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ABSTRACT 

Microwave induced catalytic degradation is considered amongst the most efficient techniques to 

remove antibiotic such as chlortetracycline from contaminated water. Described here is a new 

microwave induced oxidation catalyst based on carbon nanotube decorated uniformly with 

nanoparticles of Fe3O4. The combination of dielectric loss and magnetic loss of the material 

contributed to its stronger microwave absorption and the ability to produce more “hot spots”. 

These hot spots promoted the oxidation of common antibiotics like chlortetracycline, tetracycline 

and oxytetracycline under microwave irradiation. Experiments with the addition of scavenger 

showed that hydroxy radical (•OH) together with superoxide radicals (•O2
−
) contributed to the 
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antibiotics removal as well. The final degradation products included CO2 and NO3
-
 as confirmed 

by mass spectroscopy and ion chromatography analyses. The results indicated that Fe3O4/CNTs 

was an efficient catalyst for microwave-induced oxidation. 

KEYWORDS 

Microwave induced oxidation; Catalysts; Nanocomposites; Chlortetracycline; Degradation 

1 INTRODUCTION  

Antibiotics are types of the antimicrobial that can kill or inhibit the growth of 

microorganisms (bacteria, fungi, viruses, archaea, protozoa, and microalgae).
1,2

 With the 

increasing use of antibiotics in human and veterinary medicine, there is a serious potential 

risk to release them as micro-contaminations to soil and water ecosystem. Long-term, 

chronic exposure to antibiotics residues may directly induce the development of 

antibiotic-resistant genes.
3,4

 Also, antibiotic could contribute to the development of 

resistant and multi-resistant bacteria, possess direct hazard to both human and animals as 

well as to the environment.
5-7

 Therefore, alongside the plans of prudent use of antibiotics in 

medicines, it is important also to develop effective treatment technology for the 

contaminated water or soil.
8 

The removal of antibiotics such as chlortetracycline (CTC), tetracycline (TC) and 

oxytetracycline (OTC) from natural water was difficult and expensive.
2,9

 Conventional 

wastewater treatment plants were not designed for the removal of antimicrobials.
10-14

 

Therefore, various techniques have been investigated to remove antibiotics and other 

antimicrobials from water, including chemical oxidation,
15

 biodegradation,
16

 membrane 

bioreactors,
17

 photocatalytic degradations.
17,18

 However, it was difficult in most of the 

cases to achieve full degradation of the micropollutants, and some residues were still 

contaminating the water.
19

 In addition, most of the tested methods have harmful side 

effects such as releasing toxic chemicals to the environment. Compared with other 

methods, microwave-assisted contaminant degradation can achieve higher removal 

efficiency without any severe side effects.
20

 Also, microwave wastewater treatment 

processes are rapid, scalable, and environmentally friendly.
21

 Moreover, the microwave 
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processes can be tuned to target specific molecules due to the ability to change the 

activation energy, frequencies and other operation conditions.
20-22

 

The microwave-absorbing materials play an essential role in microwave-induced degradation. 

Therefore, considerable attention has been devoted to developing highly efficient catalytic 

materials. The commonly used microwave-absorbing materials can be divided into two categories: 

dielectric loss materials such as carbon nanotubes (CNTs) and carbon nanofibers (CNFs), and 

magnetic loss materials such as Fe3O4 and cobalt (Co).
23

 Carbon materials, as well as metallic 

nanoparticles, were considered as excellent microwave induced catalyst due to the formation of a 

significant number of “hot spots” under microwave irradiation (MI). The formation of 

atomic-scale “hot spots” on the surface of metallic nanoparticles has been proven by SERS 

analysis.
24

 These hot spots are regions with localised heat that can adsorb and decompose the 

organic pollutants.
23,25

 However, carbon nanomaterials suffer from poor selectivity and slow 

adsorption kinetics.
25

 Magnetic lose materials, on the other hand, exhibit strong adsorption 

strength and fast kinetics, but suffer from the narrow absorption frequency bandwidth.
23

 

Composites of Fe3O4 and carbon materials showed good microwave absorbing performance.
26

 Li 

and his coworkers have reported a composite of CNT and Fe3O4 with ultra-low reflection loss (RL) 

value. Their study showed that the large surface interface introduced by Fe3O4 as well as the 

combination of the permeability and the permittivity enhanced the magnetic loss of the composite. 

For microwave induced degradation, as compared with microwave absorption, controlling the size 

of Fe3O4 would have a positive effect on the efficiency of the degradation. The smaller particles 

introduce larger interfaces and contribute more active sites as well as high catalytic activity. 

However, it is still a challenge to design a microwave induced catalyst that can satisfy the 

requirements of absorbing frequency bandwidth and absorption strength.
23,26

 It was also difficult 

to control the composition and to engineer porous structures that can maximise the interface 

between the catalyst and the polluted water.
23,27

  

In this study, we used a facial synthesis process to design a microwave induced catalyst by 

controlling the growth of Fe3O4 particles on the surface of CNTs (Fig 1). By partially oxidising the 

CNT, the ferrous oxide source was directed toward the hydroxyl groups on the surface of the 

nanotubes, resulting in a homogenous disruption of the iron precursors. The directed deposition 

prevented the aggregation of the nanoparticles. Due to the strong covalent interaction between the 
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oxide surface groups and the iron precursor, it was possible to remove any excess amount of iron 

source through a subsequent aggressive washing step, which helped to maintain the size of the 

particles at the range of 3 to 8 nm. The resulted composite has a porous structure with a high 

specific surface area that facilitated the interaction between the catalyst and the unwanted water 

contamination. The established strong interaction between FeO3O4 and CNT promoted the 

regeneration of the catalyst and extended its lifecycle. By taking CTC as an example, we showed 

that the new composite has a high removal efficiency of antibiotics in microwave degradation 

system. The degradation mechanism of CTC using catalyst-induced microwave was also 

investigated. 

 

2 EXPERIMENTAL SECTION  

1.1. Materials.  

The materials used for the syntheses of Fe3O4/CNTs were ferrous acetate and nitric acid 

(Analytical grade, purchased from Beijing Chemical Industry Co.), and multi-walled 

carbon nanotubes (Purchased from Aladdin Industrial Co.). Ethyl alcohol (200 proof) was 

purchased from Sigma-Aldrich and CTC was purchased from Hefei Bomei Biological 

limited company with a purity of 98%. Isopropanol and benzoquinone, used for the 

studying of degradation mechanism, were purchased from Beijing Chemical Industry Co. 

All chemicals referred in this research were obtained from commercial sources as reagent 

grade and used without further purification. Deionised water (15-18.2 MΩ·cm) was used in 

all experiments. The water was purified by a Smart-RO water system (Shanghai Hetai 

Instruments Co. Ltd.). 

1.2. Synthesis of Fe3O4/CNTs.  

A two-step process was developed for preparing Fe3O4/CNTs composite. The first step 

includes oxidising CNTs and preparing the intermedium CNTs@Ferrum hydroxy acetic 

acid (CNTs@FH). The oxidised CNTs were prepared by treating dried CNTs with 

concentrated nitric acid under sonication, and then the solution was reflux for 4.5 h at 120 

°C.
29

 The intermedium CNTs@FH was syntheses by the following methods: 40 mg ferrous 

acetate and 25 mg oxidised CNTs were ultrasonically dispersed into 30 mL pure ethanol to 
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form a homogeneous dispersion, and then refluxed at 80 °C for 6 h. After cooled to room 

temperature, the products were centrifuged and washed with ethanol repeatedly and dried 

at 60 °C. The second step was calcining the prepared CNTs@FH for 2 h at 500 °C in a 

tube-furnace, using argon as the shielding gas. And the sintered product was denoted as 

Fe3O4/CNTs.  

1.3. Characterization.  

The structure and crystal phase of synthesised CNTs@FH and Fe3O4/CNTs were 

characterised by X-ray diffraction (XRD) analysis using a CuKα radiation at 40 kV and 

100 mA, a scanning speed of 8° 2θ/min, and a step size of 0.02° 2θ from 10° to 70°. 

Microstructures of the composite, chemical microanalysis, and crystallite-size 

measurement were analysed using a transmission electron microscope (TEM). Fe3O4/CNTs 

solution (sample powders ultrasonic dispersed in ethanol) was dropped and dried on copper 

grid-supported carbon films for TEM imaging. Fourier transform infrared 

spectrophotometer (FT-IR) (Spectrum 100, PerkinElmer, USA) analysis was carried out, 

and the samples were spread evenly on KBr pellets before scanning.   

Microwave absorption properties of Fe3O4, CNTs, and Fe3O4/CNTs were analysed by the 

microwave network analyser N5244A (Agilent) in the frequency range of 2 to 18 GHz, using the 

coaxial wire method in free space. The sample powder (20 wt %) was thoroughly mixed with 

molten wax (80 wt %), and the mixture was then pressed into toroidally shaped samples. The 

samples outer diameters were 7.00 mm and inner diameters were 3.04 mm with a thickness of 3 

mm.  

To measure the catalytic degradation ability, a series of experiments were performed. These 

experiments were carried out in a condensing device with the initial pH of CTC solution kept at 

value 6.5. About 0.01 g Fe3O4/CNTs was added to 40 mL CTC solution with an initial 

concentration of 50 mg/L. The reactions were carried out with and without MI in the presence and 

absence of the catalyst. The solutions after reacting were collected, filtered, and cooled to room 

temperature before being analysed. The degradation data were obtained in multi-sets of 

experiments under the same conditions to ensure the effectiveness and the reproducibility. 

To investigate the degradation mechanism, CTC solutions before/after degradation were analysed. 
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The molecular weights of CTC and its degradation products were characterised by 

high-performance liquid chromatography-mass spectrometer (HPLC–MS, Thermo Scientific). 

Absolute removal amount of CTC was calculated using UV-Vis spectrophotometer (Precision 

Scientific Instrument Co. Ltd., Shanghai) at the maximum absorption wavelength of 369 nm. The 

degradation products were detected by Dionex ICS-3000 Ion Chromatography (IC) System, 

ICS-3000 Detector/Chromatography Module. The ultraviolet-visible spectra of products from 250 

to 450 nm were collected by ultraviolet-visible spectroscopy (Beijing North Temple Instrument 

Technology Co. Ltd.) with an optical bandwidth of 2.0 nm, a medium scanning speed at an 

interval of 1 nm, and a response time of 0.2 s. The filtrate obtained by passing the liquid through a 

0.22 µm membrane was used to measure the concentrations of total carbon, determined by a 

TOC-VCPH analyser (Shimadzu, Japan). The total carbon content (TCC) was measured by the 

TOC-VCPH analyser while the carbon content of CTC was calculated based on the data of 

UV-Vis spectrophotometer. 

3 RESULTS AND DISCUSSION 

3.1. Microstructures and Material Properties of Fe3O4/CNTs.  

The microstructures of CNTs, oxidised CNTs and CNTs@FH were investigated by TEM, and the 

corresponding images are shown in Fig. 2a, Fig. 2b and Fig. 2c, respectively. The smooth surface 

of the pristine CNTs became rougher with many obvious defects in the walls after the oxidation. 

The rough surface helped the Ferrum hydroxy acetic acid (FH) to adhere well to the nanotubes, 

and a homogeneous uniform coating was obtained as can be seen in Fig. 2c. The EDX analysis 

(Fig. 2g) showed a uniform distribution of both Fe and C, which further confirmed the 

homogeneity of the FH layer. TEM images of Fe3O4/CNTs (Fig. 2d and Fig. 2e) suggested the 

formation of the Fe3O4 nanoparticles after calcination. The size of the nanoparticles is between 3 

to 8 nm in diameter. 

Interestingly, the nanoparticles seem to be embedded into the wall of CNT, and a thin layer 

appears to wrap the nanoparticles. We believe that the high-temperature nature of the 

calcination played a role in enhancing the interaction between Fe3O4 and CNTs, which led 

to the formation of a conductive network as will be discussed later.
25,27

 The controlled 

heat-treatment during the calcination also helped to maintain equilibrium conditions,
28
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resulting in an excellent crystallinity of the nanoparticles as can be concluded from the 

clear layered structure in Fig. 2f. The high-resolution TEM images show that the lattice 

spacing is about 0.251 nm, typically for the d-spacing of (311) in crystal plane of Fe3O4. 

The EDS spectrum of Fe3O4/CNTs is illustrated in Fig. 2h. It confirms the uniform loading 

of Fe3O4 nanoparticles on CNTs and the loading amount of Fe3O4 was about 22.3 wt%.  

The XRD analysis further confirmed the stability of the CNTs structures during the 

oxidation and calcination. The XRD patterns of synthesised intermediate CNTs@FH, and 

Fe3O4/CNTs (Fig. 3a) show the broad characteristic peaks of CNT at around 26
o 

2theta. 

The other peaks in the Fe3O4/CNTs spectrum fit well with that of Fe3O4 (JCPDS 75-0033). 

The particles size of Fe3O4 is calculated by the Scherrer’s formula and to be 6.65 nm. It is 

in a good agreement with the particles size showed in TEM images. The absence of the 

Fe3O4 peaks from the CNTs@FH pattern is due to the amorphous nature of the Fe 

compound. Furthermore, the iron element in CTC solutions before and after degradation 

was detected by ICP-AES (Table S1). Together with the results of XRD, the absence of 

iron in solution after CTC degradation confirms the conclusion that Fe3O4/CNTs only acted 

as a catalyst during the degradation process. The FT-IR was used to determine the nature of 

the interaction between multi-walled CNTs and iron oxide. The obtained FT-IR spectra of 

CNT, the CNTs@FH precursor, and the Fe3O4/CNTs composite after calcination are shown 

in Fig.3b. The band at 588 cm
-1

 observed for both CNTs@FH and Fe3O4/CNTs is associated 

with the absorption peak of Fe-O,
30

 confirming the presence of Fe after refluxing. The 

stretching band at 1630 cm
-1

 can be assigned to the vibrations of O-H.
31

 The intensity of 

the O-H band of the Fe3O4/CNTs is almost the same as that of pristine CNT, suggesting the 

removal of the OH groups during calcination. The peak at 1400 cm
-1

 belongs to the C−C 

skeleton vibration of CNTs, which is maintained after the oxidation and calcination 

processes.
32

 

3.2. Microwave Absorption Properties of the Prepared Materials.  

For a microwave induced catalyst, the microwave absorbing ability had a significant impact on the 

degradation efficiency. The microwave absorption properties usually determined by the reflection 

loss (RL), can be calculated and optimised based on the transmission line theory using the 
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following equation.
33-36 

RL (dB)=20 log | (Zin-Z0)/(Zin+Z0) |  (1) 

Where Zin and Z0 represent the input impedance of the absorber and the impedance of free space. 

The absorber impedance can be calculated from the following equation: 

Zin= Z0(µr/εr)
1/2

tanh[j(2πfd/c) (µrεr)
1/2

]
.
  (2) 

Where εr and µr represent the relative complex permittivity and the relative complex permeability, 

respectively; f stands for the frequency; d is the thickness of toroidal shaped sample and c is the 

velocity of electromagnetic waves in free space. 

Fig. 3c shows the reflection loss curve as a function of the frequency for CNT, Fe3O4 and 

Fe3O4/CNTs composite. The RL reaches a minimum value of -19.8 dB at about 2.6 GHz 

for the Fe3O4/CNTs indicating stronger microwave absorption than that of the individual 

components. The maximum absorption bandwidth (RL <-10 dB, demonstrated over 90% 

absorption of incident microwave
34

) is significantly boarder for the composite than for the 

CNT and Fe3O4 nanoparticles. 

It can be concluded that high imaginary permittivity (ε″) and high imaginary permeability 

(µ″) reveal the better dissipation ability. While the real parts reveal the ability of a material 

to store electric(ε′) and magnetic(µ′) energy.
26

 The dielectric and magnetic dissipation 

factors played a key role to evaluate the microwave power lost in a material.
37

 The 

dielectric loss (tan δe = ε″/ε′) for Fe3O4/CNTs exhibits an increasing trend from 12 to 18 

GHz while magnetic loss tan δµ = µ″/µ′ is descending from 12 to 18 GHz (Fig. 3d). Both 

of tan δe and tan δµ are maintained at a relatively fixed value from 2 to 12 GHz. The value 

of the magnetic loss is closer to the dielectric loss in the low-frequency range, indicating 

better electromagnetic impedance matching. Overall, we can conclude that as for the 

Fe3O4/CNTs, tan δe governs the microwave absorbing ability while tan δµ plays a minor 

role. Furthermore, due to the presence of magnetic constituents in the as-prepared 

specimens, µ' and µ'' are around 1 and 0, respectively, with only a slight difference. These 

results suggest that Fe3O4/CNTs possess low magnetic loss ability.
33,36-38

 The dielectric and 

magnetic loss has a different trend of variation. The value of the magnetic loss is higher 

than that of the dielectric loss, indicating that the later contributes most to enhancing 

microwave absorption properties of Fe3O4/CNTs. The minimum RL of Fe3O4/CNTs is 
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−39.27 dB with a thickness of 2 mm at 12.41 GHz. The improved microwave absorbing 

behaviour of Fe3O4/CNTs can be attributed to the multiple interfacial polarisations between 

Fe3O4 nanoparticles and CNTs, as well as the impedance matching between the material 

and space.
33,34

 Also, the electromagnetic impedance matching is conducive for more 

microwaves entering inside the material rather than reflecting, resulting in more efficient 

absorption. 

3.3. Degradation of CTC Using Fe3O4/CNTs as Catalyst.  

Considering the excellent microwave absorption properties of Fe3O4/CNTs, one could expect the 

composite to work well as a catalyst for induced degradation of a wide array of antibiotics.
39 

To 

proof this concept, we have selected CTC as an example of antibiotics and investigated its 

degradation using Fe3O4/CNTs as the catalyst. Although pure MI can remove some CTC (Fig. 4a), 

the degradation is limited, and the decomposition products have relatively higher molecular 

weight (Fig. S1, S2). The addition of Fe3O4/CNTs significantly improves the efficiency of 

degradation, particularly under a shorter reaction time. The CTC removal reached a maximum of 

185 mg/g within 15 min when the MI was applied in the presence of Fe3O4/CNTs. The removal 

efficiency increased to 93% after 30 min of irradiation. To demonstrate the synergistic effect of 

CNTs and Fe3O4 in the composite, we run a control experiment in which Fe3O4 powder and CNTs 

were physically mixed. The results are shown in Fig. 4a indicates that the physical mixing catalyst 

has much lower degradation efficiency than the Fe3O4/CNTs composite, further confirming the 

enhancement of the absorption properties of the composite. The TCC in solution decreases with 

increasing the reaction time (Fig. 4b), suggesting the formation, and emission, of carbon gases 

such as CO2. The TCC value is higher than the carbon content of CTC, suggesting that CTC has 

been disintegrated into smaller organic molecules and then decomposed into inorganic carbon 

gases. The intensity of the absorption spectrum gradually decreases, indicating progressive CTC 

removal under MI (Fig. 4c).  

UV spectroscopy was used to investigate the kinetics of degradation. The fitting result diagram 

(Fig. 4d) shows that the microwave induced catalyst degradation, as well as microwave 

degradation, follow a pseudo-second-order kinetic model. The kinetic coefficient of the 

degradation reaction is almost three times higher when the catalyst was added (k=0.0376 
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compared to k=0.0113 without catalyst). The degradation kinetics is significantly higher than that 

reported in the literature for other antibiotics removal methods as summarised in Table S2 and Fig. 

4i.  

We have conducted a series of experiments to optimise the process parameters. We investigated 

the effect of the initial concentration of antibiotic, microwave power, and initial pH on the 

degradation.
22,40,41

 In general, increasing the concentration of CTC resulting in a decrease of the 

extent of the degradations as can be concluded from Fig. 4e. Increasing the power of the 

microwave, on the other hand, accelerates the degradation (See Fig. 4f) due to the formation of 

more “hot spots” or “hot spots” with higher temperatures.
40-44

 As a microwave induced catalyst, 

there is a relationship between microwave absorbing ability and the degradation efficiency. 

Compared with other catalysts reported before,
42,43

 Fe3O4/CNTs in this work exhibited lower RL 

as well as higher degradation efficiency. The higher removal efficiency of CTC was achieved at a 

pH value close to neutral (Fig.4g), which can be explained by considering the pKa values. CTC 

possesses three pKa values: pKa1 = 3.30, pKa2 = 7.44, pKa3 = 9.27.
45

 When the pH of the solution is 

higher than the pKa3, CTC transforms to iso-chlortetracycline (ICTC).
46,47

 Degradation of ICTC 

using microwave absorbing catalyst has been reported to be slow due to the lack of the phenolic 

diketone system at several carbon atoms.
46 

To increase the economic aspects of the process, we have also investigated the ability to recycle 

the Fe3O4/CNTs composite. Fig. 4h showed the microwave degradation of CTC using regenerated 

Fe3O4/CNTs composite. Only a slight decrease (9.5 %) is observed in the CTC removal capacity 

than that recorded when the fresh catalyst was used, indicating the efficient recycling of the 

catalyst.
48

 

3.4. Possible Degradation Mechanism with the Presence of Catalyst under MI.  

To confirm the catalytic effect of the Fe3O4/CNTs composite, we have run a couple of controlled 

experiments in which CTC was subjected to MI without the catalyst. The results of the controlled 

experiments are illustrated in Fig. S1. The removal efficiency of the CTC is three times higher in 

the presence of the nanocomposite catalyst. The mechanism of the removal is discussed in the 

following section.  There are two general mechanisms by which the CTC molecules can be 

removed from the solution under MI. The first is the direct pyrolysis where the CTC molecules 
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decompose (or pyrolyse) by the effect of heating only. The MI causes heterogeneous localised 

heating, known as the "hot spots", where the temperature could reach 1200 
o
C, on the surface of 

the CNT. It has been reported that this localised heating is enough to pyrolysed H2O molecules 

into hydroxyl radical (•OH) and hydrogen radical (•H) around the “hot spots”. CTC molecules can 

also pyrolyse around the “hot spots” in a similar way. The second removal mechanism is based on 

the reaction between CTC and highly reactive oxygen species generated on the catalyst under MI. 

The adsorbed O2 on the surface of the catalyst reduced to superoxide radicals (•O2
−
) which then 

can react with water to produce hydroxy radical (•OH). Both •O2
−
 and •OH are known to be strong 

oxidative species that react with the active sites in CTC to form inorganic compounds and carbon 

gases. The indirect removal mechanism can be surmised by equations (3) to (6).
42

 

H2O (MI) → •OH + •H         (3) 

2 •H + 2O2 → •O2
-
 + 2 •OH        (4) 

2 •O2
-
 +2 H2O → 2 •OH + 2 OH

-
 + O2      (5) 

•OH + •O2
-
 + CTC (TC, OTC) → inorganic compounds.    (6) 

In order to determine the most effective oxidative species in the microwave degradation of 

antibiotics, we conduct a set of control experiments. For investigating the effect of •O2
−
, we have 

added 1 mmol of benzoquinone (a quencher for O2
−
) to the antibiotics solutions. Similarly, we 

added IPA (a scavenger for •OH) to the solutions in another set of experiments. The concentration 

of the molecules before and after the microwave treatment was calculated using UV spectroscopy. 

For the three tested antibiotics (CTC, TC and OTC), the degradation efficiency significantly 

reduced after adding the scavengers as can be seen from Fig 5a. It is also clear that the effect of 

the (•O2
−
) scavenger is more pronounce than the(•OH) scavenger. Taking CTC as an example, the 

level of antibiotic removal is almost the same before and after adding IPA (~167 mg/g) but drops 

to 135 mg/g in the presence of BQ. These results suggest that (•O2
−
) is the dominant active species 

in the oxidation of the CTC.
49-51 

Nevertheless, the results of the scavengers control experiments 

proved that the mechanism of removing CTC is, at least partially, through the oxidation reaction 

We have also investigated the final product of the microwave degradation processes of CTC. The 

gas resulted from the process was passed through 80 mL Ba(OH)2 saturated solution. The solution 

turned cloudy and white precipitate was observed at the bottom of the solution container (see the 

inset of Fig 5b). In comparison, there was no visible precipitate for gas coming out of a control 
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experiment were no CTC was added to the solution. The XRD analysis proved that the white 

precipitate was BaCO3; thus, we could conclude that the produced gas contains CO2 (Fig. 5b). We 

have also analysed the CTC solution before and after the MI using IC (Table S3). The appearance 

of NO3
−
 in solution after the degradation indicated that CTC was decomposed into a 

nitrogen-containing compound beside CO2 and H2O.  

The degradation process was further investigated using HPLC-MS. Fig. 6a shows the HPLC 

spectrum for CTC solution (50 mg/L), and the corresponding MS image is displayed in Fig. S2. 

The HPLC spectrum of the solution after 30 min of microwave treatment in the absence of the 

catalyst is illustrated in Fig. 6b. Clearly, MI could partially decompose CTC even without a 

catalyst. However, the decomposition is not complete. The HPLC-MS detected compounds 

formed during microwave treatment with relatively large molecular weight. The m/z value of 

these compounds are 327, 344, 445, and 477 and the predicting molecular formulas are C18H13O5, 

C18H15O6, C22H24N2O8, C22H21ClN2O8, C22H23ClN2O8. The results of the HPLC-MS indicate that 

fragmentations of CTC yielded ions with an m/z value of 445 on the loss of Cl, which further 

fragmented to the ions with an m/z value of 344 on the loss of CO, NH3 and to the ion with an m/z 

value of 327 on the loss of H2O. The exact structures of these compounds could not be identified 

in this study and further work still required for a more detailed structures analysis. Fig. 6c and Fig. 

6d showed the HPLC results when the Fe3O4/CNTs catalyst was used under MI for 10 min and 30 

min, respectively. The corresponding MS image is provided in Fig. S4. Only a small amount of 

CTC and its degradation products can be detected after 10 min of microwave treatment in the 

presence of the catalyst. No obvious intermediate could be detected after 30 min of the treatment. 

Based on these results, it can be concluded that CTC is completely decomposed through the 

oxidation by (•OH) and (•O2
-
) after less than 30 min of MI.

52,53
 The degradation process proceeds 

through the formation of a series of low molecular weight, organic intermediated compounds, 

which then further oxidize to water, inorganic ions and carbon dioxide.
42,54-56

 The overall degraded 

reaction can be surmised by the following equation: 

C22H23ClN2O8 + O2 → CO2+ NO3
−
 + Cl

−
 + H2O  (7) 

4. CONCLUSIONS 

In summary, the microwave absorbing composite with excellent performance, Fe3O4/CNTs, was 
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synthesised via a simple reflux and calcination method. The mechanism of microwave absorption 

was systematically studied, which identified the role of the catalyst. Under the MI, “hot spots” 

formed on the surface of the catalyst, which helped the reduction of the adsorbed molecular 

oxygen into (•OH) and (•O2
-
).  As an oxidation catalyst, the Fe3O4/CNTs was able to remove 185 

mg/g of CTC, and the degradation rate (k=0.0376) was much higher than that previously reported. 

The work also suggested that the degradation process passes through the formation of a series of 

intermediate compounds before it decomposes entirely to water, NO3
−
 and CO2. 
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Fig. 1. Formation of the Fe3O4/CNTs composite.  
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Fig. 2. TEM image of pristine CNTs (a), oxidized CNTs (b), CNTs@FH (c), Fe3O4/CNTs (d) and 

(e), HRTEM image of Fe3O4/CNTs using the fast Fourier transform (FFT) (f), EDS element 

mapping images of CNTs@FH (g) and Fe3O4/CNTs (h).  
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Fig. 3. X-ray diffraction patterns of CNTs@FH, Fe3O4/CNTs and Fe3O4/CNTs after CTC 

degradation under MI (a), FT-IR spectrum of oxidized CNTs, CNTs@FH and Fe3O4/CNTs (b), 

reflection absorption rate of CNTs, Fe3O4 and Fe3O4/CNTs at low frequency (c), reflection 

absorption rate of Fe3O4/CNTs, insert: frequency dependence of relative complex permittivity and 

relative complex permeability of Fe3O4/CNTs(d).  

 

Page 21 of 24

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 

Fig. 4. Residual amount of CTC in the presence and absence of microwave and Fe3O4/CNTs (a), 

total carbon content with Fe3O4/CNTs in the presence of microwave (b); UV/Vis spectra of CTC 

solution with/without Fe3O4/CNTs after MI for different time (c), and pseudo-second-order 

degradation kinetic plots of CTC (d); Effect of initial concentration of CTC (e), microwave power 

(f), solution pH (g) on the degradation of CTC, cycle stability test for Fe3O4/CNTs (h) and 

comparison of the degradation effects of different treating methods to remove antibiotics (i). 
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Fig. 5. The effects of scavengers on the degradation of CTC, TC and OTC with Fe3O4/CNTs under 

MI, the reaction time was 30 min (a), XRD patterns of the white precipitation formed in Ba(OH)2 

solutions (b), Insert: picture of Ba(OH)2 solutions after treatment. Gas produced by CTC 

degradation with MI (A) and gas produced by only H2O with MI (B) passed through the Ba(OH)2 

solutions. 

 

Page 23 of 24

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Fig. 6. High-performance liquid chromatography of CTC (a), CTC under microwave radiating for 

30 min (b), CTC under microwave radiating using Fe3O4/CNTs as a catalyst for 10 min (c) and 30 

min (d).  

 

 

Page 24 of 24

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


