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Abstract

Everyday reading rarely occurs in complete silence. Whether reading at the office, on the
way to work, or in a cafeteria, people are often exposed to background sounds such as
speech, noise or music that may distract them from their task. While a lot of research has
focused on how background sounds affect readers’ comprehension, less is known about their
influence on the ongoing reading process. The present research investigated the effect of
continuous and discrete background sounds on eye-movements during reading in an attempt
to find out what makes such sounds distracting and how they affect online reading
behaviour. The present investigation started with a meta-analysis of previous findings, which
revealed that background speech, noise, and music all have a modest but reliably detrimental
effect on reading comprehension. The first two experiments showed that intelligible speech
disrupts eye-movements during reading mostly due to its semantic properties, which
interfere with extracting the meaning of the text. This disruption was found to occur after the
initial lexical processing of words and it resulted in more regressions and more re-reading
fixations. However, participant’s immediate comprehension of the text remained unaffected.
Two further studies suggested that the increase in re-reading behaviour occurs in an attempt
to maintain comprehension of the text under such distracting conditions because intelligible
speech disrupted comprehension accuracy once participants could not selectively re-read the

text. The final experiment showed that discrete deviant sounds also disrupt eye-movements



iv
during reading and lead to longer fixation durations when the sound is first heard. However,
unlike intelligible speech, this type of distraction was likely due to saccadic inhibition of the
oculomotor system. Taken together, the present results demonstrate that eye-movements
during reading can reveal subtle auditory distraction effects that may not be detected in
measures of comprehension accuracy and that they can give important theoretical insights
into their cognitive and oculomotor origin. The findings are discussed in terms of theories of

auditory distraction and computational models of eye-movement control during reading.
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CHAPTER 1: INTRODUCTION AND REVIEW OF THE LITERATURE

Reading is an important everyday skill that is indispensable in modern society.
Although reading performance is best in silence when no distracting stimuli are present, such
ideal conditions are rarely typical for daily life. Rather, much of everyday reading occurs in
the presence of external auditory stimulation, such as noise from nearby traffic, music
playing in the background, or a colleague talking on the phone. The interest in how auditory
stimuli affect human performance is almost as old as modern psychology itself (e.g., Cassel
& Dallenbach, 1918; Morgan, 1917). From the widespread use of personal radios among
students in the 1940s (Henderson, Crew, & Barlow, 1945; Miller, 1947) to the rise in
popularity of the TV (Armstrong, Boiarsky, & Mares, 1991; Cool, Yarbrough, Patton,
Runde, & Keith, 1994) and mobile devices (Kallinen, 2002), researchers and educators alike
have been interested in whether background sounds can distract students from reading and

other study-related tasks.

Over the past eight decades, many studies have examined how experimental
exposure to speech, noise, and music may affect reading comprehension. Although some
interesting patterns of results have emerged, the research literature has been undermined by a
fair number of inconsistent findings and the limited understanding of what properties of
irrelevant sounds make them distracting. Additionally, the question of how irrelevant sounds
influence the ongoing reading process on a moment-to-moment basis has received

surprisingly little attention. While a lot has been learned about how different cognitive and



oculomotor processes influence eye-movement control during reading (Rayner, 1998, 2009),
most of these studies have been conducted in a quiet environment and thus have not taken
into account the potential influence of auditory distractors. As a result, there is a limited
understanding of how different auditory distractors affect readers’ eye-movement behaviour
or how any disruption at the level of eye fixations may be related to cognitive, oculomotor or

comprehension processes during reading.

The overarching goal of the present Thesis was to help bridge research on auditory
distraction and eye-movement control during reading in an attempt to better understand how
auditory distractors influence the ongoing reading process. Therefore, the first and foremost
aim of this Thesis was to investigate the effect of irrelevant background sounds on eye-
movements during reading. The second aim was to investigate what acoustical and linguistic
properties of irrelevant sounds give rise to distraction in eye-movements during reading, and
how this distraction may be related to ongoing cognitive, oculomotor, and comprehension
processes. The final aim of this Thesis was to consolidate some of the conflicting findings
from previous reading comprehension experiments by performing a meta-analysis of the

available evidence.

This introductory chapter starts with an overview of previous research on auditory
distraction by continuous and discrete irrelevant sounds. Then, a few theories are outlined
that could potentially account for auditory distraction effects observed in reading tasks.
Afterwards, an introduction to eye-movements during reading is presented, along with the
few eye-tracking studies to date that have investigated auditory distraction during reading.

Finally, the research questions of this Thesis are outlined and motivated.



1.1. The Effect of Background Noise, Speech, and Music on Reading Comprehension

1.1.1. Background Noise
Background noise can be defined as any unwanted sounds that are not related to the

reading task. Strictly speaking, some degree of background noise is always present during
reading; however, the intensity of the background noise can vary enormously depending on
the environment. A number of epidemiological studies have investigated the relationship
between chronic exposure to noise and reading, and have suggested that chronic exposure to
traffic noise is associated with lower reading ability in children (see Table 1 for an overview
of the main findings). Interestingly, however, only very few studies to date have examined
the effect of acute experimental exposure to noise. In one early study, Johansson (1983)
found that the reading comprehension and reading speed of 10-year-old children did not
differ between quiet conditions and conditions of continuous or intermittent acoustical noise.
More recently, Dockrell and Shield (2006) investigated the effect of typical classroom noise
(which is quite different from acoustical white or pink noise) on reading comprehension in
8-year-old children. Participants completed the Suffolk Reading Scale in one of three
conditions: silence, noise consisting of children’s babble, and the same babble combined
with intermittent environmental noise. The results showed that children performed better in
the quiet condition than in the babble noise condition. Surprisingly, however, reading
performance was best when the babble and the environmental noise were combined. Using a
similar type of sound stimuli, Ljung, Soérqvist, and Hygge (2009) found that road traffic
noise impaired the reading speed of 12- and 13-year-old children, but not their reading
comprehension. However, a condition of children’s babble intermixed with irrelevant speech

affected neither measure.



Study Type O || A /Qrade Measure Main results
noise of children
Pananikolaou et Road 4t gt A passage Children from low-noise schools had significantly
al ?2014) traffic grade (9-10 | with three better comprehension than children from medium- and
' years) questions high-noise schools
Enviro There was a (mostly) significant, negative correlation
Shield and n- 2" grade’ (7 | Key Stage 1 y) sig - Neg i
e between external noise and reading scores (range: r= -
Dockrell (2008) | mental years) examination
noise 1310 -.43)
Standardized
Lukas and Road 3dand 6™ | reading Increasing noise levels were associated with poorer
DuPree (1980) traffic grade achievement | reading achievement
test
Bronzaft and The Children on the noisy side of the school performed
McCarth Train | 2", 4% and | Metropolitan | significantly worse than children on the quiet side; this
(1975) y traffic 6™ grade Achievement | difference corresponded to a reading delay of three to
Reading Test | four months
Cohen. Glass Road The 1) Moderate correlation (r=-.26 to -.31) between noise
and Siﬁ or ’ traffic 2nd 3rd 4t | Metropolitan | exposure and reading scores
(1973) g (at 5" grade | Achievement | 2) Auditory discrimination accounted for 12% of the
home) Reading Test | variance in reading scores
Road Nationall 1) Aircraft noise was significantly associated with an
Stansfeld et al. traffic/ | 9-10 years of standar di;/e q impairment in reading comprehension
(2005) Aircraft age : 2) Road traffic noise did not have a significant effect
. reading tests . X
noise on reading comprehension
1) Closing of an airport diminished the difference on
. Standardized | the difficult items between children who were exposed
Hygge et al. Aircraft | 8o 12 years . - -
(2002) noise of aue reading test to noise and children who were not exposed
g (German) 2) Opening of a new airport led to more errors on the
difficult items in children newly exposed to noise
Haines, 4" grade (8- Suffolk 1) Exposure to noise was not significantly associated
Stansfeld, Aircraft 9 gears of Reading with reading scores on the whole scale
Brentnall, et al. noise ya ¢) Scale, Level | 2) Children from high-noise schools had significantly
(2001) g 2 lower scores on the 15 most difficult items
Haines, . 4" and 5t Suffo_lk Children from high-noise schools had significantly
Stansfeld, Job, Aircraft Reading . ; :
: grade (8-10 poorer reading comprehension than children from low-
Berglund, and noise ears) Scale, Level noise schools (~ 6-month reading delay)
Head (2001) y 2 g delay
Evans and Aircraft | 1%t and 2n¢ Wooc_jcock 1) Noise exposure was s_lgnlflcantly associated with
Maxwell (1997) noise grade Reading lower reading scores (r=-.58) _ _
Mastery Test | 2) Speech perception was a partial mediator
Evans. Hvaoe Standardized 1) Children from noisy schools made more errors on
 HYQQE, Aircraft | 3" and 4" : the reading test
and Bullinger . reading test -
noise grade 2) The same trend was observed for the most difficult
(1995) (German) . o
section of the word recognition test
Green, Aircraft | 2" through Stangjardlzed There were significantly more students reading below
Pasternack, and noise 6" grade rea}d_lng their grade level in noisier compared to quieter schools
Shore (1982) ability test
Cohen, Evans, . d w | Standardized
Krantz, and Ar:g;;iﬁ 3 g?;g:' school No evidence that aircraft noise affects reading skills

Stokols (1980)

reading test

Table 1. The effect of chronic exposure to noise on reading in children: A summary of the

main results.

TThe other group of children did not have a reading examination.




Studies of exposure to noise in adults have resulted in similarly mixed findings,
sometimes even when done with the same materials (e.g., Martin, Wogalter, & Forlano,
1988, Experiments 4 and 5). While most studies have failed to find an effect of acoustical or
environmental noise on reading comprehension (Gawron, 1984; Jahncke, Hygge, Halin,
Green, & Dimberg, 2011; Johansson, Holmqvist, Mossberg, & Lindgren, 2012; Veitch,
1990), others have found such an effect after examining the mediating role of personality
characteristics, such as introversion and extraversion (Furnham, Gunter, & Peterson, 1994;
Ylias & Heaven, 2003). In summary, studies investigating the effect of background noise on
reading comprehension have yielded inconsistent results, although some of them suggest that

exposure to noise may be detrimental.

1.1.2. Background Speech

A specific kind of noise that often occurs in daily life is background speech.
Compared to environmental and acoustical noise, background speech has specific acoustic
properties that make it salient to listeners. Additionally, if the background speech is
intelligible, it also carries semantic information (completely unintelligible background
speech might also occur, but it is not very frequently encountered unless one is in a foreign
country and does not understand the language). Perhaps owing to its semantic content,
background speech is often rated as more distracting and more annoying than acoustical
noise (Haapakangas et al., 2011; Haka et al., 2009; Landstrom, Soderberg, Kjellberg, &
Nordstrom, 2002). Consistent with this subjective perception, intelligible background speech
has been found to disrupt reading comprehension in a number of experiments (Armstrong,
Boiarsky, & Mares, 1991; Baker & Madell, 1965; Martin et al., 1988; Sorqvist, Halin, &

Hygge, 2010; however, see Venetjoki, Kaarlela-Tuomaala, Keskinen, & Hongisto, 2006).



Additionally, there is some evidence to suggest that this disruption effect may be larger for
adult participants who have a poorer ability to immediately suppress the irrelevant

background speech (Sorqvist et al., 2010; Sorqvist, Ljungberg, & Ljung, 2010).

A specific reading task that has been investigated in more detail in connection with
background speech is proofreading. Proofreading is an important part of many professions,
especially those related to teaching and publishing. Proofreading is a more cognitively
demanding task than reading alone because it also requires allocating attention to look for
mistakes, in addition to reading the text. There are generally two types of mistakes that have
been investigated in proofreading studies: contextual mistakes that require understanding the
meaning of the text to detect (e.g., problems with pronoun agreement), and non-contextual
(i.e., spelling) mistakes that require only processing of the current word to detect. Due to the
semantic content of intelligible speech, it can be hypothesized that background speech would

disrupt the detection of contextual errors more than the detection of non-contextual errors.

Some support for this prediction was found in an early study by Weinstein (1977)
who reported that background speech consisting of a radio news report significantly
impaired the detection of contextual, but not the detection of non-contextual errors.
However, Jones, Miles, and Page (1990) found exactly the opposite effect in another study.
The authors manipulated both the intelligibility of background speech (which was played
either normally or in reverse) and the intensity of the sound (50 vs 70 dB (A)). They found
that the intensity of the sound did not affect proofreading performance, but that normal (i.e.,
intelligible) speech reduced the number of non-contextual errors that were detected.
Critically, however, the intelligibility of speech did not affect the detection of contextual

errors (Jones et al., 1990). More recently, Venetjoki et al. (2006) found that background



speech reduced the overall accuracy on a similar proofreading task compared to continuous
noise. However, even though the task included both contextual and non-contextual errors,
there was no significant effect of background speech on either error type in isolation. In a
similar study, Landstrom et al. (2002) found that background speech did not affect
proofreading performance for either contextual or non-contextual errors compared to a
condition of broadband noise (i.e., noise consisting of a wide range of frequencies). The
auditory stimuli were presented at a comparable sound intensity level to Venetjoki et al.
(2006), although the speech consisted of random spoken statements. Finally, Smith-Jackson
and Klein (2009) also found no effect of background speech (intermittent or continuous) on

overall proofreading accuracy.

Interestingly, a few studies have also suggested that the detrimental effect of
background speech on reading and proofreading performance can be diminished by making
the task harder and thus increasing participants’ engagement with it (Halin, 2016; Halin,
Marsh, Haga, Holmgren, & Soérqvist, 2013; Halin, Marsh, Hellman, Hellstrom, & Sérqvist,
2014). In a few experiments, Halin et al. showed that performance on a reading/
proofreading task was disrupted by background speech only when the text was formatted in
a familiar font, but not when it was formatted in an unfamiliar (i.e., harder to read) font.
Similarly, performance was disrupted only when the text was printed normally, but not when
it was visually degraded (i.e., harder to read). Therefore, these results suggest that increasing
task engagement may decrease the detrimental effect of background speech on reading

comprehension and proofreading accuracy (see Sorqvist & Marsh, 2015, for a discussion).

Most studies that were considered so far have investigated only the end product of

reading and proofreading (i.e., comprehension accuracy, proofreading accuracy, or the



overall time taken to read the text). However, these studies do not tell us how the reading
process is influenced on a moment-to-moment basis. More recently, several eye-tracking
studies have addressed this question by showing that the effect of intelligible background
speech on reading can also be found at the level of fixation durations and fixations
probabilities (Cauchard, Cane, & Weger, 2012; Hy6n& & Ekholm, 2016; Yan, Meng, Liu,
He, & Paterson, 2017). One key finding from these studies is that background speech leads
to an increase in the number of re-reading fixations (discussed in greater detail below).
While these studies have been successful in explaining when disruption by background
speech occurs during the reading process, one puzzling aspect is that none of the eye-
tracking experiments have replicated the disruption effect in comprehension accuracy found
in behavioural studies. It is currently not known why this inconsistency exists, but this raises

questions about how reliable the effect of background speech on reading comprehension is.

In summary, background speech has been found to disrupt reading comprehension
and proofreading accuracy in a number of experiments. Additionally, the available evidence
suggests that this disruption is due to processing the semantic information of the speech
sound (e.g., Martin et al., 1988). These effects appear to be more reliable than the effect of
non-speech noise on reading, which has not been consistently replicated. Nevertheless,
several recent studies have found no effect of background speech on reading comprehension,

which casts doubt on its robustness and generalizability.

1.1.3. Background Music
Unlike noise and speech, which are usually a nuisance, playing music in the
background is often done deliberately as a personal choice or a habit. Interest in the potential

effect of background music on reading started in the first half of the 20" century with the



popularity of personal radios and record players, and their use by students. However, these
early studies did not paint a clear picture of the relationship between background music and
reading. While some of them found that music can negatively impact reading comprehension
in children and university students (Fendrick, 1937; Fogelson, 1973; Henderson, Crew, &
Barlow, 1945), others found that background music either does not affect reading at all
(Freeburne & Fleischer, 1952; Miller, 1947; Mitchell, 1949) or that it actually improves
reading performance (Hall, 1952). Indeed, this controversy has persisted until the present
day and even two out of the three eye-tracking studies to address this question (Cauchard et
al., 2012; R. Johansson et al., 2012; Zhang, Miller, Cleveland, & Cortina, 2018) have failed

to find any effect of background music on fixation durations or fixation probabilities.

To examine what conditions may give rise to distraction, some studies have
investigated whether the effect of background music on reading comprehension is modulated
by personality traits (Avila, Furnham, & McClelland, 2011; Furnham & Allass, 1999;
Furnham & Bradley, 1997; Furnham & Stephenson, 2007; Furnham & Strbac, 2002;
Furnham, Trew, & Sneade, 1999; Kou, McClelland, & Furnham, 2018). Based on Eysenck's
(1967) theory of personality, these studies have predicted that individuals high in
extraversion will be distracted less by background music than individuals high in
introversion due to the extraverts” higher cortical arousal threshold. However, the results
from these studies have been mixed. While some of them have found such an interaction
between personality traits and background music (Daoussis & Mc Kelvie, 1986; Furnham &
Bradley, 1997; Furnham & Strbac, 2002), others have not (Avila et al., 2012; Furnham &
Allass, 1999; Furnham et al., 1999; Furnham & Stephenson, 2007; Kou et al., 2018). A

number of factors may have contributed to these inconsistencies, such as the way in which
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participants were classified as introverts and extraverts, or the small sample size in some of

the studies.

Another factor that has been considered is the genre of the music (Kallinen, 2002;
Miller & Schyb, 1989; Mulliken & Henk, 1985; Tucker & Bushman, 1991). However, as the
popularity of music genres changes with time, it is arguably better to investigate what
aspects of the music may cause distraction. One factor that may play a role is participants’
preference for the music. For example, Etaugh and colleagues (Etaugh & Michals, 1975;
Etaugh & Ptasnik, 1982) reported that preferred music decreased reading comprehension
scores, but only for students who rarely study while listening to music. In contrast,
Johansson et al. (2012) found that participants had lower comprehension accuracy when
listening to non-preferred music compared to a quiet control condition, but there was no such
effect when they listened to preferred music. Additionally, they did not replicate the previous
finding that participants’ studying habits modulated the results. Adding further to the
confusion, Perham and Currie (2014) found that preferred and non-preferred lyrical music
(i.e., music with sung lyrics) is equally disruptive to reading comprehension, although they

did not report data on students’ studying habits.

The influence of background music on reading may also be modulated by the
acoustic properties of the music. Some factors that have been considered are its
informational load (Kiger, 1989), loudness and tempo (Thompson, Schellenberg, & Letnic,
2012), familiarity of the music to participants (Hilliard & Tolin, 1979) and its capability to
induce a startle response (Ravaja & Kallinen, 2004). These results are quite interesting in
terms of understanding what types of music may cause distraction, although they would

benefit from further replication and extensions. In summary, previous studies suggest that



certain types of music may be distracting, but a negative effect of background music on

reading performance has not been consistently observed.

To summarise the discussion so far, the available evidence suggests that
experimental exposure to background noise, speech, and music may disrupt reading
performance. The effect of background noise and music appears to be less consistent, with
many studies reporting non-significant effects on reading comprehension. Although the
effect of background speech on reading appears to be more reliable, several recent
experiments have also failed to find an effect in reading comprehension and proofreading
tasks. Therefore, considerable uncertainty exists with respect to the magnitude of these

distraction effects and what aspects of background sounds may be responsible for them.

1.2. Auditory Distraction by Deviant Sounds
While the available research on auditory distraction during reading has focused on
continuous background sounds such as speech, noise, or music, little is known about how
discrete sounds that involve subtle auditory changes may affect reading performance.
Interestingly, there is a large body of evidence indicating that the brain automatically
responds to changes in auditory stimulation that reach a certain threshold- a finding known

as the mismatch negativity (MMN) effect (N&atanen, 1995; Naaténen, Gaillard, &

11

Mantysalo, 1978; Naatanen, Paavilainen, Rinne, & Alho, 2007; Naatdnen & Michie, 1979).

The MMN usually occurs when participants are presented with a block consisting of the
same repeated sound (known as the “standard”), which is then occasionally replaced by an
acoustically deviant sound (known as the “deviant”; Nadtdnen, 1995). The MMN is
measured as a negative component of the event-related potential (ERP) that occurs some

150-200 ms after the onset of acoustical deviance (N&atanen et al., 2007; Tiitinen, May,
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Reinikainen, & Naaténen, 1994). This component is thought to reflect a pre-attentive

mechanism for detecting auditory changes in the human brain (Berti & Schroger, 2001).

In addition to the MMN, a positive P3a component is also typically observed in
response to deviant sounds, which peaks at around 300 ms after the deviant sound’s onset
(Horvath, Winkler, & Bendixen, 2008). The P3a component is thought to reflect the
involuntary shift of attention towards the deviant sound (Berti & Schréger, 2001; Escera,
Alho, Schréger, & Winkler, 2000; Schroger & Wolff, 1998a, 1998b). Finally, the P3a
component can also be followed by a reorientation negativity (RON) component that peaks
around 400-600 ms after the deviant sound’s onset. The RON is in turn thought to reflect the
refocusing of attention back to the main task (Berti, 2008; Schréger, Giard, & Wolff, 2000;

Schréger & Wolff, 1998a).

Deviant sounds not only elicit specific electrophysiological responses in the brain,
but they also give rise to behavioural distraction in the main task (Berti & Schrdger, 2001;
Escera, Alho, Winkler, & Naatanen, 1998; Parmentier, 2014; Schrdger, 1996; Schroger &
Wolff, 1998b). Such behavioural distraction is usually shown by increased reaction times in
response to deviant sounds in tasks where participants need to categorize target stimuli, such
as judging the parity of numbers presented on the screen (e.g., Leiva, Parmentier, & Andrés,
2015; Parmentier, Elford, Escera, Andrés, & Miguel, 2008; Parmentier, Elsley, Andrés, &
Barceld, 2011) or judging the duration of the task-irrelevant sound (e.g., Berti & Schrdger,
2001; Schroger & Wolff, 1998a, 1998b). Interestingly, behavioural distraction by deviant
sounds does not appear to be a mere by-product of the respective electrophysiological
responses, as it can vary substantially without an associated variance in the ERP

components, and vice versa (Parmentier, 2014). This suggests that not all acoustical changes
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that are detected by the brain obligatorily cause behavioural distraction in reaction times or

response accuracy measures.

Evidence from behavioural studies has shown that deviant sounds are distracting not
because of their acoustical novelty per se, but rather because they violate the cognitive
system’s predictions (Parmentier et al., 2011; Vachon, Hughes, & Jones, 2012; see also
Bubic, von Cramon, Jacobsen, Schroger, & Schubotz, 2009). In fact, deviant sounds fail to
elicit behavioural distraction if their occurrence is entirely predictable- for example, when it
is signalled by the appearance of a visual cue before the presentation of the sound (Horvéth,
Sussman, Winkler, & Schroger, 2011; Sussman, Winkler, & Schrdger, 2003). Interestingly,
the mechanism underlying deviance distraction does not appear to be restricted only to the
auditory modality. For example, Parmentier, Ljungberg, Elsley, and Lindkvist (2011) found
that unexpected vibro-tactile stimuli also yield behavioural distraction in categorization tasks
much in the same way that acoustical deviant stimuli do. This suggests that the neural
mechanism for detecting sensory changes may operate cross-modally. However, despite the
potential relevance of deviance distraction in everyday life, no studies to date have

investigated the effect of deviant sounds on reading.

1.3. Theories of Auditory Distraction
Over the last several decades, a number of theoretical accounts have attempted to
explain the influence of irrelevant background sounds on cognitive performance. While most
of them have been developed in simpler laboratory tasks (e.g., serial recall of items), they
nevertheless make useful predictions that can also be applied to more complex cognitive
tasks such as reading. Much of the impetus for the development of some of the early theories

of auditory distraction was the original report of the irrelevant speech effect in serial recall
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memory (Colle & Welsh, 1976). This effect refers to the now classical finding that serial
recall memory for visually presented items (e.g., digits) is reduced when participants listen
to irrelevant speech that they are told to ignore compared to a baseline condition of silence
(Colle, 1980; Ellermeier & Zimmer, 1997; Hughes & Jones, 2001; Jones, Madden, & Miles,
1992; LeCompte, 1995; Miles, Jones, & Madden, 1991; Neely & LeCompte, 1999; Salamé

& Baddeley, 1982).

One of the earliest theoretical accounts to try to explain this finding in terms of
auditory distraction is the phonological interference hypothesis. This account is based on
Baddeley and Hitch's (1974, 1994) model of working memory, in which the phonological
loop acts as an acoustic store where memories are registered and rehearsed through a process
of sub-vocalization. Salamé and Baddeley (1982, 1987, 1989) reported a series of
experiments in which they showed that memory for visually presented digits is impaired by
unattended speech, but not by unattended acoustical noise. Additionally, a distraction effect
was observed even if the speech sound was in a language that participants could not
understand (Salamé & Baddeley, 1987; see also Colle & Welsh, 1976). The authors argued
that this occurs because speech sounds automatically gain access to the phonological loop
and thus interfere with the encoding and rehearsal of visually presented items. Even though
this hypothesis is derived from a memory task, Salamé and Baddeley (1989) argued that a

similar disruption may also be observed in more complex cognitive tasks such as reading.

Martin et al. (1988) were first to systematically test the phonological interference
hypothesis in a reading comprehension task. In a series of experiments, they found that the
disruptive effect of unattended speech was due to the semantic properties (i.e., meaning) of

the speech, rather than its phonological features. More specifically, the authors found that
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English speech (intelligible to participants) was more distracting that Russian speech
(unintelligible to participants). Similarly, a continuous speech stream of random words was
found to disrupt comprehension more than a continuous speech stream of non-words. To
account for these results, Martin et al. (1988) argued that, unlike serial recall tasks, reading
comprehension requires understanding the meaning of the text. Therefore, the semantic
properties of the irrelevant speech can interfere with building the semantic representations of
the text that is being read. This prediction will be referred to as the semantic interference

hypothesis.

The changing-state hypothesis (Hughes & Jones, 2001; Jones & Macken, 1993;
Jones, Madden, & Miles, 1992) is another prediction that is also derived from serial recall
tasks. According to this hypothesis, interference is caused by background sounds that exhibit
considerable acoustic variation, but not by steady-state, aperiodic sounds that do not have
such variation (Jones et al., 1992). For example, a sound consisting of different consonants
(e.g., “B, F, P, S, N”) should cause more interference than a sound made up of the same
consonant (e.g., “M, M, M, M, M”) because it exhibits more acoustic variation. The
hypothesized mechanism through which interference occurs is that changing-state sounds
contain information about the serial order of their constituent sound elements (Hughes &
Jones, 2001). This information can then interfere with maintaining the serial order of items

in @ memory task.

Although reading is a more complex cognitive task, it also involves maintaining the
order of words in the sentence, as well as their syntactic relations. For example, since models
of parallel word processing such as SWIFT (Engbert, Nuthmann, Richter, & Kliegl, 2005)

assume that readers can process multiple words at the same time, they also have to assume,
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at least implicitly, that readers are somehow able to maintain information about the order of
these words in the current sentence. Additionally, some models of reading comprehension
(e.g., Kintsch, 1998) assume that word meanings are combined to form propositions or “idea
units” according to their syntactic relationships (Kintsch & Rawson, 2005). Forming these
units must also involve establishing and keeping track of the order of words in the sentence,

as well as their syntactic relationships.

A final account that is relevant in a reading task is the duplex theory of auditory
distraction (Hughes, Vachon, & Jones, 2005, 2007; Hughes, 2014; Sérqvist, 2010).
According to this theory, auditory distraction can occur from two different processes:
interference-by-process and attentional capture (Hughes, 2014). Interference-by-process
(Marsh, Hughes, & Jones, 2008, 2009; Marsh & Jones, 2010) occurs when the background
sound interferes with a process that is important for the main task. For example, in a reading
task, the semantic processing of meaningful speech would interfere with the task because
reading also requires semantic processing to extract the meaning of the text. Alternatively,
auditory distraction can also be caused by attentional capture (Hughes et al., 2005; Vachon,
Hughes, & Jones, 2012) where attention is temporally directed away from the main task by a
sound that deviates from a repeated sequence of sounds. For example, the sound “B” in the
sequence “AAAAAABA” would capture attention because another “A” is expected in the
sequence (Hughes, 2014). This proposition is motivated by the involuntary switch of
attention and the corresponding P3a ERP component evoked by deviant sounds that have

been extensively documented in the previous literature (see above).

In a reading task, the interference-by-process part of the duplex theory makes the

same prediction as the semantic interference hypothesis by Martin et al. (1988) discussed
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earlier. The difference between the two accounts is very subtle: In Marsh et al.'s (2008,
2009) account, distraction occurs because processing the meaning of the background speech
depends on the same process used for extracting the meaning of the text that is being read. In
contrast, Martin et al. (1988) assume that it is the semantic properties of the speech that
cause the interference. These two very similar views are difficult to disentangle empirically,
and since they make the same general prediction in the present research, we will consider
them together as theories of semantic distraction. The second part of the duplex theory-
attentional capture- is a very interesting concept that is yet to be tested in more complex and
ecologically-valid tasks such as reading. However, as the principles underlying deviance
distraction and the involuntary capture of attention are often assumed to be broadly
applicable to different tasks, subject populations, and methodologies (see Naatanen et al.,

2007), similar type of distraction should also be observed in a reading task.

1.4. Eye-movements During Reading: An Introduction

The advances in eye-tracking technology in the past several decades have made it
possible to record eye-movements accurately and with a high temporal precision while
participants are reading a text. In the present research, the Eyelink 1000 system was used to
record participants’ eye-movements (SR Research Ltd., Ontario, Canada). The typical eye-
tracking setup that was used in the present research is illustrated in Figure 1a. The Eyelink
1000 consists of a high-speed camera and an infrared illumination module that emits 890 nm
infrared light directed at the eye. The emitted infrared light is reflected by the eye and this
reflection is then used by the high-speed camera to calculate the gaze position of the eye in
real time. As illustrated in Figure 1b, the camera uses the centre of the pupil and the corneal

reflection (first Purkinje image) to track the position of the eye on the screen. Because the
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distance between the corneal reflection and the centre of the pupil changes with pure eye
rotation (provided that the head is kept relatively stable), video-based eye-trackers such as
the Eyelink 1000 can record movements of the eye after an initial calibration is performed
(Duchowski, 2007). The standard Eyelink 1000 system can perform monocular tracking of
the eye at a sampling rate of 1000 Hz (i.e., a new sample of the eye’s position is obtained

every millisecond) and has an average accuracy of 0.25 - 0.5 °© per visual angle.
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Figure 1. An illustration of the eye-tracking equipment used in the present research. Panel A
shows the position of the eye-tracker and the rest of the equipment that was used in the
experiments (with the exception of Chapter 6, where a Tower Mount set-up of the Eyelink
1000 was used). Panel B shows an image recorded by the high-speed camera while tracking
the centre of the pupil and the corneal reflection of the right eye.

When reading a text, the eyes do not move smoothly along the page but rather
alternate between quick jump-like movements (known as saccades) and short periods of
relative stability (known as fixations). Because visual acuity decreases rapidly away from the

point of fixation, readers need to fixate individual words in the text in order to bring them



19

into the centre of vision for processing. Visual acuity is good in the fovea, or the central 2 ©
of visual angle, but it decreases steadily in the parafovea (2 to 5 ° of visual angle) and is
even poorer in the periphery (>5 ° of visual angle; Rayner, 1998). While fixating words in
foveal vision is crucial for their recognition, there is now a large body of evidence indicating
that readers can also pre-process the upcoming word in parafoveal vision (Rayner, 1975,
1998, 2009; Schotter, Angele, & Rayner, 2012; Vasilev & Angele, 2017). When readers
have a valid parafoveal preview of the upcoming word, fixation times are shorter once this
word is subsequently fixated compared to when parafoveal preview is denied- a finding
known as the preview benefit effect (Rayner, 1998). This benefit represents a processing
advantage that is thought to give the cognitive system a head start in recognising the
upcoming word in order to meet the neurological and oculomotor constraints imposed by

saccadic eye-movements (Rayner & Reingold, 2015; Reichle & Reingold, 2013).

The length of saccades during reading usually depends on the number of characters
in the text that the eye travels rather than the actual distance in terms of degrees per visual
angle (Morrison & Rayner, 1981; O’Regan, 1983). The average saccade during reading
usually spans about 8 characters, although individual saccades can vary considerably and are
often in the range of 2 to 18 characters (Rayner, 1978). While most saccades during reading
are progressive and directed towards unexplored text, the eyes also occasionally go back to
revisit previously-read words. These so-called regressions occur on 10-15 % of all saccades
and are often related to text comprehension difficulties or incomplete processing of previous

words in the sentence (Rayner, 1998).

When a word is fixated, the eyes most frequently land a little to the left of its centre-

a finding known as the preferred viewing location effect (Rayner, 1979). This type of



20

landing distribution may occur because readers aim for the centre of the word but undershoot
this location due to saccadic range error (McConkie, Kerr, Reddix, & Zola, 1988). Readers
also do not fixate every word in the text and around 15 % of all content words and 65 % of
all function words are skipped (i.e., not fixated) during reading (Rayner, 2009). One factor
that influences the fixation probability of words is their length. Longer words are less likely
to be skipped and more likely to receive multiple fixations compared to shorter words
(Kliegl, Grabner, Rolfs, & Engbert, 2004; Rayner & McConkie, 1976; Rayner, 1979).
Therefore, unsurprisingly, longer words are also fixated longer due to the increase in re-

fixation probability (Kliegl et al., 2004).

However, eye-movements during reading are influenced not only by low-level visual
characteristics of the words, but also by their psycholinguistic properties. For example,
readers can use the preceding sentence context to predict upcoming words in the text. This is
demonstrated by the finding that more predictable words are more frequently skipped
compared to less predictable words (Balota, Pollatsek, & Rayner, 1985; Rayner, Li, &
Juhasz, 2005; Rayner, Slattery, Drieghe, & Liversedge, 2011; Rayner & Well, 1996).
Additionally, in cases when more predictable words are fixated, they tend to receive shorter
fixation durations compared to less predictable words (e.g., Kliegl, Nuthmann, & Engbert,
2006; Rayner & Well, 1996). Furthermore, fixation durations during reading are also
sensitive to the lexical properties of words. More specifically, words with lower lexical
frequency are fixated longer on average compared to words with higher lexical frequency
(Inhoff & Rayner, 1986; Rayner & Duffy, 1986; Schilling, Rayner, & Chumbley, 1998).
Similarly, fixation durations are also sensitive to the age of acquisition of words (Juhasz &

Rayner, 2003, 2006), and this does not appear to be a mere consequence of cumulative
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lexical frequency effects (Juhasz, 2005; Juhasz & Rayner, 2006). Therefore, these findings
clearly demonstrate that eye-movements during reading are sensitive to the ongoing

cognitive processing of words in the text.

The detailed understanding of how cognitive and visual factors influence the reading
process has led to the development of advanced computational models of eye-movement
control during reading that can explain many of the empirical findings. The E-Z Reader
model (Reichle, Pollatsek, Fisher, & Rayner, 1998; Reichle, Rayner, & Pollatsek, 2003;
Reichle, Warren, & McConnell, 2009; Schotter, Reichle, & Rayner, 2014) is one such family
of models which assumes that attention is allocated in a serial manner and that readers
process the sentence one word at a time. In this model, word processing starts with a pre-
attentive visual stage which reflects the time needed to propagate the visual features of the
word from the retina to the brain (Reichle et al., 2009). This early stage is then followed by
two lexical processing stages: familiarity check (L1) and lexical access (L2). The time
needed to complete the two lexical stages is a function of the lexical frequency of the word

and its predictability given the preceding sentence context.

In this model, completion of the familiarity check stage initiates the programming of
the next saccade because word recognition (i.e., completion of the lexical access stage) is
imminent and likely to happen soon (Reichle et al., 1998). Therefore, the E-Z Reader model
assumes that eye-movements are under direct cognitive control because this initial stage of
lexical processing triggers the programming of the next saccade (Rayner & Reingold, 2015).
While the next saccade is being programmed, the model assumes that attention is shifted
covertly to the upcoming word (see Posner, 1980, 2016), which allows readers to pre-

process that word before it is directly fixated. The programming of the next saccade also
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happens in two stages: a labile stage (M1), which can be cancelled by other saccadic
programs, and a non-labile stage (M2), which can no longer be cancelled. A more recent
version of the E-Z Reader model (Reichle et al., 2009) has also implemented a post-lexical
integration stage (I) that aims to provide a framework for modelling the effect of higher-level

language processing on eye-movements during reading.

SWIFT is another computational model of eye-movement control during reading
which assumes that attention is distributed in parallel to a few words at a time according to
an attentional gradient (Engbert, Longtin, & Kliegl, 2002; Engbert et al., 2005; Risse,
Hohenstein, Kliegl, & Engbert, 2014; Schad & Engbert, 2012). In this model, word
processing starts as soon as words fall within a spatially distributed activation field that
extends on either side of the current point of fixation (but that is assymetrically smaller to
the left; Engbert et al., 2005). Similar to the E-Z Reader model, lexical processing is also
carried out in two stages: first, word activation increases from zero until it reaches a
maximum specified by the word’s processing difficulty; and second, activation then
decreases from this maximum until it reaches again zero (Risse et al., 2014). In SWIFT, the
word’s processing difficulty is estimated entirely from its lexical frequency. Word
predictability also has an influence on the processing rate of words. However, as the
predictability of words is independent from the visual input, its influence is decoupled from

that of lexical frequency (Engbert et al., 2005).

Because a few words at a time can be processed in parallel in the SWIFT model, the
target of the next saccade is determined through a competition of words with different lexical
activations- the higher the activation of a word, the more likely it is that it will be selected as

the next saccade target (Engbert et al., 2002, 2005). Additionally, the programming of the
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next saccade also happens in a labile and a non-labile stage. However, unlike the E-Z Reader
model, saccadic programming is not directly determined by the cognitive processing of
words but, instead, is initiated by a random saccadic timer. Nevertheless, this timer can be
foveally inhibited by the processing difficulty of the currently-fixated word, which allows
the model to account for effects of cognitive processing on eye-movements (Engbert et al.,
2005). As such, SWIFT implements a mechanism of indirect cognitive control of eye-
movements where the ongoing processing of words can modulate, but does not determine

eye-movements.

The above-mentioned models have mostly implemented empirical effects at the level
of individual words, such as lexical frequency and predictability, which are typically
investigated in a single-sentence reading paradigm. However, there is also some research
that has investigated how readers process higher-level language representations and larger
pieces of text (see Rayner, Raney, & Pollatsek, 1995; Staub & Rayner, 2007). For example,
when reading longer texts, participants spend less time during the initial, first-pass reading,
but more time during the second-pass re-reading of the text compared to reading single
unconnected sentences (Radach, Huestegge, & Reilly, 2008). This suggests that participants
can adapt their reading strategy to the format of the text. Additionally, when participants are
asked to read the same passage twice, they are about 9-14 % faster to do so the second time
(Hyona & Niemi, 1990; Rayner et al., 1995; see also Kaakinen & Hy6na, 2007). This speed-
up is mostly due to participants’ making fewer and shorter fixations during the second
reading of the text (Raney & Rayner, 1995). Finally, when participants are asked to
proofread the text stimuli, rather than the typical instruction to read them for comprehension,

they make shorter saccades, have longer first-pass reading, are more likely to re-fixate
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words, and show stronger lexical frequency effects (Kaakinen & Hyond, 2010; Schotter,
Bicknell, Howard, Levy, & Rayner, 2014). All these findings suggest that the format and the
instructions of the reading task can modulate the allocation of attention and participants’

eye-movement behaviour.

1.5. Auditory Distraction during Reading: Evidence from Eye-movements
There are only a few studies to date that have investigated the effects of background
speech and acoustical noise on eye-movements during reading. In the first study of this kind,
Johansson, Holmqvist, Mossberg, and Lindgren (2012) recorded participants’ eye-
movements while they read texts in four auditory sound conditions: preferred music, non-
preferred music, background sounds recorded from a café, and silence. The authors found
that none of the sound conditions influenced fixation durations or fixation probabilities

during reading compared to the baseline of silence.

In a similar study, Cauchard, Cane, and Weger (2012) investigated the effect of
instrumental music and background speech consisting of a radio programme on eye-
movements during paragraph reading. In addition to the sound manipulation, the study also
had an interruption condition in which the text disappeared for 60s on half of the trials when
participants fixated a target word in the paragraph. During the interruption time, an unrelated
audio news story was played. Cauchard et al. found that instrumental music generally had no
effect on participants’ eye-movements during reading. In contrast, intelligible background
speech led to longer gaze durations, longer reading and re-reading times, and more fixations
compared to silence. However, because participants’ reading was interrupted by the
unrelated audio news story, this may have influenced their reading behaviour in this study.

For example, the interruption by the unrelated audio story may have acted as a secondary
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source of distraction that could have amplified the disruption in response to the (primary)
unrelated speech in the experiment. Therefore, the auditory disruption effects observed in

this study may have been confounded by this interruption manipulation.

More recently, Hy6nd and Ekholm (2016) reported a series of experiments that
investigated how background speech affects reading of syntactically complex sentences. In
Experiment 1, they found that listening to intelligible speech (Finnish) did not result in
significantly longer fixation durations compared to either speech in an unfamiliar language
(Italian) or silence. In this sense, the authors did not find evidence for the phonological
disruption hypothesis. In the remaining three experiments, Hyona and Ekholm found that
scrambled Finnish speech is more disruptive than both silence and normal, non-scrambled
speech. The scrambled Finnish speech was created by randomizing the order of words in the
text and reading them aloud with an intonation that resembles that of coherent speech.
Interestingly, the disruption by background speech in their experiments was most

consistently shown by an increase in sentence re-reading time (Hyona & Ekholm, 2016).

Hyonad and Ekholm (2016) also found that scrambled speech created from the to-be-
read text was not more distracting than scrambled speech created from an unrelated text.
Additionally, scrambled speech from an unrelated text that was semantically, but not
syntactically, anomalous was not more distracting than scrambled speech that was both
semantically and syntactically anomalous. These results point to two conclusions. First, they
suggest that scrambled speech is disruptive not because of similarity in semantic content
between the speech and the text, but rather because both sources of information are calling

on the same semantic processes for analysing meaning (Hy6na & Ekholm, 2016). Second,
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they also suggest that the syntactic anomaly of scrambled speech does not per se make it

more distracting to readers.

In a similar study, Yan, Meng, Liu, He, and Paterson (2017) investigated distraction
effects by background speech in readers of Mandarin Chinese. Participants read single
sentences with a target word lexical frequency manipulation in three background sound
conditions: intelligible (i.e., Mandarin) speech, meaningless speech (the same speech
scrambled in 60 ms segments), and silence. The scrambling method used in this study did
not leave the individual words intact as in Hyond and Ekholm’s (2016) experiments, but it
preserved the general acoustic variation that is present in normal speech. Yan et al. found
that intelligible speech resulted in longer reading times, more fixations, and more regressions
compared to both meaningless speech and silence. Additionally, the otherwise ubiquitous
lexical frequency effect was eliminated in the two speech conditions, but only for the first
fixation duration on the target word. This suggests that background speech may have a very
early influence on the language processing system by delaying access to the lexical

representation of words.

Finally, Zhang et al. (2018) investigated the effect of background music on eye-
movements while reading academic-level passages. In Experiment 1, participants brought
their own music to the lab, while in Experiment 2 all participants listened to the same song
segments from popular music pieces that were selected by the experimenter. The music
segments in Experiment 2 consisted of only the first verse and the first chorus of the song,
with each segment separated by a 1-2 s silence gap from the next segment. The results
showed that the first-pass reading of the text, as measured with gaze durations, was not

significantly affected by the music condition compared to the silence baseline. However,
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background music had a significant effect on the word length by lexical frequency
interaction, which the authors took as evidence that the irrelevant music may have impaired
the sub-lexical processing of low-frequency words. Additionally, consistent with previous
studies on the effect of intelligible speech on eye-movements (Cauchard et al., 2012; Hy6na
& Ekholm, 2016; Yan et al., 2017), background music also led to longer total viewing time,
text re-reading time, and greater regression probability. This suggests that background music
may also lead to a similar increase in re-reading behaviour as intelligible background speech.
Finally, Zhang et al.'s (2018) Experiment 2 suggested that the disruption in re-reading

measures is exacerbated for a short period of time after a new song has started playing.

In summary, the available eye-tracking studies of auditory distraction during reading
have provided the first important evidence regarding how task-irrelevant sounds may affect
the reading process. First, they suggest that intelligible speech disrupts the ongoing reading
process- this disruption may start as early as the lexical processing of individual words (Yan
etal., 2017), but it also appears to continue in the post-lexical stages when it leads to an
increase in re-reading fixations (Cauchard et al., 2012; Hydna & Ekholm, 2016; Yan et al.,
2017). Second, background noise from a café does not appear to affect fixation durations or
fixation probabilities during reading (R. Johansson et al., 2012), which points to the fact that
not all irrelevant sounds obligatorily cause distraction. Finally, there is mixed evidence
regarding whether background music may also disrupt eye-movements during reading.
While earlier studies have generally failed to find evidence for such disruption (Cauchard et
al., 2012; R. Johansson et al., 2012), Zhang et al.'s (2018) recent data raise the possibility

that music may have a similar disruption effect to that of intelligible speech.
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1.6. Scope and Research Questions of this Thesis

The available literature has yielded many important results about when task-
irrelevant sounds can disrupt reading efficiency. However, due to the mixed findings from
reading comprehension experiments, it is not known whether background speech, noise, and
music can all reliably disrupt participants’ comprehension. Additionally, as most previous
studies have only investigated the final product of the reading process (i.e., comprehension),
less is known about how background sounds influence the ongoing reading process. While a
small number of eye-tracking studies have provided the first clues as to how irrelevant
sounds may disrupt eye-movements during reading, it is currently not well understood how
these sounds impact the oculomotor or cognitive processing systems. Furthermore, the
mixed findings from previous experiments have made it challenging to assess what linguistic
or acoustical properties of irrelevant sounds are responsible for the observed distraction. It is
also not immediately clear how the disruption in eye-movement measures may be related to
comprehension difficulties when reading the text. Finally, previous studies have only
examined continuous irrelevant sounds that are usually played for the whole duration of the
trial. Therefore, it is currently not known whether discrete sounds that involve subtle

auditory changes can also influence the ongoing reading process.

In summary, the overarching goals of this Thesis were as follows:1) to establish
whether and to what extent backgrounds sounds can disrupt reading comprehension based on
the available evidence, and to find out what the nature of this disruption is; 2) to test whether
intelligible speech disrupts the reading process by interfering with the lexical access of
words, and whether this interference is phonological or semantic in nature; 3) to examine

how intelligible speech affects reading comprehension and online integration processes; 4) to
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test whether the increase in re-reading behaviour in response to intelligible speech is related
to maintaining an accurate comprehension of the text; and 5) to investigate whether discrete
deviant sounds that violate participants’ expectations can influence eye-movements during

reading.

In Chapter 2, the first research question was addressed by making a statistical
synthesis of previous findings from reading comprehension experiments in order to find out
whether, and to what extent, auditory stimuli can interfere with reading comprehension. As
comprehension is the end product of the reading process, a better understanding of how
auditory stimuli affect this variable is the necessary first step in building theoretical
frameworks that can explain auditory distraction during reading and in understanding how
eye-movements may be disrupted by task-irrelevant sounds. To do this, a Bayesian meta-
analysis approach was adopted that makes it possible to quantify the degree of belief, given
the data, that background sounds can disrupt reading. Second, Bayesian meta-regression
models were used to test the predictions derived from existing theories on auditory

distraction and to estimate how likely it is that they can explain the existing data.

The second research question of whether intelligible speech disrupts the initial lexical
processing of words is addressed in Chapter 3. This is an important theoretical question as
lexical identification plays a major role in computational models of eye-movement control
during reading such as E-Z Reader (Reichle et al., 1998) and SWIFT (Engbert et al., 2005).
If intelligible speech affects the lexical identification of words, this would suggest that it has
a very early influence on the language processing system. Additionally, the second aim of
this study was to investigate whether the phonological or semantic information of intelligible

speech may disrupt lexical identification and sentence reading more broadly. To answer
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these questions, participants’ eye-movements were recorded while they read single sentences

with a target word lexical frequency manipulation.

The third research question of how intelligible speech affects comprehension and
online integration processes is addressed in Chapter 4. More specifically, this study
attempted to find out whether participants’ immediate reading comprehension is disrupted
only when they have to answer more difficult questions and whether intelligible speech
makes it harder to integrate text information across multiple sentences. In this experiment,
participants’ eye-movements were recorded while they read short paragraphs. Additionally,
participants answered either easy yes/no comprehension questions or more difficult multiple-
choice questions. As longer passages are processed differently compared to single unrelated
sentences (Radach et al., 2008), this experiment also made it possible to replicate and extend
the main auditory distraction effects from Chapter 3 by using more ecologically-valid

reading stimuli.

The fourth research question of this Thesis was whether the increase in regressions
and re-reading fixations in response to intelligible speech is due to an attempt to maintain an
accurate comprehension of the text. In fact, while previous studies have suggested that
intelligible speech leads to an increase in re-reading behaviour (Cauchard et al., 2012; Hyona
& Ekholm, 2016; Yan et al., 2017), it is currently not well understood why this occurs.
Chapter 5 tested one possible explanation for this: namely, that the increase in re-reading
behaviour is due to a transient comprehension difficulty caused by the irrelevant speech that
participants try to overcome and still comprehend the text. This research question was tested
in two experiments (one behavioural and one eye-tracking) in which participants were

prevented from re-reading previous words in the text.
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The final research question that will be examined in this Thesis is how the ongoing
reading process is influenced by discrete deviant sounds. While distraction by deviant
sounds has been well-documented at both the behavioural (Dalton & Hughes, 2014; Hughes,
2014; Parmentier, 2014) and electrophysiological level (Berti, 2008; Escera et al., 2000;
Né&atanen et al., 2007), it is currently not known whether eye-movements during reading are
sensitive to discrete deviant sounds. This is an important theoretical question as most of the
studies on deviance distraction have been conducted using simple categorization tasks, and it
is not well understood if deviance distraction can also be observed in more complex
everyday tasks such as reading. In Chapter 6, this question is addressed by developing a new
experimental paradigm in which a sequence of five short sounds is played once participants

fixate five target words in the sentence.
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CHAPTER 2: ABAYESIAN META-ANALYSIS OF PREVIOUS FINDINGS

The review of the literature in Chapter 1 showed that background noise, speech, and
music may be detrimental to reading comprehension, but that considerable uncertainty exists
as to the reliability and the magnitude of such distraction effects. This uncertainty makes it
difficult to draw firm conclusions about the experimental effects and their real-world
significance. Are background sounds reliably disruptive to reading, and is this disruption
large enough to be of any practical significance? Additionally, after 80 years of research on
the topic, what theoretical conclusions can be made about the types of background sounds

that are disruptive to reading?

The present study addressed these questions by performing a Bayesian random-
effects meta-analysis of studies investigating experimental exposure to noise, speech, or
music in the background. Both studies with adults and children were considered. Bayesian
inference is especially suited to answer these questions because it enables us to directly
quantify the uncertainty of the estimate of auditory distraction effects, given the available
evidence. This in turn makes it possible to derive the probability, given the data, that
background noise, speech, and music can distract readers from their task. Bayesian meta-
analytical models have traditionally been used in biology and medicine (e.g., Sutton &

Abrams, 2001; Sutton, Abrams, Jones, Sheldon, & Song, 2000), but more recently have also
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been introduced to psychology and linguistics (Jager, Engelmann, & Vasishth, 2017;
Marsman et al., 2017; Vasishth, 2015; Vasishth, Chen, Li, & Guo, 2013; see also Kruschke
& Liddell, 2017). As such, they have been successfully used to address contentious research
questions, such as the processing of relative clauses in Chinese (Vasishth et al., 2013), and
the extent to which readers can pre-process words in parafoveal vision (Vasilev & Angele,

2017).

There are two available (non-Bayesian) meta-analyses to date that have addressed
how background noise and music affect a wide range of behavioural and cognitive tasks
(Kampfe, Sedlmeier, & Renkewitz, 2011; Szalma & Hancock, 2011). While the results from
these meta-analyses are quite interesting, their more general focus on all types of cognitive
tasks does not make it possible to make firm conclusions about reading in particular.
Interestingly, Kdmpfe et al. reported a separate analysis of reading-only studies and
estimated the general effect of music to be r=-0.11 (d=-0.22). However, this estimate was
based on only eight studies and thus does not include most of the currently available data.
Therefore, one of the contributions of the present meta-analysis was to estimate the general
effect of background noise, speech, and music on reading, and to calculate the probability,
given all the available evidence, that these auditory stimuli are detrimental to reading

performance.

The second and more important goal of the present analysis was to investigate what
aspects of background sounds give rise to distraction. Although it can be informative to
estimate the overall size of the effects, as previous meta-analyses have done, this does not
tell us what it is about these sounds that makes them distracting. As it was discussed

previously, there are a few theories that make specific predictions about what type of
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auditory stimuli should be distracting. Therefore, the second aim of the study was to test the
predictions of these theories using Bayesian meta-regression models (Welton, Sutton, &
Cooper, 2012). As some of the theories outlined above were not originally developed in
reading comprehension tasks, it is important to keep in mind that the present study is not a
strict test of these theories. Rather, it aims to find out whether they can accommodate the
existing evidence in reading tasks, and if not, to pave the way for the development of future

theories.

2.1. Predictions

All of the predictions in the present analyses are summarised in Figure 2. The
phonological interference hypothesis (Salamé & Baddeley, 1982) makes the unique
prediction that all types of speech sounds should be equally distracting because they all gain
access to the phonological store. Therefore, both intelligible speech (i.e., in participants’
native language) and unintelligible speech (i.e., in a foreign language) should be equally
distracting. Additionally, the phonological interference hypothesis is not capable of
explaining distraction by non-speech background noise and non-lyrical music because

neither sound gains access to the phonological store.

The semantic interference (Martin et al., 1988) and interference-by-process (Marsh et
al., 2008) accounts both make the prediction that only intelligible speech that can be
processed semantically by participants would cause distraction. Therefore, intelligible
speech should be more distracting than unintelligible speech. Additionally, they also predict
that: 1) lyrical music should be more distracting than non-lyrical music because the former
contains lyrics that are intelligible to participants; and 2) intelligible speech should be more

distracting than lyrical music because, on average, continuous speech has more semantic
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content than lyrical music. However, since lyrical music that is intelligible to participants
contains not only semantic, but also phonological information, it is not possible to rule out

any involvement of phonology in this effect.

Phonological interference: Semantic interference/ Interference by process:

[ Intelligible speech ] [ Unintelligible speech ] [ Intelligible speech ] [ Unintelligible speech]

[ Background noise J

o - Semantic interference/ Interference by process
[ Non-lyrical music ] AND/ OR Phonological interference:
[ Lyrical music J [ Non-lyrical music ]
[ Intelligible speech ] [ Lyrical music ]
Interference by changing-state sounds:
[ Non-lyrical music ] [ Acoustical noise ]
Legend:
[EnwronmentalnmseJ [ Acoustical noise ] More distracting

Equally distracting

Not distracting

Figure 2. A schematic summary of the predictions in Chapter 2 derived from theories on
auditory distraction.

L1t should be noted that the amount of semantic content may differ depending on the type of music.
Nevertheless, the lyrical music examined in this analysis also contained instrumental sections that didn’t have
lyrics. This was determined by manually examining the music that was played in the original studies.
Therefore, even though lyrics were present in the music, this wasn’t the case for the whole duration of the

song.
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Finally, the changing-state hypothesis (Jones, Madden, & Miles, 1992) predicts that
sounds exhibiting considerable acoustic variation should be more distracting than steady-
state sounds that do not exhibit such variation. This leads to two predictions. First, non-
lyrical music should be more distracting than acoustical noise (e.g. white or pink noise). This
is because the former exhibits more acoustic variation than the latter. Non-lyrical music is
the strongest test of this prediction because it avoids any potential confounds from spoken
language that would be present in lyrical music. Second, more complex environmental noise
(e.g. traffic noise or office noise containing phones ringing, indistinct chatter, etc.) should
again be more distracting that steady-state acoustical noise because it also exhibits more

acoustic variation.

2.2. Method

The goal of a meta-analysis is to pool together evidence from multiple studies in
order to estimate some parameter of interest (e.g., the true difference in comprehension
accuracy between reading in silence and reading with music in the background). A Bayesian
meta-analysis differs from the classical (frequentist) meta-analysis in the sense that it uses
Bayesian inference to estimate the parameter and the uncertainty surrounding this estimate.
Before performing the analysis, the researcher needs to express their prior belief about the
parameter in terms of a probability distribution. This is known as the prior probability
distribution and it reflects the researcher’s belief about the parameter prior to observing the
data. After the data are collected, a likelihood function is constructed, which essentially tells
us how probable the data are for different values of the parameter (Lynch, 2007). The result
of Bayesian inference is a posterior probability distribution, which is the researcher’s

updated belief about the parameter given the observed data.



37

The posterior probability distribution is derived from Bayes’ theorem, which states
that the posterior distribution is proportional to the product of the prior probability
distribution and the likelihood (i.e., Posterior o Prior x Likelihood; see Lynch, 2007 for
more details). In the meta-analysis, the observed means are the empirical effect sizes (that is,
the differences between conditions) reported in the original studies. In contrast, the posterior
mean of the effect sizes is simply the mean of the posterior probability distribution that is
derived from the Bayesian meta-analysis. Therefore, the posterior mean reflects our updated

belief about the size of the effect (i.e., the difference) in light of the observed data.

One important part of any meta-analysis is to assess the data for publication and
other reporting biases. One common way to do this is to use what is known as a funnel plot
(Egger, Smith, Schneider, & Minder, 1997; Sterne et al., 2011). This is a scatter plot of all
the effect sizes included in the meta-analysis against some measure of their precision, such
as the standard error or the inverse of the standard error. More precise studies (i.e., the ones
with smaller standard error) will appear more narrowly at the top of the plot, while less
precise studies (i.e., the ones with larger standard error) will scatter more widely at the
bottom. When there is no bias or heterogeneity between studies, the scatter of the plot will
resemble a symmetrical inverted funnel (Sterne et al., 2011). Funnel plot asymmetry can
occur if studies are missing from one side of the plot, thus creating an asymmetrical funnel
shape. For example, this can happen if publication or other reporting biases are preventing
the dissemination of studies with negative findings (however, reporting biases are not the
only possible source of asymmetry, and other factors need to be explored as well; see Sterne

etal., 2011).
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2.2.1. Literature Search

The search of the literature was conducted by following the PRISMA guidelines
(Moher et al., 2009). A flowchart of the process is presented in Figure 3. Google Scholar,
Scopus, the Web of Science, and ProQuest Dissertations were searched with the following
keywords: “background noise AND reading”, “background speech AND reading”, and
“background music AND reading”. The search for each of the three background sounds was
done separately. The literature search covered articles published before the 25" of June,
2017. Additionally, the reference lists of all screened articles, as well as those of previous
literature reviews and meta-analyses on similar topics (Beaman, 2005; Clark & Soérqvist,
2012; Dalton & Behm, 2007; K&émpfe et al., 2011; Klatte, Bergstrom, & Lachmann, 2013;

Shield & Dockrell, 2003; Szalma & Hancock, 2011), were also examined.

When searching the literature, it is important to consider relevant studies that have
been conducted but have never been published in a peer-reviewed journal or an edited book
(i.e., the so-called file-drawer problem; Rosenthal, 1979). This issue was addressed through
some of the databases that were searched. ProQuest Dissertations contains more than 2
million doctoral and masters’ dissertations (Lefebvre, Manheimer, & Glanville, 2008),
which often contain unpublished research. Additionally, Google Scholar indexes a wide
range of unpublished sources, such as conference proceedings, dissertations, reports, and
pre-prints. Furthermore, author searches were carried out for researchers who have done
work on this topic in the last two decades. These searches included researcher networking
websites such as ResearchGate.net and Academia.edu that also contain unpublished research
(e.g., conference presentations or unpublished manuscripts). In the present meta-analysis,

unpublished studies accounted for 17 % of all screened records, thus showing that the search
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strategy was effective in locating them (unpublished studies typically make up 8-10% of all
sources in systematic reviews and meta-analyses; Clarke & Clarke, 2000; Lefebvre et al.,
2008). The unpublished studies came from different sources, such as dissertations,

conference proceedings, reports, and unpublished manuscripts.

The identified articles were evaluated against the inclusion criteria presented in
Appendix A. In short, the studies had to experimentally manipulate background noise,
speech or music in a reading or a proofreading task, have a sound methodological design,
and include reading in silence as a baseline condition. The inclusion criteria were developed
prior to the meta-analysis with the help of a smaller, qualitative review of the literature.
Epidemiological studies of chronic exposure to traffic noise in children were not included
because they answer a qualitatively different question and are often confounded by other
variables, such as social deprivation (Haines, Stansfeld, Head, & Job, 2002). Overall, 44 %
of the experiments whose eligibility was assessed were included in the meta-analysis.
Although the inclusion rate may appear to be low, it was necessary to ensure that only
studies that are similar enough to be analysed together are included. Information about the

included studies and their effect sizes is presented in Appendix B.

2.2.2. Dependent Measures

The main dependent variable was reading comprehension accuracy, which was
available for 54 of the studies (83.1 %). Therefore, most of the reported analyses are based
on reading comprehension accuracy. Moreover, effect sizes for reading speed were available
for 13 studies (20 %), and these were analysed separately. Finally, experiments reporting
proofreading accuracy (N=7; 10.7 %) were also analysed for completeness, but this was

again done separately from the analysis on reading comprehension accuracy.
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Figure 3. A flowchart illustrating the stages of the literature search process in Chapter 2.
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For the meta-regression analyses, additional information about the type of sound
manipulation was also extracted (e.g., whether the noise was environmental or acoustical,
whether the music was lyrical or non-lyrical). If a study contained a background music
manipulation, the songs were manually examined by the author in order to determine
whether they were lyrical or non-lyrical. Only studies that could be unambiguously classified

as either lyrical or non-lyrical were added to this meta-regression analysis.

2.2.3. Effect Size Calculation

Standardized effect sizes of the mean difference (g) and their variances were
calculated from the reported descriptive statistics. This was done by first calculating Cohen’s
d for the respective design of the study and then applying Hedges’ g (Hedges & Olkin, 1985)
correction for small sample bias. The effect sizes were calculated with formulas 12.11-12.22
from Borenstein (2009). In all effect sizes, silence was the control condition. Therefore, the
effects represent the standardized mean difference between reading in the experimental
sound condition and the control condition of reading in silence. If descriptive statistics were
unavailable or incomplete, the effect sizes were calculated by digitalizing graphs (Rohatgi,
2015) or converted/ approximated from the reported test statistics by using existing formulas
(Borenstein, 2009; Lajeunesse, 2013)2. In the analysis of reading comprehension accuracy
and proofreading accuracy, studies were coded so that negative effect sizes indicate lower
comprehension/ proofreading accuracy in the experimental sound condition. Similarly, in the

analysis of reading speed, negative effect sizes also indicate slower reading speed in the

2 Four studies did not contain any information that made it possible to calculate the effect sizes. As all of the
studies were more than 25 years old, it was not possible to obtain the data from the authors. Therefore, these
studies were discarded (they did not count towards the number of included studies). We explored the
implications of this through statistical simulations and found no evidence that failing to include these studies
biased the results (see Appendix C).
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experimental sound condition compared to silence. One effect size was excluded as an

outlier (see Figure Al in Appendix C).

Because 55.5% of the studies used a within-subject design, it was necessary to
estimate the population correlation (p) between the control and experimental conditions
(Borenstein, 2009; Szalma & Hancock, 2011). Eight statistically-independent estimates were
obtained from experiments for which the raw data were available, as well as from one study
(Miller, 1947) that reported the required statistics. These represented a wide range of
experimental sound types and included both reading comprehension and reading speed
measures. We followed Szalma and Hancock's (2011) approach to meta-analyse the obtained
correlations and to obtain a weighted estimate of p. The resulting weighted value of 0.74 was

used for calculating the effect sizes for all within-subject design studies.

Effect sizes from within- and between-subject studies are calculated with different
standard deviation metrics and are thus not necessarily comparable (S. B. Morris & DeShon,
2002). Consistent with previous work (Kampfe et al., 2011; Szalma & Hancock, 2011), the
effect sizes from within-subject studies were transformed to make them comparable to the
effect sizes of between-subject studies. This was done using Formula 11 from Morris and
DeShon (2002). Additionally, because some studies yielded more than one effect size, care
was taken to avoid statistical non-independence in the analyses (see Noble, Lagisz, O’dea, &
Nakagawa, 2017 for a recent overview). If a study contributed multiple effect sizes per
analysis, these were averaged together to include only one effect size for that study (Lipsey

& Wilson, 2001)3.

3 One exception was the meta-regression model comparing lyrical vs. non-lyrical music. We show in Appendix
C that the way the effect sizes were chosen did not influence the conclusions from this analysis.
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2.2.4. Publication Bias

In the present meta-analysis, 12.3% of all included studies were from the so-called
grey literature (i.e. they were not formally published in a peer-reviewed journal or in an
edited book at the time of analysis). To assess the data for publication and other related
biases, we performed a number of visual and statistical tests using the “meta” (Schwarzer,
2007) and “metafor” (Viechtbauer, 2010) R packages. The visualization of the results for
reading comprehension is presented in Figure 4 (see Appendix C for reading speed). The
funnel plots (Panels a and b) indicated that there was some heterogeneity in the data, but
there was no clear evidence of asymmetry that could indicate publication bias. This was
confirmed by a funnel plot test of asymmetry based on a weighted linear regression of the
effect estimates on their standard errors (Sterne et al., 2011), which revealed no statistically
significant evidence for asymmetry for either reading comprehension (t(52) = -0.42, p= 0.67)
or reading speed (t(11)= 0.08, p= 0.93; proofreading accuracy was not considered here
because funnel plot tests of asymmetry are not recommended when there are fewer than 10
studies; Sterne et al., 2011). Additionally, meta-regression analyses (Figure 4e-f) indicated
that the size of auditory distraction effects was not predicted by the impact factor of the
journal or the year of publication. In summary, there was no evidence to suggest that

publication bias may have influenced the conclusions from the meta-analysis.
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White and dark grey bounds indicate the 95% and 99% pseudo-confidence intervals,
respectively. Studies with smaller standard error should appear at the top, while studies with
larger standard error should scatter at the bottom of the plot. b: The same funnel plot of
effect sizes against the inverse of their standard error. In this funnel plot, more precise
studies (i.e. the ones with smaller standard error) should appear at the top, while less precise
studies (i.e., the ones with larger standard error) should scatter at the bottom of the plot. c:
Radial (Galbraith) plot of the z-statistic of each study (y axis) against the inverse of the
standard error (x axis). Shading shows z-value bounds of £ 2. The vertical scatter of effect
sizes shows how much heterogeneity there is in the data and the shading shows the
approximate 95 % confidence interval where, on average, 95% of the studies are expected to
lie (Anzures-Cabrera & Higgins, 2010). d: Plot of effect sizes against their sample size,
broken down by study design type. e and f: Meta-regression models examining whether the
size of effects is predicted by publication year (e) or impact factor of the journal where the
study was published (f). Both models show that this was generally not the case. Red dotted
line shows the meta-regression slope.

2.2.5. Data Analysis

2.2.5.1. Meta-analysis.

The common choice in meta-analysis is between a fixed-effect and a random-effects
model. A fixed-effect model assumes that all effect sizes that are combined together are
estimating the same true underlying effect, which we will call 8. Therefore, the effect size of
the i-th study, Ti, is assumed to come from a normal distribution with some mean #and

variance o?:
T;~ Normal(6,0%) i=1,2,3,..,n (D

In this model, any variability in the estimate is due to sampling error alone. On the other
hand, a random-effects model relaxes this assumption by explicitly allowing for variability
in the true effect size between studies (Welton et al., 2012). In this case, the observed effect
size of the /th study T is assumed to be generated by a unique underlying true effect for that

Ith study, denoted here by 6;. This unique underlying effect 8; is in turn assumed to come
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from a normal distribution with some (unknown) mean & and between-study variance 72

T;~ Normal(8;,6?) i=1,2,3,..,n (2)
0,~ Normal(,1?)

Therefore, the true effect sizes of individual studies in a random-effects meta-analysis can be
informally thought of as random samples from a normal distribution of effect sizes (Welton

etal., 2012).

In the present meta-analysis, a random-effects model was chosen a priori because
some between-study heterogeneity was expected due to differences in design, sound
intensity levels, participants, reading materials, and so forth. A random-effects model can
naturally account for such sources of variability between studies and is often the model of
choice in studies on language processing (e.g. Jager et al., 2017; Vasishth et al., 2013;
Vasilev & Angele, 2017). The full Bayesian model was defined as follows (Jager et al.,
2017; Schmid & Mengersen, 2013):

T; | 8;,s? ~ Normal(6;,s?) i=1,2,3,..,n (3)
;| 0,t>~ Normal(6,1?),
0~ Uniform (—10, 10),
T~ Uniform(0,10)
where: T; is the observed effect size (in Hedges’ g) in the i-th study
0; is the true auditory distraction effect in the i-th study

s? is the true sampling variance of the i-th study, estimated from the within-study

variance of the sampling distribution of study i
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6 is the unknown true auditory distraction effect estimated by the model
72 is the unknown between-study variance

In this model, precision was defined as the inverse of the within-study variance of the
sampling distribution. The last two lines in Equation 3 indicate the prior probability
distributions used for 6 and . In the present analysis, we used Uniform priors that assign
equal probability to any value on these intervals. As these are vague priors, they have very
little to no influence on the results. This was confirmed by doing a sensitivity analysis of the
main results with alternative priors: Normal (0, 10%) for 8 and Normal (0, 10%) 1(0, ) for t
(normal distribution truncated at 0). The sensitivity analysis indicated that the choice of

priors did not influence the results (see Appendix C).
2.2.5.2. Meta-regression.

Although random-effects meta-analysis can account for heterogeneity between
studies, it does not tell us what causes this heterogeneity in the first place (Welton et al.,
2012). However, it is possible to use meta-regression models to investigate how different
study characteristics (e.g. whether the background music was lyrical or non-lyrical) are
associated with the observed effect sizes. Meta-regression models are similar to the ordinary
least-squares regression, but with the crucial difference that the estimate is adjusted by the
precision of the studies (i.e., the inverse of the within-study variance of the sampling
distribution; Welton et al., 2012). The model from Equation 3 was extended by adding a
regression coefficient g for the underlying effect of the covariate (the added parameters are

formatted in bold; Jager et al., 2017; Welton et al., 2012):

T; | 6;, B,s? ~ Normal(6; + Bx;,s?) i=1,23,..,n (4)
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;| 0,1~ Normal(6,1?),
0~ Uniform (—10, 10),
T~ Uniform(0,10)
B~ Uniform (—10,10)
where: £is the regression coefficient for the underlying effect of the covariate x;.

0; is the true auditory distraction effect in the i-th study, adjusted for the covariate

effect x;

6 is the unknown true auditory distraction effect, also adjusted for the covariate

effect x;
All remaining parameters have the same interpretation as in Equation 3.

The contrasts used for the covariate x; are presented in Table 2. These contrasts were used to

test the predictions outlined in the introduction.

2.2.5.3. Posterior sampling. The posterior probability distribution was sampled with
JAGS (Plummer, 2003) using the R software, v. 3.31 (R Core Team, 2016). Five Markov
Chain Monte Carlo (MCMC) chains were run with 100 000 iterations each. Checks were
made to ensure that the starting values of the MCMC chains did not influence the results.
The first 3000 iterations were discarded as burn-in. A thinning interval of 5 was used for the
MCMC chains (i.e., every fifth sample was retained) to reduce the influence of auto-
correlation. The summary of the posterior distribution was based on 20 000 samples per

chain (excluding the burn-in period). Convergence was assessed with visual inspection of the
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trace plots and with Gelman and Rubin's (1992) convergence diagnostic. The diagnostics

suggested that convergence had been achieved in all models.

) Covariate levels Contrast coding
Comparison
Level 1 Level 2 Level 1 Level 2
Non-lyrical vs lyrical music non-lyrical lyrical -1 1
Lyrical music vs intelligible speech music speech -1 1
Unintelligible vs intelligible speech unintelligible intelligible -1 1
Acoustical vs environmental noise acoustical environmental -1 1
Acoustical noise vs instrumental music noise music -1 1
Child vs adult participants child adult -1 1

Table 2. Type of meta-regression comparisons and the contrast coding of covariates.

The effective sample size (ESS) of the MCMC chains was calculated for every
parameter and contrast of interest. The ESS is the size of the MCMC chain after adjusting it
for auto-correlation (Kass, Carlin, Gelman, Neal, & Carlin, 1998; Kruschke, 2015). All of
the present analyses had an ESS greater than 10 000, as recommended by Kruschke (2015).
This was necessary for achieving a stable estimation of the credible interval limits, because
this estimation depends on sparse regions of the posterior probability distribution that are

sampled less often by the MCMC chain (Kruschke, 2015).

The results are presented as the estimate of the effect sizes of interest and their
corresponding 95 % credible intervals. Unlike the classical confidence intervals, credible
intervals have the intuitive interpretation that they contain the true auditory distraction effect
with 95% probability because the values within this interval make up 95% of the posterior
probability distribution (see Morey, Hoekstra, Rouder, Lee, & Wagenmakers, 2016). All

probabilities reported in the paper are the posterior probability, given the data, that auditory
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distraction effects exist. A more detailed summary of Bayesian methods and their
interpretation is beyond the scope of this paper. However, Nicenboim and Vasishth (2016)

provide an accessible overview.

2.3. Results

2.3.1. Meta-analysis

The results from the meta-analysis are presented in Table 3. Additionally, forest plots
are presented in Figure 5 for the main measure of comprehension accuracy. To interpret the
magnitude of the effects, we will consider J. Cohen's (1988) guidelines of 0.20 for small
effects, 0.50 for medium effects, and 0.80 for large effects. Overall, there was a small
negative effect for reading comprehension (g=-0.21), which indicates that background
sounds generally impaired comprehension accuracy. Consistent with the review of the
literature, background speech had a stronger negative impact on reading comprehension (g=
-0.26) compared to both background noise and music (g=-0.17 and -0.19, respectively).

Nevertheless, the effect for all three sound types was fairly small in size.

Reading speed and proofreading accuracy were also impaired by background sounds.
However, the effect sizes for these two measures were very small and the 95% credible
intervals all included 0 as a plausible value for the effect (note that this does not allow us to
conclude that there is no true effect, just that it is possible that the true effect size is 0).
Interestingly, however, the probability that these effects are negative was very high in all
analyses (more than 90%). This means that, although the size of the effects was small, there
was a very high probability that background speech, noise, and music are detrimental to

reading comprehension, reading speed, and proofreading accuracy.
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Type of analysis N  Mean ES (g) 95% Crl p(ES<0 | Data) 12 ESS
Reading comprehension

All sounds 54 -0.21 [-0.30, -0.13] >0.99 0.06 91803

Noise 12 -0.17 [-0.33, 0.002] 0.97 0.06 92499

Speech 20 -0.26 [-0.36, -0.17] >0.99 0.02 47662

Music 36 -0.19 [-0.34, -0.05] >0.99 0.13 93678
Reading speed

All sounds 13 -0.06 [-0.15, 0.02] 0.92 0.01 20915

Speech 6 -0.08 [-0.20, 0.03] 0.92 0.01 28612
Proofreading accuracy

Speech and Noise 7 -0.14 [-0.42, 0.04] 0.94 0.04 40097

Speech ? 6 -0.09 [-0.30, 0.07] 0.90 0.02 41296

Table 3. Posterior effect size estimates of auditory distraction effects and 95% credible
intervals from the meta-analysis. N: number of studies in the analysis. p(ES<O0 | Data):
probability that background sounds are detrimental to reading, given the data (i.e.,
probability that the effect size is smaller than 0). Crl: credible interval. t2: estimated
between-study variance. ESS: effective sample size of the MCMC chains for the main
parameter of interest (0).

2intelligible speech only

Although one can use Bayes factors to perform hypothesis testing (e.g., Rouder &
Morey, 2011; Rouder, Morey, & Province, 2013), the emphasis in the present meta-analysis
was on estimating the magnitude of auditory distraction effects. The findings from this meta-
analysis suggest that there are almost certainly non-null effects, even if their magnitude is
small. Therefore, even if a Bayes factor were to favour a null hypothesis relative to some
alternative hypothesis, the prior probability of the null hypothesis being exactly true would
be negligible in this case. Because of this, the posterior probability of the null hypothesis

would remain small.
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Figure 5. Forest plot for the main effect of background music (a), speech (b), and noise (c)
on reading comprehension in Chapter 2. Plotted are the observed (i.e. empirical) effect sizes
with their 95% confidence intervals, and the posterior effect size estimates from the meta-
analysis model with their corresponding 95% credible intervals. The size of squares is
proportional to the weight of each study (i.e., the inverse of the within-study variance of the
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sampling distribution). The pooled estimate from the meta-analysis is shown by the dark red
diamond at the bottom of each panel (with 95% credible intervals).

Because both studies with adult and child participants were included in the analyses
above, we carried out meta-regression models to test whether the effect sizes differed
between adults and children. Only reading comprehension was considered in these analyses,
as there were too few child studies to reliably estimate differences in reading speed, and all
proofreading studies were done with adults. The results are presented in Table 4. They show
the estimated mean difference between studies with children compared to studies with
adults, after adjusting for their precision in the analysis. Overall, the difference between
adults and children was very close to 0, thus showing that background sounds were equally
detrimental to reading comprehension for both children and adults. One exception was that
background noise impaired reading comprehension in children slightly more than it did in
adults, but the mean difference was still quite small (g= 0.05). Additionally, the effect was
not highly reliable as there was only 73% probability of a true mean difference. Taken
together, these results suggest that effect sizes for reading comprehension did not generally
differ between adults and children. For this reason, child and adult studies were analysed

together in all remaining analyses.

2.3.2. Meta-regression

The results from the meta-regression models testing the theoretical predictions
outlined in the introduction are presented in Figure 6 and Figure 7. Recall that the models
yield a regression slope, which shows the estimated mean difference between the two

groups, after adjusting for the precision of individual studies. Consistent with the semantic,
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but not with the phonological interference hypothesis, there was 99% probability that
intelligible speech was more distracting than unintelligible speech (mean difference: g= -
0.12). Additionally, in line with both the semantic and phonological interference hypotheses,
there was 95% probability that lyrical music was more distracting than non-lyrical music
(mean difference: g=-0.19). Interestingly, however, intelligible speech and lyrical music did
not differ between one another, and the estimated probability of a true difference was only
54% (with 50% being no difference, since the posterior probability density would lie evenly
to the left and right side of 0). This last result is surprising because, arguably, most people
perceive lyrical music as subjectively less distracting than intelligible speech. For example,
it can be speculated that students may be more likely to choose to study while listening to
lyrical music in the background than they are to study while listening to an audio book.
However, the present results suggest that both lyrical music and intelligible speech are

equally distracting.

_ Number of studies Mean p(EScH>
Analysis : ) 95 % Crl ESS
children  adults  diff. (g) ESa| Data)
Reading comprehension
All sounds 18 36 -0.01  [-0.10, 0.08] 0.43 30623
Noise 5 7 0.05 [-0.13,0.22] 0.73 29974
Speech 5 15 0.00 [-0.12,0.12] 0.51 30263
Music 13 23 0.02 [-0.12,0.17] 0.64 18498

Table 4. Mean difference in the effect size between child and adult studies: Meta-regression
results. Mean diff: Posterior estimate of the mean difference (in Hedges’ g) between adult
and child participants. Crl: credible interval. p(EScw> ESa): probability that the effect size
for child participants is bigger than the effect size for adult participants, given the data. ESS:
effective sample size of the MCMC chains for the main parameter of interest (j3).
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Consistent with the changing-state hypothesis, there was 90% probability that
environmental noise was more distracting than acoustical noise (mean difference: g=-0.10).
However, there was only 55% probability of a difference between non-lyrical music and
acoustical noise, thus suggesting that the two background sound types did not generally
differ. As Figure 6b shows, the size of both effects, as estimated by a random-effects meta-
analysis, was very close to 0. This result is contrary to the predicted difference from the

changing-state hypothesis.

2.4. Discussion

The present study investigated the magnitude of auditory distraction effects during
reading and how compatible these effects are with existing theories of distraction. We will
first consider the overall size of the effects and then discuss their theoretical implications.
The main findings from the meta-analysis can be summarized as follows. First, background
speech, noise, and music all had a negative effect (indicating distraction) on reading
comprehension accuracy. The magnitude of the effects was small, but highly reliable,
meaning that there was very high probability that these sounds are detrimental to reading
comprehension given the available evidence. Second, auditory distraction effects measured
with reading comprehension did not generally differ between adults and children. Finally,
background speech, noise, and music had a very small, negative effect on reading speed, and
background speech and noise also had a small, negative effect on proofreading accuracy.
Although both effects proved to be smaller than the ones observed in reading

comprehension, there was still high probability that they were negative (>90%).
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Figure 6. Results of the meta-regression models testing the predictions of the semantic and
phonological interference hypotheses in Chapter 2. Panel a shows the regression slope and
the observed effect size of the studies included in the analysis. The slope indicates the mean
difference estimated by the meta-regression model (in terms of Hedges’s g) between the two
groups. The size of circles is proportional to the weight of individual studies (inverse of the
within-study variance of the sampling distribution). Panel b shows the posterior effect size
for each group, as estimated by a random-effects meta-analysis of the simple effect. Error
bars show the 95% credible intervals. Effective sample size of the MCMC chains for 3
(panel a, from left to right): 11455, 24381, 54689. Effective sample size of the MCMC
chains for 6 (panel b, from left to right): 98478, 95721, 97382, 32748, 15048, 34152.
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Figure 7. Results of the meta-regression models testing the predictions of the changing-state
hypothesis in Chapter 2. Panel a shows the regression slope and the observed effect size of
the studies included in the analysis. The slope indicates the mean difference estimated by the
meta-regression model (in terms of Hedges’s g) between the two groups. The size of circles
is proportional to the weight of individual studies (inverse of the within-study variance of the
sampling distribution). Panel b shows the posterior effect size for each group, as estimated
by a random-effects meta-analysis of the simple effect. Error bars show the 95% credible
intervals. Effective sample size of the MCMC chains for B (panel a, from left to right):
36063, 13062. Effective sample size of the MCMC chains for 0 (panel b, from left to right):
31904, 89200, 31904, 98478.

The present results provide the first comprehensive analysis of auditory distraction
effects in a reading task. As the review of the literature in Chapter 1 showed, interest in this

topic has a very long history that precedes the cognitive revolution, and indeed, most of the
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work on auditory distraction in other cognitive tasks. Traditionally, much of the interest in
auditory distraction in reading tasks has been due to its practical implications for reading
outside the psychological laboratory, such as studying for an exam, reading in the classroom,
or any kind of work that involves reading in a busy office. However, the inconclusive and
sometimes contradictory evidence has made it difficult to arrive at clear conclusions until
now. The present results advance our understanding of this topic by showing that external
auditory input almost always comes at a cost for reading efficiency. Even though the
observed cost was modest, especially for measures such as reading speed and proofreading
accuracy, there was still relatively high probability that it reflects a true effect in the
population. Therefore, the present study resolves some of the controversy highlighted in the
introduction by showing that general auditory distraction effects by background noise,

speech, and music almost certainly exist, but that their magnitude is small.

Given that there was very high probability that background speech, noise, and music
are detrimental to reading comprehension, why have some of the previous findings been so
inconsistent? One possibility is that some of the original studies may not have had sufficient
statistical power to detect the underlying effects. Figure 8 shows the relationship between
sample size and statistical power for a range of effect sizes, including the ones observed in
the present meta-analysis (see Wallisch, 2015). This is for illustrative purposes only, as
statistical power is influenced not only by sample size and the magnitude of the true effect,
but also by other factors, such as the reliability of the measure, missing data, sampling
control and so on (Hansen & Collins, 1994). Nevertheless, as Figure 8 clearly shows,
statistical power is related to sample size and generally a larger number of participants are

required to achieve sufficient statistical power of detecting some of the auditory distraction
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effects observed in the present study. This suggests that, although most of the observed
effects are negative in sign, statistical significance may not always be achieved if the

underlying effect is small and the experiment is underpowered.
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Figure 8. An illustration of the sample sizes needed to achieve different levels of statistical
power for a range of realistic effect sizes. Dark red interval at the top shows the range of
effect sizes observed in the present meta-analysis. Desirable levels of statistical power are
depicted by warm colours. Statistical power was calculated with the “pwr” R package
(Champely, 2012) and is based on an independent-samples t-test with equal groups, and an a
level of 0.05 (two-tailed).

2.4.1. Implications for Theories of Auditory Distraction

The second goal of the present study was to investigate what properties of
background sounds make them distracting and to test what theoretical frameworks can
explain the results. This is an important question as not all studies have explicitly considered
the theoretical implications of their work, with some researchers taking a more applied

approach of simply testing whether certain types of sounds are distracting to readers or not.
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More broadly, the present analyses provide a glimpse into how well readers can maintain
focus on the main task (reading) while listening to a competing stream of auditory input that
they try to ignore. The meta-regression results provided a few key insights into the nature of

auditory distraction effects, as measured with reading comprehension accuracy.

First, lyrical music was found to be more distracting than non-lyrical music, but
equally as distracting as intelligible speech. Second, intelligible speech was in turn more
distracting than unintelligible speech. Finally, environmental noise was more distracting than
acoustical noise, but there was no reliable difference between non-lyrical music and
acoustical noise. These results provide strong support for the notion that the presence of
language in background sounds is the strongest contributor to auditory distraction. Indeed,
the two largest distraction effects were found for lyrical music (g=-0.35) and intelligible
speech (g=-0.34). This last finding is consistent with both the semantic interference (Martin
et al., 1988) and interference-by-process (Marsh et al., 2008) accounts, which predict that
either the semantic content of speech/ sung lyrics or the actual process of trying to extract
their meaning can distract readers from their main task. Nevertheless, these two accounts

don’t have a mechanism that can explain distraction by non-speech background noise.

The present findings are generally not consistent with the phonological interference
account for two reasons. First, it predicts that all speech sounds should be equally distracting
because they all would gain access to the phonological store; however, intelligible speech
was reliably more distracting than unintelligible speech. Additionally, background noise,
which would not gain access to the phonological store, was also found to cause distraction.
Finally, the results are only partially consistent with the changing-state account (Jones et al.,

1992), which predicts that sounds with greater acoustic variation would cause greater
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distraction. This is because environmental noise was more distracting than acoustical noise
(consistent with the theory), but non-lyrical music was not more distracting than acoustical
noise (not consistent with the theory). In both cases, environmental noise and non-lyrical

music exhibit more acoustic variation that acoustical (e.g., white or pink) noise.

What type of theoretical framework could account for the present results? Clearly,
none of the theories considered so far can account for all the findings. While some theories
were successful in accounting for some of the effects, the present results suggest that new
theoretical models are needed that can explain all the evidence. This is not necessarily a
limitation of existing theoretical accounts because, as noted previously, not all of them were
originally designed to account for distraction effects in a reading task. Additionally, these
theories offer very useful mechanisms through which auditory distraction can occur. In this
sense, it is more useful to consider a hypothetical model that can explain the data from

reading tasks by taking into account the contribution of these theories.

One such framework could be a two-component model in which noise and speech
influence reading through separate processes. In the first component, background noise
would cause a small decrement in comprehension. The present data cannot fully explain why
this disruption by noise occurs and more research is needed to understand this mechanism.
There was some evidence that noise exhibiting greater acoustic variation is associated with
greater distraction (see Jones et al., 1992), but other potential mechanisms need to be
explored as well. The second component would cause greater decrements in comprehension
from intelligible speech (see Marsh et al., 2008; Martin et al., 1988). Recent evidence
suggests that the cognitive process of trying to analyse the meaning of the speech may be

enough to cause distraction (Hyona & Ekholm, 2016). Whether the semantic content and
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semantic representation of the speech sound are processed and cause additional distraction is
an open question that needs to be explored in future research. This second component would
also account for the effect of background music. This is because the present results suggest
that distraction by background music is effectively reduced to distraction from the sung

lyrics, since music without lyrics was not found to be distracting (see Figure 6b).

The predictions of this model could be further tested through future experimental
work. For example, previous research has mostly focused on measuring differences in
reading comprehension, while only few studies to date have used reading speed as a
dependent variable. This in turn did not make it possible to evaluate the model based on this
measure. However, the two-component model would make the same prediction for reading
speed: background noise should lead to a modest decrease in reading speed, while
intelligible background speech should lead to a greater decrease in reading speed due to
interference from semantically processing the speech. Measuring eye-movements during
reading could also provide a more detailed view of auditory distraction because eye fixations
are sensitive to the ongoing cognitive processing of the text (see Rayner, 1998). For
example, no studies to date have examined how acoustical or environmental noise may affect
fixation durations or fixation probabilities during reading. If the assumption of the first
component of the model is correct, there should be an increase in either fixation durations or

the number of fixations when readers are exposed to noise in the background.

A stronger test of semantic interference by intelligible speech (i.e., the second
component of the model) would be to study two participant populations with the same
speech sounds. For example, monolingual speakers of French should be distracted by French

speech (intelligible), but not by the same speech, translated into and spoken in a foreign



63

language, such as German (unintelligible). Conversely, monolingual speakers of German
should be distracted by the same German speech (intelligible), but not by the French speech
(unintelligible). If the magnitude of auditory distraction by intelligible speech is the same in
the two populations, this would provide strong evidence for semantic interference by
background speech. Additionally, lyrical music has only rarely been used to study distraction
due to semantic interference. For example, the proposed model predicts that a lyrical song in
the participants’ native language would cause distraction because the lyrics are intelligible,
while the same song in a foreign language would not cause distraction because the lyrics are
unintelligible (see Chew, Yu, Chua, & Gan, 2016). Likewise, the model predicts that an
instrumental version of the same song would also not cause any distraction. Another
promising avenue would be to investigate distraction by intelligible speech and lyrical music
in second language learners in order to determine the role of language proficiency in
semantic interference. This could be done by having participants read a text in their native
language while listening to background speech in their second language. The second
component of the model predicts that distraction will increase as a function of language
proficiency because more proficient speakers of the second language would be better at

semantically processing the background speech.

2.4.2. Practical Implications

The present results also have some practical implications for settings where readers
are exposed to distracting background sounds. For example, there is evidence that listening
to music when studying or working is a commonplace. In one survey, university students
reported listening to music 62% of the time when studying or doing homework (David, Kim,

Brickman, Ran, & Curtis, 2015). Additionally, Calderwood, Ackerman, and Conklin (2014)
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found that 59% of university students played music in the background when they were asked
to study as they normally do. There is also some evidence that listening to music at work is
common, with 80% of employees reporting that they listen to music during working hours
(Haake, 2006). In this sense, there are many situations in daily life in which people can
choose to listen to music while doing reading-related tasks. The present results have direct
implications for reading in educational and work settings because they suggest that listening
to lyrical music should be avoided when reading a text for comprehension. This is because
lyrical music contains intelligible language in the form of sung lyrics, and this type of music
was found to be disruptive to reading comprehension. Instead, readers can avoid this
disruption by listening to non-lyrical (i.e., instrumental) music because it does not contain

any intelligible language.

In the two-component model outlined above, intelligible lyrical music and intelligible
speech are assumed to be equally distracting. In fact, intelligible background speech is often
present in many work settings, particularly in open-plan offices and other shared areas that
have poor acoustic privacy (e.g., Haapakangas, Hongisto, Eerola, & Kuusisto, 2017,
Haapakangas, Hongisto, Hyona, Kokko, & Keranen, 2014; Schlittmeier & Liebl, 2015). The
present results suggest that intelligible speech is likely to impair performance on office tasks
that require reading for comprehension, proofreading or processing the meaning of written
information. Because of this, limiting the amount of intelligible speech in open-plan offices
is likely to improve reading performance among office workers. In cases where this is
difficult to achieve for practical reasons, acoustically masking the background speech (e.g.
with natural sounds) might be helpful as this will decrease its intelligibility and therefore its

negative impact (Haapakangas et al., 2011; Jahncke, Bjorkeholm, Marsh, Odelius, &
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Sorqvist, 2016; see also Hongisto, 2005). Furthermore, the present results and the proposed
model also suggest that readers exposed to background noise will likely incur a modest cost
in terms of reduced comprehension. This suggests that external environmental noise should
be limited in settings where reading is common, such as in schools or in libraries. Finally,
the practical implications of the present findings would apply equally to both adults and
children because the two groups did not generally differ in terms of auditory distraction

during reading.

2.4.3. Limitations

While meta-regression is a very useful tool for testing how auditory distraction
differs between background sounds or age groups, the present results are only observational
in nature (Thompson & Higgins, 2002). Therefore, direct evidence from laboratory
experiments and direct comparisons between the different factors are required to verify these
results. Nevertheless, we anticipate that our findings, which are based on all the available
evidence, will prove to be very useful in guiding future experimental research and advancing

our theoretical understanding of how auditory distraction during reading occurs.

Additionally, some of the meta-regression analyses were based on a small number of
studies. However, this is not necessarily a limitation in the Bayesian approach that we have
adopted here because the results simply reflect our best understanding of auditory distraction
effects given the currently available data. Once more data is available, the present results can
be easily updated via Bayes’ theorem, which will lead to an even more precise estimate of

the effects.
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2.4.4. Future Directions

The present study grouped background sounds into broad categories, such as noise,
speech, or music. However, real-word sounds that readers are routinely exposed to do not
always belong to only one of these categories. Rather, different sounds may be present at the
same time, such as music playing from a TV, background speech from a nearby
conversation, and environmental noise from nearby traffic. Currently, there is a limited
understanding of how different types of sounds may interact to increase or decrease
distraction. For example, there is some evidence that acoustical noise, when intermixed with
background speech, can reduce the negative impact of the speech sound by reducing its
intelligibility (Haapakangas et al., 2011; Hongisto, 2005; Venetjoki et al., 2006). Therefore,
more research is needed to investigate sounds that are more complex and thus more realistic
of auditory distraction in the real world. Additionally, previous research has not investigated
the behavioral aspects of auditory distraction: for example, whether participants’ motivation
and goals can influence how distracted they are by different background sounds during

reading.

Another question that deserves more attention is how auditory distraction may differ
between age groups. Studies with adults and children have usually been done in isolation,
which makes it challenging to assess how these groups differ under the same experimental
conditions. The present meta-regression analyses are arguably the only possible way of
addressing this question with the currently available data. However, experiments directly
comparing adults and children are needed to make firm conclusions. Traditionally, a lot of
research has focused on large-scale epidemiological studies of chronic exposure to noise in

schools such as the RANCH (Stansfeld et al., 2005) and West London studies (Haines,
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Stansfeld, Job, Berglund, & Head, 2001; Haines et al., 2001). Because of this, surprisingly
little is known about the effect of experimental exposure to noise on reading in children.
Eye-movement recordings may be particularly helpful in studying this topic as they can
reveal subtle auditory distraction effects that may not appear in behavioural measures such
as comprehension accuracy (Cauchard et al., 2012; Hyon& & Ekholm, 2016; Yan et al.,
2017). Longitudinal studies of reading development have already made successful use of
eye-tracking to study processes such as the development of the perceptual span (Sperlich,
Meixner, & Laubrock, 2016), and this method also holds promise in understanding how

children’s susceptibility to distraction may change during the school years and beyond.

Eye-tracking technology and ERP recordings are useful methods because they can
provide rich data about the time course of auditory distraction effects during reading. We
anticipate that this type of evidence will be crucial for gaining a better understanding of
when and how these effects occur, and what their theoretical nature is. The field of eye-
movements during silent reading has already seen the successful development of advanced
computational models such as the E-Z Reader (Reichle, Pollatsek, Fisher, & Rayner, 1998)
and SWIFT (Engbert et al., 2005), which can simulate many empirical findings. Similarly, a
more precise quantification of the time course of auditory distraction effects can move the
field forward by making it possible to build computational models that can simulate these

processes and to generate new predictions.

2.4.5. Conclusion
Auditory distraction during reading has been a topic of interest for the last 80 years
and, as the surge of recent publications shows, it is likely to continue to be an active area of

research in the future. The present study was the first attempt to make a comprehensive
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statistical synthesis of auditory distraction effects in a reading task. The results showed that
background noise, speech and music are almost always distracting, even if the distraction
effects are often small in size. Sounds that contain intelligible language (i.e., speech or
lyrical music) were particularly distracting, most likely due to their semantic properties that
interfere with processing the written text. The present findings also have some practical
implications. For example, they suggest that listening to instrumental music while reading
does not affect the comprehension of the text, whereas listening to lyrical music does.
Additionally, readers exposed to background noise would likely incur a cost in terms of
reduced comprehension, even if this cost is very small. Finally, the recent interest in
measuring eye-movements during reading in the presence of background auditory input
heralds the emergence of a new sub-field that may give an even more precise understanding
of how and when auditory distraction occurs. The rest of this Thesis will focus on gaining a
better understanding of how background speech, noise, and discrete auditory distractors

affect eye-movements during reading.
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CHAPTER 3: THE EFFECT OF INTELLIGIBLE SPEECH ON LEXICAL
PROCESSING DURING SENTENCE READING

Previous studies investigating the effect of background speech and noise on reading
comprehension have painted a mixed picture (see Chapter 1 for an overview). For example,
while some of them have found that intelligible speech is detrimental to reading and
proofreading performance (Jones, Miles, & Page, 1990; Martin et al., 1988; Sorqvist, Halin,
& Hygge, 2010), others have failed to find such an effect (Haka et al., 2009; Landstrém,
Soderberg, Kjellberg, & Nordstrom, 2002; Ljung, Sorqvist, & Hygge, 2009; Venetjoki,
Kaarlela-Tuomaala, Keskinen, & Hongisto, 2006). Similarly, studies on the effect of
acoustical noise on reading in adults have also resulted in mixed findings. Some of them
have found no evidence that acoustical noise is detrimental to reading comprehension
(Gawron, 1984; Jahncke, Hygge, Halin, Green, & Dimberg, 2011; Veitch, 1990), while
others have found that it can be detrimental to some people depending on their personality
characteristics (Furnham, Gunter, & Peterson, 1994; Ylias & Heaven, 2003). Therefore, the
evidence from behavioural studies is inconclusive, but it suggests that at least some sounds

may be disruptive to reading.

One limitation of behavioural studies is that they have focused only on the end
product of reading (i.e., comprehension). However, recording participants’ eye-movements
makes it possible to investigate how the reading process unfolds in time and to uncover

subtle auditory distraction effects that may not be apparent in comprehension measures. A
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better understanding of the time course of these effects is also crucial for developing
theoretical frameworks that can explain how auditory stimuli interfere with the reading
process. While theories of semantic and phonological distraction make very specific
predictions about the types of speech sounds that should disrupt reading, these predictions
are mostly descriptive in nature and they do not tell us which aspects of the reading process
are affected. Therefore, eye-tracking evidence has the potential to advance our theoretical
understanding of auditory distraction by making it possible to formulate more precise and

quantitative predictions in a reading task.

Previous research has indicated that background speech has a direct influence on eye-
movements during reading (Cauchard et al., 2012; Hy6na & Ekholm, 2016; Yan et al.,
2017). However, it is currently not well understood whether background speech influences
the early stages of word processing or if its effect is constrained only to the later processes of
sentence integration. Additionally, it is not clear what properties of the speech sound give
rise to the distraction in eye-movements during reading. In the present experiment, we
sought to answer two research questions: 1) Is the disruption by intelligible speech in eye-
movements semantic or phonological in nature (or a combination of the two)? and 2) Does

intelligible speech influence the lexical processing of words?

The few available eye-tracking studies to date have provided the first clues as to how
intelligible speech may disrupt reading. With the exception of Hyond and Ekholm’s (2016)
Experiment 1, all previous studies seem to suggest that intelligible speech leads to an
increase in re-reading fixations. However, it is not immediately clear what properties of
background speech give rise to the disruption. For example, it is not known whether the

disruption is due only to the semantic properties of speech, or if phonology also plays a role.
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The statistical synthesis of previous findings from behavioural experiments in Chapter 2 did
not find evidence for phonological distraction in measures of reading comprehension, but
this result may not necessarily extend to measures of eye-movements during reading.
Additionally, the comparison between the phonological and semantic distraction accounts
from Chapter 2 was based on a small number of studies. Therefore, more evidence from eye-
movements during reading is required to investigate the role of phonology in distraction by

intelligible speech.

While the manipulation in Hyond and Ekholm's (2016) Experiment 1 could make the
theoretical distinction between phonological and semantic distraction, the authors reported
no disruption by either intelligible or unintelligible speech. Therefore, their results did not
provide support for either the phonological or semantic disruption hypothesis. One possible
explanation for this finding is that the foreign (i.e., unintelligible) speech material used in
their study was taken from a language course, while the native speech was an excerpt from a
novel. Therefore, the lack of a statistically significant difference may have occurred because
the two speech sounds potentially differed in properties such as intonation, content, and rate
of speech. The present research made a more stringent test of the semantic and phonological
disruption theories by using intelligible and unintelligible speech that are more closely
matched on these variables, and by including an acoustical noise condition that contains no

phonological information but that has an amplitude spectrum similar to that of speech.

Additionally, there is conflicting evidence about which stages of the reading process are
influenced by intelligible speech. For example, Hy6na and Ekholm (2016) reported that the
effect of scrambled speech was mostly evident in re-reading fixations, while Yan et al.

(2017) observed the same effect for intelligible speech. These findings suggest that the effect
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of background speech is mostly evident in second-pass reading measures. However,
Cauchard et al. (2012) also reported an effect on gaze durations, and Yan et al. found that
intelligible speech eliminated the frequency effect for first fixation durations. The last two
findings seem to suggest that the early stages of word processing may also be affected. If the
initial processing of words is disrupted, this may occur because the semantic properties of
speech interfere with accessing the lexical information of words. This is an important

theoretical question that has not been addressed in an alphabetical language before.

The first goal of the present experiment was to investigate whether the phonological or
semantic properties of speech (or a combination of the two) is responsible for the disruption
by intelligible speech in eye-movements during reading. We used a paradigm in which
participants read single sentences that were presented concurrently with the sounds.
Importantly, participants heard the sound stimuli only for the duration that they were
actually reading, thus reducing potential habituation effects (Banbury & Berry, 1997).
Additionally, the speech stimuli were carefully matched and consisted of single declarative
sentences that were unrelated to each other. This was similar to the reading stimuli, which
also consisted of unrelated declarative sentences. Furthermore, only naturally-occurring
speech was used (i.e., without any scrambling) and this speech was spoken at a consistent
rate throughout the whole experiment. Finally, because participants’ comprehension was
assessed immediately after reading a sentence, it was possible to test whether background
sounds have an immediate effect on reading comprehension. This is an important question
because most behavioural studies to date have had a delay between reading the text and the

subsequent comprehension assessment (e.g., due to other tasks intervening in between;
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Martin et al., 1988) and any observed differences may not be due to deficits in immediate

text comprehension (see Sorqvist et al., 2010).

The present study had four background sound conditions that made it possible to
differentiate between the phonological and semantic distraction accounts: Gaussian noise
filtered to have an amplitude spectrum similar to that of long-term average speech (referred
to as ‘speech-spectrum noise’), Mandarin speech, English speech, and silence (the control
condition). According to the phonological distraction account (Salamé & Baddeley, 1982,
1987) irrelevant speech should disrupt the ongoing reading process regardless of whether it
is intelligible or unintelligible because it automatically gains access the phonological store of
working memory capacity. However, speech-spectrum noise would not be expected to cause
such disruption because it would not gain access to the phonological store. Therefore, if the
disruption is phonological in nature, we would expect English speech to be more distracting
than speech-spectrum noise, but equally as distracting as Mandarin speech. On the other
hand, if the disruption is semantic in nature (Marsh et al., 2008, 2009; Martin et al., 1988),
we would expect English speech to be more distracting than Mandarin speech because

participants can understand the former language but not the latter.

It should be noted that Mandarin phonology differs from English phonology in a number
of ways, such as the use of distinct tones, the smaller number of syllables, the lack of
polysyllabic words, and the high number of homophones (Duanmu, 2006). Nevertheless, the
phonological distraction account (Salamé & Baddeley, 1982, 1987) does not predict that the
disruption occurs due to phonetic similarity between the irrelevant speech sound and the text
that participants are reading. Rather, it occurs because the irrelevant speech gains access to

the phonological store of working memory where it interferes with the storing and rehearsal
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of the phonological information of the text that participants are reading. Therefore, the actual
language of the irrelevant speech is often not thought to be of critical importance. In fact,
phonological distraction in behavioural experiments has been observed with a range of
different languages, including Arabic (Baddeley & Salamé, 1986; Salamé & Baddeley,
1987), German (Colle & Welsh, 1976), Russian (Klatte, Lee, & Hellbruck, 2002), and

Japanese (Ellermeier & Zimmer, 1997), to name a few.

One possibility is that the disruption by intelligible speech is not either entirely semantic
or entirely phonological in nature, but rather a combination of the two. To test for this
possibility, we will distinguish between two versions of the phonological distraction account.
In the strong version, any distraction effects are attributed to phonology alone. As a result,
English speech should be more distracting than Noise but equally as distracting as Mandarin
speech. In the weaker version of the theory, phonology is responsible for some, but not all of
the distraction effects. Therefore, the weaker version of the theory predicts that Mandarin
should be more distracting than speech-spectrum noise (indicating some contribution of
phonology), but less distracting than English speech (indicating that the rest of the disruption

effect can be attributed to semantic interference).

The second goal of the present experiment was to test whether intelligible speech
interferes with the lexical processing of words. Yan et al.’s (2017) study suggests that
intelligible speech may disrupt lexical processing in readers of Mandarin, but, interestingly,
this effect was found only in first fixation durations. This suggests that the disruption of
lexical access by intelligible speech is limited only to the very first fixation on words. In the
present experiment, we tested whether lexical processing is affected in readers of English by

manipulating the lexical frequency of a target word in each sentence. Previous research has



75

shown that lower frequency words are fixated longer than higher frequency words (Inhoff &
Rayner, 1986; Rayner, 2009). Therefore, as the frequency effect reflects the difficulty
inherent in the lexical access of words, the present study tested whether intelligible
background speech interferes with lexical access. For example, in any model of word
identification where word representations accrue activation constantly (e.g., Morton, 1969;
Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), we might expect that English speech
makes it harder to accumulate activation in order to identify a word compared to the other
sound conditions. In this case, we should find a stronger word frequency effect in this
condition compared to the other background input conditions because low frequency words
require more activation for lexical access than high frequency words. In this sense, we would
expect the disruption effect of intelligible English speech to be greater for low frequency

words than for high frequency words.

3.1. Summary of Predictions

The following predictions were tested in the present experiment:

H1: If the disruption by intelligible speech is entirely phonological in nature, English
speech should be more distracting than Silence and Noise, but equally as distracting as

Mandarin speech (strong form of phonological interference).

H1.2: If the disruption by intelligible speech is only partially phonological in nature,
Mandarin speech should be more distracting than Noise (weaker form of phonological

interference).
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H2: If the disruption by intelligible speech is entirely semantic in nature, English speech
should be more distracting than Silence, Noise, and Mandarin; additionally, prediction

H1.2 above should not be supported by the data (strong form of semantic interference).

H2.1: If the disruption by intelligible speech is a combination of semantic and
phonological interference, English speech should be more distracting than Silence,
Noise, and Mandarin; additionally, prediction H1.2 above should also be supported by

the data (combination of phonological and semantic interference).

H3: If intelligible speech interferes with the lexical access of words, there should be
greater disruption by English speech for low frequency compared to high frequency

words.

Based on the available evidence (e.g., Hyona & Ekholm, 2016; Yan et al., 2017), we

expected to find support for predictions H2 and H3 above.

3.2. Method

3.2.1. Participants

Forty university students (28 female) participated for course credit or a payment of
£8. Their mean age was 22.4 years (SD= 5.2 years; range: 18-40 years). All participants were
native speakers of British English, reported normal or corrected-to-normal vision, normal
hearing, and no prior diagnosis of reading disorders. Participants were naive as to the
purpose of the experiment. None of them had any knowledge of Mandarin Chinese. Ethical
approval for the study was obtained from the Bournemouth University Research Ethics

Committee (protocol No. 11663).
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The statistical power of study design was 0.831 for an average effect size of d= 0.47
based on the method described in Westfall (2015). The expected value of d= 0.47 was
determined by calculating the effect size for all disruption effects by background speech
reported in Hyon& and Ekholm (2016) and then taking their average. As the current power
exceeds the recommended value of 0.80 (J. Cohen, 1988), the present experiment was

sufficiently powered to detect auditory disruption effects by background speech.

3.2.2. Materials

3.2.2.1. Sentence stimuli. The reading material consisted of 128 English sentence
frames (see Figure 9b for an example and Appendix D for a complete list). Their average
length was 13.2 words. Each sentence frame had a target word position which could contain
either a low-frequency or a high-frequency word (picked using the SUBTLEX-UK database;
Van Heuven, Mandera, Keuleers, & Brysbaert, 2014). The target word was never one of the
first or last three words in the sentence frame. The target words were an equal number of
adjectives and nouns. High and low frequency target words were matched on word length,
bigram frequency, and neighbourhood size using the N-watch software (Davis, 2005). This
information is presented in Table 5. Additionally, cloze-task predictability norms (Taylor,
1953) were obtained from 21 undergraduate students who did not participate in the eye-
tracking study. High and low frequency target words did not differ significantly in their

predictability given the preceding sentence frame, t(127) = 0.97, p = 0.33.
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High-frequency words Low-frequency words

Mean SD Min Max Mean SD Min Max

Word length (in letters) 5.6 11 3 7 56 1.1 3 7

Lexical frequency! 160 146 46 779 3 2 0.06 10
Bigram token frequency 1282 925 129 5173 1279 994 83 7050
Neighbourhood size 2.8 3.8 0 22 2.8 3.6 0 20

Predictability 0.01 0.04 0 0.29 0.01 0.03 0 0.24

Table 5. Descriptive statistics for the target words in Chapter 3.

Lin counts per million.

3.2.2.2. Auditory stimuli. The sound stimuli consisted of three types of sound:
speech-spectrum noise, English speech, and Taiwanese Mandarin speech. The English
speech was taken from the BKB corpus (Bench, Kowal, & Bamford, 1979). The corpus
consists of short sentences spoken in British English that last for about 1-2 seconds (e.g.
“The house had nine rooms.”). Thirty-two sound files were created by concatenating seven
speech sentences and removing the silence gaps. Each speech sentence appeared only once
in the sound files. In half of the speech sound files, the speaker was female; in the other half,
the speaker was male. The speech-spectrum noise was created by filtering Gaussian noise by

the average amplitude spectrum of the English BKB sentences in male voice.

Thirty-two Mandarin sound files were created in the same way as the English ones.
The speech sentences were taken from Kuo (2006), who translated 240 sentences from the
BKB (Bench et al., 1979) and IHR (MacLeod & Summerfield, 1990) corpora. Therefore, the
Mandarin speech sentences were intended for the same audience and had the same sentence

structure as the English ones. The average speech rate in the experiment was matched
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between the English speech (M= 3.16 words per second) and the Mandarin speech (M= 3.08

words per second) condition, t(62)= 1.10, p= 0.28.

The four sound conditions (Silence, Noise, Mandarin, and English) were presented in
blocks of 32 sentences. The sentences within each block appeared in random order. The
order of the blocks and the assignment of sound conditions to the sentences were
counterbalanced with a full Latin square design. The frequency of the target word was also

counterbalanced.

3.2.3. Apparatus

An Eyelink 1000 was used to record participants’ eye-movements. Viewing was
binocular, but only the right eye was recorded. The sampling frequency was 1000 Hz.
Participants rested their head on a chin-and-forehead rest. The sound stimuli were
administered binaurally through noise-cancelling headphones (Bose QuietComfort 25) at a
sound pressure level (SPL) of 59-61 dB(A). The SPL was measured with a RadioShack
digital meter (model 33-2055) over a 2-minute interval. The amplitude resolution of the
sounds was 32 bits. The sampling frequency was 22 kHz for the English speech and speech-
spectrum noise, and 44 kHz for the Mandarin speech. The sounds were played on an Intel

HD Audio integrated sound card.

The experiment was run using the EyeTrack 0.7.10h software (Stracuzzi, 2004) on a
PC with Microsoft Windows XP. The stimuli were presented on a 20-inch Mitsubishi
Diamond Pro 2070 monitor with a screen resolution of 1024 x 768 and a refresh rate of 150
Hz. The sentences were displayed in Courier New 14pt. font and appeared as black text over

white background on a single line in the middle of the screen. The width of each letter was
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11 pixels. Participants sat 60 cm away from the monitor and at this distance each letter

subtended approximately .40° of visual angle.

3.2.4. Procedure

Participants were instructed to focus on what they were reading and to ignore any
sounds they may hear. Participants wore the headphones throughout the whole experiment.
A three-point calibration of the eye-tracker was performed at the beginning of the
experiment and it was then repeated as required. The calibration error was kept at < .30° of
visual angle. All beeps during calibration and drift check were turned off. The experiment
started with six practice trials, followed by the experimental trials. The trial presentation is

illustrated in Figure 9. The experiment lasted for 30-40 minutes.

All trials began with a drift check, after which a black square appeared with a 50-
pixel offset from the left edge of the screen. Once participants fixated the square, the
sentence was presented, with the first letter of the first word at the centre of the square. The
onset of the background sound was simultaneous with the onset of the sentence. Participants
used a button on a gamepad controller to terminate the trial once they finished reading the
sentence. However, there was a trial timeout that corresponded to the length of the speech
sound that was playing. In other words, if a participant did not terminate the trial by pressing
a button, the trial ended automatically when the speech sound finished playing. For the
English and Mandarin sound conditions, the timeout corresponded to the length of the
individual speech files (between 9.2- 12.6 s). The same timeouts were randomly assigned to
the sentences in the silence and noise conditions. There was a yes/no comprehension

question after 34% of trials. For example, in the sentence “The house was immediately
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recognisable by its green fence and big windows.”, the question was: “Did the house have

small windows? Yes/ No”.
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Figure 9. An illustration of the stimuli presentation in Chapter 3. Panel A shows the events
during the trial and the speech sound that was playing. The sentence and the speech sound
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were simultaneously presented at the start of the trial. Trials were normally terminated by the
participant by pressing the button. If the participant did not press the button, the trial was
automatically terminated when the sound stopped playing. Panel B shows the timeline
(including gaze position and auditory input) of a sample trial that was terminated by the
participant. Horizontal blue lines show the saccades and the right-hand side shows the audio
that was playing while they were reading. Vertical dotted lines indicate the word boundaries.
In the sample sentence, the target word (“social”) is high frequency; in the low frequency
condition it was replaced by the word “chatty”.

3.2.5. Data Analysis

Several measures of global reading were analysed in the present study: total sentence
reading time (the sum of all fixations on the sentence), probability of regression, number of
first-pass and second-pass fixations, saccade length, and saccade landing position. In
addition to this, the three standard local fixation duration measures were computed for the
target word: 1) first fixation duration (FFD; the duration of the first fixation on the word); 2)
gaze duration (GD; the sum of all fixations on the word before moving to another word); and
3) total viewing time (TVT; the sum of all fixations on the word, including second-pass
reading). FFD and GD are often considered to be first-pass measures of reading because they
capture the initial fixations on words during the first, progressive reading of the sentence
(Clifton Jr., Staub, & Rayner, 2007). Once readers move to the right of a word or make a
regression to previous words, the first-pass reading is considered to have been completed
(Rayner, Sereno, Morris, Schmauder, & Clifton, 1989). On the other hand, TVT is often
considered to be a measure of second-pass reading as it includes all fixations made during
first-pass reading and all fixations made during regressions back to the word (Rayner et al.,

1989). Finally, comprehension accuracy was also analysed between the sound conditions.

When analysing data from psycholinguistic experiments, it is important to take into

account variability not only across subjects, but also across items. This is because the results
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may be specific to the language materials used in the study and may not necessarily
generalise to language more broadly (H. H. Clark, 1973; Coleman, 1964). Traditionally, this
has been addressed by performing separate Analyses Of Variance (ANOVAS) that average
observations across subjects (F1) and items (F2). More recently, (Generalised) Linear Mixed
Models ((G)LMMs) have been used as an alternative method because they allow participants
and items to be specified as crossed random effects (Baayen, Davidson, & Bates, 2008). The
advantage of this method is that it makes it possible to account for variability across subjects
and items within the same model. Additionally, LMMs are more robust when analysing
missing data compared to ANOVAs (Baayen et al., 2008), which is a common scenario

when working with eye-movement data.

The data were analysed with (G)LMMs by using the “lme4” package v.1.1-12 (Bates,
Machler, Bolker, & Walker, 2014) in R 3.3.0 (R Core Team, 2016). P-values for LMM
models were calculated with the ImerTest package v.2.0-33 (Kuznetsova, Brockhoff, &
Christensen, 2017). Fixation durations were log-transformed in all analyses. Low and high
frequency target words were coded as 0.5 and -0.5, respectively. Treatment contrasts with
English speech as the baseline were used for the effect of background sound. Additionally,
to test whether phonology may account for some, but not all disruption effects, a separate

comparison between Mandarin and Noise was done.

The results were adjusted for multiple comparisons using the Holm-Bonferroni
(Holm, 1979) correction in order to avoid an increase in Type 1 error probability due to the
additional comparison between Mandarin and Noise. Background sound was entered as a
fixed effect in the models; frequency was also a fixed effect in the target word analyses.

Random intercepts, as well as random slopes for the sound condition were specified for
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subjects and items (Baayen, Davidson, & Bates, 2008; this corresponds to the “maximum”
model for the main variable used for inferences, see Barr, Levy, Scheepers, & Tily, 2013)*.
Results were considered statistically significant if the adjusted p-values were < 0.05. Effect
sizes in Cohen’s d (J. Cohen, 1988) are reported as a measure of the magnitude of the

effects.

3.3. Results
The average trial duration was 3.8 s (SD= 1.74 s). There were 0.5% of trials where

timeout was reached before participants pressed the end button and these were excluded
from the data. Furthermore, 5.2% of the fixation duration data were excluded because of
blinks. Additionally, trials in which FFD was above 800 ms, GD was above 2000 ms, or
TVT was above 3000 ms were removed as outliers from all analyses (0.1% of data). The
number of outliers excluded per condition did not differ significantly ( (2) = 0.4, p= 0.82).
If fixation duration was an outlier in any of the three measures, the whole trial was removed
from the analysis. Fixations shorter than 80 ms that occurred within one letter space of

another fixation were combined with that fixation.

3.3.1. Comprehension Accuracy

The mean comprehension accuracy in the experiment is presented in Figure 10.
There were no significant differences in comprehension accuracy across the sound
conditions (all ps > 0.20). Auditory speech sounds did not appear to affect comprehension

accuracy which remained high across all conditions.

4 The following random slopes for background sound were removed due to convergence failure: random
slope for items for saccade length, GD, and TVT; random slope for both participants and items for regression
probability and number of first-pass fixations.
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Figure 10. Mean descriptive statistics for reading comprehension accuracy in the
background sound conditions in Chapter 3. Shading indicates the standard error.

3.3.2. Global Reading

Descriptive statistics of global reading on the whole sentence are presented in Table
6. The total sentence reading time was significantly longer in English speech compared to
Silence (b=-0.07, SE=0.03, t=-2.52, p= 0.03, d=-0.23), Noise (b=-0.12, SE=0.03, t= -
4.61, p<0.001, d=-0.27) and Mandarin speech (b=-0.06, SE= 0.02, t=-2.61, p=0.02, d= -
0.14). The remaining analyses indicated that this was due to more second-pass fixations in
English speech compared to all other sound conditions (Silence: b=-0.24, SE=0.07, z= -
3.36, p=0.001, d=-0.14; Noise: b=-0.41, SE= 0.08, z=-5.37, p< 0.001, d= -0.18; Mandarin:
b=-0.22, SE=0.05, z=-3.99, p< 0.001, d=-0.10). As is evident from the descriptive
statistics in Table 6, there was no difference in the number of first-pass fixations (all ps >
0.80). English speech also resulted in a significantly greater regression probability compared
to all other sound conditions (Silence: b=-0.09, SE= 0.02, z=-3.52, p< 0.001, d=-0.03;

Noise: b=-0.14, SE=0.03, z= -5.46, p< 0.001, d=-0.04; Mandarin: b=-0.08, SE= 0.02, z= -
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3.31, p=0.002, d=-0.05). There were no significant differences in saccade length (all ps >

0.35) or word landing position (all ps > 0.13) across the sound conditions.

Total Word Saccade Number of
Sound sentence  landing length (in Regression fixations (per word)
condition reading  position (in letters) probability 1%pass  2"-pass Total

time (inms) letters)

Silence 3040 (1244) 2.81(2.14) 8.86(8.11) .23(42) 1.03(57) .48(.77) 1.51(.84)
Noise 2960 (1354) 2.86(2.15) 8.72 (7.69) .22(41) 1.04(56) .44(74) 1.48(.82)

Mandarin 3150 (1426) 2.85(2.16) 8.91(8.38) .23(42) 1.04(59) .51(82) 1.55(.92)
English 3370 (1616) 2.86(2.16) 8.73(8.15) .24(43) 1.03(61) .62(.93) 1.65(1.02)

Table 6. Mean of global reading measures per background sound condition in Chapter 3
(SDs in parentheses).

The planned comparison between Mandarin and Noise indicated that participants
made significantly more second-pass fixations in Mandarin speech compared to Noise (b= -
0.20, SE=0.08, z=-2.43, p= 0.02, d= 0.09). However, as Table 6 shows, this effect was in
part driven by the slightly better reading performance under Noise compared to Silence. No
other differences between Noise and Mandarin speech were significant (all ps>0.052). In
summary, the results supported most strongly hypothesis H2, which stated that the disruption
by intelligible speech is only semantic in nature. Hypothesis H2.1, which stated that the
disruption has both a semantic and a phonological component, received only weak support
because evidence for contribution of phonology was found in only one measure (number of

second-pass fixations).

3.3.3. Target Word Analysis
Fixation durations on the target word are shown in Figure 11 and the results of the
LMMs are shown in Table 7. There were robust frequency effects on the target word.

However, contrary to hypothesis H3, the contrasts between English speech and the
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Figure 11. Mean fixation durations on the target word for the different background sound
conditions in Chapter 3, broken down by target word frequency. FFD: first fixation duration.
GD: gaze duration. TVT: total viewing time. Shading indicates the standard error.

remaining sound conditions failed to interact with target word lexical frequency®. Consistent
with the results from global reading measures, the effect of English speech was not found on
first-pass measures, but only on TVT, which includes re-fixations during second-pass
reading. This is because English speech led to a greater number of re-reading fixations.
English speech resulted in longer TVT compared to Silence (d=-0.15) and Noise (d=-0.12).
The difference between English and Mandarin for TVT (d= -0.09) did not reach significance
on the target word, but it was significant in the analysis of all words in the sentence (see

Appendix E). No differences between Mandarin and Noise were significant (all ps > 0.16).

> In order to test the possibility that the target word analysis did not have sufficient statistical power to detect
an interaction effect, frequency norms were obtained for all words in the sentence. The frequencies were
then entered into a model that included all the fixations for all words in the sentence. The results (presented
in Appendix E) were consistent with the target word analyses and showed no significant interactions with
lexical frequency.
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Therefore, the fixation duration analysis also supported hypothesis H2 that the disruption by

intelligible speech is only semantic in nature.

i FFD GD? TVT!
Fixed effect
b SE t p b SE t p b SE t p

Intercept 535 .02 2659 <.001 549 .03 167.2 <.001 578 .05 119.02 <.001
Freq 05 .02 290 <01 .11 .02 480 <001 .12 .03 433 <001
Eng vs Slc -02 .02 -93 36 -01 .02 -52 61 -08 .03 -2.90 .01
Eng vs Noise <-01 .01 -.08 93 -02 .02 -72 47 -07 .03 -2.64 .02
Eng vs Mnd 02 02 106 36 .01 .02 .38 .70 -04 .02 -1.46 .30
Freq: Eng vs Slc .02 .03 .86 12 01 .03 .32 15 .05 .04 1.28 40

Freq: Eng vs Noise <-.01 .03 -.03 98 -02 .03 -.66 S5l -02 .04 -52 .60
Freq: Eng vs Mnd .02 .03 .87 2 .03 .03 .79 43 02 .04 .53 .60

Table 7. LMMs analysis of fixation duration measures on the target word in Chapter 3. Freq:
lexical frequency. Eng: English. Slc: Silence. Mnd: Mandarin. FFD: first fixation duration.
GD: gaze duration. TVT: total viewing time. Statistically significant p-values are formatted
in bold.

1 Background sound was removed as a slope for items due to convergence failure.

3.3.4. Post-hoc Analysis

Because many of the effects in the present analyses were due, at least in part, to an
increase in second-pass fixations, additional exploratory analyses were conducted to
investigate where re-reading fixations occurred in the sentence. In this analysis, we
compared the number and distance of re-reading fixations that were made after the start of a
regression until participants made a progressive fixation (i.e., until they fixated a new word
in the sentence that they had not already fixated). To determine the location of re-reading
fixations, we calculated their distance (in words) in relation to the most recently fixated word
in the sentence before the regression (see Figure 12 for an illustration of the method). If

English speech interferes with the integration of recently-read words into the sentence
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context (i.e., “local” disruption), we would expect re-reading fixations to occur in close
proximity to the source of the difficulty, that is, the most recently fixated word in that
sentence. In contrast, if this disruption is due to a failure to maintain the representation of the
previous part of the sentence in working memory, we would expect that fixations will be
more distant from the most recently fixated word, presumably in order to re-activate the

previous sentence context.

End of the regression
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v

® © @ @

Mrs. Clark is a social person who .gets along with everybody
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N Most recently fixated word
(before regression)

T | I
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Distance (in words) from the
most recently fixated word

O Progressive (first-pass) fixations

o Re-reading (second-pass) fixations

Figure 12. An illustration of the method for calculating the distance of re-reading fixations
in Chapter 3 (see Figure 13 below). The distance of each re-reading fixation was determined
by how many words participants went back from the most recently fixated word (“gets”)
before making a progressive fixation (Ne 11). Fixation numbers show the order in which the
fixations occurred in the trial.

The results from the analysis are plotted in Figure 13. The number of re-reading

fixations decreased with increasing distance from the most recently fixated word in the
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sentence (b= -0.03, SE= 0.005, z=-6.68, p< 0.001). Critically, however, English interacted
significantly with distance (b= 0.01, SE= 0.005, z= 2.12, p= 0.03), thus showing that the
mean difference between English and Silence became smaller with increasing distance. This
trend is apparent in Figure 13 where a clear increase in the number of re-reading fixations
can be seen only when the distance was five words or less. Therefore, re-reading fixations
were mostly constrained to words that were close to the most recently fixated word in the

sentence.

» Sound
7 a —fl— |Silence
191 o \ = =@ = |Noise
&{' \ — A - |Mandarin
1.7 ps \\ = &= |English

Mean number of re-reading fixations

Distance (in words) from the most recently fixated word

Figure 13. Position of re-reading fixations for the different sound conditions in Chapter 3 as
a function of distance from the most recently fixated word. Shading indicates the standard
error.

3.4. Discussion
The present experiment investigated auditory distraction effects by intelligible
background speech on reading single sentences. There were two main questions of the study:
(2) Is the disruption by intelligible speech semantic or phonological in nature (or a
combination of the two)? And (2) does intelligible speech affect the lexical processing of
words? In terms of the first question, English speech increased the overall sentence reading

time compared to silence. This was found to be mostly caused by making more regressions
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and more second-pass fixations when re-reading words. The present experiment provided
support for the theoretical prediction that this disruption effect is semantic in nature (Marsh
et al., 2008, 2009; Martin et al., 1988). This was because English speech resulted in longer
sentence reading times compared to Mandarin speech, and this arose due to readers making
more regressions and more re-reading fixations. Therefore, the present results support the
semantic disruption account and are in line with Yan et al.'s (2017) and Hy6na and Ekholm's

(2016) Experiments 2-4.

Because English speech was consistently more disruptive than Mandarin speech, this
provides evidence against the strong form of phonological disruption view (hypothesis H1),
which predicted that any speech sound (intelligible or not) would cause interference because
it gains access to the phonological store of working memory capacity (Salamé & Baddeley,
1982). Nevertheless, there was limited support for the view that phonology may account for
some, but not all, of the disruption effects (hypothesis H1.2). This was because Mandarin
speech led to more second-pass fixations compared to Noise. However, this effect warrants
further replication as it was found in only one measure and it was partially driven by the fact
that participants made fewer second-pass fixations in Noise compared to Silence. This is
especially true because a facilitation effect of acoustical noise has generally not been
reported in previous studies (e.g. C. R. Johansson, 1983; R. Johansson et al., 2012;
Landstrom et al., 2002; Martin et al., 1988). Overall, the present results are largely consistent
with Hyonéd and Ekholm's (2016) Experiment 1, in the sense that the authors did not find any
evidence to support the phonological disruption account. Therefore, taken together with
Hyond and Ekholm's (2016) findings, the present results suggest that phonology plays little

if any role in auditory distraction by intelligible speech. In this sense, while we acknowledge
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that there was a hint in the data for a contribution of phonology, the present results are most
readily explained by hypothesis H2, which predicted that the disruption effect is only

semantic in nature.

The results from global reading measures agree with those of Yan et al. (2017), who
also reported longer sentence reading times, more fixations and greater regression
probability with intelligible speech in the background. However, the present experiment
provided greater insight by showing that the increase in fixations was entirely due to more
second-pass (i.e., re-reading) fixations. Additionally, the present results advance our
theoretical understanding of disruption by intelligible speech by showing that these effects
are due to the semantic content of the speech. Therefore, one of the novel contributions of
the present experiment was to show that semantic disruption is observed in eye-movement
measures when comparing naturally-occurring speech sounds: English speech, which could
be processed semantically by participants, led to greater disruption in second-pass reading

measures compared to Mandarin speech, which could not be processed semantically.

The second aim of the present study was to investigate whether lexical processing is
affected by intelligible speech. Most importantly, contrary to hypothesis H3, the results
indicated that intelligible speech did not make the lexical access of low frequency words
more difficult. Indeed, robust frequency effects were observed in all background sound
conditions. On the surface, this result may appear to be contrary to Yan et al.’s (2017)
finding that intelligible speech eliminated the frequency effect in first fixation duration for
Mandarin readers. However, Yan et al. also observed the same effect for meaningless (i.e.,
scrambled) speech. This in turn argues against disruption to lexical access due to semantic

interference because the two speech conditions did not differ between one another.
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Therefore, both Yan et al.’s study and the present experiment provide converging evidence
that the semantic properties of speech do not affect lexical access of words during normal
reading. This suggests that the semantic disruption by intelligible speech occurs in the post-

lexical stages of the reading process.

Interestingly, the above-mentioned finding by Yan et al. (2017) still suggests that
some property of background speech (other than its meaning) can interfere with lexical
identification during the first fixation on words. At present, it is not clear what properties of
irrelevant speech were responsible for the disruption in their experiment. Therefore, more
research is needed to understand what causes this effect in readers of Mandarin Chinese.
Using a lexical decision paradigm might be particularly helpful in studying this topic due to
the greater control over the timing of the stimuli. Additionally, testing monolingual
Mandarin Chinese and monolingual English speakers with the same speech stimuli in the

two languages could help dissociate any cross-language differences.

Experiment 1 also showed that the initial reading of words was not influenced by
English speech. This was due to the fact that measures of first-pass reading (FFD and GD)
did not show any disruption effects by English speech. This suggests that intelligible speech
did not cause an overall slowing down of the initial word processing and it also did not lead
to inefficient word identification because the effect was not modulated by word frequency.
However, robust disruption effects were found in measures of second-pass reading. This
suggests that intelligible speech disrupted reading on a more global level, as participants
made more re-reading fixations and more regressions compared to unintelligible (Mandarin)

speech.
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Evidence from behavioural studies has also shown that intelligible speech can disrupt
performance on other tasks, such as free recall, that require the use of semantic processing
(Marsh et al., 2008, 2009; Marsh, Perham, Sorqvist, & Jones, 2014; Marsh, SOrqvist,
Hodgetts, Beaman, & Jones, 2015; see Marsh & Jones, 2010 for a review). One task that is
more similar to reading and also requires the retrieval of concepts from semantic memory is
verbal fluency (e.g., retrieving examples of the semantic category “animals’). Consistent
with the interference-by-process account, Jones, Marsh, and Hughes (2012) showed that
verbal, but not phonemic, fluency is disrupted by intelligible speech. The former task relies
on semantic processing, while the latter does not. Interestingly, the present experiment
suggests that, unlike verbal fluency, reading is not disrupted at the stage of retrieving word
concepts from semantic memory. Rather, this disruption occurs later when participants need
to combine the meaning of individual words to comprehend the sentence that they are

reading.

The lack of disruption in retrieving word concepts provides support for the
interference-by-process account (Marsh et al., 2008, 2009), which stipulates that the nature
of the main task determines when intelligible speech is distracting. In the context of verbal
fluency, the task is to retrieve word concepts from semantic memory according to a certain
rule. In contrast, reading imposes different task demands because retrieving the concepts of
individual words is not enough for comprehension- readers also need to combine these
concepts to form the meaning of the sentence. Therefore, the present results also hold
implications for understanding the effect of intelligible speech on cognition more broadly by
showing that the cognitive process that is disrupted by the speech sound depends on the

demands of the main task.
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The post-hoc analysis of re-reading fixations provided important insight into the
nature of the disruption to processing that intelligible speech caused. Even though this
analysis was not pre-planned and should only be considered as exploratory, the results
suggest that English speech made it more difficult to integrate recently-read words into the
sentence context. This was because the increase in re-reading fixations occurred in close
proximity to the initial, first-pass fixations on words, presumably, those words that were the
source of processing difficulty (i.e., the origin of the regression). Sentence comprehension is
assumed to involve the retrieval of concepts from memory that are used to inform and
construct the meaning of the sentence in relation to broader general world knowledge. Also,
such knowledge is used to generate expectations and understand new concepts, as well as to
disambiguate sentential ambiguities (Griffiths, Steyvers, & Tenenbaum, 2007). However,
because auditory English speech and written English sentences both convey semantic
meaning, it seems likely that the processing difficulty we observed derives from disruption
to semantic processes associated with the construction of a representation of sentential

meaning.

It seems likely that there are two possible causative accounts for such disruption: it
may arise due to competition, or even conflict (i.e., inconsistency) between the two
representations of meaning (one deriving from the auditory speech and the other from text
reading); alternatively, the processing cost may derive from the cognitive burden associated
with processing two, rather than one, sources of sentential meaning. Hyona and Ekholm
(2016) tested the first alternative by presenting scrambled speech that consisted either of the
text that participants were reading or of an unrelated text. They found that the two scrambled

speech conditions did not differ between each other, which led them to suggest that the
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observed semantic interference is not due to competing semantic representations between the
text and the speech sound. The second interpretation would be consistent with both Hyéna
and Ekholm’s (2016) results and the interference-by-process account (Marsh et al., 2008,
2009), which predicts that the disruption occurs because both the speech and the written text

rely on the same process for analysing meaning.

A further interesting finding from the present experiment was that none of the
background sounds impaired participants’ comprehension of the sentences. This suggests
that, while the efficiency with which readers were able to construct a representation of
sentential meaning was reduced, readers were still able to attain an understanding of the
sentence that they were reading. This is consistent with previous eye-tracking studies
(Cauchard et al., 2015; Hyond & Ekholm, 2016; Yan et al., 2017), but not with other
behavioural studies (e.g. Martin et al., 1988; Sorqvist et al., 2010). Given that there was
evidence for semantic disruption in the eye-movement measures, why have none of the eye-
tracking studies so far found effects in comprehension accuracy? Indeed, because extracting
the semantic content of the sentence is crucial for comprehension, it might be argued that a

semantic disruption effect should also be found in comprehension accuracy measures.

One possible way to explain this apparent inconsistency is that the comprehension
questions in previous eye-tracking studies may have been quite easy to answer, whereas
those from behavioural studies may have been more taxing. Indeed, almost all eye-tracking
studies investigating reading share something in common: comprehension assessment is
usually carried out through the presentation of questions requiring a binary (e.g., “yes/no”)
answer, and the average comprehension accuracy is almost always 80% or better. In this

sense, it is possible that no difference in comprehension accuracy was found because the
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questions were not as challenging as those used in behavioural studies. If this is the case,
then comprehension accuracy should be disrupted when questions are more difficult and
probe a deeper level of text comprehension. An alternative explanation is that the immediate
comprehension of short texts is not disrupted by intelligible speech, regardless of the
difficulty of questions. If this is the case, then the disruption observed in eye-movement
measures must be due to a transient difficulty in processing the meaning of the sentence,
which readers can overcome and still achieve approximately the same level of
comprehension. These two different possibilities will be tested in Chapters 4 and 5,

respectively.

In summary, the present experiment examined what properties of intelligible speech
(phonology, semantics, or a combination of the two) give rise to distraction in eye-
movements during reading and whether intelligible speech disrupts the early stages of
reading by interfering with the lexical access of words. The results provided strong support
for the hypothesis that the disruption in eye-movements is semantic in nature, and there was
only limited evidence to suggest that there is any contribution of phonology to this effect.
Additionally, there was no evidence that intelligible speech interferes with the lexical access
of words, which suggests that the disruption occurs after the individual words in the text
have been lexically identified. Furthermore, intelligible speech disrupted only second-pass
measures of reading, which points to the fact that readers had difficulties integrating the
meaning of the sentence that they had just read. Finally, despite the evidence for semantic
disruption in second-pass reading measures, comprehension accuracy was not affected. The
next two chapters will explore two different potential explanations for the lack of disruption

in comprehension accuracy by intelligible speech.
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CHAPTER 4: THE EFFECT OF INTELLIGIBLE SPEECH ON COMPREHENSION
AND ONLINE INTEGRATION PROCESSES

In Chapter 3, intelligible background speech resulted in an increase in the second-
pass reading of single sentences that was characterised by making more regressions and
more re-reading fixations on previous words. This increase in re-reading behaviour was
found to be caused by semantic interference from the irrelevant speech sound that likely
created a temporary difficulty in processing the meaning of the sentence. However, despite
the reliable disruption that was observed in eye-movement measures, there was no associated
decrease in comprehension accuracy in that experiment. This last result is consistent with
previous eye-movement studies that have also failed to find any disruption of comprehension
accuracy by intelligible speech (Cauchard et al., 2012; Hy6na & Ekholm, 2016; Yan et al.,
2017), but is contrary to some behavioural studies that have found evidence of such
disruption (e.g., Baker & Madell, 1965; Halin, 2016; Martin et al., 1988; Sorqvist, Halin, et
al., 2010). If the effect of intelligible speech on eye-movements arises from semantic
interference, it is not immediately clear why comprehension is not affected given that
semantic processing is necessary to achieve an accurate comprehension of the sentence. One
possible way to explain the lack of an effect in comprehension accuracy in Chapter 3, as well
as in previous eye-movement studies, is that the comprehension questions may have been

too easy to answer, which in turn may have prevented the detection of the effect.

In much of the literature on eye-movements during reading, comprehension

assessment has often been used as a means of ensuring that participants are reading the text
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stimuli for comprehension rather than as a dependent measure that is of critical theoretical
importance. As a result, many studies, particularly those using a single-sentence reading
paradigm, have assessed comprehension with simple two-choice questions (e.g., “Yes/No”)
that appear on a subset of the sentence stimuli (typically, after 25-50% of all sentences).
However, this type of assessment may not be best suited to detect semantic disruption effects
in comprehension accuracy for two reasons. First, the assessment is somewhat infrequent
because it typically does not occur after every trial and this can lead to reduced statistical
power due to the smaller number of observations per sound condition. Second, because the
questions are not demanding and can often be answered just by recognising words or phrases
from the sentence (see Wotschack & Kliegl, 2013), they may not always be sensitive enough
to distinguish whether participants actually understood the meaning of the sentence. This
could be problematic when studying semantic interference by intelligible speech as
comprehension may remain unaffected if the questions do not assess a deeper level of text

understanding.

Therefore, the first aim of the present experiment was to test whether the lack of
disruption in comprehension accuracy in Chapter 3 and in previous eye-tracking studies may
be due to the fact that the comprehension questions were too easy to answer. In the present
study, short paragraphs were used instead of single sentences because they offer a more
ecologically-valid reading task and allow for greater opportunity to construct comprehension
questions that are more demanding of readers. In the present experiment, a question
difficulty manipulation was added in which participants either answered easy questions that
were comparable in their difficulty to those used in Chapter 3 or more difficult questions that

required a deeper level of text understanding.
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The second aim of the present experiment was to test whether intelligible speech
disrupts the integration of information across multiple sentences. The results from Chapter 3
suggested that intelligible speech made it harder to integrate the meaning of individual words
in order to construct the meaning of the currently-read sentence because participants made
more regressions and more re-reading fixations. However, it is not immediately clear
whether this difficulty extends beyond the level of the currently-read sentence. In other
words, is the disruption by intelligible speech limited only to the individual sentences that
make up the text, or is there additional disruption due to integrating information across

multiple sentences?

While there have been previous attempts to answer this question, the evidence so far
has been inconclusive. For example, Cauchard et al. (2012) examined whether intelligible
speech leads to longer re-reading times when participants regress back to a sentence that has
already been read once and exited to the right (i.e., sentence look-back time; see Hyon4,
Lorch, & Rinck, 2003). They found that intelligible speech led to significantly longer
sentence look-back times compared to the silence baseline. Additionally, the authors
reported that the effect in sentence look-back time accounted for 27% of the overall increase
in reading time in their experiment (Cauchard et al., 2012). Therefore, this suggests that a
non-trivial amount of the increase in re-reading fixations by intelligible speech may be due
to a difficulty in integrating meaning across multiple sentences. Interestingly, Hy6na and
Ekholm (2016) also analysed sentence look-back times in their experiments. However, they
found a difference in look-back times in only one out of four experiments: more specifically,
scrambled intelligible speech led to longer look-back times compared to the silence

condition in their Experiment 3. While it is not immediately clear why this effect was not
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found in the remaining three experiments, this discrepancy shows that more evidence is
required to understand how intelligible speech may affect the integration of meaning across

multiple sentences.

4.1. Question difficulty manipulation

Although most studies of eye-movements during reading have not explicitly
considered how different types of comprehension assessment may influence reading
patterns, two recent experiments have manipulated the difficulty of questions in order to
answer this question (Weiss, Kretzschmar, Schlesewsky, Bornkessel-Schlesewsky, & Staub,
2017; Wotschack & Kliegl, 2013). Wotschack and Kliegl (2013) were first to manipulate the
difficulty and frequency of comprehension questions in a single-sentence reading paradigm.
In their experiment, participants were assigned to two question difficulty groups in a
between-subjects design®. In the easy-question group, participants’ comprehension was
assessed with a three-choice question that could typically be answered by visual word
recognition alone. In the difficult-question condition, participants’ comprehension was also
assessed with a three-choice question, but the answers had less verbatim overlap with the
sentence, thus making it harder to find the correct answer (Wotschack & Kliegl, 2013). In
addition to this, the comprehension questions appeared after 27% of the sentences in the
easy-question condition, but after 100% of the sentences in the difficult-question condition.

Therefore, the comprehension questions in the difficult-question condition were both more

6 The study also had two groups of participants (young adults and older adults). Each participant group was
divided into the two question difficulty groups, thereby yielding a 2 (age: young vs older adults) x 2 (question
difficulty: easy vs difficult) between-subjects design. In the present discussion, we will only consider the
results from the young adult group since this corresponds to the participant population used in this Thesis and
in previous studies on auditory distraction. The results from the older adult participant group largely agreed
with the ones of the younger adult group, with the exception that the question difficulty manipulation
affected first-pass reading more strongly in older adults than in young adults.
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frequent and harder to answer. Wotschack and Kliegl (2013) found that participants in the

difficult-question condition made fewer first-pass single fixations, but, at the same time, they
also made more regressions and had longer total viewing time compared to the easy-question
group. These results show that task demands (operationalized as the difficulty and frequency

of questions in this study) can have an influence on eye-movements during reading.

In a similar study, Weiss et al. (2017) also divided participants into two question
difficulty groups. The reading stimuli in this study consisted of three distinct types of
sentences: 1) sentences that contained semantic reversal anomalies; 2) relative clause
sentences; and 3) garden path sentences. In this study, the difficult questions required
participants to make the correct thematic assignment of the noun phrases in the sentence,
whereas the easy questions did not require that (Weiss et al., 2017). However, unlike
Wotschack and Kliegl's (2013) study, the frequency of questions did not differ between the
two difficulty conditions. Weiss et al. (2017) found that participants in the difficult-question
group had longer go-past times and were more likely to regress back to previous parts of the
sentence when they came close to the sentence’s end. These findings are consistent with
Wotschack and Kliegl's (2013) study, which also showed that difficult questions led to an
increase in second-pass reading. However, unlike Wotschack and Kliegl's (2013) study,
Weiss et al. (2017) did not find any influence of question difficulty on first-pass reading

measures.

4.2. Present Study
Similar to the two studies above, the present experiment also had two question
difficulty conditions: 1) an easy condition in which the questions could typically be

answered by recognising words and phrases from the text; and 2) a difficult condition in
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which the answers to the questions were paraphrased and participants needed to understand
the meaning of the whole paragraph to find the correct answer. In the present study, the
frequency of comprehension questions was kept the same in the two difficulty conditions.
The easy condition was comparable to the comprehension questions from Chapter 3. The
difficult condition required understanding the meaning of the main topics in the paragraph
and making inferences based on that meaning. If English speech affects only participants’
understanding of the meaning of the text but not their ability to answer questions based on
recognising words and phrases from the text, there should be an interaction between English
speech and question difficulty, with greater disruption in comprehension accuracy on the

difficult compared to the easy questions.

While the question difficulty manipulation was modelled after Wotschack and
Kliegl's (2013) study, it should be mentioned that the two question difficulty conditions in
the present study corresponded to different levels of text comprehension. For example, in the
model proposed by Kintsch (1998), text comprehension occurs at different levels, such as the
processing of individual words (linguistic level), the forming of propositional and syntactic
relations between words (microstructure level), and the recognition of global topics of
meaning and their interrelationships in the text (macrostructure level; Kintsch & Rawson,
2005). The easy question condition corresponded to text comprehension at the linguistic
level since it was largely related to processing the meaning of individual words or short
phrases. On the other hand, the difficult question condition roughly corresponded to the
macrostructure level because it required understanding the main topics in the paragraphs and
making inferences based on this information. However, it should be noted that, because the

present paragraphs were relatively short, their macrostructure was not very complex. As a
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result, the macrostructure of the text was mostly assessed with questions that required

integrating the meaning of the individual sentences that made up the paragraph.

The same four background sound conditions were used as in Chapter 3: Silence,
speech-spectrum noise, Mandarin speech and English speech. Based on the findings from
Chapter 3, we expected to observe more re-reading fixations and more regressions when the
text was read in the auditory context of English speech compared to both Mandarin speech
and silence. Additionally, we expected that English speech would lead to more regressions to
previously-read sentences and to longer sentence look-back times. This was because we
expected that English speech would disrupt the integration of the currently-read sentence
into the context of previously-read sentences, thus prompting participants to re-visit previous

sentences more often.

4.3. Predictions
The same predictions of the phonological disruption (Salamé & Baddeley, 1982, 1987) and
semantic disruption theories (Marsh et al., 2008, 2009; Martin et al., 1988) from Chapter 3

were again tested in the present experiment:

H1: If the disruption by intelligible speech is entirely phonological in nature, English
speech should be more distracting than Silence and Noise, but equally as distracting

as Mandarin speech (strong form of phonological interference).

H1.2: If the disruption by intelligible speech is only partially phonological in nature,
Mandarin speech should be more distracting than Noise (weaker form of

phonological interference).
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H2: If the disruption by intelligible speech is entirely semantic in nature, English
speech should be more distracting than Silence, Noise, and Mandarin; additionally,
prediction H1.2 above should not be supported by the data (strong form of semantic

interference).

H2.1: If the disruption by intelligible speech is a combination of semantic and
phonological interference, English speech should be more distracting than Silence,
Noise, and Mandarin speech; additionally, prediction H1.2 above should also be

supported by the data (combination of phonological and semantic interference).

Consistent with the results from Chapter 3, we expected that hypothesis H2 would be most
strongly supported by the data. Additionally, based on the question difficulty manipulation,

the following prediction was made:

H3: English speech should disrupt comprehension accuracy only when participants

are answering difficult, but not easy, comprehension questions.

4.4. Method

4.4.1. Participants

Forty-eight Bournemouth University students (33 female) participated for course
credit or a payment of £10. Their mean age was 19.8 years (SD= 1.7 years; range: 18 - 27
years). None of them had participated in the experiment from Chapter 3. Participants were
native speakers of British English, reported normal or corrected-to-normal vision, normal
hearing, no prior diagnosis of reading disorders, and no prior knowledge of Mandarin
Chinese. Participants were naive as to the purpose of the experiment. Ethical approval for the

experiment was obtained from the Bournemouth University Research Ethics Committee
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(protocol No. 14005). The statistical power of the experiment was 0.859 based on the same
average effect size used for the power calculation in Chapter 3 (d=0.47). This indicates that

the experiment was sufficiently powered.

4.4.2. Materials and Design

The reading materials consisted of 24 paragraphs’. Each paragraph was four
sentences long and had an average length of 89.7 words (SD= 6.2 words; range: 77 to 103
words). The topic of the paragraphs was usually a short description of a person, a place or an
event. Real names and specific details were avoided to prevent participants from using their

prior knowledge to answer the questions. An example paragraph is provided below:

Many tourists visiting the land-locked country were not aware of the pristine lake
that was situated near its eastern border. Because it was surrounded by a forest and
there were no major roads going there, the lake was mostly known only by the locals.
However, with its crystal-clear waters and unforgettable scenery, the unspoiled lake
was a dream place to relax. According to one local legend, the lake's water had
rejuvenating powers and many people from the region would go there in the summer

for a swim.

Each paragraph contained two yes/no questions that could be answered by visual
word recognition alone (“easy” condition), and two multiple-choice questions with four
answers that required understanding the meaning of the paragraph to answer (“difficult”
condition). An example of the easy questions is “Did the lake have unforgettable scenery?

Yes/No”. An example of the difficult questions is:

7 The full set of stimuli is available from the author upon request.
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What can be said about the water in the lake?

1) It was murky and shallow

2) It was believed to alleviate stress and chronic medical conditions

3) It was believed to make you feel younger and more energetic

4) It was thought to be suitable for drinking

The answers to multiple-choice questions were paraphrased to prevent participants from
recognizing words or phrases from the paragraph in order to find the correct answer
(Wotschack & Kliegl, 2011). In easy question condition, one question was based on the first
two sentences of the paragraph, and the other question was based on the last two sentences.
In the difficult question condition, both questions required understanding the main topics of

meaning in the paragraph and making inferences based on that meaning.

Ten undergraduate students who did not take part in the eye-tracking experiment
participated in a pilot study in which they read the paragraphs, answered the comprehension
questions, and rated the difficulty of questions on a scale from 1 (easy) to 5 (difficult). Each
of the comprehension questions appeared on a separate screen and participants could not go
back to re-read the text to help them answer the questions. The two question difficulty
conditions were presented in separate blocks that were counterbalanced across participants.
Because the easy questions had only two answers and the difficult questions had four
answers, participants’ comprehension was analysed as accuracy above chance level. This
controlled for the difference in chance level performance between the easy (50%) and
difficult (25%) questions. Comprehension accuracy was significantly better on the easy (M=

43.7.8 %; SD=16.6%) compared to the difficult questions (M= 31.2 %; SD= 34.6%), t= -
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0.06., SE=0.02, t=-3.72, p< 0.001. This shows that participants understood the paragraphs
sufficiently well in both question difficulty conditions. Additionally, questions in the
difficult condition (M= 2.70; SD= 1.33) were rated as significantly more difficult than
questions in the easy condition (M= 1.61; SD= 1.02), b=1.06, SE= 0.09, t= 10.98, p < 0.001.
Finally, participants spent more time reading the paragraphs in the difficult questions’ block
(M= 34.8s; SD= 14.48 s) compared to the easy questions’ block (M= 30.9 s; SD=10.13 s),

b=3.48, SE=1.43, t= 2.43, p=0.01.

The speech stimuli were taken from the same two corpora used in Chapter 3 (Bench
et al., 1979; Kuo, 2006). Six English and six Mandarin sound files were created by
concatenating 40 unique speech sentences; each speech file lasted for at least 60 s8. Silence
gaps were removed to create a continuous stream of speech. Half of the files contained
speech that was spoken by a female actor and the remaining half contained speech spoken by
a male actor. The English and Mandarin conditions were matched on average rate of speech
(English speech: 3.09 words per second; Mandarin speech: 3.08 words per second). The

same speech-spectrum noise as in Chapter 3 was used.

The two question difficulty conditions were presented in two separate blocks. Within
each question difficulty block, the different sound conditions were also blocked. The
assignment of paragraphs to conditions and the order of experimental blocks were

counterbalanced with a full Latin square design. At the start of each question difficulty

8 Half of the Mandarin speech sounds were looped for the last 2s because the sentences were not long
enough to create 60 s of unique speech. The looped speech was reached on only one trial and the seven
fixations that occurred during that time were removed from further analysis.
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block, there were two practice paragraphs (read in silence) that were used to introduce

participants to the different type of comprehension questions.

4.4.3. Apparatus

Participants’ eye-movements were recorded with an Eyelink 1000 at a sampling
frequency of 1000 Hz. Viewing was binocular, but only the right eye was recorded.
Participants rested their head on a chin-and-forehead rest. Similar to Chapter 3, the sound
stimuli had an amplitude resolution of 32 bits and a sampling frequency of 22 kHz (for the
English speech and speech-spectrum noise), and 44 kHz for the Mandarin speech. The
sounds were played binaurally at 59-61 dB(A) SPL via Bose QuietComfort 25 noise-
cancelling headphones. The sounds were played on an Intel HD Audio integrated sound

card.

The experiment was programmed using the EyeTrack 0.7.10h software (Stracuzzi,
2004) and was run on a PC with a Microsoft Windows XP operating system. The paragraphs
were presented on a 20-inch Mitsubishi Diamond Pro 2070 monitor with a screen resolution
of 1024 x 768 and a refresh rate of 150 Hz. The text was formatted in a Courier New 14pt.
font and appeared as black text over white background on the screen. The width of each
letter was 11 pixels. Participants sat 60 cm away from the monitor and at this distance each
letter subtended approximately .40° of visual angle. The paragraphs appeared with a 50-pixel
offset on the x axis and 150-pixel offset on the y axis of the screen. The text was double-
spaced and aligned to the left. Line breaks occurred at the empty space between words, but
with the condition that there should be at least 50 pixels to the right of the last letter on the
line. All paragraphs fitted on a single screen. Participants pressed buttons on a gamepad

controller to terminate the trial and to answer the comprehension questions.
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4.4.4. Procedure

Participants were calibrated on a 9-point calibration grid. The calibration accuracy
was monitored with a drift check before each trial and participants were recalibrated
whenever that was necessary. The average calibration error was kept at < 0.4 °. Each trial
started with a black gaze box that appeared at 50 pixels on the x-axis and 150 pixels on the
y-axis of the screen. Once participants fixated the box, the paragraph appeared on the screen,
with the first letter of the first sentence presented in the middle of where the box was. The
onset of the background sound was simultaneous with the appearance of the paragraph on
the screen. Each question difficulty block started with the two practice paragraphs.
Participants were not informed about the difficulty of the questions prior to the experiment
and were simply told that some of them will require a yes/no answer, while others will
require a multiple-choice answer. The paragraphs and each of the comprehension questions
appeared for a maximum of 60 s on the screen. This duration was determined to be sufficient

based on the pilot results. The experiment lasted for about 40-50 minutes.

4.4.5. Data Analysis

A few measures of global reading were analysed: number of first- and second-pass
fixations, intra-sentence, inter-sentence regression probability, saccade length, and saccade
landing position. In the present experiment, we use the term “intra-sentence” regression to
denote the probability of making a regression within the currently-read sentence. This is the
traditional measure of regression probability that was reported in Chapter 3 and in most of
the existing literature. In contrast, “inter-sentence” regression refers to cases where
participants regress to a previously-read sentence. This distinction was introduced to test

whether background speech disrupts only the integration of text information within
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sentences or also integration between sentences. Additionally, sentence re-reading time and
sentence look-back time were also analysed. Sentence re-reading time was defined as the
sum of all re-reading fixations within the currently-read sentence before the eyes moved on
to the next sentence (Liversedge, Paterson, & Pickering, 1998). Sentence look-back time was
defined as the sum of all re-reading fixations in a sentence when participants regress back
from a subsequent sentence (Hyoné et al., 2003). Furthermore, the three local measures of
word reading were also analysed: FFD, GD, and TVT. In the analyses of local reading
measures, all words in all sentences were included. Finally, comprehension was analysed as

accuracy above chance level between the different sound and question difficulty conditions.

The data were analysed with (G)LMMs by using the “Ime4” package v.1.1-12 (Bates
etal., 2014) in the R statistical software v.3.3.1 (R Core Team, 2016). P-values for the LMM
models were computed with the ImerTest package v.2.0-33 (Kuznetsova et al., 2017).
Background sound and question difficulty were entered as fixed effects in the models.
Random intercepts, as well as random slopes for background sound and question difficulty
were specified for both participants and items (Baayen, Davidson, & Bates, 2008; Barr,
Levy, Scheepers, & Tily, 2013)°. Treatment contrasts were used for the background sound
condition (with English speech as the baseline). Sum contrasts were used for the question
difficulty condition (-1: easy; 1: difficult). Fixation durations were log-transformed in all
analyses. Similar to Chapter 3, an additional comparison between Mandarin speech and

Noise was also done to test the weaker version of the phonological disruption account. The

% Due to convergence failure, the following random slopes were removed: background sound was removed as
a random slope for items for saccade length, number of first fixations, gaze duration, and sentence re-reading
time; question difficulty was removed as a random slope for items for inter-regression probability and
saccade landing position.
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results were again adjusted for multiple comparisons with the Holm-Bonferroni (Holm,
1979) procedure to avoid an increase in Type 1 error probability. The results were
considered to be statistically significant if the adjusted p values were < 0.05. Effect sizes in

Cohen’s d (J. Cohen, 1988) are also reported.

4.5. Results

4.5.1. Comprehension Accuracy

The results for comprehension accuracy are presented in Figure 14. There was a main
effect of question difficulty (b:=0.33, SE=0.03, t=9.89, p< 0.001; b= 0.33, SE=0.03, t=
9.49, p<0.001; d=-0.41), indicating that comprehension was significantly lower on the
difficult compared to the easy questions. However, there was no significant difference in
comprehension accuracy between English and Silence, English and Noise, or Mandarin and
Noise (all ps > 0.12). The difference between English and Mandarin was significant by
subjects (b1= 0.06, SE= 0.02, t= 2.51, p= 0.03), but not by items (b= 0.06, SE=0.03, t=
2.07, p= 0.10). Therefore, there were generally no significant differences in comprehension
accuracy between the sound conditions and the hint of an effect in the comparison between
English and Mandarin was driven by the slightly better accuracy in Mandarin compared to
Silence. There were also no significant interactions between background sound and question
difficulty for any of the comparisons (all ps > 0.61). In this sense, there was no support for
hypothesis H3, which stated that English speech would disrupt comprehension accuracy only

for the difficult, but not for the easy questions.
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Figure 14. Mean comprehension accuracy in Chapter 4, broken down by question difficulty
condition. Shading indicates the standard error.

Although there was no significant difference in comprehension accuracy between
English and Silence, it is not immediately obvious why the lack of effect occurred. It is
important to determine whether there is no true difference in comprehension accuracy when
the text is read in silence and under conditions of English speech (i.e., the null hypothesis is
true), or alternatively, whether such a difference does exist (i.e., the alternative hypothesis is
true), but the present experiment was not sufficiently powered to detect it. Bayes factors
were used to discriminate between these two possibilities (see Dienes, 2014, 2016). Bayes
factor regression analyses (Rouder & Morey, 2012) were carried out with the “BayesFactor”

R package® (Morey, Rouder, & Jamil, 2015). This test yields a Bayes factor, which is the

10 A prior width of r=v/2/2 was used in the analyses. We show in Appendix F that the choice of prior did not
influence the conclusions from these analyses.
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posterior odds of the null and the alternative hypothesis, given the data. Bayes factors greater
than 1 favour the alternative hypothesis, whereas Bayes factors smaller than 1 favour the null

hypothesis.

The comparison between English speech and Silence in comprehension accuracy
showed substantial evidence in support of the null hypothesis of no difference (subjects: BF=
0.18; items: BF=0.21; see Jeffreys, 1961; Wetzels et al., 2011)**. Additionally, the analysis
also favoured the null hypothesis of no interaction between question difficulty and the
contrast between English and Silence (subjects: BF=0.15; items: BF=0.21). The remaining
contrasts between English and Mandarin, English and Noise, and Mandarin and Noise also
favoured the null hypothesis of no difference and no interaction with question difficulty
(range of BFs: 0.12 - 0.44). Therefore, the Bayes factor analysis suggested that there was no
true mean difference in the contrast between English and Mandarin that was significant by
subjects in the LMM analysis above. In summary, the BF analyses provided direct evidence
that there is no difference in comprehension accuracy between English speech and Silence.
They also confirmed the LMM results by showing that the effect of English speech on

comprehension is not modulated by the difficulty of the questions.

4.5.2. Pre-processing of Eye-tracking Data

Fixation durations were manually pre-processed with the EyeDoctor software
(Stracuzzi & Kinsey, 2009) to align the vertical position of fixations (whenever necessary),
and to remove blinks from the data (5.81 % of all fixations). Fixations shorter than 80 ms

that occurred within one letter of another fixation were combined with that fixation. Any

11 The same analysis of question accuracy on the data from Experiment 1 yielded a BF of 0.16, thus confirming
the same conclusion.
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remaining fixations shorter than 80 ms were excluded (1.4 % of the data). Additionally,
fixations greater than 1000 ms were excluded as outliers (0.11 % of the data). Furthermore,
for the analyses of word time reading measures, FFD longer than 1000 ms, GD longer than
2200 ms, or TVT longer than 3000 ms were discarded as outliers (0.1 % of the data).
Although cut-offs of 800 ms for FFD and 2000 ms for GD are typically used in single-line
reading studies (e.g. Risse & Kliegl, 2014; Schotter, Lee, Reiderman, & Rayner, 2015),
using them resulted in a highly disproportionate number of outliers excluded per sound
condition (2 (3) = 14.548, p= 0.002). Increasing the cut-offs by 200 ms ensured there were
no significant differences in the number of outliers excluded per condition (? (3) = 4.09, p=
0.27), while still removing the longest fixation durations that may not reflect normal
reading®. This was justified by the fact that participants were reading paragraphs which
naturally contained longer compound words that are not typically used in single-line reading

studies such as the one from Chapter 3.

4.5.3. Global Reading Measures

The descriptive statistics for global reading measures are presented in Table 8 and
Table 9. The results from the (G)LMMs are presented in Table 10 for all dependent
measures, with the exception of saccade landing position, for which the results are reported
in the text. English speech resulted in significantly longer paragraph reading time (d=-0.47),
greater intra-sentence regression probability (d=-0.14), and more second-pass fixations (d= -
0.15) compared to Silence. The difference between English and Noise was significant for

paragraph reading time (d=-0.37), saccade length (d= 0.02), intra-sentence regression

12 A re-analysis of the data with the outlier cut-offs from Chapter 3 did not change the main results or the
conclusions from the analysis.
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probability (d=-0.13), and number of second-pass fixations (d=-0.14). The contrast between

English and Mandarin was significant for paragraph reading time (d= -0.36), saccade length

(d=0.02), intra-sentence regression probability (d=-0.09), number of first-pass fixations (d=

-0.05) and number of second-pass fixations (d=-0.11). There were no differences in saccade

landing position for any of the experimental conditions (all ps > 0.07).

Intra- Inter- Number of
Sourd  Quesion TSN e | serce  ftors rer vord)
condition  difficulty ") Drobahilit  probabilit Itpass  2"pass  Total
y y
Silence difficult  25.9(8.70) .25 (.43) A11(.31) .81(.83) .28(.61) 1.09(1.02)
Silence easy 24.3(8.00) .25(.43) .08 (.27) .78 (.79) .26 (.61) 1.05(0.99)
Noise difficult  27.0(9.79) .27 (44) .11(32) .83(.85) .30(.66) 1.13(1.08)
Noise easy 246 (9.59) .24(43)  .09(28) .79(.81) .26(.59) 1.04(1.01)
Mandarin ~ difficult ~ 26.9 (8.85)  .27(45)  .12(.32) .81(.86) .31(.68) 1.12(1.11)
Mandarin  easy 25.0 (9.50) .27 (44)  .08(27) .77(79) .28(.65) 1.05(1.01)
English difficult  30.5(11.54) .32 (.47) 15(.36) .85(99) .40(.84) 1.25(1.33)
English  easy 28.8(10.54) .31(46)  .12(.33) .82(.88) .36(.80) 1.18(1.23)

Table 8. Mean descriptive statistics of global reading measures in Chapter 4 (SDs in
parenthesis).

The comparison between Mandarin and Noise revealed a significant difference only

for intra-sentence regression probability (b= 0.11, SE= 0.05, z=-2.29, p= 0.022, d=-0.03).

There were no significant differences for any other measures (all ps > 0.07). Therefore,

similar to Chapter 3, the results supported most strongly hypothesis H2, which stated that

disruption effects by intelligible speech are only semantic in nature. There was very limited

evidence in support of hypothesis H2.1, which stated that the disruption by intelligible

speech has both a semantic and a phonological component. However, similar to Chapter 3,



117

this support was found only in one measure (intra-sentence regression probability), and even

this measure was not the same as the one from Chapter 3 (humber of second-pass fixations).

Sound Question difficulty Saccade length  Landing position
Silence difficult 8.47 (5.63) 2.90 (2.29)
Silence easy 8.47 (5.48) 2.88 (2.28)
Noise difficult 8.50 (5.74) 2.90 (2.30)
Noise easy 8.50 (5.37) 2.87 (2.28)
Mandarin difficult 8.42 (5.70) 2.94 (2.33)
Mandarin easy 8.52 (5.72) 2.83 (2.24)
English difficult 8.30 (5.71) 2.93 (2.31)
English easy 8.47 (5.63) 2.85 (2.25)

Table 9. Mean saccade length and saccade landing position in Chapter 4 (in letters).

The results also showed a significant main effect of question difficulty for two of the

dependent measures. Participants made more inter-sentence regressions (d= 0.10) and more

second-pass fixations (d= 0.05) when answering difficult compared to easy questions. These

results show that the block of paragraphs with difficult questions prompted participants to
adopt a more careful reading strategy, in which they made more re-reading fixations, and
regressed more often to previous sentences. Additionally, the contrast between English
speech and Noise interacted significantly with question difficulty for inter-sentence
regression probability and number of second-pass fixations. For both measures, the

interaction was due to the fact that the difference between English speech and Noise was

smaller in the difficult compared to the easy question condition.



118

Paragraph reading time

Saccade length

Intra-sentence regression

Effect probability
b SE t p b SE t p b SE Z p
Intercept 332 05 639 <001 852 .21 404 <001 -8 .06 -13.6 <.001
Eng vs Slc -18 04 -464 <001 .19 .10 1.89 13 -32 .06 -561 <.001
Eng vs Noise -14 .02 -577 <001 23 .09 269 .02 -32 .06 -579 <.001
Eng vs Mnd -13 .02 -543 <001 .20 .07 279 .02 -22 .05 -458 <.001
Diff 03 .02 155 12 -06 .05 -141 .32 04 02 166 .20
Diff: Eng vs Slc -02 .02 -90 74 05 .05 .96 .67 -02 .02 -0.78 43
Diff: Eng vs Noise .02 .02 1.08 .56 06 .05 1.23 44 04 02 192 .09
Diff: Eng vs Mnd .02 02 .89 75 01 05 .16 87 <-01 .02 -.16 .87

Inter-sentence regression

Number of 1%-pass

Number of 2"-pass fixations

Effect probability fixations
b SE z p b SE z p b SE yA p

Intercept -284 25 -115 <001 -21 .04 -565 <001 -107 .07 -154 <.001
Eng vs Slc -.25 24 -1.04 .59 -03 .02 -178 .15 -3 05 -7.11 <001
Eng vs Noise =27 19 -143 31 -03 .02 -165 .20 -35 .06 -6.42 <.001
Eng vs Mnd -14 18 -76 9 -05 .02 -233 .04 -27 .04 -616 <.001
Diff 18 .06 3.00 .01 01 01 152 .13 06 .02 239 .02
Diff: Eng vs Slc -01 .03 -19 .85 01 .01 57 91 -01 .02 -0.69 49
Diff: Eng vs Noise .11 .03 346 .001 01 .01 .69 91 04 02 261 .02
Diff: Eng vs Mnd .01 03 .35 12 01 .01 151 .26 01 .02 .63 .53

Table 10. Results from (G)LMMs on global measures of reading in Chapter 4. Eng: English.
Slc: Silence. Mnd: Mandarin. Diff: question difficulty. Statistically significant p-values are
formatted in bold.

One question of particular interest in the present experiment was how intelligible

speech affects the integration of information across sentences. To determine this, we

compared the disruption in sentence re-reading time and sentence look-back time. If the

disruption is limited only to the currently-read sentence, there should an increase in sentence

re-reading time, but not in sentence look-back time. On the other hand, if intelligible speech
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affects sentence integration processes, such a disruption should also be observed in look-
back time. The descriptive statistics are plotted in Figure 15. English speech resulted in
significantly longer sentence re-reading time compared to Silence (b=-0.38, SE= 0.04, t= -
9.14, p< 0.001, d=-0.43), Noise (b=-0.34, SE=0.05, t=-7.62, p< 0.001, d=-0.36), and
Mandarin (b=-0.26, SE= 0.04, t=-7.10, p< 0.001, d=-0.30). However, the difference
between Mandarin and Noise was not significant (b= -0.08, SE=0.05, t=-1.61, p=0.12, d=
0.06), thus providing support for hypothesis H2 that the disruption is only semantic in
nature. There were no differences in look-back time for any of the background sound
comparisons (all ps > 0.16). This suggests that the increase in re-reading behaviour was
mostly constrained to the currently-read sentence as the difference in look-back time did not
reach statistical significance. In other words, English speech disrupted only the processing of

the current sentence and did not lead to longer re-reading times of previous sentences.

Measure
—o— [Sentence look-back time
= A =|Sentence re-reading time

2500

2000

Fixation time (in ms)

1500

Silence Noise Mandarin English

Background sound

Figure 15. Mean sentence re-reading time and sentence look-back time in Chapter 4.
Shading indicates the standard error.
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4.5.4. Word-level Reading Measures

The descriptive statistics for local fixation duration measures are shown in Figure 16
and the results from LMMs are presented in Table 11. English speech resulted in
significantly longer FFD (d=-0.05), GD (d=-0.08), and TVT (d=-0.21) compared to
silence. Additionally, the difference between English and Noise was significant for TVT (d=
-0.17), and the difference between English and Mandarin was also significant for both GD
(d=-0.05) and TVT (d=-0.16). The difference between English and Noise, and English and
Mandarin for FFD did not reach statistical significance, but was still in the expected
direction. Therefore, the disruption effects in TVT from Chapter 3 were replicated,
additionally, there were also some effects in first-pass reading measures (FFD and GD).
Consistent with Chapter 3, there were no differences between Mandarin and Noise in word-
level reading measures (all ps > 0.56). In summary, the analysis of local word-level reading
measures supported hypothesis H2, which stated that the disruption effect by intelligible
speech is only semantic in nature. Contrary to hypotheses, H1.2 and H2.1, there was no

evidence for a contribution of phonology.

Furthermore, there was a significant effect of question difficulty for TVT (d= 0.08),
which indicated that TVT was longer when participants were answering difficult compared
to easy questions. Finally, question difficulty interacted significantly with the comparison
between English and Noise for FFD. This was because FFD was longer in English speech
compared to Noise when the questions were easy (d= 0.05), but not when they were difficult.
There were no other significant interactions between question difficulty and background

sound (all ps >0.1).
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Figure 16. Mean descriptive statistics for local word-level reading measures in Chapter 4,
broken down by question difficulty condition. FFD: first fixation duration. GD: gaze
duration. TVT: total viewing time. Shading indicates the standard error.

Effect FFD GD TVT

b SE t p b SE t p b SE t p
Intercept 535 .02 3403 <001 549 02 2735 <001 573 .03 1971 <.001
Eng vs Slc -02 .01 -233 05 -03 .01 -354 .002 -10 .02 531 <.001
Eng vs Noise -01 01 -124 45 -02 .01 -224 .06 -.09 .02 548 <.001
Eng vs Mnd -01 .01 -197 A1 -02 .01 -301 .01 -.08 02 521 <001
Diff <-01 <01 -76 .87 01 <01 117 .24 .02 01 297 .004
Diff: Eng vs Slc .01 <01 128 39 <-01 .01 -08 1 <01 <01 <01 1
Diff: Engvs Noise .01 <.01 2.73 01 01 01 132 .37 .01 01 195 10
Diff: Eng vs Mnd .01 <01 1.39 33 <01 .01 .89 .75 .01 .01 1.61 21

Table 11. Results from LMMs on local word-level measures of reading in Chapter 4. Eng:
English. Slc: Silence. Mnd: Mandarin. Diff: question difficulty. FFD: first fixation duration.
GD: Gaze duration. TVT: Total viewing time. Statistically significant p-values are formatted

in bold.



122

4.6. Discussion

The present experiment investigated the effect of intelligible background speech on
comprehension accuracy and online integration processes during paragraph reading. The
eye-movement measures replicated the disruption effects of intelligible speech found in
measures of second-pass reading in Chapter 3. In fact, the amount of disruption was greater
than what was observed in the single-sentence reading paradigm used in Chapter 3. This was
because, on average, the size of the effects in Cohen’s d was 76 % greater in the comparison
between English speech and Silence and 84% greater in the comparison between English
speech and Mandarin speech. Additionally, unlike Chapter 3, there was evidence that
intelligible speech also disrupted first-pass reading. More specifically, gaze durations were
longer in English speech compared to both Mandarin speech and Silence, and first fixation
durations were also longer in English speech compared to Silence (but not compared to
Mandarin). Participants also made more first-pass fixations in English speech compared to
Mandarin (but not compared to Silence). In this sense, the disruption in paragraph reading
was greater than the disruption in sentence reading (Chapter 3) because the magnitude of the
effects in second-pass measures was greater and there was at least some evidence that first-
pass reading measures were also affected. Because reading connected sentences requires the
construction of a discourse model of the text (see Gernsbacher & Foertsch, 2000; O’Brien &
Cook, 2015), the greater magnitude of the disruption in paragraph reading may be due to a
difficulty in constructing a coherent discourse of the paragraph (Kehler, 2004; Wolf &

Gibson, 2005) when readers are listening to intelligible speech in the background.

While the text stimuli were longer in the present experiment and participants may

have had more opportunity to go back and re-read the text, the probability of making a
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regression within the current sentence was comparable in the two experiments (23% in
Chapter 3 vs. 25% in the present experiment in the silence condition). Additionally, the
probability of making a regression to previous sentences (9.5% in the silence condition) was
more than twice as low, thus suggesting that such regressions were not as common as
regressions within the currently-read sentence. Therefore, the stronger effects in measures of
second-pass reading are not likely to be explained by the text stimuli being longer. In the
present experiment, participants also made 22.1% fewer first-pass fixations and 40.2% fewer
second-pass fixations compared to Chapter 3. However, at the same time, fixation durations
increased by 5.7 % for FFD and by 9.7 % for TVT across all conditions. This suggests that,
compared to Chapter 3, participants made fewer but longer fixations in both first-pass and

second-pass reading.

Similar to Chapter 3, the results provided strong evidence in support of hypothesis
H2 that the disruption by intelligible speech is only semantic in nature (Marsh et al., 2008,
2009; Martin et al., 1988). This was because English speech resulted in greater disruption
compared to the other sound conditions in measures of both second-pass reading and first-
pass reading (gaze durations). Therefore, because English speech resulted in a greater
disruption compared to Mandarin speech, there was again no support for the strong form of
the phonological disruption account (H1; Salamé & Baddeley, 1982, 1987) stating that any
disruption is only phonological in nature. However, there was limited support for the weaker
version of the phonological disruption account (H1.2) because Mandarin speech resulted in a
greater intra-sentence regression probability compared to Noise. This suggests that there
may be very limited contribution of phonology to the disruption effects by intelligible speech

(which would be consistent with hypothesis H2.1), but this was found in only one measure
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and the same effect was not observed in Chapter 3 in that same measure. Therefore, the
present data can be best explained by hypothesis H2, which stated that the disruption by
intelligible speech is only semantic in nature. We will revisit what role, if any, phonology
may play in distraction by intelligible speech in the General Discussion (Chapter 7), but for

now we note that there was very limited evidence in support of a contribution by phonology.

One of the contributions of the present experiment was that it investigated how
information is integrated across multiple sentences. Generally speaking, there was no
evidence to suggest that the integration of information across sentences is disrupted by
intelligible speech because participants did not make more regressions to previous sentences
when listening to English speech in the background compared to Silence or Mandarin
speech. Additionally, the time that they spent re-reading the sentence during such
regressions (i.e., look-back time) also did not differ significantly between the sound
conditions. This is largely consistent with Hyond and Ekholm’s (2016) findings, because the
authors also reported no effects in look-back times in three out of their four experiments (the
only significant difference in their research was between silence and scrambled speech in
Experiment 3). Furthermore, there was no difference between (non-scrambled) intelligible
speech and silence in Hyoné and Ekholm’s (2016) Experiments 1 and 3, which is also in
agreement with the present results. Interestingly, Cauchard et al.'s (2012) finding that
intelligible speech led to longer sentence look-back times is contrary to both the present
findings and Hyoné and Ekholm’s (2016) results. Therefore, further research is required to
determine the boundary conditions under which such an effect may be observed. We

speculate that this discrepancy could potentially be due to differences in the speech stimuli
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or the text that participants were reading. These are potential mediating factors that have not

been thoroughly investigated so far in studies on auditory distraction by intelligible speech.

At any rate, the present study suggests that the increase in re-reading behaviour in
response to intelligible speech is constrained only to the currently-read sentence and does not
also extend to previously-read sentences. Therefore, the observed disruption in second-pass
reading in the present research is likely not related to a difficulty in integrating text meaning
across multiple sentences. Rather, it likely reflects a transient difficulty in integrating the
meaning of individual words within the current sentence in order to form the meaning of that

sentence.

While the difference was not significant, it is also worth noting that English speech
resulted in a numerically greater look-back time compared to Silence and this difference was
similar in its numerical magnitude to the disruption effect in sentence re-reading time. An
examination of the participant means indicated that there was a considerable between-subject
variability. Because of this, future studies should investigate whether individual differences
may modulate the effect of intelligible speech on sentence look-back time. For example, the
time that participants spend re-reading previous sentences could be related to their ability to
suppress the irrelevant background speech (see Sorqvist, Halin, et al., 2010; Sérqvist,
Ljungberg, & Ljung, 2010). In any case, the present results still suggest that the type of text
that participants are reading has an effect on the magnitude of the disruption effects because
paragraph reading resulted in stronger disruption compared to single-sentence reading.
While the stronger effects in measures of second-pass reading may not be due to a difficulty
in integrating text meaning across sentences, they likely arise from the need to construct a

coherent discourse representation of the paragraph. Therefore, the discourse representation
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of the paragraph and the richer text context may amplify this transient disruption that occurs

when processing the meaning of the currently-read sentence.

Even though intelligible speech resulted in a considerable disruption of eye-
movements, comprehension accuracy remained unaffected in both question difficulty
conditions. This suggests that participants could maintain a similar level of text
comprehension with English speech in the background, even when the questions probed a
deeper level of text understanding. This points to the fact that the disruption observed in eye-
movement measures in the English speech condition reflects participants’ attempt to
successfully attain comprehension in the distracting reading conditions. The results from
eye-movement measures provide converging evidence to the same effect. The experimental
block with difficult comprehension questions led to a change in eye-movement behaviour,
which was characterised by more regressions to previous sentences and longer word re-
reading times. However, the disruption effect by English speech did not interact with
question difficulty, thus suggesting that the amount of disruption did not depend on the task
demands imposed by the question difficulty manipulation. In this sense, there was no
evidence that the disruption effect in eye-movement measures increased in the block with
difficult questions. Rather, participants were able to adapt to the different task demands, and

the magnitude of the disruption was proportional to these demands.

The effect of question difficulty on eye-movements further suggests that participants
can make strategic decisions about the nature of the reading task and that they can adjust
their reading behaviour accordingly. This finding is in line with the results by Wotschack
and Kliegl (2013) and Weiss et al. (2017), who also found that answering more difficult

comprehension questions led to an increase in re-reading behaviour. The increase in the
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number of fixations that participants made and the probability of making a regression to
previous sentences in the condition with difficult questions could be due to an attempt to
engage in more effective discourse processing in order to develop a richer representation of
the meaning of the text. This may occur in response to the expectation that participants will
be asked more difficult and more detailed comprehension questions. Similar evidence of
such “meta” control over eye-movements has also been found in response to the type of text
that participants are reading. For example, participants make more regressions and have
longer fixation durations when reading scientific texts compared to reading newspaper

articles or light fiction (Rayner, Pollatsek, Ashby, & Clifton, 2012; Rayner et al., 1995).

While there was robust disruption by intelligible speech in eye-movement measures,
comprehension accuracy in the present experiment remained unaffected. This suggests that
intelligible speech does not degrade the meaning of the text that has been read, at least in the
short term and when reading single sentences or short paragraphs. Even though a number of
behavioural experiments have reported a disruption in comprehension accuracy (e.g., Baker
& Madell, 1965; Halin, 2016; Martin et al., 1988; Soérqvist, Halin, et al., 2010), the present
research is not necessarily inconsistent with such studies because it only shows that the
immediate comprehension of short sentences and paragraphs is not affected by intelligible
speech when participants can re-read previous words and sentences. This difference in the
results is not likely to be explained by the greater difficulty of comprehension questions in
previous studies because the average accuracy in the studies cited above was 34.1% above
chance level (range: 21.2- 43.3%). The average accuracy above chance level on the difficult

question in the present research was 31%. Therefore, the difficult questions were, on
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average, slightly more challenging than the questions used in previous reading

comprehension studies.

There are a few possible reasons why a disruption in comprehension may have been
observed in previous research. For example, it is possible that intelligible speech may disrupt
the transfer of text meaning to long-term memory. In fact, many of the behavioural
experiments have had a delay between the reading task and the comprehension assessment,
often even with other tasks in between (e.g., Boman, 2004; Knez & Hygge, 2002; Martin et
al., 1988). Additionally, the present research used text stimuli that were relatively short and
easy to understand. Therefore, it may be the case that intelligible speech disrupts the
comprehension of longer and more complex texts that require making inferences between

different paragraphs or larger topics of meaning.

Furthermore, the speech stimuli were also relatively simple and they may not have
been very engaging to our participants. Therefore, it may be more difficult to maintain
comprehension of the text when the intelligible speech is more engaging. This could be
because engaging speech makes it harder to selectively attend to the text and filter out the
irrelevant speech sound. There is some evidence to suggest that the content of the speech
may influence the amount of distraction. For example, hearing only one side of a telephone
conversation is more distracting than hearing both sides, presumably because the former type
of speech is less predictable than the latter (Emberson, Lupyan, Goldstein, & Spivey, 2010;
Marsh et al., 2018). In a similar fashion, engaging speech may be more likely to attract
attention away from the main task and thus lead to a greater disruption in comprehension

accuracy. These are all avenues that need to be explored by future research.
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Because the difficult questions received a difficulty rating of 2.7 on a 5-point scale in
the pilot study, it could be argued that the lack of interaction between question difficulty and
background sound in comprehension accuracy may be due to the fact that the difficult
questions were still not challenging enough to detect such an effect. However, the fact that
the block with difficult questions prompted participants to read the paragraphs more
carefully clearly suggests that the difficult questions were more challenging than the easy
ones. Additionally, the difficulty rating in the pilot study was subjective in nature and thus
may not perfectly correlate with participants’ performance on the questions (i.e., one can
judge the questions to be easy and still answer them incorrectly)®3. Furthermore, as
mentioned above, the difficult questions resulted in slightly lower accuracy above chance
level compared to previous behavioural studies. Therefore, even though the difficult
questions in the present study were still fairly challenging, future studies may wish to utilise
even more difficult questions to make a more rigorous test of the hypothesis that intelligible
speech disrupts comprehension only when the questions are difficult to answer. However, it
should be kept in mind that if the questions are so difficult that they lead to accuracy that is
close to chance-level performance, they will have a poor psychometric sensitivity to detect

any potential auditory distraction effects.

In summary, the present study investigated how intelligible speech affects
comprehension processes and the integration of information across multiple sentences. The
results replicated the disruption effects of intelligible speech on eye-movements from

Chapter 3 and were most readily explained by the theoretical view that the observed

13 The point-biserial correlation between accuracy and difficulty rating in the pilot data was r=— 0.48 overall
(r="-0.36 on the difficult and r=-0.34 on the easy questions). This supports the view that the difficulty rating is
only moderately related to participant’s performance on the comprehension assessment.
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disruption is only semantic in nature. Additionally, intelligible speech did not affect the
comprehension of short paragraphs even when the questions were more difficult to answer
and required a deeper level of text understanding. This suggests that participants could
maintain the immediate comprehension of the paragraphs when faced by distracting
intelligible speech. Interestingly, the increase in re-reading behaviour occurred only in the
currently-read sentence and not in previously-read sentences, thus suggesting that the
difficulty of integrating text meaning occurred only at the sentence level, and did not extend
to the paragraph level. At the same time, the magnitude of the disruption effects in measures
of second-pass reading was greater compared to the single-sentence reading study from
Chapter 3. This suggest that the disruption by intelligible speech is greater in paragraph
reading compared to single-sentence reading, which could potentially be due to the increase
in context and the need to construct a discourse model of the text when reading paragraphs.
The next Chapter will examine more closely the link between regressions and
comprehension accuracy when listening to intelligible speech in order to better understand
how participants are able to maintain an accurate comprehension of the text under such

distracting conditions.
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CHAPTER 5: THE ROLE OF REGRESSIONS IN DISTRACTION BY
INTELLIGIBLE SPEECH

The results from Chapters 3 and 4 indicated that intelligible speech disrupts the
ongoing reading process by prompting participants to make more regressions and more re-
reading fixations on previously-read words. Additionally, there was strong evidence
indicating that this disruption was mostly due to the semantic properties of the irrelevant
speech that interfere with processing the meaning of the written text. This finding is
consistent with the results from previous eye-tracking studies (Cauchard et al., 2012; Hy6na
& Ekholm, 2016; Yan et al., 2017), which have also demonstrated that irrelevant speech
leads to an increase in re-reading behaviour. However, while these studies have been
successful in showing how the ongoing reading process is disrupted by intelligible speech,
little is known about why this increase in re-reading behaviour occurs in the first place.
Furthermore, as participants’ comprehension was not affected by the speech sound in any of
these studies, it is not clear how participants can still maintain an accurate comprehension of
the text. Therefore, it is theoretically important to better understand the link between
regressive eye-movements and reading comprehension when listening to intelligible speech

in the background.

One possible explanation for the lack of disruption in comprehension may be that
participants tend to re-read the text more frequently when listening to intelligible speech in
order to compensate for the experienced distraction. This explanation assumes that

participants are actively trying to comprehend the passages at the same level as when they
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are reading them in silence. However, the intelligible speech that is playing in the
background occasionally leads to a transient interference in processing the meaning of the
written text that disrupts participants’ task performance. In order to compensate for the
experienced disruption and still comprehend the passage, participants initiate a regression to
resolve the processing difficulty before continuing to read the unexplored text. Therefore,
under this explanation, the observed increase in regressions and re-reading fixations is
simply a manifestation of the transient interference in processing the meaning of the written
text that is caused by listening to intelligible speech in the background. We will refer to this

potential explanation as the distraction re-reading hypothesis.

Although this hypothesis has not been formally tested before, there are a few sources
of evidence that make it plausible. First, in Chapter 4, there were robust disruption effects by
intelligible speech in measures of second pass-reading, but there was no associated
disruption of comprehension accuracy. Given that participants in Chapter 4 used, on average,
only about a half of their allocated time to read the paragraphs, they would have had more
than enough time to selectively re-read the text in order to overcome the disruption and still
achieve an accurate comprehension of the paragraphs. Additionally, the post-hoc analysis
from Chapter 3 indicated that re-reading fixations in the intelligible speech condition
occurred in close proximity to the most recently fixated word in the sentence- presumably,
the word where the processing difficulty was first encountered. This suggests that the
disruption by intelligible speech was transient in nature because re-reading fixations
occurred close to where the progressive reading of the text was interrupted by the speech

sound.
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Previous evidence from eye-movements during reading further lends plausibility to
this hypothesis. First, it is known that regressive eye-movements play an important role in
resolving temporary sentence ambiguities (e.g., Frazier & Rayner, 1982; Meseguer,
Carreiras, & Clifton, 2002; Staub, 2007). For example, Frazier and Rayner (1982) found that
when readers encounter temporary syntactic ambiguities while reading garden-path
sentences, they use regressive eye-movements to selectively re-analyse parts of the sentence
that can help them resolve the ambiguity. This finding led the authors to suggest that readers
do not typically backtrack to the beginning of the text when they encounter sentential
ambiguities, but that they use the information they have acquired to selectively re-read parts
of the text that can help them recover from an incorrect previous interpretation of the
sentence. In a similar fashion, readers may also be selectively re-reading the words whose
meaning was corrupted or whose meaning could not be integrated within the sentence

context due to interference from the irrelevant speech sound.

Additionally, Rayner, Chace, Slattery, and Ashby (2006, Experiment 2) investigated
how anaphor-antecedent inconsistencies influence eye-movements during reading. They
found that participants made more regressive eye-movements when there was an
inconsistency between the anaphor and its antecedent in the text (Rayner et al., 2006). This
again suggests that readers use regressions to resolve online comprehension difficulties when
processing the meaning of the text. Studies investigating discourse processes during reading
have also linked regressive eye-movements to higher-level representations of meaning. For
example, Hyona (1995) found that participants made more regressive fixations when a
sentence introduced a new subtopic in the text. This was thought to reflect integration

processes that give readers more time to wrap up the meaning of the sentence, possibly
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because they are not yet ready to encounter new information before consolidating what has
been read so far. Similarly, Blanchard and Iran-Nejad (1987) found that a surprising ending
to a story led to more re-reading fixations compared to a non-surprising one. The authors
argued that this may occur because, when readers encounter the surprising ending, the
cognitive system is put “on hold” until all comprehension processes have been completed
and new information can be acquired again. In summary, the studies above suggest that
regressions play an active role in online text comprehension and are reflective of the

immediate difficulties in processing the meaning of the text.

More direct evidence regarding the role of regressions in comprehension comes from
two recent studies that have manipulated what participants see during a regression. In the
first study, Booth and Weger (2013, Experiment 3) presented short statements for reading
(e.g., “Andy is a good driver but his cousin David is not.”). If participants made a regression
while reading the sentence, one target word was changed using Rayner’s (1975) gaze-
contingent boundary paradigm. Critically, however, this change altered the meaning of the
sentence (e.g., “Andy is a good dancer but his cousin David is not.”). Afterwards,
participants’ comprehension of the sentence was probed with a question to determine which
version of the sentence they had understood (the pre-change, the post-change one, or a
baseline option that matched neither version). The authors found that, when participants
fixated the changed word during a regression, they were more likely to select the post-
change version of the sentence compared to when it was not fixated during a regression. This
suggests that readers use regressions to further process the meaning of words and that this

additional processing can influence their subsequent understanding of the sentence.
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In another study, Schotter, Tran, and Rayner (2014) investigated the link between
regressions and reading comprehension by eliminating participants’ ability to do any
additional visual processing of the text during regressions. In their study, Schotter et al. used
a new manipulation (the so-called trailing mask paradigm) to experimentally prevent
participants from obtaining any useful information from words if they are re-fixated during a
regression. In this paradigm, each word is permanently masked by a string of ‘x’s once
participants make a saccade to the right of it, thus making it impossible to re-read the word
during a regression. Schotter et al. found that when participants were reading in the trailing
mask condition, their comprehension was negatively affected compared to when they were
reading in the normal (i.e., unmasked) text condition. This finding further suggests that

regressions are important for maintaining an accurate comprehension of the sentences.

In the present research, we tested the distraction re-reading hypothesis, which stated
that the increase in regressions and re-reading fixations is crucial for maintaining the
immediate text comprehension in the face of distraction by intelligible speech. This was
done by presenting the same paragraphs from Chapter 4, but this time in a way that
prevented participants from selectively re-reading previous parts of the text. If regressive
eye-movements and re-reading fixations are important for maintaining comprehension of the
text when listening to distracting intelligible speech, we would expect to see a disruption in
comprehension accuracy when participants are no longer able to re-read the text.
Additionally, if regressions mostly support deeper levels of text comprehension, we would
expect to see greater disruption in comprehension on the difficult compared to the easy

questions. This is because answering the difficult questions required a deeper level of text
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understanding since the correct answers were paraphrased and could not be found by simply

recognizing words or phrases from the text.

In Chapter 5, these predictions were tested with two different paradigms that
prevented re-reading of the previous text. In Experiment 1, re-reading was prevented by
presenting the paragraphs one word at a time using rapid serial visual presentation (RSVP;
Forster, 1970). This was done to obtain preliminary evidence about the feasibility of the
distraction re-reading hypothesis and to compare the comprehension accuracy results to the
ones from Chapter 4. In Experiment 2, this hypothesis was tested more directly by
comparing a condition in which participants could re-read the text to a condition in which
they could not re-read the text within the same experiment. In Experiment 2, re-reading
behaviour was rendered useless by masking the previous text with ‘x’s using Schotter et al.’s

(2014) trailing mask paradigm.

5.1. Experiment 1

In Experiment 1, participants were prevented from making eye-movements to
previous or upcoming words in the text, which effectively eliminated their control over what
parts of the text they see. This was achieved by presenting the same paragraphs from Chapter
4 in RSVP mode (RSVP; Forster, 1970). In the RSVP paradigm, words are presented one by
one at a constant rate at the centre of the screen. Because the RSVP stream is automatic and
participants cannot go back to previous screens, no re-reading of the text is possible. We
predicted that, when second-pass reading is eliminated, comprehension accuracy would be
lower in the English speech condition compared to both the silence and Mandarin speech
conditions. This was because the most robust disruption effects in both Chapter 3 and

Chapter 4 were observed in measures of second-pass reading.
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In Experiment 1, a few steps were taken to make the reading conditions in RSVP
mode similar to the ones in Chapter 4. First, reading speed was determined from the average
reading speed in Chapter 4 on the same materials (240 words per minute in the silence
condition). Second, reading speed was further slowed down to 200 words per minute to
account for the fact that participants could not pre-process the upcoming word in parafoveal
vision (see Schotter et al., 2014, p.1225). To determine the amount of adjustment, we used
pooled estimates of parafoveal pre-processing from the boundary paradigm (Rayner, 1975)
that were calculated in a recent meta-analysis (Vasilev & Angele, 2017)*. Finally, a 500 ms
blank screen was inserted at the end of each sentence to allow for sentence wrap-up effects
and processing the “buffer” of words in the RSVP stream to occur (Just, Carpenter, &
Woolley, 1982; Masson, 1983). Masson (1983) showed that this small addition to the RSVP
procedure significantly improves comprehension accuracy on short passages similar to the

ones used in this study.

Based on the distraction re-reading hypothesis, we predicted that English speech
would significantly disrupt comprehension compared to both the Mandarin speech and
silence conditions. No such disruption was predicted for the Mandarin and speech-spectrum
noise conditions. Additionally, we also predicted that the amount of disruption in
comprehension accuracy by intelligible speech would be significantly greater for the difficult

compared to the easy comprehension questions.

14 With 240 words per minute, the fixation time per word is 60/240= 0.25 s. Vasilev and Angele (2017, Table 2)
estimated that valid preview of the upcoming word translates into 47.2 ms shorter TVT when that word is
subsequently fixated (0.0472 s). By adding this number to the fixation time per word in Experiment 1, we
obtain 0.25+ 0.0472=0.2972 s adjusted fixation time per word. This in turn translates into an adjusted reading
rate of 60/ 0.2972=201.8843 words per minute (rounded down to 200).
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5.1.1. Method

5.1.1.1. Participants.

Forty-eight Bournemouth University students participated for course credit (43
female). Their mean age was 19.7 years (SD= 3.5 years; range: 18-42 years). None of them
had participated in the previous two experiments. Participants were native speakers of
British English who reported normal or corrected-to-normal vision, normal hearing, no prior
diagnosis of reading disorders, and no prior knowledge of Mandarin Chinese. The study had
the same statistical power as the experiment from Chapter 4 and was therefore sufficiently
powered. The study was approved by the Bournemouth University Research Ethics

Committee (protocol No. 14005).

5.1.1.2. Materials.

The same reading and auditory stimuli from Chapter 4 were used. The conditions

were blocked in the same way as in Chapter 4.

5.1.1.3. Apparatus.

The experiment was programmed in PsychoPy (Peirce, 2007) and was run on a
Hewlett-Packard EliteDesk 800 G1 SFF PC with 8GB RAM and a Windows 7 operating
system. The paragraphs were presented on a 24" BENQ XL2411 monitor with a screen
resolution of 1920 x 1080 pixels and a refresh rate of 60 Hz. The words in the paragraph
were formatted in a Courier New pt.16 font and appeared as black text over white
background at the centre of the screen. Participants were seated approximately 85
centimetres from the monitor. At this distance, the stimuli subtended approximately the same

degree per visual angle as in Chapter 4. The sound stimuli were presented binaurally through
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Bose QuietComfort 25 noise-cancelling headphones at approximately 60 dB(A). The sounds

were played on an Intel HD Max integrated sound card.

5.1.1.4. Procedure.

Before the reading task, participants read three practice sentences to get used to the
RSVP mode of presentation. Similar to Chapter 4, each of the question difficulty blocks
started with two practice paragraphs in order to introduce participants to the different
comprehension difficulty conditions. Before each trial, participants pressed a button on the
keyboard to start the RSVP presentation. The presentation of the paragraphs is illustrated in

Figure 17.
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Figure 17. An illustration of the RSVP presentation in Chapter 5, Experiment 1. Each trial
started with a fixation cross. The paragraph was then presented one word at the time, with



140

each word staying on the screen for 300 ms. A 500 ms blank screen was inserted at the end
of each sentence. Background sounds were played simultaneously with the appearance of the
first word on the screen.

Each trial started with a fixation cross at the centre of the screen, which remained
there for 500 ms before it was replaced by the first word in the paragraph. The sound stimuli
were played as soon as the first word appeared on the screen. The paragraphs were presented
at a speed of 200 words per minute. Each word appeared at the centre of the screen and
stayed there for 300 ms before it was replaced by the next word. Capitalization and
punctuation of the paragraphs were preserved. There was a 500-ms blank interval at the end
of each sentence. Participants were instructed to look at the centre of the screen and to read
all words until the whole paragraph has been presented. Each paragraph was followed by the
same comprehension questions used in Chapter 4. Participants pressed a button on the

keyboard to select the correct answer. The experiment lasted for 30-35 minutes.

5.1.1.5. Data analysis.

Comprehension accuracy was the only dependent variable and it was analysed with
LMMs by using the “lme4” package v.1.1-12 (Bates et al., 2014) in the R statistical software
v.3.3.1 (R Core Team, 2016). Comprehension accuracy was analysed as accuracy above
chance level due to the different chance levels in the two question difficulty conditions (50%
for the easy questions and 25% for the difficult questions). Two separate models are reported
for participants (b1) and items (b2) because analysing the data in terms of comprehension
accuracy above chance level requires calculating the mean accuracy for each condition and
then subtracting the chance level performance from it. Random intercepts and random slopes

for background sound and question difficulty were added for both participants and items.
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The same contrast coding as in Chapter 4 was used (question difficulty: -1= easy, 1=
difficult; background sound: treatment contrast coding with English speech as the baseline).
P-values were calculated with the ImerTest package v.2.0-33 (Kuznetsova et al., 2017).
Similar to Chapters 3-4, p-values were adjusted with the Holm-Bonferroni (Holm, 1979)
correction due to the additionally contrast between Mandarin and Noise. The results were

considered as statistically significant if the adjusted p-values were < 0.05.

5.1.2. Results

The mean comprehension accuracy is presented in Figure 18. There was a
statistically significant main effect of question difficulty (b1=-0.05, SE= 0.02, t= -3.06, p=
0.004; bo=-0.05, SE= 0.02, t=-2.44, p= 0.03; d=-0.21), thus showing that accuracy was
better on the easy compared to the difficult questions. Additionally, comprehension accuracy
was significantly lower in the English speech condition compared to all other sound
conditions (Silence: b;=0.10, SE=0.02, t= 4.56, p< 0.001; bo=0.11, SE= 0.03, t= 3.74, p<
0.001; d=0.22; Noise: b1=0.08, SE= 0.02, t= 3.46, p= 0.001; b>= 0.08, SE= 0.03, t= 2.87, p=
0.009; d=0.17; Mandarin: b1= 0.08, SE=0.02, t= 3.34, p= 0.002; b>= 0.08, SE= 0.03, t=
2.71, p=0.017; d= 0.17). However, there was no significant difference between Mandarin
and Noise (ps > 0.94). There were also no significant interactions between background
sound and question difficulty (all ps> 0.99), thus showing that the amount of disruption did
not differ as a function of question difficulty. This indicates that comprehension was equally

impaired by English speech in the two question difficulty conditions.
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Figure 18. Mean comprehension accuracy above chance level for the different sound

conditions in Chapter 5, Experiment 1 as a function of question difficulty. Shading indicates
the standard error.

Bayes factor regression analysis (Morey et al., 2015; Rouder & Morey, 2012) of the
difference in comprehension accuracy between English speech and Silence indicated
decisive evidence in support of the alternative hypothesis of a true difference (subjects: BF=
153.6; items: BF=19.4). Additionally, the comparisons between English and Noise
(subjects: BF=4.7; items: BF= 2.6) and English and Mandarin (subjects: BF= 4.5; items:
BF=2.7) also favoured the alternative hypothesis of a true mean difference. However,
consistent with the LMM analysis, the contrast between Mandarin and Noise favoured the
null hypothesis of no difference (subjects: BF=0.11; items: BF= 0.15). Furthermore, the
interaction between question difficulty and the sound conditions also favoured the null

hypothesis of no difference (range of BFs: 0.16- 0.24). Therefore, the Bayesian analyses
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confirmed the finding that English speech disrupted comprehension more than the remaining
sound conditions, but that the magnitude of this disruption was not modulated by the

difficulty of questions.

5.1.3. Discussion

Experiment 1 showed that preventing participants from re-reading words
significantly impaired their comprehension accuracy when listening to intelligible speech in
the background. While the overall mean difference was modest (10.5%), the Bayesian
analyses now favoured the alternative hypothesis of a true difference between the two
conditions. Although it can be argued that the RVSP mode of presentation may have made
the reading task harder in Experiment 1, participants’ comprehension accuracy in the silence
condition was very similar to the one observed in Chapter 4 (this includes both the main
experiment and the pilot data). This suggests that participants could still comprehend the
paragraphs at approximately the same level as in the experiment in Chapter 4 in the absence

of English speech.

The results from Experiment 1 suggest that comprehension is negatively affected by
intelligible speech when participants cannot go back to selectively re-read the text. The
increase in regressions in the previous two experiments (Chapters 3-4) suggested that re-
reading behaviour is necessary for developing and maintaining an accurate representation of
the text. Once such behaviour was prevented in Experiment 1, this presumably limited
participants’ ability to maintain this representation under conditions of intelligible
background speech. In this sense, the findings from Experiment 1 are in principle consistent
with the notion that regressive eye-movements are necessary for maintaining comprehension

of the text when listening to intelligible speech.
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Experiment 1 therefore provided some preliminary evidence in support of the
distraction re-reading hypothesis, which stated that regressions and re-reading fixations are
important for maintaining an accurate comprehension of the text when listening to
intelligible speech in the background. Nevertheless, this experiment has a few limitations
that do not make it possible to conclusively rule out other alternative explanations for the
observed pattern of results. One such limitation is that, unlike the study in Chapter 4, reading
was no longer self-paced because participants were artificially constrained to fixating each
word for 300 ms. As a result, Experiment 1 cannot unambiguously demonstrate that the
disruption in comprehension accuracy by intelligible speech is due only to preventing
participants from re-reading the text. It is also possible that this may have occurred because
reading was no longer self-paced and participants had no control over how long they fixated
each individual word. Additionally, the words in the text were presented in a spatially
different way as they appeared one-by-one in the middle of the screen. This differs from
Chapter 4 where the words were presented as normal text over multiple lines. Finally, the
conclusions from Experiment 1 are also limited by the fact that any comparisons to the
results from Chapter 4 are by necessity based on a set of two independent samples.
Therefore, the strongest test of this hypothesis would be to compare a condition where re-
reading of previous text is possible to a condition where re-reading of previous text is not

possible within the same experiment.

Experiment 2 was designed to address the limitations above and to make a more
rigorous test of the distraction re-reading hypothesis. In this study, the trailing mask
paradigm by Schotter et al. (2014) was used to prevent participants from re-reading previous

words in the text. In this paradigm, each word in the text is permanently masked by a string
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of ‘x’s immediately after participants make a saccade to the right of that word. While
participants can still make regressions to previous words in the trailing mask condition, such
regression do not yield any useful information because the text has already been masked by
the time these words are re-fixated. This effectively eliminates participants’ ability to
selectively re-read previous parts of the text in order to resolve comprehension difficulties

that arise due to interference from the irrelevant speech.

5.2. Experiment 2

The experiment had a 2 x 2 x 2 within-subject design with the following factors:
background sound (English speech vs silence), reading condition (normal text vs trailing
mask text), comprehension question difficulty (easy vs difficult). To preserve statistical
power and because the critical comparison for the present hypothesis is between silence and
English speech, the Mandarin and speech-spectrum noise conditions from Experiment 1
were removed. Similar to Experiment 1, we expected that English speech will disrupt
comprehension compared to the silence condition, but only in the trailing mask condition
when participants cannot re-read the text. Additionally, we also expected to replicate the
disruption effects by English speech from Chapter 4 in measures of second-pass reading.
This was again hypothesized to occur only in the normal, but not in trailing mask condition

because participants cannot re-read the text after it has been masked.

5.2.1. Method

5.2.1.1. Participants.

Forty-eight Bournemouth University students participated for course credit or a
payment of £10 (29 female). Their mean age was 20.6 years (SD= 2.4 years; range: 18-32

years). One more participant was tested, but their data were excluded due to tracking
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problems. All participants were native speakers of British English who reported normal or
corrected-to-normal vision, normal hearing and no prior diagnosis of reading disorders.
None of them had participated in any of the previous experiments. All participants were
naive as to the purpose of the experiment. Ethical approval of the study was obtained from
the Bournemouth University Research Ethics Committee (protocol No. 14005). The study
had the same statistical power as the one in Chapter 4 and was therefore sufficiently

powered.

5.2.1.2. Materials and design.

The reading materials consisted of the same paragraphs that were used in Chapter 4
and also in Experiment 1 of the present Chapter. The question difficulty manipulation was
also the same as these two studies. The English speech was taken from the BKB (Bench et
al., 1979) and IHR (MacLeod & Summerfield, 1990) corpora. Twelve 60 s speech files were
created by concatenating between 40 to 42 unique speech sentences each and removing the
silence gaps between sentences. Half of the sound files contained speech spoken by a male
British English speaker and the remaining half contained speech spoken by a female British
English speaker.

There were two reading conditions in the experiment: normal text (i.e., with no visual
changes on the screen) and trailing mask text. In the trailing mask condition, each word in
the text was permanently masked by a string of ‘x’s once participants made a saccade to the
right of that word (see Figure 19b for an illustration). The gaze-contingent masking
mechanism involved placing in invisible boundary (Rayner, 1975) at the first pixel after the
end of each word. Once a boundary was crossed, the word immediately before the boundary

was permanently masked with ‘x’s (see Schotter et al., 2014 for more details). The empty
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spaces between words were kept in the masked text, which helped preserve its general

outline. This type of masking was identical to the one used by Schotter et al. (2014).

Because Experiment 2 used paragraphs instead of single sentences, it was necessary
to extend Schotter et al.’s (2014) trailing mask manipulation for use in a multiple-line
reading paradigm. This was needed as the error in tracking the vertical position of the eye
can cause incorrect triggering of the display changes in the experiment. Pilot testing
indicated that the least obtrusive way to implement this was to add a gaze-contingent check
(a small square) at the end of each line that participants had to fixate to indicate they had
finished reading the current line. At the start of each trail, only the first line was visible.
Once the gaze-contingent check at the end of the first line was triggered, the square
immediately disappeared and the next line was automatically revealed **. This procedure was
then repeated until the whole paragraph had been presented (see Figure 19a for an
illustration of the method). To avoid delays associated with having to fixate exactly within
the square, the line check was triggered immediately after participants’ gaze moved to right
of the last word on the line (i.e., the square and the space around it simply acted as a

catchment area).

15 To ensure that the trailing mask is accurately triggered on the next line, the display changes started when
participants made a rightwards (i.e., progressive) saccade to a new word. This was necessary as the return
sweep saccade from the end of the previous line to the beginning of the next line can sometimes undershoot
the line start, which may be followed by a corrective saccade to the left (Andriessen & de Voogd, 1973;
Hofmeister, Heller, & Radach, 1999; Rayner, 1998). Such undershoot fixations are generally not thought to be
related to text processing (Abrams & Zuber, 1972) and are much shorter than the average fixation during
reading. In Experiment 2, participants made a corrective saccade to the left that landed on a previous word on
41.1% of all line crosses. The average duration of the undershoot fixation was 110 ms (SD= 59 ms). The
advantage of allowing readers to make a return sweep to the next line was that it kept the reading process
more natural. This approach was preferred because a pilot study in which participants had to fixate a gaze box
at the start of each new line was found to be too disruptive to the reading process due to the delays in
triggering the gaze boxes.
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The text stimuli were presented in this way in all trials in order to keep the reading
conditions constant throughout the experiment. Similar to Experiment 1 and Chapter 4, the
background sound and question difficulty conditions were presented in separate blocks. The
order of items within each block was randomised. Similar to Schotter et al.’s (2014)
experiment, the normal text and trailing mask text trials were intermixed within blocks, but
participants received a cue before the start of each trial that told them what type of text they
will be reading. In the present study, a black gaze box at the start of each trial indicated that
participants will be reading normal text, whereas a blue gaze box indicated that they will be
reading the trailing mask text. All blocks and conditions were counter-balanced with a full

Latin square design across participants.

5.2.1.3. Apparatus.

Participants’ eye-movements were recorded with an Eyelink 1000 at a sampling
frequency of 1000 Hz. The resolution noise was < 0.01° and the velocity noise was < 0.5° on
average. Viewing was binocular, but only the right eye was recorded. The head was
stabilized with a chin-and-forehead rest to reduce artefacts related to head movements. The
experiment was programmed in Matlab 2014a (MathWorks, 2014) by using the
Psychophysics toolbox (Brainard, 1997; Pelli, 1997) and Eyelink libraries (Cornelissen,

Peters, & Palmer, 2002).

The experiment was run on a PC with a Microsoft Windows XP operating system.
The paragraphs were presented on a 20-inch Mitsubishi Diamond Pro 2070 monitor with a
screen resolution of 1024 x 768 and a refresh rate of 150 Hz. The text was displayed with the
same dimensions and spatial layout as in Chapter 4. The only exception was that some of the

lines were made shorter to make enough space for the fixation check at the end of each line.
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The fixation check was a 16 x 16-pixel black square that was situated 3 letter spaces (33
pixels) to the right of the last word on the line. All paragraphs fitted on a single screen. The
display changes in the experiment were completed on average within 9.12 ms of the eye

moving to the right of each individual word (SD= 1.98 ms).
5.2.1.4. Procedure.

Participants were tested individually in a session that lasted for about 40-45 minutes.
Participants were instructed to ignore the background speech and to focus on reading the
paragraphs. They were also instructed that the paragraph will be revealed line by line and
that they will need to fixate a small square at the end of each line to reveal the next line.
Furthermore, participants were informed that the words in some paragraphs will be masked
by ‘x’s after they have read them, but that they should try to read the text as normally as
possible. They were also told that the colour of the gaze box before each paragraph will

indicate what type of text they will be reading.
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Figure 19. An illustration of the text stimuli presentation in Chapter 5, Experiment 2. Panel
a shows a schematic representation of the line-by-line text presentation (with horizontal lines
representing the text). At the start of each trial, only the first line was visible. Participants
then revealed each new line of text by fixating a small black square at the end of each line
until the whole paragraph was revealed. Panel b shows an example of the trailing mask
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reading condition. Words were permanently masked by a string of ‘x’s once the eye moved
to the right of each word.

Before the start of the experiment, participants were calibrated on a 9-point
calibration grid. The calibration was then monitored with a drift check before the start of
each trial. The calibration error was kept at < 0.4°. The beeps during calibration and drift
check were turned off. Each question difficulty block started with two practice trials. One
practice trial was displayed in the normal text condition, while the other one was displayed
in the trailing mask condition. All trials started with a gaze box (black in the normal text
condition and blue in the trailing mask condition) that was centered at the location of the
first letter on the first line. Once the gaze box was fixated for 100 ms, it disappeared and the
text was immediately displayed on the screen. The onset of the sound in the English speech
condition was simultaneous with the appearance of the text stimuli. Participants clicked the
left button of the mouse to indicate that they had finished reading the paragraph and also to
choose the correct answer to the comprehension questions. Termination of the trial was
possible only after all lines of the text had been revealed. Similar to Experiment 1 and
Chapter 4, there was a 60 s trial timeout for both the paragraphs and the comprehension

questions.

5.2.1.5. Data analysis.

The experiment had a 2 (background sound: English speech vs silence) x 2 (reading
condition: trailing mask text vs normal text) x 2(comprehension question difficulty: easy vs
difficult) within-subject design. The same measures of global reading from Chapter 4 were
analysed: paragraph reading time, number of first- and second-pass fixations, intra-sentence,

inter-sentence regression probability, saccade length, and saccade landing position.
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Additionally, FFD, GD, and TVT were calculated for each word in the paragraph and were
analysed as local word-level reading measures. The data were analysed with (G)LMMs by
using the Ime4 package v. 1.1-12 (Bates et al., 2014) in R v. 3.30 (R Core Team, 2016).
Fixation durations were log-transformed in all analyses. Sum contrast coding was used for
all three independent variables: background sound (Silence: -1; English: 1), reading
condition (trailing mask: -1; normal text: 1), comprehension question difficulty (easy: -1;
difficult: 1). Participants and items were added as random intercepts in all analyses (Baayen
et al., 2008). Background sound, reading condition, and question difficulty were added as
random slopes for participants and items in all analyses (Barr et al., 2013). Similar to
Experiment 1, the only exception to this rule was that comprehension accuracy was analysed
with two separate models for participants (b1) and items (b2). For consistency purposes, p-
values are reported for all analyses (calculated with the ImerTest package v.2.0-33;
Kuznetsova et al., 2017). The results were considered statistically significant if the p-values
were < 0.05.
5.2.2. Results

Similar to Chapter 4, fixation were manually pre-processed with the EyeDoctor
software (Stracuzzi & Kinsey, 2009) to re-align their vertical position if necessary and to
remove blinks from the data (4.47 % of all fixations). Fixations shorter than 80 ms that
occurred within one character of another fixation were combined with that fixation. All other
fixations smaller than 80 ms were excluded from the data (2.4 %). Additionally, any
fixations longer than 1000 ms were excluded as outliers (0.29 %). In the analysis of word-
level reading measures, words with FFD longer than 1000 ms, GD longer than 2200 ms, and

TVT longer than 3000 ms were excluded from the data (0.22 % of observations). There were
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no significant differences in the number of observations excluded per condition (all ps >

0.11).

5.2.2.1. Comprehension accuracy.

The descriptive statistics for comprehension accuracy in Experiment 2 are presented
in Figure 20. The LMM analysis indicated a main effect of question difficulty (b1=-0.086,
SE=0.01, t= -5.62, p< 0.001; b>=-0.06, SE= 0.01, t=-4.97, p< 0.001; d=-1.67), which was
due to comprehension being significantly lower on the difficult compared to the easy
questions. Additionally, there was a main effect of background sound (b1= 0.02, SE= 0.01, t=
2.24, p=0.03; bo=0.02, SE=0.01, t= 2.08, p= 0.04; d= 0.33), which shows that accuracy was
significantly lower in the English speech compared to the silence condition. Furthermore, the
main effect of reading condition was also significant (b= 0.03, SE= 0.01, t= 3.57, p= 0.001;
bo=0.03, SE=0.01, t= 3.15, p=0.002; d= 0.49), which was due to comprehension being
lower in the trailing mask compared to the normal reading condition. In line with the
distraction re-reading hypothesis, there was a significant interaction between background
sound and reading condition (b:=-0.03, SE=0.01, t=-3.67, p< 0.001; b.=-0.03, SE= 0.01,
t=-3.16, p= 0.002). This was due to accuracy being lower in English speech compared to
Silence, but only in the trailing mask (d=-0.65) and not in the normal reading condition (d=

0.12).
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Figure 20. Mean comprehension accuracy above chance level in Experiment 2, Chapter 5.
Shading indicates the standard error.

Bayes factor regression analyses (Morey et al., 2015; Rouder & Morey, 2012) also
supported the alternative hypothesis that there is an interaction between background sound
and reading condition (subjects: BF=11.43; items: BF=9.40). There was strong evidence in
support of the alternative hypothesis that comprehension accuracy is disrupted by English
speech in the trailing mask condition (subjects: BF= 27.81; items: BF=13.70). Conversely,
the null hypothesis of no difference in comprehension accuracy between English speech and
Silence was supported for the normal reading condition (subjects: BF= 0.13; items: BF=
0.18). Consistent with the LMM analysis, the null hypothesis of no interaction between
background sound and question difficulty was supported (subjects: BF=0.11; items: BF=
0.14). Sensitivity analyses using a range of realistic priors indicated that the results were not
influenced by the chosen prior distribution (r=v2/2; see Appendix G). In summary, both the

Bayes factor and LMM analyses were in line with the distraction re-reading hypothesis,
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which predicted that comprehension accuracy would be disrupted by English speech only
when participants cannot selectively re-read the previous text. The magnitude of the
disruption in comprehension accuracy was not modulated by whether participants were

answering easy or difficult questions.
5.2.2.2. Global reading measures.

The descriptive statistics for global reading measures are presented in Table 12 and
Table 13, and the results from (G)LMMs are presented in Table 14 and Table 15. English
speech resulted in significantly longer paragraph reading time (d= 0.24), greater intra-
sentence regression probability (d= 0.21), and more second-pass fixations (d= 0.04)
compared to Silence. Additionally, saccades landed further away from the beginning of the
word when participants were answering difficult compared to easy questions (d= 0.03).
Furthermore, the trailing mask condition resulted in significantly shorter paragraph reading
time (d= 0.50), smaller intra-sentence (d=0.19) and inter-sentence (d= 0.16) regression
probability, fewer first-pass (d=0.11) and second-pass (d= 0.18) fixations, and saccades that
landed further away from the beginning of the word (d= 0.03) compared to the normal

reading condition.

There was a statistically significant interaction between background sound and
question difficulty for inter-sentence regression probability. This was due to participants
making fewer inter-sentence regressions in English speech compared to Silence, but only
when they were answering difficult comprehension questions (d=-0.02). Additionally,
background sound interacted significantly with reading condition for paragraph reading time,
intra-sentence regression probability, number of second-pass fixations, and saccade length.

The interaction was due to participants taking longer to read the paragraphs (d=0.27),
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making more intra-sentence regressions (d= 0.09), more second-pass fixations (d= 0.08), and
having shorter saccade length (d=-0.03) in the English speech compared to the Silence
condition, but only when reading was normal and not when the text had a trailing mask.
Therefore, the interactions replicate the results from Chapter 4 by showing that English
speech disrupts these measures under normal reading conditions (i.e., without any visual

masking).

Paraaraoh Intra- Inter- Number of
Sound  Reading reagling sentence sentence fixations (per word)
condition condition .. . regression  regression
time (in s) g g 1%-pass  2"-pass Total

probability probability

Easy questions

Silence  normal  28(8.3)  .25(43) .08(27) .80(.8) .27(.66) 1.07 (1.02)

Silence  mask  25.3(6.5) .20(40)  .05(21) .73(75) .18(59) .91 (.94)
English normal  29.8(9.9) .30(46) .08(28) .80(82) .34(86) 1.14(L.19)

English  mask  255(6.9) .19(39) .05(22) .73(83) .17(76) .90 (1.17)

Difficult questions

Silence  normal  28.4(7.7) .26 (.44) J10(30) .81(.82) .29(.81) 1.10(1.14)
Silence mask 25.1 (6) .20 (.40) 05(.22) .72(78) .18(.69) .90 (1.06)
English ~ normal  31.5(9.2) .30 (.46) 09(29) .82(.83) .35(.78) 1.17(1.16)
English mask 25.8(8.1) .20 (.40) .04 (21) .71(76) .18(.61) .89(.96)

Table 12. Mean descriptive statistics of global reading measures in Chapter 5, Experiment 2
(SDs in parenthesis).
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sound  Reading - gestion Saccade Landing position
" conditio e length (in .
condition difficulty (in characters)
characters)
Silence normal easy 9.08 (6.94) 2.66 (2.37)
Silence mask easy 8.88 (6.32) 2.72 (2.39)
English normal easy 8.96 (6.60) 2.69 (2.33)
English mask easy 8.78 (6.45) 2.74 (2.38)
Silence normal difficult 9.16 (6.48) 2.71 (2.34)
Silence mask difficult 8.82 (6.21) 2.85 (2.42)
English normal difficult 8.88 (6.53) 2.75 (2.38)
English mask difficult 8.90 (6.58) 2.80 (2.38)

Table 13. Mean saccade length and landing position in Chapter 5, Experiment 2 (SDs in
parenthesis).

Finally, question difficulty also interacted significantly with reading condition for
paragraph reading time, inter-sentence regression probability, and number of first-pass
fixations. This was due to longer paragraph reading times (d= 0.12), greater inter-sentence
regression probability (d= 0.05), and more first-pass fixations (d= 0.02) when participants
were answering difficult, as opposed to easy questions, but only when reading was normal
and not when the text was presented with a trailing mask. This also replicates the question
difficulty effects from Chapter 4 by showing that answering difficult comprehension
questions leads to a change in reading behaviour that is characterized by more fixations and

more regressions to pI'EViOUS sentences.
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Paragraph reading time Saccade length Intra-sentence regression

Effect probability

b SE t p b SE t p b SE z p
Intercept 102 .03 309.7 <001 9.09 .19 479 <001 -137 .09 -159 <001
Sound .02 .006 3.40 .002 -.03 .05 -71 A7 .05 .02 2.54 .01
Diff 01 008 139 017 .002 .05 .03 97 .03 02 153 12
RC .07 .01 6.10 <.001 .05 .07 .78 43 24 .03 8.47 <.001
Sound: Diff .006 .004 144 A5 .006 .02 .28 a7 .01 .008 1.52 A2
Sound: RC .02 .004 416 <001 -05 02 -243 .01 .06 008 751 <.001
Diff: RC .01 .004 247 .01 -01 .02 -48 .63 .001 .008 14 .88

Sound: Diff: RC  .004 .004 92 .36 -.04 02 -1.79 .07 -01 .008 -1.57 A1

Inter-sentence regression

Efect orobability® Number of 1%-pass fixations Number of 2"-pass fixations
b SE z p b SE z p b SE z p
Intercept -288 .08 -385 <001 -28 02 -120 <001 -166 .09 -190 <.001
Sound -05 .04 -115 .25 -001 .005 -15 .88 .06 .02 2.56 .01
Diff .05 .04 1.29 A9 .001 .006 .26 .79 .03 .02 1.58 A1
RC .23 .05 482 <.001 .06 009 6.03 <001 29 .03 9.76 <001
Sound: Diff -05 .01 -345 .001 <.001 .004 -.09 .92 .005 .007 .68 49
Sound: RC -01 .01 -.68 49 .002 .004 44 .65 .06 .007 8.72 <001
Diff: RC .04 .01 2.87 .004 .01 004 282 .005 .01 .007 1.53 A2

Sound: Diff: RC  -01 .01 -92 .35 005 .004 1.30 19 -007 .007 -1.12 .26

Table 14. Results from (G)LMMs for global reading measures in Chapter 5, Experiment 2.
Sound: background sound. Sound: background sound. Diff: question difficulty. RC: reading
condition. Statistically significant p-values are formatted in bold.

! Reading condition was removed as a random slope for items due to convergence failure.
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Saccade landing position

Effect

b SE t p
Intercept 2.74 .05 54.2 <.001
Sound .006 .01 .60 54
Diff .04 .02 2.56 .01
RC -.04 .01 -3.11 .004
Sound: Diff -004  .007 -49 .62
Sound: RC .008 .007 1.14 .25
Diff: RC -.01 .007 -1.47 14
Sound: Diff: RC .01 .007 1.31 19

Table 15. Results from LMMs for saccade landing position in Chapter 5, Experiment 2.
Sound: background sound. Sound: background sound. Diff: question difficulty. RC: reading
condition. Statistically significant p-values are formatted in bold.

5.2.2.3. Word-level reading measures.

The descriptive statistics for word-level reading measures are displayed in Figure 21
and the LMM results are shown in Table 16. Consistent with the findings from Chapter 4,
English speech resulted in significantly longer fixation duration for all three local reading
measures compared to Silence (FFD: d= 0.04; GD: d= 0.04; TVT: d= 0.06). The reading
condition also affected fixation durations: the trailing mask resulted in significantly longer
FFD (d=-0.05) and GD (d=-0.08) compared to the normal reading condition. This suggests
that reading the text with a trailing mask prolonged the first-pass fixation time on words.
Conversely, the trailing mask condition resulted in significantly shorter TVT (d= 0.08)
compared to the normal reading condition. This last effect was in the opposite direction
because participants made fewer second-pass fixations in the trailing mask condition (which
count towards TVT), presumably because the masked text did not provide any useful

information and participants developed the strategy of avoiding it.
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Figure 21. Mean descriptive statistics of local word-level reading measures in Chapter 5,
Experiment 2. FFD: first fixation duration. GD: gaze duration. TVT: total viewing time.

Shading indicates the standard error.

Background sound interacted significantly with reading condition for TVT, but not

for FFD or GD. This was due to TVT being longer in the English speech condition compared

to Silence (d=0.10), but only when reading type was normal and not in the trailing mask

condition. This replicates the result from Chapter 4 where TVT was also disrupted by

English speech under normal reading conditions. Additionally, there was a significant two-

way interaction between question difficulty and reading condition for both FFD and TVT.

This also replicates the results from Chapter 4 by showing that FFD (d= 0.05) and TVT (d=

0.04) were longer when participants were answering difficult compared to easy questions,

but only in the normal reading condition (which was equivalent to the reading mode in




Chapter 4). Finally, there was a significant three-way interaction for GD between

background sound, question difficulty and reading condition. This was due to GD being
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longer in English speech compared to silence for all conditions, except in the trailing mask

condition when the comprehension questions were difficult.

FFD GD TVT
Effect

SE t p b SE t p b SE t p
Intercept 536 0.01 369.7 <001 548 02 3242 <001 561 .02 2708 <.001
Sound .006 .003 2.27 .03 .009 .003 2.68 01 .02 .004 3.62 .001
Diff .005 .003 198 .054 .006 .003 1.76 .08 .009 .005 1.97 .055
RC -.01 .004 -38 <001 -.01 .004 -338 .002 .03 .007 436 <001
Sound: Diff .001 .002 .68 49  <-001 .002 -.006 99 .001 .002 34 73
Sound: RC .001 .002 75 45 .001 .002 49 .61 .01 .002 522 <001
Diff: RC .003 .002 2.27 .02 .003 .002 1.40 16 .005 .002 2.55 .01
Sound: Diff: RC  .001 .002 47 .63 .004 002 1.97 .049 .003 .002 1.55 A2

Table 16. Results from LMMs for local word-level reading measures in Experiment 2,
Chapter 5. Sound: background sound. Diff: question difficulty. RC: reading condition.

Statistically significant p-values are formatted in bold.

5.2.3. Discussion

Experiment 2 tested the distraction re-reading hypothesis, which predicted that

intelligible speech will have a negative effect on the immediate comprehension of short

paragraphs only when participants cannot go back to selectively re-read the text. The results

provided support for this hypothesis because comprehension accuracy was significantly

disrupted when re-reading of previous words was prevented in the trailing mask condition,

but no such disruption was observed in the normal reading condition. At the same time,

English speech resulted in a significant disruption of second-pass measures during normal
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reading, thus replicating the results from Chapter 4. Therefore, the present results provide
direct empirical evidence that the increase in re-reading behaviour when listening to
intelligible speech is related to maintaining an accurate comprehension of the paragraphs. As
there were no significant interactions with the question difficulty condition, it appears that
the disruption in comprehension occurs regardless of whether participants are answering
easy or difficult questions. This is consistent with the results from Experiment 1 in this
Chapter. The lack of an effect in inter-sentence regression probability also replicates the
finding from Chapter 4 that intelligible speech does not seem to affect the integration of
meaning across sentences. Finally, Experiment 2 also replicated the question difficulty effect
on eye-movement measures from Chapter 4, which showed that participants made more
fixations, more regressions to previous sentences and had longer TVT when answering

difficult compared to easy questions.

While Experiment 2 replicated the main findings from Chapter 4, there may be a few
apparent inconsistencies regarding the measures in which the effects were found. Before
considering them, it is important to note that a direct replication of the intelligible speech
and question difficulty effects from Chapter 4 can be shown in this experiment by a
significant two-way interaction between each of the two factors and reading condition. This
is because only the conditions with normal text presentation (and not the trailing mask one)
corresponded to the reading conditions from Chapter 4. On the other hand, a main effect of
background sound or question difficulty shows that the respective effect was observed in
both the normal and the trailing mask condition. This would still be consistent with the
findings from Chapter 4, but it would suggest that the effect is not limited only to normal

reading.
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The effect of intelligible speech in Experiment 2 was observed in the same dependent
variables as in Chapter 4, apart from saccade length, which did not differ between the
English and silence condition in Chapter 4. Nevertheless the difference in Chapter 4 was still
in the expected direction and English speech also differed significantly from both Mandarin
speech and Noise in that experiment. Additionally, while there was no interaction between
background sound and reading condition for FFD and GD in the present experiment, the
main effect of background sound was significant for both variables. This is still consistent
with the results from Chapter 4 because it suggests that first-pass fixation durations generally
increased in the English speech condition regardless of whether the text was normal or had a
trailing mask. This is not surprising because the trailing mask manipulation had no effect on
the first-pass fixations of words. Therefore, first-pass fixation durations generally increased
in the presence of intelligible speech regardless of the reading condition. Finally, the only
inconsistent finding with respect to question difficulty was that this effect was not found in
the number of second-pass fixations. However, while not significant, the mean difference

was still in the expected direction.

In summary, Experiment 2 found evidence that regressions and re-reading fixations
allow readers to maintain the immediate comprehension of short paragraphs when listening
to intelligible speech in the background. This suggests that readers use regressive eye-
movements to resolve temporary comprehension difficulties that arise from semantic
interference due to the irrelevant speech sound (see Marsh et al., 2008, 2009). While the
present results demonstrate the link between regressive saccades and immediate text
comprehension when reading under distracting conditions, they do not exclude the

possibility that comprehension may still be negatively affected even if selective re-reading of
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the text is possible. Clearly, there is nothing that prevents readers from making regressions
to previous words and sentences in everyday life situations. Additionally, re-reading has also
been possible in previous studies that have shown disruption in comprehension accuracy by
intelligible speech (e.g., Baker & Madell, 1965; Martin et al., 1988; Sorqvist, Halin, et al.,
2010). This is not necessarily inconsistent with the present results, because they only show
that readers can maintain the immediate comprehension of short paragraphs that are fairly
easy to understand for skilled readers. For example, it is possible that the strategy of
selectively re-reading the previous text may not be enough to compensate for semantic
disruption when readers are processing longer and more complex texts (e.g., university level
textbooks). Furthermore, background speech may also disrupt only long-term text
comprehension, which could explain why comprehension has been disrupted in the above
studies since they have generally used longer texts with greater delay between reading and
the comprehension assessment. These are all possibilities that need to be explored in future

research.

5.3. General Discussion
The present research investigated the role of regressive eye-movements on reading
comprehension when listening to distracting intelligible speech in the background. This was
the first attempt to directly examine how the disruption observed in eye-movement measures
is related to participants’ comprehension of the text. This is an important theoretical question
as not all studies have found such disruption in measures of comprehension (see Chapters 1
and 3), but the disruption has been consistently observed in measures of second-pass reading
(Chapters 3-4; Cauchard et al., 2012; Hyona & Ekholm, 2016, Experiments 2-4; Yan et al.,

2017). The present experiments found evidence that regressions support comprehension
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when listening to distracting irrelevant speech and that they allow readers to overcome the
experienced distraction and still maintain an accurate comprehension of the text. Therefore,
this is one potential explanation of why intelligible speech consistently disrupts measures of
second-pass reading, but this does not necessarily translate into a decrease in comprehension
accuracy. If readers can compensate for the additional processing difficulty by making more
regressive saccades and more re-reading fixations, such a disruption in comprehension may

not occur.

Traditionally, the role of regressive eye-movements during reading has remained
elusive because regressions are not typically under the experimenter’s control. Rayner
(1998) recognised this problem in his classical review of the literature by noting that our
understanding of regressions is limited by the fact that they cannot be induced
experimentally in any easy way. Because of this, most of the evidence showing a link
between regressions and online comprehension processes comes from studies that have
manipulated certain properties of the text and then investigated how this affects regressive
eye-movements (e.g., Blanchard & Iran-Nejad, 1987; Frazier & Rayner, 1982; Hyonéa, 1995;
Meseguer et al., 2002; Rayner et al., 2006). Recent studies have adopted a more direct
approach by controlling what participants see when they make a regression and then
studying how this affects comprehension processes (e.g., Booth & Weger, 2013; Inhoff &

Weger, 2005; Schotter et al., 2014).

The present research builds upon these findings by showing that readers make use of
regressions to overcome semantic distraction when their attentional resources are overtaxed
by the irrelevant speech sound that causes a temporary difficulty in processing the meaning

of the text (see Marsh et al., 2008, 2009). Therefore, the present findings are instrumental in
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demonstrating that regressions are triggered not only by comprehension difficulties caused
by properties of the text itself (e.g., Frazier & Rayner, 1982; Meseguer et al., 2002; Rayner
et al., 2006), but also by external auditory stimulation that is not relevant to the text in any
way. In this sense, one function of regressions is likely to temporarily stop progressive
reading behaviour and to re-direct the eyes to any immediate problems with the semantic
processing of the text before readers can continue exploring the unread text. Because of this,
the present research provides further evidence that regressions are a key component of the
reading process and are necessary for achieving an accurate comprehension of the text

(Schotter et al., 2014).

Of course, maintaining an accurate comprehension of the text is not the only purpose
of regressions. For example, it has been argued that the majority of regressions during
reading do not occur because of problems with comprehension, but rather due to oculomotor
error or word identification problems (Vitu, 2005; Vitu & McConkie, 2000). Such regressive
saccades are very short and are often assumed to land on the previous word in the sentence
(Bicknell & Levy, 2011; Inhoff, Greenberg, Solomon, & Wang, 2009; Vitu, 2005). While
this may be the norm for silent reading, the results from Chapters 3-4 clearly demonstrate
that the frequency of regressive saccades due to comprehension difficulties can increase in
different auditory environments. Intelligible speech in particular appears to put strain on
online comprehension processes because it interferes with the semantic processing of the

text and leads to an increase in the frequency of regressive saccades.

It is not likely that the increase in regressions and re-reading fixations by intelligible
speech is due to word identification problems or oculomotor error for two reasons. First,

Chapter 3 showed that intelligible speech did not disrupt the lexical processing of words. As
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word frequency and predictability are the two key variables that are theorised to influence
word recognition times (e.g., Engbert et al., 2005; Reichle et al., 1998), this shows that
intelligible speech disrupts the reading process only after word identification has been
completed®e. Additionally, intelligible speech did not affect saccade landing profiles in any
of the three eye-tracking experiments, which also argues against an explanation based on

systematic oculomotor error.

Traditionally, regressions have not played an important role in computational models
of eye-movement control because such models have mostly been concerned with progressive
reading behaviour (Vitu, 2005). For example, early versions of the E-Z Reader model
(Pollatsek, Reichle, & Rayner, 2006; Reichle et al., 1998, 2003) have assumed that
regressions to previous words occur when higher-level linguistic or comprehension
processes are disrupted. Therefore, by modelling eye-movements only when such processes
are running smoothly (Reichle et al., 2003), these models have avoided the problem of
having to simulate regressions to previous words. Nevertheless, a more recent version of the
E-Z Reader model (Reichle et al., 2009) has made a step in this direction by adding a post-
lexical integration stage that can be used to simulate the effects of higher-level language
processing. In this framework, the integration stage reflects the time needed to integrate the
currently fixated word into the higher-level linguistic representation of the text. If this
integration fails, the model can initiate a regression to the previous word in the sentence with

a certain probability.

16 In Chapter 3, word predictability was controlled for when examining the effect of intelligible speech on
lexical processing of words.
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In the SWIFT model (Engbert et al., 2002, 2005), regressive saccades to previous
words occur due to incomplete word recognition and are a natural consequence of the target
selection mechanism of the model. Because the probability of selecting a word as the next
saccadic target is a function of its lexical activation, any word with a non-zero activation can
be selected as a target for a regressive saccade (Engbert et al., 2002). As noted by Vitu
(2005), the line of text in this model can be thought of as a saliency map where the saliency
of each word is a function of its lexical activation. Therefore, the eyes will be drawn towards
the word with the highest saliency at a given point in time. Interestingly, in their model,
Engbert et al. (2002) distinguished between “local” regressions that are executed to words
within the attentional window and “global” regressions that can occur at any point in time if
a word has not been fully processed prior to its leaving the attentional window. Nevertheless,

by definition, either type of regression can only occur due to incomplete word recognition.

Clearly, neither SWIFT nor the E-Z Reader in their current implementation can
account for regressive saccades due comprehension difficulties that arise from listening to
intelligible speech. Arguably, such effects may be easier to implement in the E-Z Reader
framework due to the added post-lexical integration stage (Reichle et al., 2009). However, in
their simulations, Reichle et al. adopted the simplifying assumption that the integration
failure can only result in regressions to the previous word in the sentence. Such an
assumption would be questionable in the context of auditory distraction by intelligible
speech, given that the increase in re-reading fixations in Chapter 3 was found to occur not
only on the immediately preceding word, but also on the previous 3-4 words before that.

Additionally, modelling the increase in regressions by intelligible speech would require a



168

deeper theory about the exact nature of the online comprehension difficulty, which cannot be

constructed based on the present data alone.

Modelling the effect in SWIFT may prove to be more challenging, as this would
require a new mechanism that can explain regressions not only due to word identification
problems, but also due to comprehension difficulties. This may require the introduction of a
second (independent) criterion for saccade targeting that can be influenced by online
comprehension difficulties. For example, a new assumption could be added to the model that
saccades can be targeted not only to words that have accrued lexical activation, but also to
words that have already been lexically identified and have later accrued “comprehension
difficulty” activation in a manner predicted by the theory. In this way, SWIFT could
potentially retain its ability to explain saccade targeting decisions based on lexical activation,
while also making it possible to simulate regressive eye-movements in response to semantic
interference and online comprehension difficulties. In summary, studying the role of
regressions in auditory distraction can help us improve our understanding of their function in

the reading process and how they can be implemented in computational models of reading.

5.3.1. Methodological Challenges in Preventing Re-reading

The research presented in this Chapter also raises the question of what
methodological approach is most suitable for preventing regressions when studying the role
of re-reading fixations in auditory distraction. Clearly, both methodologies that were
employed in the present research (RSVP and gaze-contingent masking) come with their
unique set of advantages and disadvantages. Because re-reading fixations appear to be an

important marker of auditory distraction by intelligible speech, it is perhaps useful to briefly
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consider how the strengths and weaknesses of the different paradigms may influence the

results from such studies.

Schotter et al.’s (2014) trailing mask paradigm is very useful because it prevents the
acquisition of any useful information during regressions while still keeping the reading
conditions similar to natural reading. Of course, one technical limitation of this method is
that it is more difficult to apply to larger pieces of text that also require tracking the vertical
position of the eye. Due to the technical limitations of current eye-tracking systems, such
applications inevitably require some additional checks to ensure that the trailing mask is
accurately triggered in multiple-line experiments. Experiment 2 was one the first attempts to
extend the trailing mask paradigm by Schotter et al. (2014) to multiple-line reading. The
results suggested that this limitation can be overcome by adding gaze-contingent checks on
each line. As participants could quickly adapt to these additional checks and generally did
not report any difficulties with the reading task, this method could prove to be useful in
future research. It should be noted that Olkoniemi, Johander, and Kaakinen (2018) have also
recently used the trailing mask paradigm in a paragraph-reading study. However, in their
experiment the trailing mask was triggered at the sentence level and not word-by-word as in

the present research.

Another potential limitation that has not been thoroughly investigated until now is
whether the trailing mask in itself may alter first-pass reading behaviour in some way.
Although Schotter et al. (2014) considered this possibility in their original experiment, they
only reported results for gaze durations on a single target word in the sentence. This in turn
makes it difficult to assess how first-pass reading was affected more globally. To understand

why the trailing mask may potentially affect first-pass reading behaviour, it might be helpful
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to compare it to another manipulation that involves a similar type of visual masking- the
moving window paradigm (McConkie & Rayner, 1975; Rayner, 2014). In the moving
window paradigm, the text that falls outside a pre-defined “window” around the point of
gaze is visually masked by letters. This ensures that readers can process only the text that
falls within this window. Although both manipulations involve considerable masking of the
text, participants in the moving window paradigm still retain control over how they choose
to read the sentence and the words are only temporarily masked and can be revealed again
later on as long as they fall within the pre-defined gaze-contingent window. In contrast,
words are permanently masked in the trailing mask paradigm and participants arguably
become quickly aware of the fact that any saccade to the right will result in their permanent
inability to further process visually any of the preceding words. This in turn may influence
how participants approach the first-pass reading of the text and lead to changes in their

reading behaviour.

In fact, this is exactly what was found in Experiment 2: first-pass reading changed in
the trailing mask condition as participants made fewer but longer fixations compared to the
normal reading condition. This indicates that there was a shift in the reading strategy adopted
by participants, which may have occurred because they became more cautious in their first-
pass reading of the text as to avoid accidentally masking any words before they had fully
processed them. Given that any new fixation has the potential to unintentionally mask words
before participants are ready to move on to the unexplored text, it might be advantageous to
make fewer but longer fixations to minimise this risk while still allowing for enough time to

process the fixated words.
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Because Experiment 2 made critical predictions only with respect to second-pass
reading and comprehension accuracy, this change in first-pass reading behaviour does not
compromise the conclusions from this experiment. However, future studies using a similar
implementation of the trailing mask paradigm may need to take this into account if their
hypotheses also make predictions about first-pass reading. A similar change in first-pass
reading behaviour may not have necessarily occurred in Schotter et al.’s (2014) experiment
due to the shorter text stimuli that were used. Further research (or a re-analysis of their data)

is needed to test if this is the case.

RSVP presentation has the advantage that it is easy to implement and does not
require the use of expensive eye-tracking equipment. However, as it was already mentioned
in the Discussion section of Experiment 1, this method has some disadvantages, such as the
different spatial presentation of the text and the uniform forced-fixation time that is used for
all words. Nevertheless, it is worth mentioning that the RSVP technique could potentially be
modified to make it more similar to how readers normally process words. For example, it
would be possible to adjust the fixation time for each individual word based on its
psycholinguistic variables such as word frequency and word predictability, while still
maintaining the same overall reading speed of the text. Given that computational models of
eye-movement control can successfully simulate fixation durations based on these variables
(Engbert et al., 2002, 2005, Reichle et al., 1998, 2003, 2009; Schad & Engbert, 2012), it
seems likely that this may make the reading task more natural. In fact, there is some
evidence indicating that adjusting the exposure time of words based on their length or lexical
frequency can improve the readability of the text (Oquist & Lundin, 2007; Oquist, Sagvall-

Hein, Ygge, & Goldstein, 2004).
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When using an RSVVP mode of presentation, it is important to maintain reading speed
that is similar to that of normal reading. For example, in Experiment 1 this was achieved by
taking the average speed of readers on the same materials and from the same population, and
then adjusting it for the lack of parafoveal preview of the upcoming word (which would be
available under normal reading conditions). While the RSVP method of reading has often
been criticised on the grounds that it negatively affects text comprehension (e.g., Acklin &
Papesh, 2017; Benedetto et al., 2015; Rayner, Schotter, Masson, Potter, & Treiman, 2016),
this decrease in comprehension largely depends on the reading speed that is being used. It is
well known that comprehension during RSVP reading decreases as a function of increasing
reading speed (Juola, Ward, & McNamara, 1982; Masson, 1983; Ricciardi & Di Nocera,
2017), which demonstrates that there is a speed-accuracy trade-off in this mode of
presentation (Rayner et al., 2016). Therefore, when using RSVP to study auditory
distraction, it is important to use a reading speed that has been equated to normal reading for

the stimuli and participants under investigation.

Although not explicitly considered in this chapter, self-paced reading (e.g., Aaronson
& Scarborough, 1976; Jegerski, 2014; Mitchell & Green, 1978) is another method that could
be used to prevent regressions in a similar way to the RSVP presentation in Experiment 1. In
self-paced reading, the first word of the sentence is revealed on the screen and participants
press a button when they are ready to reveal the next word. This procedure is then repeated
until the whole sentence has been presented (Jegerski, 2014). Typically, there are two ways
in which the text can be displayed: 1) cumulative self-paced reading, in which previously-
read words remain visible for the whole duration of the trial; and 2) non-cumulative self-

paced reading, in which only the currently-read word is visible and all previous words are
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masked after they have been processed (Jegerski, 2014). The non-cumulative method
prevents re-reading behaviour in a similar way to the trailing mask paradigm as participants
cannot obtain any useful information from the masked words even if they are re-fixated later

on during a regression.

Self-paced reading and RSVP presentation are similar to one another in the sense that
both methods present new text one word at a time. However, in self-paced reading,
participants manually choose when to move on to the next word by pressing a button.
Because of this, they regain control over how long to fixate each individual word. In this
way, self-paced reading avoids the problem of using a uniform forced fixation time for each
word as in the RSVP mode of presentation. Additionally, it also allows the text to be
displayed spatially on different lines, which is typical for everyday reading. While this
method is very useful because it avoids some of the limitations of RSVP reading, it becomes
increasingly less feasible the longer the reading stimuli are. Because a manual response is
required on every word, presenting large pieces of text could potentially cause fatigue and
task disengagement due to the large number of motor responses that would be needed. For
example, even the passages from the present study (which were fairly short) would have
required a few thousand button presses. Therefore, this method of preventing regressions

would be less suitable when using large pieces of text, such as book chapters or long stories.

In summary, RSVP, self-paced reading, and Schotter et al.’s (2014) gaze-contingent
trailing mask are all methods that can be used to prevent re-reading behaviour when studying
auditory distraction. Since all of them have their own advantages and disadvantages, the
choice of method may depend on the type of research question and the reading stimuli. Self-

paced reading and the trailing mask paradigm would usually be the preferred methods of
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choice, particularly for text stimuli that are not excessively long. Additionally, depending on
the type of research question, the trailing mask paradigm may be preferable out of the two as
it provides richer data about fixation patterns during reading. Finally, RSVP presentation
may also be useful in some cases, but only if reading speed is kept as closely as possible to
normal reading, and if the spatial presentation of the text and the uniform forced fixation

time are not deemed to be of critical importance.

5.3.2. Conclusion

Previous studies have demonstrated that intelligible speech leads to an increase in re-
reading fixations but, until now, little was known about why this occurs. The present
research demonstrated that the increase in re-reading fixations occurs because participants
are actively trying to maintain comprehension of the text when reading under distracting
conditions. Once participants’ ability to selectively re-read the text was prevented, their
immediate comprehension was negatively affected. This suggests that regressions and re-
reading fixations play a key role in overcoming transient interference from the irrelevant
speech and allow readers to resolve any comprehension difficulties before resuming the

progressive reading of the text.
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CHAPTER 6: DISTRACTION BY DEVIANT SOUNDS DURING READING

Oddball studies have shown that task-irrelevant sounds that unexpectedly differ from
an otherwise structured or repeated sequence of sounds yield specific electrophysiological
responses and behavioural distraction in an unrelated task (Berti, 2008; Berti & Schroger,
2001, 2003; Horvath, Roeber, Bendixen, & Schrdger, 2008; Schriger, 1996). In the oddball
paradigm, an irrelevant sound is presented before the appearance of a target stimulus on the
screen. On most trials, the same sound is presented (standard), while on rare and
unpredictable occasions it is replaced by a different sound (deviant). The typical finding
from such studies is that deviant sounds delay responses in categorization tasks where
participants must respond to target stimuli while ignoring task-irrelevant sounds (Ljungberg
& Parmentier, 2012; Parmentier, 2014; Parmentier et al., 2008; Parmentier, Vasilev, &

Andrés, 2018).

Previous research has shown that deviant sounds are distracting not because of their
acoustic features per se, but rather because they violate the cognitive system’s predictions
(Bubic, von Cramon, Jacobsen, Schrdger, & Schubotz, 2009; Parmentier, Elsley, Andrés, &
Barceld, 2011). In fact, attentional distraction has been observed at the electrophysiological
and behavioural level for both small pitch differences and larger spectral differences between
the standard and the deviant sound (Parmentier et al., 2008; Schroger, 1996). Additionally,

there is abundant evidence showing that deviance distraction does not depend on the specific
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identity of the sounds: it occurs regardless of whether sound A (e.g., a sinewave tone) is used
as the standard and sound B (e.g., white noise) is used as the deviant, or vice versa (Leiva,
Parmentier, et al., 2015b). This latter finding has also been shown to generalise to the tactile

modality (Parmentier, Ljungberg, et al., 2011).

Interestingly, deviant sounds that convey meaning can also yield distraction because
they undergo some automatic semantic evaluation (Parmentier & Kefauver, 2015;
Parmentier, Pacheco-Unguetti, & Valero, 2018; Roye, Jacobsen, & Schroger, 2007;
Schroger et al., 2000). For example, the deviant sounds “left” and “right” affect response
times in a left/right arrow categorization task as a function of the relationship (congruent or
incongruent) between the deviant words’ meaning and the visual arrows (Parmentier, 2008;
Parmentier & Kefauver, 2015; Parmentier, Turner, & Elsley, 2011; Parmentier, Turner, &
Perez, 2014). In addition, the semantics of deviant sounds can be processed even when the
words’ meaning bears no connection to the primary task (Escera, Yago, Corral, Corbera, &
Nufiez, 2003). For example, participants performing a digit categorization task in a state of
hunger exhibit greater distraction by deviant words related to food compared to neutral
words (Parmentier, Pacheco-Unguetti, et al., 2018). It is also worth noting that some studies
have reported evidence for neural responses to the semantic content of unexpected sounds
even when participants are passively exposed to such sounds (Czigler, Cox, Gyimesi, &
Horvath, 2007; Frangos, Ritter, & Friedman, 2005; Friedman, Cycowicz, & Dziobek, 2003;
Roye et al., 2007; Shtyrov, Hauk, & Pulvermuller, 2004; Shtyrov & Pulvermuller, 2003).
Finally, deviance distraction can also be modulated by other factors, such as participants’
age. For example, deviant sounds cause greater behavioural distraction in old age under

certain conditions (Leiva, Andrés, & Parmentier, 2015; Leiva, Parmentier, & Andres,
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2015a), although this does not appear to reflect age-related differences in the

electrophysiological orienting response (Berti, VVossel, & Gamer, 2017).

The traditional explanation of deviance distraction is that it reflects an involuntary
switch of attention away from the main task that is caused by the detection of subtle auditory
changes in the human brain (Escera et al., 1998; Schroger, 1996). Therefore, deviant sounds
likely trigger a neural system for monitoring the external sensory input; once this input
exceeds a certain sensory threshold, attentional resources are obligatorily redirected towards
the deviant stimulus. In this sense, deviance distraction is typically viewed as an orienting
response (see Sokolov, 1963) that is characterized by a burst of arousal and a reflexive
orienting of attention towards the eliciting stimulus (Naatéanen, 1992). Deviant sounds are
associated with a specific neurophysiogical signature that is shown by three distinct ERP
components: 1) the early MMN component (N&aténen et al., 1978, 2007) that reflects the
pre-attentive detection auditory changes in the brain (Berti & Schrdger, 2001); 2) the P3a
component that reflects the involuntary orienting of attention towards the deviant sound
(Berti & Schroger, 2001; Escera et al., 2000), and 3) the RON component that reflects the

refocusing of attention back to the main task (Berti, 2008; Schroger & Wolff, 1998a).

Interestingly, while deviance distraction has typically been regarded as an example of
attentional distraction, recent work suggests that deviant sounds may also affect behaviour
by triggering a temporary inhibition of motor cortical areas (Wessel, 2017; Wessel & Aron,
2013). For example, Wessel and Aron (2013) reported an experiment in which a 200 ms
sound (either a standard or a novel one) was presented 300 ms before the appearance of a
target letter on the screen. Participants’ task in this study was to speak out the target letter

presented on each trial. Critically, however, Wessel and Aron also administered transcranial
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magnetic stimulation (TMS) on the right hand locus of the motor cortex at varying time
intervals after the onset of the sound (at 150, 175, or 200 ms). The effect of the TMS
stimulation was then measured with motor-evoked potentials on participants’ right hand
(which was not relevant to the naming task).Wessel and Aron (2013) observed reduced
corticospinal excitability of the hand following the presentation of novel sounds. This effect
was found only when the TMS stimulation was administered 150 ms after the onset of the
novel sound, but not in the later time intervals. Because corticospinal excitability of the hand
was unrelated to participants’ performance on the letter naming task, the authors argued that
novel sounds induce global motor inhibition by activating the same neural circuits that are
used for interrupting ongoing actions. A more recent study has extended this finding by
showing that the reduction in corticospinal excitability by unexpected novel sounds is
significantly and positively correlated (r= 0.45) with action-stopping behaviour in a Go/

NoGo task (Dutra, Waller, & Wessel, 2018).

Therefore, these recent results extend the traditional explanation of deviance
distraction as an orienting response by suggesting that unexpected sounds may also induce
global motor inhibition because they recruit the same neural circuits that are used to stop
ongoing action plans. The purpose of this global inhibition is thought to be the temporary
suspension of ongoing processes that may facilitate the effective and timely processing of
the unexpected stimulus (Wessel, 2017; Wessel & Aron, 2017). In this sense, the orienting
response and motor inhibition accounts are not necessarily mutually exclusive and both

could be a consequence of encountering unexpected sounds in the environment.

The potential role of motor inhibition in deviance distraction is exciting as it suggests

that deviant sounds may potentially affect a large range of activities, including those relying
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on relatively automatic motor processes. However, despite the potential impact of novelty
distraction on everyday life situations, these studies have used simple laboratory tasks that
bear little resemblance to more complex and ecologically-valid tasks. In the present study,
we sought to address this issue by exploring for the first time whether deviant sounds may
affect performance on one important and complex everyday task: reading. To do so, we
developed a new method to measure the effect of deviant sounds on eye-movements during

reading.

Reading is a theoretically interesting task for studying the effect of deviant sounds on
human performance because it does not require any specific response from participants upon
hearing the task-irrelevant sounds. Unlike categorization tasks where participants need to
make a dichotomous response after the presentation of the sound (e.g., judging whether a
number is odd or even; Parmentier et al., 2008), subjects simply have to read the text for
comprehension and ignore the task-irrelevant sounds. This makes it possible to investigate
how deviant sounds affect performance on a natural, everyday task that does not involve any
response preparation or the need to act upon a specific stimulus after the sound is presented.
Additionally, skilled adult reading is a fairly automatized process (LaBerge & Samuels,
1974), which involves the intricate coordination of oculomotor and cognitive processes that
determines when and where to move the eyes next. As a result, it can yield valuable insights

into how deviant sounds influence cognitive and oculomotor processes.

While the topic of auditory distraction during reading has a very long history, most
studies have only considered the influence of continuous auditory distractors (e.qg., irrelevant
speech or music) on behavioural measures such as comprehension accuracy (see Chapters 1-

2). However, recording participants’ eye-movements makes it possible to investigate how
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irrelevant sounds affect the moment-to-moment decision of when and where to move the
eyes next. Because eye-movements during reading are sensitive to the underlying cognitive
processing of the text (Rayner, 1998, 2009), this method has the potential to detect transient
auditory distraction effects that may not be captured by behavioural measures of

comprehension (see Chapters 3-5).

It is currently not known whether eye-movements during reading are sensitive to
discrete deviant sounds. However, recent work does indicate that they are affected by certain
types of continuous sounds. For example, background music or unintelligible speech in a
foreign language generally do not appear to affect fixation durations or fixation probabilities
during reading (Cauchard et al., 2012; Hyond & Ekholm, 2016; R. Johansson et al., 2012;
although see Zhang et al., 2018 for conflicting evidence). However, intelligible background
speech disrupts the ongoing reading process by prompting participants to make more re-
reading fixations on previously-read words (Cauchard et al., 2012; Hydna & Ekholm, 2016;
Yan et al., 2017). This latter finding is interesting because it suggests that certain task-
irrelevant sounds can have a direct influence on eye-movements and interfere with the

ongoing cognitive processing of the text.

While discrete deviant sounds could also potentially influence fixation durations
during reading, this is not expected to occur through the same mechanism that is responsible
for distraction by intelligible speech. The available evidence suggests that intelligible speech
causes distraction because readers process its semantic features, which in turn interferes with
extracting the meaning of the written text (e.g., Hyona & Ekholm, 2016; Martin, Wogalter,
& Forlano, 1988; see also Marsh, Hughes, & Jones, 2008, 2009). On the other hand, we

hypothesize that deviant sounds would cause distraction not because of semantic
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interference, but rather because they violate readers’ expectation that another standard sound
will be presented (Bubic et al., 2009; Parmentier, Elsley, et al., 2011). Therefore, the present
study builds upon previous work on distraction by continuous sounds by exploring a
different mechanism through which task-irrelevant sounds may influence eye-movements

during reading.

6.1. Present Study

The available evidence from both electrophysiological (e.g., Escera et al., 2000;
Schrdger, 1996) and behavioural studies (e.g., Dalton & Hughes, 2014; Parmentier, 2014)
has shown that task-irrelevant deviant sounds can distract participants from their main task.
The goal of the present study was to investigate whether fixation durations during reading
can also be influenced by discrete deviant sounds. To study deviance distraction during
reading, a new manipulation was developed in which the presentation of task-irrelevant
sounds was contingent on participants’ eye-movements. While participants read single
sentences for comprehension, short sounds were presented upon fixating five target words in
each sentence. On most occasions, the sound was a sine-wave tone (this served as the
standard sound), while on rare and unpredictable occasions this sound was replaced by a

short burst of white noise (this served as the deviant sound).

Only few studies to date have used gaze-contingent auditory presentation in a reading
task (Eiter & Inhoff, 2010; Inhoff, Connine, Eiter, Radach, & Heller, 2004; Inhoff, Connine,
& Radach, 2002). For example, Inhoff et al. (2004) presented a spoken word once
participants fixated a target word in the sentence. In their experiment, there were three types
of spoken words that participants heard: 1) identical to the target word; 2) phonologically

similar to the target word; and 3) phonologically dissimilar to the target word. To present the
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spoken word, Inhoff et al. (2004) utilized the gaze-contingent boundary paradigm (Rayner,
1975) that has been extensively used to study the perceptual span during reading (see
Rayner, 1998, 2009). In the classical boundary paradigm, a target word in the sentence (e.g.,
“couch”) is visually masked by a string of letters before participants directly fixate it (e.g.,
“couch” -> “xxxxx”). Once the gaze position of the eye crosses an invisible boundary
located just before the target word, the mask is replaced by the target word itself (“xxxxx”->
“couch”). Most of the time, this change happens during the saccade towards the target word
and it is not typically perceived by participants due to saccadic suppression (Schotter et al.,
2012; although, see Angele, Slattery, & Rayner, 2016; Slattery, Angele, & Rayner, 2011,

White, Rayner, & Liversedge, 2005).

By applying the same general method to the auditory modality, Inhoff et al. (2004)
presented the spoken word in their experiment once participants’ gaze position crossed the
invisible boundary located just before the target word. The present experiment utilized a
similar procedure in which an invisible boundary was inserted before each of the five target
words in the sentence. Once participants’ gaze crossed each of the five invisible boundaries,

the irrelevant sound was presented (i.e., either the standard or the deviant one).

If deviant sounds in this task elicit an orienting response (e.g., Escera et al., 1998;
Parmentier, 2014), this may happen either overtly or covertly. According to Posner (1980),
overt orienting occurs when there is an eye-movement directed towards the eliciting
stimulus. Conversely, covert orienting occurs when there is a shift of attention without any
corresponding eye-movements. If deviant sounds trigger an overt shift of attention, this
would manifest itself in shorter fixation durations after the presentation of the sound. This is

because the current fixation will be interrupted and the orienting response (i.e., the eye-



183

movement) will occur. However, because the deviant stimulus was in the auditory domain
and because it was not linked to a specific location on the screen, it is more likely that the
orienting response would occur covertly (i.e., without an eye-movement). In this case,
attention would be redirected away from processing the words in the sentence and towards
the deviant sound. This would be associated with an increase in fixation durations that could
be due to a disruption in the lexical processing of the target words or, if the orienting
response occurs later in time, the allocation of attention to other words in the sentence, or the
post-lexical stages of sentence integration. Similarly, if deviant sounds elicit global motor
inhibition (Wessel & Aron, 2013), this would also lead to longer fixation durations after the

presentation of the sound, which would likely be due to a delay in saccade programming.

On the basis of previous work suggesting that deviant sounds delay the processing of
target stimuli (Parmentier et al., 2008) and the notion that this might reflect the temporary
suppression of ongoing actions (Wessel & Aron, 2013), we hypothesized that the deviant
sounds would lead to an increase in fixation durations on the target words. Additionally, to
determine if any potential increase in fixation durations is due to a disruption in the initial
stages of lexical processing, we examined the time course of the effect and tested whether it

is modulated by the corpus lexical frequency of target words.

6.2. Method
6.2.1. Participants
Forty-eight students from Bournemouth University participated for course credit (45

female)’. Their average age was 19.7 years (SD= 2.4 years; range 18-32 years). All

17 Two more participants were tested, but they were excluded due to tracking problems.
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participants were native speakers of British English, reported normal or corrected-to-normal
vision, normal hearing and no prior diagnosis of reading disorders. Participants were naive
as to the purpose of the experiment. Ethical approval of the study was obtained from the

Bournemouth University Research Ethics Committee (protocol No. 16999).

Because no previous studies of deviance distraction during reading exist, it was not
feasible to conduct a formal statistical power analysis. However, the same number of
subjects was tested as in the previous experiments in this Thesis. Additionally, the present
experiment had more trials per sound condition compared to the sentence-reading

experiment from Chapter 3 (40 vs. 32 trials), which also helped improve statistical power.

6.2.2. Materials and Design

6.2.2.1. Reading stimuli.

The reading materials consisted of 120 English sentences (see Appendix H for a
complete list). Their average length was 14.3 words (range: 13-18 words). Each sentence
contained five target words on which the sound stimuli were played (we use the term
“target” to denote the words on which sounds were played, as opposed to the other words in
the sentence where no sounds were played). This is illustrated in Figure 22a. The five target
words were always the third, fifth, seventh, ninth, and eleventh word in the sentence. Their
mean length was 6.75 letters (SD= 1.89 letters; range: 3-13 letters). The average lexical
frequency of the target words was 180 counts per million in the SUBTLEX-UK database
(Van Heuven, Mandera, Keuleers, & Brysbaert, 2014; SD= 786; range: 0.06 — 15450 counts
per million). There was one non-target word between any two target words that served as a
buffer to increase the sound inter-stimulus interval. Additionally, there were always at least

two words following the last target word in the sentence in order to avoid artefacts due to



185

sentence wrap-up effects. Short function words that are likely to be skipped during first-pass

reading were not used as target words.

a
Target Target Target Target Target
Sentence start — -l il 9 word 4 word 5 Sentence end

Cathy was nervous about giving the short speech before the panel of judges.

Cathy wai nervous abouﬂ giving theishort speechibefore thefpanel of judges.

Figure 22. An illustration of the sound presentation in Chapter 6. Panel a shows an example
sentence and the position of the target words. Panel b illustrates the gaze-contingent sound
presentation. Once the eye moves to the right of each boundary, the sound is played. The
invisible boundaries are shown by vertical red lines.

Because the reading stimuli were specifically developed for this experiment and were
not part of a pre-existing corpus, a norming study was carried out to determine their
difficulty and naturalness. Twelve participants (9 female; mean age= 29.1 years) who did not
take part in the eye-tracking experiment were asked to read each sentence and rate it on a
scale from 1 to 10 based on how difficult and how natural they thought it was (1= very
difficult/ very unnatural; 10= very easy/ very natural). Participants were instructed that very
difficult sentences (1) are those that they cannot understand at all and that very easy
sentences (10) are those that they have no problems at all understanding. Likewise, they

were instructed that very unnatural sentences (1) are those that sound very unusual to them
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and are not at all typical for normal English language use, and that very natural sentences
(10) are those that sound very normal to them and are very typical for normal English
language use. The results showed that the sentences were rated both as very natural (M=
8.84; SD= 1.53) and very easy to understand (M= 9.29; SD= 1.23). In summary, the reading
stimuli in the present experiment sounded very natural to speakers of English and were fairly

easy to understand.

6.2.2.2. Auditory stimuli.

The standard sound was a 400 Hz sine wave and the deviant sound was a burst of
white noise. The sounds were generated in Matlab R2014a (MathWorks, 2014). Both sounds
were 50 ms long and had a 10 ms fade-in and fade-out. The amplitude resolution of the

sounds was 16 bits and the sampling frequency was 48 kHz.

There were two experimental blocks: one block of 40 sentences that was completed
in silence, and another block of 80 sentences that contained the gaze-contingent sound
presentation. The purpose of adding the silence block was to determine whether the
presentation of five gaze-contingent standard sounds leads to a change in reading behaviour
compared to reading in silence. This was important as previous studies have not presented
multiple gaze-contingent sounds in a reading task. The gaze-contingent block contained two
types of trials: 1) trials that contained five standard sounds; and 2) trials that contained four
standard sounds and one deviant sound. Trials with standard-only sounds were used to limit
participant’s ability to predict the appearance of a deviant sound. This was because there is
evidence that distraction can be reduced or even eliminated when the deviant sound is highly

predictable (e.g., Parmentier et al., 2011; Vachon, Hughes, & Jones, 2012).
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In trials with a deviant sound, the first sound (on target word 1) was also always a
standard sound. This was done in order re-activate the representation of the standard sound
at the beginning of the trial. The deviant sound was then presented on one of the four
remaining target words (2 through 5) with equal probability across the experiment. The
remaining three target word positions were again filled with standard sounds. In this way,
there was a 50% probability that a trial in the gaze-contingent sentence block would contain
a deviant sound. The experiment-wise occurrence of a deviant sound was kept low, with
10% of all sounds being deviant. The assignment of conditions to sentences, the position of
the deviant sound and the order of the two experimental blocks were counter-balanced with a
full Latin square design. The sentences within each block appeared in random order. The
gaze-contingent block always started with three standard-only trials to establish the sine

wave as the standard sound.

6.2.3. Apparatus

Participants’ eye-movements were recorded with an EyeLink 1000 Tower Mount at a
sampling frequency of 1000 Hz. The resolution noise was < 0.01° and the velocity noise was
< 0.5° on average. Participants rested their chin on a headrest to minimise head-movement
artefacts. Viewing was binocular, but only the right eye was recorded. The experiment was
programmed in Matlab R2014a (MathWorks, 2014) by using the Psychophysics toolbox

(Brainard, 1997; Pelli, 1997) and Eyelink libraries (Cornelissen et al., 2002).

The sentences were presented on a Cambridge Research Systems LCD++ monitor
with a screen resolution of 1920 x 1080 pixels and a refresh rate of 100 Hz. The sentences
were formatted in a Courier New 18 pt. font and appeared as black text over white

background on a single line in the middle of the screen. The width of each letter was 14
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pixels. The distance between the eye and the monitor was 80 cm. At this distance, each letter
subtended approximately 0.34° per visual angle. The sounds were played on a Creative Labs
Sound Blaster X-Fi SB0770 sound card by using the low-latency mode of presentation in the
Psychophysics toolbox (Brainard, 1997; Pelli, 1997). The sound stimuli were presented
binaurally at 65 dB(A) SPL through Bose QuietComfort 25 noise-cancelling headphones *.

The experiment was run on a PC in a Windows 7 environment.

6.2.4. Procedure

Participants were tested individually in a session that lasted for about 30-40 minutes.
Participants were instructed that they will sometimes hear short sounds while they are
reading, but that they should try to ignore them and read as normally as possible. Before the
start of the experiment, participants were calibrated on a 3-point calibration grid. A drift
check was presented before each trial and participants were re-calibrated whenever that was
necessary. The calibration error was kept at < 0.3°. All beeps during calibration and drift
check were turned off. The experiment started with six practice trials where no sounds were
presented. Each trial began with a black gaze box that appeared at 50 pixels from the left
side of the screen. Once participants fixated the box for 100 ms, it disappeared and the
sentence was presented on the screen, with the first letter appearing in the middle of the

location where the box was.

The gaze-contingent sound manipulation is illustrated in Figure 22b. An invisible

boundary (Rayner, 1975) was placed at the first pixel of the empty space before each of the

18 While the sound intensity level was 5 dB(A) higher than the one used in the previous experiments, this
change was done to ensure that the sound stimuli were still clearly audible. This was necessary as both
sounds were very short (only 50 ms), whereas the sounds in the previous studies were played continuously
for the duration of the whole trial.
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five target words. Once the eye crossed a boundary, the command to play the sound was
sent. This usually happened during the saccade towards the target word. The delay between
sending the command to play the sound and the sound coming out from the headphones was
measured to be 14 ms with the Black Box ToolKit 2 (Sheffield, UK). Because the command
to play the sound was usually sent several milliseconds before the end of the saccade,
participants heard the sound within several milliseconds of the fixation onset on the target
word. In other words, the sound onset delay relative to the fixation onset was 14 ms minus
the time difference between sending the command to play the sound and the start of the next
fixation. The distribution of sound onset delays relative to the start of fixation is presented in
Figure 23a. To avoid sound overlap when participants make a long saccade and trigger more
than one boundary, a sound was played only when at least 10 ms had passed since the
previous sound had stopped playing. Each sound was played only once when the target word
was first fixated; the sound was not repeated if the target word was subsequently re-fixated
during a regression. Participants pressed the left button of the mouse to terminate the trial.
One third of the sentences were followed by a “Yes/No” comprehension question. For
example, in the sentence “Cathy was nervous about giving the short speech before the panel
of judges.”, the comprehension question was “Was Cathy relaxed about giving her speech?

Yes/No”.

6.2.5. Data Analysis

The experiment had a within-subject design with one factor: sound type (silence,
standard, deviant). Because the deviant sound is rare compared to both the standard sound
and reading in silence, it was necessary to analyse a balanced dataset. Fixation durations

during reading are influenced not only by the sound manipulation, but also by the visual and
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cognitive processing of the words on which they occur. Therefore, only fixations on target
words 2-5 were analysed because these are the words on which all three sound conditions
were presented. Additionally, in the silence and standard sound condition, only one target
word was sampled per trial. This word was determined from the design matrix that was used
to counter-balance the word on which the deviant sound was presented (i.e., a specific target
word position was assigned to all sound conditions, although this had no special meaning for
the silence and standard sound conditions). This made it possible to analyse a fully-balanced
dataset with an equal number of observations per sound condition before the data pre-

processing stage.

A few standard fixation duration measures were used as dependent variables: first
fixation duration (FFD), which is the duration of the first fixation on the word; single
fixation duration (SFD), which is the fixation duration when the word was fixated only once;
gaze duration (GD), which is the sum of all fixations on the word before the eyes move on to
another word; and total viewing time (TVT), which is the sum of all fixations on the word,
including the ones made during a regression. Additionally, a few measures of global reading
were also analysed: sentence reading time, fixation duration, number of fixations, and
saccade length. The data were analysed with (Generalised) Linear Mixed Models
((G)LMMs) by using the Ime4 package v. 1.1-12 (Bates et al., 2014) in R 3.3.0 (R
CoreTeam, 2016). Sound type was entered as a fixed effect in the model. Random intercepts

and random slopes for sound type were added for both participants and items*® (Baayen,

13 Only the models for GD and TVT converged with a random slope for items. In all remaining models, the
slope for items was removed. When there was a convergence failure, we first tried to remove the random
intercept before removing the random slope. If the model still did not converge, the intercept was retained,
but the slope was removed. This was done following Barr et al.'s (2013) recommendation that, when the
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Davidson, & Bates, 2008; Barr, Levy, Scheepers, & Tily, 2013). Fixation durations were
log-transformed in all analyses. Treatment contrast coding was used where the standard
sound was the baseline. This contrast coding made it possible to do the two key comparisons
in the experiment: 1) the difference between silence and the standard sound to determine
whether the presentation of gaze-contingent sounds in general influenced reading behaviour
compared to reading in silence; and 2) the comparison between the deviant and the standard
sound to test for the presence of a sound deviance effect. P-values were calculated with the
ImerTest package v.2.0-33 (Kuznetsova et al., 2017). The results were considered
statistically significant if the p values were < 0.05. Standardized effect sizes in Cohen’s d

(Borenstein, 2009) are also reported for the significant results.

6.3. Results

The average comprehension accuracy was 95% (SD= 22%), thus indicating that
participants understood the sentences (Silence: M= 95.1%; SD= 21.7%; Standard: M=
94.7%; SD= 22.4%; Deviant: M= 95.2%; SD= 21.3%). There were no differences in
comprehension accuracy across the three sound conditions (all ps > 0.62). Only two
participants (4.1%) reported some awareness that the sounds were played depending on their
eye-movements when asked after the experiment?. Trials with blinks were excluded from
the data (6.2%). Additionally, trials in which the command to play the sound was sent after
the start of fixation on the target word were also excluded (12.2%). Finally, trials with

boundary “hooks” were also excluded (8.5%). A hook occurs when the eye crosses the

"maximal" model (in this case, a model with both a random slope and a random intercept for sound type) fails
to converge, a model with a missing intercept is preferable over a model with a missing slope. This was
because models without random slopes were found to be more anti-conservative in their analyses (i.e., they
led to an increase in Type 1 error probability).

20 Their data was retained since they were not completely sure of this and they reported that it did not
influence how they read the sentences.
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invisible boundary, thus triggering the sound, but then returns to the left of the boundary and
lands on previous words. Fixations shorter than 80 ms that occurred within one letter of
another fixation were combined with that fixation. Trials with fixation durations longer than
800 ms for FFD, 2000 ms for GD, and 4000 ms for TVT were excluded as outliers in all

analyses (0.44 % of the data). This left 72.6% of the data for analysis (a total of 4206 trials).
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Figure 23. Timing of the sound presentation in Chapter 6. Panel a shows the distribution of
sound onset delay relative to the fixation onset on the target word. The maximum delay was
14 ms. Panel b shows the distribution of the inter-stimulus interval (ISI) between two
consecutive sounds. Vertical line shows the mean in both panels.

6.3.1. Global Reading

The descriptive statistics for global reading measures are shown in Table 17 and the
LMM results are shown in Table 18. No significant differences were observed between the
sound conditions on any of these measures: deviant sounds did not affect performance
relative to the standard condition, and performance was comparable in the silence and
standard conditions. Therefore, global reading was not disrupted by the deviant sound or the

presence of gaze-contingent sounds in general.



Sound Sentence reading Fixation Number of ~ Saccade length
time (in ms) duration (in ms) fixations (in letters)
Silence 3670 (1781) 237 (114) 15.4 (6.25) 9.76 (9.44)
Standard 3580 (1715) 237 (109) 15.1 (5.81) 9.59 (9.04)
Deviant 3560 (1697) 236 (110) 15.1 (5.83) 9.51 (8.64)

Table 17. Means of global reading measures in Chapter 6 (SDs in parenthesis).
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Sentence reading time* Fixation duration
Effect
b SE t p b SE t p
Intercept 8.09 0.04 185 <.001 5.38 0.02 2825 <.001
Deviant vs Standard <-0.01 0.01 -0.57 .56 <-0.01 <0.01 -124 .22
Silence vs Standard 0.02 0.03 0.1 A2 <0.01 <0.01 0.09 .92
Number of fixations Saccade length?
Effect
b SE t p b SE t p
Intercept 15.08 056 26.75 <.001 2.03 0.02 9582 <.001
Deviant vs Standard -0.01 0.13 -0.08 .93 <-0.01 0.01 -0.57 .56
Silence vs Standard 0.35 042 0.83 A1 0.01 0.01 0.87 .39

Table 18. Results from LMMs for global reading measures in Chapter 6. Statistically
significant p values are formatted in bold.

! The random intercept for subjects was removed due to a convergence failure.

6.3.2. Target Words

As illustrated in Figure 24, fixation durations were significantly longer immediately

following the deviant sound compared to the standard sound (FFD: b= 0.03, SE=0.02, t=

2.02, p=0.05, d= 0.20; SFD: b= 0.04, SE= 0.02, t= 2.43, p= 0.02, d= 0.29; GD: b= 0.05, SE=

0.02, t= 2.8, p=0.007, d=0.21; TVT: b=0.04, SE=0.02, t= 2.16, p= 0.03, d=0.18).
However, fixation durations were comparable in the standard and silent conditions (FFD:

0.02, SE=0.01, t= 1.35, p= 0.17; SFD: b= 0.03, SE= 0.02, t= 1.86, p= 0.07; GD: b= 0.01,

b=

SE=0.02,t=0.2, p=0.84; TVT: b=0.01, SE= 0.02, t= 0.55, p= 0.58). When the position of

the target word was added as a fixed effect in the model, there were no significant
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interactions with the contrast between the standard and the deviant sound (all ps > 0.079).
This shows that the deviance effect was not modulated by the position of the target word in
the sentence. Furthermore, there was a 3% greater probability of making a regressive
saccade immediately after hearing the deviant sound compared to hearing the standard sound
(b=0.25, SE=0.13, z= 1.96, p= 0.049, d= 0.25; Deviant: M= 21.3%, SD= 40.9%; Standard:
M= 17.9%, SD= 38.3%). No such difference was observed between the standard sound and
the silence condition (b=0.14, SE= 0.12, z=1.23, p=0.21; Standard: M= 17.9%, SD=
38.3%; Silence: M= 19.2%, SD= 39.4%). These results clearly indicate that the deviant
sound significantly and selectively affected fixation durations on the target word
immediately after it was presented. However, as the deviant sound was played on only one
word in the sentence, this effect does not appear in global reading measures due to the
averaging over all words in the sentence, the vast majority of which were not affected by the

sound.

Post-hoc analyses were carried out to test if the disruption by the deviant sound also
affected fixation durations on the next word in the sentence (i.e., the post-target word). The
results (presented in Appendix 1) indicated that the deviant sound had no effect on fixation
durations on the next word in the sentence, which suggests that the disruption occurred before
the next word was fixated. Additionally, the magnitude of the deviance effect on the target

words was not modulated by whether participants were slow or fast readers (see Appendix I).
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Figure 24. Mean fixation durations on the target words in Chapter 6. FFD: first fixation
duration. SFD: single fixation duration. GD: gaze duration. TVT: total viewing time.
Shading indicates the standard error.

To establish the point in time when the deviant sound first started to affect fixation
durations, we used the Confidence Interval Divergence Point Analysis (CI-DPA) (Reingold
& Sheridan, 2014, 2017). This is a survival analysis technique that can determine the earliest
point in time when the distributions of two experimental conditions begin to diverge (i.e.,
significantly differ from one another). The CI-DPA analysis was run with 10 000 bootstrap
iterations on the FFD of the target words using the method described in Reingold and
Sheridan (2017). The analysis indicated that the deviant sound first started to affect fixation

durations at 180 ms (95% CI [167, 198]). This is illustrated in Figure 25.
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Figure 25. Survival curves of the first fixation duration during which participants heard the
sound in Chapter 6. The divergence point (at 180 ms) is shown by the vertical orange line.

Finally, the corpus lexical frequency of target words was entered into a model with
the fixation durations in the three sound conditions. If the deviant sound interfered with the
lexical processing of the target words, we would expect to see an interaction between lexical
frequency and the deviant condition. The results showed no significant interactions between
lexical frequency and the deviant sound (see Table 19). This suggests that the deviant sound

did not interfere with accessing the lexical representation of words.
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FFD SFD GD
Effect
b SE t p b SE t p b SE t p

Intercept 54 .02 2542 <001 54 .02 25145 <001 56 .03 1912 <.001
Freq -02 .01 -255 .01 -03 .01 -350 <001 -05 .01 -499 <.001
Deviant 03 .02 202 .05 04 .02 237 .02 05 .02 286 .006
Standard 02 01 131 19 03 .01 186 07 <01 .02 .18 .85
Freg: Deviant <.01 .01 .36 71 02 01 152 A2 02 .02 1.27 .20

Freg: Standard -01 .01 -.83 40 -01 .01 -39 69 -01 .02 -35 12

Table 19. Interactions between fixation durations on the target words and corpus lexical
frequency in Chapter 6. Freq: lexical frequency Statistically significant p-values are
formatted in bold. Lexical frequency was log-transformed.

6.4. Discussion

The present results showed clear evidence of deviance distraction in eye-movements
during reading. Indeed, fixation durations on the target words were longer after hearing the
deviant sound compared to hearing the standard one. Interestingly, global reading measures
were unaffected by either sound and the mere presence of gaze-contingent sounds did not
influence how participants read the sentences. In other words, reading occurred normally in
the presence of the standard sounds. However, deviant sounds selectively prolonged fixation
durations on the currently-read word at the time of the sound’s presentation. As
comprehension accuracy was not affected by the presentation of a deviant sound in the
sentence, it is not likely that the observed longer fixation durations on the target words are
related to comprehension difficulties. This is in line with previous studies demonstrating that
irrelevant speech can disrupt fixation durations during reading without an associated
disruption in comprehension (Chapters 3-4; Cauchard et al., 2012; Hyona & Ekholm, 2016;

Yan etal., 2017).
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The time course analysis of deviance distraction and the absence of modulation by
lexical frequency made it possible to further localise the source of the effect. For example, in
the E-Z Reader model of eye-movement control during reading (Reichle, Pollatsek, Fisher,
& Rayner, 1998; Reichle, Rayner, & Pollatsek, 2003; Reichle, Warren, & McConnell, 2009),
word processing starts with an early visual processing stage during which the visual features
of the word are propagated from the retina to the brain. This stage is then followed by two
lexical processing stages: familiarity check (L1) and lexical access (L2). In this model,
completion of familiarity check initiates the programming of the next saccade because the
second stage of lexical processing (L2) is likely to be completed soon (Reichle et al., 1998).
The programming of the next saccade also happens in two stages: a labile stage (M1) during
which the saccade programme can be cancelled, and a non-labile stage (M2) during which

the saccade programme can no longer be cancelled.

Our data suggest that the deviant sound did not interfere with the lexical processing
stages for a few reasons. First, the CI-DPA analysis indicated that the earliest discernible
effect of the deviant sound occurs somewhat late, at 180 ms. This exceeds the temporal
estimates of lexical processing reported in the neurophysiological literature (127-172 ms on
average; Reichle & Reingold, 2013). Second, Reingold and Sheridan (2014) used the ClI-
DPA analysis to estimate that the lexical frequency effect (i.e., the difference in fixation
times between high and low frequency words) starts at 138 ms after fixation onset- that is,
some 42 ms earlier than the sound deviance effect. Finally, deviance distraction was not
modulated by target word lexical frequency. Taken together, these findings suggest that
deviant sounds did not increase fixation durations on the target words because of delayed

lexical processing. This conclusion is similar to the results from Chapter 3, which also
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showed that the semantic properties of irrelevant speech did not interfere with accessing the

lexical representation of words.

Since the deviance effect appears to occur after the lexical processing stages of
reading, we hypothesize that the interference is likely due to saccadic inhibition during the
programming of the next saccade. This conclusion is generally consistent with Wessel and
Aron's (2013) proposition of a general action suppression upon the presentation of a deviant
sound. In their study, action inhibition took the form of a reduced corticospinal excitability
of the hand following TMS stimulation of the corresponding motor cortex some 150 ms after
the deviant sound’s onset. The time course of this effect is generally similar to the time line
of the deviant distraction effect found in the present experiment. Because the programming
and execution of saccades involves subcortical structures, such as the superior colliculus,
cerebellum, and the brainstem (Munoz, 2002b), our results in fact extend Wessel and Aron’s
(2013) by suggesting that deviant sounds may also inhibit subcortical brain areas. Of course,
the present findings do not make it possible to pinpoint exactly where in the brain this effect

is originating from and this question needs to be addressed by future research.

Further evidence in support of this saccadic inhibition account is the finding that the
deviant effect was not modulated by the position of the target word in the sentence. Because
inhibition of the oculomotor system should be independent of any underlying word
identification or syntactic processes, the effect would be expected to be invariant with
respect to where it occurs in the sentence. Therefore, the lack of modulation by target word
position is consistent with the notion that this effect is likely oculomotor in nature. Even
though deviant sounds had no effect on spatial measures of saccades (e.g., saccade length),

this is not inconsistent with the saccadic inhibition explanation because the hypothesized
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inhibition occurs during the planning stages rather than during the execution of the next
saccade. This effect is similar to Reingold and Stampe's (1999, 2002, 2004) finding that
transient visual changes, such as replacing the text with a black screen for 33 ms, leads to
saccadic inhibition some 60-70 ms after the onset of the display change. In a similar fashion,
the deviant sound in the present experiment also likely triggered saccadic inhibition,

although this occurred at a later point in time following the onset of the distractor.

Similar evidence for saccadic inhibition was also found in a study by Graupner,
Velichkovsky, Pannasch, and Marx (2007) where a sequence of auditory distractors (which
also included a deviant) was presented in a picture viewing task. Graupner et al. (2007)
reported that the deviant distractor reduced the proportion of terminated fixations, first at
around 90 ms and then at around 150 ms. They interpreted this finding as “first” and
“second” saccadic inhibition, respectively. The first one was assumed to reflect a fast
inhibition process similar to the one observed by Reingold and Stampe (1999, 2000, 2004) in
response to transient visual distractors. On the other hand, the second one was assumed to
represent a secondary wave of inhibition that potentially originates from a neural network
that includes the amygdala. While there was no evidence for first saccadic inhibition in the
present experiment, the onset of the deviance distraction effect is generally consistent with

the secondary wave of inhibition that the authors reported in their study.

Our results suggest that the sound deviance effect was likely due to saccadic
inhibition. This is in line with the notion that deviant sounds capture attention away from
ongoing processing (e.g., Escera et al., 1998; Schrdger, 1996) and inhibit motor processes
(Wessel & Aron, 2013). The present experiment contributes to our understanding of the time

course of this effect by suggesting that a covert orienting of attention to the deviant sound
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does not occur during the lexical processing stages of the fixated word (as indicated by the
lack of modulation of the effect by lexical frequency) but at a subsequent stage (namely, the
preparation of the next saccade). In oddball tasks, the effect of deviant sounds on
electrophysiological measures of the orienting response is traceable from about 150 ms to
600 ms from the sound’s onset (Berti & Schroger, 2003; Escera et al., 1998), while their
behavioural effect spans further to the production of a response in the current trial. So far,
the temporal dynamics of the motor inhibition yielded by deviant sounds remain to be
established, but early evidence places it at around 150 ms after the sound’s onset (Wessel,
2017; Wessel & Aron, 2013). Our experiment does not allow us to disentangle the potential
contributions of the orienting response and the motor inhibition to the effect. Exploring this
issue could be an objective for future research. For example, the precise time course of the
orienting response in our task could be studied by using EEG and eye-tracking co-
registration (e.g., Dimigen, Sommer, Hohlfeld, Jacobs, & Kliegl, 2011; Plochl, Ossandén, &
Kdnig, 2012), capitalizing on the well-known ERP signature of the orienting response (i.e.,
the P3a component; Berti & Schroger, 2001) to study its potential correlation with the
observed disruption in eye-movements and to better understand its influence on the reading

process.

It should be noted that the size of the deviance distraction effect in the present
experiment was relatively small: it ranged from 11 ms for FFD to 19 ms for TVT (M= 14.5
ms). However, it is comparable to the numerical size of the distraction effect by deviant and
novel sounds on reaction times in previous experiments using the auditory-visual cross-
modal task, which ranged from 13 to 24 ms (M= 17 ms) (Andrés, Parmentier, & Escera,

2006; Escera et al., 1998; Ljungberg, Parmentier, Leiva, & Vega, 2012; Parmentier, 2016;
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Parmentier et al., 2008; Parmentier, Elsley, & Ljungberg, 2010; Parmentier, Vasilev, et al.,
2018; Wetzel, Schroger, & Widmann, 2013). Nevertheless, the standardised effect size
measured in Cohen’s d was considerably smaller than that of previous cross-modal oddball
studies (an average of d= 0.22 in the present experiment compared to an average of d= 0.65
in oddball experiments). This discrepancy between the numerical and standardized effect
size is most likely due to the greater variability in eye-movement responses compared to
behavioural reaction time responses. The small effect sizes in the present study are not
necessarily surprising: for example, the meta-analysis of auditory distraction by continuous
sounds such as speech, noise, and music in Chapter 2 found that the standardised effect sizes
ranged between 0.06-0.35. We speculate that the smaller effects may be due to the fact that,
unlike categorization tasks, our reading task did not require a specific response from
participants upon the presentation of the irrelevant sounds. This in turn may have introduced

more variability into the data.

Traditionally, the majority of research on deviance distraction has been conducted
using categorisation tasks, such as judging the parity of numbers presented on the screen
(e.g., Parmentier et al., 2008) or judging the duration of the irrelevant sound (short vs long;
e.g., Schroger & Wolff, 1998b). Perhaps one of the most important ways in which the
present experiment differs from such studies is that it did not require any type of response
from participants after the presentation of the irrelevant sounds. Rather, participants simply
needed to do well overall on the task (i.e., comprehend the sentences) and ignore the sounds.
In contrast, participants in categorization tasks typically need to make a binary response after
each sound. As a result, the sound may serve as an unspecific warning signal that alerts them

to the imminent presentation of a target stimulus that requires a response (Parmentier, 2014).
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Although it has been recently shown that deviance distraction in oddball tasks occurs even
when the sound does not fulfil this unspecific warning function (Parmentier, 2016), the
evidence for this again comes from studies that required a response on at least some of the
trials (typically on half of them; e.g., see Ljungberg et al., 2012; Parmentier et al., 2010;
Wetzel et al., 2013). Therefore, the present experiment contributes to our theoretical
understanding of deviance distraction by showing that deviant sounds disrupt ongoing
processes even when the sounds are not relevant in any way to the main task and do not

constitute cues for goal-directed behaviour.

While the size of the deviance effect in the present experiment was relatively small, it
may be possible to increase its magnitude in future studies. One possible way to do this
could be to use novel sounds that are not repeated throughout the experiment instead of a
single deviant sound. For example, there is at least some evidence indicating that novel
sounds can lead to numerically larger effect sizes in reaction times compared to a single
deviant sound (Berti, 2012; Escera et al., 1998; Wetzel, Schréger, & Widmann, 2016;
although see Wetzel et al., 2013). The higher propensity of novel sounds to cause distraction
may be due to a number of factors, such as their greater spectral complexity, meaning, and
novelty (Wetzel et al., 2016). Additionally, participants would be slower to habituate to

novel sounds since they are repeated fewer times than deviant sounds.

More broadly, the present results are also relevant for understanding how the external
auditory environment may influence readers’ eye-movement behaviour. While a lot of
progress has been made in understanding how different cognitive and oculomotor processes
influence eye-movement control during reading (see Rayner, 1998, 2009), most of this

research has been conducted in a quiet and well-controlled environment that is not very
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typical of everyday life. Interestingly, recent work has suggested that certain sounds, such as
intelligible speech, that are present in the readers’ environment can result in attentional
distraction that is detectible at the level of eye fixations, while other sounds, such as
background music or unintelligible speech, generally have no influence on eye-movement
behaviour (Cauchard et al., 2012; Hy6na & Ekholm, 2016; R. Johansson et al., 2012; Yan et
al., 2017; but see Zhang et al., 2018 for conflicting evidence). These results suggest that
certain auditory environments can interfere with readers’ ability to maintain sustained
attention on the task and process the text in an efficient way. The present experiment builds
upon these findings by demonstrating that deviant sounds that violate readers’ expectations
about what type of sound they will hear next also result in an immediate disruption of eye-
movement behaviour. However, unlike continuous distractors such as intelligible speech that
typically result in an increase in re-reading behaviour (e.g., Hyona & Ekholm, 2016; Yan et
al., 2017), the present results suggest that this disruption may occur due to motor inhibition

that interferes with the programming of the next saccade.

Another interesting finding in the present experiment was that the standard sound did
not lead to significantly longer fixation durations compared to silence. This is in contrast to
some evidence showing that the presentation of a short auditory distractor similar to the
standard sound used in the present study can lead to an increase in fixation durations (e.g.,
Pannasch, Dornhoefer, Unema, & Velichkovsky, 2001; Pannasch & Velichkovsky, 2009,
Experiment 3; but see Reingold & Stampe, 2004, Experiment 1). There are a few possible
reasons why the standard sound did not lead to significantly longer fixation durations
compared to the silence baseline. First, the standard sound in the present experiment was

presented only for 50 ms, which may not be long enough for it to cause any meaningful
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distraction. Second, the standard sound was presented very frequently and in quick
succession throughout the experiment (overall, 360 standard sounds were presented and the
inter-stimulus interval between any two sounds in a trial was only 545 ms on average).
Therefore, it is likely that participants rapidly habituated to the standard sound, which would
help explain why there was no increase in fixation durations compared to reading in silence.
In fact, there is evidence showing that participants can habituate to distracting sounds such
as irrelevant speech if they are exposed to them prior to the experiment (Banbury & Berry,
1997; Bell, Roer, Dentale, & Buchner, 2012; N. Morris & Jones, 1990). This further

suggests that increased exposure to task-irrelevant sounds makes them less distracting.

One limitation of the present study was that it did not experimentally manipulate the
psycholinguistic properties of target words, such as their lexical frequency or predictability
given the preceding sentence context. Rather, the modulation of the effect by lexical
frequency was tested using the corpus frequency of the target words. Therefore, future
studies should include a lexical frequency or a predictability manipulation on the target
words in order to replicate and extend the present results. If the sound deviance effect is due
to inhibition during the programming of the next saccade, as the present findings have
suggested, it should fail to interact with these variables and it should lead to an increase in
fixation durations that is independent of the cognitive processing of the word. An even
stronger test of the saccadic inhibition hypothesis would be to use a task that resembles
reading, but that does not require any cognitive processing of the words in the sentence (e.g.,
z-string reading; Rayner & Fischer, 1996; Vitu, O’Regan, Inhoff, & Topolski, 1995). In this
case, a very similar saccadic inhibition effect to that found in present study should be

observed.
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It should also be noted that the present data do not allow us to determine with
certainty the specific component of saccade programming that may be affected by the
deviant sound. For example, both the E-Z Reader (Reichle et al., 1998) and SWIFT (Engbert
et al., 2005) models of eye-movement control during reading assume that saccade
programming occurs in two stages: 1) a labile stage that can be cancelled; and 2) a non-labile
stage that no longer can be cancelled. While at present it is not known which of the two
stages may be affected, we believe that the present experiment provides the first step in
studying this topic that will incentivize further research into this issue. Additionally, if this
effect is due to a general motor inhibition, as Wessel and Aron (2013) have argued, it can be
speculated that the resulting inhibition should be generally similar regardless of the exact

saccade programming stage in which it occurs.

6.4.1. Conclusion

In summary, the present experiment introduced a new method to study deviance
distraction during reading by utilizing a gaze-contingent presentation of task-irrelevant
sounds (e.g., Inhoff et al., 2002). The results showed that deviant sounds lead to an increase
in fixation durations, which is most likely due to saccadic inhibition. This finding contributes
to our growing understanding of how task-irrelevant sounds influence eye-movements
during reading by showing that unexpected sounds can have an immediate effect on the
programming of the next saccade. More broadly, the present study also raises the possibility
that unexpected sounds may inhibit ongoing motor processes in everyday tasks similar to
reading that rely on relatively automatic motor control. Finally, as the presentation of

multiple gaze-contingent sounds did not in itself affect global reading behaviour, the present
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study also demonstrates that this method of administering discrete sound stimuli can be

successfully used to study auditory distraction during reading.
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CHAPTER 7: GENERAL DISCUSSION

Skilled adult reading is a fairly automatized process that may look almost effortless
to the naive observer, but it involves a complex coordination of oculomotor and cognitive
control that guides the readers’ eyes across the page. While a lot has been learned about the
different cognitive and oculomotor processes that affect the moment-to-moment decision of
when and where to move the eyes next (see Rayner, 1998, 2009), less is known about how
external auditory distractors may influence the ongoing reading process. It is only very
recently that researchers have attempted to answer the question of how different auditory
environments may influence eye movements during reading (Cauchard et al., 2012; Hydnéa

& Ekholm, 2016; R. Johansson et al., 2012; Yan et al., 2017; Zhang et al., 2018).

One of the main goals of the present Thesis was to gain a better understanding of
what properties of background sounds give rise to distraction in eye-movements during
reading. This was accomplished by investigating whether distraction by intelligible speech in
eye-movements during reading arises from the semantic (Marsh et al., 2008, 2009; Martin et
al., 1988) or phonological information (Salamé & Baddeley, 1982, 1989) of the speech
sound, or some combination of the two. Additionally, the present Thesis made the novel
contribution of testing whether short sounds that violate participants’ expectations can also
cause distraction. While deviance distraction has been well-established in the
electrophysiological (e.g., Escera et al., 1998; Naatanen et al, 2007; Schroger, 1996) and

behavioural literature (e.g., P. Dalton & Hughes, 2014; Parmentier, 2014), little is known
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about how it may affect complex cognitive tasks such as reading. Therefore, to test how
deviant sounds may affect eye-movement control during reading, a new method was

developed that involved presenting multiple gaze-contingent sounds in a trial.

The other main goal of this Thesis was to investigate which aspects of the reading
process are disrupted by irrelevant sounds, and how the observed disruption may be related
to ongoing cognitive, oculomotor, and comprehension processes. This was accomplished in
a few ways. First, one experiment tested whether intelligible speech may interfere with the
lexical processing of words in readers of alphabetical languages (e.g., see Yan et al., 2017).
Second, another experiment tested whether intelligible speech may affect the integration of
information across sentences and whether it may disrupt different levels of text
comprehension. Third, the present research also investigated how the disruption in eye-
movements during reading by intelligible speech may be related to participants’
comprehension of the text. Finally, the present research also considered which aspects of the

reading process may be affected by deviant sounds.

The present Thesis contained four empirical investigations and one meta-analysis of
previous findings. In the remainder of this Chapter, the main results from these studies will
be first briefly summarised. Then, the results will be considered in their wider context of
research on auditory distraction and eye-movement control during reading. Finally, the
theoretical and practical implications of the present results will be considered, along with

suggestions for future research.
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7.1. Summary of Main Findings

7.1.1. Meta-Analysis of Previous Findings (Chapter 2)

The first empirical investigation of this Thesis was a meta-analytical synthesis of
previous findings on auditory distraction during reading. This opening investigation was the
necessary first step in understanding the nature of auditory distraction in behavioural
measures such as comprehension accuracy because the research literature has been
undermined by a number of inconsistent findings and by the limited theoretical
understanding of what makes background sounds distracting. One of the key findings to
emerge from this study was that background speech, noise, and music all have small but
reliably detrimental effect on comprehension accuracy. Intelligible speech was found to
result in the biggest amount of distraction in comprehension accuracy. Interestingly, lyrical
music, which also contains intelligible language in the form of sung lyrics, was found to be
just as distracting as intelligible speech. This suggests that the presence of intelligible
language in background sounds is the strongest predictor of auditory distraction. Consistent
with theories of semantic distraction (Marsh et al., 2008, 2009; Martin et al., 1988), the
meta-regression results indicated that intelligible speech was more distracting than
unintelligible speech. Background noise was also found to lead to a small decrease in
comprehension accuracy and there was partial support for the changing-state hypothesis
(Beaman & Jones, 1997; Jones et al., 1992), which predicts that sounds exhibiting greater

acoustic variation are more distracting that steady-state sounds such as acoustical noise.
7.1.2. The Effect of Intelligible Speech on Lexical Processing (Chapter 3)

The first eye-tracking study followed-up on the results from the meta-analysis by

investigating whether the disruption by intelligible speech in eye-movements during reading
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Is semantic or phonological in nature (or a combination of the two). Additionally, similar to
Yan et al.'s (2017) study, it also tested whether intelligible speech affects the lexical access
of words in English readers. In this experiment, participants’ eye-movements were recorded
while they read single sentences, each of which contained a target word with a lexical
frequency manipulation. The results supported most strongly the hypothesis that auditory
distraction effects by intelligible speech are entirely semantic in nature (Marsh et al., 2008,
2009; Martin et al., 1988). Importantly, intelligible speech did not affect the lexical access of
words. However, consistent with previous studies (Cauchard et al., 2012; Hydonéd & Ekholm,
2016; Yan et al., 2017), it resulted in an increase in re-reading behaviour, which was
characterised by making more regression and more re-reading fixations on previous words.
This suggests that intelligible speech likely made it more difficult to integrate the meaning of
individual words in order to form the meaning of the whole sentence. Interestingly, however,

there was no associated disruption in comprehension accuracy by intelligible speech.

7.1.3. The Effect of Intelligible Speech on Comprehension and Integration

Processes (Chapter 4)

Chapter 4 extended the results from the first eye-tracking study by investigating how
intelligible speech affects the immediate comprehension of short passages and the
integration of information across sentences. More specifically, it focused on testing whether
intelligible speech affects comprehension accuracy only when the questions are more
difficult to answer and reflect a deeper level of text understanding. In this experiment,
participants answered either easy questions that could typically be answered by recognising
words or phrases from the text, or more difficult questions that required understanding the

meaning of the whole paragraph to answer. The results replicated the increase in second-pass
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reading in response to intelligible speech. However, there was no increase in the re-reading
of previous sentences, which suggested that intelligible speech does not disrupt the
integration of meaning across multiple sentences. Nevertheless, the magnitude of the
disruption effects in second-pass reading measures was considerably larger than that of
Chapter 3, thus suggesting that intelligible speech was more disruptive in a paragraph-
reading compared to a single-sentence reading task. Importantly, however, comprehension
remained unaffected regardless of whether participants were answering easy or difficult
questions. The results were again best explained by the semantic distraction account (Marsh
et al., 2008, 2009; Martin et al., 1988) and there was very limited evidence for contribution
of phonology in auditory distraction (Salamé & Baddeley, 1982, 1987).

7.1.4. The Role of Re-reading Behaviour in Distraction by Intelligible Speech

(Chapter 5)

In Chapter 5, two experiments tested the distraction re-reading hypothesis, which
predicted that the increase in second-pass reading in response to intelligible speech is due to
participants’ attempt to maintain an accurate comprehension of the text under the distracting
conditions. Re-reading of previous words was prevented with the RSVP method (K. I.
Forster, 1970) in Experiment 1 and with Schotter et al.'s (2014) trailing mask paradigm in
Experiment 2. The results from both experiments indicated that participants’ comprehension
of the text was significantly lower when re-reading of previous words was prevented. This
suggests that the increase in re-reading behaviour in response to intelligible speech is, at
least in part, related to maintaining an accurate comprehension of the text. Additionally, the
eye-movement data from Experiment 2 replicated the distraction effects of intelligible

speech on measures of second-pass reading from Chapter 4.
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7.1.5. Distraction by Deviant Sounds during Reading (Chapter 6)

The final experiment in this Thesis investigated whether discrete deviant sounds that
violate participants’ expectations can also lead to distraction. In this experiment, a new gaze-
contingent paradigm was developed in which five shorts sounds were presented upon the
fixation of five target words in the sentence. On most occasions, the same sounds was
presented (standard), while on rare and unpredictable occasions it was replaced by a different
sound (deviant). The results indicated that the deviant sound prolonged fixation durations on
the target words immediately after the sound’s presentation, but it had no influence on global
reading measures. Additionally, the results indicated that the deviant sound likely did not
interfere with the lexical processing of the fixated word, but that it likely inhibited the
programming of the next saccade. This last finding is in line with the recent proposition that
deviant sounds evoke a global motor inhibition some 150 ms after the onset of the deviant

sound (Wessel & Aron, 2013).
7.2. Distraction by Task-Irrelevant Sounds: Discussion and Theoretical Implications

7.2.1. Intelligible speech.

The main type of auditory distraction studied in this Thesis was that by intelligible
speech. The distraction effects by intelligible speech on eye-movements during reading
provided strong support for theories of semantic distraction (Marsh et al., 2008, 2009;
Martin et al., 1988). As the summary of key comparisons in Table 20 shows, evidence for
semantic distraction in the comparison between English and Mandarin was consistently
found in measures of second-pass reading (with the exception of inter-sentence regression
probability). Additionally, there was also some evidence for disruption in first-pass reading

measures and saccade length in a paragraph-reading paradigm (Chapters 4-5). In contrast,
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there was no support for the strong form of the phonological disruption account (Salamé &
Baddeley, 1982, 1987), according to which any speech sound should be equally distracting

because it gains access to the phonological store of working memory.

English vs Silence English vs Mandarin

Measure Chapter 3 Chapter 4 Chapter 5 Chapter 3 Chapter 4

First-pass reading

FED X v v X x
GD x v v X v
Number of 1%%-pass fixations x x x x 4
Second-pass reading
TVT v v v v v
Intra-sentence regression v v v v v
Inter-sentence regression N/A x X N/A x
Number of 2"-pass fixations v v v v v
All reading
SRT/PRT v v v v v
Saccade length x x v x 4
Saccade landing position X x X X X

Table 20. A summary of auditory disruption effects by intelligible speech in the first three
eye-tracking experiments. A tick sign (v') indicates that a significant difference between the
two conditions was observed (English vs Silence or English vs Mandarin), whereas a cross
sign (x) indicates that there was no significant difference. FFD: first fixation duration. GD:
gaze duration. TVT: total viewing time. SRT: sentence reading time. PRT: paragraph
reading time. Chapter 3 contained a sentence-reading study, whereas Chapters 4 and 5
contained a paragraph-reading study.

Nevertheless, two effects suggested a possible contribution of phonology in
distraction by intelligible speech. In Chapter 3, unintelligible speech (Mandarin) resulted in
more second-pass fixations compared to noise, and in Chapter 4 unintelligible speech
resulted in more regressions within the currently-read sentence compared to noise. It is
worth considering these two findings in more detail in order to assess the possible role of
phonology in auditory distraction. First, the effect from Chapter 3 was partially driven by the

fact that participants made fewer second-pass fixations in noise compared to silence. This
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was confirmed by the lack of significant difference between Mandarin and silence (p=0.72),
which suggests that the effect reached significance because the means in the Mandarin and
Noise condition were going in the opposite direction in relation to the silence baseline.
Additionally, this effect was not replicated in Chapter 4, which further raises questions about

its generalizability across different types of reading materials.

Furthermore, even though there was a significant difference in intra-sentence
regression probability between Mandarin and Noise in Chapter 4, the lack of increase in
number of second-pass fixations suggests that participants did not actually spend more time
re-reading words in the sentence (this was also confirmed by a lack of difference in sentence
re-reading time between Mandarin and Noise in Chapter 4). In other words, participants in
Chapter 4 were more likely to regress back within the current sentence in Mandarin speech
compared to Noise, but they did not actually spend more time processing words again. To
some extent, this argues against an explanation of disrupted word processing or sentence
integration by Mandarin speech because participants would have likely made more re-
reading fixations in order to recover from the disruption (as was the case when they listened
to English speech). However, the increase in regression probability without an associated
increase in re-reading fixations could suggest that the unfamiliar Mandarin speech may have
elicited some type of attention orienting response (e.g., Sokolov, 2001). This could be either
due to its perceptual novelty or to some unexpected prosodic features that were present in the

speech. At present, this remains as a speculation that needs to be tested by future research.

Because the unintelligible Mandarin speech in the present studies contained distinct
tones that are not present in English speech (Duanmu, 2006), it is also possible that the two

effects above may be due to differences in pitch. The present research cannot exclude this
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possibility and further work is required to rule out this alternative explanation. Nevertheless,
it should be noted that this explanation is at odds with the common finding that native
speakers of atonal languages such as English often have difficulties in distinguishing
between Mandarin tones (e.g., Kiriloff, 1969; Morett & Chang, 2015; see also Wang,
Spence, Jongman, & Sereno, 1999). In summary, the two significant differences between
Mandarin and Noise present, at best, only limited evidence for a partial contribution of
phonology in distraction by intelligible speech in eye-movements. This conclusion is largely
in agreement with the meta-regression results from Chapter 2 and with the findings from

Hyo6né& and Ekholm's (2016) Experiment 1.

While the present findings are consistent at the basic level with the semantic
disruption accounts of Martin et al. (1988) and Marsh et al. (2008, 2009), these theories do
not make specific predictions about how intelligible speech affects eye-movements during
reading. Therefore, the present investigation provides a more detailed account of how the
semantic properties of background speech affect the decision of when and where to move the
eyes next. One of the key findings was that the semantic properties of background speech
did not disrupt the initial lexical identification of words in the sentence. This finding points
to the fact that intelligible speech affects only the post-lexical stages of language processing.
While there was evidence for a general slowing down of language processing that was
shown by the longer first-pass fixation durations (Chapters 4-5), progressive reading
behaviour remained relatively unaffected. This was evidenced by the lack of disruption in
oculomotor measures, such as saccade landing position. Even though there was some
evidence for disruption in saccade length in Chapters 4 and 5, the magnitude of the effects

was quite weak (ds ranging between 0.02-0.03), which suggests that this disruption may be
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of limited practical significance (Kirk, 1996). Therefore, the present results point to the fact
that participants likely did not experience great difficulty in progressing through the text and
reading new words. Instead, the semantic properties of the irrelevant speech likely created a
temporary difficulty in constructing the semantic meaning of the sentence. This in turn may
have prompted participants to make more regressions in order to resolve the difficulty before

they continue reading new words.

The present results also provide insights into how the disruption by intelligible
speech could potentially be simulated in computational models of eye-movement control
during reading. For example, a recent version of the E-Z Reader model (Reichle et al., 2009)
has attempted to simulate effects of higher-level language processing on eye-movements.
Reichle et al. (2009) introduced a new post-lexical integration stage that reflects the
processing associated with integrating the currently fixated word into higher-level language
representations, such as the syntactic structure of the sentence. In this framework, the present
results could be modelled by implementing a parameter that checks for interference by
intelligible speech, and which then prompts a regression back to the word where the
interference occurred. Therefore, the detection of such disruption by intelligible speech
would be associated with greater probability of making a regression to previous words

within the currently-read sentence.

A similar principle for modelling this type of disruption by intelligible speech could,
at least in theory, also work in parallel-attention models such as SWIFT (Engbert et al.,
2002, 2005). The reason for this is that the distinction between serial- and parallel-attention
models largely relates to differences in the allocation of attention during the first-pass

reading of words, and the effects by intelligible speech occurred in the post-lexical, second-
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pass reading of words. Therefore, the implementation of this type of interference would
likely depend more on the model’s computational architecture rather than its assumptions
about the allocation of attention during first-pass reading. So far, there have been no
attempts to implement any mechanisms that would allow SWIFT to explain higher-level
language processing effects in the same way that more recent versions of the E-Z Reader

model (e.g., Reichle et al., 2009) have done.

Nevertheless, as mentioned in Chapter 5, one potential way to simulate the increase
in regressions and re-reading fixations in response to semantic interference could be to add a
second saccade targeting mechanism for detecting interference or difficulty in constructing
the sentence meaning. For example, words in SWIFT could also accrue “comprehension
difficulty” activation after they have been identified lexically. An increase in this activation
for a word would then be associated with a greater probability that this word will be selected
as the next saccadic target during a regressive saccade. In this way, the model could
potentially be able to interrupt the progressive reading of the text until the difficulty induced
by the semantic interference can be successfully resolved. Therefore, implementing the key
disruption effects by intelligible speech in both models seems plausible, although actual

modelling work is required to test whether this is the case.

7.2.2. Deviant sounds.

The second type of distraction studied in the present Thesis was that by unexpected
deviant sounds. This type of distraction differs from the one by intelligible speech because
deviant sounds are typically short and discrete stimuli that are only infrequently played
throughout the experiment. Additionally, there is also one important difference in the

underlying cause of distraction in the two cases: while intelligible speech is distracting due
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to inherent properties of the speech sound itself (i.e., its semantic content; Martin et al.,
1988), deviant sounds cause distraction because they violate the predictions of the cognitive
system (Bubic et al., 2009; Parmentier, Elsley, et al., 2011). In fact, deviance distraction can
be eliminated if the presentation of the deviant sound is made predictable (Horvéath et al.,

2011; Sussman et al., 2003).

The traditional explanation of deviance distraction has been in terms of an
involuntary reorienting of attention away from the task at hand and towards the deviant
sound (e.g., Escera et al., 1998; Parmentier, 2014; Schroger, 1996). A more recent addition
to this explanation is that deviant sounds may also induce global motor inhibition some 150
ms after their presentation (Dutra et al., 2018; Wessel, 2017; Wessel & Aron, 2013). The
present results suggested that deviant sounds likely inhibit the programming of the next
saccade. This finding is consistent with both the orienting response and motor inhibition
explanations. The global motor inhibition account is relatively recent and has not been
developed theoretically in great detail yet. At present, it seems possible that the orienting
response and motor inhibition accounts may not be completely independent from each other.
For example, motor inhibition may be the first step in deviance distraction that aims to stop
ongoing actions, which could then facilitate the subsequent re-orienting of attention towards
the deviant sound (Wessel, 2017; Wessel et al., 2016; see also Wessel & Aron, 2017).
Alternatively, the orienting and motor inhibition effects may both be part of a complex
response to unexpected sound in the auditory environment. At any rate, the present results
point towards a possible role of motor inhibition in deviance distraction and would likely be

useful in guiding future research into this issue.
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Because the deviance distraction effect was consistent with a saccadic inhibition
explanation, a potential integration of this effect in existing models of eye-movement control
during reading would require it to be added to the saccadic programming stages of these
models. However, as SWIFT (Engbert et al., 2005) has adopted the same general
assumptions as the E-Z Reader model (Reichle et al., 1998) about the stages in which
saccade programming occurs, this could potentially make the cross-model integration of this
effect easier. In both models, programming of the next saccade occurs in two stages: 1) a
labile stage that can be cancelled by a concurrent saccadic programme, and 2) a non-labile
stage that can no longer be cancelled. One possibility for modelling this effect would be to
add a saccadic inhibition parameter that adds to the time needed to complete the current
saccadic programming stage. This assumption may have some biological plausibility if the
inhibition effect by deviant sounds reduces the firing of neurons that are involved in saccadic
programming (e.g., see Munoz, 2002 for an overview of the neural circuitry). The present
results do not make it possible to pinpoint the exact saccadic programming stage during
which such inhibition may take place. However, if this effect is due to a general inhibition of
the motor system (Wessel & Aron, 2013), it could be the case that the resulting inhibition is

functionally comparable in the two stages.

Given that both intelligible speech and deviant sounds resulted in distraction in eye-
movements during reading, it may be interesting to consider whether a single theory could
account for both types of auditory distraction that were studied in the present Thesis. One
such account that was outlined in Chapter 1 is the duplex theory of auditory distraction
(Hughes, 2014; Hughes et al., 2005, 2007). According to this theory, auditory distraction

occurs in two distinct forms: 1) interference-by-process (Marsh et al., 2008, 2009); and 2)
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attentional capture (Hughes et al., 2005; Vachon et al., 2012). As noted previously,
interference-by-process occurs when the irrelevant sound interferes with a process that is
important for the main task (e.g., semantic processing). On the other hand, the attentional
capture account can be considered to be equivalent to the orienting response explanation of

deviance distraction discussed in Chapter 6 and also above.

The present research is generally consistent with the duplex theory because there was
evidence for interference-by-process distraction in Chapters 3-5 and the deviance distraction
effect from Chapter 6 is also in principle consistent with the attention capture explanation.
However, even so, one limitation of the duplex theory is that its predictions are just a
combination of two already existing theoretical accounts. In other words, the duplex account
on its own does not add much to our theoretical understanding of auditory distraction beyond
the separate contributions of the interference-by-process and attentional capture accounts?:.
Ideally, further evidence would be required from a reading task that can show a unique
contribution of the duplex theory that goes beyond the two existing accounts. Therefore, at
present, separate accounts for distraction by intelligible speech and distraction by deviant

sounds in eye-movements during reading seems to be just as good of an explanation.

7.3. Practical Implications

The present research also has some practical implications for educational and work
settings where reading may be accompanied by irrelevant speech. For example, intelligible
speech is a common problem in open-plan offices and other shared work areas because they
often have poor acoustic privacy (Haapakangas et al., 2017, 2014; Schlittmeier & Liebl,

2015). As a result, irrelevant speech from nearby workers or phone conversations can have a

21 | thank Fabrice Parmentier for bringing this to my attention.
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negative impact on reading and other office tasks that rely on processing the meaning of
written text (e.g., proofreading or copying written information). The present results suggest
that intelligible speech in the background would likely result in slower reading of the text
due to the need for greater re-reading of previous words. This has direct implications for job
performance as workers will generally need more time to complete reading tasks if
intelligible speech is present in the background. Additionally, deficits in text comprehension
could also potentially occur if workers do not have enough time to engage in effective re-
reading of previous text in order to compensate for the experienced distraction. More
research in applied settings is required to test directly the magnitude of disruption in reading

performance among workers in open-plan offices.

Importantly, listening to music is also a common habit among office workers (Haake,
2006) and students who are studying or doing homework (Calderwood et al., 2014; David et
al., 2015). If the background music contains lyrics, it could also potentially have a negative
impact on reading efficiency much in the same way that intelligible speech does. Previous
research has not directly tested whether there is a difference in the magnitude of auditory
distraction in eye-movements during reading between intelligible speech and lyrical music?.
The results from the meta-analysis of previous findings in Chapter 2 suggested that
intelligible speech is just as distracting as lyrical music in measures of reading
comprehension. However, this finding may not necessarily extend to eye-movement
measures of second-pass reading where robust disruption effects by intelligible speech were

observed in Chapters 3-5. Therefore, it remains to be seen whether lyrical music leads to the

22 While Cauchard et al.'s (2012) study had both a background music and background speech manipulation,
the music stimuli were entirely instrumental and therefore had no verbal component. Additionally, Zhang et
al.'s (2018) study had a background music, but not background speech manipulation.
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same increase in re-reading behaviour and whether it has similar practical implications for

office workers and students who read in such auditory conditions.

Distraction by deviant or unexpected sounds also has practical implications for real-
world situations. However, unlike continuous distractors such as intelligible speech, deviant
sounds arguably have a lesser propensity to yield sustained distraction over a long period of
time. The reason for this is that the underlying cause of deviance distraction appears to be
the violation of regularity and the expectations of the cognitive system, rather than the
acoustic deviance of the sound itself (Bubic et al., 2009; Parmentier, Elsley, et al., 2011).
Therefore, if a deviant sound is first heard in the environment, it may likely yield distraction
as the findings from Chapter 6 and previous research (e.g., Parmentier, 2014) have
demonstrated. However, if the deviant sound is then continuously repeated afterwards, it
would eventually cease to be distracting as the appearance of the sound would gradually

become more predictable (and therefore less distracting).

Nevertheless, even if deviant sounds may not result in severe disruption of the
ongoing reading process, the present results still suggest that they would likely lead to a mild
but immediate inhibition of saccade programming when the sound is first heard.
Additionally, in real-world situations, it is possible that deviant sounds may also elicit an
orientating response of the head towards the source of the sound (see Sokolov, 1963, 2001).
Obviously, this was not possible in the experiment from Chapter 6 as the sound was
presented centrally through the headphones and participants’ head was firmly fixed on the
headrest in order to prevent artefacts in the eye-movement data. However, if participants are

free to move their head and if the spatial location of the sound is not always the same, this
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may result in an orientation reflex of the head. This last point is just a speculation at the

present moment, but it is an interesting question to study in the future.

7.4. Future Research

One interesting overall finding from the present research was that auditory distraction
effects in eye-movements during reading were relatively small in magnitude. In fact, many
of the significant results would be considered as “small” effects (d < 0.20) in J. Cohen's
(1988) classification, and the remaining ones would be considered as “medium” effects (d <
0.50). This is consistent with the meta-analysis of previous findings in Chapter 2, which also
found a very similar range of effects in behavioural measures of reading performance. The
small distraction effects are clearly a testament to how adaptable the reading system is under
different environmental conditions and how skilled readers can, for the most part,
successfully maintain sustained attention on the reading task while ignoring task-irrelevant
sounds. Therefore, even though background sounds such as intelligible speech are
subjectively judged to be fairly distracting and annoying (Haapakangas et al., 2011; Haka et
al., 2009; Landstrém et al., 2002), they do not lead to a complete breakdown of the reading
process. Rather, they only appear to result in transient episodes of (mild) distraction that
readers can overcome and still attain accurate comprehension when reading single sentences

or short paragraphs.

Nevertheless, it should be mentioned that the observed effects could potentially be
larger in certain participant populations. For example, children may show greater auditory
distraction effects due to their poorer control of attention and limited ability to filter out task-
irrelevant stimuli (A.-B. Doyle, 1973; Gomes, Molholm, Christodoulou, Ritter, & Cowan,

2000; Plude, Enns, & Brodeur, 1994). While no studies to date have compared distraction in
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eye-movements during reading between adults and children, there is some evidence from
behavioural studies suggesting that children may be distracted more than adults by certain
irrelevant sounds. For instance, novel sounds generally lead to a greater impairment of task
performance in younger children compared to older children or adults (Gumenyuk et al.,
2001; Gumenyuk, Korzyukov, Alho, Escera, & Naatanen, 2004; Wetzel, Scharf, &
Widmann, 2018; Wetzel, Schroger, & Widmann, 2016; but see Leiva, Andrés, Servera,
Verbruggen, & Parmentier, 2016). Additionally, there is also at least some evidence
indicating that children show a larger irrelevant-speech effect in serial-recall and serial-
recognition tasks compared to adults (Elliott, 2002; Elliott et al., 2016, Experiment 1; Elliott
& Briganti, 2012), although it should be noted that a number of studies that have failed to
find evidence for such age-related differences (Klatte, Lachmann, Schlittmeier, & Hellbruck,
2010; Roer, Bell, Korner, & Buchner, 2018; Schwarz et al., 2015). Therefore, future studies
should investigate whether the magnitude of auditory distraction in eye-movements during

reading is modulated by participants’ age.

Interestingly, skilled adult readers may also not be a completely homogenous group
in terms of their susceptibility to distraction by irrelevant sounds. In other words, even in a
sample of young, college-age adults, there may be considerable variability among
participants, with some of them showing very strong distraction effects, while others
showing mild effects or no distraction at all. For example, S. Forster and Lavie (2016) have
recently argued that an “attention-distractibility trait” may exist in the general population,
which confers greater vulnerability to distraction by task-irrelevant stimuli to some people.
The authors made this conclusion based on their finding that attention-deficit/hyper-activity

disorder (ADHD) symptoms in a non-clinical sample of young adults were significantly
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correlated with the disruption of task performance by irrelevant visual distractors. This
suggests that there may be certain traits that make some individuals more susceptible to
distraction than others. Additionally, there is some evidence indicating that not every
participant may show an irrelevant-speech effect, at least in a serial recall memory task.
More specifically, Ellermeier and Zimmer (1997) found that approximately one-eighth of
their participants (12.5%) either showed no irrelevant speech effect at all or the affect was in
the opposite direction. Furthermore, the effect sizes of individual participants also varied
considerably, sometimes even by over 300 %. It is currently not known how much
variability there is in distraction by intelligible speech or deviant sounds in eye-movements
during reading, or what factors may influence participants’ susceptibility to distraction.

However, these are all interesting questions that would be worth investigating in the future.

Future research may also benefit from studying other factors that could potentially
modulate distraction by intelligible speech. For example, there is evidence from behavioural
studies that increased task engagement (e.g., reading a visually degraded text or reading a
text in an unfamiliar font) reduces distraction by intelligible speech, presumably because it is
easier for participants to filter out the irrelevant speech sound when the focal task is more
demanding (Halin, 2016; Halin, Marsh, Haga, et al., 2014; Halin, Marsh, Hellman, et al.,
2014; Sorqvist & Marsh, 2015). Similarly, working memory and participants’ ability to
suppress the irrelevant speech sound may also modulate distraction by intelligible speech
(see Sorqvist, Halin, et al., 2010; Sérqvist, Ljungberg, & Ljung, 2010). However, as these
results have been found in behavioural measures such as comprehension accuracy, it is not
known yet whether they can also be extended to distraction in eye-movements during

reading. Finally, as Chapter 6 has illustrated, gaze-contingent presentation of auditory
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distractors can also be an effective tool in studying the immediate effect of different
distractors on the ongoing reading process. Therefore, this type of methodology also holds
promise in gaining a better understanding of auditory distraction in eye-movements during

reading.

7.5. Summary and Conclusion

Auditory distraction during reading has been a topic of interest for more than eight
decades and it will likely continue to be an active area of research in the future. While a lot
has been learned about the type of auditory environments that can give rise to distraction,
most of this literature has utilised behavioural indices of task performance, such as
comprehension accuracy, which only measure the end product of the reading process. The
research presented in this Thesis measured eye-movements during reading in an attempt to
find out what makes task-irrelevant sounds distracting and how they influence online reading
behaviour. The experiments focused on two types of distraction: distraction by intelligible

speech and distraction by deviant sounds.

Intelligible speech was found to disrupt online reading behaviour as a result of
semantic interference between the meaning of the speech sound and processing the meaning
of the written text. The distraction did not influence the lexical identification of words, but it
led to an increase in re-reading behaviour, which pointed towards an integration difficulty in
constructing the meaning of the sentence. However, this difficulty was limited only to the
currently read sentence and did not affect the integration of meaning across multiple
sentences. Additionally, the increase in re-reading behaviour was found to be important for
maintaining the immediate comprehension of short passages. Deviant sounds were also

found to cause distraction immediately after their presentation, but this was likely due to
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motor inhibition that slowed down the programming of the next saccade. Because there was
nothing special about deviant sounds other than the fact that they violated participants’
expectations, this suggests that distraction in eye-movements during reading is not only
limited to sounds that can be processed semantically. Research in this area is still in its
infancy and there are many important questions that are open for investigation. It is hoped

that the present research will serve as a stepping stone in addressing these questions.
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Appendix A

Chapter 2: Meta-analysis Study Inclusion Criteria

The study investigated the effect of experimental exposure to background noise,
speech, or music in a reading/ proofreading task.

Only studies investigating the immediate effect of background sounds on reading/
proofreading were included. Experiments that studied the effect of long-term
exposure to music as an intervention for reading were excluded. Studies that
investigated the effects of chronic exposure to traffic noise were also excluded.
The study contained a condition of reading in silence. This served as the baseline to
which background sound manipulations were compared. Studies without a silence
baseline were excluded.

The study had appropriate randomization and counter-balancing of the sound
conditions.

Participants were native speakers of the language in which they were reading.

The study was done with healthy, typically-developing participants (children or
adults).

The external environment or any additional manipulations did not introduce
confounds.

Participants were not tested on the contents of the sound that they were listening to
(e.q. speech).

The assessment task emphasized comprehension of the text rather than reproducing

the text from memory as accurately as possible.
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e The comprehension assessment did not occur too long after the reading phase
(usually within 10-15 minutes).

e The comprehension assessment was done in silence.



Appendix B

Information about the studies included in the meta-analysis in Chapter 2.
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Study Nc Ne Sample Design DV  Sound Sound type dB(A) g var
Sorqvist et al. 2010 40 A W RC speech native 725 -0.24 0.01
Sorqvist et al. 2010 40 A W RS speech native 725 -0.05 0.01
Ljung et al. 2009 70 50 C B RC noise traffic 62 -0.16 0.03
Ljung et al. 2009 70 50 C B RS  noise traffic 62 0.71 0.04
Ljung et al. 2009 70 66 C B RC speech babble 62 0.17 0.03
Ljung et al. 2009 70 66 C B RS speech babble 62 0.21 0.03
Fogelson 1973 14 14 Cc B RC  music pop - -042 0.14
Tucker & Bushm. 1991 75 76 A B RC music rock & roll 80 0.00 0.03
Daoussis & Mc K. 1986 24 24 A B RC music rock 50 -0.52 0.08
Etaugh & Michals 1975 32 A W RC music preferred - -0.08 0.02
Etaugh & Ptasnik 1982 20 20 A B RC music preferred - -0.74 0.10
Kiger 1989 18 18 C B RC music low load - 3.50 0.28
Kiger 1989 18 18 C B RC music high load - -0.69 0.11
Miller & Schyb 1989 49 49 A B RC music classical 475 011 0.04
Miller & Schyb 1989 49 49 A B RC music pop 475 023 0.04
Miller & Schyb 1989 49 49 A B RC music vocal 475 -0.46 0.04
Doyle & Furnham 2012 56 A w RC music vocal - 0.10 0.01
Anderson & Fuller 2010 334 C W RC music lyrical 75  -0.28 0.00
Furnham & Strbac 2002 76 C w RC noise office - -0.78 0.01
Furnham & Strbac 2002 76 C w RC music  vocal/unfam. - -0.83 0.01
Mullikin & Henk 1985 45 C w RC music classical - 0.39 0.01
Mullikin & Henk 1985 45 C w RC music rock - -0.33 0.01
Avila et al. 2011 19 20 C B RC music vocal/ familiar - -1.61 0.13
Avila et al. 2011 19 19 C B RC music Instr./ familiar - -1.93 0.15
Freeburne & Fleis. 1952 43 46 A B RC music classical - 0.02 0.04
Freeburne & Fleis. 1952 43 46 A B RS  music classical - -0.35 0.04
Freeburne & Fleis. 1952 43 42 A B RC music pop - 0.04 0.05
Freeburne & Fleis. 1952 43 42 A B RS music pop - -0.40 0.05
Freeburne & Fleis. 1952 43 40 A B RC music semi-classical - -0.08 0.05
Freeburne & Fleis. 1952 43 40 A B RS music semi-classical - -0.36 0.05
Freeburne & Fleis. 1952 43 37 A B RC music jazz - -0.17 0.05
Freeburne & Fleis. 1952 43 37 A B RS music jazz - -0.61 0.05
Fendrick 1937 61 62 A B RC music semi-classical - -0.47 0.03
Henderson et al. 1945 19 17 A B RC music classical - -0.12 0.11
Henderson et al. 1945 19 14 A B RC music pop - -1.07 0.14
Miller 2014 13 13 A B RC music classical lyrical - -0.84 0.16
Miller 2014 13 17 A B RC music classical instr. - 0.13 0.13
Miller 2014 13 11 A B RC music rock lyrical - -0.38 0.16
Miller 2014 13 18 A B RC music rock instr. - -0.45 0.13
Furnham & Allass 1999 16 16 A B RC music complex - -0.02 0.12
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Study Nc Ne Sample Design DV  Sound Sound type dB(A) g var
Furnham & Allass 1999 16 16 A B RC  music simple - -0.05 0.12
Furnham & Bradl. 1997 10 10 A B RC  music pop - -0.97 0.21
Furnham at al. 1999 43 49 C B RC music instrumental - -0.12 0.04
Furnham at al. 1999 43 47 C B RC music vocal - -0.07 0.04
Perham & Currie 2014 30 A \W RC music disliked lyrical 70 -0.71 0.02
Perham & Currie 2014 30 A W RC music non-lyrical 70 -0.16 0.02
Perham & Currie 2014 30 A \W RC  music liked lyrical 70 -0.60 0.02
Kelly 1994 13 12 A B RC music pop 65 -0.74 0.16
Dove 2009 28 28 A B RC  music sedat. classical 62,5 0.10 0.07
Dove 2009 28 28 A B RC music stimul. classical 62.5 0.81 0.08
Dove 2009 28 28 A B RS music  sedat. classical 62,5 -0.07 0.07
Dove 2009 28 28 A B RS music stimul. classical 62.5 -0.51 0.07
Furnham et al. 1994 20 A W RC  speech TV drama - -0.45 0.03
Johansson 1983 22 22 C B RC  noise continuous 51 0.28 0.09
Johansson 1983 22 22 C B RC  noise intermittent 67.4 021 0.09
Halin 2016 28 A w RC speech  native (easy) 60 -0.89 0.03
Halin 2016 28 A w RC speech native (diff) 60 -0.16 0.02
Halin 2016 28 A w RC  noise traffic (easy) 60 -0.35 0.02
Halin 2016 28 A W RC  noise traffic (diff) 60 -0.01 0.02
Halin 2016 28 A W RC noise  aircraft (easy) 60 -0.23 0.02
Halin 2016 28 A W RC  noise aircraft (diff) 60 -0.01 0.02
Smith-J. & Klein 2009 54 A W PR  speech native 65 -0.04 0.01
Cauchard et al. 2012 30 A W RC music instrumental 65 0.18 0.02
Cauchard et al. 2012 30 A w RC speech native 65 -0.17 0.02
Cauchard et al. 2012 30 A W RS  music instrumental 65 0.01 0.02
Cauchard et al. 2012 30 A W RS speech native 65 -0.20 0.02
Johansson et al. 2012 24 A W RC music preferred 65 -0.34 0.02
Johansson et al. 2012 24 A w RC music  non-preferred 65 -0.67 0.03
Johansson et al. 2012 24 A W RC  noise cafe 65 -0.31 0.02
Johansson et al. 2012 24 A W RS  music preferred 65 -0.14 0.02
Johansson et al. 2012 24 A w RS music  non-preferred 65 -0.10 0.02
Johansson et al. 2012 24 A W RS  noise cafe 65 -0.07 0.02
Weinstein 1974 15 18 A B PR"  noise teletype 70 -0.56 0.12
Weinstein 1974 15 18 A B PR*  noise teletype 70 -1.26 0.14
Weinstein 1977 29 A w PR" speech native 68  -0.03 0.02
Weinstein 1977 29 A \W PR* speech native 68 -0.29 0.02
Martin et al. 1988, E1 36 A W RC  speech native 82 -0.20 0.01
Martin et al. 1988, E1 36 A W RC speech random 82 -0.18 0.01
Martin et al. 1988, E1 36 A W RC  music instrumental 82 0.00 0.01
Martin et al. 1988, E1 36 A W RC  music random tones 82 -0.11 0.01
Martin et al. 1988, E1 36 A w RC noise white 82 -0.04 0.01
Martin et al. 1988, E2 36 A W RC  music instrumental 82 0.02 0.01
Martin et al. 1988, E2 36 A W RC  music lyrical 82 -0.08 0.01
Martin et al. 1988, E4 48 A W RC noise white 82 -0.11 0.01
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Study Nc Ne Sample Design DV Sound Sound type dB(A) g var
Martin et al. 1988, E4 48 A W RC  speech native 82 -0.31 0.01
Martin et al. 1988, E4 48 A W RC  speech foreign 82 -0.15 0.01
Martin et al. 1988, E5 48 A W RC noise white 82 -0.21 0.01
Martin et al. 1988, E5 48 A W RC  speech non-word 82 -0.20 0.01
Martin et al. 1988, E5 48 A W RC speech  random words 82 -0.33 0.01
Cool et al. 1994, E2 9 C w RS  music  radio/ generic - 0.13 0.05
Cool et al. 1994, E2 9 C w RS  speech movies - 0.20 0.05
Cool et al. 1994, E2 9 C W RC  music radio/ generic - -0.12 0.05
Cool et al. 1994, E2 9 C W RC  speech movies - -0.22 0.05
Mitchell 1949 91 C w RTS music radio/ generic - -0.01 0.01
Armstrong et al. 1991 33 30 A B RTS speech TV ads - -0.63 0.07
Armstrong et al. 1991 33 32 A B RTS speech TV drama - -0.48 0.06
Pool et al. 2000, E1 30 30 C B RC  speech TV soap opera 60 -0.38 0.07
Pool et al. 2000, E1 30 30 C B RC  music TV music 60 -0.21  0.07
Pool et al. 2000, E2 48 24 C B RC  speech TV soap opera 60 -0.57 0.06
Pool et al. 2000, E2 48 24 C B RC  music TV music 60 -0.10 0.06
Dockrell & Shield 2006 52 52 C B RTS noise babble 65 -0.49 0.04
Dockrell & Shield 2006 52 52 C B RTS noise babble+environ. 65 0.58 0.04
Hy6nd & Ekh. 2016, E1 42 A w RC  speech native 825 -0.17 0.01
Hyona & Ekh. 2016, E1 42 A w RC  speech foreign 825 0.00 0.01
Hyona & Ekh. 2016, E1 42 A w RS  speech native 825 -0.02 0.01
Hy6na & Ekh. 2016, E1 42 A w RS  speech foreign 825 0.06 0.01
Hy6nd & Ekh. 2016, E2 36 A w RS speech scrambl.-differ. 825 -0.15 0.01
Hyona & Ekh. 2016, E2 36 A w RS  speech  scrambl.-same 825 -0.18 0.01
Hyona & Ekh. 2016, E3 35 A w RS  speech native 825 -013 0.01
Hy6nd & Ekh. 2016, E3 35 A w RS  speech scrambled 825 -0.20 0.01
Hyona & Ekh. 2016, E4 36 A w RS  speech scrambled-sem. 825 -0.11 0.01
Hyona & Ekh. 2016, E4 36 A w RS speech scrm-syn+sem 825 -0.14 0.01
Armstrong & Chng RC
2000 19 20 A B speech native - -0.09 0.10
Madsen 1987, E1 50 50 A B RC  music various 75 -0.10 0.04
Sorgvist 2010, Ela 23 C W RC noise aircraft 575 -0.13 0.02
Sorqgvist 2010, E1b 23 C w RC  speech native 575 -051 0.03
Sorqvist et al. 2010, E1 24 A w RC  speech native 65 -0.46 0.02
Sorqvist et al. 2010, E2 42 A w RC  speech native 65 -0.30 0.01
Halin et al. 2014 32 A w RC  speech native 65 -0.10 0.02
Halin et al. 2014, E1 31 A w PR*  speech native 65 -0.09 0.02
Halin et al. 2014, E1 31 A W PR" speech native 65 0.20 0.02
Halin et al. 2014, E2 29 A W PR!  speech native 65 -0.13 0.02
Halin et al. 2014, E2 29 A W PRT speech native 65 0.11 0.02
Haapakangas et al. 2011 54 A w PR*  speech native 48 -0.09 0.01
Haapakangas et al. 2011 54 A w PRT speech native 48 -0.11 0.01
Baker & Madell 1965 24 A w RC  speech native - -0.70 0.03
Vasilev et al. 2017 40 A W RC  noise speech-spectr. 60 -0.03 0.01
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Study Nc Ne Sample Design DV  Sound Sound type dB(A) g var
Vasilev et al. 2017 40 A w RC  speech foreign 60 -0.01 0.01
Vasilev et al. 2017 40 A w RC  speech native 60 -0.07 0.01
Vasilev et al. 2017 40 A w RS noise  speech-spectr. 60 0.04 0.01
Vasilev et al. 2017 40 A W RS  speech foreign 60 -0.06 0.01
Vasilev et al. 2017 40 A wW RS  speech native 60 -0.15 0.01
Falcon 2017, Sample 1 22 20 C B RC  music classical 55  -0.26 0.09
Falcon 2017, Sample2 25 28 C B RC  music classical 55 1.32 0.09
Ahuja 2016 20 A W RC  music liked 60 -0.71 0.04
Ahuja 2016 20 A w RC  music disliked 60 -0.08 0.02
Kou et al. 2017 31 29 A B RC  music  pop (vocal) 65  0.37 0.07
Kou et al. 2017 31 32 A B RC  noise office 65 -0.13 0.06
Sukowski et al. 2016 12 A W PR speech native 59.5 -0.62 0.05
Yan et al. 2017 42 A W RS speech native 62 -0.16 0.01
Yan et al. 2017 42 A W RS speech  meaningless 62 0.06 0.01
Gillis 2016 24 47 A B RC  music various - 0.07 0.06

Table A1. A Summary of the studies that were included in the meta-analysis from Chapter 2

and their effect sizes. Nc: number of participants in the control (silence) condition. Ne:

number of participants in the experimental (sound) condition. DV: dependent variable. RC:
Reading comprehension. RS: reading speed. RTS: Reading test score. PR: Proofreading
accuracy. g: Effect size in Hedges’ g. var: effect size variance. A: adults. C: children. W:
within-subject design. B: between-subject design.

1 Non-contextual errors (proofreading accuracy)

TContextual errors (proofreading accuracy)
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Appendix C

Supplementary analyses for the meta-analysis in Chapter 2.

Visualization of the Effect Sizes
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Figure Al. Box plots and probability densities of the effect sizes included in the meta-
analysis. Breakdown shown by: background sound type (panel a), dependent measure (panel
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b), age of participants (panel c), and study design (panel d; computed after transforming
within-subject effect sizes with Morris & DeShon’s, 2002, formula 11). Red rectangle shows
one effect size that was excluded as an outlier.
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Figure A2. Funnel plot of reading speed effect sizes plotted against their standard error (a)
and the inverse of their standard error (b).

Prior Sensitivity Analysis
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Figure A3. Sensitivity analysis with different priors on the 6 and T parameters for the main
meta-analysis results. Uniform priors (dark red) were used in the analysis reported in
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Chapter 2. The results show that using diffuse normal priors (orange) did not change the
main results reported in the paper. All: all studies. RC: reading comprehension. RS: reading
speed. Effective sample size of the MCMC chains for 0 (from left to right): 91803, 96976,
20915, 25462, 93678, 100908, 92499, 98585, 47662, 54666. Effective sample size of the
MCMC chains for 1 (from left to right): 53392, 53451, 18985, 19517, 67441, 68050, 71910,
72202, 11786, 12392.

Robustness Check (Leave-one-out Method)

Robustness analyses were carried out by using the leave-one-out method (see
Greenhouse & lyengar, 2009) to ensure that individual studies did not have undue influence
on the results. In this method, the meta-analysis is repeated by omitting one different study
each time. The summary statistics of the results are reported in Table A2. Overall, the effect
sizes changed little by omitting each one of the studies. The effect size range for
proofreading accuracy was slightly bigger, but this was likely due to the small number of
studies in this analysis (N= 7). This greater variability is not unusual for random-effects
meta-analysis with few studies because there is more uncertainty in estimating the between-

study variance in the model (see Welton et al., 2012).

Leave-one-out
ES reported

Analysis in the Thesis M;gn SDofES MInES  MaxES

Reading comprehension

All sounds -0.21 -0.21 0.006 -0.23 -0.19

Noise -0.17 -0.17 0.02 -0.19 -0.11

Speech -0.26 -0.26 0.01 -0.28 -0.24

Music -0.19 -0.19 0.01 -0.22 -0.16
Reading speed -0.06 -0.06 0.01 -0.09 -0.05
Proofreading accuracy -0.14 -0.15 0.04 -0.19 -0.08

Table A2. Summary of the robustness analysis using the leave-one-out method.
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Lyrical vs Non-Lyrical Music: Meta-regression Robustness Check

Some of the included studies had effect sizes for both lyrical and non-lyrical music.
In order to avoid stochastical dependency among the effect sizes included in this meta-
regression analysis, it was necessary to ensure that each study contributed one and only one
effect size to either the “lyrical” or “non-lyrical” group. In Chapter 2, the effect sizes were
divided into the two groups in a way that maximized the number of effect sizes per group.
This is because meta-regressions with larger and more balanced number of observations per
group would generally yield more informative results. However, to check for subjectivity in
this decision, we did the opposite division of the effect size to compare the results (this will
be referred to as the “alternative coding”). The resulting posterior distributions of the mean
difference are plotted in Figure A4. As it can be seen, the estimated mean difference was
slightly smaller. In the model reported in Chapter 2, there was 95% probability that lyrical
music was more distracting than non-lyrical music. For the model with alternative coding,
this probability was 83%. Therefore, even though there was slightly more uncertainty and
the mean difference was slightly smaller with the alternative coding, the main conclusions

remain unchanged.
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Lyrical vs non-lyrical music:
Meta-regression results

1.0

b=-0.19 b=-0.13

Mean difference (g)

<
—
1

T I
Paper Alternative coding

Model

Figure A4. A plot of the posterior distributions of the estimated mean difference in effect
sizes between lyrical and non-lyrical music. Plotted are the model reported in Chapter 2
(orange) and the model done with the alternative coding of the effect sizes (blue). The results
indicate that the decision of which coding to use did not affect the conclusions in Chapter 2.
Effective sample size of the MCMC chains for : 11455 (model reported in Chapter 2),
11695 (model with alternative coding).

Unavailable Data

Due to that fact that four studies did not contain enough information to compute
effect sizes and to include them in the meta-analysis, statistical simulations were carried out
to explore the consequences of this. The relevant information about these studies is
summarised in Table A3. For each study, a realistic interval was computed that should
contain the effect size of interest given the available information. The simulations were done
by taking 10 000 random draws from a Uniform distribution using the effect size bounds in

Table A4. For the variance component, a random draw was also taken from a Uniform
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distribution with bounds corresponding to the range of variance values in the dataset. The
random draws were taken from Uniform distributions to denote ignorance about where on
the interval the real value may lie. Each randomly generated effect size was added to the
dataset that was analysed in the paper and the meta-analysis was then repeated. The results
from the simulations are presented in Table A4 and compared to the effect sizes reported in
the main paper. As the simulations show, the results changed very little or not at all when the
missing effect sizes were simulated and then added to the analyses. Therefore, the lack of
access to the effect sizes of these fours studies did not bias the conclusions from the meta-

analysis.

) ) ) Anticipated
Study N  Measure Sound Available information )
effect size

_ 2.37% increase in reading score in
Hall (1952) 245 RC Music ) . 0<g<0.5
the music condition

) Effect size known, but not the
Gawron (1984)  32f RC Noise o ) |g|= 0.048
direction of the difference

No sign. differences and “no

Slater (1968) 263 RC Noise trends indicative of... [an] effect” -0.2<g<0.2

(p. 242)
Jones et al. F-value <1; effect size is negative .
16 PR Speech _ -0.13<g<0*?
(1990), E2 based on the means in Table 2

Table A3. Information about studies with unavailable data and their anticipated effect sizes.
RC: reading comprehension accuracy. PR: proofreading accuracy. N: (combined) sample
size. All effect sizes are with Morris and DeShon’s (2002) correction (where applicable).

1 Only two schedules (2x16 participants) are relevant to the analysis

1 -0.13 is the lowest possible bound since this would correspond to the effect size when the
F-value is 1.
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) ES Results from 10 000 simulations
Analysis T— . —
(paper) Mean ES Range Mean distribution  Variance distribution
PR -0.14  -0.13(0.01) [-0.15,-0.10] Uniform(-0.13,0)  Uniform(0.01, 0.13)

RC: Music  -0.19 -0.19 (0.004) [-0.20,-0.17] Uniform(0, 0.5) Uniform(0.01, 0.20)
RC:Noise -0.17  -0.16(0.01) [-0.17,-0.13] Uniform(-0.2,0.2)" Uniform(0.01, 0.08)

Table A4. Results from the statistical simulations with missing data (SDs in parenthesis).
RC: reading comprehension. PR: proofreading.

T Used for Slater’s (1968) study. For Gawron’s (1984) study, the effect size was positive for
half of the simulations (g= 0.048), and negative (g= -0.048) for the remaining half.
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Appendix D

Sentence stimuli used in Chapter 3. The target words are formatted in bold. In each
sentence, the first word in bold is the high frequency target word, and the second word in

bold is the low frequency target word.

Mrs. Clark is a social/ chatty person who gets along with everybody.

Hannah enjoyed the modern/ trendy artworks at the museum of contemporary art.
The house was immediately recognisable by its green/ beige fence and big windows.
The building inspector examined the large/ leaky roof of the house in the morning.
Building a house requires a massive/ sizable amount of money that few people have.
The bike was strong/ sturdy enough to be used on the bumpy roads in the mountain.

N o a k~ w e

In some schools, subjects such as art and music play a special/ trivial role in the

curriculum.

8. The local schools were criticised for their liberal/ lenient policy towards pupil
truancy.

9. To care for soft/ pale skin in the summer, the dermatologist recommended a special
cream.

10. The company's updated logo featured a blue/ cyan star in the foreground.

11. Jim prepared a nice/ neat outfit for his best friend's wedding.

12. The crowd listened to the famous/ solemn hymn before the start of the main event.

13. The children all had a lovely/ cheery smile on their face in the photo taken at the zoo.

14. During the financial crisis, the clever/ astute merchant invested money in real estate.

15. The archaeologists suspected that the tool was common/ unused before the era of
Neanderthals.

16. The TV guest explained how his serious/ austere attitude to life helped him stay
disciplined.

17. The host family gave a welcome/ sincere gift to the noble couple that was visiting

them.

18. Despite the high price, the hotel room had a central/ frontal view of the ocean.
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274

There are many critics of the classic/ archaic prison system that is still in use today.
Sarah always tried to make a careful/ prudent use of her hard-earned money.

The children immediately liked the new cat with its white/ furry paws and playful
behaviour.

Linda used the short/ blunt pencil to write a quick note on the fridge.

Some citizens were concerned with the quick/ rapid growth of tourism in the area.
The little town was known for its local/ famed brewery with 400 years of tradition.
People saw Samantha as a happy/ nerdy girl who did very well in her studies.
After winning the national competition, the young/ agile athlete had a promising
career.

For many species, the quiet/ dense forest is an ideal natural habitat.

The taxi driver struggled to put the heavy/ bulky suitcase in the back of the car.
The small child was riding a bike while his proud/ stern father was keeping an eye
on him.

The little girl liked to sleep with her lucky/ plush toy next to her.

David's friends were tired of listening to his usual/ stale jokes all the time.

The progress of the bright/ docile student made his teacher very proud.

Thanks to the proper/ prompt response of the mayor, the dispute was quickly
resolved.

Mark tried to keep a normal/ casual tone after finding out about the secret.

Many spectators were fascinated by the long/ wavy hair of the lead actress.

Jane didn't like the taste of the free/ iced cake at her company's banquet party.

The hotel guests liked the warm/ airy reception area with its big windows and cosy
sofas.

Alex is the keen/ avid type of golfer who plays every weekend regardless of the
weather.

The mountaineers experienced cold/ numb feet due to the heavy snowfall.

For small children, even a calm/ tame dog can be a cause of fear.

In the big city, there was a real/ dire need to build more residential buildings.

John knew that the next/ mock exam requires little preparation.

Some people find the natural/ calming sound of rain drops conducive to sleep.
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The party included a number of popular/ notable guests from the capital.

Despite its long history, the private/ baroque castle was shrouded in mystery.

Many of the bus passengers became nervous/ fearful due to the bad road conditions.
Because of his current/ chronic medical condition, Jake could not travel abroad.
The farm consisted of large areas of yellow/ fallow soil that were intended for
growing crops.

There were complaints despite the double/ hourly payment rate for the new project.
The general public was not happy about the secret/ futile actions of the defence
ministry.

Situated at the outskirts of the city, the public/ wooded area was neglected for many
years.

The construction company was fined for the latest/ costly delays in building the new
stadium.

The start-up company was hoping to keep up the average/ booming rise in their sales.
The central bank imposed new regulations for foreign/ virtual currency in the
country.

Katy remained positive despite the sorry/ bleak financial situation that she was in.
The scientists came up with a likely/ viable solution to the problem of growing food
in space.

The landlord made the final/ hasty decision to sell his property and retire abroad.
The LED lamp was a small/ faint source of light that left most of the room dark.
The secretary was in total/ utter disbelief after she was accused of embezzlement.
The protagonist of the book relied on her human/ feral instincts to survive in the
forest.

The news reporter caused controversy with his unusual/ graphic account of the
events.

Doing exercise is believed to alleviate certain/ cardiac diseases and improve mental
wellbeing.

The emergency services took further/ drastic measures to ensure the safety of the

population.
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The audience was pleased/ stunned after the fantastic performance of the theatre
group.

The newly built street/ avenue was designed to reduce traffic in rush hours.

The camera recorded the driver/ robber while he was speeding down the highway.
The autobiography explained how the author's brother/ sibling helped him rise to
fame.

Elizabeth likes to spend time with her family/ spouse whenever she comes home.
According to the commission, the island/ lagoon should be better protected from
pollution.

For breakfast, Jason ate the food/ stew that was left from the previous night.

Many students could not understand the idea/ gist without reading the text twice.
Last night, Joseph stopped by the wine/ pawn shop on his way home.

During a family visit to the village, the child saw a horse/ stork behind the empty
barn.

Jack visited the market/ tavern situated just outside of the city centre.

The old lady needed a friend/ helper who could assist her with cleaning the house.
Just like every other person/ broker working in the office, Lisa wanted to earn a lot
of money.

After reports of smell/ odour coming from the basement, the gas company sent a
response team.

During the summer, the hotel/ motel attracted many tourists with its low prices.
Mary sold the old house/ shack hidden in the shades of the nearby forest.

The traditional dish had the sweet taste/ aroma unique to the food in that region.
Karen read a book on how the concept of faith/ karma evolved throughout the
centuries.

The documentary showed a series of crime/ heist cases that still remain unsolved.
For the upcoming performance, the stage/ foyer inside the theatre had to be
decorated.

Not long after the fight/ brawl escalated in the bar, the police asked everybody to
leave.

The teacher used a glass/ prism coated in black to demonstrate the properties of light.
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The large production of sugar/ maize proved to be a big boost for the economy of the
country.

The maintenance of the water/ sewer pipe made it necessary to close the whole road.
The manager asked the staff/ clerk handling the finances to be careful with the
paperwork.

None of the trainees could work at the speed/ tempo set by their supervisor.

The lack of rain/ haze outside made it possible to conduct the field experiment.
Because of problems with the line/ cord last night, the telephone could not be used at
all.

Megan prepared the cheese/ lentil soup that her grandmother taught her.

The budget included money for a system/ server upgrade that would solve the current
ISsues.

The discovery of the missing record/ folder shed new light on the police
investigation.

The professor explained that the picture/ proverb dates back to at least 500 years.
The new theory led to a problem/ paradox which was seemingly very difficult to
solve.

The company developed a new type of hair oil/ gel intended for everyday use.
Because the man was sleeping, his wife/ maid answered the phone.

The instructor explained that the mistake/ theorem found in the textbook should be

ignored.

100. Vanessa realised she had forgotten her money/ purse when she was in front of the

supermarket.

101. In recent years, there are more students interested in sport/ chess events in the city.

102. The restaurant offered a fruit/ mango pudding as a desert of the day.

103. Last year, a law was enacted to help preserve the fish/ swan numbers in the

wilderness.

104. The patient reported feeling a strange sensation in her foot/ heel prior to her

admission.

105. The rules of the game are that if a card/ dice falls on the ground, the player skips a

turn.
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106. Historians believe that the ancient city/ tomb served as a tribute to the Roman gods.

107. The dog barked at the bird/ crow nesting in the branches of the tree.

108. The new book introduced readers to the kitchen/ cuisine typical for Mediterranean
countries.

109. The investigation showed that the light/ stove started the fire in the kitchen.

110. The young family was looking to buy a new table/ couch suitable for their living
room.

111. The businesswoman picked her lunch/ scarf lying on the table and headed towards
the elevator.

112. The candidate wanted to appeal to every media/ voter following the election
campaign.

113. Wearing floral clothes became the latest style/ craze quite quickly in some countries.

114. Margaret benefited a lot from the advice of her father/ mentor during her school
years.

115. The television didn't believe that the new show/ duet idea would attract a lot of
viewers.

116. The military leader examined the weather/ terrain map before he planned the
operation.

117. The author's book lacked the quality/ clarity needed to get a good contract.

118. During the weekend, Jenifer removed all the clothes/ clutter scattered in her attic.

119. Only the fearless captain/ swimmer dared to go out in the sea when a storm was
coming.

120. Sally bought flowers for the bedroom/ doorway upon moving into her new house.

121. In the library, the history/ archive section was closed due to the ongoing renovation
works.

122. Some viewers didn't like the boring message/ trailer shown before the actual movie.

123. The new vaccine has wide implications for society/ mankind because of its high
success rate.

124. After finishing his meeting/ lecture early in the morning, the student was free to go

home.
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125. Located next to the river, the historic village/ mansion offered a picturesque view of
the area.

126. The maintenance of the impressive garden/ facade required a substantial amount of
money.

127. To ensure the quality of bulbs, the company tests every piece/ batch produced in the
factory.

128. After the house was fully cleaned, the floor/ porch shined in the sunlight.
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Appendix E

Supplementary analyses from Chapter 3.

Chapter 3: Post-hoc Analysis of All Words in the Sentence

One possible explanation for the lack of a significant interaction between background
sound and lexical frequency in Chapter 3 could be a lack of statistical power. In order to test
this possibility, frequency norms were obtained for all words in the sentence and these were
entered into a model for which we used the entire eye movement data set. This analysis
provided greater statistical power because all of the words in the sentence are analysed, not
just the target word. The breakdown of the whole data by fixation duration measure is
presented in Figure A5 and the results from the LMMs are shown in Table A5. Consistent
with the target word analysis, lexical frequency failed to interact with the contrast between
English speech and the remaining background sound conditions. Additionally, TVT was
significantly longer in English speech compared to all other sound conditions (Silence: d= -
0.15; Noise: d=-0.17; Mandarin: d=-0.10), which also replicates the results from the target
word analysis. However, similar to the target word analysis, there were no effects of English
speech on first-pass reading measures (FFD or GD). There were also no statistically
significant differences between the Mandarin and Noise condition for any of the measures

(all ps >.07).
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Figure A5. Mean fixation time measures on all words in the sentence in Chapter 3 for each
of the background sound conditions. FFD: first fixation duration. GD: gaze duration. TVT:
total viewing time. Shading shows standard error.

. FFD GD TVT!
Fixed effect
b SE t p b SE t p b SE t p

Intercept 5.3 02 3247 <001 54 02 2402 <001 56 .03 1672 <.001
Freq -04 <01 -1314 <001 -09 <.01 -21.19 <001 -15 <.01 -29.70 <.001
Eng vs Slc -01 01 -1.58 24 -02 .01 -1.98 11 -06 .02 -371 .001
Eng vs Noise -01 01 -1.59 24 -02 .01 -215 08 -09 .02 -574 <001
Eng vs Mnd <-01 .01 -71 .70 -01 .01 -140 34 -05 .01 -376 .001
Freq: Eng vs Slc -01 <01 -1.69 .18 -01 .01 -107 57 01 .01 175 .16
Freq: Eng vs Noise -.01 <01 -1.15 .50 <-01 .01 =17 1 .01 .01 1.23 A4
Freq: Eng vs Mnd <-01 <01 -82 82 <01 .01 -.63 1 01 01 111 54

Table A5. LMM results from the post-hoc analyses with word frequency in Chapter 3. Freq:
Lexical frequency. Eng: English. Slc: Silence. Mnd: Mandarin. FFD: first fixation duration.
GD: gaze duration. TVT: total viewing time. Statistically significant p-values are formatted

in bold.

! Background sound was removed as a random slope for items due to convergence issues

(intercept was retained).
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Chapter 3: Sensitivity Analysis of the Bayes Factor T-tests on Comprehension

Accuracy
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Figure A6. Sensitivity analysis of the computed Bayes Factor from Chapter 3 with a range of
realistic priors. Bayes Factors greater than 1 indicate evidence for the alternative hypothesis,
while Bayes Factors smaller than 1 indicate evidence in support for the null hypothesis. Red
square shows the default prior that was used in the analysis. The figures show that the results
are robust and were not influenced by the default width of the Cauchy prior distribution that

was chosen (r=/2/2).
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Appendix F

Supplementary analyses from Chapter 4.

Chapter 4: Sensitivity Analysis of the Bayes Factors on Comprehension Accuracy
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Figure A7. Sensitivity analysis of the computed Bayes Factor from Chapter 4 with a range of
realistic priors. Bayes Factors greater than 1 indicate evidence for the alternative hypothesis,
while Bayes Factors smaller than 1 indicate evidence in support for the null hypothesis. Red
square shows the default prior that was used in the analysis. The figures show that the results
are robust and were not influenced by the default width of the Cauchy prior distribution that

was chosen (r=v2/2).
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Appendix G

Supplementary analyses from Chapter 5.

Chapter 5: Sensitivity Analysis of Bayes Factor Tests of Comprehension Accuracy
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Figure A8. Sensitivity analysis of the Bayes Factor regression analyses comparing
comprehension accuracy across the sound conditions in Chapter 5, Experiment 1. The results
show that using a range of realistic prior distributions does not change the results from the
analysis. Therefore, the conclusions are not influenced by the width of the chosen Cauchy

prior distribution (r=/2/2).
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Figure A9. Sensitivity analysis of the Bayes Factor model comparing comprehension
accuracy between English speech and Silence as a function of reading condition (hormal vs
trailing mask) in Chapter 5, Experiment 2. The results show that using a range of realistic
prior distributions does not change the results from the analysis. Therefore, the conclusions
are not influenced by the width of the chosen Cauchy prior distribution (r=/2/2).
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Appendix H

Stimuli sentences used in Chapter 6. The words in bold denote the target words on which the

sounds were played in the sentence.

1) The couple bought another carpet for their living room before returning home
from shopping.

2) Theodore eventually found the right road after getting lost twice driving his car in
the area.

3) The teenagers used the private area behind the apartments to practise playing
basketball.

4) Susan contemplated buying the antique painting when she visited the auction
house in the capital.

5) Cathy was nervous about giving the short speech before the panel of judges.

6) The midwife admired the serene baby following the difficult birth earlier in the

day.

7) The cook ordered the fresh organic fruits to support the farmers who produce
them locally.

8) The mayor stepped down after his insensitive comments created a social media
scandal.

9) Yesterday, Nicole made a brief comment concerning her manager that caused a
scandal.

10) Without her glasses, Margaret struggled to read the road signs during her driving
test.

11) The workers replaced the faulty bathtub which had caused the entire first floor to
be flooded.

12) The clever merchant invested money in real estate during the financial crisis that
shook the market.

13) Katy remained positive, despite facing financial problems that threatened to ruin
her business.

14) Carmen couldn't find her yellow shirt when she unpacked her clothes from the
trip.

15) His mother purchased the crimson cottage after going through many online ads
for a summer home.

16) When the issue was discovered, the employee unwisely took the blame for the
incident.

17) The officer started his investigation by questioning any witnesses who might
have seen the perpetrator.

18) For the position, only competent and experienced candidates would be invited for
an interview.

19) The young author didn’t realise that writing her article would cause so much
controversy.

20) The new hotel had impressive dining halls that featured expensive pieces of art.
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21) The loud construction noise annoyed many residents, who preferred to spend a
quiet afternoon at home.

22) The lawyers criticised the latest report because it provided no useful evidence for
the case.

23) The forecast warned about strong winds, accompanied by occasional rain,
throughout most of the day.

24) They debated whether using better surveillance equipment would deter potential
thieves and improve security.

25) The child pestered the yellow fish that was hiding behind pondweed leaves in the
aquarium.

26) The witness remembered very clearly the brown leather jacket that belonged to
the suspect.

27) The detective noted the evasive statement that Sam gave to explain his suspicious
behaviour.

28) The waitress assured the customer that every food item was prepared from fresh
ingredients.

29) The players remained focused despite initially losing the first three rounds of the
game.

30) The student lost points because she used faulty reasoning to explain the concept.

31) The increasing number of cyber crime offences has prompted discussions about
tougher laws.

32) The residents’ peace was disturbed by thousands of visitors who flocked to the
town centre.

33) The technician provided expert knowledge that helped locate suspects in
connection with the robbery.

34) The new street was designed to reduce traffic congestion and improve safety for
all road users.

35) The old lady needed somebody to help her clean the spacious three-bedroom flat.

36) The small hotel was known for providing cheap accommodation and good quality
service.

37) The candidate wanted to appeal to every media following the election campaign
this year.

38) The general examined the evidence of military drills conducted in secret by the
enemy.

39) The central bank published revised regulations regarding foreign currency and
money transfers from abroad.

40) The landlord made the decision to sell his property and retire to the countryside.

41) The brave little boy tried to rescue the dog which couldn’t get out of the river.

42) Surprisingly, the trip was cancelled after reports of unrest caused concern among
the organisers.

43) Some local farmers received money from government programmes because they
wanted to buy more land.

44) The enormous cave is largely unexplored because its remote location makes it
difficult to reach.

45) Melissa decided against going home after work and, instead, took salsa lessons
with her friends.
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46) To Jane’s surprise, the flower somehow managed to survive the blazing heat with
very little water.
47) The taxi driver had trouble finding customers and decided to call it a day.

48) The doctor examined the patient who complained of constant headaches during
the past week.

49) The scientists investigated the bright energy bursts that appeared to come from
outer space.

50) Because the road looked steep and difficult to climb, the cyclists pushed their
bikes.

51) The president wants to stay in politics after completing his term later this year.

52) Kristin was surprised to receive an honourable mention during the prize award
ceremony.

53) The car engine problems started because someone had damaged a valve during
the maintenance.

54) Hannah enjoyed visiting the Museum of Modern Art during her holiday in the
USA.

55) The beautiful island was unknown to most people visiting the tropical country
due to its small size.

56) The start-up company scored record high sales soon after it opened for business.

57) The reclusive monastery had hardly any contact with outsiders and maintained a
simple way of life.

58) The students learned how computer programs could soon assist medical staff with
making diagnoses.

59) The water supply was interrupted while works were underway to replace an old
pipe.

60) The documentary showed a series of crime cases which remain unsolved until
today.

61) The mountain trail was steep and difficult to navigate without proper climbing
gear.

62) John always admired the courage his brother showed when facing difficult
situations in life.

63) The admiral ordered his troops to investigate the strange signal detected from the
seabed.

64) Many endangered species will receive much needed protection once the natural
reserve is open.

65) The flight attendant was offered her position after completing a long training
programme.

66) The client asked for another evening dress that matched her velvet boutique
shoes.

67) The government tried to support the interest in solar power technology in the
private sector.

68) The buffet offered many different food options, which included both continental
and British meals.

69) Because the weather was cold and windy, the children weren’t allowed to play
outside.

70) The landlady asked the tenants to keep the house clean during their stay there.
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71) The couple celebrated their tenth wedding anniversary by visiting the place
where they first met.

72) The new computer factory promised to create more jobs and attract specialists
from nearby towns.

73) The charity tried to raise more money for improving healthcare facilities in
developing countries.

74) The supermarket chain had ambitions to expand their operation to nearby
countries in the future.

75) The club aimed to foster cultural awareness and friendship among people of
different nations.

76) The strong currency attracted investments from foreign companies interested in
expanding their business.

77) The young mother was tired of seeing her children play pranks on each other all
the time.

78) The campers realised that forested areas offer better protection from wild animals
and mosquitoes.

79) The severe drought affected many farmers despite the water irrigation systems
that were installed.

80) The heavy rain storm forced some businesses in town to remain closed after the
streets were flooded.

81) The poet spent the whole summer writing short stories for another book project.

82) The mission failed to uncover the enormous pirate treasure, which some believe
is buried in the ocean.

83) The journalist finished her assignment and prepared several good questions
before the interview.

84) The forest fire spread quickly and gave the firefighters little time to bring it under
control.

85) The reporters covering the case were barred from entering the courtroom during
the first hearing.

86) The old mine was finally shut down after decades of digging had completely
exhausted it.

87) The mathematical proof was clever, but difficult to understand for most of the
scientists.

88) The school children enjoyed visiting the Museum of Natural History during their
trip to the capital.

89) The couple ordered a double cheese pizza after deciding to spend the night at
home.

90) Mary always devoted some time to helping her parents with household chores
during the weekend.

91) The paper factory was temporarily closed following several health and safety
violations this year.

92) During the latest press conference, the mayor revealed plans to build a cinema
complex.

93) The seismic activity worried government officials because it signalled a possible
volcanic eruption.
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94) The new church was built with donations from companies and members of the
public.

95) The green park attracted many city dwellers, who wanted to enjoy the summer
days outside.

96) Plans to build the final underground station were scrapped after historical ruins
were unearthed.

97) The instructor demonstrated the technique for passing the ball to another player
on the field.

98) The art gallery was recently renovated thanks to funding from wealthy
benefactors from the region.

99) The old gravel road outside of town was perfect for mountain bike competitions.

100) The nurse conducted the required tests diligently and informed the doctor about
the results.

101) The children practised their lines regularly before the school play which had
been organised for their parents.

102) The Arctic outpost was impossible to reach without helicopters that could fly
there.

103) The deep canyon was formed over hundreds of thousands of years due to
erosion of the rocks.

104) The peaceful protest quickly turned violent after two groups of demonstrators
started fighting.

105) The beautiful lake was popular among hikers, who would usually camp there in
the evening.

106) The music festival was overpriced but many fans still bought tickets to attend
the event.

107) The multinational company was convicted of insurance fraud after secret
documents were leaked to the press.

108) The light breeze outside made it easier to bear the summer heat during the day.

109) The local florist had decades of experience in making quick deliveries for
different celebrations.

110) The new book was published in electronic format because most readers use
mobile devices.

111) The principal changed his clothes after large coffee stains completely ruined his
outfit.

112) The old library was moved to another building because space restrictions made
it hard to store new books.

113) The annual swimming competition became a major success when one thousand
people took part.

114) The ancient forest was closely protected because it contained the oldest trees on
Earth.

115) Surprisingly, the movie sequel received better reviews from film critics
compared to the original.

116) The small archipelago had long produced various exotic spices and exported
them abroad.

117) The precious stone was found by children playing near the rapid mountain
stream.
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118) The remote village was long abandoned because all residents had moved to
nearby towns.

119) The tourist town was mostly deserted during the long winter months when
businesses closed down.

120) Many citizens opposed the plans to invest in nuclear power plants due to their
environmental impact.



292

Appendix |

Supplementary analyses from Chapter 6.

Fixation Durations on the Next Word

One interesting question is whether the deviant sound affected fixation durations not
only on the currently fixated word, but also on the next word in the sentence. For example,
Inhoff, Connie, Eiter, Radach, and Heller (2004) reported that a phonologically similar
spoken word presented at the start of fixation on a target word also led to longer gaze
durations on the post-target word compared to both a phonologically unrelated word and a
spoken version of the target word itself. Therefore, to determine whether the effect of
deviant sounds was constrained only to the target word or also affected the post-target word,
we analysed fixation durations on the next word in the sentence. The descriptive statistics are
presented in Table A6 below. There were no significant differences between the standard
and the deviant sound (all ps > 0.75) or between the standard sound and the silence baseline
(all ps >0.19) on any of the measures. Therefore, the results suggest that the effect of the
deviant sound did not spill over to the next word in the sentence. This finding is consistent
with the view that the deviant sound caused saccadic inhibition since this effect was

constrained only to the word where the sound was first heard.

Sound type FFD SFD GD TVT

Silence 239 (92) 242 (92) 281 (132) 319 (184)
Standard 245 (93) 246 (94) 288 (166) 317 (203)
Deviant 241 (90) 241 (90) 284 (151) 315 (187)

Table A6. Mean fixation durations on the next word in the sentence after playing the sound
in Chapter 6 (SDs in parenthesis).
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Comparison between Slow and Fast Readers

To determine whether the magnitude of the sound deviance effect was modulated by
the reading speed of participants, a separate analysis was carried out in which participants
were divided into two equal groups of slow and fast readers. This was done by first
calculating the average reading speed for each participant, and then using a median split
(equal to a reading speed of 213.5 words per minute) to divide participants into “fast” and
“slow” readers. The descriptive statistics are shown in Figure A10 and the LMM analyses
are shown in Table A7. As expected, slow readers had longer fixation durations than fast
readers, and this difference was statistically significant in all measures. However, the deviant
sound effect failed to interact with reader type for any of the measures. This suggests that the
magnitude of deviance distraction was not modulated by whether participants were fast or

slow readers.

FFD SFD GD TVT

g LA
= A ~ o ” .
= 400
2
g
3 A
E Ak »
§ 300
=
g A---*""-A A__-*_,._A .—./
= .\./. Q-\_./.

Silence Standard Deviant Silence Standard Deviant Silence Standard Deviant Silence Standard Deviant

Background sound

Reader fastlzlslow

Figure A10. Mean fixation durations on the target words for the three sound conditions in
Chapter 6, broken down by reader type (fast vs slow). Participants were divided into fast and
slow readers based on a median split of their reading speed (median= 213.5 words per
minute). Shading indicates the standard error.
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Effoct FFD SFD
b SE t p b SE t p
Intercept 54 .02 281.1<.001 54 .02 2709 <.001
Reader 07 .02 340 .001 .06 .02 3.00 .004
Deviant 03 .02 202 .05 04 02 237 .02
Standard 02 .01 134 .18 03 .02 185 .07
Reader: Deviant -.02 .02 -1.48 .14 -02 .02 -98 .33
Reader: Standard -.01 .01 -41 .68 <01 .02 .06 .95
Effect ob ™
SE t p b SE t p
Intercept 56 .03 218.1 <.001 5.7 .03 199.1 <.001
Reader 10 .02 4.04 <001 .13 .03 4.65 <.001
Deviant 05 .02 276 .008 04 .02 225 .03
Standard <01 .02 .20 .84 01 .02 58 .56
Reader: Deviant <.01 .02 -16 .87 01 .02 52 .60
Reader: Standard -.01 .02 -36 .71 01 .02 56 .57

Table A7. Interactions between sound condition and reader type (fast vs slow) in fixation
durations on the target words in Chapter 6. Statistically significant p-values are formatted in

bold.



