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Gait Evaluation using Procrustes and Euclidean
Distance Matrix Analysis

Arif Reza Anwary, Hongnian Yu and Michael Vass

Abstract—Objective assessment of gait is important in the
treatment and rehabilitation of patients with different diseases. In
this paper, we propose a gait evaluation system ug Procrustes
and Euclidean distance matrix analysis. We desigmal develop an
android app to collect real time synchronous accelemeter and
gyroscope data from two Inertial Measurement Unit (MU)
sensors through Bluetooth connectivity. The data isollected from
12 young (10 for modelling and 2 for validation) ad 20 older
subjects. We analyse the data collected from realosld for stride,
step, stance and swing gait features. We validateiomethod with
measurements of gait features. Generalized Procrues analysis is
used to estimate a standard normal mean gait shaghlMGS) for
10 young subjects. Each gait feature of both youngnd older
subjects is then converted to find the best matchith the NMGS
using ordinary Procrustes analysis. The shape distae between
the NMGS and each gait shape is estimated using Riannian
shape distance, Riemannian size-and-shape distané&ocrustes
size-and-shape distance and Root mean square deviat. A t-test
is performed to provide statistical evidence of gai shape
differences between young and older gaits. A meaonrim which is
considered as a standard normal mean gait form (NM&) and
inter-feature distances are estimated from the sedf 10 young
subjects. The form difference is estimated betwedghe NMGF and
individual gaits of young and older. The degree ofbnormality is
then estimated for individual features and the resilt is plotted to
visualize the feature in a gait. Experimental resus demonstrate
the performance of the proposed method.

IndexTerms—Gait Analysis; Gait Assessment; Gait Features;
Inertial Measurement Unit (IMU)

.  INTRODUCTION

diagnoses; 2) measure and monitor the severity ofjary or a
disease and determine the most appropriate treafjeB) be
a determinant of progression in patients with madic
conditions causing gait disorders [4, 5] monitosp@nse to
treatment in orthopaedic rehabilitation [6]; 4) riton and
improve an athlete’s performance [7]; and 5) imtébrics and
biomedical engineering areas, be an assistive tmol
characterize human locomotion and have many apjlica
[8]. Gait quantification information is importann ielderly
patient fall risk assessment [9] and also a predutfunctional
and cognitive decline [10]. Therefore, the objextvaluation
of gait and understanding the gait changes has mpatential
uses.

The paper is organized in the following sectiorect®n I
introduces previous related work. Section Il presethe
proposed method. Section IV delivers the experiaieesults
to demonstrate the proposed method. Section V piedke
discussions. The conclusion is given in section VI.

1. RELATED WORK

The tools and methodologies used to assess humbmrga
often arbitrary and often studied in artificial ¢tailed
conditions. Gait abnormalities are generally assksby
physicians, physiotherapists and researchersriicalisettings
or in gait laboratories. Clinical scales used talgse gait
parameters such as Gait Abnormality Rating Scdlg Higure
of 8 Walk Test [12], and Berg Balance Scale [18]subjective
or semi-subjective and a poor replacement to labogrdased
methods. This may not satisfy scientific criterfareliability
and validity [14], which may affect the accuracydifignosis,

UMAN gait is the result of a series of rhythmichHOW'Up and treatment [2]. There is no commontgepted

H alternating movements of the arms, legs, and trurgyideliqe, preferred methodology or pr_otocol foit gnanges
which create forward movement of the body [1]. [t€valuation. The European GAITRite Network Group,

complex mechanisms depend upon the integratechaatithe
musculoskeletal, nervous system, visual, vestibdaditory
systems leading to the smooth propulsive moveménhe
centre of gravity. Quantification of gait variahiis, kinematic
and kinetic measurements, muscular measuremenisramngy
expenditure,
information [2]. Gait quantification information issed to 1)
distinguish the type of gait impairments and suggessible
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developed Guidelines for Clinical Applications ofaiG
Analysis [15], with the intention to facilitate ¢aboration and
provide guidance to clinicians however there is no
recommended systematic procedure in the guideliree
available common approaches [28] for gait quarstfan of

provide comprehensive locomotive gaggmporal and spatial gait pattern are Symmetry nde

Symmetry ratio, Ratio, Gait asymmetry, etc. The oanly

used Symmetry Indices need to be normalized &fexence
value [16, 17] and there is potential influence &otificial

inflation as the normal values for young and olsigbjects are
not the same [18]. Sometimes the mean value céiloolased
for quantifying gait asymmetry may lead to erroremsults as
the mean measurements from two abnormal limbs ppgax
normal. For example, in a situation where a patieas
asymmetry in the opposite direction of gait, theetmagnitude
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of asymmetry for affected or unaffected limbs may \ery
small. The effect of the direction of gait asymmetnay be
eliminated using absolute values in the symmettjcies [16].
There are methods [19, 20] which do not make i to
identify the point during the gait cycle at whiclevihtions
occur. There are other approaches [21, 22] inclygitincipal
component analysis, regions of deviation analyais] paired
t-test to quantify gait symmetry. However, the nembf test
subjects and experiments are important for thesthads.
These methods may also need normative data froeatetulied
subjects as a reference [17]. Although gait asymmeét
frequently reported as present or not present whiely not
satisfy scientific criteria of reliability and vdity [14], an
arbitrary cut-off value of 10% deviation from pefeymmetry
has been used as a criterion of asymmetry in gaikssment
[23, 24]. This is later criticized due to its noarpmeter
specific nature [18]. Other previously used créeto describe
the absence or presence of gait asymmetry incledsitévity
and specificity of parameter measurement [25] utbee of 95%
Cl where gait asymmetry within the limits of a 9%8obtained
in a healthy population would define able-bodiedt,gahile
gait asymmetry outside the 95% CI would define plathic
gait [18], and significant limbs difference [21]cetAlthough
there are many approaches for quantifying gait asgtry,
there is little research conducted on a gait qfieation
method based on overall gait features. Consideailhghe
various parameters that constitute the gait cygéepropose a
novel gait quantification method which offers a plen and
easily interpretable assessment of gait with gamdii@acy and
comprehensive features.

In order to provide comprehensive gait informatiamd
evaluation in clinical screening and research,fiordable gait
evaluation system is required which will provide flacility in
clinic or at home. The aim of this study is to pyep a novel
method of gait evaluation using Procrustes supesgitipn
[26] and Euclidian Distance Matrix Analysis (EDMAT.0
quantify individual gait based on all features falmape and
size comparison techniques (Riemannian shape ds{&SD)
[27],
Procrustes size-and-shape distance (PSSD) [29Raatimean
square deviation (RMSD) [29]) are applied. We asm to
investigate how each feature impacts on a gaigusDMA. A
high difference between the NMGF and each gaitcatgis a
high degree of abnormality and a low value indisatese to a
normal gait. To date, research on comprehensiverstahding
of gait quantification based on overall gait featuto allow
assessment and monitoring of gait changes from gyand
older adults has received little attention. Our hmoétprovides
the facility to quantify gait and gait changes otltba clinic and
at home which increases the availability and affbitity of
gait assessment.

1. METHODS

A. Participants Selection
A convenience sample of 32 subjects are recrultechealthy

young subjects (9 male, mean age 25.4 years, sthnda

deviation 4.64, range 19-35 years); 20 older addl®smale,
mean age 71.86 years, standard deviation 8.55¢r68¢86
years). Among 12 young subjects, 10 are used fatetting

while an additional 2 are used for validation. Ygusubjects
are selected with no signs of gait, balance or inglk
abnormalities. Older adults from a care home awitdd to

participate. They are a group of patients choseh wbme
having a normal and others an abnormal gait. dbiacidental

that the majority of subjects are male.

B. Sensor placing location

In this study, the sensors are placed at the bhgkeofirst
metatarsal of both feet. This position was previpus
determined and validated for collecting data sitlie can
achieve the best performance compared to otheddoations
[30] (Figure 1(a)).

C. Data collection

Our proposed android app for synchronous dataatatefrom

accelerator and gyroscope is shown in Figure Tig.subjects
perform a walk in a straight corridor comprisingléf strides of
normal forward walking, a turn-around and anothestrides.
The accelerometer and gyroscope raw data from ysuhpgct
1 is presented in Figure 1(c).

Sensor1 Slot: 1
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Figure 1. (a) IMU sensors placement in right afidnetatarsal feet
locations, (b) Android app for synchronous datéectibn from accelerometer

Riemannian size-and-shape distance (RSSD)], [284nq gyroscope, (c) Raw accelerometer and gyrostatpeof young subject 1

D. Stride, stance, swing and step phase detection

Human walking can be described in the context gdiacycle

which has eight events shown in Figure 2 with staarad swing
phases. A stride (whole gait cycle) is the distabetveen a
point on one foot at the first foot contact and shene point on
that foot at the next foot contact.
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Figure 2: Normal human gait phases [31]

Stance Phase 60° /

The stance phase shown in Figure 2 starts whenhée
contacts the ground and the waist is in its loyesition during
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the entire phase. There is deceleration of thetdegrds the
horizontal axis as the velocity moves to zero. Z&® velocity
remains until the terminal stance event where tlo¢ i flat on
the ground. In the pre-swing event, the toe igha#fground and
starts forward movement demonstrating initial aedion
towards horizontal axis. The swing phase is when hbel
moves off the ground. The acceleration intervatesgonds to
the change from the heel lift to the swing at teght point at
mid-swing event. Deceleration starts during thenteal swing
event from the highest point to the foot back diatthe ground.
There is zero velocity again in the interval copading to the
change from a flat foot to a heel lift. The eiglepts of a gait
cycle presented in Figure 3 are identifiable frome tMU
acceleration signal. The same phenomenon of hurinan |
kinematic with accelerometer signal output duringygpical
walking cycle is identified in [31, 32]. Our gaityde
accelerometer signal (Figure 3) is agreed wittstgeal pattern
in [31, 32]. Figure 3 shows the events of the ggife (Figure
2) with corresponding accelerometer signal.

Acceleration

Time 6—>
Figure 3: Eight different events of a gait cyclenfraccelerometer data

Figure 3 shows that at the start and end of eaitfesthe feet
are stationary on the ground. Due to the walkeoswvérd
movement, the acceleration shows its high valugénswing
phase. Based on these characteristics, we idesttifie, stance

and swing events from accelerometer signal shoviigare4.
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Figure 4. Result of stride, stance and swing egtetection

Figure 4 shows the detect&dart (purple circle) which is
the foot's initial contact to the ground, the trios of

We obtain values for 13 spatial-temporal gait fezdu
separately from the right and left lower limbs poessly
validated with measurements of gait features cabbdn a
laboratory environment using a Qualisys Motion Qapt
System [30, 35]. These include total distance (ot time (s),
velocity (m/s), swing length (m), swing velocity &), stride
length (m), stride time (s), stride velocity (m&fep length (m),
step time (s), step velocity (m/s), stance time &sd swing
time (s). From our evaluation, we conclude that ftret five
features are redundant since they can be estirfratedhe rest
eight features. Therefore, we use the last eigittifes as these
are all an average reading from 30 strides.

F. Understanding of shape, form and size

Both shapeandform consisted of geometrical representation of
an object can be represented by a set of pointanoimarks.
The form of an object may change when magnitudeotume
changes along various axes and transforms fromerete to a
target form [36]. Figure 5 shows the relationshigtween
shape, size and form changes.

Form Change

Figure 5: Geometric representation of form chamdgting with shape and size
[36]

These landmarks remain invariant when an objet} imoved
within a given coordinate system (translation)hed on any
axis of a given coordinate system (rotation) andigped of a
given coordinate system (reflection). For exampldriangle
consists of three points considered to be landmatks/
movement results in changes in the coordinate itmtsof the
three points but no change to their relative poss#i A new set
of coordinates is therefore required to definertber position
of the three points. The landmark coordinates mathiange
upon reflection, translation or rotation even thoulge shape
remained the same. In this research a total ot gghfeatures
selected from the 13 extracted features are corsldas
landmarks. Procrustes analysis is used to analyse t
distribution of features representing the gait €samnd

stance-swing phasgS(cyan triangle) is the initial swing and Euclidean distance matrix analysis (EDMA) is use@malyse
End (black square) is the terminal swing of gait plsasdorm difference between objects and the influence ahea

information of each stride for both legs where stence phase
information is provided by the difference betw&tartandSS
and the swing information is the difference betw&Sand
End

E. Velocity and distance estimation

The Madgwick quaternion technique [33] is applieatr f
estimating the orientation followed by the trapeabidouble
integral approach [34] applied to obtain the treackidistance
from the user movement using accelerometer andsgype
data. The input data are passed through a high4jtessto
remove the direct component of the accelerationasig

features in a gait.

G. Normal Mean Gait Shape estimation using Procrustes

In order to quantify and compare gait, a commorcgdare is

to normalise the obtained gait features both iretand length.
The eight gait features (stride length, stride fistede velocity,
step length, step time, step velocity, stance aimgswing time)
from right and left legs are presented in the Giate
coordinate. The andy axes represent the features of the right
and left legs with the dimensionless numbers ragpy. This
coordinate represents the shape of gait featuléectad from
both legs.
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Procrustes analysis (a method of statistical arsalysed to
analyse the distribution of a set of shapes) dessricurve

The Procrustes superimposition computes a meaneshap
referred as NMGS for the young subjects based itrfiegdures

shape and shape change in a mathematical andticshtis where scaling and reflection are not performedhis analysis.

framework, independently of time and size fact@sdinary

Procrustes analysis (OPA) finds the rotation matranslation
vector and scaling factor to give the best matdiwéen two
configurations [26]. Generalized Procrustes Analy§8PA) is
used to find the best fit among multiple objec$, [29]. Instead
of considering matching all possible independentrimaairs,

GPA is used in such a way that all matrices araisgmeously
subjected to suitable rotation, translation and lirsga
transformations until a proper fit criterion is cead. For

estimating NMGS using GPA, 10 young subjects gag

information is used. GPA provides the least
correspondence of more than two data matrix corditipns, X

The shape of each subject’s gait is defined byPitscrustes
residuals which are the deviation of the landmdrisn the
NMGS.

H. Gait shape comparison

RSD, RSSD, PSSD and RMSD are used to quantify & gai
based on all gait features. In Riemannian geomf&gy, a
shortest curve between a pair of points on a cusugthce is
called a minimal geodesic. On some surfaces, thexg be
airs of points which have more than one minimaldgsic
etween them (e.g., a sphere). RSD gives a meaduiee

Squarr%lationship between the curvature of a space @rghape. Its

parameter has a value between 0 d@dthe smaller this value,

(=1,2,3,...m) be a series o matrices that contain the the gmaller the difference between the gaits. R$SEhe
coordinates of a set pfgait features called as landmarks on thgjemannian distance between the size-and-shapehef t

m subjects called as number of shapeskimdimensions.
Translation, rotation and scaling of a configunatiare
described [29] as

configurations found by minimizing the Euclidearstdince
over rotations. The smaller the value is, the clotee

configurations in size-and-shape distance. PSSi2fined as
the distance between two shapes as the closesmtcisbetween

X =6 XQ +jt’ (1) the fibers on the pre-shape sphere in a non-Ewtlidhape
R metric space. This allows us to compare two conéitjons
where X is the new coordinate of the landmarks in thahich are independent of position, scale and rtafRMSD is
configuration O; is the rotation matrixg; is the scaling factot, another measure of size-and-shape differences betwe
is the translation vector afds the unit vector. Using GPA the configurations where the value is estimated from square
configurations are translated, rotated and resaaiéitithe sum oot of ordinary Procrustes sum of squares dividgdthe
of the squares of the distances between the equ'nval”umber of landmarks and number of dimensions. Thalls

landmarks are minimized to give the best possibitchm value means the small deviation between the cordigns.

between all configurations. Figure 6 shows the edoce
where the individual configurations are translatedated and
scaled so that they can be “superimposed” on edivér o
achieve a “best” fit.

C2,0,12

Figure 6: Concept of GPA

Iterative procedures are used for the minimisapoocess in
GPA. The shapes are repeatedly scaled, rotatetramslated
until the sum-of-squares defining the distancesveen the

RSD, RSSD, PSSD and RMSD are estimated for disshgwg
degree of abnormality of each gait compared to NME&:h
gait is translated and rotated to find the besthatith NMGS
using OPA and the distances are then estimatedebatw
NMGS and each best match gait.

I. Mean form and inter-feature distance estimation

EDMA [39] for comparing two shapes using landmaakads a
method for comparing the forms of organisms thag ar
measured using homologous landmarks. Homologous
landmarks are those landmarks chosen to represatoirés on
organisms that are similar due to a phylogenetationship.
The organisms being compared thus share a comnuastan
and the feature under study is present in all dsgas under
consideration due to each inheriting it from themomon
ancestor [40]. EDMA also allows form variation, phaor
growth differences to examine through the compassof
ratios of landmarks of equivalent configuration8,[31].

The gait features extracted from each subject damy to
their walking style, speed and body characteristizs This
variation is manifested as perturbations aroundntiean gait
configuration. These perturbations vary in size simgpe from
feature to feature. Initially, the Euclidean distarbetween all
pairs of features are estimated which is knowmger-feature
distances [41]. The data is stored in an 8x8 symimetatrix
known as inter-feature distance matrix. The ineatdire
distance matrix from all young subjects is therdusecalculate
the mean form matrix. The procedure of developibdVRA is

equivalent landmarks on all shapes is minimisede THgiven in [37].

Procrustes derivation is described in [37].
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J. Form matrix and form difference matrix estimation B. Estimating of Mean Normal Gait Shape (NMGS)

FM(A) is as the form matrixqM) and returns all the relevant We perform GPA on the features (shapes) deriverh fi®

information about the form of an object as sumnetiby young subjects. To do this all 10 shapes of thengaubjects

landmark coordinates. obtained from both legs are plotted after GPA beatignment
For a form difference matri-DM), suppose the forms of shown in Figure 8.

two objects,A and B, each withK landmarks are to be

compared. The forms of these two objects corresportd/io e i StenceTme

points in anL-dimensional Euclidean space. If the forms ar ' ,ﬁ?’ y § st

similar, then these two points lie on a ray goihgpugh the _** &7 A &
origin. If the above condition is true, then it daa concluded 2 ' & e ||| & greetme Il
that the forms are differenf represents the form of the gait="* E & ooty || 2 Sumarime *
features each subject (including both young anderdldB cr AN A Y oeeenan | ® " %
represents the mean form estimated from 10 youhjects wp @ e @ Sroeseoy D{}m'

using EDMA. FM;(B) represents the reference form which i °*

NMGF. FM;(A) represents the real form measured from th
individual. The ratios of corresponding linear distes from
the two forms are calculated.

FDMs contain all the relevant information (represertigd
the landmarks collected) regarding morphologicatatices
between two forms (or sample of forms). Differenoé$orm
can reflect a simple difference in scaling of twonfis (i.e. only
in size), or a combination of difference in sizel ahape.

FDM;(B,A) is then used to estimate the form differenc
from all subjects. The variance and covariancestienated for
individual features. Two gait features have the esdarm if
their Euclidean matrixes are identical. Two ga#téees also
have the same form if the Euclidean matrix deseglzine form
is a constant multiple of the Euclidean matrix dimsiog the
second form. The procedure of developiid andFDM using
EDMA is given in [37].

V.

To verify the proposed gait quantification approacte
perform experiments to our collected gait featufresn all
subjects. We also present detailed analysis omxtperimental
results using the statistical software R [42].

EXPERIMENTAL RESULTS

A. Data collection

A database is created for our experiment usingatitematic
gait feature extraction method presented in sedtidD. The
database consists of eight selected gait featumesig the 13
features extracted from both legs for all subjestiswn in
Figure 7. Eight features (stride length (m), sttidee (s), stride
velocity (m/s), step length (m), step time (s)pstelocity (m/s),
stance time (s), and swing time (s)) of all indivétisubjects are
plotted and each of these points is notionallygditogether to
represent a shape.

Young Subjects Gait Information Older Subjects Gait Information

1]
02 04 0.6 08 1 0 1 15

Right Leg Right Leg
Figure 7: Gait features from young and older adults

12 14 16 05

<

This GPA translates and rotates each of the shapi@sd the
best fit. The mean of each shape of the featusetheén
estimated and plotted generating the shape of Nigl&8vn in
Figure 8 (black line).

Generalized Procrustes Analysis on Young Participants
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Figure 8 : Gait features from young after GeneedliBrocrustes analysis and the

black line represents Normal Mean Gail shape (NMGS)
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Figure 8 shows that gait features and NMGS obtaasethe
mean features from the individual young subjeatsvary close
to the diagonal.

C. Gait quantification

Next, we determine the shape differences betweetm gair of
shapes i.e. NMGS with the individual gait shapesquiantify a
gait based on all gait features we use four shapeparison
techniques (RSD, RSSD, PSSD and RMSD) shown ineThbl
Results closer to 0 suggest a gait shape clodetdMGS gait.

. ) . TABLE 1
Figure 7 shows that gait features of young subjeota the Gait Quantification Information
right and left legs are very similar, i.e., thetfeas lying on or RSD | RSSD| PSSO RMSI
close to a hypothetical diagonal®4e indicative of perfect 1]0129] 0152 0.129 | 0.054
symmetry (equal features arising from both leggn\@rsely 2 | Gzla| 2ge | D22 0,00
) . N 3 [ 0.304] 0.364 ] 0.299 | 0.129
for the older subjects there is more variability datput of 2 102231 0329 0.222 | 0116
features from their legs. This results in a greatetter in the 5 [ 0367] 0467 ] 0359 | 0.165
output recorded, indicative of greater asymmetrgwah in © |6 |0264]| 033 | 0.261| 0.117
Figure 7. For this reason, we chose to perform@mRA on the >8_ 7 | 0.204] 0.237 | 0.202 | 0.084
young subjects who had a more normal gait thanotter 8 | 0418 0473 | 0.406 | 0.167
subjects with a view of developing a reference NMGS 9 | 038 | 0441 | 0.371] 0.156
10 | 0.205] 0.251 | 0.204 | 0.089
11 | 0.270| 0.324 | 0.267 | 0.156
12 | 0.186| 0.262 | 0.185| 0.078
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1 |0977| 2.872 | 0.829 | 1.015
2 |1 0922| 1.885 | 0.797 | 0.666
3 | 1144 435 | 091 | 1.538
4 | 0905| 1.79 | 0.786 | 0.633
5 | 092 | 3.586 | 0.795| 1.268
6 | 0.886| 3.104 | 0.775| 1.097
7 |1 0918 2.372 | 0.795| 0.838
o |8 |0874| 1.711 | 0.767 | 0.605
S| 9 [ 1154] 2291 | 0.915]| 0.81
% | 10] 0959 3.417 | 0.819 | 1.208
g 11| 0.934| 3.319 | 0.804 | 1.173
O [12]1058| 3.755 | 0.872 | 1.328
13 | 1.442| 6.6 0.992 | 2.333
14 | 1.018 | 2.989 | 0.851 | 1.057
15| 1.019 | 2.977 | 0.852 | 1.053
16 | 1.173| 5.084 | 0.922 | 1.798
17 | 1.001 | 2.548 | 0.842 | 0.901
18 | 0.94 | 1.848 | 0.807 | 0.653
19 | 1.202 | 2.843 | 0.933 | 1.005
20| 1.01 | 3.809 | 0.847 | 1.347

Table 1 shows that variations of the distanceshef young
subjects are smaller than those of the older stehj&berefore,
Table 1 can help distinguishing different gait pats in young
and older adults.

We evaluate the data for statistical errors ancesses
whether the estimated values are reasonaliiéegt comparing

the mean values of RSD, RSSD, PSSD and RMSD vadues

carried out with a statistical significance levalpha) of 0.05.

The two sample unpairdeest summary are given in Table 2.

TABLE 2
T-test for distances between MNGS and gaits

MD | SD fr-valudp-valud df 95% Confidence Intery
Lower | Upper
Riemannian shape distance
Young|0.274/0.092/9.441| 0.000| 9 0.208 0.340
Older |1.023/0.14032.704 0.000| 19 0.957 1.088
Riemannian size-and-shape distance
Young|0.334/0.106/9.979| 0.000| 9 0.258 0.409
Older |3.1581.19911.774 0.000| 19 2.596 3.719
Procrustes size-and-shape distance
Young|0.270/0.088/9.706| 0.000| 9 0.207 0.332
Older |0.846/0.061/61.83] 0.000| 19 0.817 0.874
Root mean square deviation
Young|0.118/0.037/10.013 0.000 9 0.091 0.145
Older|1.116/0.424]11.774 0.000]| 19 0.918 1.315

MD= Mean Difference

The t-tests indicate (p<0.05) that there is a significarean
difference between the gait of young and older extbj for
RSD, RSSD, PSSD and RMSD values.

The variability in gait shapes is shown in FigurevBich
determines the range of results. From the box ghatt-test
above, it is clearly seen that the mean valuesSiDRRSSD,
PSSD and RMSD of the normal young is significamohywer
than those of older adults.

Figure 9 shows that for young subjects, RSSD ancSBM
are more consistent with less standard deviation) {§an RSD
and PSSD. For older subjects the opposite wasifiehivith a

wider SD for RSSD and RMSD than RSD and PSSD. Thlen

boxplot confirms the expected difference in gaitafss
between young and older subjects. From Figure 9,care
observe that RSSD provides the best indication gntloa four

approaches since the variation of the older iselamyile the
variation of the young is small. RMSD is the secdrest,
followed by RSD and then PSSD. Next we determinatwh
features of gait contribute to abnormality.
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Figure 9: Boxplot of RSD, PSSD, RMSD and RSSD
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D. NMGF and inter-feature distance estimation

The database created in section IV.A is used. Thamiform
based on these normal gaits is estimated and sdayed as
NMGF estimated directly from the unit less featooerdinate
data using EDMA, which is shown in Table 3.

TABLE 3
Normal Mean Gait Form (NMGF) Information
Index Feature Right Left
F1 Stride length | -0.48296 | 0.109081
F2 Stride time -0.777674  -0.0904p
F3 Stride velocity | -0.01428 | 0.002893
F4 Step length 0.48921P -0.05726
F5 Step time 0.192591| 0.07357
F6 Step velocity | 0.175095 -0.12865
F7 Stance time | 0.211629| 0.007791
F8 Swing time 0.206384 0.083

The Euclidean distance between all possible pdifeaiures
are estimated from NMGF for the inter-feature dists which
are stored in an 8x8 symmetric matrix. Table 4 gmes the
lower triangular part of the matrix.

TABLE 4
Inter-feature distances
F1 F2 F3 F4 F5 F6 F7 F8

F1 0
F2 | 0.356 0
F3 | 0.481| 0.769 0
F4 | 0.986| 1.267| 0.507 0
F5 | 0.676| 0.984 0.219 0.324 0
F6 | 0.700] 0.954 0.231 0.322 0.203 Qg
F7 | 0.702| 0.994 0.226 0.285 0.068 0.141 D
F8 | 0.690| 0.999 0.23% 0.316 0.017 0.214 0.075 | O

Each cell in Table 4 of the inter-feature distanrix shows
the distance in two-dimensions that does not requar
coordinate system. For example, the cell, that ainatthe
number 0.356 in the mean form matrix of the youuljects,
represents the distance between features F1 anthi2is the
distance estimated directly from the feature cowtdi data.
e inter-feature distance of NMGF is used to est@nthe
form difference matrix between NMGF and each gait t
understand the degree of abnormality.
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E. Form difference and form difference matrix betw&MGF
and each gait

Estimation of FDM is carried out for all gaits ril@ to
NMGF. The sum of divergences to the median valueeéxh
feature is estimated considering the whole FDM mxdt3].
This is the matrix of the degree of abnormality vehlne higher
the degree of difference the greater the abnormdlibwer
values imply that the gait features of the indidbare closer to
NMGF and conversely higher values mean that tregedater
abnormality as there is greater deviation from MNQ®
represent the degree of abnormality in a meanirggidl easily
interpretable way we propose a two dimensional pot
summarize, explore and interpret the FDM resuligufe 10
shows such a plot wheperepresents individual gait features
andy represents the degree of abnormality in relatmthe
other features. The form difference for all eighitdeatures
with respect to NMGF is plotted. For example in Ufigy 10
feature 1 has the highest difference with featuliRis very
close to features 3-8. This analysis is appliea $et of 32 gaits
(12 young and 20 older).

Mean Gait Form and Young 1

1.5
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Form Difference
1.0
i
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0.5
|
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Figure 10: The degree of abnormality of Young Sciajewith respect to the
Mean Normal Gait Form for all the eight gait featur
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V.

This study demonstrates a detailed analysis of gsihg
Procrustes and EDMA methods. Procrustes is valuable
determining variation of gaits from NMGS while EDM&
useful in determining the degree of abnormalitytiod gait
feature. We obtain the results using eight gatifies collected
automatically from both legs by adopting low cddt) sensors
synchronously. Our results have shown that a norgadt
provides a set distribution of features. Any ddwiatfrom this
distribution is identifiable as abnormal. This tar &knowledge
has not been done before. Although at this stagecamnot
extrapolate this information to make accurate disgs the
ability to identify such subtle differences in gaiay have the
potential to support specific diagnoses as weltraatment.
This new method is more comprehensive than othehads
that often rely on single or a smaller number @itdiees [23,
44]. We also introduce a morphological analysis the
evaluation of gait where one can see a patternaidtf and
identify where changes occur in the gait patteriffeBent
parameters of gait indicate different type of gdubhormalities.
Although our results are encouraging, there anenalrer of
limitations. The number of subjects is relativetyadl (30) and
no steps are taken to ensure a random sample. iGamally
there is a gender bias with most subjects being e aim of
the study is to see whether a Procrustes methobeased to
analyse gait and not to study gait differences betwthe

DISCUSSION
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genders. This gender bias is therefore unlikelintpact the
value of our results and what they are trying thieme. Other
possible confounding factors are speed of walkingvall as
different height resulting in different gait paraers such as
stride length. Our study was however intended &luate the
normal baseline gait of our subjects only. Theuefice of these
other factors will be studied in the future. LastNMGS and
NMGF are estimated using only 10 young subjectsilewh
additional 2 young subjects are used for validatodnour
estimated NMGS and NMGF. There is the potentia df/pe 1
error (false positive) in detecting an effect tisatot there.

However, our work is a proof of concept study thas
established our method for gait evaluation. Futuogk is to
establish a database with a larger number of stsbj@hich
stores more medical and physical information asl asl
longitudinal data across a longer period of timeucts
longitudinal information will demonstrate the patieh for
using our method in monitoring response to treatrimepatient
with gait disorders.

Normal gait is not determined by time and distance
travelled. It is determined by the degree of vaiatn the gait
features. While the time and distance can be as3destatively
easily using visual observation the variation isendifficult to
determine. The Procrustes analysis uses transkatidmotation
among all gait feature shapes to find the besb filentify such
variation. We show how this normalization technigsieised
for a set of 10 normal young subjects to estima#3d$. The

RSD, RSSD, PSSD and RMSD distances between NMGS and

all gaits are then calculated. We use the data fiom

additional young subjects to validate our resultdis method
has the potential to provide detailed analysis at gn an

individual basis. For example, from Table 1 we saa that the
highest and lowest of RSD, RSSD, PSSD and RMSRmtists
are found in Y8 (young 8) and Y1, O13 (older 13)l &8 for

older subjects respectively. From the individuait geatures,
the highest and lowest travelled distances areddtom Y5

and Y10, the highest and lowest time are found fi6tand

Y8. Interestingly, considering all gait featurebge thighest
variation lies in Y8. This is demonstrated in theodPustes
shape obtained in Figure 11a.

Lowest and Highest Shape Distances for Young Lowest and Highest Shape Difference for Older Adults
0.8 6

—&— NMGS
—&— Young 1
—&— Young8

—&— NMGS
—©—Older 8
—6— Older 13

0 02
Riaht Leg
6]
Figure 11: Lowest and highest shape differences (&) young and (b) older

subjects

05
Right Leg

1 15 2 25

Although, other young subjects travelled distarme tme are
higher than Y8, based on the overall gait featutfes,shape
difference between NMGS, Y8 is the highest. Sinfiladings
are also found for older subjects. The lowest dgtidst shape
difference is found for O8 and O13 shown in Figliié.
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Investigating the history of 013 helps explain shape of
the graph. In this case O13 had a stroke and nussbinethe
right leg. He was unable to move his right leg aged crutches
for moving. Thus most of the movement during waldkimas
covered by the left leg and crutches are used &p Keody
balance. In Figure 11b we can see that the noeftdélh shows

8

abnormalities across a spectrum of diseases. &ssefi gait
feature measurements on a regular basis can idettie
progression or recession of changes in gait paterwell as
response to treatment with rehabilitation for thégees of
diseases and more. Growing young adults partigulathey
have physical disabilities may develop gait abnditiea

greater movement but the abnormal right leg has legyring puberty growth spurts. Periodic monitoriagpecoming

movement detected. In the future we will invesigatrther the
impact of specific diagnoses and patient healtth@se gait
parameters by exploring gait patterns obtained paciic

diagnoses such as Parkinson disease, Stroke, ame o

conditions causing abnormal gaits.

A t-test and Boxplots using RSD, RSSD, PSSD and RMS

distances show that the gait of young are diststralile from
older. The standard deviations are close to thenrimeficating
that the gait data distribution from young subjecismore
consistent than that from older. The Box plots lné four
different distance approaches, RSD, RSSD, PSSIRMED,
show different distributions. They indicate thatr fgpoung
subjects RSSD and RMSD provides more consistentitses
with less standard deviation (SD) than RSD and PSS
older subjects the opposite was identified withidew SD for
RSSD and RMSD than RSD and PSSD. This difference
likely to arise as a consequence of the differeathematical
formulas involved in calculating these measuremelntsghe
future we will explore the reasons for this in mdegail.

To fully understand the degree of gait abnormdtityolder
subjects, we use EDMA to locate the specific featfrthe gait
contributing to the abnormality. The process stantith
estimating a mean form from a set of normal youai¢sg-alled
as NMGF. It is then used to estimate the interdieatiistances
that represents the distance between each featmedne to
another. The form difference matrix is then estedabetween
NMGF and all gaits. Figure 12 shows the form ddfese of
Y1, Y8, 08 and O13.

Figure 12: Degree of abnormality from (a) young éndolder adults

Arguably, one can provide a multidimensional shagere
each important feature is an axis which is to @aed in our
future work. We have however deliberately chosemstma two
dimensional shape that is easy to visualize ardpnet to start
off. Gait is a complex interaction of all featutegether and
giving individual RMSDs may be difficult to intergtr in the
context of the global picture of the persons’ /).

With an aging population and the increase in clrdimess
such as poor mobility and falls there is an indregasdrive for
new technologies to support treatment of patientheir own

essential to make sure that such gait abnormaléres not
progressing. Our method of gait evaluation candseldor such

4ongitudinal monitoring for these cases. Our lowstcgait

evaluation system has the potential for widespiaital use
IB)th at home and in a hospital setting. Using oathed, it is
possible to identify where in the gait cycle thaatmality lies
and this enables therapists to identify problemedidress these
in a timely and in a more specific way. In futurerks, we plan
to use our gait evaluation information to clasgjiit changes
over time to identify abnormal gait patterns foe issessment
of elderly fall risk, rehabilitation and sports dipptions.

VI.

The aims of this study are to propose a novel ntetifogait
&aluation using Procrustes superimposition aridvestigate
how each feature impacts on a gait using EDMA. \&sighed
and implemented a portable system that can be insbdth
home and clinics without requiring access to a Igdbratory.
Our method is objective and simple. It has thragsp we use
1) Procrustes for shape normalisation, 2) fourtepkes shown
in Table 1 for gait quantification and 3) EDMA falentifying
the degree of abnormality shown in Figures 10 aadThis
method also provides information to distinguish iygurom
older gaits taking the full features distributiomd account
rather than relying on individual parameters sustspecific
length and time. EDMA can help to estimate andalize the
position of the gait abnormality. Our method offesveral
advantages: 1) it is easy to set up and implen®rit;does not
require complex equipment with segmentation of bpdyts
required in a gait lab 3) it is relatively inexpamsand therefore
increases its affordability decreasing health iradityy and 4)
its versatility has the potential to increase gahility at home
supporting inclusivity of patients who are home ibbu
Therefore, our method can help improve the accurafcy
assessment and monitor the rehabilitation of pitienth
mobility problems.

CONCLUSION
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