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Abstract—In this paper, a new algorithm is proposed for 
recognition of user experience through emotion detection using 
physiological signals, for application in human-machine 
interaction. The algorithm recognizes user’s emotion quality 
and intensity in a two dimensional emotion space continuously. 
The continuous recognition of the user’s emotion during 
human-machine interaction will enable the machine to adapt 
its activity based on the user’s emotion in a real-time manner, 
thus improving user experience. The emotion model underlying 
the proposed algorithm is one of the most recent emotion 
models, which models emotion’s intensity and quality in a 
continuous two-dimensional space of valance and arousal axes. 
Using only two physiological signals, which are correlated to 
the valance and arousal axes of the emotion space, is among the 
contributions of this paper. Prediction of emotion through 
physiological signals has the advantage of elimination of social 
masking and making the prediction more reliable. The key 
advantage of the proposed algorithm over other algorithms 
presented to date is the use of the least number of modalities 
(only two physiological signals) to predict the quality and 
intensity of emotion continuously in time, and using the most 
recent widely accepted emotion model. 

Keywords-on-body sensing; signal analysis; user experience; 
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I. INTRODUCTION 
Experience of emotion is one of the key aspects of user 

experience affecting to all aspects of the human-machine 
interaction (HMI), including utility, ease of use, and 
efficiency [1], the machine's ability to recognize user’s 
emotion during user-machine interaction would improve the 
overall HMI usability. The machines that are aware of the 
user’s emotion could adapt their activity features such as 
speed based on user’s emotional state. This paper focuses on 
emotion recognition through physiological signals, as this 
bypasses social masking and the prediction is more reliable. 

Emotions are represented through three models, discrete 
or categorical, dimensional and appraisal models. In discrete 
or categorical model emotions are represented by discrete 
labels such as happiness, anger, disgust, sadness, anxiety and 
surprise which are the basic emotions. In the dimensional 
model, emotions are labelled in a two or three dimensional 
space. It is shown in [2] that three independent and bipolar 
dimensions, valance (pleasure-displeasure), degree of arousal 
and dominance-submissiveness are necessary and sufficient 

to adequately define emotional states. The validity and 
reliability of two-dimensional emotion space (valence- 
arousal) is examined in [3]. In the appraisal model, emotions 
are defined as processes. Appraisal of significance of an 
event is shown by emotion quality, intensity and duration 
while considering dynamics of emotion. 

To measure the pleasure, arousal and dominance 
associated with a person’s affective states the Self-Assesment 
Mankin (SAM) is used in literature where subjective reports 
were measured to a series of pictures that varied in the 
valance, arousal and dominance dimension [4]. Geneva 
Emotion Wheel (GEW), Fig. 1, which is software-based 
instrument for measuring emotion in real-time application, is 
introduced in [5]. The GEW presented on a computer screen, 
and all members of an emotion family were identified by a 
specific label, which became visible when moving the mouse 
across a circle. The users are asked to rate the intensity of an 
experienced or imagined emotion on the basis of the distance 
from the hub of the wheel and the size of the circles. The 
Geneva Emotion Wheel can be considered the first 
instrument to design the dimensional layout of the emotion 
qualities on pure appraisal dimensions (arrangement of 
emotion terms in two dimensional space) and the intensity of 
the associated subjective feeling (distance from origin). The 
last version of GEW is introduced in [6] which is the model 
used in this paper. 

Physiological signals are collected through on-body 
sensors and used to identify user experience through the 
predicted wearer’s emotion. The sensors gather physiological 
parameters like heart rate, body temperature, motion, 
galvanic skin response, etc. The correlation of bio-signals 
with user’s emotion wearing the bio-sensors is shown in [7]. 
The type, position and number of sensors used depend on the 
application of the wearable systems. In this context, the 
wearable system design needs to consider the wearers’ 
comfort and fitting requirements while considering 
measurement performance. For example, the weight and the 
size of the system need to be kept small and the system should 
not interfere with the user’s movements or actions [8]. 
Considering the correlation of bio-signals with emotions, the 
user’s experiences is  recognized using physiological data 
through signal monitoring, analysis and development of 
advanced algorithms [9]. 

For this purpose, a mapping of physiological signals 
variation into emotion’s model is required. Physiological or 
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bio-signals are used in research field of affect-sensing to 
identify emotions. Galvanic Skin-conductivity Response, 
GSR, provides a measurement of the of skin conductance 
which increases linearly with a person’s level of overall 
arousal or stress. Blood Volume Pulse, BVP, is indicator of 
blood flow. Since each heart beat (or pulse) presses blood 
through the vessels, BVP can also be used to calculate heart 
rate and inter-beat intervals. Heart rate increases with 
negative valence emotions such as anxiety or fear. 
Electromyography, EMG, measures the muscle activity or 
frequency of muscle tension, correlate with negative valence 
emotions. Respiration Rate, RSP, measures how deep and 
fast a person is breathing. Slow and deep breathing indicates 
a relaxed resting state while irregular rhythm, quick 
variations, and cessation of respiration corresponds to more 
aroused emotions like anger or fear. Electrocardiogram, ECG, 
signal measures activity of the heart. It can be used to 
measure heart rate and inter-beat intervals to determine the 
heart rate variability (HRV). A low HRV can indicate a state 
of relaxation, whereas an increased HRV can indicate a 
potential state of mental stress or frustration [7].

The proposed algorithm in this paper for the purpose of 
affective states recognition uses only two bio-signals: skin 
conductivity and pulse rate. As the intensity of arousal is 
linearly correlated with skin conductivity and valence is 
correlated negatively with blood volume pulse rate, it is 
possible to extract arousal-relevant features from GSR and 
valance-relevant features from BVP.

In this paper, we first review different emotion models, 
and the correlation of physiological signals with emotions is 
introduced. Section II, reviews emotion recognition 
algorithms developed to date. Section III introduces the new 
signal processing algorithm that implements GEW 
framework and uses only two physiologic signals. Results 
and discussion for the algorithm is presented in section IV 
and the paper is concluded in section V.

II. LITERATURE REVIEW

The algorithms used in the literature for recognition of 
emotion through physiological signals are mainly based on 
classification approaches. In [10], an emotion recognition 
system is developed to classify emotional states from 
physiological signals gathered from one subject over many 
weeks of data collection. The emotions were induced through 
musical performances. Features such as mean, standard 
deviation of raw signals and first and second difference of the 
raw signal is extracted and are classified into 8 discrete 
emotion states by using Feature Projection method. The 
accuracy of 81 percent is achieved on eight classes of 
emotions. In another study, three physiological signals such 
as EEG, skin conductance and pulse were collected from 
subjects while using audio-video contents as a stimulus. For 
discrete emotion recognition, Support Vector Machine is 
used to design discrete emotion classifier. The recognition 
rate of 41.7% for five emotions and 66.7% for three emotions 
were attained [11].

An emotion recognition approach based on physiological 
changes in music listening is introduced in [12]. Multiple 
subjects over many weeks were participant of musical

induction while four-channel biosensors were used to 
measure electromyogram, electrocardiogram, skin 
conductivity, and respiration changes. A wide range of 
physiological features from various analysis domains, 
including time/frequency, entropy, geometric analysis, 
sub-band spectra, multiscale entropy, etc., were used in order 
to find the best emotion-relevant features and to correlate 
them with emotional states. Classification of four discrete 
musical emotions (positive/high arousal, negative/high 
arousal, negative/low arousal, and positive/low arousal) is 
performed by using an extended linear discriminant analysis. 
An improved recognition accuracy of 95 percent and 70 
percent for subject-dependent and subject-independent 
classification, respectively, is achieved.

An emotion recognition system based on physiological 
signals is introduced in [13]. It uses five physiological signals 
such as blood volume pulse, electromyography, skin 
conductance, skin temperature and respiration. Features such 
as the mean and the standard deviation of the raw signals and 
first differences of the raw signals and the second differences 
of the raw signals are calculated. Six basic emotions such as 
Amusement, Contentment, Disgust, Fear, No emotion 
(Neutrality) and Sadness are induced through the 
international affective picture system (IAPS) while for each 
emotion ten images are presented during 50 seconds. Two 
pattern classification methods, Fisher discriminant and SVM 
method are used and compared for emotional state 
classification which reaches classification performance as 92% 
over six emotional states. 

A comparison table of reviewed previous works is 
available in [14]. According to the literature, several 
bio-signals such as Electromyogram, Electrocardiogram, 
Electro-dermal, Activity Skin, Temperature, Blood Volume, 
Pulse and Respiration are used to recognize discrete emotions 
such as Sad, Anger, Stress, Surprise and so on. The stimuli 
used are audio-visual such as IAPS, music, movies. The 
extracted features from bio-signals are typically mean, 
standard deviation of raw signals and their first derivative, 
high frequency and low frequency powers and so on. The 
classification approaches are Support Vector Machine, 
Linear Discriminant Analysis, K-Nearest Neighbour,
Bayesian Networks, and Neural Network and so on varying 
in accuracy depending on whether the approach is 
user-dependant or independent. An approach going a step 
further from discrete emotion recognition toward recognition 
of emotion in a continuous space is proposed in [15]. The 
algorithm for recognition of affective valance and arousal 
uses a multiclass arousal/valance classifier. By dividing 
arousal and valance axes into four regions, sixteen classes of 
emotions are formed. Similar approach using different 
classification algorithms is proposed in [16] and [17]. 

A continuous emotion recognition algorithm is 
introduced in [18] using fusion of facial expression, gesture 
and audio cues.  In the paper, level of arousal and valance is 
predicted over time continuously. Using long short-term 
memory (LSTM) Neural Network as building unit for layers 
of a recurrent neural network (RNN), the longer temporal 
dependency features are learnt in the algorithm. It enables 
continues prediction of valance and arousal over time. In [19] 
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a dynamic model is proposed based on dynamic field theory 
(DFT) enabling prediction of emotion intensity. DFT can be 
seen as a generalization of recurrent neural networks to 
continuous dimensions, adding a functional interpretation to 
each layer. It shows improvements in emotion recognition 
accuracy to the previous common approaches to emotion 
intensity estimation.

This review of literature on the emotion recognition using 
physiological signals shows that the developed algorithms 
use more than two bio-signals. In the algorithm proposed in 
this paper only two bio-signals are used. The emotion models 
used in the literature are mainly discrete and the classification 
of emotions is based on discrete classes or on finding out the 
levels of valence or arousal. The continuous emotion 
recognition approaches are either need many modalities of 
physiologic signals, or only predicts the intensity of emotion. 
The algorithm proposed here uses the most recent emotion 
model, GEW, Fig. 1, which allows to map emotions in a two 
dimensional continues space. The proposed algorithm is able 
to predict intensity and quality of emotion continuously as 
well as duration of emotion.

Figure 1. Geneva Emotion Wheel, 3rd version [6] 

III. METHOD

For the purpose of developing an algorithm that can 
continuously predict affective state, we need to consider a 
dynamic model for signal processing of gathered 
physiological signals through the designed experiments. In 
this section, the proposed model followed by the signal 
processing approach is explained.

A. The Model
The proposed model in this paper is based on dynamic 

system theory providing the language in which embodied and 
situated stance can be developed into a scientific theory. 
Dynamic field theory (DFT) is a mathematical and 
conceptual framework which was developed to model 
embodied human cognition [20]. The basic computational 
element of DFT is Dynamic Neural Field (DNF). The 
response of a neural population is modelled through 

mathematical representation of DNFs. The dynamics of DNF 
are mathematically formulize as follows. 

                     (1) 

In (1) formula, is the activation of DNF over 
dimension , to which the underlying neural population is 
responsive. is a negative resting level and is an 
external input. The lateral interactions in DFT are modelled 
through a short-range excitation and a long-range 
inhabitation where , , and are width and 
amplitude of the excitatory and inhibitory parts of interaction 
kernel. shapes the output of DNF through a 
sigmoid function where is the slope of sigmoid [21].

In the proposed DNF, there are two one dimensional input 
neurons, U1 and U2, where the two bio-signals are the inputs 
to them. The model inputs are GSR which is correlated with 
arousal and Pulse rate which is correlated with valance in the 
emotion model. To stabilise the signals there are two memory 
neurons, M1 and M2, where their outputs are the inputs of the 
emotion neuron, E. The two-dimensional emotion neuron is 
modelling the emotion space with valance and arousal 
dimensions. The proposed neural population is shown in Fig. 
2.

Figure 2. The proposed neural population for the model  

In the proposed neural population, the input bio-signals 
are fed into the input one-dimensional fields and passing 
through the middle input neurons acting as memory neurons. 
The output signals of this layer are considered as two inputs 
of the two dimensional emotion neural field with valance and 
arousal axes where the length of each axe is assumed 100. 

Transferring the emotion representation from 
valance-arousal Cartesian space into polar quality and 
intensity of emotion representation is formulised through
equation (2). In the polar system emotion is modelled as a 
vector, I(t), where the length of the vector is emotion intensity 
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and the vector’s angle, is the quality, Q(t), of emotion as 
shown in Fig. 3. Considering a two dimensional neural filed 
with size of 100 for each axes, the vector transformation of 
emotion will be as (2) where the centre of the polar 
coordinate system would be in the middle of the Cartesian 
space. In the 2D GEW space, the centre of Cartesian 
coordinate system with valance, v(t), and arousal, a(t), axes is 
in the left bottom side of the space. 

                         (2) 

Figure 3. Transformation of emotion arousal-valance representation in 
Cartesian space into quality and intensity vector in polar space 

B. Signal Processing 
As it was discussed in the literature review, the intensity 

of arousal is linearly correlated with skin conductivity and 
valence is correlated negatively with pulse rate. Therefore, 
the GSR and pulse rate are inputs of the system. The extracted 
feature from GSR is the rate of change and from Pulse rate is 
its inverse as the pulse rate increases with negatively valance 
emotions.

The model parameters are as the time constant of each 
neuron,  as the slope parameter of output function for each 
neuron, as well as the coupling coefficients and kernel 
excitation and inhabitation parameters. After initialisation of 
model parameters, a cost function will be calculated using the 
training data. The model simulator estimates the quality and 
intensity with regard to the input training data of multiple 
trials (Fig. 4). To identify model parameter, the cost functions 
need to be minimised.

The cost function is calculated for training trials and the 
average of all mean square errors, MSEs, of multiple trials is 
used as the function which should be minimized to derive the 
model parameters.

           (3) 

              (4) 

In (3) and (4), the model quality and intensity estimate is 
represented by and while the targeted ones are 

represented by and . The total recording time, t, for
each trial is represented by T and total number of trails, l, by L.
Following the explained procedure enables estimation of
quality and intensity continuously. The model has 32 
parameters which have to be estimated through optimization 
of cost function. For solving the optimization problem 
Genetic Algorithm was used.

Figure 4. Model parameter estimation process 

The designed experiment consists of several trials of 
showing series of pictures which are rated by subjects while 
physiological signals are collected. The pictures are from 
IAPS, International Affective Picture System, database 
designed to provide a standardized set of pictures for studying 
emotion and attention. The dataset has been widely used in 
psychological research and was developed by the National 
Institute of Mental Health Centre for Emotion and Attention 
at the University of Florida.

During the time that the picture is on the screen, the rating 
is made on a 2D labelling system. Each series of pictures 
belongs to one emotion quality labelled on the outer borders 
of the 2D labelling system. Subjects can rotate a knob to the 
emotion quality label and move the indicator on radial line of 
the circle according to the emotion intensity they feel during 
viewing the pictures, the closer to the centre, the less intense 
emotion felt during viewing the picture based on GEW 
emotion model. The time length of showing each picture is 
15s and it takes about 10s for an emotion to be induced using 
pictures. By the end of each trail a black screen is shown to 
help the subject reach neutral state for the felt emotion.

IV. RESULTS

The preliminary results of algorithm validation on a 
single subject trial are presented in this section to demonstrate 
the feasibility and utility of the algorithm. The extracted 
feature from GSR and Pulse rate as the input bio-signals are 
the rate of change and the inverse, respectively. The raw 
bio-signals are filtered to remove the low frequency noise 
contents and then normalised. Fig. 5 shows the neural field 
population initial response to the input signals. It shows the 
activation of the field while the Gaussians are interacting and 
competing with each other to reach to a steady state with one 
dominant Gaussian on emotion field. After the initial phase, 
during the estimation process it appears that one of the 
Gaussians tends to dominate others as it shown in Fig. 6. By 
the end, one of the Gaussians dominates others and its 
location on the field with valance and arousal axes indicating 
the estimated emotion (Fig. 7). In this example, the vector 
length is %43 and the angle is 45 degree which indicates the 
estimated emotion is Pride with %43 intensity based on the 
emotion model in Fig. 1. We need to explore the introduced 
approach further on wider population range of emotion with 
more number of subjects.
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Figure 5. Snapshot of the neural field initial response to the bio-signals, the 
three dimensional view followed by a two dimensional one 

Figure 6. Snapshot of the neural field response to the bio-signals during the 
estimation process, the three dimensional view followed by a two 

dimensional one. 

Figure 7. Snapshot of the estimated emotion in the two dimensional neural 
field, the three dimensional view followed by a two dimensional one

V. CONCLUSION

The paper proposes a new algorithm to recognize human 
affective state continuously given physiological signals and 
reports preliminary results that demonstrate the proof of 
concept. It is motivated by the context of a continuous 
human-machine interaction in which the machine is expected 
to continuously adapt to human emotional state. The two key 
novelties here are the use of the minimum number of 
modalities (only two physiologic signals) for emotion 
estimation, which make the algorithm feasible in a wide 
range of practical user scenarios; and estimation of emotion 
quality and intensity in a time and space continuum of a 
two-dimensional space of valence and arousal. Because of 
high number of parameters that are required to be adjusted in 
the training phase of the algorithm, there is need for high 
power processors to increase the speed of process. Despite of 
the existing drawback, development of the new proposed 
algorithm will enhance the interaction between human and 
machine in a more coordinated and synchronous manner. It 
enables machines to interact with the users in a more 
conscious environment with wide range of applications from 
human-machine interaction to healthcare and entertainment 
industry.
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