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ABSTRACT Benefiting from the joint consideration of geometric structures and low-rank constraint, graph
low-rank representation (GLRR)method has led to the state-of-the-art results inmany applications. However,
it faces the limitations that the structure of errors should be known a prior, the isolated construction of
graph Laplacian matrix, and the over shrinkage of the leading rank components. To improve GLRR in
these regards, this paper proposes a new LRR model, namely iterative reconstrained LRR via weighted
nonconvex regularization, using three distinguished properties on the concerned representation matrix. The
first characterizes various distributions of the errors into an adaptively learned weight factor for more
flexibility of noise suppression. The second generates an accurate graph matrix from weighted observations
for less afflicted by noisy features. The third employs a parameterized rational function to reveal the impor-
tance of different rank components for better approximation to the intrinsic subspace structure. Following
a deep exploration of automatic thresholding, parallel update, and partial SVD operation, we derive a
computationally efficient low-rank representation algorithm using an iterative reconstrained framework and
accelerated proximal gradient method. Comprehensive experiments are conducted on synthetic data, image
clustering, and background subtraction to achieve several quantitative benchmarks as clustering accuracy,
normalized mutual information, and execution time. Results demonstrate the robustness and efficiency of
IRWNR compared with other state-of-the-art models.

INDEX TERMS Low-rank representation (LRR), weighted nonconvex constraint, accelerated proximal
gradient, singular value thresholding, power method.

I. INTRODUCTION
Low-rank representation (LRR) [1], as a promising approach
to capture the latent subspace structure of data, has attracted
broad interests and been successfully applied to extensive
applications in signal processing and computer vision com-
munity, such as scene classification [2], action proposal [3],
image clustering [4], [5], and transfer hashing [6], to name
a few. Generally speaking, the success of LRR mainly
originates from three merits: a natural hypothesis of under-
lying multiple low-rank subspaces in observed data, a self-
expressive representation with specific noise suppression
constraint, and a convex approximation of rank regulariza-
tion using nuclear norm. However, these characteristics also
restrict LRR’s applicability for the reasons that the structure
of errors should be known a prior and the intrinsic rank of the
observed data might be loosely approximated.

In order to tackle heterogeneous noise sources and obtain
better approximation to the original low-rank assumption,
a great variety of clustering methods have been proposed
recently based on the framework of LRR, i.e., to represent
each sample by a linear combination of dictionary data and
pursue an appropriate representation matrix via different
choices of regularization and constraint terms, which can be
uniformly formulated as follows [7]–[9]:

min
Z
γ ‖X − AZ‖µ +�(X,Z), s.t. Z ∈ C, (1)

whereX ∈ Rm×n is the observed data containing n samples as
its columns,A ∈ Rm×n denotes a dictionary matrix, Z ∈ Rn×n

denotes the representation matrix (or representation matrix),
‖ ·‖µ denotes a specific norm,� and C are some regularizers
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TABLE 1. The cost functions of some related subspace clustering algorithms with respect to fidelity term ||.||µ, regularizer �, and constraint set C .

and constraint set, respectively, and γ > 0 is a balance
parameter.

To deal with different types of noise, many norms are
exploited to measure the residual E = X −AZ. For example,
Frobenius norm (i.e., ‖ · ‖F ) is used for modeling the Gaus-
sian noise [10], l1-norm is employed for characterizing the
Laplacian noise [9], [11], [12], and l2,1-norm is employed for
removing sample-specific outliers [1], [13]. However, these
constraints work well only with a correct prior knowledge
on error distribution, which is always difficult to obtain.
Peng et al. [14] presented another error-removing method
based on the property of intrasubspace projection domi-
nance (IPD), but the IPD property itself may be disturbed
by gross corruption. Kang et al. [15] integrated the feature
selection into the residual term for revealing more accurate
data relationships on the premise of corruption location fixed,
which is a strong assumption and cannot be satisfied in
most real-world problems. Chen and Yang [16] employed
the maximum likelihood estimation principle to estimate the
noise distribution, which brings about a robust framework to
deal with complex errors. However, the proposed algorithm,
namely iteratively reweighted inexact augmented Lagrange
multiplier (IRIALM), suffers from two limitations. One is
that an independent logistic function is suboptimal for the
overall optimization. The other is that the model loses the
reweighting essence by integrating the weights update into
the ADMM framework [17], [18].

For representationmatrixZ, the regularizer has been exten-
sively studied using l1-norm [11], Frobenius norm [10], [14],
nuclear norm (‖ · ‖∗) [1], [15], [18], [19], and mixture
(e.g., ‖ · ‖∗ + F [9], l1 + ‖ · ‖∗ [20]) or replacement
[21] of some of them. Despite the success of these con-
vex surrogate functions, recently there have been numerous
attempts on employing nonconvex ones to approximate the
intrinsic structure of data. In terms of the singular values,
the key idea is that the larger ones are more informative
and should be less penalized. Such attempts include different
nonconvex surrogates (e.g., truncated operator [22], capped-
l1 penalty [23], logarithm constraint [24], and the well-known
Schatten p quasi-norm [25]), weighted nuclear norm [26], and
their mixture such as weighted Schatten p-Norm [27]. Empir-
ically, these attempts achieve better performance than the
convex counterparts. Moreover, theoretical results have also
been established [28]. However, the resultant optimization

problem is much more challenging. Most existing optimiza-
tion algorithms that work with the nuclear norm cannot be
applied. In addition, most existing nonconvex optimization
methods take at least O(mn2) time complexity at each itera-
tion for am×nmatrix (assumingm ≥ n), which is expensive
for large matrices.

Some recent works focus on geometric structures to yield a
better representation matrix Zwith the assumption that if two
samples are close in the intrinsic manifold of the data, then
the representations of these two points in the subspace are
also close to each other [29]. This idea inspires Hu et al. [7]
to propose a smooth representation (SMR) clustering that
explicitly takes into account the local structure of input
data. Similarly, Yin et al. [20] proposed a nonnegative
sparse graph LRR (NSGLRR) method by incorporating the
Laplacian matrix into the cost function. To overcome the
drawback of suboptimal results, some joint optimization
schemes [30], [31] have been proposed, that is, to simul-
taneously learn the representations and the affinity matrix.
Peng et al. [32] further imposed a rank constraint on
Laplacian matrix for more explicit block-diagonal results.
However, the deterministic rank may be unknown for many
practical problems. Furthermore, all the involved similarity
metric may deteriorate by noises, which causes severe per-
formance degradation.

Table 1 shows the cost functions of some related meth-
ods following framework (1), where vector w is the feature
weights, L denotes the Laplacian matrix and B means the
similarity matrix. Detailed explanations can be found in the
original paper and is omitted here due to space limit. Moti-
vated by these works and based on the above analysis, our
goal is to overcome the limitations in the properties of noise
resistant constraint, weighted nonconvex regularization, and
joint affinity matrix learning, as well as to integrate them
into a unified formulation. To this end, we propose iterative
reconstrained low-rank representation model via weighted
nonconvex regularization (IRWNR), which renders clearer
block-diagonal representation matrix and facilitates subspace
clustering in noisy scenarios. Our main contributions include:
1) Introducing a factor matrixW to the error term in Eq. (1),

which can adaptively penalize the residual entries. Par-
ticularly, the factor matrix can not only distinguish out-
liers from data but also reweight the contributions of the
active features individually.
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2) Integrating the learned W with the update of Lapla-
cian matrix L to improve the robustness. As a result,
the underlying structure can be genuinely exploited to
ensure a well-behaved representation matrix Z.

3) Presenting a nonconvex weighted Rational function,
i.e., � =

∑
siσi(Z)/(1+ aσi(Z)/2), to approximate the

singular values effectively, while keeping convexity of
the whole cost function via a referenced span of a.

4) Deriving an efficient proximal gradient algorithm by
the observation that the obtained singular values can be
automatically thresholded. Specifically, a block approx-
imation of the leading singular vectors and a terminal
comparison of the singular values to the threshold values
are employed for fast implementation.

Notations 1: In the sequel, vectors and matrices are
denoted by lowercase boldface and uppercase boldface,
respectively. For any matrix A ∈ Rm×n, vec(A), tr(A) and AT

are its vector form [33], trace and transpose respectively, ai is
the ith column of A, and aij is the jth element in ai. ‖A‖F =
(tr(ATA))1/2 denotes the Frobenius norm, ‖A‖∗ =

∑
i σi(A)

denotes the nuclear norm, and ‖A‖2 = max|x|2 6=0
|Ax|2
|x|2

is the
spectral norm. I and 1 denote identity matrix and all 1 vector,
respectively, with their dimensions following the context.

II. PROPOSED IRWNR MODEL
To begin with, we first briefly introduce the basic graph LRR
model [3], [8], [20] as an instance of (1). Our changes will
then be addressed accordingly. For clarity, we assume that
the observed data X are from either a single subspace or a
union of multiple subspaces. The prototype of GLRR is for-
mulated as

min
Z
γ ‖X − AZ‖µ + ‖Z‖∗ + βtr(ZLZT ), (2)

where µ can be determined by the error priori information,
the regularization �(X,Z) of Eq. (1) is expressed as the
mixture of ‖Z‖∗ and tr(ZLZT ) with balancing parameter β,
in which Laplacian matrix L is constructed either directly
from the raw data or from their learned representations.

FIGURE 1. Illustrating four types of errors as well as our weight factor:
(a) Gaussian noise [10], (b) Laplacian noise [11], (c) Feature outliers [15],
(d) Mixed corruption, (e) A well-estimated weight matrix W .

A. WEIGHTED FEATURE LEARNING
FOR ERROR PENALIZING
The fidelity term in (2), i.e., ||X − AZ||µ, generally refers to
the deviation between reconstructed matrixAZ and input data
X . It could exhibit as noise, missed entries, corruptions and
outliers in practice. Fig. 1 illustrates several common types
of error E under the context of subspace clustering. In real

scenarios, the distribution of errors may be more complex
than just a single status shown in Fig. 1(a), (b) and (c). For
example, Fig. 1(d) shows a specific corruption mixed by
Laplacian noise and certain structural occlusions, which can-
not be correctly removed either by fixed distribution assump-
tions [1], [10], [11] or a simple feature selection scheme [15].
As shown in Fig. 1(e), we attempt to suppress the noise
with an intuitive idea, i.e., introducing a weight variable W
to adaptively penalize the individual elements of the error
matrix. Specifically, we try to assign smaller weights (black
points in Fig. 1(e)) to the noisy features and assign greater
weights (white regions in Fig. 1(e)) to the clean features.
With this criterion, the fidelity term shall have the ability
to identify the important features and reinforce the effect of
them during optimization so as to adaptively learn a more
robust representation matrix.

In our implementation, we consider the weight matrix W
in probability form, i.e., wij > 0 and 1TW1 = 1, and use the
Frobenius norm for simplicity, i.e., || · ||µ = ||· ||F . Following
the aforementioned criterion, a smaller eij probably corre-
sponds to the clean features, thus should be assigned a larger
probability wij. Therefore, a natural method to determine the
weight matrix is solving the following problem:

min
1TW1=1,wij≥0

γ ‖W1/2
� (X − AZ)‖2F . (3)

However, problem (3) has a trivial solution, only the minimal
residual can be assigned with weight 1 and all the other
residuals cannot be effectively weighted (with weight 0).
Accordingly, we add regularization ‖W‖2F to avoid the trivial
solution, i.e.,

min
1TW1=1,wij≥0

γ ‖W1/2
� (X − AZ)‖2F + λ‖W‖

2
F , (4)

where λ is a balance parameter. We will see in
Subsection III.A that problem (4) can be solved with a closed
form solution.

FIGURE 2. An instance of (a) corrupted sample and its (b) rank
components, as well as some (c) penalty functions.

B. WEIGHTED RATIONAL FUNCTION FOR RANK
APPROXIMATION
Although the nuclear norm used in model (2) is the tightest
convex approximation to the rank constraint, the obtained
solution may seriously deviate from the original one partic-
ularly in the presence of noises. Fig. 2 illustrates a noisy
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face image, its rank components, and some penalty functions.
It can be noted that the weighted nuclear norm, i.e.,

∑n
i=1 siσi,

the nonconvex lp constraint, i.e.,
∑n

i=1 σ
p
i , and the Rational

function, i.e., r(σ ) =
∑n

i=1 σi/(1 + aσi/2), are all tighter
approximations than the nuclear norm. Moreover, by further
adding a weight factor s onto Rational function, it approxi-
mates the natural rank constraint more closely, especially for
the large singular values. Fig. 2 (b) shows the larger rank
components of the noisy image are closely coherent with
the original ones, while the smaller singular values deviate
far away from the original ones. Based on these observa-
tions, we introduce theweighted Rational function to penalize
larger singular values less than smaller ones, i.e.,

r(s, σ ) =
sσ

1+ aσ/2
, (5)

where s is a given weight, σ is some singular value, and a is
the parameter to be determined.

C. THE OVERALL COST FUNCTION
We propose to marry the above two merits with the GLRR
model (2), such that the advantages of feature reweighting
scheme and intrinsic rank approximation can be taken simul-
taneously in a single model as follows:

J (W ,L,Z) = min
1TW1=1,wij≥0

γ ‖W1/2
� (X − AZ)‖2F

+ λ‖W‖2F + βtr(ZLZ
T )+

n∑
i=1

r(si, σi). (6)

While model (6) seeks linear relationships of the data with
reweighted features, it considers Laplacian matrix L using
raw features. In this case, the noisy features may be included
to measure pair-wise similarities of the data and the resulting
L would be potentially suboptimal. To remedy this issue,
we further require that the model should respect the intrinsic
geometrical structure in the subspace of clean features. That
is, we construct the Laplacian matrix L based on W � X
instead ofX and update it iteratively alongwith the aforemen-
tioned reweighting scheme. Therefore, model (6) is further
formulated as follows:

J (W ,L,Z) = min
1TW1=1,wij≥0

γ ‖W1/2
� (X − AZ)‖2F

+ λ‖W‖2F+βtr(ZLWZ
T )+

n∑
i=1

r(si, σi). (7)

Model (7) is the final cost function of our method, namely
iterative reconstrained LRR with weighted nonconvex regu-
larization (IRWNR).

III. OPTIMIZATION ALGORITHM
In recent years, there has been a big literature to address
multivariable optimization problems, such as the alternat-
ing direction method (ADM) [33]–[35] and the iterative
reweighted method (IRM) [18], [25], [36]. Although ADM
has drawn considerable attention, the convergence is not

guaranteed for problems containing more than two variables.
Accordingly, we apply IRM to our optimization problem (7)
with three variablesW, L, and Z. Since we not only reweight
W but also update L to constrain Z, the term ‘‘iterative
reweighted’’ is transformed into ‘‘iterative reconstrained’’ in
this paper.

Following the IRM framework [18], the sketch of our
optimization scheme is described in Algorithm 1, where the
detailed selection of dictionary A hinges on the concerned
applications. When the pending data contains multiple sub-
spaces, the observed data X is a natural selection as the
dictionary (i.e., A = X). If there is only a single subspace,
the identity matrix I can be chosen as A. In the following,
the update rules for W , L, and Z are sequentially described.
Moreover, an efficient singular value thresholding (SVT)
operator is presented to speed up each iteration. Finally,
the complexity and convergence analysis are given.

Algorithm 1 Our Optimization Approach Following IRM
Framework
Input: Data matrix X ∈ Rm×n, dictionary matrix A ∈ Rm×n,

and parameter γ , β, l; Set k = 0 and initializeZ0 ∈ Rn×n.
Output: Zk .
1: While not converged do
2: Estimate weights matrix W k+1 as Eq. (10), where E =
X − AZk ;

3: Update Laplacian matrix Lk+1 as Eq. (11);
4: Inner loop for Zk+1 withW k+1 and Lk+1.
5: k = k + 1;
6: end while

A. THE CLOSED FORM SOLUTION FOR W AND L
By keeping all other variables fixed, the subproblme of updat-
ing W turns out to be Eq. (4). Following KKT condition,
the optimalW can be directly computed as

W =

(
κ −

E2

2λ

)
+

, (8)

where E = X − AZ, E2 denotes a matrix whose elements
are e2ij with a slight abuse of symbols, κ is the Lagrangian
multipliers of constraint 1TW1 = 1, and (·)+ denotes a non-
negative operator. Without loss of generality, suppose the ele-
ments of vec(E2) are in non-descending order, then vec(W )
will be in non-ascending order. Let the optimal vec(W ) has l
zero elements related to noises, i.e., the (mn−l+1)th element
equals 0, wheremn = m×n. This together with the constraint
1TW1 = 1 leads to

κ =
1

mn− l
+

∑mn−l

j=1

e2j
2λ(mn− l)

,

λ = (mn− l)
e2mn−l+1

2
−

1
2

∑mn−l

j=1
e2j .

(9)
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With derived κ and λ,W can be analytically expressed by

W = (e2mn−l+1 − E
2)/[(mn− l)e2mn−l+1 −

mn−l∑
j=1

e2j ]. (10)

Note that in Eq. (10), the number of zero elements l is
much easier to tune than the regularization parameter λ since
the value of λ could be from zero to infinite and l is an
integer having explicit meaning. In our experiments, we let
l = bρmc, where ρ ∈ {0.6, 0.7, 0.8, 0.9}, and bρmc outputs
the largest integer smaller than ρm.
With W given and following the basic computation steps

as [7] and [20], we update our graph term as
tr(ZLWZT ) =

∑n

i=1

∑n

j=1
‖zi − zj‖2dij,

dij = exp(
−‖wi � xi − wj � xj‖2

θ2
),

(11)

where LW = Dd − D with Dd being a diagonal matrix and
its jth diagonal element Ddjj =

∑
i dij, and dij is the (i, j)th

entry of D that denotes the similarity of xi and xj with a
given parameter θ (We set it as the standard variance of X).
The main difference between (11) and the existing methods
such as [7] and [20] lies in the incorporation of W into
consideration, which ensures the learned graph be close to
the intrinsic geometrical structure formed by the clean feature
subspace.

B. THE SOLVING SCHEME FOR Z
The suboptimization of Z in Algorithm 1 (step 4) can be
formulated as

F(Z) =

f (Z)︷ ︸︸ ︷
γ ‖W1/2

� (X − AZ)‖2F + βtr(ZLZ
T )

+

r(Z)︷ ︸︸ ︷
n∑
i=1

r(si, σi), (12)

which also can be solved via ADM[33]–[35] framework by
updating the residual E = X − AZ and Z alternatively in a
Gauss-Seidel manner. Unfortunately, applying ADM for (12)
results in a tricky problem as

min
Z
‖AZ− C‖2F +

n∑
i=1

r(si, σi), (13)

where C is an intermediate constant matrix during the update
steps. The accelerated proximal gradient (APG) method [38]
can be introduced to solve subproblem (13) as [20]. However,
the resulting double loops involving ADM and APG make it
run unbearably slow. To deal with this challenge, we divide
(12) into two terms, i.e., F(Z) = f (Z)+ r(Z). Due to the fact
that f is ν-Lipschitz smooth, i.e., ‖

`
f (Z1) −

`
f (Z2)‖2 ≤

ν‖Z1 − Z2‖2 and r(Z) is smooth and nonconvex, APG can
be directly applied to (12), instead of any sub-optimization in
ADM framework. Particularly, the APG can update Z by

Zk+1 = argmin
Z

1
2
‖Z− Zk + η

h
f (Zk )‖2F + ηr(Z)

= proxηr (Zk − η
h

f (Zk )) (14)

at iteration k , where 0 < η < 1/ν is the stepsize, and
h

f (Zk ) = 2γ (W � A)T (W � (AZk − X))+ 2β(ZkL)

(15)

is the gradient of f (Z).
Recently, APG methods have been extensively stud-

ied [39]–[41] and extended to problems of matrix completion
and robust principal component analysis [42], [43]. The state-
of-the-art is the efficient inexact proximal gradient (EIPG)
algorithm [41], within whose framework our subproblem of
Z can be solved as in Algorithm 2. Each iteration requires
only one proximal step (step 12). Acceleration is performed in
step 4 and the objective is then checked in step 6 to determine
whether Y t+1 is accepted (steps 5-7).

Algorithm 2 EIPG for Subproblem (12)
Input: EstimatedW and L, parameter η ∈ (0, 1/ν), k = 0.
Output: Z.
1: Z0 = 0, Z1 ∈ Rn×n follows N (0, 1);
2: While not converged do
3: k = k + 1;
4: Y k = Zk + k−1

k+2 (Zk − Zk−1)
5:

a
k = maxt=max(1,k−3),...,k F(Zt );

6: if F(Y k ) ≤
a
k then

7: Gk = Y k
8: else
9: Gk = Zk
10: end if
11: Θk = Gk − η

`
f (Gk );

12: Zk+1 = proxηr (Θk ).
13: end while

The remaining problem of Algorithm 2 lies in the proximal
operator (step 12). Due to the nonconvexity of r(Z) and the
existence of weights s, traditional algorithms such as sin-
gular value thresholding (SVT) [44], iteratively reweighted
norm minimization (IRNN) [25], and generalized proxi-
mal gradient (GPG) [45] cannot be directly employed here.
In the following, we show how the solution of proximal step
in Algorithm 2 can be achieved.

To preserve the major components of the input data,
s =

`
r(σ (Zk )) is employed to penalize the smaller sin-

gular values as much as possible. Therefore, the weights si,
i = 1, . . . , n, are in ascending order with the premise
that the singular values σi, i = 1, . . . , n, are descending.
Under these conditions, subproblem (16) can be illustrated
in Fig. 3, where a = 4.9, σ = [2.7, 2.2, 1.5, 0.9, 0.2]T , and
s = [0.8, 1.5, 2.5, 2.7, 3.0]T . It can be noted that the three red
lines are convex and their minimal points have the property of
δ∗i ≥ δ

∗
j for si ≤ sj, i < j, whereas the blue and pink lines are

nonconvex and their minimal points all lie in δ∗ = 0; From
this observation, we conjecture that, under certain conditions,
the proximal operator proxηr (Θk ) may be strictly convex and
solvable in a parallel way. Lemma 1 and 2 are presented to
validate our hypotheses.
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FIGURE 3. Illustration of function h(δi ) with si in nondescending order.
The marked points denote the global optimums of h(δi ).

Lemma 1: Given the weights satisfying 0 ≤ s1 ≤ s2 ≤
· · · ≤ sn, proxηr (Θk ) can be decoupled into independent
subproblems as

min
δi≥0

h(δi) =
1
2
(δi − σi(Θk ))2 +

ηsiδi
1+ aδi/2

, (16)

and their optimal solutions satisfy the order constraint
δ1 ≥ δ2 ≥ · · · ≥ δn.

Proof: By replacing the lp constraint with the rational
function, we obtain Lemma 1 similarly as [27, Th. 2].
Lemma 2: Despite the nonconvexity of rational penalty

function, the proximal operator proxηr (·) in (14) is strictly
convex if 0 < a < 1/(ηmax(s)).

Proof: All omitted proofs can be found in the
appendix.
Theorem 1: Let Θk = U6VT be the SVD of Θk .

If 0 < a < 1/(ηmax(s)), then the global minimizer of step
12 in Algorithm 2 is

Zk+1 = U4VT , (17)

where 4 is the threshold function outputting a diagonal
matrix, whose subproblems are defined in (16) with solutions
generated by Eq. (18) and (19).
Moreover, from the blue line in Fig. 3, we can see that there
exists a specific τ acting as the threshold. Especially when
δ = τ , two different points share the same minimal function
value, i.e., h(δ)∗ = h(0). By applying this equality to (16),
we have

τi =
2
√
siaη − 1
2

, i = 1, · · · , n. (18)

δi − σi +
siη

(1+ aδi/2)2
= 0, i = 1, · · · , n. (19)

By combining all these results together, the proximal operator
can be computed through Theorem 1. Specifically, when σi <
τ , we get δ∗ = 0 directly; When σi ≥ τ , then δ∗ can be
achieved from Eq. (19), i.e., δk+1i = σi −

siη
(1+aδki /2)

2 , i =

1, · · · , n. Note that this is also an iterative procedure. How-
ever, empirically we found that satisfactory results can be
obtained within 2 iterations.

C. THE ACCELERATION FOR PROXIMAL OPERATOR
The SVD operation is the main burden in Theorem 1,
which needs to be conducted at each iteration. Given Uq

formed by the first q left singular vectors of Θk , Proposi-
tion 1 shows that proxηr (Θk ) can be obtained based on a
smaller matrix Q. To obtain such a Q, reference [43] resorts
to the power method [46], [47] and successfully approxi-
mats the SVT in nuclear norm constrained problems. Nev-
ertheless, the algorithm in [43] is designed to tackle a fixed
rank problem, i.e., the rank of the objective matrix should
be given in advance, which may not be promised in real-
world applications. Recent works [48], [49] turn to a fixed
precision problem by minimizing the rank of a SVD approx-
imation given some desired error tolerance. On that basis,
we attempt to conduct proximal operator through solving an
adaptive thresholding problem, which does not require any
rank parameter or error threshold given in advance. To clarify
it, a rank shrinkage SVD algorithm is presented, in which the
required singular values are gradually estimated by incremen-
tally building up the blocked SVD approximation.
Proposition 1 [43]: Assume that Q ∈ Rn×q, where q ≥

rank(Θk ), is orthogonal and span(Uq) ⊆ span(Q). Then,
proxηr (Θk ) = Qproxηr (Q

TΘk ).

Algorithm 3 Proxηr (Θk ) With Efficient SVD and Automatic
SVT
Input: Θk , block size b, set i = 0.
Output: Estimated left singular vectors UQ, right singular

vectors VQ, and thresholded singular values 6δ .
1: While not converged do
2: i = i+ 1;
3: �i = randn(n, b);
4: Qi = PowerScheme(V k ;�i) [43][46];
5: Qi = orth(Qi −

∑i−1
j=1 QjQ

T
j Qi), Q = [Q1, . . . ,Qi];

6: Bi = QTi V k , B = [B1, . . . ,Bi];
7: V k = V k − QiBi;
8: [Qt ,Rt ] = qr(BT , 0), [U t ,6t ,V t ] = svd(Rt );
9: Obtain τ by (18);
10: ifmax(τ ) > min(6), then end while, otherwisemove to

step 2;
11: Given τ , update δ by (19);
12: UQ = QV t ,VQ = QtU t .

The entire procedure for our proximal operator is shown
in Algorithm 3. Steps 3-7 use the power method and block-
based SVD approximation to efficiently build up an orthogo-
nal matrixQ that approximates span(UQ). Steps 8-10 perform
a small SVD and check the stop criterion. Though SVD
operation is still needed, Rt in step 8 is much smaller than
the original matrix Θk . In step 11, the singular values are
thresholded using Theorem 1.

So far, we have presented a new approach to achieve a
more appropriate LRR representation matrix Z. The learned
Z can be used to construct an affinity matrix as (|Z|+|ZT |)/2,
which can be further fed into the spectral clustering method,
e.g., normalized cut, for data segmentation. Additionally,
it can also be applied to the low-rank recovery of the con-
taminated data X .
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TABLE 2. Several options of weight functions.

FIGURE 4. Different weighting functions.

D. ALGORITHM ANALYSIS
The flexibility of our model mainly derives from the
reweighting matrixW and the penalty function r(s, σ ). Note
that different implementations of W will lead to different
constraints for the error term in (2). When all entries of W
are constantly assigned to 1, it acts as the Frobenius norm.
When we set the weights to be inversely proportional to the
magnitudes of residuals, i.e., wij = 1/|eij|, then the constraint
turns into l1-norm. More applicable functions are illustrated
in Table 2. Fig. 4 further illustrates the weighting function
of (10) and some others from Table 2. It can be noted that
the proposed reweighting matrix W is more reasonable than
others. The Gaussian, Logistic, and Truncated functions all
assign smaller weights to the corrupted features, but they
ignore the different activity of the useful features. The Inverse
function assigns different weights to the useful features, but
its value tends to infinitywhen the residual is close to 0, which
causes numerical instability.

FIGURE 5. Comparison of various rank constraints. (a) Original image
(b) 80% occluded image (c) Estimated singular values.

To demonstrate the role of penalty function r(s, σ ), we take
a face image with 80% of its region occluded by a rectangular
block as an example. With all the parameters set as described
in the experimental section, Fig. 5 shows that the estimated
singular values by r(s, σ ) (‖·‖r ) is much closer to the ground
truth compared with nuclear norm (‖ · ‖∗), Schatten p-norm
(‖ · ‖p), and weighted treatment (‖ · ‖s). Moreover, the new

constraint has more solid theoretical support for the global
minimum and model selection (see Subsection III.B).

The main computational complexity of IRWNR lies in the
computation of proximal operator (step 12 of Algorithm 2).
With the learned UQ,VQ and 6δ , the dot product by W ,
the matrix multiplication, and the SVD operation costO(mn),
O(mnq), and O(mq2), respectively, where q is the estimated
rank of the current Zk . In contrast, exact proximal operator
takes O(mn2) time, and is much slower as n � q in most
real-world problems.

For the convergence analysis, we present Theorem 2 to
demonstrate the convergence of subproblem F(Z), which
combing with the closed form solutions for W and
L leads to J (W k ,Lk ,Zk ) ≥ J (W k+1,Lk+1,Zk ) ≥

J (W k+1,Lk+1,Zk+1). Note that the sequence {Jk}∞i=0 is
bounded from below by zero, hence convergent.
Theorem 2: Given η ∈ (0, 1/ν), the sequence {Zk} gener-

ated by problem (12) satisfies the following properties:

(1) F(Zk )− F(Zk+1) ≥ 1
2 (

1
η
− ν)‖Zk − Zk+1‖2F ≥ 0;

(2) limk→∞ ||Zk − Zk+1||2F = 0.

IV. EXPERIMENTAL RESULTS
We investigate the performance of our proposed subspace
clustering method, IRWNR, by conducting comprehensive
experiments on synthetic data and real-world problems, such
as image clustering [20] and background subtraction [51].
We compare IRWNR to several recently developed low-rank
recovery methods, including LRR [1], SMR [7], RSS [30],
FSCNN [15], IRIALM [16], NSGLRR [20], LRS [19],
L2Graph [14], ROSL [51] and ncRPCA [12]. Competing
methods in different experiments are chosen according to
their mathematical conditions as well as the applicability for
specific tasks. For a fair comparison, the balance parameters
of all the competing methods, e.g., γ and β, are traversed
in{1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2} to report the best result.
The remaining parameters of all compared algorithms are
searched from a candidate set as suggested in their papers
and tuned to achieve the best performance. Unless spec-
ified otherwise, for IRWNR, the parameters η and a are
set as 0.6max(γ ‖XTX‖2, β‖L0‖2) and 0.9/(ηmax(si)) in
our experiments. To quantitatively and effectively evaluate
the clustering performance, we utilized two metrics, accu-
racy (AC) and normalized mutual information (NMI) [20],
as well as execution time (in second) in our experiments.
Note that execution time is obtained by the average of run-
ning the corresponding tests 10 times. All experiments were
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TABLE 3. The clustering metrics of NSGLRR, RSS, FSCNN, L2Graph, WNR, and IRWNR for synthetic data.

FIGURE 6. The learned affinity matrix from (a) RSS, (b) NSGLRR, (c) L2Graph, (d) FSCNN, (e) WNR and (f) IRWNR. The first and second
rows show the results from 0% and 10% noise corruption, respectively. The third row shows the results of IRWNR under noise ratios
(g) 20%, (h) 30%, (i) 40%, and (j) 50%.

implemented in MATLAB, and are run under a laptop with
Intel(R) Core(TM) 2.4-GHz i7 CPU and 8.0-GB RAM.1

A. SYNTHETIC DATA
We first verify the robustness of our method to different
levels of mixture noise. Six independent subspaces with
25 intrinsic dimensions and 500 ambient dimensions are
generated. There are altogether 1200 data points collected
by randomly generated 200 samples from each subspace.
Moreover, different proportions of samples are selected
to be corrupted by Gaussian noise with variance 0.5 and
sparse noise with variance 5. In this experiment, we com-
pare IRWNRwith several state-of-the-art subspace clustering
algorithms, i.e., NSGLRR [20], RSS [30], FSCNN [15], and

1The demo code has been provided as a supplemental
material, and will be released after the review phase at
http://www.escience.cn/people/zhengjianwei/index.html

L2Graph [14]. Besides, by removing the weight factor W
from IRWNR, the reduced version WNR is also used as a
competing method to verify the effectiveness of our reweight-
ing strategy. Table 3 and Fig. 6 show the clustering metrics
and part of the learned affinity matrices with corruption pro-
portions range in {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

As can be seen from Table 3, all the six competing methods
achieve 100% clustering results in the noiseless scenario. The
learned affinity matrices in the first row of Fig. 6 also reveal
clear block-diagonal structure. However, the affinity matrices
from NSGLRR, RSS, FSCNN, L2Graph, and WNR are still
less perfect than our methods. For NSGLRR, FSCNN, and
WNR, there are more inter-cluster relationships in the affinity
matrices. For RSS and L2Graph, the intra-cluster similarities
aremuch too sparse. Both of these two properties will deterio-
rate their practical application. Furthermore, the performance
of NSGLRR, RSS, FSCNN, L2Graph, and WNR drops
sharply as the noise level increases. Among them, NSGLRR,
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FSCNN, L2Graph, and WNR perform poorly when the noise
ration is 20%. RSS even fails with only 10% noise corruption.
This indicates that a simple prior distribution approximation,
e.g., Gaussian (Frobenius norm) or Laplacian (l1 norm), can-
not correctly uncover the intrinsic similarity information of
data when data contain mixture noise. With the aid of feature
weight W , IRWNR is more robust than other competing
methods and obtains 100% accuracy even under 30% noise
level. Fig. 6 (g)-(j) show that the learned affinity matrices of
IRWNR become increasingly blur along with higher noise
ratio. However, the diagonal structure achieved by IRWNR
under 40% noise level is still clearer than the results obtained
by other methods under 10% noise level. The direct compari-
son between IRWNR and WNR also shows that the weight
factor W in the fidelity term plays a key role for noise
suppression. Without W , WNR performs similarly as the
conventional methods, which loses the ability to discriminate
inlier features from outlier ones.

B. IMAGE CLUSTERING
Six image datasets summarized in Table 4 are used for eval-
uating the performance of the methods. For computational
efficiency, we downsize the images from their original form
to the smaller one for reducing the dimensionality of the
data. For example, all the AR images are downsized and
normalized from 165× 120 to 83× 60.

TABLE 4. Uesd image datasets. n, m, and c denote the sample size,
the feature dimension, and the number of subjects.

1) CLUSTERING ON UNOCCLUDED IMAGES
The first five datasets in Table 4 are used in this experiment.
Table 5 shows the performance of nine competing methods,
where the last two columns are with the average experimental
results of all the evaluated datasets. Our first observation
is that the proposed method outstandingly outperforms the
state-of-the-art methods on average. For all the datasets,
IRWNR achieves the best results in the tests except with
ORL, where it is second best. Even though IRIALM and
FSCNN share the highest AC and NMI with IRWNR in
JAFFE, their performance are unsatisfactory in MNIST and
COIL. The overall performance of SMR ranks second ben-
efiting from the locality preservation property of Laplacian
constraint and the stability of closed-form solution. Although
NSGLRR integrates the Laplacian regularization as well as
rank constraint together and performs better than other com-
peting methods except IRWNR in USPS, its results fluctuate

sharply in different datasets due to the poor convergence
of inexact ADMM algorithm. The other methods all fail to
obtain even one best result over the five testing datasets. Com-
pared to SMR, L2Graph, FSCNN, NSGLRR, and IRIALM,
which ranks second to fifth with the overall performance,
our IRWNR has an improvement of 2.32%, 5.70%, 6.44%,
7.12%, and 11.34% in accuracy, respectively.

FIGURE 7. Some disguised images from the AR dataset. (a) with glass,
(b) with scarf.

2) CLUSTERING ON OCCLUDED IMAGES
AR database contains over 4000 images corresponding to
126 individuals. There are 26 images available for each sub-
ject, among which 6 images are with disguise of glass and
6 images are with disguise of scarf, as it is shown in Fig. 7.
The disguised images from 100 people (50 formale and 50 for
female) are selected in this experiment to examine the robust-
ness of the competing methods. We compare our proposal
with SMR, L2Graph, FSCNN, NSGLRR, and IRIALM since
they perform better than LRR, LRS and RSS on unoccluded
images.

FIGURE 8. Clustering performance (%) on the AR dataset with real
disguise of (a) glass and (b) scarf.

Fig. 8 shows the clustering AC and NMI of the com-
pared methods for the disguised AR dataset. Similar to
the previous problem, IRWNR gives the best performance
outperforming other competing methods. NSGLRR, another
joint optimization method integrating both the properties
of locality preservation and low-rank constraint, performs
poorer than FSCNN, L2Graph, SMR, and the proposed
method. Even if IRIALM can also handle outliers due to its
weighted residual mechanism, it does not show satisfactory
results compared with others. By the aid of feature selection
mechanism, FSCNN outperforms L2Graph, NSGLRR, and
IRIALM under the glass disguised scenario. Interestingly,
the performance of SMR, which does not include any noise
resistant property, again ranks second in this experiment.
On average, our method achieves an improvement of 1.27%,
1.75%, 32.26%, 29.31%, and 3.82% over SMR, FSCNN,
IRIALM, NSGLRR, and L2Graph, respectively. This further
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TABLE 5. Clustering performance (%) on five different image data sets.

verifies the superiority of locality preservation, noises elimi-
nation, and weighted nonconvex rank sparsity.

FIGURE 9. Recovery of AR face images with real disguise. (a) Recovered
images. (b) Estimated weight maps.

FSCNN, IRIALM, and IRWNR all adopt the idea of
weights learning mechanism to eliminate part of the useless
features in input data. FSCNN and IRIALM resort to fea-
ture selection strategy and an independent logistic function,
respectively, for this purpose, whereas IRWNR utilizes an
Frobenius norm constrained problem to reveal different con-
tributions of input features. Fig. 9 illustrates the reconstructed
images and the learned weights maps corresponding to the
listed face images of Fig. 7, where the top, middle, and bottom
two rows are the results fromFSCNN, IRIALM, and, IRWNR
respectively. From the top two rows in Fig. 9, we see that the
estimatedweights fromFSCNN are consistent for all the sam-
ples, which coincide with the essence of feature selection, but
violate the randomness of noises distribution. Consequently,
FSCNN fails in regaining both a clear human face and an
accurate weights map. From the third row in Fig. 9, IRIALM
successfully recovers the face images from glass occlusion.
The learned weights also accurately draw out the location

of glass. However, there are major mistakes in the result of
IRIALM (the fourth row of Fig. 9) from scarf occlusion,
such as wrong individuals and bad elimination. The reason
that IRIALM works reliably in small rang occlusion (glass)
but poorly in relatively large area occlusion (scarf) comes
from the fact that it involves the update of weights variable
into the inner loop of ADMM framework, which leads to
local optimization and poor convergence. In the bottom two
rows, our method clearly learned the accurate face image
and weights maps not only from the glass occlusion but also
from the scarf occlusion. Moreover, compare our results to
the ones from IRIALM, one can see that IRIALM assigns 0
(black region) to the deemed occlusion pixels and assigns 1
(white region) to the deemed non-occlusion pixels. However,
our method assigns 0 to the occlusion pixels but assigns
meaningful values (grey region) to the non-occlusion pixels,
which exhibits different contributions of useful features and
leads to a better clustering results.

FIGURE 10. Example frames from the testing videos of (a) escalator,
(b) highway, (c) office, and (d) sroom.

C. BACKGROUND SUBTRACTION
Background subtraction from video sequences is an impor-
tant step in many applications, including traffic monitoring,
and abnormal behavior detection. Surveillance videos from a
fixed camera can be naturally modeled by our algorithm with
A = I and β = 0. We test the proposed IRWNR and other
state-of-the-art background-foreground separation methods,
including LRR [1], ncRPCA [12], and ROSL [51], on video
sequences of escalator [51], highway [51], office [52], and
sroom [52]. Fig. 10 illustrates some frames of these videos.
Since the frame size of original videos is very high dimen-
sional, e.g. 480 × 640 for office, we rescaled the frames
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TABLE 6. Rescaled video size of four involved datasets.

from different videos to smaller size as shown in Table 6 for
computational tractability. To measure the performance
quantitatively, we use NMSE = ‖Z − O‖F/‖O‖F and
PSNR(Z,O) as our experimental results, where O is the
ground truth and PSNR is a built-in function of MATLAB.

The quantitative results by competing methods are illus-
trated in Table 7, where na denotes not applicable since it
costs more than 24 hours for LRR to learn an optimal Z.
The proposed method shows higher PSNR and lower NMSE
compared to other algorithms. ROSL outperforms LRR and
ncRPCA in all four datasets, but lags behind IRWNR by
0.024 for NMSE and 10.69 for PSNR on average of the used
videos. Notice that the subspace rank, which is unknown
for the other three competing methods, should be designated
in advance for ROSL, which makes it easier for low-rank
approximation.

FIGURE 11. (a) NMSE and (b) PSNR of LRR, ncRPCA, ROSL, and IRWNR
with the mixture corruption percentage ranging from 10% to 60%.

To test the robustness of IRWNR on background subtrac-
tion problem, we made further evaluation under the influence
of mixed types of corruption. Different portions of input
frames, from 10 to 60 percent, are simultaneously occluded
by composite noise corruption (a randomly generated block
together with Gaussian pixel corruption) at random loca-
tions. The experimental results are shown in Fig. 11. The
figure shows that the performance of all competing meth-
ods degrades along with the increasing corruption portions.
Encouragingly, IRWNR again outperforms other methods in
all corruption levels especially for PSNR. Although LRR
adopts group constraint for noise resistance, it does not fit
in the mixed types of corruption. ROSL performs well on
the lower level of corruption portion, but whose perfor-
mance degrades more sharply than ncRPCA under heavier
corruption.

Fig. 12 presents a visual comparison of background mod-
eling results using different algorithms on two representative
frames from office and sroom, where the binary foreground
map (Fig. 12(c), (f)) is generated by running a median filter
on the estimated sparse error [50]. As shown in Fig. 12,
all the competing methods can extract clear background and

separate foreground region with certain accuracy. However,
various degrees of blur and ghost shadow exist in LRR,
ncRPCA, and ROSL recovery images, leading to incomplete
foreground segmentation. In contrast, our method obtains
much cleaner background, especially for the pictures of fil-
tered error, which demonstrates that our approach is more
practically applicable.

D. EXECUTION TIME
In order to compare the computational complexity of different
low-rank representation methods, we measure the execution
time of competing algorithms. LRR, RSS, and LRS are omit-
ted in this subsection due to their poor performance in our
previous experiments. Since FSCNN, IRIALM, NSGLRR,
and our IRWNR are all iterative approaches, many factors
such as initialization, step sizes, maximum number of iter-
ations and choice of balancing parameters can affect their
running time. Thus, we report the objective values versus
execution time of these approaches under their optimal tuned
parameters. Fig. 13 illustrates the experimental results on
MNIST and COIL datasets. The same stopping criterion is
used, namely, the methods keep running until the difference
of objective values between consecutive iterations is smaller
than tol = 1e-4. Besides, it costs SMR and L2Graph 90.24s
and 25.81s respectively in MNIST dataset as well as 27.63s
and 11.05s respectively in COIL dataset.

As can be seen from the figure, the proposed approach is
computationally more efficient compared to other iterative
based clustering methods. In MNIST dataset, NSGLRR con-
verges faster than IRWNR at the initial stage of iterations.
However, the decreasing objective values turn to increase at
certain point due to the inexactly linearizing approximation
to the cost function in [20]. An intuitive interpretation for
the relatively slower convergence of IRWNR at the initial
stage is that the initial variable Z has higher rank (may be
full rank), which weakens the function of efficient SVD
approximation in Algorithm 3. The continuous update of
variable Z makes its rank closer to the authentic lower one,
which impels Algorithm 3 to execute and converge faster
and faster. SMR and L2Graph show faster execution time
than the iterative methods due to their closed-form solution.
However, the complexity for the Sylvester equation of SMR
is O(n3), which prevents it from applying to even larger data
size. Although L2Graph shows the fastest running time, its
clustering accuracy is much lower than that of SMR and ours.
Table 7 also shows the execution time of all the competing
approaches in background subtraction. Again, IRWNR runs
faster than other state-of-the-art methods except for the sroom
video, where our method lags behind ROSL 1.58s. Encour-
agingly, our method is efficient even when the matrix size
is large. For highway dataset, IRWNR is almost four times
faster than ROSL.

E. PARAMETER ANALYSIS
Recall that the effectiveness of the proposed approach mainly
comes from three properties, i.e. (i) the adaptively learned
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TABLE 7. NMSE, PSNR and Execution time (in seconds) on the video background subtraction experiments.

FIGURE 12. Example results of (a)(d) background, (b)(e) foreground, and (c)(f) filtered E on sroom (left) and office (right) datasets,
as recovered by LRR, ncRPCA, ROSL and IRWNR (Sequentially from top to bottom).

FIGURE 13. Objective values versus execution time (in seconds) on the
(a) MNIST and (b) COIL datasets.

feature factor W ; (ii) the iteratively updated Laplacian
matrix L; and the nonconvex constraint r (iii) with or (iv)
without the weight s. Their individual contributions are con-
trolled by parameters γ , β, and a respectively. To demonstrate
the role of these properties, we simply set the corresponding
parameter to 0 and leave the remaining model applied in
different datasets. Table 8 shows the experimental results
from different combinations of these properties on MNIST,
COIL, and AR datasets. The baseline comes from Eq. (8)
with l = n, β = 0, and the constraint being nuclear norm,
which adopts none of these properties. On the other side,
the proposed IRWNR adopts all. As can be seen, although
the contributions are different, all these properties generate

TABLE 8. Effectiveness of three properties on AC and NMI (%) in MNIST,
COIL, and AR datasets.

positive impact on the performance. Specifically, property (i)
contributes little on non-occluded MNIST dataset, but per-
forms well on occluded AR dataset (under glass corruption).
Property (ii) is useful on all these three datasets, especially
for COIL. Besides, while property (iii) does not work in AR,
its performance improvement in MNIST is noticeable. These
results demonstrate that our approach is capable of dealing
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with different types of data distribution in practical scenarios.
Moreover, the clustering results generated with property (iii)
is consistently better (at least equal) than those generated
with property (iv), which verifies the superiority of the newly
added weight factor s.

V. CONCLUSION
In this paper, we propose a new low-rank representation
method, IRWNR, which marries the merits of feature learn-
ing, manifold update, and weighted nonconvex constraint.
Among these merits, the first reveals different contributions
of input features in the learning process, the second guar-
antees IRWNR to construct a better Laplacian matrix for
more accurately capturing the intrinsic structure of the data,
and the third ensures a closer approximation to the latent
low-rank representation matrix. A reconstrained inexact APG
framework is presented to solve our IRWNR model. Further-
more, based on a key observation that the singular values can
be automatically thresholded, we approximate the proximal
operator by a smaller matrix and the power method. Experi-
ments on synthetic data, six image segmentation datasets, and
four video sequences demonstrate that IRWNR is not only
robust to different types of noises and heterogeneous data
distribution, but also more efficient than other state-of-the-art
iterative methods.

There are several ways to further improve or extend the
proposed approach: 1) Although the theoretical analysis and
experimental studies gave a span for setting of some param-
eters such as η and a, it is challenging to determine the
optimal value of the remaining parameters. Thus, a deep
exploration on model selection is crucial to more general
applications. 2) The proposed method works slowly in the
initial stage of SVT approximation due to the higher rank of
representation matrix. One way to remedy this problem is to
investigate a useful warm-start strategy. The other is to aug-
ment the proposedmodel by imposing explicit rank constraint
on Laplacian matrix or representation matrix. 3) Despite the
promising results, IRWNR is restricted to data clustering with
limited sample size, i.e., n ≤ 5000, since that it runs in
batch mode. We will dedicate to implement our method in an
incremental manner, so as to make it workable in large-scale
applications or dynamic data streams.

APPENDIX A
PROOF OF LEMMA 2

Proof: For simplicity of notations, we denote σi(Z)
as σi. With a given matrix Θk ∈ Rn×n, problem (14) can be
rewritten as

proxηr (Θk ) = min
Z

1
2
‖Z−Θk‖

2
F + η

n∑
i=1

r(si, σi)

= min
Z

1
2
tr(ZTZ)− tr(ZΘT

k )+ η
n∑
i=1

r(si, σi)

= min
Z
−tr(ZΘT

k )+
n∑
i=1

1
2
σ 2
i +ηr(si, σi). (20)

Note that tr(ZΘT
k ) is linear in Z and the summation operation

preserves convexity. Hence, problem (20) is strictly convex if
qi = 1

2σ
2
i +ηr(si, σi) is strictly convex. To this end, it suffices

to reveal that the second derivative of all qi, i = 1, · · · , n, are
positive, i.e. q′′i (σi) > 0 for all σi ≥ 0, which generates

1− ηr ′′(si, σi) > 0. (21)

With the premise that r ′′(si, σi) = sir ′′(σi), and 0 > r ′′(σi) ≥
r ′′(0) = −a, (21) leads to 0 < a < 1/(ηmax(s)).

APPENDIX B
PROOF OF THEOREM 1

Proof: LetΘk = UΣVT be the SVD ofΘk . Since r(Z)
and Frobenius norm are all unitary invariant, we have

Zk+1 = argminZ
1
2
‖Z−Θk‖

2
f + ηr(Z)

= argminZ
1
2
‖UZVT

−6‖2F + ηr(UZV
T )

= UargminZ{
1
2
‖Z−6‖2F + ηr(Z)}V

T . (22)

Thus, we need to prove that

4(6, a, η) = min
Z
{
1
2
‖Z−6‖2F + ηr(Z)} (23)

is the optimal solution. Notice that with Lemma 2, (23) is
strictly convex since 0 < a < 1/(ηmax(s)), and hence
ensures a unique minimum. Let Z = UZ6ZVT

Z be the SVD
of Z, we further have

‖Z−6‖2F = ‖Z‖
2
F + ‖6‖

2
F − 2tr(ZT6)

≥ ‖6Z‖
2
F + ‖6‖

2
F − 2tr(6T

Z6)

= ‖6Z −6‖
2
F , (24)

where the inequality comes from von NeumannÂąÂŕs theory.
Inequality (24) implies that

1
2
‖Z−6‖2F + ηr(Z) ≥

1
2
‖6Z −6‖

2
F + ηr(6Z). (25)

Note that the equality holds if Z = 6Z. Therefore,
problem (23) can be reduced to minimize the right side
of problem (25), which is separable from Lemma 1.
Hence, the solution can be achieved by applying 4 to the
entries of 6.

APPENDIX C
PROOF OF THEOREM 2

Proof: First, from Theorem 1, we have

〈

h
f (Zk ),Zk+1 − Zk 〉 +

1
2η
‖Zk+1 − Zk‖2F

+

n∑
i=1

r(sk+1,i, σi(Zk+1)) ≤ 〈
h

f (Zk ),Zk − Zk 〉

+
1
2η
‖Zk − Zk‖2F +

n∑
i=1

r(sk,i, σi(Zk ))
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which can be reformulated as

〈

h
f (Zk ),Zk − Zk+1〉

≥ −

n∑
i=1

r(sk,i, σi(Zk ))

+

n∑
i=1

r(sk+1,i, σi(Zk+1))+
1
2η
‖Zk+1 − Zk‖2F (26)

Second, since f (Z) is Lipchitz smooth, we have

f (Zk )− f (Zk+1)

≥ 〈

h
f (Zk ),Zk − Zk+1〉

−
ν

2
‖Zk+1 − Zk‖2F ≥ −

n∑
i=1

r(sk,i, σi(Zk ))

+

n∑
i=1

r(sk+1,i, σi(Zk+1))+
1
2
(
1
η
− ν)‖Zk − Zk+1‖2F ,

(27)

where the first and second inequality come from [25, Defini-
tion 1] and inequality (26), respectively. Since η ∈ (0, 1/ν),
inequality (27) further leads to

F(Zk )− F(Zk+1) ≥
1
2
(
1
η
− ν)‖Zk − Zk+1‖2F ≥ 0, (28)

which demonstrates that F(Zk ) is monotonically deceasing.
By summing up all the inequality with k = 1, 2, · · · ,∞,
we get limk→∞ ||Zk − Zk+1||2F = 0.
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