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Abstract: During the last two decades, a large variety of upper limb exoskeletons have been 11 
developed. Out of these, majority are platform based systems which might be the reason for not 12 
being widely adopted for post-stroke rehabilitation. Despite the potential benefits of platform-based 13 
exoskeletons as being rugged and reliable, stroke patients prefer to have a portable and user-friendly 14 
device that they can take home. However, the types of actuator as well as the actuation mechanism 15 
used in the exoskeleton are the inhibiting factors why portable exoskeletons are mostly non-existent 16 
for patient use. This paper presents a quantitative analysis of the actuation systems available for 17 
developing portable upper arm exoskeletons with their specifications. Finally, it has been concluded 18 
from this research that there are not many stand-alone arm exoskeletons which can provide all forms 19 
of rehabilitation, therefore, a generic solution has been proposed as the rehabilitation strategy to get 20 
best out of the portable arm exoskeletons. 21 
 22 
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1. INTRODUCTION 25 

Stroke is the fourth leading cause of death in the UK. At present, there are over 1.2 million stroke 26 
survivors in the UK [1]. According to the Stroke Association, the way of recovery of stroke patients 27 
depends on the process of rehabilitation which includes all orthopaedic lessons at different phases 28 
after stroke [2]. Existing manual therapy has several drawbacks such as the cost of therapy, physical 29 
issues from physiotherapy and lack of sufficient number of physiotherapists. Long-term involvement 30 
of rehabilitation therapists imposes a huge cost burden. Present annual health and social costs of 31 
caring for disabled stroke patients are estimated to be in excess of £5 billion in the UK [3]. The ratio 32 
of the number of stroke survivor to the number of experts providing rehabilitation therapy is still not 33 
satisfactory. Since the number of people suffering from stroke and different neuromuscular diseases 34 
is increasing day by day, the situation is worsening. Also, the duration of training is not adequate due 35 
to the fatigue of therapists; patients do not get repetitive and adequate rehabilitation sessions under 36 
manual intervention. It is not possible for the patients to receive the recommended amount of 37 
medical care from manual therapy [4]. It has been shown that the exoskeleton based rehabilitation 38 
can be used as an alternative [5] to regular manual therapy for improving motor function after stroke 39 
since the device can be moved in different directions to accommodate all types of exercises [6].  40 
Many exoskeletons have been designed to provide rehabilitation service to post-stroke patients. 41 
Based on the structure, exoskeletons can be mainly divided into two categories: ground-based 42 
exoskeleton [7] and body-based exoskeleton [8]. The ground-based exoskeletons are attached to a 43 
base platform from where full arm motions are controlled. This type of exoskeleton can provide 44 
uninterrupted and intensive rehabilitation training to patients. Actuators can be placed at the human 45 
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joint with structural support from the base [9] or remotely controlled by placing it on the backpack 46 
[10]. Most of the ground-based exoskeletons have used brushed or brushless dc motor [11] as their 47 
active actuators. Also there are some hydraulic [12], [13], [14] ,[15] and pneumatically powered 48 
exoskeletons [16], [17], [18], [19] in the market. In the ground-based exoskeleton, motion transferred 49 
to the human arm is very stable and the actuator can provide maximum torque to the joint 50 
irrespective of the weight of the arm. This type of exoskeleton requires a large space for installation. 51 
In the body based exoskeleton, all mechanical and electronic components including the power supply 52 
are placed within the exoskeleton mounted over patient’s body and joints can be directly driven by 53 
actuators; same as the ground-based system or externally controlled through transmission 54 
mechanisms. If the actuator is placed at the joint, the amount of torque required to turn the joint is 55 
quite high. To achieve higher joint torque, big and heavy motors are required [20]. As a result, 56 
weight as well as size of the exoskeleton could be increased and the structure may not be wearable. 57 
Although there are new type of soft actuators like pneumatic muscle [21] or flexible fluidic actuators 58 
[22] being developed for making portable and lightweight exoskeletons, there are still a number of 59 
issues associated with these actuators that make them unsuitable for use on a multi-degree of 60 
freedom exoskeletons. The ground-based exoskeletons are suitable for rehabilitation where size and 61 
weight of the exoskeleton are not important but for a portable exoskeleton, the actuator should be 62 
small and of low weight. 63 
Apart from the structural division of exoskeletons in terms of ground-based and body-based systems, 64 
they can also be categorized with respect to their intended applications such as exoskeleton for 65 
assistance or therapeutic device for stroke rehabilitation. There are considerable measures of 66 
differentiation between these two types of exoskeletons, the assistive exoskeleton is mainly used for 67 
providing assistive force to support in activities of daily living or to undertake strenuous tasks. On 68 
the other hand, as a therapeutic device, the type and level of external force are varied depending on 69 
the post-stroke recovery requirements; it could be assistive or resistive force based for rehabilitation. 70 
Besides the health benefits, other design properties are also considered to be significant in this 71 
survey which are comforts, ease of putting on/removing the device, purchase cost and energy 72 
consumption [23]. On this basis, a simple, user-friendly and affordable system which is lightweight 73 
and portable should be the most wanted consideration. Ground-based systems are generally 74 
expensive because all the required rehabilitation features are installed into the exoskeleton to 75 
accommodate a large variety of patients; mainly suitable for hospitals and health care centres. Such 76 
facilities are neither readily available nor affordable for an individual user. Since the ground-based 77 
exoskeletons typically use heavy and powerful actuators, the user can’t avail the training facility at 78 
home or use during travel. This leads to conclude that a mechanically efficient, simple and portable 79 
arm exoskeleton is the need for patients requiring rehabilitation therapy post-stroke, so the main aim 80 
of this paper is to investigate issues related to actuators and actuation system for developing a 81 
portable upper limb exoskeleton. 82 
Although a large number of exoskeletons have been developed and a considerable amount of 83 
research has been undertaken, there are hardly any portable upper arm exoskeletons available to the 84 
needy user. The main reason for this bottleneck is due to the choice of actuators and the supporting 85 
mechanisms for creating a portable device. There are a couple of critical factors which should be 86 
integrated into the actuation framework to develop a lightweight exoskeleton. Based on this research 87 
the key properties for selecting an actuation system is categorised into four divisions as shown in 88 
Fig. 1: the functional activities, technological characteristics, financial benefits and psychological 89 
benefits. Out of the four divisions, the first two are crucial. The functional activity defines a standard 90 
rehabilitation therapy which not only provides medical benefits but it also guarantees safety and 91 
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comforts to the users. Patient's prerequisite is to have a user-friendly system which can be 92 
effortlessly put-on and taken-off, yet no standard design methodology has been documented to 93 
produce portable exoskeletons. However, some design considerations are available to make an 94 
actuated device portable. These are; the torque to weight ratio of the exoskeleton should be high 95 
enough to carry out the maximum load during exercise. The weight of the system components should 96 
be low so that the overall device is wearable and easy to move during therapy exercises. The degree 97 
of freedom (DOF) of the exoskeleton is another important factor which should be kept to a minimum 98 
to allow minimum number of actuators to be used. Efficient mechanisms should be used for 99 
transferring motion from actuator to the joint. In order to actuate the exoskeleton, the battery life is 100 
also a very important consideration for providing power to run the exoskeleton for a long time. 101 
Besides this, considerations should also be given for the cost of actuators used in the exoskeleton to 102 
make rehabilitation a cost-effective therapy compared to the manual treatment and the ease of repair 103 
and maintenance should be built into the exoskeleton. Though appearance is least important amongst 104 
all the construction parameters of the exoskeleton, it should provide a pleasant and aesthetic look to 105 
make it attractive to the patients.  106 

 107 
Figure 1. Key features required for a portable exoskeleton system 108 

2. REHABILITATION STRATEGY 109 

People suffering from stroke face a lot of physical and psychological problems. Physical inefficiency 110 
makes them detached from the social life. According to the standard rehabilitation strategy followed 111 
by the healthcare professionals [2], patients have to undergo different modes of exercises from acute 112 
phase to the full recovery stage after stroke. The exercises involved in different rehabilitation stages 113 
not only aimed to recover their muscle strength but also to get them back into their normal life and 114 
improve their mental strength to fit into the social life. Generally, seven standard steps are followed 115 
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for rehabilitation as developed by the Swedish therapist Brunnstrom [24]. This approach is based on 116 
the neurophysiological principles for improving the successive levels of central nervous system 117 
(CNS) integration through a synergistic pattern of muscle movement. All these seven stages can be 118 
merged into three distinct stages after assessment of the treatment procedure involved in these stages 119 
as shown in Fig. 2. The developed exoskeleton should be capable of incorporating all types of 120 
exercises required in the three stages. Symptoms in each stage show the sign of recovery. During the 121 
acute phase, the joint movement is controlled by applying external force supported by the 122 
exoskeleton since there may be spasticity or involuntary movement in the arm. The next phase of 123 
recovery shows a better condition where a synergistic pattern in the movement appear as well as 124 
spasticity continues to decrease. During this transition, an external supportive force is helpful to 125 
implement coordination between the joint movements successfully. This phase of rehabilitation 126 
implies a partial control on the movement where patient would commence the motion from their end 127 
but assisted by the exoskeleton. The continuous synergistic motion tries to restore muscle strength 128 
and reduces the abnormality in the movement which results in a complex coordinated muscle control 129 
in the upper arm. In the full recovery stage, patients are able to initiate complex voluntary movement 130 
but not with enough strength, therefore, they need some resistance based exercises.   131 

 132 
Figure 2. Three phases of the recovery process after stroke 133 

 134 
3. ACTUATION SYSTEM 135 

Since actuator and actuation mechanism used in exoskeletons are the key factors for making a 136 
portable system, different types of actuator are considered with respect to the anatomical joints of 137 
human arm. An independent actuator can provide one degree of freedom, however, some joint like 138 
shoulder has multiple degrees of freedom, therefore, the actuator selection should be based on the 139 
type of actuation required. Accordingly, actuators can be divided into three types depending on 140 
actuation used in the exoskeleton; active, semi-active and passive. 141 
An active actuator can produce a variable range of motions with different speed and torque. Electric 142 
motor, pneumatic and hydraulic systems are the conventional active actuators which are widely used 143 
in exoskeleton design [25]. There are some new types of actuators such as artificial muscle, shape 144 
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memory alloy (SMA), electroactive polymer (EAP), and piezoelectric motor which are also being 145 
adopted in exoskeleton designs [26]. The semi-active actuator is a special type of actuator which 146 
can’t produce any active force in the joint but imposes resistive force if it has deviated from its force-147 
balanced position. Two types of actuation are named under this category: magnetorheological fluid 148 
based system [27] and compliant mechanisms [28]. The semi-active actuator controls the joint 149 
stiffness according to the task requirement. Passive actuators provide supporting force to the joint; it 150 
is based on passive elements like springs or rubber bands which use their elastic property to generate 151 
force without using any source of energy. After analysing the description of 46 exoskeletons [25], it 152 
was found that 56% of the exoskeletons used electric motors (either brushed or brushless) for 153 
actuation. Different actuators divided into stationary and portable systems are shown in Fig. 3. 154 
Following this survey, the passive actuation system seems to be an attractive option for making a 155 
portable device compared to exoskeletons using active actuators. From the above discussion, it 156 
should be clear that active joint movement is important for acute stage of rehabilitation which is not 157 
possible without active actuators. Out of all types of active actuators used in exoskeletons, pneumatic 158 
actuators are the competing choice for making a portable system, however, electric motors are still 159 
used in most of the stationary exoskeletons for providing active actuation due to its linear and ease of 160 
control characteristics. Fig. 4 shows a guide map of different actuators used in the existing 161 
exoskeletons. 162 
 163 

 164 
Figure 3. Statistics of actuator used for stationary and portable systems 165 

 166 
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 167 
Figure 4. Actuators for stationary and portable system 168 

3.1 Actuators in Active rehabilitation 169 

At the early stage of stroke, patients undergo free movements consisting of some predefined 170 
orthopaedic lessons at different frequencies since they don’t have any muscle power left. As the 171 
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patients do not have any active participation, exercises are totally controlled by the exoskeleton as a 172 
part of active rehabilitation; motion generated by the exoskeleton is coupled to the affected limb of 173 
the patient. In the human body several muscles work together to give motion to a single joint, 174 
however, it is difficult to replicate human muscles in the exoskeleton design as large number of 175 
actuators will be required. It is possible though to achieve the same level of torque and speed using 176 
active actuators and with appropriate mechanism design. Rehabilitation training is normally 177 
performed at lower bandwidth, however, the weight and volume of the actuator may create 178 
restrictions on portability, therefore, the properties of active actuator plays an important role in 179 
providing the required torque and bandwidth for offering effective rehabilitation to patients. 180 
 181 
3.1.1 Electric motor  182 
The type of actuator used for active exoskeletons is mostly electric motor which is easy to control 183 
and has high power cum bandwidth. Generally brushed DC motor is preferred due to less 184 
cumbersome controller circuit. On the other hand, brushless motor can provide better power to 185 
weight ratio. In most of the exoskeletons, direct drive motors are used which are placed at the joint. 186 
The motor must be able to develop enough torque to start, accelerate and operate the therapy 187 
exercises at the rated speed. Exercise in active rehabilitation mode is conducted at different loads. 188 
Motors are controlled with certain characteristics to match the specific speed-torque requirements of 189 
the joint. When the exoskeleton attempts to lift the arm against gravity during rehabilitation exercise 190 
(including its own weight), it is subjected to a varying degree of torque. As these exercises are 191 
carried out by the external motor, large motors may be required to support the human arm. Problem 192 
occurs when a heavy and bulky DC motor is located at the joint which needs to be moved by the 193 
device. The condition is worse if a serial mechanical chain is attached to the arm along with motors 194 
placed at different joints. In this situation, motor placed at shoulder needs to take care of the load of 195 
the whole arm including the motor used for elbow and wrist together with the mechanical structure. 196 
Sometimes three or more motors are used in parallel for actuation since parallel manipulator behaves 197 
similar to muscle structure such as in MAHI [29]. The parallel mechanism could offer higher 198 
stiffness in a confined area but are difficult to align with the arm joints. High speed and low torque 199 
motors are smaller in size but the frequency required for rehabilitation is not more than 1-2 Hz [30], 200 
thus such motors cannot be used. Gears are used to reduce the speed which increases the weight and 201 
reduce the efficiency typically from 70% to 50% [31]. Also, there is a problem with power 202 
consumption as it would proportionally vary with the motor torque. A portable device should have 203 
an energy source to provide uninterrupted power to the motor for a longer period. The bigger energy 204 
source adds extra weight to the exoskeleton design. To create an energy efficient mechanism, a new 205 
direction of research is required on energy optimization techniques [32].  206 
To overcome the torque and energy-related problems, a few actuation mechanisms are developed in 207 
combination with DC motor to increase the ratio of torque/volume and torque/weight to enhance the 208 
portability. A system with low inertia can provide better dynamic performance. The most popular 209 
solution is to put the motor externally in some remote location and actuates the joint using some 210 
links or a cable driven system. Actuators can be positioned either on the backside attached to 211 
backpack [33] or on the upper arm structure [34]. The four-bar linkage mechanism is one of the best 212 
ways to transfer the motion from one point to another without any loss [35]; rigid links in 213 
mechanisms transmit forces along the link without any loss of efficiency.  214 
In cable-driven exoskeletons, cable tension should always be maintained positive for joint actuation, 215 
however, the mechanism incurs friction loss due to cable and pulley-based system. Joint torque is 216 
also dependent on the stiffness of the cable. Cable-driven exoskeletons [34], [36], [37] and [38] have 217 
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a large range of motion compared to other designs, however, since cable can only provide motion in 218 
one direction (only pull but not push), therefore two cables along with two actuators are required to 219 
create a bi-directional motion for a joint.   220 
Wherever motor is used in combination with a speed reducing or torque enhancing mechanism, it 221 
affects its dynamic range. If a provision is made to offload the actuator torque by compensating the 222 
gravity, it not only improves the power requirement of the system but it also helps in making it 223 
portable. This is called passive gravity compensation technique. The passive gravity compensation 224 
can be achieved by adding a mechanical spring to the actuator where the spring energy is used to 225 
compensate a portion of the torque requirement of the motor [39]. A new compensating model has 226 
been developed by integrating an elastic element like spring in combination with actuator. This is 227 
called series elastic actuator which not only decreases the impendence but also provides stabilizing 228 
force in gravity compensation [40]. This configuration introduces more resonances in the system but 229 
lowers the functional bandwidth [31]. As arm rehabilitation doesn’t require higher bandwidth, this 230 
configuration has been used in many exoskeletons [40], [41]. The elastic element also ensures safety 231 
[42] of patient during arm movement by providing compliance to the system which is one of the 232 
main criteria for designing such an exoskeleton with elastic actuators.  233 
The harmonic drive can produce high gear ratio and high torque in a compact space [43]. It can also 234 
execute complex dynamic behaviour than conventional gear transmission. HAL  is a harmonic drive 235 
based commercial full-body exoskeleton [44]. Connecting a spring in series with actuator using cable 236 
driven system [40] has less functionality compared to the directly actuated joint but the spring energy 237 
helps to reduce the joint torque requirement. The tension of the spring can be adjusted by the motor 238 
connected to it so that it can support some extra load of the arm (or exercise with a different load in 239 
hand). To avoid frictional loss and backlash, DC motor has been used with a cable-capstan reducer 240 
[45] in place of the conventional speed reducer. A motor connected to capstan adjusts the tension 241 
between spring and joint, by using the planetary gearbox with limited backlash and low reduction 242 
ratio, the frictional loss as well as a creep in the cable-driven system can be reduced. Sometimes a 243 
slip clutch is attached to DC motor to provide safety from spastic motions [46], it acts as a torque-244 
limiting device. If the joint torque exceeds a certain limit, the slip clutch will dissociate the actuator 245 
from the exoskeleton frame and it allows free movement to the affected arm if spasm occurs in the 246 
human joint. Clutches can also be utilized for enhancing the functionality of springs or actuators in 247 
exoskeletons [47]. 248 
 249 
3.1.2 Hydraulic actuator 250 
The hydraulically actuated joint can produce the highest torque to weight ratio [48] but not suitable 251 
for a portable device since the whole system needs a pump along with a reservoir to provide 252 
compressive oil for generation of motion. Compressive fluid is injected into the hydraulic cylinder 253 
under high pressure to produce push and pull force. This has the problems of oil leakage and control 254 
is non-linear. Exoskeleton like NEUROEXOS [12] has a big cylinder and pump connected to it, 255 
therefore, it is very difficult to relocate these components during motion. However, the leadscrew 256 
based motor driven system has also been used in combination with a hydraulic cylinder to provide 257 
bi-directional motion. There are some other types of the hydraulic actuators which have been 258 
designed to enhance portability such as the hydro-elastic actuator (HEA) [49] and the flexible fluidic 259 
actuator (FFA) [22]. Hydro-elastic actuator creates rotational force using a motor in combination 260 
with a spring which maintains the elasticity during motion. But it has the disadvantage of using a 261 
separate motor for a single joint movement whereas a single reservoir with a pump is enough to give 262 
power to all hydraulic cylinders in an exoskeleton. FFA is a modular fluidic actuator which has been 263 
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applied for elbow joint. FFA consists of reinforced flexible bellows that expand during 264 
pressurization. If an FFA is connected between two links, it gives rotational motion to the joint. It 265 
also uses a small hydraulic pump and a small portable reservoir for its own operation to make it a 266 
lightweight portable device.  267 
 268 
3.1.3 Pneumatic actuator 269 
Pneumatic actuators also have a good power to weight ratio. Two types of pneumatic actuator have 270 
been developed so far; pneumatic cylinder and artificial muscle. Pneumatic cylinder acts like a 271 
hydraulic cylinder where compressed air is used instead of oil to give compliant motion in both 272 
directions. The artificial muscle, also known as Mckibben muscle [21], contracts like natural muscles 273 
and the main advantage is that it offers higher torque to weight ratio compared to the existing active 274 
actuators. Its impedance is also lower compared to electric motors. Exoskeletons like RUPERT [18], 275 
Pneu-Wrex [17], ASSIST [50], Salford arm [51] fall under this category. Artificial muscle has two 276 
layers made up of braided nylon, when it is pressurized with compressed CO2, the braided material 277 
expands and the axial length contracts, thus exhibiting similar behaviour like human muscle. This 278 
type of actuator addresses the issue of smoothness, lightness and compliance. Therefore exoskeletons 279 
actuated by pneumatic muscle are also called soft-robots. It produces natural compliance in the 280 
structure which makes the exoskeleton more ergonomic and user-friendly. Exo-suit [52] is one of the 281 
best examples of soft-robot developed at Harvard University where the soft fabric is used as the 282 
structural material and small wearable sensors are used for measuring the human movement. This 283 
type of exoskeleton can be fitted and folded under the clothes enabling the user to keep away from 284 
any public glare. Researchers have modelled different fabric with the thermal adhesive film placed in 285 
the pneumatic muscle [53] to improve the performance of the exoskeleton. A few hand-based soft 286 
robotic exoskeletons (installed with pneumatic actuators) [54], [55] are also developed for hand 287 
assistance and rehabilitation applications. However, artificial muscle has a series of problems like 288 
low bandwidth, non-linear characteristics, unidirectional operation and bigger size. Because of its 289 
bigger size, it is difficult to place in a small area with other components. Since it operates in one 290 
direction, a pair of pneumatic muscle is required for achieving bi-directional joint motion. Human 291 
joint having several degrees of freedom such as shoulder joint and wrist are difficult to make using 292 
this actuator. 293 
 294 
3.1.4 Electroactive polymer 295 
Electroactive polymer (EAP) is a newly developed elastic material that has many similarities to 296 
human muscles [56]. In this material, actuation is generated because of ionic species movement that 297 
can be used for micromanipulation in the exoskeleton. It offers several advantages such as high 298 
bandwidth and higher levels of electrical-to-mechanical power conversion ratio but has very low 299 
torque to weight ratio. For this reason, at present, it is not fit for exoskeleton actuation. But further 300 
research on EAP can enhance its properties to make it suitable for portable exoskeleton design. 301 
 302 
3.1.5 Ultrasonic motor 303 
The ultrasonic actuator could be the solution for portable exoskeletons in terms of high power to 304 
weight ratio [57]. It creates mechanical vibration based on the piezoelectric effect. The ultrasonic 305 
motor consists of two parts; stator converts the electrical energy into mechanical vibration and the 306 
rotor transforms the vibration into rotational motion using friction. Two piezoelectric elements are 307 
connected together in series and used to transfer the vibration from stator to rotor. The advantage of 308 
using ultrasonic motor is that the ratio of torque/weight and torque/volume are 20 times larger 309 
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compared to DC motors [26]. It is lightweight and compact size actuator and doesn’t create any 310 
electromechanical noise during operation. It can also work at a low speed which is very much 311 
desirable for rehabilitation. However, it requires local force feedback to control its function. These 312 
actuators are very stiff and difficult to manufacture because of high production cost [58]. 313 
 314 
3.1.6 Shape memory alloy 315 
The shape memory alloy (SMA) also behaves more or less like EAP and artificial pneumatic muscle. 316 
It can be an alternative to an application which requires less movement. It is categorised as smart 317 
material made up of different metal alloy specially copper-aluminium-nickel and nickel-titanium but 318 
can also be created from alloying-zinc, copper, gold, and iron. Heating causes deformation in the 319 
metal and it returns to its initial stage after cooling. It acts like a memory strip by retrieving its pre-320 
deformed shape before heating. The movement in SMA appears due to the shifting of crystalline 321 
structure between two stages, known as martensite and austenite. The low-temperature phase is 322 
called martensite and high-temperature phase is called austenite. One of its special characteristics is 323 
high power to weight ratio which makes it suitable for actuator applications. The high nonlinearity 324 
including hysteresis makes controlling of the SMA actuator troublesome [59]. Additionally, the 325 
bandwidth of SMA is quite low because of the cooling cycle. Mostly, hand exoskeletons have been 326 
developed using SMA. For example, a hand orthosis [60] was developed for quadriplegic patients 327 
where the flexion motion is supported by SMA or a differential rotational actuator [61] was used 328 
based on shape memory alloy to drive an exoskeleton for hand rehabilitation. A few exoskeletons 329 
have been developed with shape memory alloy wire-based actuators for elbow joint [62] and forearm 330 
cum wrist [63] for rehabilitation of post-stroke patients. 331 
 332 
Table 1 shows technical specifications of some existing exoskeletons with their actuator and 333 
actuation system.  334 

Table 1.Exoskeleton with active actuator 335 

Exoskeleton Design Actuator Actuation 
system 

Degree of 
freedom Attached to Weight Torque Portability 

Arm-in [9] Harmonic 
Drive 

Direct drive & 
link drive 6 Shoulder, elbow, 

forearm wrist 18.76 kg 37.76 
Nm No 

MGA exoskeleton 
[64] 

Electric 
motor Direct drive 7 Shoulder, elbow, 

and forearm 12 kg 137 Nm No 

ExoRob [65] Harmonic 
Drive Direct drive 5 Elbow joint and 

wrist joint 

Actuator 
weight- 
1.15 kg 

5.5 Nm No 

MEDARM 
[36] 

Electric 
motor Cable drive 3 Shoulder, elbow, 

wrist 115 kg 73 Nm No 

ShouldeRO 
[37] 

Linear 
actuator 

Bowden 
Cables 2 Shoulder joint 1 kg 50 Nm No 

NEUROEXOS [12] Hydraulic 
drive 

Antagonistic 
Compliant 
actuation 

3 Shoulder joint 

2.30 kg 
(without the 

weight of 
pump and 
reservoir) 

15 Nm No 

Multiple Joint 
Robotic Arms [66] 

Ultrasonic 
motor Direct drive 4 Shoulder, elbow, 

wrist - 63 Nm No 

Skeleton Arm [67] Electric 
motor 

Tendon- 
driven 6 Human arm - - No 

BONES [16] Pneumatic Parallel 
drive 4 Shoulder and 

elbow - 22 Nm No 

Dampace [13] Hydraulic 
actuator 

Cable & 
spring drive 4 Shoulder and 

elbow - 50 Nm No 

Limpact [49] 
Rotational 

hydroelectric 
actuator 

Direct 
drive, cable & 
spring drive 

4 Shoulder and 
elbow 8 kg 36 Nm No 

Pneu-Wrex Pneumatic Link drive 4 Shoulder, elbow, - 80 N No 
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[17] and finger joint force 

Intelliarm [68] Electric motor Direct drive & 
cable drive 9 

Shoulder, elbow, 
wrist and finger 

joint 
- 10.20 

Nm No 

SUEFUL-7 [69] DC servo 
motor 

Direct drive & 
gear drive 7 

Shoulder, elbow, 
wrist and finger 

joint 
5 kg 5.90 Nm No 

MIME-RiceWrist 
[29] 

Electric 
motor 

Parallel 
drive 3 Wrist 1.96 kg 5.08 Nm No 

Salford 
Rehabilitation 
exoskeleton 

[51] 

Pneumatic 
muscle 

Antagonistic 
actuation 7 Shoulder, elbow, 

and wrist 2 kg 30 Nm No 

CADEN-7 
[38] 

DC Brushed 
motor Cable drive 14 

Shoulder, elbow, 
forearm and 

wrist 
6.80 kg 6.20 Nm No 

WOTAS [70] DC motor Direct drive 3 Elbow, forearm, 
wrist 0.85 kg 8 Nm Yes 

MAHI Exos-II [71] 

Frameless 
DC 

brushless 
motor 

Parallel 
drive 5 Elbow, forearm, 

wrist 

3 motors with 
arms 

assembly. 
Motor weight 

- 0.48 kg 

11.61 
Nm Yes 

RehabExos 
[72] 

Frameless 
DC 

brushless 
motor 

Direct drive 4 Shoulder, elbow, 
and forearm 

Motor weight 
3.70 kg 150 Nm No 

ARAMIS [73] DC brushed 
motor Direct drive 12 Shoulder, elbow, 

and forearm 19 kg 94 Nm No 

iPAM [19] Pneumatic Link drive 6 Shoulder, elbow, 
and forearm 

Wheelchair-
based system 15 Nm No 

L-Exos [74] Electric 
motor 

Cable and 
link drive 5 Shoulder, elbow, 

and forearm 11 kg 
Motor 
torque- 

3.70 Nm 
No 

MULOS [75] Electric 
motor Direct drive 5 Shoulder, elbow, 

and forearm 
Wheelchair-  
based system 

14.95 
Nm No 

Hybrid Elbow 
Orthosis [15] Hydraulic 

Flexible 
fluidic 

actuation 
using 

bellows 

1 elbow 1.20 kg 3 Nm Yes 

Exorn [76] 

DC Brushed 
and 

brushless 
motor 

Direct drive 10 
Shoulder, elbow, 

forearm and 
wrist 

10 kg 
Motor 
torque- 
30 Nm 

Yes 

ALEx [77] Brushless 
motor Direct drive 6 

Shoulder, elbow, 
forearm and 

wrist 
14.50 kg 80 Nm Yes 

ABLE [78] Electric 
motor Link drive 4 Shoulder, elbow, 

and wrist - 18 Nm No 

SAM [45] Electric 
motor 

Capstone 
wheel based 

direct 
drive 

7 
Shoulder, elbow, 

forearm and 
wrist 

6 kg 19.70 
Nm No 

Myomo [79] DC motor Direct drive 4 Elbow and wrist - - Yes 

SUE [80] Pneumatic Link drive 2 Forearm and 
wrist 0.56 kg - Yes 

Self-aligning 
exoskeleton [81] 

Electric 
motor 

Gear drive 
and direct 

drive 
3 Forearm and 

wrist - 3 Nm Yes 

Exo-suit [52] 
Soft textile 
pneumatic 
actuator 

Direct drive 1 Shoulder - 20 Nm Yes 

Pneumatic elbow 
exoskeleton [53] 

Pneumatic 
muscle Direct drive 1 Elbow 0.30 kg 300 N 

force Yes 

ExoGlove [54] Soft 
pneumatic Direct drive - Hand 0.20 kg - Yes 
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actuator 
Hand rehabilitation 

system [61] 
Shape 

memory alloy Direct drive 3 Finger - 20 N 
force Yes 

Soft Robotics 
Wearable Elbow 
Exoskeleton [62] 

Shape 
memory alloy 

Bowden 
Cables 1 Elbow 0.60 kg 

Pulling 
force- 
34.9 N 

Yes 

Wearable Wrist and 
Forearm 

Exoskeleton [63] 

Shape 
memory alloy 

Spring and 
cable drive 3 Elbow and wrist 0.95 kg 20 Nm Yes 

 336 
3.2 Methods in passive rehabilitation 337 

Patients are able to initiate joint movements after rigorous active rehabilitation after which they 338 
recover some muscle strength. However, they can hardly balance their arms in a particular position 339 
as well as to keep it in a certain configuration for a long time. Therefore, an assistive force would be 340 
helpful to patients to continue their movements for different exercises. The supportive force would 341 
encourage the patients to engage in more efforts during exercises. As a result, their neuro-motor 342 
function will improve gradually. Passive rehabilitation can be achieved using either an active 343 
actuator or passive elements. 344 
 345 
3.2.1 Software based solution   346 
The idea of passive exoskeleton is to provide supportive force to patients to generate easy voluntary 347 
movements. The first solution for this is based on soft computing approach [65] where the control 348 
algorithm can measure the patient’s intention of movement using different biosensors (EMG1 and 349 
EEG2). Therefore, an adaptive control system can generate variable motor torque based on the 350 
patient’s effort taken from the sensory data. If it is found that patients are unable to do the exercise 351 
on their own, the control system adjusts the required motor torque which would assist them to 352 
improve their arm movement. The generated joint torque will be reduced in case of improved health 353 
status, but there are some limitations regarding the stability of feedback signals. In software based 354 
solution, the exoskeleton may exhibit a discordant behaviour on sudden impact force due to the delay 355 
in signal transmission. Continuous engagement of electric motor along with other electronic 356 
components results in constant draining of energy. This approach may not suitable for an energy 357 
efficient mechanism. Also, the human joint motion is always under motor control which might not be 358 
safe, if the motor moves beyond the anatomical limit of human joint due to malfunction, accident 359 
might happen. 360 

3.2.2 Hardware based solution 361 
In hardware-based approach, opposite forces are generated against the gravity to achieve a particular 362 
movement. A solution of putting a counterweight on the opposite side of the load can balance the 363 
arm under gravity [82]. But this is not a desirable solution for a portable system where weight 364 
reduction is the main objective. A passive elastic element such as spring or rubber band can support 365 
the arm by reducing the gravity force for arm movement. Spring always tries to get into its original 366 
shape and because of its stiffness, it can create an opposite force to gravity resulting in a bare 367 
minimum force required for joint actuation. In fact, passive elastic based mechanism creates energy-368 
free system because no active actuator is involved in the motion. 369 
Springs connected to the supporting mechanism are made up of solid links [83]. Front-end or rear-370 
end position of the spring are connected to two separate links which are coupled with two different 371 
                                                           
1 EMG - Electromyography 
2 EEG - Electroencephalography 
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parts of the body. The joint movement causes extension of the spring resulting in an opposite 372 
restoring force about the joint. It helps the exoskeleton to take care of the arm load if it is going 373 
against the gravity. Assistive force can be varied by changing the connection points of the spring in 374 
the mechanism. However, in spring supported systems, the range of motion is less due to its own free 375 
length. Spring length restricts the motion to a certain extent but the complex link mechanism may 376 
increase the efficiency of joint in terms of torque and the range of motion. Full range of motion can 377 
be achieved using zero-free-length springs which are quite difficult to manufacture. To increase the 378 
range of motion, sometimes cable is attached with the spring [84]. One solution is to place it in a 379 
remote location and transfer the spring force using cables. Use of rubber band is also an option of 380 
providing assistive force in passive rehabilitation. T-WREX [85] is a commercial passive 381 
exoskeleton based on rubber bands, it is a simple and component wise less expensive device.  382 
Sometimes torque requirement for joint movement is different for different users depending on size 383 
and weight of their arm. Also, a user needs variable torque for lifting different loads during exercise; 384 
there are two ways to change the spring force dynamically during operation. One is to vary the 385 
number of active coils in the spring [86] and the other is to change the front-end or rear-end position 386 
of the spring [87]. The first solution would change the stiffness of the particular spring while the 387 
second solution would change the spring force by varying the amount of displacement. However, it 388 
is necessary to ensure that the changing of spring force should not be permanent and it should be 389 
able to return to its initial position. Most of the variable gravity compensation mechanisms have used 390 
an extra motor to change the spring force. This form of solution may be suited from a control point 391 
of view but not for a portable device because the extra motor increases the weight as well as the size 392 
of the system. Lists of a few passive exoskeletons (with no active actuator) are shown in Table. 2. 393 

  Table 2.Exoskeleton with passive element (spring & rubber band) 394 
Exoskeleton 

Design 
Actuating 

system 
Passive 

elements 
Degree of 
freedom Attached to Weight Torque Portability 

T-WREX [85] Link drive Rubber band 5 Shoulder, elbow, and 
finger - - Wheelchair-based 

system 

Armon [84] 
Link drive 
and cable 

drive 
Spring based 3 Shoulder, elbow, and 

wrist - 23 N 
force 

Wheelchair-based 
system 

SLERT [83] Link drive Spring based 4 Shoulder, elbow - - No 

Armeospring [88] Link drive Spring based 7 
Shoulder, elbow, 
wrist and finger 

joint 
- - No 

Hybrid arm 
support [89] Link drive Spring based 1 Arm support 10 kg - No 

3.3 Techniques for creating variable stiffness 395 

The passive rehabilitation process solely depends on patient’s health condition and assistive force 396 
required. Neuromuscular activity increases in rehabilitation over time as patients gain more strength.  397 
It depends on the level of exercises undertaken by the patients during the rehabilitation training. 398 
After stroke, the training-induced cortical activation depends on the rehabilitation process and the 399 
difficulty level of the exercises which further improves progression to contralesional activation. It 400 
helps those patients to get back to the normal stage through a different learning process to make them 401 
familiar with real-time force activity. Therefore, those exercises module should be tough and 402 
strenuous from time to time so that the patients apply more efforts to complete.  403 
Human joint stiffness is generally constant during active rehabilitation. It is not required to change 404 
the joint stiffness during active rehabilitation since no active participation is taking place from the 405 
patient whereas patient’s effort is responsible for carrying out all exercises during passive 406 
rehabilitation. If the joint stiffness differs in magnitude such as to become stiffer, patient has to 407 
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provide extra torque to move the joint. This type of training will gradually improve their neuromotor 408 
functions. There are three ways to change the joint stiffness of the mechanism. 409 
 410 
3.3.1 Active actuator based joint stiffness control 411 
Active actuator based joint stiffness control can be achieved using feedback sensor and soft 412 
computing technique to maintain the desired level of stiffness [90]. An exoskeleton can impose 413 
different joint stiffness to human arm by changing its motor torque. It is similar to the passive 414 
rehabilitation process but the difference is in the nature of force. At the start of passive rehabilitation, 415 
supporting force is generated to assist the motion whereas a resistive force is generated to restrict the 416 
joint motion later. This type of strategy is very much software dependent, therefore, change in the 417 
health status could be difficult to manage. Such neurological patients may suffer from painful and 418 
involuntary muscular contraction which may lead to a joint stiffness with undesirable joint torque. 419 
 420 
3.3.2 Semi-active actuator based joint stiffness control 421 
The semi-active actuator based stiffness control is useful for providing variable stiffness to the joint. 422 
It can’t provide variable active forces to the patients but suitable for the application where resistive 423 
force is required. It uses controllable fluid where viscosity can be adjusted by changing the 424 
electromagnetic property of the fluid, thus changing the stiffness of the joint connected to it. One of 425 
the best examples is MR (Magnetorheological) brake which can provide a reaction torque up to 1.1 426 
Nm [27]. The magnetorheological fluid is located between the gap of stator and rotor. It consists of 427 
micron-sized magnetic particles located inside a liquid carrier that forms a magnetic chain like 428 
structure when the external magnetic field is applied. Apparently, the viscosity of the fluid is 429 
changed, as a result the stator applies different frictional force to the rotor and the whole mechanism 430 
exerts different stiffness at the joint. The intrinsic stability provided by MR brake is of great 431 
advantage to the patient for freezing the arm at a particular location. Sometimes the semi-active 432 
actuator is used in combination with normal active actuator to provide stiffness to the joint which 433 
cannot be achieved by the semi-active actuator alone. MR brake generally works in the operating 434 
voltage of 2-25 volt with a current rating of 1-2A. Sometimes clutching using electrostatic force 435 
without tacky polymers can be enforced for changing the joint stiffness, but its effectiveness is 436 
impeded by the space charge. 437 
 438 
3.3.3 Compliant actuator based joint stiffness control 439 
Joint stiffness variation can also be accomplished by using different mechanisms. This approach 440 
reduces the complexity of control system by including different passive components in the 441 
exoskeleton structure. A few series elastic material such as spring, bending rod can be used to 442 
change the joint stiffness. However, from the mechanism point of view, there are a few established 443 
standard techniques for changing the joint stiffness but all of these techniques cannot be used for 444 
human applications. The compliant actuator  is a standard solution for providing variable stiffness to 445 
the joint [91]. It provides elastic behaviour where output moves due to an external force and returns 446 
to its original state if no force is present. It uses passive elements to store and release the energy. 447 
Recent publications show that the compliant actuator is more effective as compared to those 448 
electromagnetic brakes for arm support system in terms of safety and comfort [28]. This type of 449 
actuator generates less impact force on the joint against external shocks and protects it from damage. 450 
From a technical point of view, stiffness and compliance are opposite in nature; a system consisting 451 
of a stiff actuator keeps the joint at a specific position if the external force has been removed. A 452 
compliant actuator deviates from its equilibrium position depending on the applied force; however, it 453 
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comes back to its stable condition to have zero potential energy. Therefore, the compliant behaviour 454 
of a mechanism can justify the non-stiff behaviour of the actuator. In actual scenario, the 455 
rehabilitation process requires relatively less stiffness during exercises and the joint stiffness can be 456 
gradually raised when patient regain their muscle control.  457 
Active compliant actuator mimics the behaviour of spring through adaptability whereas passive 458 
compliant system uses mechanical spring for providing the joint stiffness. The disadvantage in active 459 
compliance actuator is that it always consumes energy. However, to make those passive compliant 460 
systems adaptable, some additional mechanism is required to change the spring force. A few 461 
standard designs have already been developed for generating the compliant behaviour in a system. 462 
Some of these are: 463 

• Stiffness change by antagonistic control [92]: Two non-linear springs connected with two 464 
actuators in series and coupled to a joint antagonistically, by applying force against each 465 
other and controlling the actuators equilibrium, joint position as well as stiffness can be set.  466 

• Structure controlled stiffness: Sometimes mechanical construction like cantilever beam or 467 
bending rod behaves like a spring to provide variations in stiffness [93]. The stiffness of 468 
elastic element is determined by the material property and its dimension. Stiffness can also be 469 
controlled by adjusting the effective spring length, for example, jack spring [86] uses a 470 
mechanism to control the effective number of active coils to vary the stiffness.  471 

Most of the designs with variable stiffness mechanism generally use spring-based control system 472 
which is operated by one or two active motors. However, the engagement of extra motor or 473 
mechanism increases the overall weight which is one of the main inhibiting factors of portable 474 
exoskeleton device development.  475 
Actuators with the back-drivable facility are also used for providing safety and comfort. Stiff 476 
actuator requires higher amount of torque to turn a joint whereas back-drivable actuator can turn the 477 
joint with a small amount of torque thus adding compliance to the joint. If the back-drivability is too 478 
low, the gearbox can be damaged due to sudden external force. Mechanical systems experience more 479 
resonances [31] and the reduction of system bandwidth happens due to the addition of springs. A few 480 
exoskeletons offering variable stiffness to arm joint are shown in Table.3. 481 
 482 

Table 3.Exoskeleton with variable joint stiffness 483 

Exoskeleton Design Actuating system Actuator Degree of 
freedom 

Attached 
to Weight Torque Portability 

Semi-active actuator 

MEM-MRB [27] Link drive Magneto-rheological 
fluid brake 1 Elbow 26.40 

kg 27.5 Nm No 

MUNDUS [94] Link and 
cable drive 

Electromagnetic DC 
brake 3 Shoulder, 

and elbow 2.20 kg - 
Wheelchair-

based 
system 

DVB orthosis [95] Link drive Magneto-Rheological 
Fluid 1 Wrist <0.20 

kg 

50 N 
peak 
force 

Yes 

Complaint actuation system 

Biologically 
Inspired Joint [92] 

Antagonistic series 
elastic 

actuation 
Electric motor 1 Any joint - - - 

VSA-II [96] 
Antagonistic series 

elastic 
actuation 

Electric motor 1 Any joint 0.35 
kg - Yes 

AwAS-II [97] Lever and 
spring based Electric motor 1 Any joint 1.10 kg 80 Nm Yes 

Hybrid Dual 
Actuator Unit [98] 

Double 
spring based Electric motor 1 Any joint 1.80 kg 50 Nm Yes 

CompAct-VSA [99] Lever and Electric motor 1 Any joint - 117 Nm - 
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spring based 

vsaUT-II [100] Spring and belt 
drive Electric motor 1 Any joint - - - 

HVSA [101] Lever and 
spring based Electric motor 1 Any joint - 8.50 Nm - 

VSA-CubeBot [102] Spring and wire 
drive Electric motor 1 Any joint 0.26 

kg 3 Nm Yes 

PVSA [103] 
Antagonistic 

actuation with cam 
drive 

Electric motor 1 Any joint 0.98 
kg - Yes 

VSJ [104] 
 Leaf-spring based Electric motor 1 Any joint 4.95 

kg - - 

DLR FSJ [105] Roller-based cam 
drive Electric motor 1 Any joint 1.41 

Kg 67 Nm Yes 

mVSA-UT [106] Spring and gear 
drive Electric motor 1 Any joint 0.10 

kg 1 Nm Yes 

CCEA [107] 
 

Antagonistic link 
based spring 

drive 
Electric motor 1 Any joint 0.80 

kg 13 Nm Yes 

MACCEPA [108] Link and 
spring drive Electric motor 1 Any joint - - - 

4. OTHER ISSUES 484 

Apart from the mechanism and structural framework of actuator and actuation systems used for the 485 
development of upper limb exoskeleton, there are some other issues such as the degree of freedom, 486 
bandwidth, energy consumption which are also responsible for developing portable exoskeletons.  487 

4.1 DEGREE OF FREEDOM (DOF) 488 

Driven by the bioelectric signal, the actuation force in human joint is provided by a bunch of muscle 489 
fibres which is difficult to replicate using a couple of actuators. A human arm has a minimum of 7 490 
active joints; shoulder-3 DOF, elbow-1 DOF, forearm-1 DOF, and wrist -2 DOF. Also extra passive 491 
joints are required in exoskeleton design to compensate for joint misalignments. A few cable driven 492 
exoskeletons have been developed to achieve the muscle-tendon like behaviour. However, a large 493 
number of actuators are required in the cable-driven system that makes it a complex and bulky 494 
system. Joints such as shoulder and wrist have multiple DOF roughly originating from a single point. 495 
Such joints are difficult to imitate using electric motors since several actuators need to be placed in a 496 
confined area. Also the axis of rotation of all the actuators should pass through a single point similar 497 
to the anatomical joint having multiple DOF and the distance between centres of rotations should be 498 
as small as possible to make an efficient joint. To match this parallel manipulators have been 499 
proposed for such applications however they have limited stiffness and dexterity. A solution for 500 
substituting multiple DOF using a single actuator is possible by modelling like spherical magnet 501 
arrays using the magnetic charge [109], 3D positions in the spherical or ball socket joint can be 502 
accessed by creating a magnetic field on the surface of a sphere. Although this concept is still in 503 
research, it may replace the use of multiple actuators for multiple DOF joint. ShouldeRO [37] is an 504 
alignment-free two DOF rehabilitation robot for the shoulder complex of the exoskeleton and a 505 
modular approach supported by Bowden cable has been proposed to provide motion in a 3D space 506 
without any restrictions. 507 

4.2 BANDWIDTH 508 

Control bandwidth of the actuator used in an exoskeleton defines the quality of rehabilitation 509 
services provided by it. Better performances can be achieved if the bandwidth of exoskeleton is same 510 
or higher than that of the patient. It can be obtained by increasing the frequency of the signal 511 
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provided by the exoskeleton. A human operator has the frequency in the range of 1-2 Hz for 512 
unpredicted signal, 2-5 Hz for repetitive signal and 5 Hz for learned actions [30].  513 
Each type of actuator has its own specification, however, the extra mechanism including gears and 514 
spring affects their bandwidth significantly. DC motors generally have a control bandwidth in the 515 
range up to 200 Hz [110], using a gear reduction technique, the bandwidth is reduced to 50 Hz. The 516 
cable driven mechanism can reduce the same bandwidth up to 40 Hz. DC motor connected with a 517 
spring can produce a lower bandwidth compared to the stand-alone DC motor depending on the 518 
stiffness of the spring. Pneumatic artificial muscles have a bandwidth of 2.4 Hz, it is similar to the 519 
bandwidth of human muscles of 2.2 Hz [111]. On the other hand, open-loop hydraulic disk brake has 520 
a bandwidth of 10 Hz [112] and hydroelastic actuator with a spring can produce bandwidth in the 521 
range of 6.5-7.2 Hz [12]. 522 

4.3 ENERGY CONSUMPTION 523 

The portability of a device cannot be achieved by only defining the mechanical construction of its 524 
actuator. Energy efficiency is also an important property for creating a portable system. Constant 525 
energy supply is needed to maintain the required joint torque. Human joints such as shoulder, elbow, 526 
and wrist do not require the same torque and it depends on the inertia and configuration of the arm, 527 
however, in exoskeletons a proper gravity compensation techniques may help in reducing the torque 528 
level; thus to consume less energy. Passive exoskeletons use the potential energy of springs for 529 
actuator either for providing assistive torque or compliance to the joint. These systems are torque 530 
balanced at the equilibrium position which effectively exhibits zero potential energy. WREX [85] 531 
and Armon [84] follow this concept. As passive exoskeletons do not require any energy source to 532 
keep the arm in a statically balanced condition, these concepts might be useful in developing a 533 
portable system but it can’t provide active actuation force to the joint. Therefore, a hybrid system 534 
with optimal combination of active and passive rehabilitation system should be considered for 535 
portable exoskeleton design. It should also include two phases of passive rehabilitation; one with the 536 
supporting force and another with resistive force. 537 

5 DISCUSSION AND CONCLUSION 538 

A survey of the trials performed on the post-stroke patients [113] shows that the exoskeleton based 539 
rehabilitation does not provide any better rehabilitation compared to the manual therapy. The only 540 
advantage of using exoskeleton is that it can provide intense rehabilitation with repetitive training 541 
without fatigue of the therapist [11]. Also it can create different types of exercises needed for the 542 
rehabilitation of post-stroke patients and can make the therapy entertaining using different 543 
programmable game therapy [114]. The cost of human labour increases whereas the cost of 544 
technology reduces which in turn will make these exoskeletons less expensive in the future. The 545 
requirements of an exoskeleton are significantly different for two stakeholder groups [23]. Therapists 546 
would like an exoskeleton with innovative qualities which can produce medical advantages in terms 547 
of recovery. From their point of view, the actuation system of exoskeleton should be capable of 548 
producing a variety of exercises. However, the users’ viewpoint is more of a personalised device, 549 
wearable and easy to use with customised and aesthetic look. Therefore, it is important to integrate 550 
the viewpoints of both stakeholders in the advancement of exoskeletons. Safety is being treated as 551 
one of the key criteria [23] for designing any human-based systems which can be achieved using 552 
specific mechanisms like the back-drivable system, complaint mechanism and serial elastic actuators 553 
[11]. The structure of the exoskeleton should follow the ISO 9000 norms [115] where the design 554 
should be safe from hardware approach and maintained electromechanically using different limit 555 
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switch and mechanical constraints together with software control to keep the joint movement under 556 
anatomical limits. Also for rehabilitation, the training properties (list of exercise modules and rate of 557 
recovery), the structural properties (mechanical system, weight, size, the specification of equipment 558 
and control outlines) and the functional properties (cost, comfort, safety and ease of control) are 559 
considered to be the key design features. Incorporating all these features would make the exoskeleton 560 
innovative, interesting and task-oriented [116].  561 
This paper mainly deals with the actuator and actuation system to develop a portable and cost-562 
effective upper arm exoskeleton, however, the ultimate aim of this work is to support stroke 563 
rehabilitation for enhancing patients experience by increasing their participation in the exercises. 564 
That way the mechanism of an exoskeleton should provide a fraction of the force required for any 565 
joint movements and rest should come from the patients. The design should incorporate the assistive 566 
force provided by the exoskeleton which is decreased with time as the patients gain more strength 567 
and later the force should be increased to generate more resistive force to improve the muscle 568 
strength. Therefore, the exercises produced by an exoskeleton should be adaptive over time to get the 569 
best recovery rate. The arm movement constitutes two components: gross manipulation and fine 570 
manipulation [76]. Shoulder and elbow joint are responsible for manipulating the arm in a larger 3D 571 
space as compared to the wrist joints which only provide small articulation for fine manipulation. 572 
The weight lifting and other strenuous activities are taken care of by shoulder and elbow joints 573 
whereas grasping, touching and other small-scale activities are performed by the wrist joint. Hence 574 
the design consideration of these joints is significantly different, in case of shoulder and elbow joint, 575 
the joint torque and degree of freedom are the main criteria therefore different actuation systems are 576 
implemented to reduce the size and weight of the system (includes the upper and lower arm). On the 577 
other hand, wrist and hand exoskeletons require fine control for object manipulation with maximum 578 
degree of freedom. In general, any actuation system for arm or hand should incorporate all types of 579 
rehabilitation exercises required for post-stroke patients.  580 
From this overview, it is apparent that rehabilitation training of arm supported by exoskeletons can 581 
be achieved either by hardware or by software control. Though hardware approach requires a more 582 
complex mechanism, it is good for human-machine interactions due to the safety reasons. In 583 
software solution, patients may experience undesirable responses and sudden impact forces due to 584 
spurious signals or controller malfunctioning. On the other hand, hardware-based (passive) actuation 585 
can also work under no power condition or during sudden power cut. After the thorough literature 586 
search, it was concluded that a design should consist of eight distinct properties to make it a cost-587 
effective portable exoskeleton which can provide all types of rehabilitation including active, passive 588 
and stiffness control. These are: 589 

1. To develop an innovative mechanism which is capable of enhancing torque to weight ratio 590 
compared with existing models, thus making use of smaller motors dealing with higher 591 
torques. 592 

2. To combine both active and passive system in a single platform for adopting a standard 593 
rehabilitation therapy from acute to the final stages of rehabilitation for a better recovery rate. 594 

3. To develop a passive rehabilitation system combined with an active gravity compensating 595 
mechanism which is adaptable to different loading conditions during exercises. 596 

4. To introduce joint stiffness changing mechanism into the system that allows more resistive 597 
force to have different levels of difficulty during therapy. 598 

5. These features should provide standard rehabilitation therapy without deviating from the 599 
main objective of making it lightweight, user-friendly and a wearable device. 600 
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6. To make the system light and energy efficient utilising smart materials and mechanisms for 601 
carrying out different rehabilitation exercises, this property supports portability of the overall 602 
design. 603 

7. To make the system affordable for stroke patients offering the benefits of stand-alone ‘take 604 
home’ exoskeletons. 605 

8. The system should not compromise with the safety features at any point, therefore, the 606 
system should restrict the joint motion beyond the anatomical limits using mechanical stop or 607 
limit switches. 608 
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