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Abstract—Objective assessment of gait is important in the 

treatment and rehabilitation of patients with different diseases. In 
this paper, we propose a gait evaluation system using Procrustes 
and Euclidean distance matrix analysis. We design and develop an 
android app to collect real time synchronous accelerometer and 
gyroscope data from two Inertial Measurement Unit (IMU) 
sensors through Bluetooth connectivity. The data is collected from 
12 young (10 for modelling and 2 for validation) and 20 older 
subjects. We analyse the data collected from real world for stride, 
step, stance and swing gait features. We validate our method with 
measurements of gait features. Generalized Procrustes analysis is 
used to estimate a standard normal mean gait shape (NMGS) for 
10 young subjects. Each gait feature of both young and older 
subjects is then converted to find the best match with the NMGS 
using ordinary Procrustes analysis. The shape distance between 
the NMGS and each gait shape is estimated using Riemannian 
shape distance, Riemannian size-and-shape distance, Procrustes 
size-and-shape distance and Root mean square deviation. A t-test 
is performed to provide statistical evidence of gait shape 
differences between young and older gaits. A mean form which is 
considered as a standard normal mean gait form (NMGF) and 
inter-feature distances are estimated from the set of 10 young 
subjects. The form difference is estimated between the NMGF and 
individual gaits of young and older. The degree of abnormality is 
then estimated for individual features and the result is plotted to 
visualize the feature in a gait. Experimental results demonstrate 
the performance of the proposed method. 
 

IndexTerms—Gait Analysis; Gait Assessment; Gait Features; 
Inertial Measurement Unit (IMU) 

I. INTRODUCTION 

UMAN  gait is the result of a series of rhythmic 
alternating movements of the arms, legs, and trunk 
which create forward movement of the body [1]. Its 

complex mechanisms depend upon the integrated actions of the 
musculoskeletal, nervous system, visual, vestibular, auditory 
systems leading to the smooth propulsive movement of the 
centre of gravity. Quantification of gait variabilities, kinematic 
and kinetic measurements, muscular measurements and energy 
expenditure,  provide comprehensive locomotive gait 
information [2]. Gait quantification information is used to 1) 
distinguish the type of gait impairments and suggest possible 
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diagnoses; 2) measure and monitor the severity of an injury or a 
disease and determine the most appropriate treatment [3]; 3) be 
a determinant of progression in patients with medical 
conditions causing gait disorders [4, 5] monitor response to 
treatment in orthopaedic rehabilitation [6]; 4) monitor and 
improve an athlete’s performance [7]; and 5) in biometrics and 
biomedical engineering areas, be an assistive tool to 
characterize human locomotion and have many applications 
[8]. Gait quantification information is important in elderly 
patient fall risk assessment [9] and also a predictor of functional 
and cognitive decline [10].  Therefore, the objective evaluation 
of gait and understanding the gait changes has many potential 
uses. 

The paper is organized in the following sections. Section II 
introduces previous related work. Section III presents the 
proposed method. Section IV delivers the experimental results 
to demonstrate the proposed method. Section V presents the 
discussions. The conclusion is given in section VI. 

II. RELATED WORK 

The tools and methodologies used to assess human gait are 
often arbitrary and often studied in artificial controlled 
conditions. Gait abnormalities are generally assessed by 
physicians, physiotherapists and researchers in clinical settings 
or in gait laboratories. Clinical scales used to analyse gait 
parameters such as Gait Abnormality Rating Scale [11], Figure 
of 8 Walk Test [12], and Berg Balance Scale [13] are subjective 
or semi-subjective and a poor replacement to laboratory based 
methods. This may not satisfy scientific criteria of reliability 
and validity [14], which may affect the accuracy of diagnosis, 
follow-up and treatment [2]. There is no commonly accepted 
guideline, preferred methodology or protocol for gait changes 
evaluation. The European GAITRite Network Group, 
developed Guidelines for Clinical Applications of Gait 
Analysis [15], with the intention to facilitate collaboration and 
provide guidance to clinicians however there is no 
recommended systematic procedure in the guideline. The 
available common approaches [28] for gait quantification of 
temporal and spatial gait pattern are Symmetry index, 
Symmetry ratio, Ratio, Gait asymmetry, etc. The commonly 
used Symmetry Indices  need to be normalized to a reference 
value [16, 17] and there is  potential influence for artificial 
inflation as the normal values for young and older subjects are 
not the same [18]. Sometimes the mean value calculation used 
for quantifying gait asymmetry may lead to erroneous results as 
the mean measurements from two abnormal limbs may appear 
normal.  For example, in a situation where a patient has 
asymmetry in the opposite direction of gait, the true magnitude 
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of asymmetry for affected or unaffected limbs may be very 
small. The effect of the direction of gait asymmetry may be 
eliminated using absolute values in the symmetry indices [16]. 
There are methods [19, 20] which do not make it possible to 
identify the point during the gait cycle at which deviations 
occur. There are other approaches [21, 22] including principal 
component analysis, regions of deviation analysis, and paired 
t-test to quantify gait symmetry. However, the number of test 
subjects and experiments are important for these methods. 
These methods may also need normative data from able-bodied 
subjects as a reference [17]. Although gait asymmetry is 
frequently reported as present or not present which may not 
satisfy scientific criteria of reliability and validity [14], an 
arbitrary cut-off value of 10% deviation from perfect symmetry 
has been used as a criterion of asymmetry in gait assessment 
[23, 24]. This is later criticized due to its non-parameter 
specific nature [18]. Other previously used criteria to describe 
the absence or presence of gait asymmetry include sensitivity 
and specificity of parameter measurement [25], the use of 95% 
CI where gait asymmetry within the limits of a 95% CI obtained 
in a healthy population would define able-bodied gait, while 
gait asymmetry outside the 95% CI would define pathologic 
gait [18], and significant limbs difference [21] etc. Although 
there are many approaches for quantifying gait asymmetry, 
there is little research conducted on a gait quantification 
method based on overall gait features. Considering all the 
various parameters that constitute the gait cycle, we propose a 
novel gait quantification method which offers a simple and 
easily interpretable assessment of gait with good accuracy and 
comprehensive features. 

In order to provide comprehensive gait information and 
evaluation in clinical screening and research, an affordable gait 
evaluation system is required which will provide the facility in 
clinic or at home. The aim of this study is to propose a novel 
method of gait evaluation using Procrustes superimposition 
[26] and Euclidian Distance Matrix Analysis (EDMA). To 
quantify individual gait based on all features four shape and 
size comparison techniques (Riemannian shape distance (RSD) 
[27], Riemannian size-and-shape distance (RSSD) [28], 
Procrustes size-and-shape distance (PSSD) [29] and Root mean 
square deviation (RMSD) [29]) are applied. We also aim to 
investigate how each feature impacts on a gait using EDMA. A 
high difference between the NMGF and each gait indicates a 
high degree of abnormality and a low value indicates close to a 
normal gait. To date, research on comprehensive understanding 
of gait quantification based on overall gait features to allow 
assessment and monitoring of gait changes from young and 
older adults has received little attention. Our method provides 
the facility to quantify gait and gait changes in both a clinic and 
at home which increases the availability and affordability of 
gait assessment.   

III.  METHODS 

A. Participants Selection 

A convenience sample of 32 subjects are recruited: 12 healthy 
young subjects (9 male, mean age 25.4 years, standard 
deviation 4.64, range 19-35 years); 20 older adults (19 male, 
mean age 71.86 years, standard deviation 8.55, range 62-86 
years). Among 12 young subjects, 10 are used for modelling 

while an additional 2 are used for validation. Young subjects 
are selected with no signs of gait, balance or walking 
abnormalities. Older adults from a care home are invited to 
participate. They are a group of patients chosen with some 
having a normal and others an abnormal gait. It is coincidental 
that the majority of subjects are male. 

B. Sensor placing location 

In this study, the sensors are placed at the base of the first 
metatarsal of both feet. This position was previously 
determined and validated for collecting data since this can 
achieve the best performance compared to other foot locations 
[30] (Figure 1(a)).  

C. Data collection 

Our proposed android app for synchronous data collection from 
accelerator and gyroscope is shown in Figure 1(b). The subjects 
perform a walk in a straight corridor comprising of 15 strides of 
normal forward walking, a turn-around and another 15 strides. 
The accelerometer and gyroscope raw data from young subject 
1 is presented in Figure 1(c). 

 
Figure 1. (a) IMU sensors placement in right and left metatarsal feet 

locations, (b) Android app for synchronous data collection from accelerometer 
and gyroscope, (c) Raw accelerometer and gyroscope data of young subject 1 

D. Stride, stance, swing and step phase detection 

Human walking can be described in the context of a gait cycle 
which has eight events shown in Figure 2 with stance and swing 
phases. A stride (whole gait cycle) is the distance between a 
point on one foot at the first foot contact and the same point on 
that foot at the next foot contact. 

Figure 2: Normal human gait phases [31] 

The stance phase shown in Figure 2 starts when the heel 
contacts the ground and the waist is in its lowest position during 
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the entire phase. There is deceleration of the leg towards the 
horizontal axis as the velocity moves to zero. The zero velocity 
remains until the terminal stance event where the foot is flat on 
the ground. In the pre-swing event, the toe is off the ground and 
starts forward movement demonstrating initial acceleration 
towards horizontal axis. The swing phase is when the heel 
moves off the ground. The acceleration interval corresponds to 
the change from the heel lift to the swing at the height point at 
mid-swing event. Deceleration starts during the terminal swing 
event from the highest point to the foot back flat on the ground. 
There is zero velocity again in the interval corresponding to the 
change from a flat foot to a heel lift. The eight events of a gait 
cycle presented in Figure 3 are identifiable from the IMU 
acceleration signal. The same phenomenon of human limb 
kinematic with accelerometer signal output during a typical 
walking cycle is identified in [31, 32]. Our gait cycle 
accelerometer signal (Figure 3) is agreed with the signal pattern 
in [31, 32]. Figure 3 shows the events of the gait cycle (Figure 
2) with corresponding accelerometer signal. 

 
Figure 3: Eight different events of a gait cycle from accelerometer data 

Figure 3 shows that at the start and end of each stride, the feet 
are stationary on the ground. Due to the walker’s forward 
movement, the acceleration shows its high value in the swing 
phase. Based on these characteristics, we identify stride, stance 
and swing events from accelerometer signal shown in Figure 4. 

 
Figure 4. Result of stride, stance and swing event detection 

Figure 4 shows the detected Start (purple circle) which is 
the foot’s initial contact to the ground, the transition of 
stance-swing phase SS (cyan triangle) is the initial swing and 
End (black square) is the terminal swing of gait phases 
information of each stride for both legs where the stance phase 
information is provided by the difference between Start and SS; 
and the swing information is the difference between SS and 
End. 

E. Velocity and distance estimation 

The Madgwick quaternion technique [33] is applied for 
estimating the orientation followed by the trapezoidal double 
integral approach [34] applied to obtain the travelled distance 
from the user movement using accelerometer and gyroscope 
data. The input data are passed through a high-pass filter to 
remove the direct component of the acceleration signal.  

We obtain values for 13 spatial-temporal gait features 
separately from the right and left lower limbs previously 
validated with measurements of gait features collected in a 
laboratory environment using a Qualisys Motion Capture 
System [30, 35]. These include total distance (m), total time (s), 
velocity (m/s), swing length (m), swing velocity (m/s), stride 
length (m), stride time (s), stride velocity (m/s), step length (m), 
step time (s), step velocity (m/s), stance time (s), and swing 
time (s). From our evaluation, we conclude that the first five 
features are redundant since they can be estimated from the rest 
eight features. Therefore, we use the last eight features as these 
are all an average reading from 30 strides.  

F. Understanding of shape, form and size 

Both shape and form consisted of geometrical representation of 
an object can be represented by a set of points or landmarks. 
The form of an object may change when magnitude or volume 
changes along various axes and transforms from reference to a 
target form [36]. Figure 5 shows the relationship between 
shape, size and form changes.  

 
Figure 5: Geometric representation of form change relating with shape and size 

[36] 

These landmarks remain invariant when an object is 1) moved 
within a given coordinate system (translation), 2) turned on any 
axis of a given coordinate system (rotation) and 3) flipped of a 
given coordinate system (reflection). For example, a triangle 
consists of three points considered to be landmarks. Any 
movement results in changes in the coordinate locations of the 
three points but no change to their relative positions. A new set 
of coordinates is therefore required to define the new position 
of the three points. The landmark coordinates matrix change 
upon reflection, translation or rotation even though the shape 
remained the same. In this research a total of eight gait features 
selected from the 13 extracted features are considered as 
landmarks. Procrustes analysis is used to analyse the 
distribution of features representing the gait shapes and 
Euclidean distance matrix analysis (EDMA) is used to analyse 
form difference between objects and the influence of each 
features in a gait. 

G. Normal Mean Gait Shape estimation using Procrustes 

In order to quantify and compare gait, a common procedure is 
to normalise the obtained gait features both in time and length. 
The eight gait features (stride length, stride time, stride velocity, 
step length, step time, step velocity, stance time and swing time) 
from right and left legs are presented in the Cartesian 
coordinate. The x and y axes represent the features of the right 
and left legs with the dimensionless numbers respectively. This 
coordinate represents the shape of gait features collected from 
both legs. 
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Procrustes analysis (a method of statistical analysis used to 
analyse the distribution of a set of shapes) describes curve 
shape and shape change in a mathematical and statistical 
framework, independently of time and size factors. Ordinary 
Procrustes analysis (OPA) finds the rotation matrix, translation 
vector and scaling factor to give the best match between two 
configurations [26]. Generalized Procrustes Analysis (GPA) is 
used to find the best fit among multiple objects [26, 29]. Instead 
of considering matching all possible independent matrix pairs, 
GPA is used in such a way that all matrices are simultaneously 
subjected to suitable rotation, translation and scaling 
transformations until a proper fit criterion is reached. For 
estimating NMGS using GPA, 10 young subjects gait 
information is used. GPA provides the least square 
correspondence of more than two data matrix configurations, Xi 
(i=1,2,3,…,m) be a series of m matrices that contain the 
coordinates of a set of p gait features called as landmarks on the 
m subjects called as number of shapes in k dimensions. 
Translation, rotation and scaling of a configuration are 
described [29] as 

T
iiiii jtOXcX +=ˆ                                     (1) 

where X̂  is the new coordinate of the landmarks in the 
configuration. Oi is the rotation matrix, ci is the scaling factor, ti 
is the translation vector and j is the unit vector. Using GPA the 
configurations are translated, rotated and rescaled until the sum 
of the squares of the distances between the equivalent 
landmarks are minimized to give the best possible match 
between all configurations. Figure 6 shows the procedure 
where the individual configurations are translated, rotated and 
scaled so that they can be “superimposed” on each other to 
achieve a “best” fit. 

 
Figure 6: Concept of GPA  

Iterative procedures are used for the minimisation process in 
GPA. The shapes are repeatedly scaled, rotated and translated 
until the sum-of-squares defining the distances between the 
equivalent landmarks on all shapes is minimised. The 
Procrustes derivation is described in [37]. 

The Procrustes superimposition computes a mean shape 
referred as NMGS for the young subjects based on gait features 
where scaling and reflection are not performed in this analysis. 
The shape of each subject’s gait is defined by its Procrustes 
residuals which are the deviation of the landmarks from the 
NMGS. 

H. Gait shape comparison  

RSD, RSSD, PSSD and RMSD are used to quantify a gait 
based on all gait features. In Riemannian geometry [38], a 
shortest curve between a pair of points on a curved surface is 
called a minimal geodesic. On some surfaces, there may be 
pairs of points which have more than one minimal geodesic 
between them (e.g., a sphere). RSD gives a measure of the 
relationship between the curvature of a space and its shape. Its 
parameter has a value between 0 and � /2; the smaller this value, 
the smaller the difference between the gaits. RSSD is the 
Riemannian distance between the size-and-shape of the 
configurations found by minimizing the Euclidean distance 
over rotations. The smaller the value is, the closer the 
configurations in size-and-shape distance. PSSD is defined as 
the distance between two shapes as the closest distance between 
the fibers on the pre-shape sphere in a non-Euclidean shape 
metric space. This allows us to compare two configurations 
which are independent of position, scale and rotation. RMSD is 
another measure of size-and-shape differences between 
configurations where the value is estimated from the square 
root of ordinary Procrustes sum of squares divided by the 
number of landmarks and number of dimensions. The small 
value means the small deviation between the configurations. 
RSD, RSSD, PSSD and RMSD are estimated for distinguishing 
degree of abnormality of each gait compared to NMGS. Each 
gait is translated and rotated to find the best match with NMGS 
using OPA and the distances are then estimated between 
NMGS and each best match gait.  

I. Mean form and inter-feature distance estimation  

EDMA [39] for comparing two shapes using landmark data is a 
method for comparing the forms of organisms that are 
measured using homologous landmarks. Homologous 
landmarks are those landmarks chosen to represent features on 
organisms that are similar due to a phylogenetic relationship. 
The organisms being compared thus share a common ancestor 
and the feature under study is present in all organisms under 
consideration due to each inheriting it from the common 
ancestor [40]. EDMA also allows form variation, shape or 
growth differences to examine through the comparisons of 
ratios of landmarks of equivalent configurations [39, 41]. 

The gait features extracted from each subject vary due to 
their walking style, speed and body characteristics etc. This 
variation is manifested as perturbations around the mean gait 
configuration. These perturbations vary in size and shape from 
feature to feature. Initially, the Euclidean distance between all 
pairs of features are estimated which is known as inter-feature 
distances [41]. The data is stored in an 8x8 symmetric matrix 
known as inter-feature distance matrix. The inter-feature 
distance matrix from all young subjects is then used to calculate 
the mean form matrix. The procedure of developing EDMA is 
given in [37]. 
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J. Form matrix and form difference matrix estimation  

FM(A) is as the form matrix (FM) and returns all the relevant 
information about the form of an object as summarized by 
landmark coordinates. 

For a form difference matrix (FDM), suppose the forms of 
two objects, A and B, each with K landmarks are to be 
compared. The forms of these two objects correspond to two 
points in an L-dimensional Euclidean space. If the forms are 
similar, then these two points lie on a ray going through the 
origin. If the above condition is true, then it can be concluded 
that the forms are different. A represents the form of the gait 
features each subject (including both young and older), B 
represents the mean form estimated from 10 young subjects 
using EDMA. FMij(B) represents the reference form which is 
NMGF. FMij(A) represents the real form measured from the 
individual. The ratios of corresponding linear distances from 
the two forms are calculated. 

FDMs contain all the relevant information (represented by 
the landmarks collected) regarding morphological distances 
between two forms (or sample of forms). Differences of form 
can reflect a simple difference in scaling of two forms (i.e. only 
in size), or a combination of difference in size and shape. 

FDMij(B,A) is then used to estimate the form difference 
from all subjects. The variance and covariance are estimated for 
individual features. Two gait features have the same form if 
their Euclidean matrixes are identical. Two gait features also 
have the same form if the Euclidean matrix describing one form 
is a constant multiple of the Euclidean matrix describing the 
second form. The procedure of developing FM and FDM using 
EDMA is given in [37]. 

IV. EXPERIMENTAL RESULTS 

To verify the proposed gait quantification approach, we 
perform experiments to our collected gait features from all 
subjects. We also present detailed analysis on the experimental 
results using the statistical software R [42]. 

A. Data collection 

A database is created for our experiment using the automatic 
gait feature extraction method presented in section III.D. The 
database consists of eight selected gait features among the 13 
features extracted from both legs for all subjects shown in 
Figure 7. Eight features (stride length (m), stride time (s), stride 
velocity (m/s), step length (m), step time (s), step velocity (m/s), 
stance time (s), and swing time (s)) of all individual subjects are 
plotted and each of these points is notionally joined together to 
represent a shape.  

Figure 7 shows that gait features of young subjects from the 
right and left legs are very similar, i.e., the features lying on or 
close to a hypothetical diagonal 450 line indicative of perfect 
symmetry (equal features arising from both legs). Conversely 
for the older subjects there is more variability in output of 
features from their legs. This results in a greater scatter in the 
output recorded, indicative of greater asymmetry shown in 
Figure 7. For this reason, we chose to perform our GPA on the 
young subjects who had a more normal gait than the older 
subjects with a view of developing a reference NMGS. 

B. Estimating of Mean Normal Gait Shape (NMGS) 

We perform GPA on the features (shapes) derived from 10 
young subjects. To do this all 10 shapes of the young subjects 
obtained from both legs are plotted after GPA best fit alignment 
shown in Figure 8. 

 
Figure 7: Gait features from young and older adults 

This GPA translates and rotates each of the shapes to find the 
best fit.  The mean of each shape of the features is then 
estimated and plotted generating the shape of NMGS shown in 
Figure 8 (black line). 

 
Figure 8 : Gait features from young after Generalised Procrustes analysis and the 

black line represents Normal Mean Gail shape (NMGS) 

Figure 8 shows that gait features and NMGS obtained as the 
mean features from the individual young subjects are very close 
to the diagonal.  

C. Gait quantification 

Next, we determine the shape differences between each pair of 
shapes i.e. NMGS with the individual gait shapes. To quantify a 
gait based on all gait features we use four shape comparison 
techniques (RSD, RSSD, PSSD and RMSD) shown in Table 1. 
Results closer to 0 suggest a gait shape close to the NMGS gait. 

TABLE 1 
Gait Quantification Information 

  RSD RSSD PSSD RMSD 

Y
ou

ng
 

1 0.129 0.152 0.129 0.054 
2 0.245 0.292 0.243 0.103 
3 0.304 0.364 0.299 0.129 
4 0.223 0.329 0.222 0.116 
5 0.367 0.467 0.359 0.165 
6 0.264 0.33 0.261 0.117 
7 0.204 0.237 0.202 0.084 
8 0.418 0.473 0.406 0.167 
9 0.38 0.441 0.371 0.156 
10 0.205 0.251 0.204 0.089 
11 0.270 0.324 0.267 0.156 
12 0.186 0.262 0.185 0.078 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6

O
ld

er
 A

du
lts

 
1 0.977 2.872 0.829 1.015 
2 0.922 1.885 0.797 0.666 
3 1.144 4.35 0.91 1.538 
4 0.905 1.79 0.786 0.633 
5 0.92 3.586 0.795 1.268 
6 0.886 3.104 0.775 1.097 
7 0.918 2.372 0.795 0.838 
8 0.874 1.711 0.767 0.605 
9 1.154 2.291 0.915 0.81 
10 0.959 3.417 0.819 1.208 
11 0.934 3.319 0.804 1.173 
12 1.058 3.755 0.872 1.328 
13 1.442 6.6 0.992 2.333 
14 1.018 2.989 0.851 1.057 
15 1.019 2.977 0.852 1.053 
16 1.173 5.084 0.922 1.798 
17 1.001 2.548 0.842 0.901 
18 0.94 1.848 0.807 0.653 
19 1.202 2.843 0.933 1.005 
20 1.01 3.809 0.847 1.347 

 
Table 1 shows that variations of the distances of the young 
subjects are smaller than those of the older subjects. Therefore, 
Table 1 can help distinguishing different gait patterns in young 
and older adults. 

We evaluate the data for statistical errors and assessed 
whether the estimated values are reasonable. A t-test comparing 
the mean values of RSD, RSSD, PSSD and RMSD values is 
carried out with a statistical significance level (alpha) of 0.05. 
The two sample unpaired t-test summary are given in Table 2. 

TABLE 2 
T-test for distances between MNGS and gaits 

 MD SD t-valuep-value df 
95% Confidence Interval

Lower Upper 
Riemannian shape distance 

Young 0.274 0.092 9.441 0.000 9 0.208 0.340 
Older 1.023 0.140 32.708 0.000 19 0.957 1.088 

Riemannian size-and-shape distance 
Young 0.334 0.106 9.979 0.000 9 0.258 0.409 
Older 3.158 1.199 11.775 0.000 19 2.596 3.719 

Procrustes size-and-shape distance 
Young 0.270 0.088 9.706 0.000 9 0.207 0.332 
Older 0.846 0.061 61.831 0.000 19 0.817 0.874 

Root mean square deviation 
Young 0.118 0.037 10.013 0.000 9 0.091 0.145 
Older 1.116 0.424 11.773 0.000 19 0.918 1.315 

MD= Mean Difference 

The t-tests indicate (p<0.05) that there is a significant mean 
difference between the gait of young and older subjects for 
RSD, RSSD, PSSD and RMSD values. 

The variability in gait shapes is shown in Figure 9 which 
determines the range of results. From the box plot and t-test 
above, it is clearly seen that the mean values of RSD, RSSD, 
PSSD and RMSD of the normal young is significantly lower 
than those of older adults. 

Figure 9 shows that for young subjects, RSSD and RMSD 
are more consistent with less standard deviation (SD) than RSD 
and PSSD. For older subjects the opposite was identified with a 
wider SD for RSSD and RMSD than RSD and PSSD. The 
boxplot confirms the expected difference in gait shapes 
between young and older subjects. From Figure 9, we can 
observe that RSSD provides the best indication among the four 

approaches since the variation of the older is large while the 
variation of the young is small. RMSD is the second best, 
followed by RSD and then PSSD. Next we determine what 
features of gait contribute to abnormality. 

 
Figure 9: Boxplot of RSD, PSSD, RMSD and RSSD 

D. NMGF and inter-feature distance estimation  

The database created in section IV.A is used. The mean form 
based on these normal gaits is estimated and is considered as 
NMGF estimated directly from the unit less feature coordinate 
data using EDMA, which is shown in Table 3. 

TABLE 3 
Normal Mean Gait Form (NMGF) Information 

Index Feature Right Left 
F1 Stride length -0.48296 0.109081 
F2 Stride time -0.77767 -0.09042 
F3 Stride velocity -0.01428 0.002893 
F4 Step length 0.489212 -0.05726 
F5 Step time 0.192591 0.07357 
F6 Step velocity 0.175095 -0.12865 
F7 Stance time 0.211629 0.007791 
F8 Swing time 0.206385 0.083 

The Euclidean distance between all possible pairs of features 
are estimated from NMGF for the inter-feature distances which 
are stored in an 8x8 symmetric matrix. Table 4 presents the 
lower triangular part of the matrix. 

TABLE 4 
Inter-feature distances 

 F1 F2 F3 F4 F5 F6 F7 F8 
F1 0        
F2 0.356 0       
F3 0.481 0.769 0      
F4 0.986 1.267 0.507 0     
F5 0.676 0.984 0.219 0.324 0    
F6 0.700 0.954 0.231 0.322 0.203 0   
F7 0.702 0.994 0.226 0.285 0.068 0.141 0 

 
F8 0.690 0.999 0.235 0.316 0.017 0.214 0.075 0 

Each cell in Table 4 of the inter-feature distance matrix shows 
the distance in two-dimensions that does not require a 
coordinate system. For example, the cell, that contains the 
number 0.356 in the mean form matrix of the young subjects, 
represents the distance between features F1 and F2. This is the 
distance estimated directly from the feature coordinate data. 
The inter-feature distance of NMGF is used to estimate the 
form difference matrix between NMGF and each gait to 
understand the degree of abnormality. 
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E. Form difference and form difference matrix between NMGF 
and each gait 

Estimation of FDM is carried out for all gaits relative to 
NMGF. The sum of divergences to the median value for each 
feature is estimated considering the whole FDM matrix [43]. 
This is the matrix of the degree of abnormality where the higher 
the degree of difference the greater the abnormality. Lower 
values imply that the gait features of the individual are closer to 
NMGF and conversely higher values mean that there is greater 
abnormality as there is greater deviation from MNGF. To 
represent the degree of abnormality in a meaningful and easily 
interpretable way we propose a two dimensional plot to 
summarize, explore and interpret the FDM results. Figure 10 
shows such a plot where x represents individual gait features 
and y represents the degree of abnormality in relation to the 
other features. The form difference for all eight gait features 
with respect to NMGF is plotted. For example in Figure 10 
feature 1 has the highest difference with feature 2 but is very 
close to features 3-8. This analysis is applied to a set of 32 gaits 
(12 young and 20 older). 

 
Figure 10: The degree of abnormality of Young Subject 1 with respect to the 

Mean Normal Gait Form for all the eight gait features. 

V. DISCUSSION 

This study demonstrates a detailed analysis of gait using 
Procrustes and EDMA methods. Procrustes is valuable in 
determining variation of gaits from NMGS while EDMA is 
useful in determining the degree of abnormality of the gait 
feature. We obtain the results using eight gait features collected 
automatically from both legs by adopting low cost IMU sensors 
synchronously. Our results have shown that a normal gait 
provides a set distribution of features. Any deviation from this 
distribution is identifiable as abnormal. This to our knowledge 
has not been done before. Although at this stage one cannot 
extrapolate this information to make accurate diagnoses the 
ability to identify such subtle differences in gait may have the 
potential to support specific diagnoses as well as treatment. 
This new method is more comprehensive than other methods 
that often rely on single or a smaller number of features [23, 
44]. We also introduce a morphological analysis to the 
evaluation of gait where one can see a pattern of gait and 
identify where changes occur in the gait pattern. Different 
parameters of gait indicate different type of gait abnormalities.  

Although our results are encouraging, there are a number of 
limitations. The number of subjects is relatively small (30) and 
no steps are taken to ensure a random sample. Coincidentally 
there is a gender bias with most subjects being male. The aim of 
the study is to see whether a Procrustes method can be used to 
analyse gait and not to study gait differences between the 

genders.  This gender bias is therefore unlikely to impact the 
value of our results and what they are trying to achieve. Other 
possible confounding factors are speed of walking as well as 
different height resulting in different gait parameters such as 
stride length. Our study was however intended to evaluate the 
normal baseline gait of our subjects only. The influence of these 
other factors will be studied in the future. Lastly, NMGS and 
NMGF are estimated using only 10 young subjects, while 
additional 2 young subjects are used for validation of our 
estimated NMGS and NMGF. There is the potential of a Type 1 
error (false positive) in detecting an effect that is not there.  

 However, our work is a proof of concept study that has 
established our method for gait evaluation. Future work is to 
establish a database with a larger number of subjects which 
stores more medical and physical information as well as 
longitudinal data across a longer period of time. Such 
longitudinal information will demonstrate the potential for 
using our method in monitoring response to treatment in patient 
with gait disorders. 

Normal gait is not determined by time and distance 
travelled. It is determined by the degree of variation in the gait 
features. While the time and distance can be assessed relatively 
easily using visual observation the variation is more difficult to 
determine. The Procrustes analysis uses translation and rotation 
among all gait feature shapes to find the best fit to identify such 
variation. We show how this normalization technique is used 
for a set of 10 normal young subjects to estimate NMGS. The 
RSD, RSSD, PSSD and RMSD distances between NMGS and 
all gaits are then calculated. We use the data from two 
additional young subjects to validate our results. This method 
has the potential to provide detailed analysis of gait on an 
individual basis. For example, from Table 1 we can see that the 
highest and lowest of RSD, RSSD, PSSD and RMSD distances 
are found in Y8 (young 8) and Y1, O13 (older 13) and O8 for 
older subjects respectively. From the individual gait features, 
the highest and lowest travelled distances are found from Y5 
and Y10, the highest and lowest time are found from Y4 and 
Y8. Interestingly, considering all gait features, the highest 
variation lies in Y8. This is demonstrated in the Procrustes 
shape obtained in Figure 11a.  

 
Figure 11: Lowest and highest shape differences from (a) young and (b) older 

subjects 

Although, other young subjects travelled distance and time are 
higher than Y8, based on the overall gait features, the shape 
difference between NMGS, Y8 is the highest. Similar findings 
are also found for older subjects. The lowest and highest shape 
difference is found for O8 and O13 shown in Figure 11b. 
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Investigating the history of O13 helps explain the shape of 
the graph. In this case O13 had a stroke and numbness in the 
right leg. He was unable to move his right leg and used crutches 
for moving. Thus most of the movement during walking was 
covered by the left leg and crutches are used to keep body 
balance. In Figure 11b we can see that the normal left leg shows 
greater movement but the abnormal right leg has less 
movement detected. In the future we will investigate further the 
impact of specific diagnoses and patient health on these gait 
parameters by exploring gait patterns obtained in specific 
diagnoses such as Parkinson disease, Stroke, and other 
conditions causing abnormal gaits. 

A t-test and Boxplots using RSD, RSSD, PSSD and RMSD 
distances show that the gait of young are distinguishable from 
older. The standard deviations are close to the mean indicating 
that the gait data distribution from young subjects’ is more 
consistent than that from older. The Box plots of the four 
different distance approaches, RSD, RSSD, PSSD and RMSD, 
show different distributions. They indicate that for young 
subjects RSSD and RMSD provides more consistent results 
with less standard deviation (SD) than RSD and PSSD. For 
older subjects the opposite was identified with a wider SD for 
RSSD and RMSD than RSD and PSSD. This difference is 
likely to arise as a consequence of the different mathematical 
formulas involved in calculating these measurements. In the 
future we will explore the reasons for this in more detail.  

To fully understand the degree of gait abnormality for older 
subjects, we use EDMA to locate the specific feature of the gait 
contributing to the abnormality. The process starts with 
estimating a mean form from a set of normal young gaits called 
as NMGF. It is then used to estimate the inter-feature distances 
that represents the distance between each feature from one to 
another. The form difference matrix is then estimated between 
NMGF and all gaits. Figure 12 shows the form difference of 
Y1, Y8, O8 and O13.  

 
Figure 12: Degree of abnormality from (a) young and (b) older adults 

Arguably, one can provide a multidimensional shape where 
each important feature is an axis which is to be explored in our 
future work. We have however deliberately chosen to use a two 
dimensional shape that is easy to visualize and interpret to start 
off.  Gait is a complex interaction of all features together and 
giving individual RMSDs may be difficult to interpret in the 
context of the global picture of the persons’ gait [45].  

With an aging population and the increase in chronic illness 
such as poor mobility and falls there is an increasing drive for 
new technologies to support treatment of patients at their own 
home. Our proposed system can be used to monitor gait 

abnormalities across a spectrum of diseases. A series of gait 
feature measurements on a regular basis can identify the 
progression or recession of changes in gait pattern as well as 
response to treatment with rehabilitation for these types of 
diseases and more. Growing young adults particularly if they 
have physical disabilities may develop gait abnormalities 
during puberty growth spurts. Periodic monitoring is becoming 
essential to make sure that such gait abnormalities are not 
progressing. Our method of gait evaluation can be used for such 
longitudinal monitoring for these cases. Our low cost gait 
evaluation system has the potential for widespread clinical use 
both at home and in a hospital setting. Using our method, it is 
possible to identify where in the gait cycle the abnormality lies 
and this enables therapists to identify problems to address these 
in a timely and in a more specific way. In future works, we plan 
to use our gait evaluation information to classify gait changes 
over time to identify abnormal gait patterns for the assessment 
of elderly fall risk, rehabilitation and sports applications. 

VI. CONCLUSION 

The aims of this study are to propose a novel method of gait 
evaluation using Procrustes superimposition and to investigate 
how each feature impacts on a gait using EDMA. We designed 
and implemented a portable system that can be used in both 
home and clinics without requiring access to a gait laboratory. 
Our method is objective and simple.  It has three parts: we use 
1) Procrustes for shape normalisation, 2) four techniques shown 
in Table 1 for gait quantification and 3) EDMA for identifying 
the degree of abnormality shown in Figures 10 and 12. This 
method also provides information to distinguish young from 
older gaits taking the full features distribution into account 
rather than relying on individual parameters such as specific 
length and time. EDMA can help to estimate and visualize the 
position of the gait abnormality. Our method offers several 
advantages: 1) it is easy to set up and implement; 2) it does not 
require complex equipment with segmentation of body parts 
required in a gait lab 3) it is relatively inexpensive and therefore 
increases its affordability decreasing health inequality; and 4) 
its versatility has the potential to increase its usability at home 
supporting inclusivity of patients who are home bound. 
Therefore, our method can help improve the accuracy of 
assessment and monitor the rehabilitation of patients with 
mobility problems. 

ETHICAL APPROVAL 

Ethical approval for this research was granted by the 
Bournemouth University ethical review committee and each 
subject was given a Participant Information Sheet and signed an 
informed Participant Agreement Form. 

ACKNOWLEDGEMENT 

This work was supported by European Commission 
ERASMUS MUNDUS FUSION project 
(545831-EM-1-2013-1-IT-ERAMUNDUSEMA21) and 
European Commission Marie Sk
odowska-Curie SMOOTH 
(Smart robots for fire-fighting) project 
(H2020-MSCA-RISE-2016-734875). The authors would like 
to thank all participants that participated in the study. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9

VII.  REFERENCES 

[1] M. P. Murray, “Gait as a total pattern of movement: including a 
bibliography on gait,” American Journal of Physical Medicine & 
Rehabilitation, vol. 46, no. 1, pp. 290-333, 1967. 

[2] A. Muro-de-la-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, 
“Gait Analysis Methods: An Overview of Wearable and  
Non-Wearable Systems, Highlighting Clinical Applications,” 
Sensors, vol. 14, no. 2, pp. 3362-3394, 2014-02-19, 2014. 

[3] R. Baker, “Gait analysis methods in rehabilitation,” Journal of 
NeuroEngineering and Rehabilitation, vol. 3, no. 1, pp. 4, 
2006-03-02, 2006. 

[4] M. D. Lewek, C. E. Bradley, C. J. Wutzke et al., “The relationship 
between spatiotemporal gait asymmetry and balance in individuals 
with chronic stroke,” J Appl Biomech, vol. 30, no. 1, pp. 31-36, Feb, 
2014. 

[5] H. Böhm, and L. Döderlein, “Gait asymmetries in children with 
cerebral palsy: Do they deteriorate with running?,” Gait & Posture, 
vol. 35, no. 2, pp. 322-327, 2012. 

[6] M. P. M. Steultjens, J. Dekker, M. E. v. Baar et al., “Range of joint 
motion and disability in patients with osteoarthritis of the knee or 
hip,” Rheumatology, vol. 39, no. 9, pp. 955-961, 2000-09-01, 2000. 

[7] Y. Wahab, and N. A. Bakar, "Gait analysis measurement for sport 
application based on ultrasonic system." pp. 20-24. 

[8] N. M. Bora, G. V. Molke, and H. R. Munot, “Understanding human 
gait: A survey of traits for biometrics and biomedical applications,” 
in International Conference on Energy Systems and Applications, 
2015, pp. 723-728. 

[9] G. Yogev, M. Plotnik, C. Peretz et al., “Gait asymmetry in patients 
with Parkinson’s disease and elderly fallers: when does the bilateral 
coordination of gait require attention?,” Experimental Brain 
Research, vol. 177, no. 3, pp. 336-346, 2007. 

[10] M. Plotnik, Y. Dagan, T. Gurevich et al., “Effects of cognitive 
function on gait and dual tasking abilities in patients with 
Parkinson’s disease suffering from motor response fluctuations,” 
Experimental Brain Research, vol. 208, no. 2, pp. 169-179, 2011. 

[11] J. S. Brach, and J. M. VanSwearingen, “Physical Impairment and 
Disability: Relationship to Performance of Activities of Daily 
Living in Community-Dwelling Older Men,” Physical Therapy, vol. 
82, no. 8, pp. 752-761, 2002-08-01 00:00:00, 2002. 

[12] R. J. Hess, J. S. Brach, S. R. Piva et al., “Walking Skill Can Be 
Assessed in Older Adults: Validity of the Figure-of-8 Walk Test,” 
Physical Therapy, vol. 90, no. 1, pp. 89-99, 21/04/2010 received 
06/09/2010 accepted, 2010. 

[13] K. O. Berg, S. L. Wood-Dauphinee, J. I. Williams et al., “Measuring 
balance in the elderly: validation of an instrument,” Can J Public 
Health, vol. 83, no. 2, pp. 7-11, Jul-Aug, 1992. 

[14] K. R. Archer, R. C. Castillo, E. J. MacKenzie et al., “Gait symmetry 
and walking speed analysis following lower-extremity trauma,” 
Physical therapy, vol. 86, no. 12, pp. 1630, 2006. 

[15] R. W. Kressig, and O. Beauchet, “Guidelines for clinical 
applications of spatio-temporal gait analysis in older adults,” Aging 
clinical and experimental research, vol. 18, no. 2, pp. 174-176, 
2006. 

[16] R. A. Zifchock, I. Davis, J. Higginson et al., “The symmetry angle: 
a novel, robust method of quantifying asymmetry,” Gait & posture, 
vol. 27, no. 4, pp. 622-627, 2008. 

[17] M. B
a� kiewicz, I. Wiszomirska, and A. Wit, “Comparison of four 
methods of calculating the symmetry of spatial-temporal parameters 
of gait,” Acta of bioengineering and biomechanics, vol. 16, no. 1, pp. 
29--35, 2014. 

[18] W. Herzog, B. M. Nigg, L. J. Read et al., “Asymmetries in ground 
reaction force patterns in normal human gait,” Med Sci Sports Exerc, 
vol. 21, no. 1, pp. 110-114, 1989. 

[19] S. J. Crenshaw, and J. G. Richards, “A method for analyzing joint 
symmetry and normalcy, with an application to analyzing gait,” 
Gait & Posture, vol. 24, no. 4, pp. 515-521, 2006/12/01/, 2006. 

[20] A. Sant'Anna, A. Salarian, and N. Wickstrom, “A new measure of 
movement symmetry in early Parkinson's disease patients using 
symbolic processing of inertial sensor data,” IEEE Trans Biomed 
Eng, vol. 58, no. 7, pp. 2127-35, Jul, 2011. 

[21] H. Sadeghi, P. Allard, F. Prince et al., “Symmetry and limb 
dominance in able-bodied gait: a review,” Gait & Posture, vol. 12, 
no. 1, pp. 34-45, 2000. 

[22] F. P. Carpes, C. B. Mota, and I. E. Faria, “On the bilateral 
asymmetry during running and cycling – A review considering leg 
preference,” Physical Therapy in Sport, vol. 11, no. 4, pp. 136-142, 
2010/11/01/, 2010. 

[23] R. Robinson, W. Herzog, and B. Nigg, “Use of force platform 
variables to quantify the effects of chiropractic manipulation on gait 
symmetry,” Journal of manipulative and physiological therapeutics, 
vol. 10, no. 4, pp. 172-176, 1987. 

[24] C. K. Balasubramanian, R. R. Neptune, and S. A. Kautz, 
“Variability in spatiotemporal step characteristics and its 
relationship to walking performance post-stroke,” Gait & posture, 
vol. 29, no. 3, pp. 408-414, 2009. 

[25] A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Functional gait 
assessment and balance evaluation system test: reliability, validity, 
sensitivity, and specificity for identifying individuals with 
Parkinson disease who fall,” Physical Therapy, vol. 91, no. 1, pp. 
102, 2011. 

[26] C. Goodall, “Procrustes methods in the statistical analysis of shape,” 
Journal Royal Statistical Society, Series B-Methodological, vol. 53, 
no. 2, pp. 285-339, 1991. 

[27] D. G. Kendall, “Shape manifolds, Procrustean metrics and complex 
projective spaces,” Bulletin of the London Mathematical Society, 
vol. 16, no. 2, pp. 81-121, 1984. 

[28] H. Le, “Mean size-and-shapes and mean shapes: a geometric point 
of view,” Advances in Applied Probability, vol. 27, no. 1, pp. 44-55, 
2016. 

[29] I. L. Dryden, and K. V. Mardia, Statistical Shape Analysis: John 
Wiley & Sons, Chichester, 1998. 

[30] A. R. Anwary, H. Yu, and M. Vassallo, “Optimal foot location for 
placing wearable IMU sensors and automatic feature extraction for 
gait analysis,” IEEE Sensors Journal, vol. 18, no. 6, pp. 2555-2567, 
2018. 

[31] D.-X. Liu, X. Wu, W. Du et al., “Gait Phase Recognition for 
Lower-Limb Exoskeleton with Only Joint Angular Sensors,” 
Sensors, vol. 16, no. 10, pp. 1579, 2016. 

[32] M. Patterson, E. Delahunt, K. Sweeney et al., “An Ambulatory 
Method of Identifying Anterior Cruciate Ligament Reconstructed 
Gait Patterns,” Sensors, vol. 14, no. 1, pp. 887, 2014. 

[33] S. O. Madgwick, “An efficient orientation filter for inertial and 
inertial/magnetic sensor arrays,” Citado, vol. 5, pp. 9-19, 2010. 

[34] Y. K. Thong, M. S. Woolfson, J. A. Crowe et al., “Numerical 
double integration of acceleration measurements in noise,” 
Measurement, vol. 36, no. 1, pp. 73-92, 2004. 

[35] A. R. Anwary, H. Yu, and M. Vassallo, “An Automatic Gait Feature 
Extraction Method for Identifying Gait Asymmetry Using Wearable 
Sensors,” Sensors, vol. 18, no. 2, pp. 676, 2018. 

[36] J. T. Richtsmeier, J. Cheverud, and S. R. Lele, “Advances in 
Anthropological Morphometrics,” Annual Reviews in Anthropology, 
vol. 21, pp. 283-305, 1992. 

[37] A. R. Anwary, “Statistical Shape Analysis for the Human Back,” 
2012. 

[38] M. d. Carmo, Riemannian Geometry: Birkhäuser Basel, 
Englewoods Cliffs, 1992. 

[39] S. Lele, and J. Richtsmeier, “Euclidean distance matrix analysis: a 
coordinate-free approach for comparing biological shapes using 
landmark data,” American Journal of Physical Anthropology, vol. 
86, no. 3, pp. 415-427, 1991. 

[40] S. Lele, and J. Richtsmeier, An Invariant Approach to Statistical 
Analysis of Shapes, First ed., London: Chapman and Hall-CRC 
Press, 2001. 

[41] S. Lele, “Euclidean distance matrix analysis (EDMA): estimation of 
mean form and mean form difference,” Mathematical Geology, vol. 
25, no. 5, pp. 573-602, 1993. 

[42] R. D. C. Team, "R: A language and environment for statistical 
computing," R Foundation for Statistical Computing, 2017. 

[43] J. Claude, Morphometrics with R, New York: Springer-Verlag, 
2008. 

[44] V. Agrawal, R. Gailey, C. O'Toole et al., “Symmetry in External 
Work (SEW): A Novel Method of Quantifying Gait Differences 
Between Prosthetic Feet,” Prosthetics and Orthotics International, 
vol. 33, no. 2, pp. 148-156, 2009. 

[45] A. R. Anwary, H. Yu, and M. Vassallo, “Wearable sensor based gait 
asymmetry visualization,” in The 24th Americas Conference On 
Information Systems, AMCIS 2018, New Orleans, LA, USA, 2018. 


