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ABSTRACT: Metal oxides are promising materials for supercapacitors due to their high 

theoretical capacitance. However, their poor electrical conductivity is a major challenge. 
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Hybridization with conductive nanostructured carbon-based materials such as carbon nanotubes 

(CNTs) has been proposed to improve the conductivity and increase the surface area. In this work, 

CNTs are used as template for synthesizing porous thin films of SnO2-CuO-Cu2O (SnO2-CuxO) 

via electroless deposition (ED) technique. Tin with its high wettability and electrical conductivity 

acts as an intermediate layer between copper and CNTs and provides a strong interaction between 

them. We also observed that by controlling the interfacial characteristics of CNTs and varying the 

composition of the electroless bath, the SnO2-CuxO thin film morphology can be easily 

manipulated. Electrochemical characterizations show that CNT/SnO2-CuxO nanocomposite 

possesses pseudocapacitive behavior that reaches a specific capacitance of 662 F/g and the 

retention is 94% after 5000 cycles which outperforms any known copper and tin-based 

supercapacitors in the literature. This excellent performance is mainly attributed to high specific 

surface area, small particle size, synergistic effect of Sn, and conductivity improvement by using 

CNTs. The combination of CNTs and metal oxides holds promise for supercapacitors with 

improved performance.   

1. INTRODUCTION 

Stringent environmental regulations, ever-increasing interest in electric vehicles (EV), and their 

fast market growth have enticed automotive companies to push for EVs sooner than anticipated. 

Extensive work on rechargeable batteries made this transition feasible. However, there are still 

significant obstacles to overcome. One of the deficiencies of rechargeable batteries occurs during 

acceleration of EVs when the battery is required to provide a huge amount of energy in a short 

period of time. This rapid energy depletion can damage the electrode materials, and reduce the 

battery’s lifetime 1. Therefore, there has been an effort to develop novel electrode materials with 
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higher power density and better stability 2-3. An alternative solution has been implemented: a 

complementary system alongside the battery, which has high cyclability and ability to provide 

the demanded energy during acceleration 4-5. Supercapacitors or electrochemical capacitors 

(ECs) are an attractive option due to their high power density, long life span, high cyclic 

efficiency, safety and rapid charge-discharge rates 5-7.  

Based on energy storage mechanisms, supercapacitors are categorized into two groups: electrical 

double layer capacitors and pseudocapacitor. The former purely works based on electron storage 

at double layer while in the latter, faradic redox reactions occur which results in significantly 

higher specific capacitance and energy density 8-9. Pseudocapacitors typically are made of either 

polymers or transition metal oxides (TMOs). While polymers have good specific capacity and 

electrical conductivity, they suffer from poor cyclability due to substantial volume changes 10. 

TMOs, on the other hand, generally possess higher specific capacitance, but their electrical 

conductivity is poor 11-12. Because pseudocapacitance relies on faradic reactions at the surface, a 

higher specific surface area provides more sites for metal oxide redox reactions, which improves 

the specific capacitance of the TMOs. In addition to specific surface area, electrical conductivity 

and microstructure also play major roles on capacitive behavior of TMOs. 

Copper oxide is one of the promising TMOs for supercapacitor applications. It is an inexpensive 

and abundant material that possesses high theoretical capacity 13-15. Therefore, recently these 

oxides, either in CuO or Cu2O form, have attracted considerable interest as EC electrode material 

14-20.  However, the electrochemical performance of these oxides suffers due to low conductivity 

and limited specific surface area 20-21. To tackle the obstacle of low electrical conductivity, 

hybridization with conductive carbon-based materials such as carbon black, graphene, or carbon 

nanotubes (CNTs) has been suggested 17, 22-26. Among these, CNTs have attracted particular 
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attention due to their high electrical conductivity, specific surface area, mechanical strength, 

electrochemical stability, and low electrical percolation threshold. As Liu et al. 18 has shown, by 

introducing CNTs to electrode materials a conductive network is created which facilitates charge 

transfer through the electrode and enhances the specific capacitance of CuO nano-sheets 

significantly.  

However, progress in integrating CNTs in supercapacitors has been limited. For instance Zhang 

et al. 23 observed that substituting CNT for carbon black as an additive in CuO electrode material 

not significantly increased the specific capacitance (from 137 F/g to 150 F/g). Nevertheless, 

previous research has shown that using CNTs during the synthesis of active material can yield 

advantages far beyond just forming a conductive network. In this case, CNTs can yield strong 

bonds with metal oxides by acting as supports or templates for nucleation and growth of active 

material. This not only enhances the charge transfer, but also results in size refinement, hinders 

agglomeration, and creates a coarse and mesoporous structure that results in higher capacitance 

through easier charge transfer and higher specific surface area 25, 27-29.   

In addition to hybridization with carbon nanostructures, hybridization with transition metal 

oxides has shown to be a promising method for improving the electrochemical performance of 

electrodes in supercapacitors 29-32. For instance, Sugimoto et al. 31 reported that by introducing 

VO2 to RuO2 the specific surface area was tripled and specific capacitance reached to 1210 F/g, 

which exceeds that of Ru2O electrode by 60%. In addition to increasing the surface area, doping 

a secondary oxide can improve the electrochemical performance by enhancing the conductivity, 

uniformly dispersing the active material or refining the particle size. Stannic oxide is one of the 

oxides that has been studied as an additive in composite electrodes. SnO2 not only has the 

conventional redox properties, but also is inexpensive, has high wettability, and relative to other 
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TMOs, has higher electronic conductivity 5. It has been observed that adding SnO2 has a 

synergistic effect on electrode performance especially through increasing electrical conductivity 

and facilitating electron and proton conduction 32. Therefore, regardless of the material type, by 

choosing a suitable additive the electrochemical performance of the electrode can be enhanced. 

In this work multi-walled CNTs (MWCNTs) were used as a template for growth of tin and 

copper oxides (CuOx-SnO2) nanoparticles using electroless deposition (ED). ED is a simple and 

scalable technique which provides morphology control by easily changing the parameters, such 

as pH and bath composition, and can produce rough and porous structures 33-34. Moreover, by 

using MWCNTs we were able to engineer the morphology of SnO2-CuxO thin film in nanoscale 

and create a one-dimensional (1D) porous structure which offers high surface area and short 

transport/diffusion pathways for electrons/ions which leads to fast kinetics and high capacity. 

Strong bonding between the thin film and MWCNTs and 1D porous SnO2-CuxO structure 

provides an excellent cycle stability through accommodating the volume changes caused by 

faradic reactions. Electrochemical tests have shown that deposition of tin and copper oxides on 

CNTs can result in a hybrid material which outperforms any reported copper-based and tin-based 

supercapacitors in the literature with respect to specific capacitance and cyclability (Table S1).     

2. EXPERIMENTAL PROCEDURE 

2.1. Materials and methods 

Multiwall carbon nanotubes (MWCNT) with a purity of 95 wt.%, diameter of 20-40 nm and 

length of 10-30 µm were supplied by Arkema Inc. All other chemicals were obtained from 

Sigma-Aldrich and were used as received. For obtaining a good dispersion they were exfoliated 

according to previous report 35. Briefly, 250 mg as-received MWCNTs were added to a mixture 
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of H2SO4 (45 mL) and HNO3 (15 mL) at a 3:1 volume ratio. This mixture was sonicated in a 

sonication bath for two hours at 25 °C 36 and then washed with DI water.  

Synthesis of SnO2-CuxO/CNT hybrid structure by ED consists of several steps which are 

schematically represented in Figure 1. First 50 mg of oxidized MWCNTs were added to a 50 ml 

aqueous solution of SnCl2 (0.98 g) and 0.1 ml HCl (37 wt.%). The mixture was sonicated for 15 

minutes, and then washed with DI water. CNTs usually have weak interactions with metallic 

particles. In supercapacitor applications this can result in lower conductivity and detachment of 

metal oxides from the CNTs. Tin has a high wetting capability and therefore readily attaches to 

the surface of MWCNTs. Tin layer will act as an intermediate layer for adsorption of other 

metallic-based particles during following processing steps. In the next step, sensitized MWCNTs 

are added to 50 ml DI water solution containing 0.007 g PdCl2 and 0.1 ml HCl (37 wt.%) and 

sonicated for 15 minutes. During this stage (i.e. activation), palladium ions replace a portion of 

the tin particles on the surface of MWCNTs and act as catalysts for nucleation and growth of 

copper. Finally after washing with DI water, activated MWCNTs are dispersed in 50 ml copper 

electroless deposition (ED) bath with the chemical composition presented in Table 1. After 15 

minutes of stirring at 60 °C, 0.2 ml formaldehyde solution was added gradually to reduce the 

copper ions. After 30 minutes of stirring at 60 °C copper coated MWCNTs were washed and 

separated by centrifuge. 
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2.2. Characterization  

For assessing the coating morphology transmission electron microscope (TEM, FEI Teccai G2 

S-Twin, Philips) was used. The crystallographic phases of all of the samples were investigated 

using an X-ray diffractometer (XRD, Bruker D8 Advance ECO) with CuKα incident radiation 

(λ=0.1506 nm). X-ray photoelectron spectroscopy (XPS) was obtained from an Omicron’s DAR 

40 dual Mg/Al X-ray source for XPS measurements and the HIS 13 He UV source for UPS 

measurements. STEM and EDX images were obtained using a FEI Tecnai Osiris S/TEM 

working at 200 keV. The EDX detectors are FEIs Super-X system employing 4 Bruker silicon 

drift detectors (SDD) for high collection efficiency (>0.9 sr solid angle) and high count rates 

(>250 kcps).  

2.3. Electrochemical Tests 

The electrochemical performance of the supercapacitors were tested in a conventional three-

electrodes (versus Ag/AgCl)) and two electrodes coin cells. All the electrochemical 

measurements including cyclic voltammetry and galvanostatic charge/discharge were conducted 

using Iviumstat Electrochemical Interface. Cyclic voltammetry tests have been carried out with 

the two-electrode cells.  Electrodes were prepared by mixing the hybrid material with poly-

vinylidene fluoride (PVDF) and carbon black (CB) (80:10:10 in mass ratio) using a pestle and 

Figure 1. A schematic of an electroless deposition process on CNTs. Blue, red and green spheres represent Sn, Pd 

and Cu particles respectively. 

COOH

COOH

COOH

COOH

COOH

COOH

COOH

COOH

Sn sensitizing layer Pd catalytic particles Decoration with copper Growth of copper layer

SnCl2 PdCl2 Cu bath time
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mortar. Cyclic voltammetry (CV) measurements were recorded in a 6 M KOH aqueous 

electrolyte in the range of -0.4 to 0.4 V at different scan rates. 

Table 1. Chemical composition of copper electroless bath. 

Chemical composition Quantity 

CuSO4.5H2O   6.2 g/l 

2Na-EDTA   40 g/l 

Na2SO4   35 g/l 

HCOONa   60 g/l 

CHOH (37 vol% in water)   20 ml/l 

Temperature   60 °C 

pH (NaOH)   13 

 

3. RESULTS AND DISCUSSION  

The chemical composition of the hybrid system was investigated by XPS, XRD and EDX. Figure 

2a represents the XPS spectrum where the peaks at binding energies of 284.4, 486.5 and 933.9 eV 

correspond to C 1s, Sn 3d and Cu 2p, respectively. The C 1s peak is associated with the sp2 C-C 

bond of MWCNTs and can be deconvoluted into C=C at 284.3 eV, C-O at 285.8 eV and C=O at 

288.2 eV 37-39. The presence of these peaks underneath the C 1s is an indication of functional 

groups on the surface of MWCNTs created during acid treatment.  These groups not only enhance 

the bonding between the metal oxides and MWCNTs, but also increase the wettability and 

hydrophilicity of the hybrid system which helps increase electrolyte ion transport within the 

structure. Moreover, Pan, et al. 40 observed redox peaks in CV curves of functionalized CNTs 

indicating that these oxygenated groups on the surface may induce faradic redox reactions which 

can enhance the specific capacitance. Finally, it should be noted that proper acid treatment can 

increase the specific surface area of MWCNTs either by creating defects at the surface or 
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dissolving the catalysts and opening the tube ends. As a result, due to capillary forces during ED 

process, metallic ions can diffuse and deposit inside the tube.    

The peaks related to Sn are situated at 495 eV and 486.6 eV belonging to Sn 3d3/2 and Sn 3d5/2, 

respectively. These results are identical to the reference data for Sn 3d in SnO2 
41. As represented 

in Figure 2d, the high-resolution XPS spectra for Cu consist of 4 peaks. The peaks observed at 

933.9 eV and 953.3 eV are attributed to Cu 2p3/2 and Cu 2p1/2, respectively 42. Moreover, two 

strong satellite peaks are seen at higher binding energies compared to the main peaks: a sharp peak 

at 962.35 eV and a broad peak between 941 to 945 eV. The overall spectrum is similar to CuO. 

However, by analyzing the main Cu 2p1/2 peak more carefully, it can be noted that at lower 

binding energies another peak exists; therefore, the Cu 2p3/2 peak can also be deconvoluted into 

two peaks by Gaussian method. The new peak at lower binding energy (932.3 eV) has a low 

intensity and is characteristic of Cu2O 43-44, confirming that CuO and Cu2O oxides coexist in the 

deposited coating which is in accordance with XRD results (Figure 2e). 
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The morphology and microstructure of the hybrid system is represented in Figure 2f. It can be 

observed that the coating has a rough surface in nanoscale and contains pores less than 1 nm in 

size which makes this structure suitable for aqueous electrolytes 6. Also, thickness of the coating 

Figure 2. XPS spectra of (a) hybrid system, (b)  C 1s of CNT, (c) Sn 3d of SnO2, (d) Cu 2p spectrum of 

CuO/Cu2O, (e) XRD of the hybrid sample and (f) TEM images of coated CNTs. The scale bar in the 

intersected picture is 10 nm. 

10 nm 

50 nm 
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(c) (d) 
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is generally 10-15 nm. Such a fine and porous structure provides a large accessible surface area 

and facilitates electrolyte penetration 2. As a result most of the nanocomposite can take part in 

faradic reactions which has a positive effect on capacitance. 

From STEM images and nanoscale elemental maps (Figure 3) of the electroless deposited 

MWCNT, it is observed that the tube is present at the core and is uniformly covered with tin and 

copper oxides. Images with lower magnification (Figure S2) show that some of the MWCNTs 

are completely and some partially covered with metal oxide layer (the effect of coating density 

will be discussed). No observable x-ray signal was seen from palladium, which could be due the 

fact that it was completely covered by the Cu layer and the quantity was too small to be 

detectable. 

As can be observed in Figures 2f and 3, MWCNTs act as a template for deposition of fine copper 

nanoparticles and created a core-shell structure 45. The C-OH and C=O bonds created during the 

acid treatment provide sites for adsorption of Sn/palladium ions. Since these defects eventually 

act as nucleation sites for copper, it is expected that application of functionalized MWCNTs also 

plays a major role in size refinement and morphology control 28. The adsorbed Pd/Sn nuclei  

subsequently act as catalyst for reduction and  nucleation of copper according to the following 

reaction 46: 

2𝐻𝐶𝐻𝑂 +  𝐶𝑢2+  +  4𝑂𝐻−  →  2𝐻𝐶𝑂𝑂−  +  𝐻2  +  2𝐻2𝑂 +  𝐶𝑢                                         (1) 

It should be noted that the produced copper in particles are in nanoscale therefore dissolved 

oxygen in water readily oxidizes the Cu and Sn particles. This can lead to finer particle size since 

copper growth favorably occurs on the fresh copper nuclei and oxidation hinders copper particle 

growth.  
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Using a MWCNT backbone structure not only improves the electrical conductivity but also 

increases the surface area. As it can be seen in Figure 2f, deposited metal oxides adopt the 1-D 

structure of MWCNT and the maximum thickness reaches to 15 nm.  By considering the porous 

structure of the thin film, we can assume that most of metal oxides are accessible by the 

electrolyte. Moreover, assembling these 1-D hybrid structures of SnO2-CuxO/CNT creates a 

three-dimensional (3-D) porous conductive network which further enhances the electrolyte 

accessibility and promotes both electron and ion transport within the electrode material. 

Furthermore, we observed that the morphology, density and size of deposited particles are 

affected by the MWCNT surface modification method. If the oxidation of CNTs is not sufficient, 

the coating will be scarce (as shown in the supplementary information S1)  It should be noted 

that if the MWCNTs are fully coated with a thick layer of metal oxide, the conductivity of the 

hybrid system and as a result the capacitance of the electrode reduces 47. It should be added that 

before performing TEM analysis, the sample was diluted in water and went through a sonication 

step. The fact that the coating is still attached after the sonication process shows that there is a 

strong interaction between the MWCNT and copper coating which can help to preserve the 

integrity of the electrode through charge-discharge cycles and enhance the capacitance 

performance of the hybrid material 47-49. 

Figure 3. STEM (a-c) and EDX (d-h) of an electroless coated representative CNT. Black box 

shows the location where the elemental map is obtained. 

(a) (b) (c) (d) (e) 

(f) (g) (h) 
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The electrochemical performance of the supercapacitor electrode was assessed by cyclic 

voltammetry (CV) and galvanostatic charge/discharge tests in a two-electrode coin cell 

configuration. Figure 4a shows the CV curves of the MWCNT and the SnO2-CuxO/CNT 

electrodes at scan rates 5 mV/s using a potential window from -0.4V to 0.4 in 6 M KOH 

solution. The CV curves of pure MWCNT show a nearly rectangular shape without any obvious 

redox peaks, indicating that the capacitance is primarily originated from double-layer 

capacitance. By utilizing SnO2-CuxO/CNT as the electrode, two distinct reduction peaks and one 

oxidation peak were observed. While the observation of the redox peaks is a sign of 

pseudocapacitance contribution. The background current is significantly higher for SnO2-

CuxO/CNT than for MWCNT, which couples with the rectangular shape of the CV curve, 

suggests a double layer capacitance contribution from the copper oxide coating on MWCNTs. 

The pseudocapacitance behavior in the CV scans is associated with the following reactions 14, 50-

51: 

𝐶𝑢𝑂 + 𝐻2𝑂 +  2𝑒−  →  𝐶𝑢2𝑂 +  2𝑂𝐻−                                                                                (2) 

𝐶𝑢2𝑂 +  𝐻2𝑂 +  2𝑂𝐻−  →  2𝐶𝑢(𝑂𝐻)2  +  2𝑒−                                                                     (3) 

𝐶𝑢𝑂𝐻 +  𝑂𝐻−  →  𝐶𝑢(𝑂𝐻)2  +  𝑒−                                                                                         (4) 

𝐶𝑢𝑂𝐻 +  𝑂𝐻−  →  𝐶𝑢𝑂 +  𝐻2𝑂 +  𝑒−                                                                                   (5) 

𝑆𝑛𝑂2  +  𝐻2𝑂 +  𝑒−  →  𝑆𝑛𝑂𝑂𝐻 +  𝑂𝐻−                                                                               (6) 

𝑆𝑛𝑂𝑂𝐻 +  𝑒−  →  𝑆𝑛𝑂 +  𝑂𝐻−                                                                                               (7) 

One anodic peak and two cathodic peaks are observed in the operated potential range. The 

anodic peak can be ascribed to the oxidation of either Cu2O or CuOH to CuO and/or Cu(OH)2. It 

is possible that these two peaks have overlapped with each other. The cathodic peaks are 

attributed to the reduction of CuO and/or Cu(OH)2 to Cu2O and/or CuOH 14, 50.  It should be 
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noted that based on the previous works in this potential range SnO2 does not show clear redox 

peaks 51-55 therefore it can be concluded that the overall shape of the CV curve is dominated by 

copper oxides performance. Also it has been reported before that the pseudocapacitance 

contribution of CuO is mainly governed by the reduction of Cu2+ to Cu+ in KOH solutions 3, 56-57. 

Detecting two reduction peaks in the current study suggests that copper ions are existing in two 

oxidation states which is in agreement with XPS results. It is possible that the presence of carbon 

stabilizes the Cu+ oxidation states. At early stages of ED process it was observed that if the tube 

ends are open due to capillary forces tin and copper deposit inside the MWCNTs (Figure S4). 

These well-defined and narrow channels inside CNTs possess unique electronic properties that 

make the confined metal oxide particles stay in a more reduced state. This phenomenon has been 

previously reported for some metal oxides such as manganese 58, tin 59, and Iron 60. This 

confinement can enhance the capacitance of the nanocomposite electrode; due to curvature, π-

electron is denser at the outer surface of CNT which leads to electron deficiency inside interior 

hollow cavity of CNTs. As a result the charge transfers from electron donor metal oxide to 

compensate for the electron deficiency inside the nanotube. This is helpful in adsorption-

desorption process of positive ions in the electrolyte such as K+ and H+ 58-59 and enhance the 

capacity. Also density functional theory calculations of Ng et al. 61 and experimental works on 

confined Sn particles within CNTs 59 have shown that CNTs with encapsulated Sn has higher 

electrical conductivity compared with standalone CNTs which also can enhance the capacitance. 
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The capacitance performance of the core-shell structure was evaluated with cyclic 

voltammograms in a scan rate range of 20 to 1000 mV/s. As it can be observed in Figure 4b, 

with increasing scan rate, the redox peaks almost vanished, and the CV curves of the hybrid 

system become featureless, suggesting the faradic reactions are diffusion limited.  The CV curve, 

however, maintains a nearly rectangular and good mirror images of the zero-current line even at 

high scan rates indicating an ideal capacitive behavior 19. 

We have also used galvanostatic charge/discharge analysis for practical evaluation of the SnO2-

CuxO/CNT electrode capacitance in an alkali electrolyte (Figure 4c). The curve for the MWCNT 

Figure 4. The electrochemical performance of the SnO2-CuxO/CNT electrode (a) CV of CNT and 

electroplated CNT electrode at 5 mV/S, (b) CV of the electroplated electrode at different scan rate (c) charge 

discharge curve at different current density, and (d) Cycling performance at current density of 1 A g-1. 

(a) (b) 

(c) (d) 

SnO2-CuxO/CNT 

CNT 
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is nearly triangular and shows linear charge and discharge profiles, indicating purely capacitive 

behavior 62. The SnO2-CuxO/CNT shows a pair of bending points at potentials close to those in 

the CV curve. In both cases, the charge/discharge curves were symmetrical, indicating good 

electrochemical capacitive characteristics and excellent reversible redox reaction. Interestingly, 

the SnO2-CuxO/CNT electrode displays almost no drop in internal resistance (IR) at the 

beginning of the discharge curve, indicating low overall IR of the nanocomposite electrode. The 

corresponding specific capacitance was calculated from the slopes of the discharge branch of the 

curve using the following equation:  

𝐶𝑠  =  
4 𝑖

− 
∆𝑉

∆𝑡
𝑚

=  
4 𝑖

−𝑠𝑙𝑜𝑝𝑒×𝑚
                                                                                                               (1) 

In which i is the current applied, ΔV/Δt is the slope of the discharge curve, and m is the mass of 

the nanocomposite electrode. The SnO2-CuxO/CNT electrode can reach a specific capacitance as 

high as 662 F/g at 0.2 A/g. To our knowledge, this value is the highest reported in the literature 

for CuO based capacitor (about 569 F/g and 545 F/g for binder free CuO nano-sheets on Ni foam 

at similar scan rates) 15, 63. The supercapacitor electrode was cycled for 5000 cycles and retained 

about 94% of its initial capacitance (Figure 4d) which is much superior compared to previous 

results 15, 63. The excellent cyclability performance is attributed to the 1D porous structure and 

strong bonding between the constituents of the nanocomposite. 1D porous structure provides 

space for accommodating the volume changes during charge-discharge cycles. Strong bonding 

between the metal oxides and MWCNTs helps to preserve the integrity of the electrode material. 

In this regard tin’s role is very crucial. It has relatively high electrical conductivity and excellent 

wettability. It readily adheres to the MWCNTs surface and makes it suitable for nucleation and 

growth of copper particles. Because copper is directly nucleated on tin, a strong interaction 

between these two components exists. Therefore tin oxide acts as an intermediate layer between 
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copper oxide and the MWCNTs. In addition, using tin oxide can have other synergistic 

advantages, i.e. particle size refinement and enhancement of electronic and redox properties of 

the electrode material 32, 64. 

To summarize, the improved performance of the SnO2-CuxO/CNT electrode can be attributed to 

the following aspects. (i) abundant void space between the porous nanostructures not only 

provide short distance for the diffusion of the electrolyte but also offer a large number of 

electroactive sites for faradaic redox reactions to take place, hence improving the pseudo-

capacitive performance, (ii) the 3D carbon network works as the backbone that provides 

mechanical integrity and facilitates electronic transportation within the electrodes (iii) SnO2 has a 

synergistic effect on CuxO performance through wetting the surface of MWCNTs, modifying the 

particle size and enhancing the conductivity of the nanocomposite, (iv) by acid treatment the 

ends of MWCNTs open which results in infiltration and capsulation of metal oxide particles 

inside the MWCNT. These confined particles possess higher conductivity, smaller particle size 

and can facilitate diffusion of ions in the electrolyte which leads to higher capacitance, and (v) 

anchoring the CuOx nanoparticles, which minimizes aggregation and maximizes high specific 

surface area. 

4. CONCLUSION 

Three-dimensional network of SnO2-CuxO/CNT wire structure with MWCNTs as the substrate 

and copper oxide as the coating were synthesized through an electroless deposition technique. 

This facile and controllable processing method produces a unique core-shell structure with high 

porosity which enables fast ion and electron transports. The copper oxide nanoparticles enhance 

the capacitance through additional faradic redox reactions. The new hybrid shows excellent 

electrochemical performance as a supercapacitor electrode with a specific capacity of 662 F/g. 
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The electrode is robust and capable of retaining more than 94% of its original capacity after 5000 

cycles, indicating excellent electrochemical stability. Such an outstanding performance suggests 

that by engineering the CNTs surfaces and utilizing ED method, high capacity energy storage 

materials can be produced. Moreover, this method can be easily applied to other metal oxides to 

produce high performance supercapacitor electrodes. 
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