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Abstract
This paper proposes a stable and accurate object registration pipeline for markerless aug-
mented reality applications. We present two novel algorithms for object recognition and
matching to improve the registration accuracy from model to scene transformation via point
cloud fusion. Whilst the first algorithm effectively deals with simple scenes with few object
occlusions, the second algorithm handles cluttered scenes with partial occlusions for robust
real-time object recognition and matching. The computational framework includes a locally
supported Gaussian weight function to enable repeatable detection of 3D descriptors. We
apply a bilateral filtering and outlier removal to preserve edges of point cloud and remove
some interference points in order to increase matching accuracy. Extensive experiments
have been carried to compare the proposed algorithms with four most used methods. Results
show improved performance of the algorithms in terms of computational speed, camera
tracking and object matching errors in semi-cluttered and partial-occluded scenes.

Keywords Augmented reality · 3D object recognition and matching · 3D point clouds ·
SLAM algorithm

1 Introduction

Augmented Reality (AR) is an emerging field with huge application potentials. Azuma
defines that AR is an integration of virtual world and real world with real-time interac-
tions via three-dimensional registrations [3]. By mixing real scenes with virtual information,
AR technology enhances human perceptions of the real world and enables novel human-
computer interactions. The rapid development in software and hardware technologies in
virtual reality and computer vision has made AR technology applicable to a wider range of
applications from medicine, military to entertainment [7, 46].
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A crucial process in AR is the registration between a real scene and virtual information
or objects. Stable and real-time performance for virtual-real registration remains a challeng-
ing issue in markerless AR, because no markers can be used for fast matrix computations
during the object recognition and matching. Conventional homography matrix method [13,
36] has low accuracy and is unstable for image-based registrations. In order to improve both
registration performance and accuracy, recent approaches are proposed [19, 34], but sta-
bility and real-time performance remain an unsolved issue for fast camera movements and
challenge scenes such as those containing cluttered objects and occlusions.

In this paper, we present a novel registration pipeline to improve the virtual-real object
registration stability, accuracy and real-time performance in markerless AR. Our system is
based on the state-of-the-art Simultaneous Localization and Mapping (SLAM) algorithm to
achieve a fast and accurate real-time 3D reconstruction of the real scene and use a uniform
sampling scheme to calculate feature points of the virtual objects and the scene. Two algo-
rithms are proposed. The first algorithm computes the surface normal and feature points
to calculate the Signature of Histograms of Orientations (SHOT) descriptors for the virtual
objects and the scene. This process of object matching and recognition is achieved by eval-
uating the similarity correspondence between the object descriptor and the scene descriptor.
Hough voting [51] and Iterative Closest Points(ICP) [6] algorithms are used to calculate an
accurate transformation matrix for the virtual-real registration.

While this method works well for simple scenes with few object occlusions, for cluttered
scenes with many occlusions, it can lead to matching and object identification errors. There-
fore, the second algorithm extends the first one to address cluttered scenes by introducing
a Gaussian weight function during the calculation of normal vectors. A locally supported
Gaussian weight function enables the repeatability and reliability of detection for point
cloud descriptors. The function also takes into account of the distance information of the
area so that points closer to the current point in evaluation have a greater impact on the
result of the normal vector estimation.We also use a ‘binary’ SHOT (B-SHOT) descriptor to
improve the speed for object matching with fewer memory resources, thus more computa-
tion power for registration tasks. Random Sample Consensus(RANSAC)is used to remove
the incorrect matching.

Some significant advances have been made by the state-of-the-art of object recognition,
matching and classification approaches as reported in [2, 9, 16, 33]. Object recognition and
matching is a process of detecting the presence of an object in a 3D point cloud with simi-
lar characteristics. Iterative Closest Points (ICP) algorithm is also often used for 3D object
recognition. An algorithm proposed in [9] is based on a local level curvature estimation
for recognizing objects in cluttered point cloud scenes. The method presented in [33] com-
bines plane classification to identify models and method in [18] is based on local surface
features for object recognition that automatically models 3D point clouds. More recently,
convolutional neural networks (CNNs) and RGB-D data are used to achieve object recogni-
tions [16] and [2]. Although these methods have achieved good results, these methods can
still have difficulties to identify objects and carry out stable and accurate object registra-
tion in real-time scenes, especially when objects are in partial occlusions. In the paper, we
propose a stable and accurate object registration pipeline that targets object recognition in
semi-cluttered and partial-occluded real-time scenes for augmented reality.

The main contributions of this paper are summarized as follows:

– A stable and accurate registration framework for real-time object identification, clas-
sification and analysis. The computational framework includes a locally supported
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Gaussian weight function to enable repeatable detection of 3D descriptors with bilateral
filtering and outlier removals.

– A novel robust algorithm for object recognition and matching algorithms is proposed
to improve the registration accuracy from model to scene transformation and build
complete virtual-real object registrations via point cloud fusion.

– Furthermore, a novel algorithm to handle cluttered scenes with partial occlusions for
robust real-time object recognition and matching with increased accuracy. The per-
formance of our algorithms is compared with four state-of-the-art algorithms (Hough,
Iterative Closest Point, Generalised Iterative Closest Point and Normal Distributions
Transform). The results show good improvements over the state-of-the-art methods.

Our proposed AR registration framework improves registration accuracy with the use of
integrated camera poses during the registration of virtual objects. Experiment results show
the robustness of the proposed method for object recognition in cluttered scenes with partial
occlusions. New experiments are also designed to evaluate the use of our markerless AR for
highly interactive applications.

The remainder of this paper is summarized as follows: In the next section, we present
the literature review and the related work. The proposed method is introduced in Section 3.
Details of the proposed AR framework and new algorithms are discussed in Section 4.
Section 5 evaluates the performance of our methods and through extensive experiments,
including a comparison of the proposed methods with a number of state-of-the-art methods.
Finally, Section 6 concludes the paper and presents further work.

2 Review of previous work

2.1 AR applications

In recent years, a great stride has been made in both software and hardware to improve
AR technology and the technology has been used for various applications such as to guide
procedural tasks in aircraft engine applications [21], to construct collaborative educational
applications that can be used in practice to enhance current teaching methods [24], and to
guide medical navigation systems with marker-free image registration for 3D image over-
lays and stereo tracking [53, 54]. Sensor technologies, such as RGBD sensors, have greatly
broadened the horizon of AR technology in achieving many novel applications, offering
unique user experiences of using a tabletop with a single depth camera, a stereoscopic pro-
jector, and a curved screen [5] or exploring the use of data from a Kinect sensor to perform
AR with an emphasis on cultural heritage applications [8], to name a few.

2.2 AR registrations and challenges

Despite the surge of popularity of AR applications thanks to the affordability and the avail-
ability of AR technology in recent years, stable, accurate and real-time AR registration
remains a challenging issue and is an active research topic. Early methods employ homogra-
phy matrix for three-dimensional registrations in AR as shown in [13, 36]. Although simple
and efficient, this method needs to detect coordinates of four points of a plane for the com-
putation of camera poses (i.e. translation and orientation of the camera) w.r.t. the world
coordinate system. Therefore, the fundamental principle of homography matrix method is
based on 2D plane registration and the algorithm is prone to the error of misplacement of
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virtual objects during the registration process, resulting virtual objects being unstable onto
the real scene with distracting flashing visual artifacts.

Recent advances in computer vision, in particular, the Simultaneous Localization and
Mapping (SLAM) algorithms for 3D real-world reconstructions have provided new opportu-
nities as well as challenges in generating novel AR technology especially for AR registration
methods. Initially, SLAM algorithms are used mainly in robotics for robots navigation in
unknown environments [4, 45], but more recently, researchers start to utilize the state of
the art SLAM algorithms for virtual information and virtual object registrations in AR.
Davison et al. [10, 11] use a monocular camera to achieve fast 3D modelling and camera
pose tracking of real scenes and show the potential of SLAM algorithm to be used in many
applications other than in the field of robotic vision, such as for locating virtual information
through 3D mapping in AR based on the information of 3D point clouds [22]. Reitmayr [37]
has demonstrated the use of SLAM with sensor fusion techniques to improve markerless
tracking for virtual object registrations. The system consists a magnetic compass and a
visual tracker, in which the initial orientation was determined by the compass. If the com-
pass started to drift due to the change of an external magnetic field, it will result in a change
in the relative rotation between the two sensors, then only visual tracker is used. Conversely,
if the vision tracker fails (such as under a fast motion and blurry images) only the magnetic
compass would be used. In [22], an attempt is made to make the use of the 3D map infor-
mation generated by a SLAM algorithm to improve the registration accuracy. This method
builds an initial map from a five-point stereo system and then tracks a camera by using the
local bundle adjustment over recent camera poses to achieve more accurate registration.

Object recognition and matching is a process of detecting the presence of an object in a
3D point cloud with similar characteristics. The ICP algorithm is a popular method for 3D
object recognition. In [9], a method is proposed based on local level curvature estimation
for recognizing objects in cluttered point clouds. In [33], plane classification is utilised
to identify models and in [18], local surface features are used for object recognition that
automatically model 3D point clouds. More recently, convolutional neural networks (CNNs)
and RGB-D data are used to achieve object recognition [2, 16]. Although these methods can
achieve good results, it is still difficult to identify objects in real-time scenes, especially for
partial occlusions. Object features have been used in human activity recognition [26, 27].
Combined with machine learning methods, object features can be used to create classifiers
that improve the performance of activity recognition [25]. Although these algorithms are
not aimed at AR, utilizing object features for object recognition in 3D point cloud could be
a viable approach to be experimented further.

In this paper, our proposed algorithms target object recognition in real-time scenes focus-
ing on 3D feature extractions and its speed. Hence, we use B-SHOT descriptors for points
cloud extraction.

Recent advances use RGB-D sensors to achieve a dense map of the scene, for example,
the KinectFusion framework [32] is well known for real-time reconstruction of dense 3D
maps of the scene obtained RGBD sensors. ElasticFusion algorithm [55] also achieves fast
and accurate real-time 3D scene reconstructions. However, both algorithms heavily rely on
GPU accelerations for getting real-time performance, demanding high hardware require-
ments than normal commodity personal computers. On the other hand, real-time CPU based
SLAM software mainly works with sparse point clouds [22, 29] in contrast to the dense
point clouds. While sparse point clouds are useful for identifying objects, dense 3D maps
of the scene help to increase the AR registration accuracy albeit higher computational costs.
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Hence, a trade-off balance needs to be made when adapting SLAM algorithms for the
improvement of AR registration accuracy.

Recent work addresses stability issues of AR registration was reported in [15]. The
proposed method has been further improved by adding an iterative algorithm to form a
computational framework for non-planar object detection and recognition [14], but object
recognition and matching in cluttered scenes were not considered in these works. Object
recognition and matching in cluttered scenes in AR is challenging. Different approaches are
proposed to deal with this issue. A sparse metric model of the real world environment is used
to provide interactive pose estimation of a virtual object and a model-based camera tracking
method that generated visually pleasing augmentation results [43]. However, this method
relies on a large number of natural feature points to be detected for object identification.
More recently, a template based learning framework is proposed for 3D object localization
and pose estimation in heavily cluttered and occluded scenes [47]. The framework uses syn-
thetic renderings of a 3D model for training to infer latent class distributions. Thought this
method can efficiently recognize objects in cluttered scenes, it requires artificial makers to
locate the scene. Our current work presents new algorithms in addition to the original pro-
posed. While the first algorithm effectively deals with simple scenes with few occlusions
with improved registration accuracy, the second algorithm can handle cluttered scenes with
partial object occlusions for robust object recognition and matching. The proposed method
includes a locally supported Gaussian weight function to enable the repeatable detection
of 3D descriptors, and a bilateral filtering and outlier removal algorithm that preserves the
edge of the point cloud to increase the matching accuracy by removing some of interference
points. Additional experiments are designed to evaluate the new algorithm.

3 Overview of themethod

In this paper, we present a novel approach to improving the accuracy and the efficiency of
AR registration between virtual objects and the real scene as well as the numerical stability
during the fusion of the virtual-real objects with considerations of object occlusions.

There are a number of core technique steps in a markerless AR registration process.
Firstly, a 3D map of the scene is constructed via a SLAM algorithm. Secondly, object recog-
nition in the constructed 3D scene is performed to identify scene objects that needs to be
fused by virtual objects. Finally, a matrix that transforms the virtual model to the scene
is calculated and the pose of the camera is obtained to transfer the 3D model coordinates
into the camera coordinates in order to register the virtual model in the real scene. In [30],
although RGB-D images are used to obtain sparse point clouds [30], the depth information
provided by the RGB-D images are only used at the initialization step and the conventional
ORB was used to reconstruct feature points of the 3D map without fully utilizing the depth
information. In contrast, in our proposed AR framework, we reconstruct a dense map in
real-time by determining the depth of the keyframe data. We then generate a dense point
cloud from the RGB and the depth images of the current frame. Since ORB [39] is a ver-
satile and accurate SLAM solution, we compute are able to compute camera trajectories
in real-time and build a sparse 3D reconstruction of the scene of various different environ-
ments [40], but by adding a real-time dense point cloud map to the sparse point cloud, we
are able to increase the accuracy of virtual object registration.

Our markerless AR registration problem is stated as follows: A point cloud P is a data
structure of a collection of multi-dimensional points p ∈ R

n, and the elements in a 3D
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point cloud are usually represented as a vector of X, Y, and Z of geometric coordinates
of an underlying sampled surface. Given the point cloud of a virtual object with surface
points p ∈ P , and a target scene point cloud Q with the target surface points q ∈ Q, the
task of general/basic AR registration is to find the correspondences between P and Q, and
estimating a transformation T that maps all pairs of corresponding points pi ∈ P, qi ∈ Q.
The problem of AR registration lies in computing the unknown correspondences and fining
the optimal transformation subject to an error metric.

One of the key features of markerless AR applications compared with other 3D data
acquisition applications is that AR uses RGB-D images and 3D representations at a high
frame rate (e.g. 30 fps) to generate consecutive point clouds that are temporally and spatially
close to each other. Therefore, to satisfy the temporal and spatial conditions, AR registration
pipeline must process the point cloud information at a comparable speed to the high frame
rate during the data acquisition process. The point clouds being close to each other in the
AR process make it easy for Iterative Closest Points (ICP) algorithm [6] to reach a good
local minimum while finding the transformation matrix for the virtual-real fusion. However,
the source data obtained from this type of 3D sensors (such as a Microsoft Kinect device)
contains much noise of various forms. Therefore, in our proposed AR pipeline, following
steps are designed to increase the accuracy and performance during the object recognition
and matching framework:

1) Prepossessing and Filtering:We apply an edge-preserving bilateral filter adapted from
the field of 2D image processing to remove the outliers of the input point clouds, whilst
smoothing neighbouring similar pixels without affecting the edges.

2) Feature Estimation: The normal for each point of both the virtual model and the scene
points are computed.

3) Point Cloud Sampling: A uniform sampling method that is fast and efficient is used to
select key points of the input point clouds in order to compute feature descriptors.

4) Correspondences Estimation: The key points from 3) are used to calculate the Signa-
ture of Histogram of Orientations (SHOT) descriptors for the virtual model and the
scene to estimate the correspondences between the two sub-sampling point clouds.
False correspondences are rejected by finding a consistent set to reduce the number of
outliers.

5) Object Recognition: The result of the Hough voting algorithm [51] obtained from the
correspondence points is used to identify the objects in the scene.

6) Transformation Estimation: Finally a small set of previously found robust correspon-
dences and the transformation between the virtual model and the scene are computed
by a point-to-point error metric with the use of ICP to find the optimal transformation
through minimizing the error metric.

In summary, we proposed a new real-time solution for AR registration problems to
improve the object recognition and matching process with stable, accuracy and high regis-
tration performance. A set of experiments have been devised to evaluate the robustness of
the proposed method by conducting two types of analysis: 1)object recognition analysis;
2)registration error analysis. In the object recognition analysis, we compare the standard
Hough voting method with the improved method and in the registration error analysis, we
compare the standard homography matrix method with the proposed method. Six compo-
nents of the 3D registration results are analyzed. Finally, we demonstrate AR application
examples to highlight the use of our proposed AR framework.
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4 The proposed AR framework

The proposed new AR framework consists of two software modules: a SLAM module and
a registration module as shown in Fig. 1 for an overview of the system. Tracking in the
SLAM module is to find the camera position by processing each image frame and to decide
when a new keyframe should be inserted. Firstly, a feature matching process is initialized
with the previous frame and the Bundle Adjustment (BA) method [52] is used to optimize
the camera poses.

The registration module is called after the 3D map is initialized and successfully created
by the SLAM module. The RGB-D data is added to fuse the point cloud by the previously
calculated pose to generate a dense 3D map. We have used the three-dimensional model
to identify the object and to obtain the transformation matrix. After this process together
with the SLAM, the camera position is obtained and the pose is converted into the global
coordinate system under the model local view matrix (a matrix transfers the 3D model
coordinates into the camera frame). The final step is to register the 3D virtual object to the
real world scene to achieve the desired augmented reality effects.

4.1 Tracking

Tracking in our system is achieved via a visual simultaneous mapping and tracking strat-
egy by extracting and matching the Oriented Features From Accelerated Segment Test
(FAST) [38] and the Rotated Binary Robust Independent Elementary Features (BRIEF)
(ORB) [39]. We compute two models: i) a homography matrix to compute planar scenes; ii)
a fundamental matrix to compute non-planar scenes. At each time the two matrices are cal-
culated and scores (M = H for the homography matrix, and M = F for the fundamental

Fig. 1 System overview shows the workflow of our proposed AR framework and the components of the AR
system
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matrix) are also calculated as shown in (1). The scores are used to determine which of the
models is more suitable for the current camera posture.
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where drc and dcr is the measure of symmetric transfer errors [1], Tm is the outlier rejection
threshold based on the χ2, � is equal to Tm, xc is the features of the current frame, and xr

is the features of the reference frame. The BA is used to optimize camera poses, which gets
a more accurate camera position as shown in the following equation:
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where R ∈ SO3 is the rotation matrix, t ∈ R
3 is the translation vector, Xi ∈ R

3 is a
three-dimensional point in space, xi ∈ R

2 is the key point, and ρ is the Huber cost function.
Sigma item is the covariance matrix associated with the key point and π is the projection
function.

After obtaining the accurate position estimation of the camera, the three-dimensional
map of the point cloud is obtained by triangulating the key frames through the camera poses.
Finally, the local BA is used to optimize the map. A detailed description of the process is
given in [29].

4.2 Densemapping

We add a dense 3D map in real-time to the sparse point clouds to increase the accuracy of
the registration. In the process of building the dense map, a Kinect sensor is used to extract
the RGB-D information so that SLAM poses can be extracted and combined with the sparse
point clouds. Central to this method is adding a dense point cloud processing thread when
the system is at the initialization stage, which creates a visual window for displaying a dense
map.

In order to achieve the required real-time performance (i.e. at least 30 Hz), the map is not
captured at every frame of the image, instead only a set of keyframes are captured. When
the keyframes of the system are updated, the RGB-D information of the current frame is
extracted. Therefore, the point clouds are reconstructed from the key-frame images. The
camera pose of the current frame can also be obtained when processing the keyframes.
After that, we can transform the point cloud of the corresponding keyframes into the same
coordinate system according to the pose of the current keyframe to generate a global point
cloud map.

4.3 3D object recognition

In our AR system, the object recognition is not performed during the building mode of the
SLAM system, it is only running in the location mode and Hough voting method is used
for 3D object recognition to increase the performance and accuracy of ICP algorithm that
maps the model to the corresponding transformation matrix. The recognition results are
shown in Fig. 2. Figure 2a shows the key points obtained using a uniform sampling method,
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Fig. 2 3D object recognition (the red region is the matched model, the yellow region is the original model and
the blue dots are the key points): a the key points obtained using a uniform sampling method; b descriptors
of the model and the scene w.r.t. the matching of the corresponding points; c the result of the final match

whereas Fig. 2b shows the descriptors of the model and the scene w.r.t. the matching of the
corresponding points and Fig. 2c shows the result of the final match. It can be seen that the
algorithm can effectively identify the object in a scene. Details of the specific process are
listed in Algorithm 1.

Algorithm 1 3D object recognition

1: Using the nearest neighbor method to calculate the surface normal of the model and the
scene separately. Calculating the surface normal can be done by solving the eigenvec-
tors and eigenvalues of a covariance matrix, which is created by neighboring elements
of query points. The normal of each point can be obtained by (3) and (4).

(3)

(4)

where C is the covariance matrix, k (k=10) is the number of neighbor points con-
sidered in the neighborhood of , If K value is larger, the speed of computation will
be slow and the accuracy becomes lower and vice verse. represents the 3D centroid
of the nearest neighbors, is the j-th eigenvalue of the covariance matrix, and the j-th
eigenvector.

2: The Uniform Sampling algorithm is used to calculate the key points of the model and
the scene.(The radius of the search is 0.01 for the model and 0.03 for the scene). The
algorithm mainly creates a 3D voxel grid and calculates the centroid of each mesh
within the grid, using the centroid of each grid to represent the entire point cloud;

3: Using the above-mentioned surface normal and the key points to calculate the Signature
of Histograms of Orientations (SHOT) descriptors for models and scenes, the radius of
search is 0.02. A detailed description of the approach is given in [49];

4: By calculating the similarity (squared distance) between the model and the scene
description points, the corresponding description points can be found;

5: Using the Hough voting to identify the object and calculate the corresponding transfor-
mation matrix the radius of search is 0.015, the values of a bin is 0.01 and threshold is
2.0 [51];

6: The transformation matrix in step 5 is further processed by ICP to obtain a more
accurate transformation matrix. Times of iteration is 50 and the max distance of
correspondence is 2.
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4.4 Object recognition andmatching in cluttered scenes

The proposed Algorithm 1 performs much better for object recognition and matching in
simple scenes where there is few object occlusion. The recognition and matching perfor-
mance can be low for Algorithm1 to perform in challenging scenes where the object to be
recognized and matched is in a cluttered scene with partial occlusions. Hence, we propose
Algorithm 2 to address this problem to extend the capability of our AR framework deals
with more complex scenes that Algorithm 1 handles poorly.

We add a bilateral filtering process [48] to preserve the edge of the point cloud and an algo-
rithm to remove outliers [41]. Information about edges is important during object identification
and matching, and the outlier removal takes out the interference points. The two additional
processes greatly increase the matching accuracy as shown in experiment results Fig. 3.

When calculating normal vectors, we weight close points with a locally supported Gaus-
sian weight function [17]. Repeatable detection of a point cloud descriptor refers to a
descriptor detected in a rule model that is also detectable in the presence of any pose in a
scene with occlusions. If the point cloud descriptors can ensure repeatable detections, the
LRF (local reference frame) in the spherical support area must be unique. Meaning, LRF for
feature point estimation is unique in any pose and scenes. Therefore, a unique descriptor can
be obtained based on the LRF under different scene conditions. The process of establishing
LRF is the process of calculating normal vectors. And when calculating the normal vector
of the scattered point cloud, we need to consider the distance information of the area that the
closer distance should get a greater contribution. The Gaussian weight means that the point
closer to the current point will have a relatively greater impact on the result of the normal
vector estimation. In the descriptor calculation, we use the B-SHOT descriptor [35], which
is a 3D descriptor calculation method based on ‘binary’ of a SHOT descriptor. Because
in real-time augmented reality systems, the choice of B-SHOT descriptor can improve the
object matching speed. And the B-SHOT takes up less system memory. In the final calcula-
tion of the transformation matrix, we calculate the initial transformation matrix by Random
Sample Consensus(RANSAC). The detailed process is given in Algorithm 2.

Algorithm 2 Cluttered scene 3D recognition

The point cloud is processed by a bilateral filter and statistical outlier removal
algorithm;

2: Weighting close points with a locally supported Gaussian weight function and calculat-
ing the normal vector of the model and the scene by (5);

1 (5)

where is the normal vector of the point , is the neighborhood point of
is Gaussian weight( 0)( 0.55).
Same as the Step 2 of Algorithm 1;

4: Calculating the B-SHOT descriptor for the model and the scene and obtaining the cor-
responding description points by RANSAC method. The value of inline threshold is
0.05;
Same as the Step 5 of Algorithm 1;

6: Based on the matrix obtained in Step 5, the transformation matrix is firstly calculated
by RANSAC.
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Fig. 3 Cluttered scenes 3D recognition (a is a standard data set b is our own dataset): The three of middle
show result of algorithm 1. The three of bottom show the results of algorithm 2. The algorithm 1 obtains error
correspondences and misidentifies in cluttered scenes and algorithm 2 has produced much-improved results.
a shows colored c, d, e and e. b shows colored e and f

To demonstrate the effectiveness of Algorithm 2, we perform a study to compare the
recognition results of Algorithm 1 and Algorithm 2, using two test scenes, a text scene for
performance evaluation of 3D keypoint detectors from [50] as shown in Fig. 3a and a scene
of our own as shown in Fig. 3b. In the test scene of Fig. 3a, objects 1 and 2 are to be tested
by Algorithms 1 and 2 for AR object recognition and matching, where the scene contains
multiple objects and partial occlusions between objects 1, 2, 3 and 4. This is a standard
scene for publicly available for algorithm evaluation in the academic research community.
The test scene shown in Fig. 3b is made up by us, in which there are multiple objects close
to the test object 5 that has no occlusion by other objects in the scene. The evaluation of
object 5 is useful to compare how the performances of the proposed algorithms in a cluttered
scene even without occlusion.

Figure 3c, d and e show performance algorithm 1 on recognition and matching for object
1 (Fig. 3c), object 2 (Fig. 3d) and object 5 (Fig. 3e). As can be seen that Algorithm 1 per-
formed poorly in cluttered scenes especially for partially occluded objects 1 and 2, where
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in (c), object 1 has not been recognized completely. Although some feature points of object
2 can be identified, there are still many false matching points, and object 5 is only partly
identified. In contrast, Fig. 3f, g and h show the performance of Algorithm 2 that has suc-
cessfully identified object 1 (Fig. 3f), and its performance for objects 2 (Fig. 3g) are greatly
improved to find correspondence points and recognize the object. It is almost a complete
recognition for object 5 (Fig. 3h) compared to the result produced by Algorithm 1 for the
same object. It can be seen that Algorithm 2 can effectively identify the object in cluttered
scenes with partial occlusions, and objects without occlusion, its performance is super than
algorithm 1. Details of the specific process are listed in Algorithm 2. Figure 4c, d and e
show performance Algorithm 2 on recognition and matching for Mario, Duck and Buddha),
Algorithm 2 can achieve great results under different scenes.

4.5 AR registration

The virtual object is finally registered in the real world via a series of coordinate system
transformations (i.e. from the world coordinate system to the camera coordinate system, to
the crop coordinate system, and finally to the screen coordinate system). The transforma-
tion sequences can be described by (3) from left to right: the world coordinate system is
transformed into the camera coordinate system by a rotation matrix R3×3 and a translation
matrix T3×1.

⎡

⎣
u

v

1

⎤

⎦ =
⎡

⎣
fx 0 dx 0
0 fy dy 0
0 0 1 0

⎤

⎦
[

R3×3 T3×1
01×3 1

]
⎡

⎢⎢⎣

X

Y

Z

1

⎤

⎥⎥⎦ (3)

Fig. 4 3D recognition in cluttered scenes by Algorithm 2(a and b are more complex and clutter datasets with
partial occlusions. c, d and e are results achieved by Algorithm 2)
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These matrices are constructed by the camera’s position and the detected scene information.
The camera coordinate system is then transformed into the screen coordinate system (u, v)

by the focal length (fx, fy) and the principal point (dx, dy). These parameters are obtained
by the camera calibration. Finally, the virtual object is registered onto the scene of the real
world images.

5 Experiment and evaluation

We have designed and conducted a large range of experiments to evaluate the robustness
of our proposed AR registration method in terms of accuracy and stability over other four
popular methods. Our experiments are run under an Ubuntu 14.04 system, CPU clocked
at 2.3GHz, 8GB memory and NVIDIA GeForce GTX 960MB graphics card. The camera
resolution is 640 by 480 pixels at 30 Hz.

Figure 5 shows an AR example testing. Figure 5a and b show that the system identifies
and registers a virtual table for a real table. Figure 5c shows the system identifies and reg-
isters a virtual laptop (the front laptop) for a real laptop (the black laptop). Figure 6a also
shows the identification and registration of the virtual laptops. Figure 6b and c show the
identification and registration of the 3D model reconstruction of a real char (the black chair
in front) from a real chair (red chair behind the virtual black chair).

5.1 Object recognition analysis

To evaluate the accuracy of object recognition, we set the target objects in the scene and
match them to virtual models. The corresponding transformation matrix has to be computed
first. A fixed degree for the camera rotation with a fixed translation distance for the cam-
era movement is then set. This will be used as the basis of the unit matrix to compute the
reference matrix. For example, a reference transformation matrix is composed of a rota-
tion matrix and a translation vector. We can then fix a rotation angle of 45 degrees and the
rotation axis as the Z-axis for the rotation vector. we can then transformed it into a rota-
tion matrix by Rodriguez’s Formula. The translation vector is then obtained by changing
0.2 meters at each frame time. With the rotation angle fixed and the known camera move-
ment quantity, we are able to evaluate the corresponding error of the translation vector w.r.t
different changes of the translation. This error is obtained by comparing the transformation
matrix that is obtained from the current values.

Fig. 5 AR tracking, recognition and registration: a and b show the system identifies and registers a virtual
table for a real table with different view perspectives. c shows the identification and registration of a virtual
laptop for a real laptop
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Fig. 6 AR tracking, recognition and registration: a shows the identification and registration of the virtual
laptop with a real laptop, b and c show the identification and registration of a 3D model reconstruction from
a real chair and registration with a real chair in different view perspectives

The formula parameters used in our algorithms are important, which will affect the per-
formance of the system and are currently set by trial and error in an iteration way to achieve
optimized results. In Algorithm 1, the value of k will affect the accuracy about the surface
normal and running speed(setting k = 10). The radius of search in step 2 and 3 will affect
the number of key points and descriptors. we set r = 0.01 of model and r = 0.03 of scene
in key points calculation. The value of radius in calculation descriptors sets 0.02 in model
and scene. There are two parameters that are bin and threshold during using a Hough vot-
ing algorithm. We set 0.01 and 2.0 respectively detail [49]. The times of iteration are 50
and the max distance of correspondence is 2 in ICP. In Algorithm 2, we set r = 0.55 that
is an empirical value. It is only greater than zero. The value of the inline threshold is 0.05
in RANSAC method. In addition, the rest is the same as Algorithm 1. To see the details
how those parameters are implemented in the calculation, refer to Algorithm 1 and 2 in
Section 4.4 in this paper.

To process further, the virtual model is then multiplied by the reference matrix to get
a new model. By using this new model, we use the Hough voting algorithm, algorithm 1,
algorithm 2, ICP, Generalized Iterative Closest Point (GICP) [42] and Normal Distributions
Transform (NDT) [44], respectively to obtain the transformation matrix of the model trans-
formation to the scene.Here, we use the similarity of the matrix (4) for the rotation matrix
and the European distance for the translation matrix respectively.

Experimental results are shown in Fig. 7. Figure 7a shows the rotation angle fixed at
45 degrees, the abscissa indicates the increased distance (x, y, and z components while
increasing the same distances). The ordinate represents the errors between the calculated
and ground truth values. In Fig. 7b, the translation component is fixed at 0.1 cm, the abscissa
represents the increased degrees, and the ordinate represents the similarity measure. the
error of the transformation matrix obtained by algorithm 2 indicated as the green is much
smaller than that of algorithm 1 indicated as blue and the original Hough voting indicated
as red.

r =
∑

m

∑
n

(
Amn − A

) (
Bmn − B

)
√(∑

m

∑
n

(
Amn − A

)2) (∑
m

∑
n

(
Bmn − B

)2)
(4)

where A and B are the means of matrix elements, mn is m rows and n columns of the
matrix, r is correlation coefficient of the matrix (-1 and 1 represent exactly the same matrix,
0 represents the two matrices are completely different).

In order to evaluate the performance of the proposed method over other popular meth-
ods, two groups of new experiments (one is normal points cloud data-set, another is added
Gaussian Noise) are designed. In the experiments, we also test calculation speed which is
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Fig. 7 Recognition Analysis: aWhen the rotation angle is fixed at 45 degrees, the distance errors are shown
between the calculated and ground truth values. b the translation component is fixed at 0.1 cm, the error of
the translation matrix obtained by Algorithm 2 is much smaller than by Algorithm 1 and 4 state-of-the-art
methods

important for real-time applications. Final comparison results are shown in Table 1. The
Normal in Table 1 shows the mean error of the methods in Fig. 7. Then Gaussian Noise
(0,0.01) is added to the point cloud of model scenes and three evaluation metrics are tested
and analysis. The results of experiments as shown in the table, it is clear that Algorithm 2
performs best in precision. For running speed, DNT achieves faster speed at the cost of a
larger error over other methods. Therefore, Algorithm 2 has achieved better results overall
in real-time applications.

5.2 Registration error analysis

The second experiment is to evaluate the registration error. A comparison method is used
with fixed camera positions to evaluate the robustness of our proposed method. The 3D
registration of the virtual object is carried out by using the proposed method and the standard
homography matrix method. Six components of the 3D registration result are analyzed. The
differences between the transformation matrix of the current frame and the corresponding
component of the transformation matrix of the previous frame are used as the basis for

Table 1 Transformation matrix and speed comparison by three evaluation metrics

Method Included Gaussian Noise Normal

mean(T) mean(R) Speed(s) mean(T) mean(R) Speed(s)

NDT 0.5265 0.6469 0.1229 0.4133 0.6545 0.0384

GICP 0.1712 0.5388 0.9848 0.1736 0.5683 0.1028

ICP 0.2660 0.7052 0.9836 0.2320 0.5554 0.1642

Hough 0.3918 0.5501 44.6321 0.2717 0.5535 9.9523

Algorithm 1 0.3060 0.5314 45.4459 0.2027 0.7001 10.8922

Algorithm 2 0.1581 0.5142 0.5887 0.0367 0.5432 0.0674

Bold number indicate the best performance
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Fig. 8 Registration error of the translate vector: a shows the x-axis component error; b show the y-axis
component error, c show the z-axis component error

the comparison. The results are shown in Figs. 7 and 8, where Translate x, Translate y
and Translate z are errors of the translation components, respectively, and Rotate x, Rotate
y, Rotate z are relative to the x, y, and z-axis of the rotation component errors which are
obtained by subtracting the previous frame from the current frame. The result of the rotation
component is obtained by dividing the respective components with the dot product of the
corresponding coordinate axis, and the translation component is the result obtained by a
normalization process.

In Figs. 7 and 8, the red curves are the results of using only the homography matrix,
whereas the blue curves are the results of the new registration method described in this
paper. As it can be seen, Using a homography matrix method to register the virtual objects
has produced large registration errors that are equivalent to the virtual object registration
instability. However, the new method tested on each rotation component has been kept
the error in a small range below 0.5 degrees. The errors with Translate x, Translate y and
Translate z are also small similar to the result of the rotation components.

Through the experimental results, it can be seen that the new method produces stable
virtual registration and solves the flickering phenomenon in the virtual reality registration,
hence, improves the stability of the AR system.

5.3 Limitations

5.3.1 Dynamic environment mapping

One of the major challenges currently faced with SLAM based 3D sensing systems is
dealing with changes in the 3D environment i.e. dynamic environments [23]. For exam-
ple, in robotic automation, long-term continuous generation of dense environment maps
is extremely challenging. In AR, the ability to distinguish static elements from dynamic

Fig. 9 Registration error of the rotation matrix: a shows the x axis component error; b show the y-axis
component error, c show the z-axis component error
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Fig. 10 AR application: a shows laptop (static) and screwdriver (moving). b shows a different screwdriver’s
position with the same model. c shows the toy plane (static) and screwdriver (moving)

elements in a 3D environment would open up many applications. In many cases, multiple
virtual models are required to work together simultaneously. One example is the training in
surgical skills, where a fixed body model and a moving scalpel model are required, and in
the training of fixing complex electrical equipment, the need for a fixed device model that
can follow the handle of a tool model. Such scenarios require dynamic AR registrations,
which need solving the problem of consist of dense long-term mapping and 3D reconstruc-
tion. Currently, our system does not deal with the dynamic environment, where some of the
objects in AR may not be static ( i.e. the moving scalpel model in surgical training etc.).

5.3.2 Multiple objects registration

In addition to the AR testing examples, we further designed two examples to show a pro-
posed solution for dealing with dynamic objects by integrating a marker based registration
with our markerless system for more complex AR applications (as shown in Fig. 10). We
show how our system performs in terms of using two types of AR registrations in terms of
stability and performance for multiple static and dynamic objects. Because the static object
needs for better stability and does not allow makers in many cases, such as in laparoscopic
surgery no markers are allowed in a patient body. We, thus, apply marker based registra-
tion to the moving object for real-time detection and matching as a demonstration example.
In the two simple AR examples, the static model is registered with the 3D scene recon-
structed from the proposed method. The application run under i7-7700k CPU at 15 fps.
Figure 9a–c shows two virtual objects which include a static object(laptop and toy plane)
and a moving object (screwdriver). The stationary objects are registered with a 3D map. The
moving object is registered in real time. As it can be seen that the tracking, recognition and
registration have been effectively performed correctly (Fig. 10).

6 Conclusions and future work

This paper presents a stable and high-performance realistic tracking and recognition method
in markerless AR based on 3D map information generated by SLAM. The proposed AR
framework enables accurate and stable virtual object registration to meet the highly inter-
active requirements of various AR applications. Our contribution is also the design of
experiments for the evaluation of the proposed algorithms. The evaluation method proposed
in this paper is genetic, which can be used to test different approaches. The experimental
results show that the proposed method can effectively suppress the virtual object jitter-
ing, having a higher tracking accuracy with good performance, and the new algorithm 2
effectively handles cluttered scenes.
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We integrated two virtual objects(a static object and a moving object)by our method,
which can be used in medical training and maintenance training as application examples.
The method allows the tracking and the registration of virtual objects to ensure a stable and
real-time performance of markerless AR applications. Our proposed method is faster than
the standard methods and is able to achieve more accurate registration results compared
with the state-of-the-art approaches.

At present, we are using object recognition based on the model recognition algorithm.
There are a number of future research directions. We would like to consider multi-model
3D object recognition based on deep learning [20] in our future work. In terms of recon-
struction of a dynamic 3D environment and dynamic object registration, the recent advance
in Dynamic Fusion [31] has set a benchmark for research in this area. In [28], a method has
been proposed for dense semantic segmentation of 3D point clouds, which can be applied
to AR semantic recognition. In the dynamic reconstruction, we are prepared to refer to the
paper [12] to achieve 3D reconstructions of dynamic objects in the scene in order to facilitate
the establishment of dynamic registration based on a mapping.
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