973, 2010). We obtained *rbcL* sequences for the three taxa and our phylogenetic analysis revealed that they form a clade, are closely related (tree not shown), and whether they should be considered a single species is unclear. For simplicity, we are including these three currently recognized taxonomic species under the heading "*Lophosiphonia obscura*" but a taxonomic revision is required to clarify their taxonomic status.

Polysiphonia villum

Polysiphonia villum was originally described based on Mexican material (Agardh 1863) and its taxonomic status with regard to the Australian *P. scopulorum* was questioned (Cribb 1956). Based on its morphology, Hollenberg (1968) proposed to retain *P. villum* as a variety of *P. scopulorum*. However, molecular data showed that material attributed to these two taxa represents two different, non-monophyletic, molecular entities (Huisman et al. 2017). Consequently, here we apply the name *P. villum* to the molecular entity that matches American specimens (Stuercke and Freshwater 2008) and differs from Australian specimens (Huisman et al. 2017). Assessment of the correspondence of both *P. scopulorum* and *P. villum* with their respective type material has not been studied.

Polysiphonia devoniensis and P. kapraunii

Polysiphonia devoniensis was originally described from southern England (Maggs and Hommersand 1993) and subsequently recorded at other locations in Atlantic Europe (Díaz-Tapia and Bárbara 2013). More recently, *P. kapraunii* was described from North Carolina (Stuercke and Freshwater 2010). Our phylogenetic analysis revealed that these two entities form a clade, are closely related (tree not shown), and whether they should be considered a single species is unclear.

Symphyocladia dendroidea

Symphyocladia dendroidea was originally described from Peru and subsequently recorded from other locations in Pacific America, Argentina and Namibia (Fig. 2c). More recently, *S. tanakae* was described from Japan (Uwai and Masuda 1999, as *Pterosiphonia tanakae*) and it was recorded as an introduced species in the Mediterranean (Verlaque et al. 2015). The synonymy between these two species was proposed based on similarity of sequence data from their type localities (Bustamante et al. 2016a).

Xiphosiphonia pennata, X. pinnulata and Symphyocladia spinifera

Xiphosiphonia pennata was widely reported on Atlantic and Pacific coasts (Fig. 2e, as Pterosiphonia pennata) and successive publications have unmasked cryptic diversity in this taxon, resolving a Pacific and two Atlantic species. Maggs and Hommersand (1993) noted that the smaller, less robust European forms of this species should be assigned to X. pinnulata (as P. pinnulata). This distinction was later supported by molecular data (Díaz-Tapia and Bárbara 2013). Kim et al. (2012) revealed that Korean specimens previously regarded as X. pennata represented a distinct molecular species compared to European specimens and P. arenosa was described. Recently, the synonymy of P. arenosa with Symphyocladia spinifera (as P. spinifera; type locality Peru) was proposed (Bustamante et al. 2016b). A taxonomic revision of the tribe Pterosiphonieae demonstrated that, despite the high morphological similarity among X. pennata, X. pinnulata and S. spinifera, they do not form a clade (Savoie and Saunders 2016). In fact, they are placed in two distinct lineages and accordingly, the Pacific entities P. arenosa and P. spinifera were transferred to the genus Symphyocladia, while the Atlantic entities P. pennata and P. pinnulata were placed in the new genus Xiphosiphonia (Savoie and Saunders 2016).

References

- Agardh, J.G. 1863. Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Volumen secundum: algas florideas complectens. Part 2, fasc. 3. C.W.K. Gleerup, Lundae, 787-1138, 1158-1291 pp.
- Bustamante, D.E., Won, B.Y. & Cho, T.O. 2016a. Morphology and phylogeny of *Pterosiphonia dendroidea* (Rhodomelaceae, Ceramiales) described as *Pterosiphonia tanakae* from Japan. *Bot. Mar.* 59:353-61.
- Bustamante, D.E., Won, B.Y. & Cho, T.O. 2016b. The conspecificity of *Pterosiphonia spinifera* and *P. arenosa* (Rhodomelaceae, Ceramiales) inferred from morphological and molecular analyses. *Algae* 31:105-15.
- Cribb, A.B. 1956. Records of marine algae from south-eastern Queensland. II. *Polysiphonia* and *Lophosiphonia*. *Pap. Dept. Biol. Univ. Queensland* 3:131-47.
- Díaz-Tapia, P. & Bárbara, I. 2013. Seaweeds from sand-covered rocks of the Atlantic Iberian Peninsula. Part. 1. The Rhodomelaceae (Ceramiales, Rhodophyta). *Cryptog. Algol.* 34:325-422.

Hollenberg, G.J. 1968. An account of the species of *Polysiphonia* of the central and western tropical Pacific Ocean. I. *Oligosiphonia*. *Pac. Sci.* 22:56-98.

- Huisman, J.M., Kim, B. & Kim, M.S. 2017. The phylogenetic position of *Polysiphonia scopulorum* (Rhodomelaceae, Rhodophyta) based on molecular analyses and morphological observations of specimens from the type locality in Western Australia. *Phytotaxa* 324:51-62.
- Kim, M. S., Kim, S. Y., Yang, M.Y., Kim, B. & Díaz-Tapia, P. 2012. Morphology and molecular study of *Pterosiphonia arenosa* sp. nov. (Rhodomelaceae, Rhodophyta) from Jeju Island, Korea. *Algae* 27:259-68.
- Maggs, C.A. & Hommersand, M.H. 1993. Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 3A. Ceramiales. HMSO, London, 444 pp.
- Rueness, J. 1971. Polysiphonia hemisphaerica Aresch. in Scandinavia. Nor. J. Bot. 18:65-74.
- Rueness, J. 1973. Speciation in *Polysiphonia* (Rhodophyceae, Ceramiales) in view of hybridization experiments: *P. hemisphaerica* and *P. boldii. Phycologia* 12:107-9.
- Rueness, J. 2010. DNA barcoding of select freshwater and marine red algae (Rhodophyta). *Cryptog. Algol.* 31: 377-86.
- Savoie, A.M. & Saunders, G.W. 2016. A molecular phylogenetic and DNA barcode assessment of the tribe Pterosiphonieae (Ceramiales, Rhodophyta) emphasizing the Northeast Pacific. *Botany* 94: 917-39.
- Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean. *Univ. Calif. Publ. Bot.*, 79:1-1259.
- Stuercke, B. & Freshwater, D.W. 2008. Consistency of morphological characters used to delimit *Polysiphonia sensu lato* species (Ceramiales, Florideophyceae): analyses of North Carolina, USA specimens. *Phycologia*, 47:541-59.
- Stuercke, B. & Freshwater, D.W. 2010. Two new species of *Polysiphonia* (Ceramiales, Florideophyceae) from the western Atlantic. *Bot. Mar.* 53:301-11.
- Uwai, S. & Masuda, M. 1999. *Pterosiphonia tanakae* (Rhodomelaceae, Ceramiales), a new red algal species from Japan. *Phycol. Res.* 47:241-50.
- Verlaque, M., Ruitton, S., Mineur, F. & Boudouresque, C.-F. 2015. *CIESM atlas of exotic species of the Mediterranean. Macrophytes.* CIESM Publishers, Monaco, 362 pp.
- Wynne, M.J. & Edwards, P. 1970. *Polysiphonia boldii* sp. nov. from Texas. *Phycologia* 9:11-6.

Figure S1 RAxML tree based on *rbc*L sequences of the genus *Symphyocladia*. *S. dendroidea* and *S. dendroidea* 2 are marked in bold. Bootstrap values are indicated on the nodes when > 80. AU (Australia), BC (British Columbia), CL (California), CH (Chile), EU (Europe), JA (Japan), PE (Peru).

Table S1. GenBank accession numbers of the *rbc* L sequences included in the UPGMA and phylogenetic analysis.

	GenBank	Sample ID	Length	Collection site; habitat; date; collectors	Reference
<i>Ophidocladus simpliciusculus</i> (P.Crouan & H.Crouan) Falkenberg	MG975673	JF1003	1291	Elandsbaai point, Western Cape, South Africa; intertidal; 29.xi.2014; KD & JFC	This work
,	MG975674	PD625	1340	Praia de Parati, Ubu, Espirito Santo, Brazil; intertidal; 8.ix.2014; PD & MTF	This work
	MG975675	PD634	1341	Ponta Castelhanos, Espirito Santo, Brazil; intertidal; 9.ix.2014; PD & MTF	This work
	MG975676	PD664	1407	Praia de Santa Cruz, Espirito Santo, Brazil; intertidal; 10.ix.2014; PD & MTF	This work
	NC035284	PD949	1467	Queenscliff, Victoria, Australia; intertidal; 2.xii.2014; PD	Díaz-Tapia et al. 2017
	MG975677	PD1256	833	Inverloch, Victoria, Australia; intertidal; 18.i.2015; PD & MB	This work
	MG975678	PD1283	1377	Twen Reef, Victoria, Australia; intertidal; 19.i.2015; PD & MB	This work
	MG975679	PD1331	830	Walkerville, Victoria, Australia; intertidal; 20.i.2015; PD & MB	This work
	MG975680	PD1409	806	Lighthouse Reef, Victoria, Australia; intertidal; 29.i.2015; PD	This work
	MG975683	PD3342	1357	Georgetown, Tasmania, Australia; intertidal; 5.xi.2017; PD & JC	This work
	MG975684	SANT-A 25413	1443	Biarritz, French Atlantic; intertidal; 19.iii.2011; PD & IB	This work
	MG975672	CAM1032	1245	Biarritz, French Atlantic; intertidal; 9.ix.1999; CAM	This work
	MG975685	SANT-A 26249	1445	Peinzás, Foz, Galicia, Spain; intertidal; 19.iv.2011; PD	This work
	JX828139	CH827	1467	Linorsa, San Cibrao, Galicia, Spain; intertidal; 25.iv.2005; PD & IB	Bárbara et al. 2013
	MG975686	SANT-A 26460	1354	Olhos d'Agua, Algarve, Portugal; intertidal; 20.ii.2011; PD & IB	This work
	MG975681	PD2562	1355	Rochelonga, Adge, French Mediterranean; intertidal; 9.vi.2016; PD	This work
	MG975682	PD2585	1330	Rochelonga, Adge, French Mediterranean; intertidal; 9.vi.2016; PD	This work
Polysiphonia hemisphaerica Areschoug	MG975709	PD300	1303	Culture strain mantained by Jan Rueness and initiated from samples collected in Oslofjord, Norway	This work
Polysiphonia boldii M.J.Wynne & P.Edwards	MG975687	PD348	1287	Culture strain mantained by Jan Rueness and initiated from samples collected in Port Aransas, Texas, USA	This work
Lophosiphonia obscura (C.Agardh) Falkenberg	KT825865	CUK11188	1435	Wallaroo, Adelaide, Australia; 26.iii.2014	Bustamante et al. 2017
	MG975670	PD1352	1290	Eagle Nets Reef, Victoria, Australia; intertidal; 21.i.2015; PD & MB	This work
	MG975671	PD3007	1311	The Fleet, Weymouth, England; intertidal; 10.v.2017; CAM	This work
	MG975669	PD349	1316	Vilalonga, A Coruña, Spain; lagoon, intertidal; 9.vi.2011; RC	This work
	MF094086	SANT-A 26325	1345	Vilalonga, Galicia, Spain; lagoon with low salinity; 9.vi.2011; RC	Díaz-Tapia et al. 2017
	MG975668	PD326	1305	Fondo de Son Bauló, Palma de Mallorca, Spain; intertidal; 30.v.2013; IC	This work
Polysiphonia villum J.Agardh	MG975710	SANT-A 25434	1356	Biarritz, Atlantic France; intertidal; 19.iii.2011; PD & IB	This work
	MG975711	SANT-A 25665	1350	La Arena, Basque Country, Spain; intertidal; 22.ii.2011; PD & IB	This work
	MG975716	SANT-A 28109	1357	Gandarío, Galicia, Spain; intertidal; 25.iv.2013; PD, VG, CP & FC	This work
	MG975721	PD2249	1231	Calanque du Sormiou, Marseille, France; intertidal; 23.v.2016; PD, LLG & MV	This work
	MG975722	PD2250	1281	Calanque du Sormiou, Marseille, France; intertidal; 23.v.2016; PD, LLG & MV	This work
	MG975712	PD3058	1318	Wrightsville Beach, North Carolina, USA; v.1996; MH	This work
	EU492915	NC.33	1341	Masonboro Inlet, New Hanover, North Carolina, USA; -; 22.vii.2005	Stuercke & Freshwater 2008, as <i>P. scopulorum</i> var. <i>villum</i>
	EU492915	NC.09	1341	Masonboro Inlet, New Hanover, North Carolina, USA; -; 4.v.2005	Stuercke & Freshwater 2008, as <i>P. scopulorum</i> var. <i>villum</i>

	MG975717	PD603	837	Praia de Parati, Ubu, Espirito Santo, Brazil; intertidal; 8.ix.2014; PD & MTF	This work
	MG975718	PD614	1327	Praia de Parati, Ubu, Espirito Santo, Brazil; intertidal; 8.ix.2014; PD & MTF	This work
	MG975719	PD631	1297	Ponta Castelhanos, Espirito Santo, Brazil; intertidal; 9.ix.2014; PD & MTF	This work
	MG975720	PD967	1341	13th Beach, Victoria, Australia; intertidal; 4.xii.2014; PD	This work
	MG975715	PD3194	1346	Boat Harbour, Tasmania, Australia; intertidal; 2.xi.2017; PD & JFC	This work
	MG975713	PD3198	1327	Boat Harbour, Tasmania, Australia; intertidal; 2.xi.2017; PD & JFC	This work
	MG975714	PD3208	1319	Boat Harbour, Tasmania, Australia; intertidal; 2.xi.2017; PD & JFC	This work
Polysiphonia devoniensis Maggs & Hommersand	MG975689	CAM467	1245	Sarn Badrig, Pembs, Wales, UK; 15.viii.1998; CAM	This work
	MG975690	PD301	1348	Pwllheli, Wales, UK; 27.vi.2014; FB	This work
	MG975706	SANT-A 25664	1439	La Arena, Basque Country, Spain; intertidal; 22.ii.2011; PD & IB	This work
	MG975707	SANT-A 26229	1439	Llas, Foz, Galicia, Spain; intertidal; 19.iv.2011; PD, VP & AS	This work
	MG975708	SANT-A 28087	711	Miño, Galicia, Spain; intertidal; 25.v.2013; PD	This work
	MG975700	PD2445	926	Tirrenia, Pisa, Italy; intertidal; 3.vi.2016; PD & FR	This work
	MG975701	PD2604	1284	Adge, French Mediterranean; intertidal; 10.vi.2016; PD	This work
	MG975702	PD2627	1292	Setè, French Mediterranean; intertidal; 11.vi.2016; PD	This work
	MG975703	PD2658	1285	Mèze, French Mediterranean; intertidal; 12.vi.2016; PD	This work
	MG975704	PD2659	1290	Mèze, French Mediterranean; intertidal; 12.vi.2016; PD	This work
	MG975705	PD2660	1288	Mèze, French Mediterranean; intertidal; 12.vi.2016; PD	This work
	MG975694	PD2245	943	Calanque du Sormiou, Marseille, France; intertidal; 23.v.2016; PD, LLG & MV	This work
	MG975695	PD2251	922	Calanque du Sormiou, Marseille, France; intertidal; 23.v.2016; PD, LLG & MV	This work
	MG975696	PD2255	926	Calanque du Sormiou, Marseille, France; intertidal; 23.v.2016; PD, LLG & MV	This work
	MG975688	PD2017	1314	Passeto, Ancona, Italy; intertidal; 8.v.2013; FR	This work
	MG975697	PD2384	712	Passeto, Ancona, Italy; intertidal; 8.v.2016; PD & FR	This work
	MG975698	PD2430	1352	Due Sorelle, Ancona, Italy; intertidal; 1.vi.2016; PD & FR	This work
	MG975699	PD2434	1248	Due Sorelle, Ancona, Italy; intertidal; 1.vi.2016; PD & FR	This work
	MG975691	PD766	761	13th Beach, Victoria, Australia; intertidal; 9.xi.2014; PD	This work
	MG975692	PD1255	1391	Inverloch, Victoria, Australia; intertidal; 18.i.2015; PD & MB	This work
	MG975693	PD1259	1404	Inverloch, Victoria, Australia; intertidal; 18.i.2015; PD & MB	This work
Polysiphonia kapraunii B.Stuercke & D.W.Freshwater	EU492920	NC11	1341	Masonboro Inlet, New Hanover, North Carolina, USA; 4.v.2005	Stuercke & Freshwater 2008
Symphyocladia dendroidea (Montagne) Savoie & G.W.Saunders	KU949561	CUK6528	1372	Lagunillas, Pisco, Peru	Bustamante et al. 2016b, as Pterosiphonia spinifera
	KU252575	CUK6615	1378	Yacila, Paita, Peru; 2.ix.2008	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>
	KU949563	CUK8208	1372	Yacila, Paita, Peru	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>
	KU252573	CUK8268	1377	Lagunillas, Pisco, Peru; 7.vii.2012	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>
	KU949562	CUK8290	1372	Medieta, Pisco, Peru	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>
	KU252580	CUK15435	1313	Yacila, Paita, Peru; 14.ii.2012	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>

	KU252579	CUK15436	1394	Yacila, Paita, Peru; 14.ii.2012	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>
	KU949564	CUK16791	1306	Callao, Peru	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>
	KU949565	CUK16792	1372	Callao, Peru	Bustamante et al. 2016b, as Pterosiphonia spinifera
	KU949566	CUK16794	1372	Callao, Peru	Bustamante et al. 2016b, as <i>Pterosiphonia spinifera</i>
	MG975745	JF212	1301	Pangal, Juan Fernández, Chile; intertidal; 17.ii.2014; EM	This work
	MG975748	JF353	1235	Palillo, Juan Fernández, Chile; intertidal; 27.ii.2014; EM	This work
	MG975746	JF369	1358	Palillo, Juan Fernández, Chile; intertidal; 2.iii.2014; EM	This work
	MG975749	JF370	1301	Palillo, Juan Fernández, Chile; intertidal; 2.iii.2014; EM	This work
	MG975747	JF371	1269	Palillo, Juan Fernández, Chile; intertidal; 2.iii.2014; EM	This work
	KU564502	GWS022392	1248	Monterey, California, USA; 23.v.2010	Savoie & Saunders 2016 (as Symphyocladia tanakae)
	KJ814249	UC1965348	672	Monterei, California, USA; intertidal boat ramp	Hughey & Uwai 2015 (as Pterosiphonia tanakae)
	KJ814248	UC1965349	672	Motoujina, Japan	Hughey & Uwai 2015 (as Pterosiphonia tanakae)
	KJ814250	UC1965350	809	Motoujina, Japan	Hughey & Uwai 2015 (as Pterosiphonia tanakae)
	MG975750	PD717	1307	Williamstown South, Victoria, Australia; subtidal (-1 m); 29.x.2014; HV	This work
	MG975751	PD826	662	Frankston, Victoria, Australia; subtidal (-1 m); 19.xi.2014; HV	This work
	MG975752	PD879	1313	Queenscliff Marina, Victoria, Australia; pontoons; 29.xi.2014; PD	This work
	MG975753	PD1427	1384	Geelong, Victoria, Australia; intertidal; 3.ii.2015; PD & MB	This work
	MF101420	JW3780	1467	Culture strain mantained by John West and initiated from samples collected by L. Phillips on 6.iii.1997 in Williamstown, Port Phillip Bay, Australia	Díaz-Tapia et al. 2017
	MG975755	SANT-A 25913	1309	Mèze, France; subtidal (-1 m); 17.v.2011; IB & MV	This work
	MG975756	PD2688	1298	Ribadeo, Lugo, Spain; pontoons; 28.viii.2016; PD	This work
	MG975757	PD2691	1298	Ribadeo, Lugo, Spain; pontoons; 28.viii.2016; PD	This work
	MG975758	PD2692	1298	Ribadeo, Lugo, Spain; pontoons; 28.viii.2016; PD	This work
Symphyocladia dendroidea 2 *	KU564493	GWS021879	1248	Santa Cruz, California, USA	Savoie & Saunders 2016 (as Symphyocladia dendroidea)
Symphyocladia brevicaulis Savoie & G.W.Saunders	KU564499	GWS019412	1248	Bamfield, British Columbia, Canada	Savoie & Saunders 2016 (as Symphyocladia dendroidea)
Symphyocladia baileyi (Harvey) Savoie & G.W.Saunders	KU564471	GWS022257	1363	Monterey, California, USA	Savoie & Saunders 2016 (as Symphyocladia dendroidea)
Symphyocladia plumosa Savoie & G.W.Saunders	KU564473	GWS014494	1363	Bamfield, British Columbia, Canada	Savoie & Saunders 2016 (as

Symphyocladia parasifica (Hudson) Savoie & G.W.Saunders	MF094103	PD2170	1448	San Felipe, Ferrol, Galicia, Spain; subtidal (-3 m); 14.x.2015	Díaz-Tapia et al. 2017
Symphyocladia rosea Savoie & G.W.Saunders	KU564501	GWS010157	1248	Tahsis, British Columbia, Canada	Savoie & Saunders 2016 (as Symphyocladia dendroidea)
Symphyocladia linearis (Okamura) Falkenberg Symphyocladia latiuscula (Harvey) Yamada	JX828158 KU564458	CH419 GWS011933	1467 1363	Anin, Gangwondo, Korea; intertidal; 6.xii.2002 Hokkaido, Oshoro Bay, Japan	Bárbara et al. 2013 Savoie & Saunders 2016
Symphyocladia jejuinsula S.Y.Kim, W.Nelson & M.S.Kim	JF967647	T14	1150	Chujado, Jeju, Korea; 4.viii.2008	Kim et al. 2012b
Symphyocladia glabra J.C.Kang & M.S.Kim	KF048968	121027-27	1150	Gangneung, Korea; subtidal; 27.x.2012	Kang & Kim 2013
<i>Symphyocladia pumila</i> (Yendo) S.Uwai & M.Masuda	GU731228	S204	1154	Daepodong, Seogwipo, Korea; 16.xii.2009	Kim et al. 2010
Symphyocladia lithophila MS.Kim	GQ867078	S146	1154	Gampo, Gyeongju, Korea; 16.iii.2003	Kim et al. 2010
Symphyocladia marchantioides (Harvey) Falkenberg	GU731229		1154	Mataikona, Wairarapa, New Zealand; 5.i.2010	Kim et al. 2010
Xiphosiphonia ardreana (Maggs & Hommersand) Savoie & G.W.Saunders	MF094107	SANT-A 25640	1448	La Arena, Basque Country, Spain; intertidal; 22.iii.2011	Díaz-Tapia et al. 2017
<i>Symphyocladia spinifera</i> (Kützing) Savoie & G.W.Saunders	KU252578	CUK6529	1374	Lagunillas, Pisco, Peru; 27.viii.2008	Bustamante et al. 2016a
	KU252572	CUK8269	1371	Lagunillas, Pisco, Peru; 5.vii.2012	Bustamante et al. 2016a
	KU252571	CUK8293	1394	Mendieta, Pisco, Peru; 5.vii.2012	Bustamante et al. 2016a
	KU252570	CUK8320	1372	Hueco de la Zorra, Pisco, Peru; 5.vii.2012	Bustamante et al. 2016a
	KU252577	CUK6553	1333	Punta Hermosa, Lima, Peru; 30.viii.2008	Bustamante et al. 2016a
	KU252576	CUK6570	1334	Pucusana, Lima, Peru; 30.viii.2008	Bustamante et al. 2016a
	KU252569	CUK8403	1394	Barranco, Lima, Peru; 6.vii.2012	Bustamante et al. 2016a
	KU252574	CUK8236	1394	Eten Port, Chiclayo, Peru; 3.vii.2012	Bustamante et al. 2016a
	KU252568	CUK9780	1394	Gwakji, Aewoleup, Jeju, Korea; 28.iv.2013	Bustamante et al. 2016a
	KU252584	CUK12235	1394	Gwakji, Aewoleup, Jeju, Korea; 30.v.2014	Bustamante et al. 2016a
	KU252581	CUK14857	1394	Woljeongri, Gujwaeup, Jeju, Korea; 7.v.2015	Bustamante et al. 2016a
	JX857413	S105	1150	Geumneung, Jeju, Korea; 15.i.2010	Kim et al. 2012a (as P. arenosa)
	JX857414	12pte01	1150	Geumneung, Jeju, Korea; 21.i.2012	Kim et al. 2012a (as P. arenosa)
	JX857415	PT012	1150	Geumneung, Jeju, Korea; 4.iv.2012	Kim et al. 2012a (as P. arenosa)
	JX857422	PT03	1150	Geumneung, Jeju, Korea; 4.iv.2011	Kim et al. 2012a (as <i>P. arenosa</i>)
	JX857423	PT01	1150	Geumneung, Jeju, Korea; 7.iii.2011	Kim et al. 2012a (as <i>P. arenosa</i>)
	JX857416	PT011	1150	Gosung, Jeju, Korea; 23.iii.2012	Kim et al. 2012a (as P. arenosa)
	JX857417	PT08	1150	Jongdal, Jeju, Korea; 4.ii.2012	Kim et al. 2012a (as P. arenosa)

	JX857418	PT07	1150	Gimnyeong, Jeju, Korea; 21.i.2012	Kim et al. 2012a (as <i>P. arenosa</i>)
	JX857419	PT06	1150	Gimnyeong, Jeju, Korea; 27.xii.2011	Kim et al. 2012a (as P. arenosa)
	JX857420	PT05	1150	Hyeopjae, Jeju, Korea; 3.v.2011	Kim et al. 2012a (as P. arenosa)
	JX857421	PT04	1150	Hyeopjae, Jeju, Korea; 3.v.2011	Kim et al. 2012a (as P. arenosa)
	GQ252572	AC250	758	San Juan Is., Washington, USA; 2.viii.2006	Carlile 2009 (as P. dendroidea)
	MG975759	PD1112	660	Killorney Beach, Victoria, Australia; intertidal; 27.xii.2014; PD	This work
	MG975760	PD1174	1292	Sandringham, Victoria, Australia; intertidal; 8.i.2015; PD & MB	This work
	MG975761	PD2803	1297	Bastion Point, Victoria, Australia; intertidal; 11.xi.2016; PD	This work
	MG975762	PD2871	1307	Shipwreck Creek, Victoria, Australia; intertidal; 13.xi.2016; PD	This work
	MG975763	PD2872	1308	Shipwreck Creek, Victoria, Australia; intertidal; 13.xi.2016; PD	This work
	MG975764	PD2878	1321	Shipwreck Creek, Victoria, Australia; intertidal; 13.xi.2016; PD	This work
	MG975765	PD3341	1290	Georgetown, Tasmania, Australia; intertidal; 5.xi.2017; PD & JC	This work
	MG975766	PD3412	1292	Bianlong Bay, Tasmania, Australia; intertidal; 8.xi.2017; PD & JC	This work
	MG975767	PD3431	1306	Bianlong Bay, Tasmania, Australia; intertidal; 8.xi.2017; PD & JC	This work
	MG975768	PD3453	960	Bianlong Bay, Tasmania, Australia; intertidal; 8.xi.2017; PD & JC	This work
	MG975769	PD3472	1302	Bicheno, Tasmania, Australia; intertidal; 9.xi.2017; PD & JC	This work
	MG975770	PD3480	961	Bicheno, Tasmania, Australia; intertidal; 9.xi.2017; PD & JC	This work
	MG975771	PD3567	968	Tasman Peninsula, Tasmania, Australia; intertidal; 12.xi.2017; PD & JC	This work
	MG975772	PD3592	1350	Port Arthur, Tasmania, Australia; intertidal; 13.xi.2017; PD & JC	This work
	MG975773	PD3168	1315	Southport, Tasmania, Australia; intertidal: 1.xi.2017; PD & JC	This work
	MG975774	PD3344	1320	Georgetown, Tasmania, Australia; intertidal: 5.xi.2017; PD & JC	This work
Xiphosiphonia pennata (C.Agardh) Savoie & G.W.Saunders	MF094108	SANT-A 24618	654	Langre, Asturias, Spain; intertidal; 6.xi.2010; PD	Díaz-Tapia et al. 2017
	MG975723	SANT-A 26631	615	Cala Encendida, Cádiz, Spain: intertidal: 18 ii 2011: PD & IB	This work
	MG975724	SANT-A 28747	640	Margaritas, Galicia, Spain; intertidal: 4.xii.2013: PD	This work
Xiphosiphonia pinnulata (Kützing) Savoie & G.W.Saunders	KU252567	IBT0242	1394	Praia Domingas Dias, Ubatuba, Sao Paulo, Brazil; ix.2009	Bustamante et al. 2016a (as <i>P. pennata</i>)
	KU252566	IBT0456	1394	Praia de Cambriú, Ilha do Cardoso, Sao Paulo, Brazil; viii.2008	Bustamante et al. 2016a (as <i>P. pennata</i>)
	MG975727	PD617	1263	Praia de Parati, Ubu, Espirito Santo, Brazil; intertidal; 8.ix.2014; PD & MTF	This work
	MG975728	PD622	1280	Praia de Parati, Ubu, Espirito Santo, Brazil; intertidal; 8.ix.2014; PD & MTF	This work
	MG975729	PD655	1277	Praia de Santa Cruz, Espirito Santo, Brazil; intertidal; 10.iv.2014; PD & MTF	This work
	MG975730	PD3027	1295	Hengistbury Head, Bournemouth, Engand; intertidal; 23.vi.2017; CAM	This work
	MG975735	SANT-A 25155	660	Zumaia, Guipúzcoa, Spain; intertidal; 28.iii.2011; PD & IB	This work
	MG975736	SANT-A 25156	616	Zumaia, Guipúzcoa, Spain; intertidal; 28.iii.2011; PD & IB	This work
	MG975739	SANT-A 25647	665	Muskiz, Vizcaya, Spain; intertidal; 22.iii.2011; PD & IB	This work
	MG975740	SANT-A 25661	623	Muskiz, Vizcaya, Spain; intertidal; 22.iii.2011; PD & IB	This work

	JX857425	SANT-A 19754	1150	La Franca, Asturias, Spain; intertidal; 6.x.2006; PD	Kim et al. 2012a (as
	MG975738	SANT-A 25589	649	La França Asturias Spain: intertidal: 23 iii 2011; PD & IB	This work
	MG975731	SANT-A 24615	507	Langre Asturias, Spain, intertidal: 6 vi 2010; PD	This work
	MG975731 MG975742	SANT A 24013	642	Deinzás Lugo Spoin: intertidal: 10 iv 2011: DD AS & VD	This work
	MC075744	SANT-A 2024/	662	Diaón A Comiña Spain, intertidal: 29 iv 2011; DD	This work
	MO9/3/44	SANT-A 20000	003	ricon, A Coruna, Spann, intertidal, 28.1X.2011, FD	Vine at al. 2012a (an
	JX857424	SANT-A 19607	1150	Chanteiro, A Coruña, Spain; intertidal; 17.ix.2005; PD	Pterosiphonia pennata)
	JX828155	CH977	1467	Ber, A Coruña, spain; intertidal; 25.viii.2005; PD	Bárbara et al. 2013 (as <i>Pterosiphonia pennata</i>)
	MG975734	SANT-A 24731	625	Perbes, A Coruña, Spain; intertidal; 20.i.2011; PD & CPA	This work
	JX857426	SANT-A 20940	1150	Ártabra, A Coruña, Spain; intertidal; 6.vi.2008; PD	Kim et al. 2012a (as Pterosiphonia pennata)
	JX828154	CH816	1463	Nerga, Pontevedra; Spain; intertidal; 12.ii,2005; PD & IB	Bárbara et al. 2013 (as <i>Pterosiphonia pennata</i>)
	JX828156	CH1308	1467	Almograve, Baijo Alentejo, Portugal; intertidal; 25.v.2005; PD	Bárbara et al. 2013 (as <i>Pterosiphonia pennata</i>)
	MG975732	SANT-A 24668	611	Almograve, Baijo Alentejo, Portugal; intertidal; 22.ii.2011; PD & IB	This work
	MG975733	SANT-A 24669	644	Almograve, Baijo Alentejo, Portugal; intertidal; 22.ii.2011; PD & IB	This work
	MG975737	SANT-A 25472	665	Ingrina, Algarve, Portugal; intertidal; 20.ii.2011; PD & IB	This work
	MG975725	CAM462	1249	Cádiz, Spain; intertidal; 4.v.1998; CAM	This work
	MG975726	CAM478	1245	Cádiz, Spain; intertidal; 4.v.1998; CAM	This work
	MG975743	SANT-A 26533	665	Punta Plata, Cádiz, Spain; intertidal; 19.ii.2011; PD & IB	This work
	MG975741	SANT-A 25837	608	Anse de Malmosuqui, Marseille, France; intertidal; 9.v.2011; IB	This work
Herposiphonia akidoglossa R.E.Norris	KU551923	TC13944	1380	Puducherry, Tamil Nadu, India; 8.ii.2015	Bustamante et al. 2017
Herposiphonia calothrix (Harvey) Womersley	MF094067	PD1478	1417	Sorento, Victoria, Australia; intertidal; 28.ii.2015; PD, MB & VRM	Díaz-Tapia et al. 2017
Herposiphonia insidiosa (Greville ex J.Agardh) Falkenberg	KT825868	CUK10410	1373	Yeonji-ri, Gyeonsangbuk-do, Korea; 5.x.2013	Bustamante et al. 2017
Herposiphonia parca Setchell	JX828127	CH426	1467	Jukbyun, Gyeongbuk, Korea: 18.xii.2002	Bárbara et al. 2013
Hernosiphonia pectinella (Harvey) Falkenberg	MF094068	PD1415	1415	Geelong, Victoria, Australia: intertidal: 3.ji 2015: PD & MB	Díaz-Tapia et al. 2017
Herposiphonia plumula (LAgardh) Falkenberg	KU564517	GWS027411	1363	Panther Pt., Wallace L., British Columbia, Canada	Savoie & Saunders 2016
Herposiphonia prorepens (Harvey) F.Schmitz	KU551924	TC6194	1395	Puducherry, Tamil Nadu, India; 12.ii.2015	Bustamante et al. 2017
Herposiphonia versicolor (Hooker & Harvey) Reinbold	NC035279	PD852	1467	Sant Leonards, Victoria, Australia; subtidal (-2 m); 27.xi.2014; HV	Díaz-Tapia et al. 2017
Herposiphonia sp QL2	MF094071	PD1910	1410	Heron Island, Queensland, Australia; intertidal; 15.v.2015; PD, HV, VRM & CC	Díaz-Tapia et al. 2017
Herposiphonia sp IP1	MF094070	SANT-A 24671	1437	Almograve, Portugal; intertidal; 22.ii.2011; PD & IB	Díaz-Tapia et al. 2017
Herposiphonia sp WA2	MF094073	PD1757	1416	Coral Bay, Western Australia; subtidal (-15 m); 24.iii.2015; PD & JFC	Díaz-Tapia et al. 2017
Herposiphonia sp WA3	MF1094074	PD1757	1073	Channel Rocks, Western Australia; subtidal (-2 m); 13.iii.2015; PD & JFC	Díaz-Tapia et al. 2017
Herposiphonia sp WA4	MF094075	PD1650	1217	Rottnest Island, Western Australia; subtidal (-2 m); 17.iii.2015; PD & JFC	Díaz-Tapia et al. 2017
Herposiphonia sp WA5	MF094076	PD1781	1415	Geraldton, Western Australia; drift; 26.iii.2015; PD & JFC	Díaz-Tapia et al. 2017

Herposiphonia pecten veneris (Harvey) Falkenberg	KU551922	TC13698	1395	Pelican Beach, Belize; 15.v.2015	Bustamante et al. 2017
Herposiphonia tenella CI4	MG975648	PD323	790	Tufia, Gran Canaria, Canary Islands, Spain; intertidal; 24.vi.2013; PD	This work
	MG975646	PD317	652	Tufia, Gran Canaria, Canary Islands, Spain; intertidal; 24.vi.2013; PD	This work
	MG975647	PD321	715	Tufia, Gran Canaria, Canary Islands, Spain; intertidal; 24.vi.2013; PD	This work
Herposiphonia tenella IP1	MF094077	PD322	788	Virgen del Mar, Cantabria, Spain; intertidal; 7.xi.2010; PD	Díaz-Tapia et al. 2017
	MG975649	PD183	585	Ojos de Garza, Gran Canaria, Canary Islands, Spain; intertidal; 24.vi.2013; PD	This work
	MG975650	PD2338	711	Marseille, France; intertidal; 27.v.2016; PD	This work
	MG975651	PD2488	715	Alassio, Italy; intertidal; 5.vi.2016	This work
	MG975652	PD2496	711	Alassio, Italy; intertidal; 5.vi.2016	This work
	MG975653	SANT-A 26526	745	Punta Plata, Cádiz, Spain; intertidal; 19.i.2011; PD & IB	This work
	MG975654	SANT-A 26810	660	Bastiagueiro Pequeño, A Coruña, Spain; intertidal; 30.ix.2011; IB	This work
	MG975655	SANT-A 27354	723	Camelle, A Coruña, Spain; intertidal; 13.i.2012; IB	This work
Herposiphonia tenella IP2	KT825867	CUK910	1450	Beaufort, North Carolina, USA; 26.x.2003	Bustamante et al. 2017
	MG975656	PD2655	708	Mèze, France; 12.vi.2016; PD	This work
	GU385834	NC.1	1353	Pender Co., North Carolina, USA	Stuercke & Freshwater 2010
	MG975657	SANT-A 25620	771	La Franca, Asturias, Spain; intertidal; 23.iii.2011; PD & IB	This work
Herposiphonia tenella IP3	MG975661	SANT-A 25480	634	Ingrina, Algarve, Portugal; intertidal; 20.ii.2011; PD & IB	This work
	MG975662	SANT-A 25481	790	Ingrina, Algarve, Portugal; intertidal; 20.ii.2011; PD & IB	This work
	MG975658	CAM463	887	San Sebastián, Cádiz, Spain; 4.v.1998; CAM	This work
	MF094078	SANT-A 25835	1439	Marseille, France; subtidal (-2 m); 9.v.2015; IB	Díaz-Tapia et al. 2017
	MG975659	PD2333	701	Marseille, France; intertidal; 27.v.2016; PD	This work
	MG975660	PD2554	695	Menton, France; intertidal; 8.vi.2016; PD	This work
Herposiphonia tenella QL1	MG975663	PD1908	704	Heron Island, Queensland, Australia; intertidal; 15.v.2015; PD, HV, VRM & CC	This work
	MG975664	PD1975	701	Heron Island, Queensland, Australia; subtidal (-3 m); 15.v.2015; PD & CC	This work
Herposiphonia tenella QL2	MG975665	PD1986	695	Heron Island, Queensland, Australia; intertidal; 19.v.2015; PD, HV, VRM & CC	This work
Herposiphonia tenella QL3	MF094072	PD1933	1413	Heron Island, Queensland, Australia; intertidal; 15.v.2015; PD, HV, VRM & CC	Díaz-Tapia et al. 2017
	MG975666	PD1887	702	Heron Island, Queensland, Australia; intertidal; 15.v.2015; PD, HV, VRM & CC	This work
	MG975667	PD1890	1406	Heron Island, Queensland, Australia; intertidal; 14.v.2015; PD, HV, VRM & CC	This work
Dipterosiphonia australica Womersley	NC035288	PD1107	1467	Killornei, Victoria, Australia; intertidal; 27.xii.2014; PD	Díaz-Tapia et al. 2017
Dipterosiphonia dendritica 1	MF094058	PD1654	1417	Rottnest Island, Western Australia; subtidal (-2 m); 17.jii.2015; PD & JFC	Díaz-Tapia et al. 2017
Dipterosiphonia dendritica 2	MF094059	PD1799	1413	Drummonde Cove, Western Australia; drift: 27.iii.2015: PD & JFC	Díaz-Tapia et al. 2017
<i>T T T T T T T T T T</i>				, ···,,,,,	

* Only one rbc L sequence of Symphyocladia dendroidea 2 was included in our phylogeny. However, six rbc L sequences and 22 cox 1 sequences were generated for this species (Savoie & Saunders 2016)

Collectors	
AS: Antonio Secilla	JR: Jan Rueness
CAM: Christine A. Maggs	KD: K. Dixon
CC: Chiela Cremen	LLG: Line Le Gall
CP: Cristina Piñeiro	MB: Margaret Brookes
CPA: Cristina Pardo	MH: Max Hommersand
EM: Erasmo Macaya	MTF: Mutue Toyota Fujii
FB: Francis Bunker	MV: Marc Verlaque
FC: Fabiola Cannata	PD: Pilar Díaz-Tapia
FR: Fabio Rindi	RC: Rafael Carballeira
IB: Ignacio Bárbara	VG: Verónica García Redondo
IC: Iara Chapuis	VP: Viviana Peña
JFC: Joana Ferreira Costa	VRM: Vanessa Rossetto Marcelino

References

- --

Bárbara, I., Choi, H.-G., Secilla, A., Diaz-Tapia, P., Gorostiaga, J.M., Seo, T.K., Jung, M.-Y. & Berecibar, E. 2013. *Lampisiphonia iberica* gen. et sp. nov. (Ceramiales, Rhodophyta) based on morphology and molecular evidence. *Phycologia* 52: 137-55.

Bustamante, D. E., Won, B. Y. & Cho, T. O. 2016a. The conspecificity of Pterosiphonia spinifera and P. arenosa (Rhodomelaceae, Ceramiales) inferred from morphological and molecular analyses. Algae 31: 105-15.

Bustamante, D.E., Won, B.Y. & Cho, T.O. 2016b. Morphology and phylogeny of Pterosiphonia dendroidea (Rhodomelaceae, Ceramiales) described as Pterosiphonia tanakae from Japan. Bot. Mar. 59: 353-61.

Bustamante, D. E., Won, B. Y., Miller, K. A. & Cho, T. O. 2017. *Wilsonosiphonia* gen. nov. (Rhodomelaceae, Rhodophyta) based on molecular and morpho-anatomical characters. J. Phycol. 53: 368–80. Carlile, A.L. 2009. *Molecular Systematics of North Pacific Ceramiaceae (Rhodophyta): Phylogeny, Taxonomy, and Phylogeography*. University of Washington, 296 pp. Díaz-Tapia, P., Maggs, C. A., West, J. A. & Verbruggen, H. 2017. Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta). J. Phycol. 53: 920–37. Hughey, J.R. & S. Uwai. 2015. California. *Madroño 62:* 73–4.

Kim, M.S., Kim, S. Y. & Nelson, W. 2010. Symphocladia lithophila sp. nov. (Rhodomelaceae, Ceramiales), a new Korean red algal species based on morphology and rbcL sequences. Bot. Mar. 53: 233-41.

Kim, M. S., Kim, S. Y., Yang, M. Y., Kim, B. & Díaz-Tapia, P. 2012a. Morphology and molecular study of Pterosiphonia arenosa sp. nov. (Rhodomelaceae, Rhodophyta) from Jeju Island, Korea. Algae 27:259-68.

Kim, S. Y., Nelson, W. & Kim, M. S. 2012b. A reappraisal of *Symphyocladia* (Rhodomelaceae, Rhodophyta), including a new species based on morphology and molecular data. *Phycologia* 51: 531-41.
Kang, J.C. & Kim, M.S. 2013. A novel species *Symphyocladia glabra* sp. nov. (Rhodomelaceae, Rhodophyta) from Korea based on morphological and molecular analyses. *Algae* 28: 149-60.
Kim, M. S., Kim, S. Y. & Nelson, W. 2010. *Symphyocladia lithophila* sp. nov. (Rhodomelaceae, Ceramiales), a new Korean red algal species based on morphology and rbcL sequences. *Bot. Mar.* 53: 233-41.
Savoie, A.M. & Saunders, G.W. 2016. A molecular phylogenetic and DNA barcode assessment of the tribe Pterosiphonieae (Ceramiales, Rhodophyta) emphasizing the Northeast Pacific. *Botany* 94: 917-39.
Stuercke, B. & Freshwater, D. W. 2008. Consistency of morphological characters used to delimit *Polysiphonia sensu lato* species (Ceramiales, Florideophyceae): analyses of North Carolina, USA specimens. *Phycologia* 47: 541-59.

Stuercke, B. & Freshwater, D. W. 2010. Two new species of Polysiphonia (Ceramiales, Florideophyceae) from the Western Atlantic. Bot. Mar. 53: 301-11.