1	Simultaneous uptake of Cd from sediment, water and diet in a
2	demersal marine goby Mugilogobius chulae
3	
4	
5	Zhiqiang Guo ^{1,2} , Hengzhen Ye ¹ , Juan Xiao ¹ , Lizhao Chen ² , Yun Wu ³ , Iain
6	Green ⁴ , Li Zhang ^{2*}
7	
8	
9	¹ State Key Laboratory of Marine Resource Utilization in South China Sea, College of
10	Oceanology, Hainan University, Haikou 570228, China
11	² Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of
12	Sciences, South China Sea Institute of Oceanology, Guangzhou 510301, China
13	³ Collaborative Innovation Center of Atmospheric Environment and Equipment
14	Technology (CIC-AEET), School of Environmental Science and Engineering,
15	Nanjing University of Information Science & Technology (NUIST), Nanjing 210044,
16	China
17	⁴ Department of Life and Environmental Sciences, Faculty of Science and Technology,
18	Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
19	
20	* Corresponding author: Li Zhang (e-mail: zhangli@scsio.ac.cn; Tel.: +86 02 8922 1322;
21	Fax: +86 02 8922 1322)
22	
23	
24	
25	
26	

27 Abstract

The embryonic state of our knowledge regarding the simultaneous uptake of trace 28 metals *via* multiple routes in aquatic organisms makes it difficult to accurately assess 29 the bioaccumulation and risk of metals. This study used cadmium (Cd) and a demersal 30 marine fish (the yellowstripe goby) as a model system to determine tissue-specific 31 32 uptake of Cd under conditions of simultaneous exposure to Cd from water, sediment and diet. A triple stable isotope tracing method was used in which each exposure route 33 was spiked by a different stable isotope (¹¹⁰Cd, ¹¹¹Cd and ¹¹³Cd). The results revealed 34 that the fish took up waterborne and sedimentary Cd via gills and gastrointestinal tract 35 (GT), and that of dietary Cd was via the GT. The gills absorbed Cd predominantly 36 from water (77.2-89.4%), whilst the GT absorbed Cd mainly from diet (81.3-98.7%). 37 In the muscle and carcass, Cd uptake was mainly from the diet (47.1-80.4%) and 38 water (22.8-51.6%). Our study demonstrated that when aquatic animals were subject 39 40 to simultaneous exposure through multiple uptake routes, the uptake and relative importance of each route for metal accumulation was highly tissue-specific and more 41 42 complex than a single route of metal exposure.

43

Key words: marine fish, cadmium, demersal animals, sediment, multiple routes,
isotope tracers

46

47

48

49

77 **1. Introduction**

The widespread exploitation of cadmium (Cd) since the second Industrial Revolution has elevated concentrations of this biologically non-essential and highly toxic trace metal in environments. The occurrence of Cd contamination was responsible for the notorious disease of Itai-itai (a bone disease characterized by fractures and severe pain caused by the excessive Cd intake) in the Toyama Prefecture of Japan in the 1950's [1]. Since then, there has been serious international concern regarding Cd pollution [2,3].

85 Marine ecosystems, the ultimate receptacles of the most anthropogenic pollutants, are frequently subjected Cd pollution, especially in coastal and estuarine areas [3-6]. 86 Among aquatic organisms, the level of Cd bioaccumulation in fish has considerable 87 significance for the health of the general population, given the fact that the 88 89 consumption of fish is usually the dominant route of Cd exposure to human [7-9]. Indeed, the bulk of studies have observed high levels of Cd bioaccumulation in fish, 90 which results in the associated high risk of Cd exposure to the general populations via 91 fish consumption [10-13]. 92

Moreover, fish often play an integral role in aquatic ecosystems, due to their key 93 trophic niches and wide habitats, which facilitates their use as a model with high 94 ecological and environmental relevance for the understanding of trace metal 95 bioavailability and bioaccumulation behaviors [14]. Hence, the levels of metal 96 bioaccumulation in fish, as an assessment endpoint, have been utilized in many 97 previous studies assessing population health risk and ecological risk of heavy metal 98 pollution in aquatic ecosystems [8,13]. However, there have been surprisingly few 99 attempts made to understand the uptake of sediment-associated metals in fish in 100 relation to benthic aquatic invertebrates (e.g., oysters, scallop, and aquatic insects 101 [15,16]), even though sediments are well known as a major carrier of trace metals and 102 thus are potential secondary sources of their contaminants in aquatic ecosystems. To 103 date, the bioavailability and bioaccumulation of sedimentary metals to fish remains at 104 105 the embryonic state, especially for the demersal fish that are sediment-dwelling and/or

deposit-feeding, which should have a great potential for the take up of sedimentary 106 107 metals (e.g., Gobioidei such as Rhinogobius giurinus and Rhinogobius cliffordpopei [17,18]). In field studies, there have been many reports that demersal fish can 108 109 accumulate high levels of metals and thus they might pose a substantial health risk to 110 human health [8,19,20]. Consequently, a substantial need exists to characterize the uptake of sediment-associated metals in fish species, especially in demersal species, 111 which have great significance for both population health and ecological risk 112 assessments for heavy metal pollution in aquatic habitats. 113

114 In fish, the gills and the gastrointestinal tract (GT) are the two main routes for metal uptake [16]. In general, the gills are the main site for uptake of dissolved metals 115 in the water phase, and the GT is the principle site for the assimilation of dietary 116 metals. However, our previous work has suggested that the GT is also important for 117 118 uptake of dissolved metals in marine fish, owing to the continuous exposure of the GT caused by the need to drink seawater for osmoregulation purposes [21-23]. Moreover, 119 we have demonstrated the significant influence that simultaneous water borne and 120 dietary metal exposure has on the uptake of dietary metals by the GT of marine fish 121 [24], and we further demonstrated that metal uptake via the water route can be 122 substantially affected when fish are simultaneous exposed to metal through the dietary 123 route [23]. These results revealed that the uptake of metal from multiple routes is 124 more complex than a single route of metal uptake, and there are tissue-specific 125 interactions among metals from different exposure pathways [23,24]. Nevertheless, 126 most previous studies on fish determined tissue-specific metal uptake using a single 127 route of metal exposure (i.e. there was no dietary metal exposure in determining 128 waterborne metal uptake and vice versa), which yields a very limited picture of how 129 specific fish tissues accumulate metals under realistic conditions. This is especially 130 the case for demersal fish, which are often exposed to metal through three routes 131 simultaneously (i.e., waterborne, dietary and sediment-associated metals). 132

In the present study, we used the highly toxic element Cd and the yellowstripe goby (*Mugilogobius chulae*), a typical demersal fish with potential as a model marine

5 / 30

fish [24,25]), as a model system to investigate metal uptake under conditions of 135 simultaneous exposure via three routes (i.e. water, sediment and diet). A triple stable 136 isotope tracing method was used to explore to the uptake of spiked waterborne (^{110}Cd) , 137 sediment-associated (¹¹¹Cd) and dietary Cd (¹¹³Cd). We quantified time-course 138 bioaccumulation and influx rate of Cd in the gills, GT, muscle and carcass when the 139 fish were simultaneously exposed to the three routes of Cd. Furthermore, the 140 tissue-specific distribution and relative importance of Cd from the different routes was 141 determined. 142

143

144 **2. Materials and methods**

145 2.1. The test organisms and Cd

The juvenile marine yellowstripe gobies (*Mugilogobius chulae*, 1.64 ± 0.12 g fish⁻¹) were provided by Guangdong Laboratory Animals Monitoring Institute (Guangzhou, China).Fish were acclimatized for 2 weeks in the laboratory aquaria before the exposure experiment. During the acclimatization, the fish were fed with oven dried peanut worms (*Sipunculus nudus*) fragmented into pieces with diameters <1 mm.

The stable isotopes ¹¹⁰Cd, ¹¹¹Cd and ¹¹³Cd (99.6%, International Atomic Energy Agency Office at USA, New York) were used as tracers, whilst CdCl₂ that contained Cd with natural isotopic ratios (Sigma-Aldrich) was used as a typical, non-tracer source of Cd.

155

156 *2.2. Cd equilibration in the water and sediment*

The surface sediment (~ 0-5 cm depth) was collected from Daya Bay (Guangdong Province, South China (114°40′ E, 22°40′ N)), and transported to the lab in airtight containers. The sediment was sieved (mesh size of 0.43 mm) and washed with distilled water 5 times to remove the background heavy metals. To re-establish the salinity, the sediment was further washed through with seawater (30-32 psu) 3 times. Washed sediment was settled overnight and overlaying water was siphoned off. The sediment was then oven-dried at 80 °C. The moisture and organic matter content of

the sediment was 16.3 ± 1.12 % and 13.8 ± 1.27 % (n= 5). The Cd content in the sediment was $0.019\pm0.002 \ \mu g \ g^{-1} \ dry \ weight (n= 5).$

The Cd equilibration in the Cd-spiked sea water and sediments was determined 166 in a preliminary experiment. Briefly, the sea water was first spiked with typical Cd. 167 The nominal Cd concentration in the sea water was 20, 50, 100, and 200 μ g L⁻¹. Then. 168 the prepared sediment was added to the aquaria containing the Cd-spiked sea water. 169 homogenized for 15 minutes, and shaken for 30 minutes. The equilibration of Cd 170 between the spiked water and sediments was then investigated. The results suggested 171 the time required to reach equilibrium was 4 weeks (STable 1 (Supporting 172 Information of Table 1)). Thus, the Cd concentration of water and sediment at the end 173 of the equilibration was the reference for the following Cd uptake experiments 174 (STable 1). 175

176

177 2.3. Cd spiking in water, sediment and diet

Four treatments (namely T1, T2, T3 and T4) were used in this study. Seawater 178 treatments were spiked with 110 Cd at concentration of 16, 44, 90, and 185 µg L⁻¹ in T1 179 to T4 respectively (STable 1). Sediments of T1-T4 were spiked with ¹¹¹Cd at 180 concentrations of 6, 22, 45, and 90 μ g g⁻¹ DW (STable 1) by adding a known volume 181 of solution containing ¹¹¹Cd to a known mass of the prepared sediment for each 182 concentration (1: 2 ml g⁻¹). The sediment was then, homogenized for 15 minutes, 183 shaken for 30 minutes, and oven-dried for 48 h at 60 °C. To spike fish diets with ¹¹³Cd, 184 peanut worms were maintained for 4 weeks in seawater containing ¹¹³Cd at 185 concentrations of 15, 40, 87 and 178 µg L⁻¹ for T1 to T4 respectively. The measured 186 ¹¹³Cd content in the peanut worm was 5.17±0.61, 28.45±2.46, 54.1 ±6.11, 69.2±5.03 187 $\mu g g^{-1}$ in T1-T4, respectively. 188

189

190 *2.4. Cd uptake experiment*

The Cd uptake experiment (24 h) was conducted in 100 ml beakers. The ¹¹¹Cd spiked
sediment was first added in the beaker, and then the¹¹⁰Cd spiked seawater was lightly

added. The beakers were then left to stabilize for 48 h.

Juvenile marine yellowstripe gobies were individually kept and fed in similar 194 beakers for 1 week to acclimate to the experimental conditions, during which the fish 195 were not exposed to Cd beyond background. Before Cd exposure, fish were starved 196 for 48 h and then fed with ¹¹³Cd spiked diet for 1 h (resulting in the ingestion of food 197 equivalent to ca. 13.5% of body weight). Fish were then individually transferred to the 198 prepared beaker containing the ¹¹¹Cd spiked sediment and ¹¹⁰Cd spiked seawater. As 199 the chyme evacuation time of the fish was 24 h after a single dose of dietary Cd 200 201 exposure and the fish finished the dietary Cd uptake within 24 h based on our previous study, the simultaneous uptake experiment was conducted over 24 h for all 202 203 routes in the present study.

During the 24 h uptake experiment, 8 fish in each treatment were sampled at 2, 4, 8, 12, and 24 h. The sediment, overlying water (< 5 cm to the sediment) and water (middle column water) was sampled at the same time intervals. Fish feces were siphoned off gently at 8, 12, 18 and 24 h.

The fish were sacrificed by overdose MS-222. The gills, gastrointestinal tracts (GT), muscle and carcass were then sampled [24] and the chyme in the stomach and intestine was carefully collected. The pore water in the sediment was immediately extracted by centrifugation at 3500 rpm for 10 min.

212

213 2.6. *Cd stable isotope concentration analysis*

Samples of 0.06-0.1 g were digested in 1 ml of HNO₃ (69%, ultrapure, Fisher 214 Scientific, Geel, Belgium) for 48 h at 80 °C. The sample was pooled in the same 215 216 treatment if the sample was < 0.05 g. The samples of seawater were digested by HNO₃at room temperature for 48 h (1:1). Then the content of total Cd and stable 217 isotope (¹¹⁰Cd, ¹¹¹Cd and ¹¹³Cd) were quantified by inductively coupled plasma-mass 218 spectroscopy (ICP-MS, 7700X, Agilent Technologies Inc., California, USA). The 219 internal standard was ¹¹⁵In and a QC sample was analysed every 20 samples during 220 the analysis. The concentration of ¹¹⁰Cd, ¹¹¹Cd and ¹¹³Cd in the samples were 221

calculated as described by Croteau et al. [26] and Guo et al. [24] (see details in theSupporting Information).

224

225 2.7. Data calculation and statistical analysis

The influx rate of Cd (J_{in} , ng g⁻¹ h⁻¹) was calculated by linear regression between the net increase of Cd in the fish and exposure time. The J_{in} was estimated from 0-12 h and 12-24 h based on the food gut pass time of this species [24].

The dietary ¹¹³Cd assimilation efficiency (AEs) was calculated as: AE = $A_{24h} / A_{0h} \times 100$, where A_{24h} was the ¹¹³Cd retained in the fish at 24h, and A_{0h} was the ¹¹³Cd content in the fish at 0 h after feeding [24].

The differences in AEs among the T1-T4 were analyzed using one-way analysis of variance (ANOVA) followed by a Tukey's HSD *post-hoc* test. Analysis of covariance (ANCOVA) was used to test the differences in the slope from the regression between Cd uptake rate and ambient Cd content, using ambient Cd content as the covariate.

Normality and homogeneity of data was determined using Kolmogorov-Smirnov test and Levene's test. Difference was regarded as significant when p < 0.05. All statistical analyses were performed by the SPSS software package (vs. 18, SPSS Inc., Chicago, USA).

241

246

242 **3. Results**

243 *3.1. The verification of Cd content in sediment, water and chyme*

244 3.1.1. The¹¹⁰Cd, ¹¹¹Cdand ¹¹³Cdcontents in the overlying water and water

- 245 The¹¹⁰Cd concentration in the water and overlying water was similar (SFig. 1A&D
- both in the water (0.77-5.92 μ g L⁻¹, SFig. 1C), and overlying water (1.26-15.3 μ g L⁻¹,

(Supporting Information of Figure 1)). The sediment-derived ¹¹¹Cd was detected in

- SFig. 1E) of T2-T4. The dietary 113 Cd was detected in the in the water (0.57-1.71 µg
- 249 L^{-1} , SFig. 1C) and overlying water (1.02-2.23 µg L^{-1} , SFig. 1F) of T3 and T4.
- However, ¹¹¹Cd in sediment and ¹¹³Cd in diet was $5.90-31.4 \times 10^3$ -fold higher than

- that in the water and overlying water.
- 252

253 3.1.2. The¹¹⁰Cd, ¹¹¹Cdand ¹¹³Cdcontents in the pore water and sediment

The water-derived ¹¹⁰Cd concentration was between 0.73-32.7 μ g L⁻¹ in the pore water (SFig. 2A), and 0.77-7.16 μ g g⁻¹in the sediments (SFig. 2D). The pore water ¹¹¹Cd was 26.6-695 μ g L⁻¹ in T1-T4 (SFig. 2B). The ¹¹¹Cd in the sediment was slightly lower than the nominal values (SFig. 2E). Dietary ¹¹³Cd in the pore water was only found in T4 (0.35-0.58 μ g L⁻¹, SFig. 2C).

259

260 3.1.3. The¹¹⁰Cd, ¹¹¹Cdand ¹¹³Cd contents in the chyme

The water-derived ¹¹⁰Cd increased steadily from 4-24 h in the chyme of the fish (0.22-8.97 μ g g⁻¹, SFig. 3A). The sediment-derived ¹¹¹Cd was only detectable in the chyme of T3-T4 (0.21-1.29 μ g g⁻¹, SFig. 3B), while the dietary ¹¹³Cd showed a steady decrease from 2-24 h in all four treatment groups (SFig. 3C).

265

266 3.2. The tissue specific uptake of waterborne ^{110}Cd

The newly bioaccumulated waterborne ¹¹⁰Cd increased with the exposure time in the four tissues (i.e., gills (Fig. 1A), GT (Fig. 1B), muscle (Fig. 1C) and carcass (Fig. 1D)). The gills and GT accumulated comparable amounts of ¹¹⁰Cd, and the muscle had the lowest values (Fig. 1).

The gills and GT showed similar ¹¹⁰Cd influx rate (J_{in} , ng g⁻¹ h⁻¹), which was 8~11-fold higher than that of carcass, and 30~60-fold higher than that of muscle (Table 1). Moreover, the J_{in} of ¹¹⁰Cd in the tissues was linearly correlated with the ¹¹⁰Cd contents in water (Fig. 2A). The slope of the regression was significantly higher in the gills and GT compared with those in the carcass and muscle (ANCOVA, p <0.05, Fig. 2A).

277

278 3.3. The tissue specific uptake of sediment-associated ^{111}Cd

279 The sediment-associated ¹¹¹Cd contents in the four tissues also increased steadily with

10 / 30

the exposure time (Fig. 3). The GT showed the highest ¹¹¹Cd concentration, followed
by gills and carcass, and the lowest values was found in the muscle (Fig. 3).

The J_{in} of ¹¹¹Cd in the GT was 1.7~2.0 fold higher than that in the gills, and 11.7~13.1-fold higher that in the carcass (Table 2). The slope of the regression was highest in the GT, which was significantly higher than that in the carcass (ANCOVA, p < 0.05, Fig. 2B).

- 286
- 287 3.4. The tissue specific uptake of dietary ^{113}Cd

All treatment groups showed similar AEs of dietary ¹¹³Cd (1.35-1.74 %, ANOVA, p > 0.05, SFig. 4). The concentrations of dietary ¹¹³Cd in the tissues displayed a quick increase during 0-12 h, and then a low increase during 12-24 h in the gills, muscsle and carcass (Fig. 4), while the¹¹³Cd contents in the GT decreased steadily from 12 to 24 h (Fig. 4B).

During 0-12 h, the J_{in} of dietary ¹¹³Cd was highest in the GT, which was 47~61-fold and 26~32-fold higher than that of gills and carcass respectively (Table 3). Furthermore, the slope of the regression was significantly higher in the GT than that in the other tissues (ANCOVA, *p*< 0.05, Fig. 2C).

297

298 *3.5. The distribution and relative importance of Cd uptake route*

299 *3.5.1. The tissue specific distribution of Cd*

The time-course percentage partitioning of newly bioaccumulated Cd among tissues was similar among T1-T4 for ¹¹⁰Cd (SFig. 5), ¹¹¹Cd (SFig. 6), and ¹¹³Cd (SFig. 7). Thus, the data of T1-T4 was pooled (Fig. 5). The proportion of the ¹¹⁰Cd and ¹¹¹Cd was highest in the carcass, followed by the gills and GT, and it was lowest in the muscle (Fig. 5A&B). The highest ¹¹³Cd contents were in the GT, followed by the carcass (Fig. 5C).

- 306
- 307 *3.5.2.* The relative importance of Cd
- 308 The time-course relative importance (%) of 110 Cd, 111 Cd, and 113 Cd in the tissues was

similar among T1-T4 (SFig. 8-11). Thus, the data of T1-T4 was pooled (Fig. 6). In the gills, ¹¹⁰Cd from the water was dominant (77-89 %), followed by ¹¹³Cd from the diet (5-18 %) and then ¹¹¹Cd from the sediment (4.3-5.6 %, Fig. 6A). In the GT, the contribution of the ¹¹³Cd was dominant (81-99 %, Fig. 6B). In the muscle and carcass, the¹¹³Cd showed slightly higher contribution than ¹¹⁰Cd, while the proportion of ¹¹¹Cd was very low (0.7-2.2 %, Fig. 6C & D).

315

316 4. Discussion

317 4.1. The scenario of simultaneous uptake of Cd from water, sediment and diet

This study firstly detailed the scenario of time-course tissue-specific uptake of Cd 318 from water, sediment and diet in demersal marine fish. The findings demonstrated that 319 the bioaccumulation of waterborne ¹¹⁰Cd in the four tissues of the fish proportionally 320 increased with the increase of ambient ¹¹⁰Cd levels, and also increased steadily with 321 the exposure time. This pattern was almost same among the four treatment groups (i.e., 322 T1-T4, Fig.1), which is consistent with our previous studies on Cd uptake in this 323 species [24], and is similar to the findings for the marine black seabream 324 (Acanthopagrus schlegeli) [21]. Moreover, we likewise found that the dietary ¹¹³Cd 325 AEs and the time-course changes in the ¹¹³Cd content of the tissues were also similar 326 among T1-T4 (Fig. 4 & SFig. 4), which corresponded with our previous studies 327 [22,24]. Therefore, there was no unequivocal evidence that the uptake of Cd via one 328 of the three routes was significantly affected by the simultaneous exposure of Cd from 329 the other routes, at least within the range of ambient Cd concentrations used in this 330 study. 331

Although our recent findings in marine fish revealed the interaction between waterborne and dietary metal uptake with a simultaneous exposure scenario (i.e. a substantial effect of waterborne Cd on the uptake of dietary Cd [23], and the suppression of dietary metal on the uptake of dissolved metal in the fish GT [24]), it is noteworthy that the presence and magnitude of the effect of a given route of Cd uptake on the another route of Cd uptake might be closely related to the ambient metal

concentrations in each route, based on the results of the present study and previous 338 work [24]. Hence, it seems that the paradigm of simultaneous uptake of metals from 339 multiple routes in marine fish is far more complex than that of a single route of metal 340 uptake in both short-term [23,24]) and long-term metal exposure scenarios [27,28]. As 341 a consequence, simultaneous uptake of metals by organisms via multiple routes 342 should be addressed extensively because this scenario has a much higher 343 environmental relevance for population health risk and/or ecological risk assessments 344 of heavy metal pollution. 345

346

347 4.2. The uptake of sediment-associated Cd in the demersal fish

The present study demonstrated that the uptake of sediment-associated ¹¹¹Cd showed 348 a similar pattern to waterborne ¹¹⁰Cd (Fig. 3), suggesting that the predominant route of 349 sediment-associated ¹¹¹Cd uptake is from the dissolved ¹¹¹Cd in the water (e.g., 350 overlying and pore water via dissolved or particle-associated ¹¹¹Cd; SFig. 1). During 351 the exposure in the present study, no frequent burrowing behavior was observed in the 352 fish and the GT of the fish was not found to contain sediments. Consequently, the fish 353 ought to have taken up a very small amount of sediment-associated ¹¹¹Cd via the 354 ingestion of bulk of sediment (SFig. 1). The present findings were in line with several 355 observations made under field exposure conditions [29,30]. In Lake Laflamme 356 (Quebec City, Canada), for instance, Hare et al. [30] reported that most invertebrate 357 taxa accumulated more than 75% of their Cd from the water column compartment 358 (mainly from overlying water). Only those with typical burrowing and/or 359 sediment-feeding behaviors took up amounts of Cd from the sediment compartment. 360 These results demonstrated the great significance of sediment-derived Cd in the water 361 compartment (e.g., overlying water and pore water), which is particularly critical in 362 determining bioavailability and bioaccumulation of the sedimentary metals in 363 demersal fish [29,30]. 364

In addition, the results of the present study revealed a remarkable difference in tissue-specific Cd bioaccumulation between the sediment-associated ¹¹¹Cd and

waterborne ¹¹⁰Cd. First, the uptake rate of ¹¹¹Cd in the gills was much lower than that 367 of waterborne ¹¹⁰Cd when the concentration of ¹¹¹Cd in overlying water was similar to 368 that of ¹¹⁰Cd in water (Table 1 & Table 2). In contrast, the GT showed a higher 369 ¹¹¹Cduptake rate in the T4 (8.42-9.15 ng g⁻¹ h⁻¹) than that for ¹¹⁰Cd in the T1 370 $(6.83-7.96 \text{ ng g}^{-1} \text{ h}^{-1})$ when the ambient Cd levels in the two phases were comparable 371 (Table 1 & Table 2). Moreover, we found that the ¹¹¹Cd uptake rate and concentration 372 in the GT was much higher than that in the gills (Table 2& Fig. 3), while the two 373 tissues had comparable ¹¹⁰Cd uptake rates and concentrations (Table 1 & Fig. 2). This 374 suggests that the GT played a more important role than the gills in the uptake of the 375 sediment-derived ¹¹¹Cd in the water (which might be as particle-associated Cd), while 376 the two tissues had comparable importance in the uptake of dissolved waterborne 377 ¹¹⁰Cd, which has been not been demonstrated previously in fish species. Indeed, the 378 379 dominant role of GT in the uptake of sediment-associated metals has been previously found only in the aquatic invertebrates that ingest sediments as food resources (e.g., 380 Oligochaetes [31]), or in the suspension-feeders that ingest metal-enriched particles 381 (e.g., snail [32]); clam [33], oyster [34]; and mussel [35]). In the present study, 382 therefore, we suggest that the more important role of the GT than the gills in the 383 uptake of sediment-associated ¹¹¹Cd might result from the ingestion of ¹¹¹Cd bound to 384 sediment particles, based on the above empirical studies [32-35]. Thus, further 385 attempts are needed to quantitatively determine the uptake of sediment-associated Cd 386 from the dietary phase via ingestion of particles. 387

388

389 *4.3.* The tissue-specific relative importance of Cd from multiple routes

In the present study, we found that fish accumulated most Cd from dietary and waterborne routes, and the contribution of sediment-associated ¹¹¹Cd to the total Cd in the fish was very small in all four tissues (less than 5.6 %, Fig. 6). This indicated that only small amounts of sediment-associated Cd could be directly taken up by the demersal fish without ingestion of bulk of sediments. Previous studies have reported a small contribution of sediment-associated Cd to uptake in zebra mussels (5-8% [35]), and aquatic oligochaetes (9.8% [36]). Under the simultaneous exposure of Cd from the three routes, our findings shed new light on the relative importance of Cd taken up directly from the sediments in demersal marine fish. Results suggested that when conducting population health and/or ecological risk assessments in benthic fish species, there need be little extra concern over the direct uptake of sediment-associated metals in benthic fish species in comparison with the dietary and waterborne Cd bioaccumulation.

403

404 *4.4.* The successful application of the triple Cd stable isotope tracing method

The inductively coupled plasma-mass spectrometry (ICP-MS) technologies have been 405 fully developed in the past decades, which allows the accurate and cost-effective 406 measurement of the low abundance stable isotopes. Manipulation of stable isotope 407 408 ratios was thus quickly developed as a particularly useful tool in determining trace metal uptake in aquatic animals, such as snails, clams, mussels and fish 409 [23,24,26,35,37]. In relation to the traditional gamma emitting radioisotopes, the 410 stable isotope tracing method has several significant advantages, including the lack of 411 handling/disposal hazard materials, the low healthy risk to researchers, relatively 412 inexpense of the pure stable isotopes, commercial availability of stable isotopes for 413 most metals and so forth [37]. Moreover, most elements have 2 or more stable 414 isotopes, which combined with low detection limits by ICP-MS, allows the high 415 potentiality to determine the simultaneous uptake of ambient trace metals through 416 different routes [35,37]. The present study developed a triple Cd stable isotope tracing 417 method (¹¹⁰Cd, ¹¹¹Cd and ¹¹³Cd) to successfully determine Cd uptake from water, 418 sediment and diet in a demersal fish. We strongly recommended the use of multiple 419 stable isotope tracing methods as they proved highly useful in the study of 420 simultaneous uptake and interaction of the different exposure routes in aquatic 421 animals. Such investigations reflect realistic exposure scenarios in which organisms in 422 contaminated environments are simultaneously exposed metals through multiple 423 routes, but few such studies are reported in the literature. 424

425 In conclusion, using a triple stable isotope tracing method, the present study successfully demonstrated the tissue-specific simultaneous uptake of Cd from water, 426 sediment and diet sources in the demersal marine fish. The results revealed that the 427 uptake of Cd by each of the three routes was not apparently affected by the 428 simultaneous exposure to Cd from other routes. Moreover, we found that the relative 429 contribution of sediment-derived Cd to the total Cd in the fish was very small (less 430 than 5.6 %). In demersal fish species, therefore, we suggested the further attempts are 431 required to evaluate the importance of trophic transfer of dietary metals derived from 432 433 sediments, as secondary contaminated sources of sedimentary metals in aquatic ecosystems. 434

435

436 Acknowledgements

The research was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13020102), the State Key Development Program for Basic Research of China (2015CB452904), Scientific Research Start-up fund of Hainan University (KYQD(ZR)1803), and the Science and Technology Planning Project of Guangdong Province, China (2017B0303014052). The authors wish to thank the anonymous reviewers for the valuable comments on the manuscript.

443

444 **References**

- [1] N. Hagino, About investigations on Itai- itai disease, J. Toyama Med. Ass.
 Dec. 21 (1957) 7.
- 447 [2] S. Satarug, J.R. Baker, S. Urbenjapol, M. Haswell-Elkins, P.E. Reilly, D.J.
 448 Williams, M.R. Moore, A global perspective on cadmium pollution and 449 toxicity in non-occupationally exposed population, Toxicol. Lett. 137 (2003) 450 65-83.
- 451 [3] K. Pan, W.-X. Wang, Trace metal contamination in estuarine and coastal environments in China, Sci. Total. Environ. 421-422 (2012) 3-16.
- 453 [4] W. Meng, Y.W. Qin, B.H. Zheng, L. Zhang, Heavy metal pollution in
 454 Tianjin Bohai Bay, China, J. Environ. Sci. 20 (2008) 814-819.
- 455 [5] K. Banerjee, B. Senthilkumar, R. Purvaja, R. Ramesh, Sedimentation and 456 trace metal distribution in selected locations of Sundarbans mangroves and

	Hooghly estuary, Northeast coast of India, Environ. Geochem. Health. 34 (2012) 27-42.
[6]	F.A. Monikh, A. Safahieh, A. Savari, A. Doraghi, Heavy metal concentration
	in sediment, benthic, benthopelagic, and pelagic fish species from Musa
	Estuary (Persian Gulf), Environ. Monit. Assess. 185 (2013). 215-222.
[7]	M.I. Castro-González, M. Méndez-Armenta, Heavy metals: implications
	associated to fish consumption, Environ. Toxicol. Phar. 26 (2008) 263-271.
[8]	Y. Yi, Z. Yang, S. Zhang, Ecological risk assessment of heavy metals in
	sediment and human health risk assessment of heavy metals in fishes in the
	middle and lower reaches of the Yangtze River basin, Environ. Pollut. 159
	(2011) 2575-2585.
[9]	A.C. Bosch, B. O'Neill, G.O. Sigge, S.E. Kerwath, L.C. Hoffman, Heavy
	metals in marine fish meat and consumer health: a review, J. Sci. Food Agr.
	96 (2016) 32-48.
[10]	J. Andreji, I. Stránai, P. Massàyi, M. Valent, Accumulation of some metals in
	muscles of five fish species from Lower Nitra River, J. Environ. Sci. Health
	Part A41 (2006) 2607-2622.
[11]	N. Zheng, Q. Wang, X. Zhang, D. Zheng, Z. Zhang, S. Zhang, Population
	health risk due to dietary intake of heavy metals in the industrial area of
[12]	Huludao city, China, Sci. Total Environ. 387 (2007) 96-104.A. Galitsopoulou, D. Georgantelis, M.G. Kontominas, Cadmium content in
[12]	fresh and canned squid (<i>Loligo opalescens</i>) from the Pacific coastal waters of
	California (USA), Food Addit. Contam. Part B 2 (2009) 38-43.
[13]	Z.A. Zhuang, P. Li, M.B. McBride, B. Zou, G. Wang, Health risk assessment
	for consumption of fish originating from ponds near Dabaoshan mine, South
	China, Environ. Sci. Pollut. Res. 20 (2013) 5844-5854.
[14]	M.M. Authman, M.S. Zaki, E.A. Khallaf, H.H. Abbas, Use of fish as
	bio-indicator of the effects of heavy metals pollution, J. Aquac. Res. Dev. 6
	(2015) 328.
[15]	L. Hare, Aquatic insects and trace metals: bioavailability, bioaccumulation,
	and toxicity, Crit. Rev. Toxicol. 22 (1992) 327-369.
[16]	W.X. Wang, P.S. Rainbow, Comparative approaches to understand metal
	bioaccumulation in aquatic animals, Comp. Biochem. Physiol. Part C 148
	(2008) 315-323.
[17]	Z. Guo, J. Liu, S. Lek, et al., Habitat segregation between two congeneric and
	introduced goby species, Fund. Appl. Limnol. 181 (2012) 241-251.
[18]	Z. Guo, Liu, J. Lek, S.et al., Ontogenetic diet shifts and interspecific trophic
	interactions of two congeneric and introduced goby species, Aquat. Biol. 20
	(2014) 23-33.

496	[19]	W. Zhang, W.X. Wang, Large-scale spatial and interspecies differences in
497		trace elements and stable isotopes in marine wild fish from Chinese waters. J.
498		Hazard. Mater. 215 (2012) 65-74.
499	[20]	M.M. Storelli, G. Barone, Toxic metals (Hg, Pb, and Cd) in commercially
500		important demersal fish from Mediterranean Sea: contamination levels and
501		dietary exposure assessment, J. Food Sci. 78 (2013) T362-T366.
502	[21]	L. Zhang, WX. Wang, Gastrointestinal uptake of cadmium and zinc by a
503		marine teleost Acanthopagrus schlegeli, Aquat. Toxicol. 85 (2007) 143-153.
504	[22]	Z.Q. Guo, W. Zhang, Y.Y. Zhou, N. Gao, L. Zhang, Feeding strategy affects
505		cadmium bioaccumulation in black sea bream Acanthopagrus schlegeli,
506		Aquacult. Environ. Interact. 7 (2015) 135-145.
507	[23]	Z.Q. Guo, W. Zhang, S. Du, Y.Y. Zhou, N. Gao, L. Zhang, I. Green, Feeding
508		reduces waterborne Cu bioaccumulation in a marine rabbitfish Siganus
509		oramin, Environ. Pollut. 208 (2016) 580-589.
510	[24]	Z.Q. Guo, N. Gao, Y. Wu, L. Zhang, The simultaneous uptake of dietary and
511		waterborne Cd in gastrointestinal tracts of marine yellowstripegoby
512		Mugilogobius chulae, Environ. Pollut. 223 (2017) 31-41.
513	[25]	W. Zhang, L. Zhang, WX. Wang, Prey-specific determination of arsenic
514		bioaccumulation and transformation in a marine benthic fish, Sci. Total
515		Environ. 586 (2017) 296-303.
516	[26]	MN. Croteau, S.N. Luoma, B. Pellet, Determining metal assimilation
517		efficiency in aquatic invertebrates using enriched stable metal isotope tracers,
518		Aquat. Toxicol. 83 (2007) 116-125.
519	[27]	C. Kamunde, M. Grosell, D. Higgs, C.M. Wood, Copper metabolism
520		inactively growing rainbow trout (Oncorhynchus mykiss): interactions
521		between dietary and waterborne copper uptake, J. Exp. Biol. 205 (2002)
522		279-290.
523	[28]	M.J. Chowdhury, C. Bucking, C.M. Wood, Pre-exposure to waterborne
524		nickel downregulates gastrointestinal nickel uptake in rainbow trout: indirect
525		evidence for nickel essentiality, Environ. Sci. Technol. 42 (2008) 1359-1364.
526	[29]	L. Warren, A. Tessier, L. Hare, Modelling cadmium accumulation by benthic
527		invertebrates in situ: The relative contribution of sediment and overlying
528		water reservoirs to organism cadmium concentrations, Limnol. Oceanogr. 43
529		(1998) 1442-1454
530	[30]	L.Hare, A. Tessier, L. Warren, Cadmium accumulation by invertebrates living
531		at the sediment-water interface, Environ. Toxicol. Chem.20 (2001) 880-889.
532	[31]	Q.G. Tan, C. Ke, WX. Wang, Rapid assessments of metal bioavailability in
533		marine sediments using coelomic fluid of sipunculan worms, Environ. Sci.

 Technol. 47 (2013) 499-7505. [32] C.F. Pang, H. Selck, G.T. Banta, S.K. Misra, D. Berhanu, A. Dybowsk, H
5 [32] C.F. Pang, H. Selck, G.T. Banta, S.K. Misra, D. Berhanu, A. Dybowsk, F
Valsami-Jones, V.E. Forbes, Bioaccumulation, toxicokinetics, and effects of
7 copper from sediment spiked with aqueous Cu, nano
8 the deposit Preedinog ysgaid, antipodarum, Environ. Toxico
9 Chem. 32 (2015) 1561-1573.
0 [33] Q. Tarique, J. Burger, J.R. Reinfelder, Relative importance of burrow
sediment and porewater to the accumulation of trace metals in the clar
2 Amiantisumbonella, Arch. Environ. Contam. Toxicol. 65 (2013) 89-97.
3 [34] JH. Lee, G.F. Birch, T. Cresswell, M.P. Johansen, M.S. Adams, S.I
4 Simpson, Dietary ingestion of fine sediments and microalgae represent th
5 dominant route of exposure and metal accumulation for Sydney rockoyste
6 (Saccostrea glomerata): A biokinetic model for zinc, Aquat. Toxicol. 16
7 (2015) 46-54.
8 [35] W.L. Tang, D. Evans, L. Kraemer, H. Zhong, Body size-dependent C
9 accumulation in the zebra mussel Dreissena polymorpha from differen
o routes, Chemosphere 168 (2017) 825-831.
1 [36] E.S. Redeker, L. Bervoets, R. Blust, Dynamic model for the accumulation of
2 cadmium and zincfrom water and sediment by the aquatic Oligochaete
<i>Tubifextubifex</i> , Environ. Sci. Technol. 38 (2004) 6193-6200.
4 [37] MN. Croteau, S.N. Luoma, B.R. Topping, C.B. Lopez, Stable meta
5 isotopes reveal copper accumulation and loss dynamics in the freshwate
 isotopes reveal copper accumulation and loss dynamics in the freshwate bivalve <i>Corbicula</i>, Environ. Sci. Technol. 38 (2004) 5002-5009.

(

558 **Figure Captions**

Fig. 1. The time-course Cd bioaccumulation by the yellowstripe goby of waterborne 559 ¹¹⁰Cd contents (ng g⁻¹) in the gills (panel A), gastrointestinal tracts (GT, panel B), 560 muscle (panel C) and carcass (panel D) in treatments T1 to T4 under conditions of 561 simultaneous exposure to Cd via of three routes. The concentration of waterborne 562 ¹¹⁰Cd was 15 (T1), 40 (T2), 87 (T3) and 178 µg L⁻¹ (T4). Values of each point are 563 means of 4-8 replications (the data was not included when there was the unsuccessful 564 measurement due to the insufficient amount of sample/low concentration of ¹¹⁰Cd). 565 566 Error bars are 1 standard deviation.

567

Fig. 2. The regression of waterborne ¹¹⁰Cd uptake rate (J_{in} , ng g⁻¹ h⁻¹) with the ¹¹⁰Cd contents in water (panel A), sediment-associated ¹¹¹Cduptake rate with the ¹¹¹Cd contents in sediment (panel B), and dietary ¹¹³Cduptake rate with the ¹¹³Cd contents in diet (panel C) when the yellowstripe goby was simultaneously exposed Cd from water, sediment and diet. Values of each point are means of 4-8 replications. Error bars are 1 standard deviation.

574

Fig. 3.The time-course Cd bioaccumulation by the vellowstripe goby of 575 sediment-associated ¹¹¹Cdcontents (ng g⁻¹) in the gills (panel A), gastrointestinal tracts 576 (GT, panel B), muscle (panel C) and carcass (panel D) in treatments T1 to T4 under 577 conditions of simultaneous exposure to Cd via of three routes. The concentration 578 of sediment-associated¹¹¹Cd was 6 (T1), 22 (T2), 45 (T3) and 90 μ g g⁻¹ (T4) in DW. 579 Values of each point are means of 3-8 replications (the data was not included when 580 there was the unsuccessful measurement due to the insufficient amount of sample/low 581 concentration of ¹¹¹Cd). Error bars are 1 standard deviation. 582

583

Fig. 4.The time-course Cd bioaccumulation by the yellowstripe goby of dietary ¹¹³Cdcontents (ng g⁻¹) in the gills (panel A), gastrointestinal tracts (GT, panel B), muscle (panel C) and carcass (panel D) in treatments T1 to T4 under conditions of

simultaneous exposure to Cd via of three routes. The concentration of dietary ¹¹³Cd was 5.17 (T1), 28.5 (T2), 54.1 (T3) and 69.2 (T4) μ g g⁻¹ in DW. Values of each point are means of 4-8 replications (the data was not included when there was the unsuccessful measurement due to the insufficient amount of sample/low concentration of ¹¹³Cd). Error bars are 1 standard deviation.

592

Fig. 5. The time-course percentage of the newly bioaccumulated waterborne ¹¹⁰Cd (panel A), sediment-associated ¹¹¹Cd (panel B), and dietary ¹¹³Cd (panel C) among the gills, gastrointestinal tracts (GT), muscle and carcass of yellowstripe gobies simultaneously exposed to Cd via three routes. Values are means of pooled data of T1-T4 in each sampling time. Error bars are 1 standard deviation.

598

Fig. 6. The time-course relative importance (%) of newly bioaccumulated waterborne ¹¹⁰Cd, sediment-associated ¹¹¹Cd, and dietary ¹¹³Cd in the gills (panel A), gastrointestinal tracts (GT, panel B), muscle (panel C) and carcass (panel D) of yellowstripe gobies simultaneously exposed to Cd via three routes. Values are means of pooled data of T1-T4in each sampling time. Error bars are 1 standard deviation. **Table 1** The estimated waterborne ¹¹⁰Cd influx rate (J_{in} , ng g⁻¹ h⁻¹) in the gills, gastrointestinal tracts (GT), muscle and carcass of the yellowstripe goby simultaneously exposed to Cd from water, sediment and diet. The concentration of waterborne ¹¹⁰Cd was 15 (T1), 40 (T2), 87 (T3) and 178 µg L⁻¹ (T4). The "ud" was the undetectable data because of the unsuccessful measurement due to the insufficient amount of sample/low concentration of ¹¹⁰Cd (Fig. 1).

Turaturata	Gills		G	Г	Ми	iscle	Car	Carcass		
Treatments	$J_{ m in}$	S.E.	$J_{ m in}$	S.E.	$J_{ m in}$	S.E.	$J_{ m in}$	S.E.		
<i>T1</i>										
0-12h	9.11	0.16	6.83	0.70	ud	ud	0.82	0.09		
12-24 h	7.67	0.45	7.96	0.45	0.15	0.004	1.11	0.09		
<i>T2</i>										
0-12h	23.75	0.167	17.51	1.74	ud	ud	2.12	0.17		
12-24 h	20.06	1.10	21.06	1.42	0.34	0.009	2.83	0.31		
<i>T3</i>										
0-12h	42.77	1.04	34.93	3.81	ud	ud	3.85	0.21		
12-24 h	39.02	6.24	38.99	3.69	0.83	0.08	5.08	0.42		
T4										
0-12h	79.44	4.79	69.95	2.59	2.57	0.57	7.06	0.47		
12-24 h	71.98	9.43	79.17	1.56	1.63	0.22	10.14	0.85		

Table 2 The estimated sediment-associated¹¹¹Cd influx rate (J_{in} , ng g⁻¹ h⁻¹) in the gills, gastrointestinal tracts (GT), muscle and carcass of the yellowstripe goby simultaneously exposed to Cd from water, sediment and diet. The concentration of sediment-associated ¹¹¹Cd was 6 (T1), 22 (T2), 45 (T3) and 90 µg g⁻¹ (T4) in DW. The "ud" was the undetectable data because of the unsuccessful measurement due to the insufficient amount of sample/low concentration of ¹¹¹Cd (Fig. 3).

Tuestment	Gills		G	GT		iscle	Carcass		
Treatments	$J_{ m in}$	S.E.	$J_{ m in}$	S.E.	$J_{ m in}$	S.E.	$J_{ m in}$	S.E.	
T1									
0-12h	0.42	0.02	0.69	0.04	ud	ud	-	-	
12-24 h	0.39	0.03	0.70	0.03	ud	ud	0.06	0.001	
<i>T2</i>									
0-12h	1.48	0.06	2.75	0.08	ud	ud	-	-	
12-24 h	1.29	0.08	2.53	0.09	ud	ud	0.21	0.006	
<i>T3</i>									
0-12h	2.99	0.08	5.26	0.21	ud	ud	0.42	0.01	
12-24 h	2.54	0.09	5.10	0.11	ud	ud	0.37	0.01	
T4									
0-12h	5.49	0.19	9.15	0.32	ud	ud	0.72	0.03	
12-24 h	4.34	0.11	8.42	0.23	0.07	0.003	0.69	0.02	

Table 3 The estimated dietary¹¹³Cd influx rate (J_{in} , ng g⁻¹ h⁻¹) in the gills, gastrointestinal tracts (GT), muscle and carcass of the yellowstripe goby simultaneously exposed to Cd from water, sediment and diet. The concentration of dietary ¹¹³Cd was 5.17 (T1), 28.5 (T2), 54.1 (T3) and 69.2 (T4) µg g⁻¹ in DW. The "ud" was the undetectable data because of the unsuccessful measurement due to the insufficient amount of sample/low concentration of ¹¹³Cd (Fig. 5).

Trastrasta	Gills		GT	GT			Muscle			Carcass		
Treatments	$J_{ m in}$	S.E.	$J_{ m in}$	S.E.	_	$J_{ m in}$	S.E.		$J_{ m in}$	S.E.		
<i>T1</i>												
0-12h	1.97	0.02	92.78	5.48		ud	ud		3.47	0.01		
12-24 h	0.46	0.01	-28.57	1.12		0.10	0.01		1.08	0.03		
<i>T2</i>												
0-12h	7.20	0.12	355.93	9.45		0.91	0.02		12.73	0.36		
12-24 h	1.66	0.02	-63.09	2.05		0.51	0.03		2.90	0.11		
<i>T3</i>												
0-12h	13.31	0.55	752.40	8.14		1.69	0.03		24.06	0.67		
12-24 h	3.18	0.08	-86.96	3.14		0.98	0.04		5.56	0.28		
T4												
0-12h	24.23	0.78	1490.31	15.99		2.98	0.05		45.77	0.87		
12-24 h	7.05	0.12	-148.24	6.241		1.33	0.06		12.97	0.54		

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

