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Abstract 

 

Performance in sustained attention tasks is known to be slowed by the occurrence of unexpected task-

irrelevant distractors (novelty distraction) and the detection of errors (post-error slowing); two well-

established phenomena studied separately and regarded as reflecting distinct underpinning 

mechanisms. We measured novelty distraction and post-error slowing in an auditory-visual oddball 

task to test the hypothesis that they both involve an orienting response. Our results confirm that the 

two effects exhibit a positive interaction. We show that a trial-by-trial measure of surprise credibly 

accounts for our empirical data. We suggest that novelty distraction and post-error slowing both 

reflect an orienting response to unexpected events and a reappraisal of action plans.
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Everyday efficient performance often requires the ability to adjust to distractors and modify our 

behavior when we make errors. This is illustrated by two well-established phenomena: novelty 

distraction and post-error slowing. Novelty distraction is defined as the detrimental effect of 

unexpected (novel) versus predictable (standard) task-irrelevant stimuli on ongoing task performance 

(e.g., Parmentier, 2014; Schröger, 1996), reflecting the involuntary capture of attention by the 

unexpected stimulus and the cost of the involuntary orienting of attention to and from that stimulus 

(e.g., Escera, Alho, Winkler, & Näätänen, 1998; Parmentier, Elford, Escera, Andrés, & Miguel, 2008; 

Schröger, 1996). Post-error slowing refers to the slowing of responses following the commission of an 

error relative to that of a correct response (Jentzsch & Dudschig, 2009) and is thought to reflect an 

increase in cognitive control to minimize the risk of further errors (Botvinick, Braver, Barch, Carter, & 

Cohen, 2001). At first sight, these phenomena appear to be distinct. Here we suggest that both 

phenomena might involve an orienting response.  

 

Novelty distraction 

A commonly used task to study novelty distraction is the oddball paradigm, in which participants 

perform a primary task while ignoring task-irrelevant sounds. The same sound is repeated on most 

trials (standard sound) while, on rare and unpredictable trials, this sound is replaced by a novel one. 

Electrophysiological studies show that unexpected sounds trigger three specific responses: mismatch 

negativity (MMN), P3a and reorientation negativity or RON (e.g., Berti, 2008; Escera et al., 1998; 

Horvath, Winkler, & Bendixen, 2008; Schröger, 1996; Schröger, Giard, & Wolff, 2000; Schröger, 

Marzecová, & SanMiguel, 2015; Schröger & Wolff, 1998). These responses reflect, respectively, the 

detection of auditory change, the involuntary orienting of attention towards the unexpected sound, 

and a re-orienting of attention toward the ongoing primary task (e.g., Berti, 2008; Berti & Schröger, 

2001). Unexpected sounds lengthen response times to targets and, sometimes, reduce response 

accuracy (e.g., Parmentier, 2014; Schröger, 1996). This effect is interpreted as the result of the shift of 

attention to, and away from, the unexpected sound (e.g., Escera et al., 1998; Parmentier et al., 2008; 
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Schröger, 1996), which can involve the involuntary semantic analysis of this sound (e.g., Escera, Yago, 

Corral, Corbera, & Nuñez, 2003; Parmentier & Kefauver, 2015; Parmentier, Pacheco-Unguetti, & 

Valero, 2018; Parmentier, Turner, & Perez, 2014; Parmentier, Turner, & Elsley, 2011; Roye, Jacobsen, & 

Schröger, 2007, 2013; Shtyrov, Hauk, & Pulvermuller, 2004; Wetzel, Widmann, & Schröger, 2011), and 

emanates from the novel sounds’ violation of the cognitive system’s predictions rather than from their 

low probability of occurrence (e.g., Parmentier, Elsley, Andrés, & Barceló, 2011; Schröger, Bendixen, 

Trujillo-Barreto, & Roeber, 2007). Hence, novelty distraction reduces or vanishes when unexpected 

sounds are predictable, explicitly (e.g., Horváth & Bendixen, 2012; Parmentier & Hebrero, 2013; 

Sussman, Winkler, & Schröger, 2003) or implicitly (e.g., Parmentier, Elsley, et al., 2011; Schröger et al., 

2007). The fundamental nature of novelty distraction is illustrated by its observation across a large 

range of tasks and stimuli types: visual and auditory categorization tasks, two-alternative forced-

choice tasks, go-nogo tasks, visual matching tasks, or serial recall tasks, regardless of whether 

relevant and irrelevant stimulus features form a single perceptual object or are temporally and 

perceptually decoupled, and regardless of whether irrelevant and relevant stimuli are presented 

within the same modality or across modalities (Bendixen et al., 2010; Berti & Schröger, 2001; Hughes, 

Vachon, & Jones, 2005; Li, Parmentier, & Zhang, 2013; Ljungberg & Parmentier, 2012; Ljungberg, 

Parmentier, Leiva, & Vega, 2012; Parmentier, 2014; Röer, Bell, Körner, & Buchner, 2018; Röer, Bell, 

Marsh, & Buchner, 2015). 

 While attentional orienting plays a role in novelty distraction, recent evidence points out that 

novel sounds may also induce some form of behavioral adjustment. Indeed, such sounds appear to 

yield a temporary inhibition of motor regions (e.g., Wessel, 2017; Wessel et al., 2016; Wessel & Aron, 

2013), and hinder response repetition (Roeber, Berti, Widmann, & Schröger, 2005). Furthermore, 

Parmentier (2016) found that unexpected sounds slow responses when an action plan is repeated 

from the previous trial but facilitate performance when they help disengage from a state of behavioral 

inaction. Hence, there is evidence of both attention orienting and adaptive control in deviance 

distraction. 
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Post-error slowing 

Since Rabbitt’s (Rabbitt, 1966) early report, post-error slowing has been abundantly observed in a 

variety of tasks such as categorization (e.g., Jentzsch & Dudschig, 2009), Flanker (Danielmeier & 

Ullsperger, 2011; Fischer, Danielmeier, Villringer, Klein, & Ullsperger, 2016), Stroop (e.g., Gehring & 

Fencsik, 2001), or Simon (e.g., King, Korb, von Cramon, & Ullsperger, 2010) tasks.  

Post-error slowing is widely regarded as evidence of adaptive control, whether as a way to 

promote more controlled responding (Ridderinkhof, 2002), as a delay allowing the engagement of 

attentional top-down modulation (MacDonald, Cohen, Stenger, & Carter, 2000), or as the result of 

decreased activity in response priming units (Botvinick et al., 2001; King et al., 2010).  

 However, some evidence suggests that post-error slowing may also reflect an orienting 

response to errors. In an elegant study, Notebaert, Houtman, Van Opstal, Gevers, Fias and Verguts 

(2009) varied task difficulty to manipulate the frequency of errors and found post-error slowing when 

errors were rare, but post-correct slowing when errors were the most likely outcome (see also Núñez 

Castellar, Kühn, Fias, & Notebaert, 2010). In addition, errors and novel visual stimuli were found to 

yield common neuroanatomical activity (Wessel, Danielmeier, Morton, & Ullsperger, 2012).  

Novelty distraction and post-error slowing as products of an orienting response 

Following the steps of Notebart et al. (2009), we suggest that deviance distraction and post-error 

slowing may be instances of a more fundamental phenomenon: the orienting response. Under this 

hypothesis, participants’ attention is captured by unexpected events, whether these are novel task-

irrelevant stimuli or the production of errors (in a context in which most responses are correct), which 

trigger an involuntary orienting of attention toward such events. We tested this hypothesis in a cross-

modal oddball task in which participants categorized visual digits as odd or even while ignoring rare 

and unexpected changes in a stream of task-irrelevant sounds. If deviance distraction and post-error 

slowing are underpinned by a common orienting mechanism, these two effects should interact such 
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that response times should increase with the amount of surprise conveyed by the context in which 

participants perform the primary task. Novel sounds following the production of an error should 

constitute the most surprising context and therefore yield the worse performance. In contrast, 

standard sounds and correct responses being both highly probable, their combined occurrence should 

be highly predictable (i.e., not surprising) and performance should be best in that context. In other 

words, the orienting response hypothesis predicts a pattern of interaction by which post-error 

slowing and deviance distraction should amplify each other. In contrast, if deviance distraction and 

post-error slowing are underpinned by distinct mechanisms occurring serially, no interaction should 

be observed (instead, additive effects should be observed). Alternatively, if one assumes that both 

effects are independent but occur in parallel, performance should be determined by the largest of the 

two effects (for example, responses should be as slow as the slowest of the two effects, leading to a 

levelling-off of performance in that condition). In that case, an interaction should be observed 

whereby one effect caps the other (in contrast with our prediction that the two effects share an 

orienting response mechanism and amplify each other). 

Because we predicted a clear interaction between novelty distraction and post-error slowing 

(whereby the two effects amplify each other), we hypothesized a medium effect size (dz=.5). A power 

analysis revealed that for a Type I error of .05, a power of .95, and an effect size of .5 (dz) for a one-

tailed effect, the required sample size was 45. To be safe, we recruited 100 participants. 

 

 

Method 

Participants 
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One hundred (69 females) undergraduate psychology students from the University of Plymouth 

volunteered to take part in this experiment. Participants were between 18 and 29 years of age (M = 

20.60, SD = 2.21). All participants reported correct or corrected-to-normal vision and normal hearing. 

Stimuli, design and procedure 

Participants completed 4 blocks of 168 trials each (8 practice trials followed by 160 test trials). In each 

trial, participants categorized a visual digit (1-8) as odd or even while ignoring an irrelevant sound 

presented shortly before that digit. Each trial consisted of the following sequence of events. A white 

fixation cross appeared at the center of the black screen and was followed, 100ms later, by the 

presentation of an irrelevant sound lasting 150ms. A temporal gap of 50 ms separated the sound’s 

offset from the onset of a target digit (presented in white), which replaced the fixation cross. The digit 

remained on the screen for 150ms, before being replaced by the fixation cross during an interval of 

800 ms. Participants therefore had a total response window of 950 ms. At the end of this interval, the 

next trial started automatically (one trial blending into the next without any visible or audible 

separation). The visual digits and the fixation cross sustained an approximate angle of 2.6 degrees 

(participants sitting approximately 50cm away from the screen). Participants used the keyboard keys 

Z and X to respond using two fingers of their dominant hand. The mapping between the response 

keys and the odd/even responses was counterbalanced across participants.  

Two sound conditions were compared within each block. In the standard condition (75% of 

trials), the sound was a 600Hz sinewave tone lasting 150 ms (including 10 ms of rise/fall times). In the 

novel condition (25% of trials), we used 60 different environmental sounds taken from Andrés, 

Parmentier & Escera (2006). These sounds had a 150ms duration (including 10ms rise/fall times), were 

digitally recorded, and low-pass filtered at 10,000 Hz. They were randomly sampled and no novel 

sound was used more than three times across the experiment. All sounds were normalized and 

presented binaurally through headphones at approximately 75 dB SPL. The first 8 trials of each block 

contained only standard sounds, were treated as warm-up practice trials, and were not included in 
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the data analysis. A different quasi-random order of presentation of the standard and novel trials was 

used for every participant, with the constraint that novel trials never occurred on consecutive trials. 

Target digits (1-8) were used equally often across the task, and in equal proportions in the standard 

and novel trials.   

Participants were tested individually in a quiet room. They were instructed to focus on the 

digit categorization task and to ignore the irrelevant sounds. Instructions emphasized the need for 

both speed and accuracy. This study adhered to the ethical standards of the British Psychological 

Society and the American Psychological Association, and received ethical approval from the Ethics 

Committee of the University of Plymouth, where the study was carried out. 

 

Results 

The mean proportion of correct responses and mean response times for correct responses (measured 

from the onset of the visual targets) were analyzed as a function of the type of sound condition 

(standard vs. novel) and whether the previous trial yielded a correct response or an error. Two 

participants were removed from the analysis because they failed to follow the task instructions and 

their performance was at chance level.  

Mean response times (illustrated in Figure 1, left panel) were significantly longer in novel 

compared to standard trials [F(1,97)= 53.077, MSE = 1693, p < .001,
2

p = 0.354], and following errors 

compared to correct responses [F(1,97)= 41.133, MSE = 2227, p < .001,
2

p = 0.298]. A significant 

interaction was found between these factors [F(1,97)= 13.554, MSE = 1574, p < .001,
2

p = 0.123], 

reflecting the greater difference between novel and standard trials following errors compared to 

correct responses. 

The proportion of correct responses (illustrated in Figure 1, right panel) was greater in 

standard than in novel trials [F(1,97)= 7.188, MSE = 0.0052, p = .009,
2

p = 0.069], and lower after errors 
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than correct responses [F(1,97)= 26.556, MSE = 0.0112, p < .001,
2

p = 0.215]. These two factors interacted 

[F(1,97)= 4.231, MSE = 0.0046, p = .042,
2

p = 0.042], reflecting greater detrimental effect of novel 

compared to standard sounds in post-error trials (i.e., the two effects amplified each other).  

 

- - - Insert Figure 1 about here - - - 

 

Killing two birds with one stone using a measure of surprise 

 

As reported in the previous section, novelty distraction and post-error slowing interacted. To assay 

the hypothesis that these phenomena may reflect a common orienting response, we sought to 

determine whether our participants’ response times and response accuracy (and more specifically the 

interaction between deviance distraction and post-error slowing) could be adequately explained 

using a measure of contextual surprise. 

 We measured surprise in each of the four trial contexts encountered in the task: standard 

sound following a correct response (post-correct standard), standard sound following an error (post-

error standard), novel sound following a correct response (post-correct novel), and novel sound 

following an error (post-error novel). The level of surprise was measured in these four contexts on a 

trial-to-trial basis and for each participant using a Bayesian algorithm comparing the posterior 

probability of a given context (i.e., the probability of that event on all trials up to and including the 

current trial) against the prior probability of that event (i.e., the probability of that event on all trials 

up to but excluding the current trial) by way of the Kullback-Leibler divergence formula (Wessel et 

al., 2016): 

 

2

(1... )
log

(1... 1)

context
i

context

p i
S

p i

 
=  

− 
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Thus, Surprise (S) was calculated for each trial i based on the ratio of the prior probability of 

the context encountered in that trial against the updated probability (i.e., including the current trial) 

of that context. A 2 (type of sound: novel vs. standard) x 2 (type of trial: post-correct vs. post-error) 

ANOVA for repeated measures carried out on S confirmed that novel sounds yielded more surprise 

than standard sound [F(1,97)= 280.309, MSE = 0.02349, p < .001,
2

p = 0.743], and that errors yielded 

more surprise than correct responses [F(1,97)= 227.070, MSE = 0.00861, p < .001,
2

p = 0.701]. A 

significant interaction between these factors was also observed [F(1,97)= 597.114, MSE = 0.00686, p < 

.001,
2

p = 0.860], as depicted in Figure 2.  

 

- - - Insert Figure 2 about here - - - 

 

 To gauge the extent to which S accounts for our participants’ performance, we measured the 

mean RT and mean proportion of correct response for each participant in each of the four trial 

contexts described in the previous paragraph (total of 392 data points for each dependent variable: 

RTs and proportion correct) and analyzed this data with Linear Mixed Models (LMMs) using the 

lme4 package v.1.1-12 (Bates, Machler, Bolker, & Walker, 2014) in R 3.5.1 (R Core Team, 2016). 

Surprise was entered as a fixed effect in the model. Random intercept and random slopes for Surprise 

were added to participants. Results were considered statistically significant for t values ≥ 1.96. As 

visible in Table 1, Surprise had a significant effect on both dependent variables. 

 

- - - Insert Table 1 about here - - - 

 

 In order to determine how our model based on Surprise compared to the 2-factorial model 

(post-error slowing, novelty distraction, and their interaction), we regressed the empirical data onto 

the fitted data of the Surprise and 2-factorial models (in separate regression analyses for the RT and 
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proportion correct data). These fitted data were produced using linear mixed models. The Surprise 

model was that described in the previous paragraph. The 2-factorial model included the following 

factors (fixed effects): type of sound (novel vs. standard), type of trial (post-correct vs. post-error), and 

the interaction of these two factors. Random intercept and random slopes for the type of trial and 

type of sound were added to participants. This method allowed us to compare how close the Surprise 

and 2-factorial models came to the empirical data. The regression model accounted for a sizable 

proportion of the empirical RT variance, R2=.949, F(2, 389) = 3631.317, p < .001. The Surprise model 

significantly predicted empirical RTs [B = 1.011, t(389) = 16.338, p < .001, 95% CI: 0.889 to 1.133], while 

the 2-factorial did not [B = 0.037, t(389) = 0.568, p = .570, 95% CI: -.091 to .650]. To assess the unique 

variance accounted by each of our two predictors, we compared regression models with one predictor 

versus both predictors (see Parmentier, Elford, & Maybery, 2005). The results of this analysis, 

presented in Table 2 (top panel), revealed that while the Surprise model made a significant unique 

contribution to the model fit, the 2-factorial model did not. 

 

- - - Insert Table 2 about here - - - 

 

The analysis of the proportion of correct responses showed that the Surprise and 2-factorial 

models accounted for a significant proportion of the variance in the empirical data (R2 = .888, F(2, 389) 

= 1544.678, p < .001). Surprise predicted significantly empirical response accuracy [B = 1.326, t(389) = 

22.856, p < .001, 95% CI: 1.212 to 1.440], as did the 2-factorial model [B = -.269, t(389) = -4.124, p < .001, 

95% CI: -0.397 to -0.141]. Comparisons of regression models including either one or both predictors 

showed that both Surprise and the 2-factorial model accounted for a significant and unique 

proportion of the variance in RTs. This suggests that Surprise does not capture all of the variance 

explained by the 2-factorial model. Overall, both models fitted the data well (see Figure 3 for a 

graphical illustration), but the R2 values were somewhat larger for the Surprise model than for the 2-

factorial model.  
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- - - Insert Figure 3 about here - - - 

 

While the data points presented in Figure 3 form visible clusters, some individual data points appear 

to depart from the rest (four observed RT data points are visibly longer than the rest, and six observed 

proportions of correct responses are visibly lower than the remaining data points). To ensure that 

these conspicuous data points did not unduly influence our results, we repeated the analyses without 

them. The results from these complementary analyses are similar to our initial findings (see the 

Appendix). These results confirmed that the Surprise model fitted the empirical data at least as well 

as the 2-factorial model. Interestingly, the comparison of Table 2 and Table A1 (see the Appendix) 

does suggest that the fitted data calculated using the data set including the more extreme data points 

benefited the Surprise model. Indeed, the proportion of variance uniquely explained by the Surprise 

model (the change in R2) was numerically smaller when excluding these data points (while the 

reverse was observed for the unique proportion of variance explained by the 2-factorial model). 

Overall, surprise offered as good of a fit for the observed data as the 2-factorial model. This 

may in part reflect the fact that surprise was calculated on a trial-to-trial basis, thereby potentially 

providing richer information than the 2-factorial model (which reflects factors that did not vary across 

the experiment). It is also worth mentioning that the Surprise model used a single factor (S) while the 

2-factorial model used three (type of trial, type of sound, and the interaction between these factors). 

Hence, overall, the Surprise model arguably provides a parsimonious account of our empirical 

findings because it requires fewer predictors to explain the data. In any case, the key conclusion is 

that surprise offers a credible account of our empirical data. 

 

Discussion 

We set out to test the hypothesis that novelty distraction and post-error slowing may involve a 

common mechanism: an orienting response. Our results confirmed that participants performing a 
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sustained attention task are slower (and less accurate) following the presentation of a sound violating 

sensory predictions, and slower following the commission of an error. These two effects amplified 

each other. Both effects and their interaction were convincingly accounted for by a measure of 

surprise, which was calculated based on a context integrating both irrelevant stimuli (task-irrelevant 

sounds) and behavioral outcomes (performance on the previous trial).  

Traditionally, novelty distraction has been thought to reflect the cost of the involuntary 

orienting of attention to, and re-orienting from, unexpected stimuli (e.g., Escera et al., 1998; 

Parmentier, 2014; Schröger, 1996), while post-error slowing has been viewed as the signature of 

behavioral control aiming to optimize behavior (e.g., Li et al., 2008). However, recent findings also 

suggest a role for attentional reorienting in post-error slowing (Notebaert et al., 2009) and of action 

control in deviance distraction (e.g., Parmentier, 2016; Wessel, 2017; Wessel & Aron, 2013). 

Interestingly, early on, Laming (1968) envisaged post-error slowing as the result of a bias against the 

response that just elicited the error, which echoes with the tendency of unexpected sounds to hinder 

the repetition of a response (Roeber et al., 2005) or an action plan (e.g., Parmentier, 2016; Wessel & 

Aron, 2013). Hence, we would argue that attentional orienting and action control are not mutually 

exclusive and may be at play in both effects. Such a notion overcomes the tendency to seek separate 

explanations to apparently distinct phenomena and recasts these in the more general arena of 

adaptive behavior and the intimate connection between perception and action. While this link has 

somewhat been overlooked since the ascent of cognitivism and its focus on “information processing”, 

it is interesting to note that it was an inherent part of early theories of the orienting response. In fact, 

Pavlov (1927) initially talked about a “novelty reflex”. The momentary slowing of our behavior may 

be viewed as “distraction” in the context of a psychology experiment, but it is a mechanism through 

which an organism interrupts ongoing behavior, orients its receptor organs toward the source of 

change in the immediate environment and enhances its probability of selecting the most appropriate 

plan for action.  Not only does our behavior adapt to the detection of change and the orienting of our 

attention to its source, our attention also orients towards unexpected consequences of our behavior, 
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for example when the sensory consequence of our actions violate our predictions (Schröger et al., 

2015). In our view, the orienting response may be regarded as the observable facet of an ensemble of 

sensory-motor mechanisms aimed at promoting adaptive behavior in the face of an unexpected 

contextual change. 

One limitation of our study is that the production of errors was not a factor that was 

manipulated by the experimenter. While inherent to studies of post-error slowing, this aspect may 

still be relevant when interpreting our data. Indeed, as one reviewer suggested, errors may be the 

result of phasic fluctuations of attention. Assuming that such fluctuations may span over successive 

trials and simultaneously increase the likelihood of errors and slow cognitive processes, it cannot be 

ruled out that a transient reduction in phasic attention may contribute to the production of an error 

on trial t and, if an unexpected sound is presented on trial t+1, slow the resulting orienting response. 

Such a proposition does not rule out a role for surprise, but it does not rule it in either. To address this 

issue in future studies, it may be interesting to measure post-error slowing and deviance distraction 

while tracking some independent index of sustained attention. This could be achieved by measuring 

EEG spectral activity, as previous work indicates that attenuations of alertness and decrements in 

cognitive performance are associated with increases in beta and theta rhythms (e.g., Clayton, Yeung, 

& Cohen Kadosh, 2015; De Gennaro et al., 2007; Makeig & Jung, 1995). It should be pointed out, 

however, that fluctuations in phasic attention cannot account for other indications of a role of the 

orienting response in post-stimulus slowing: the demonstration of post-correct slowing when errors 

(instead of correct responses) are the least expected outcome (Notebaert et al., 2009; Núñez Castellar 

et al., 2010), or the report of a common neural architecture for the processing of both errors and novel 

stimuli (Wessel et al., 2012). 

In conclusion, we propose that unexpected contextual changes capture attention, trigger an 

orienting response and hinder the repetition of behavior in order to allow an adaptive reappraisal of 

action plans. We propose that contextual changes encompass sensory stimulation (e.g., novel sounds) 
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as well as one’s own behavior (e.g., errors), and that the surprising value of this contextual change 

may account in part for novelty distraction, post-error slowing, and their interaction.  
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Context of the research 

The work reported here is part of a larger project seeking to study novelty distraction from its 

fundamental cognitive underpinnings to its connection with more general factors such as aging (e.g., 

Leiva, Andrés, & Parmentier, 2015; Leiva, Andrés, Servera, Verbruggen, & Parmentier, 2016), the 

participants’ emotional state (Pacheco-Unguetti & Parmentier, 2014, 2016), or other cognitive 

phenomena (such as post-error slowing or interference effects). Our wider theoretical thesis is that 

unexpected stimuli call upon our attention when they violate the cognitive system’s predictions, 

which are themselves a by-product of the system’s simplified model of the world around us (model 

that allows the compression of large amounts of information into patterns, reducing energy 

consumption and enabling faster and more consistent behavior).  
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Table 1 

 

 

Response times 

Effect b SE t 95% 

Lower 

95% 

Upper 

Intercept 537.267 6.808 78.910 523.923 550.611 

Surprise 125.595 18.475 6.800 89.385 161.806 

      

Proportion Correct 

Effect b SE t 95% 

Lower 

95% 

Upper 

Intercept .888 .0114 77.850 .866 .911 

Surprise -.157 .035 -4.450 -.227 -.088 

 

Table 1. Results from the LMMs for response times and the proportion of correct responses. 

Statistically significant t-values are highlighted in bold. 
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Table 2 

 

 

Response Times 

Model 1 predictors R2 of Model 1 Model 2 R2 of Model 2 Change in R2 F(1,389) p 

Surprise .949 +2-factorial model .949 .000 0.323 .570 

2-factorial model .914 +Surprise .949 .035 266.926 <.001 

       

Proportion Correct 

Model 1 predictors R2 of Model 1 Model 2 R2 of Model 2 Change in R2 F(1,389) p 

Surprise .883 +2-factorial model .888 .005 17.005 <.001 

2-factorial model .738 +Surprise .888 .150 522.265 <.001 

 

Table 2. Results of the regression analyses comparing single (Model 1) and two-predictor (Model 2) 

models. The change in R2 reflects the unique variance accounted for by the predictor added in Model 

2. Statistically significant changes in R2 are highlighted in bold. For response times, the proportion of 

variance uniquely explained by the Surprise model was significant, whereas that of the 2-factorial 

model was not. For response accuracy, both models contributed significantly, but the proportion of 

variance uniquely explained by the Surprise model was larger than that explained by the 2-factorial 

model (changes in R2 of .150 and .005, respectively). 
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Figure captions 

 

 

Figure 1. Mean response times (left) and mean response accuracy (right) as a function of the type of 

sound trial and whether the response on the previous trial was correct or an error. Error bars 

represents 95% CIs calculated for the interaction term following Jarmasz & Holland (2009). 

 

Figure 2. Surprise as a function of the type of sound trial and whether the response to the previous 

trial was correct or an error. Error bars represents 95% CIs calculated for the interaction term 

following Jarmasz & Holland (2009). 

 

Figure 3. Observed versus fitted response times (left) and proportions of correct responses (right) for 

the Surprise and 2-factorial models (corresponding to Model 1 in Table 2). The predicted values for 

each model were generated using the linear mixed models described in the text. 

 

Figure A1. Observed versus fitted response times (left) and proportions of correct responses (right) 

for the Surprise and 2-factorial models (corresponding to Model 1 in Table A1). The predicted values 

for each model were generated after exclusion of extreme observed data points.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure A1 
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Appendix 

 

Comparison of the Surprise and 2-factorial models  

after exclusion of some data points 

 

The fitted data for RTs and the proportion of correct responses were obtained using Linear Mixed 

Models (LMMs) as described in the text. The only difference was that the four longest observed RTs 

and the six lowest observed proportions of correct responses (identified visually as departing from 

the rest of the data points in Figure 3) were removed from the data prior to fitting the models. The 

comparisons of the proportions of variance of the observed data explained by the Surprise and 2-

factorial models are presented in Table A1. While the proportion of variance explained by the 

Surprise model was numerically greater than the proportion of variance explained by the 2-factorial 

model (see the R2 value for Model 1 in Table A1), both models fitted the empirical data well (see 

Figure A1), and both models accounted for a unique proportion of variance (see the change in R2 in 

Table A1).  

 

Response Times 

Model 1 predictors R2 of Model 1 Model 2 R2 of Model 2 Change in R2 F(1,385) p 

Surprise .944 +2-factorial model .946 .002 16.225 <.001 

2-factorial model .938 +Surprise .946 .009 123.972 <.001 

       

Proportion Correct 

Model 1 predictors R2 of Model 1 Model 2 R2 of Model 2 Change in R2 F(1,383) p 

Surprise .849 +2-factorial model .857 .009 23.452 <.001 

2-factorial model .813 +Surprise .857 .044 117.999 <.001 
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Table A1. Results of the regression analyses comparing single (Model 1) and two-predictor (Model 2) 

models using the reduced data set. The change in R2 reflects the unique variance accounted for by the 

predictor added in Model 2. Statistically significant changes in R2 are highlighted in bold.  

 

- - - Insert Figure A1 about here - - - 

 

 

 


