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Abstract 27 

The embryonic state of our knowledge regarding the simultaneous uptake of trace 28 

metals via multiple routes in aquatic organisms makes it difficult to accurately assess 29 

the bioaccumulation and risk of metals. This study used cadmium (Cd) and a demersal 30 

marine fish (the yellowstripe goby) as a model system to determine tissue-specific 31 

uptake of Cd under conditions of simultaneous exposure to Cd from water, sediment 32 

and diet. A triple stable isotope tracing method was used in which each exposure route 33 

was spiked by a different stable isotope (110Cd, 111Cd and 113Cd). The results revealed 34 

that the fish took up waterborne and sedimentary Cd via gills and gastrointestinal tract 35 

(GT), and that of dietary Cd was via the GT. The gills absorbed Cd predominantly 36 

from water (77.2-89.4%), whilst the GT absorbed Cd mainly from diet (81.3-98.7%). 37 

In the muscle and carcass, Cd uptake was mainly from the diet (47.1-80.4%) and 38 

water (22.8-51.6%). Our study demonstrated that when aquatic animals were subject 39 

to simultaneous exposure through multiple uptake routes, the uptake and relative 40 

importance of each route for metal accumulation was highly tissue-specific and more 41 

complex than a single route of metal exposure. 42 

 43 
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Graphic Abstract  52 

 53 
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 65 

Figure Caption: The simultaneous uptake of waterborne 110Cd, sediment-associated 66 
111Cd, and dietary 113Cd in the different tissues (the gills, gastrointestinal tract (GT), 67 

muscle and carcass) of the yellowstripe goby (Mugilogobius chulae) exposed to Cd 68 

via three routes. 69 

 70 

 71 

 72 

 73 

 74 

 75 

  76 



Please note that this is the authors’ version of the manuscript. Changes may have been made 
to the final publication, which is available at https://doi.org/10.1016/j.jhazmat.2018.09.045 
 

4 / 30 
 

1. Introduction 77 

The widespread exploitation of cadmium (Cd) since the second Industrial Revolution 78 

has elevated concentrations of this biologically non-essential and highly toxic trace 79 

metal in environments. The occurrence of Cd contamination was responsible for the 80 

notorious disease of Itai-itai (a bone disease characterized by fractures and severe pain 81 

caused by the excessive Cd intake) in the Toyama Prefecture of Japan in the 1950’s 82 

[1]. Since then, there has been serious international concern regarding Cd pollution 83 

[2,3]. 84 

Marine ecosystems, the ultimate receptacles of the most anthropogenic pollutants, 85 

are frequently subjected Cd pollution, especially in coastal and estuarine areas [3-6]. 86 

Among aquatic organisms, the level of Cd bioaccumulation in fish has considerable 87 

significance for the health of the general population, given the fact that the 88 

consumption of fish is usually the dominant route of Cd exposure to human [7-9]. 89 

Indeed, the bulk of studies have observed high levels of Cd bioaccumulation in fish, 90 

which results in the associated high risk of Cd exposure to the general populations via 91 

fish consumption [10-13]. 92 

Moreover, fish often play an integral role in aquatic ecosystems, due to their key 93 

trophic niches and wide habitats, which facilitates their use as a model with high 94 

ecological and environmental relevance for the understanding of trace metal 95 

bioavailability and bioaccumulation behaviors [14]. Hence, the levels of metal 96 

bioaccumulation in fish, as an assessment endpoint, have been utilized in many 97 

previous studies assessing population health risk and ecological risk of heavy metal 98 

pollution in aquatic ecosystems [8,13]. However, there have been surprisingly few 99 

attempts made to understand the uptake of sediment-associated metals in fish in 100 

relation to benthic aquatic invertebrates (e.g., oysters, scallop, and aquatic insects 101 

[15,16]), even though sediments are well known as a major carrier of trace metals and 102 

thus are potential secondary sources of their contaminants in aquatic ecosystems. To 103 

date, the bioavailability and bioaccumulation of sedimentary metals to fish remains at 104 

the embryonic state, especially for the demersal fish that are sediment-dwelling and/or 105 
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deposit-feeding, which should have a great potential for the take up of sedimentary 106 

metals (e.g., Gobioidei such as Rhinogobius giurinus and Rhinogobius cliffordpopei 107 

[17,18]). In field studies, there have been many reports that demersal fish can 108 

accumulate high levels of metals and thus they might pose a substantial health risk to 109 

human health [8,19,20]. Consequently, a substantial need exists to characterize the 110 

uptake of sediment-associated metals in fish species, especially in demersal species, 111 

which have great significance for both population health and ecological risk 112 

assessments for heavy metal pollution in aquatic habitats. 113 

In fish, the gills and the gastrointestinal tract (GT) are the two main routes for 114 

metal uptake [16]. In general, the gills are the main site for uptake of dissolved metals 115 

in the water phase, and the GT is the principle site for the assimilation of dietary 116 

metals. However, our previous work has suggested that the GT is also important for 117 

uptake of dissolved metals in marine fish, owing to the continuous exposure of the GT 118 

caused by the need to drink seawater for osmoregulation purposes [21-23]. Moreover, 119 

we have demonstrated the significant influence that simultaneous water borne and 120 

dietary metal exposure has on the uptake of dietary metals by the GT of marine fish 121 

[24], and we further demonstrated that metal uptake via the water route can be 122 

substantially affected when fish are simultaneous exposed to metal through the dietary 123 

route [23]. These results revealed that the uptake of metal from multiple routes is 124 

more complex than a single route of metal uptake, and there are tissue-specific 125 

interactions among metals from different exposure pathways [23,24]. Nevertheless, 126 

most previous studies on fish determined tissue-specific metal uptake using a single 127 

route of metal exposure (i.e. there was no dietary metal exposure in determining 128 

waterborne metal uptake and vice versa), which yields a very limited picture of how 129 

specific fish tissues accumulate metals under realistic conditions. This is especially 130 

the case for demersal fish, which are often exposed to metal through three routes 131 

simultaneously (i.e., waterborne, dietary and sediment-associated metals). 132 

In the present study, we used the highly toxic element Cd and the yellowstripe 133 

goby (Mugilogobius chulae), a typical demersal fish with potential as a model marine 134 
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fish [24,25]), as a model system to investigate metal uptake under conditions of 135 

simultaneous exposure via three routes (i.e. water, sediment and diet). A triple stable 136 

isotope tracing method was used to explore to the uptake of spiked waterborne (110Cd), 137 

sediment-associated (111Cd) and dietary Cd (113Cd). We quantified time-course 138 

bioaccumulation and influx rate of Cd in the gills, GT, muscle and carcass when the 139 

fish were simultaneously exposed to the three routes of Cd. Furthermore, the 140 

tissue-specific distribution and relative importance of Cd from the different routes was 141 

determined. 142 

 143 

2. Materials and methods 144 

2.1. The test organisms and Cd 145 

The juvenile marine yellowstripe gobies (Mugilogobius chulae, 1.64 ± 0.12 g fish−1) 146 

were provided by Guangdong Laboratory Animals Monitoring Institute (Guangzhou, 147 

China).Fish were acclimatized for 2 weeks in the laboratory aquaria before the 148 

exposure experiment. During the acclimatization, the fish were fed with oven dried 149 

peanut worms (Sipunculus nudus) fragmented into pieces with diameters <1 mm.  150 

The stable isotopes 110Cd, 111Cd and 113Cd (99.6%，International Atomic Energy 151 

Agency Office at USA, New York) were used as tracers, whilst CdCl2 that contained 152 

Cd with natural isotopic ratios (Sigma-Aldrich) was used as a typical, non-tracer 153 

source of Cd. 154 

 155 

2.2. Cd equilibration in the water and sediment 156 

The surface sediment (~ 0-5 cm depth) was collected from Daya Bay (Guangdong 157 

Province, South China (114°40′ E, 22°40′ N)), and transported to the lab in airtight 158 

containers. The sediment was sieved (mesh size of 0.43 mm) and washed with 159 

distilled water 5 times to remove the background heavy metals. To re-establish the 160 

salinity, the sediment was further washed through with seawater (30-32 psu) 3 times. 161 

Washed sediment was settled overnight and overlaying water was siphoned off. The 162 

sediment was then oven-dried at 80 °C. The moisture and organic matter content of 163 
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the sediment was 16.3±1.12 % and 13.8±1.27 % (n= 5). The Cd content in the 164 

sediment was 0.019±0.002 μg g-1 dry weight (n= 5). 165 

The Cd equilibration in the Cd-spiked sea water and sediments was determined 166 

in a preliminary experiment. Briefly, the sea water was first spiked with typical Cd. 167 

The nominal Cd concentration in the sea water was 20, 50, 100, and 200 μg L-1. Then, 168 

the prepared sediment was added to the aquaria containing the Cd-spiked sea water, 169 

homogenized for 15 minutes, and shaken for 30 minutes. The equilibration of Cd 170 

between the spiked water and sediments was then investigated. The results suggested 171 

the time required to reach equilibrium was 4 weeks (STable 1 (Supporting 172 

Information of Table 1)). Thus, the Cd concentration of water and sediment at the end 173 

of the equilibration was the reference for the following Cd uptake experiments 174 

(STable 1).  175 

 176 

2.3. Cd spiking in water, sediment and diet 177 

Four treatments (namely T1, T2, T3 and T4) were used in this study. Seawater 178 

treatments were spiked with 110Cd at concentration of 16, 44, 90, and 185 μg L-1 in T1 179 

to T4 respectively (STable 1). Sediments of T1-T4 were spiked with 111Cd at 180 

concentrations of 6, 22, 45, and 90 μg g-1 DW (STable 1) by adding a known volume 181 

of solution containing 111Cd to a known mass of the prepared sediment for each 182 

concentration (1: 2 ml g-1). The sediment was then, homogenized for 15 minutes, 183 

shaken for 30 minutes, and oven-dried for 48 h at 60 °C. To spike fish diets with 113Cd, 184 

peanut worms were maintained for 4 weeks in seawater containing 113Cd at 185 

concentrations of 15, 40, 87 and 178 μg L-1 for T1 to T4 respectively. The measured 186 

113Cd content in the peanut worm was 5.17±0.61, 28.45±2.46, 54.1 ±6.11, 69.2±5.03 187 

μg g-1 in T1-T4, respectively. 188 

 189 

2.4. Cd uptake experiment 190 

The Cd uptake experiment (24 h) was conducted in 100 ml beakers. The 111Cd spiked 191 

sediment was first added in the beaker, and then the110Cd spiked seawater was lightly 192 
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added. The beakers were then left to stabilize for 48 h. 193 

Juvenile marine yellowstripe gobies were individually kept and fed in similar 194 

beakers for 1 week to acclimate to the experimental conditions, during which the fish 195 

were not exposed to Cd beyond background. Before Cd exposure, fish were starved 196 

for 48 h and then fed with 113Cd spiked diet for 1 h (resulting in the ingestion of food 197 

equivalent to ca. 13.5% of body weight). Fish were then individually transferred to the 198 

prepared beaker containing the 111Cd spiked sediment and 110Cd spiked seawater. As 199 

the chyme evacuation time of the fish was 24 h after a single dose of dietary Cd 200 

exposure and the fish finished the dietary Cd uptake within 24 h based on our 201 

previous study, the simultaneous uptake experiment was conducted over 24 h for all 202 

routes in the present study. 203 

During the 24 h uptake experiment, 8 fish in each treatment were sampled at 2, 4, 204 

8, 12, and 24 h. The sediment, overlying water (< 5 cm to the sediment) and water 205 

(middle column water) was sampled at the same time intervals. Fish feces were 206 

siphoned off gently at 8, 12, 18 and 24 h. 207 

The fish were sacrificed by overdose MS-222. The gills, gastrointestinal tracts 208 

(GT), muscle and carcass were then sampled [24] and the chyme in the stomach and 209 

intestine was carefully collected. The pore water in the sediment was immediately 210 

extracted by centrifugation at 3500 rpm for 10 min. 211 

 212 

2.6. Cd stable isotope concentration analysis 213 

Samples of 0.06-0.1 g were digested in 1 ml of HNO3 (69%, ultrapure, Fisher 214 

Scientific, Geel, Belgium) for 48 h at 80 °C. The sample was pooled in the same 215 

treatment if the sample was < 0.05 g. The samples of seawater were digested by 216 

HNO3at room temperature for 48 h (1:1). Then the content of total Cd and stable 217 

isotope (110Cd, 111Cd and 113Cd) were quantified by inductively coupled plasma-mass 218 

spectroscopy (ICP-MS, 7700X, Agilent Technologies Inc., California, USA). The 219 

internal standard was 115In and a QC sample was analysed every 20 samples during 220 

the analysis. The concentration of 110Cd, 111Cd and 113Cd in the samples were 221 
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calculated as described by Croteau et al. [26] and Guo et al. [24] (see details in the 222 

Supporting Information). 223 

 224 

2.7. Data calculation and statistical analysis 225 

The influx rate of Cd (Jin, ng g-1 h-1) was calculated by linear regression between the 226 

net increase of Cd in the fish and exposure time. The Jin was estimated from 0-12 h 227 

and 12-24 h based on the food gut pass time of this species [24].  228 

The dietary 113Cd assimilation efficiency (AEs) was calculated as:229 

100A/AAE h 0h 24 ×= , where A24h was the 113Cd retained in the fish at 24h, and A0h 230 

was the 113Cd content in the fish at 0 h after feeding [24]. 231 

The differences in AEs among the T1-T4 were analyzed using one-way analysis 232 

of variance (ANOVA) followed by a Tukey's HSD post-hoc test. Analysis of 233 

covariance (ANCOVA) was used to test the differences in the slope from the 234 

regression between Cd uptake rate and ambient Cd content, using ambient Cd content 235 

as the covariate. 236 

Normality and homogeneity of data was determined using Kolmogorov-Smirnov 237 

test and Levene's test. Difference was regarded as significant when p< 0.05. All 238 

statistical analyses were performed by the SPSS software package (vs. 18, SPSS Inc., 239 

Chicago, USA). 240 

 241 

3. Results 242 

3.1. The verification of Cd content in sediment, water and chyme 243 

3.1.1. The110Cd, 111Cdand 113Cdcontents in the overlying water and water 244 

The110Cd concentration in the water and overlying water was similar (SFig. 1A&D 245 

(Supporting Information of Figure 1)). The sediment-derived 111Cd was detected in 246 

both in the water (0.77-5.92 μg L-1, SFig. 1C), and overlying water (1.26-15.3 μg L-1, 247 

SFig. 1E) of T2-T4. The dietary 113Cd was detected in the in the water (0.57-1.71 μg 248 

L-1, SFig. 1C) and overlying water (1.02-2.23 μg L-1, SFig. 1F) of T3 and T4. 249 

However, 111Cd in sediment and 113Cd in diet was 5.90-31.4×103-fold higher than 250 
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that in the water and overlying water. 251 

 252 

3.1.2. The110Cd, 111Cdand 113Cdcontents in the pore water and sediment 253 

The water-derived 110Cd concentration was between 0.73-32.7 μg L-1 in the pore water 254 

(SFig. 2A), and 0.77-7.16 μg g-1in the sediments (SFig. 2D). The pore water 111Cd was 255 

26.6-695 μg L-1 in T1-T4 (SFig. 2B). The 111Cd in the sediment was slightly lower 256 

than the nominal values (SFig. 2E). Dietary 113Cd in the pore water was only found in 257 

T4 (0.35-0.58 μg L-1, SFig. 2C).  258 

 259 

3.1.3. The110Cd, 111Cdand 113Cd contents in the chyme 260 

The water-derived 110Cd increased steadily from 4-24 h in the chyme of the fish 261 

(0.22-8.97 μg g-1, SFig. 3A). The sediment-derived 111Cd was only detectable in the 262 

chyme of T3-T4 (0.21-1.29 μg g-1, SFig. 3B), while the dietary 113Cd showed a steady 263 

decrease from 2-24 h in all four treatment groups (SFig. 3C). 264 

 265 

3.2. The tissue specific uptake of waterborne 110Cd 266 

The newly bioaccumulated waterborne 110Cd increased with the exposure time in the 267 

four tissues (i.e., gills (Fig. 1A), GT (Fig. 1B), muscle (Fig. 1C) and carcass (Fig. 268 

1D)). The gills and GT accumulated comparable amounts of 110Cd, and the muscle 269 

had the lowest values (Fig. 1).  270 

The gills and GT showed similar 110Cd influx rate (Jin, ng g-1 h-1), which was 271 

8~11-fold higher than that of carcass, and 30~60-fold higher than that of muscle 272 

(Table 1). Moreover, the Jin of 110Cd in the tissues was linearly correlated with the 273 

110Cd contents in water (Fig. 2A). The slope of the regression was significantly higher 274 

in the gills and GT compared with those in the carcass and muscle (ANCOVA, p< 275 

0.05, Fig. 2A).  276 

 277 

3.3. The tissue specific uptake of sediment-associated 111Cd 278 

The sediment-associated 111Cd contents in the four tissues also increased steadily with 279 
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the exposure time (Fig. 3). The GT showed the highest 111Cd concentration, followed 280 

by gills and carcass, and the lowest values was found in the muscle (Fig. 3). 281 

The Jin of 111Cd in the GT was 1.7~2.0 fold higher than that in the gills, and 282 

11.7~13.1-fold higher that in the carcass (Table 2). The slope of the regression was 283 

highest in the GT, which was significantly higher than that in the carcass (ANCOVA, 284 

p< 0.05, Fig. 2B). 285 

 286 

3.4. The tissue specific uptake of dietary 113Cd 287 

All treatment groups showed similar AEs of dietary 113Cd (1.35-1.74 %, ANOVA, p> 288 

0.05, SFig. 4). The concentrations of dietary 113Cd in the tissues displayed a quick 289 

increase during 0-12 h, and then a low increase during 12-24 h in the gills, muscsle 290 

and carcass (Fig. 4), while the113Cd contents in the GT decreased steadily from 12 to 291 

24 h (Fig. 4B). 292 

During 0-12 h, the Jin of dietary 113Cd was highest in the GT, which was 293 

47~61-fold and 26~32-fold higher than that of gills and carcass respectively (Table 3). 294 

Furthermore, the slope of the regression was significantly higher in the GT than that 295 

in the other tissues (ANCOVA, p< 0.05, Fig. 2C). 296 

 297 

3.5. The distribution and relative importance of Cd uptake route 298 

3.5.1. The tissue specific distribution of Cd 299 

The time-course percentage partitioning of newly bioaccumulated Cd among tissues 300 

was similar among T1-T4 for 110Cd (SFig. 5), 111Cd (SFig. 6), and 113Cd (SFig. 7). 301 

Thus, the data of T1-T4 was pooled (Fig. 5). The proportion of the 110Cd and 111Cd 302 

was highest in the carcass, followed by the gills and GT, and it was lowest in the 303 

muscle (Fig. 5A&B). The highest 113Cd contents were in the GT, followed by the 304 

carcass (Fig. 5C).  305 

 306 

3.5.2. The relative importance of Cd 307 

The time-course relative importance (%) of 110Cd, 111Cd, and 113Cd in the tissues was 308 
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similar among T1-T4 (SFig. 8-11). Thus, the data of T1-T4 was pooled (Fig. 6). In the 309 

gills, 110Cd from the water was dominant (77-89 %), followed by 113Cd from the diet 310 

(5-18 %) and then 111Cd from the sediment (4.3-5.6 %, Fig. 6A). In the GT, the 311 

contribution of the 113Cd was dominant (81-99 %, Fig. 6B). In the muscle and carcass, 312 

the113Cd showed slightly higher contribution than 110Cd, while the proportion of 111Cd 313 

was very low (0.7-2.2 %, Fig. 6C & D). 314 

 315 

4. Discussion 316 

4.1. The scenario of simultaneous uptake of Cd from water, sediment and diet 317 

This study firstly detailed the scenario of time-course tissue-specific uptake of Cd 318 

from water, sediment and diet in demersal marine fish. The findings demonstrated that 319 

the bioaccumulation of waterborne 110Cd in the four tissues of the fish proportionally 320 

increased with the increase of ambient 110Cd levels, and also increased steadily with 321 

the exposure time. This pattern was almost same among the four treatment groups (i.e., 322 

T1-T4, Fig.1), which is consistent with our previous studies on Cd uptake in this 323 

species [24], and is similar to the findings for the marine black seabream 324 

(Acanthopagrus schlegeli) [21]. Moreover, we likewise found that the dietary 113Cd 325 

AEs and the time-course changes in the 113Cd content of the tissues were also similar 326 

among T1-T4 (Fig. 4 & SFig. 4), which corresponded with our previous studies 327 

[22,24]. Therefore, there was no unequivocal evidence that the uptake of Cd via one 328 

of the three routes was significantly affected by the simultaneous exposure of Cd from 329 

the other routes, at least within the range of ambient Cd concentrations used in this 330 

study.  331 

Although our recent findings in marine fish revealed the interaction between 332 

waterborne and dietary metal uptake with a simultaneous exposure scenario (i.e. a 333 

substantial effect of waterborne Cd on the uptake of dietary Cd [23], and the 334 

suppression of dietary metal on the uptake of dissolved metal in the fish GT [24]), it is 335 

noteworthy that the presence and magnitude of the effect of a given route of Cd 336 

uptake on the another route of Cd uptake might be closely related to the ambient metal 337 
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concentrations in each route, based on the results of the present study and previous 338 

work [24]. Hence, it seems that the paradigm of simultaneous uptake of metals from 339 

multiple routes in marine fish is far more complex than that of a single route of metal 340 

uptake in both short-term [23,24]) and long-term metal exposure scenarios [27,28]. As 341 

a consequence, simultaneous uptake of metals by organisms via multiple routes 342 

should be addressed extensively because this scenario has a much higher 343 

environmental relevance for population health risk and/or ecological risk assessments 344 

of heavy metal pollution. 345 

 346 

4.2. The uptake of sediment-associated Cd in the demersal fish 347 

The present study demonstrated that the uptake of sediment-associated 111Cd showed 348 

a similar pattern to waterborne 110Cd (Fig. 3), suggesting that the predominant route of 349 

sediment-associated 111Cd uptake is from the dissolved 111Cd in the water (e.g., 350 

overlying and pore water via dissolved or particle-associated 111Cd; SFig. 1). During 351 

the exposure in the present study, no frequent burrowing behavior was observed in the 352 

fish and the GT of the fish was not found to contain sediments. Consequently, the fish 353 

ought to have taken up a very small amount of sediment-associated 111Cd via the 354 

ingestion of bulk of sediment (SFig. 1). The present findings were in line with several 355 

observations made under field exposure conditions [29,30]. In Lake Laflamme 356 

(Quebec City, Canada), for instance, Hare et al. [30] reported that most invertebrate 357 

taxa accumulated more than 75% of their Cd from the water column compartment 358 

(mainly from overlying water). Only those with typical burrowing and/or 359 

sediment-feeding behaviors took up amounts of Cd from the sediment compartment. 360 

These results demonstrated the great significance of sediment-derived Cd in the water 361 

compartment (e.g., overlying water and pore water), which is particularly critical in 362 

determining bioavailability and bioaccumulation of the sedimentary metals in 363 

demersal fish [29,30].  364 

In addition, the results of the present study revealed a remarkable difference in 365 

tissue-specific Cd bioaccumulation between the sediment-associated 111Cd and 366 
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waterborne 110Cd. First, the uptake rate of 111Cd in the gills was much lower than that 367 

of waterborne 110Cd when the concentration of 111Cd in overlying water was similar to 368 

that of 110Cd in water (Table 1 & Table 2). In contrast, the GT showed a higher 369 

111Cduptake rate in the T4 (8.42-9.15 ng g-1 h-1) than that for 110Cd in the T1 370 

(6.83-7.96 ng g-1 h-1) when the ambient Cd levels in the two phases were comparable 371 

(Table 1 & Table 2). Moreover, we found that the 111Cd uptake rate and concentration 372 

in the GT was much higher than that in the gills (Table 2& Fig. 3), while the two 373 

tissues had comparable 110Cd uptake rates and concentrations (Table 1 & Fig. 2). This 374 

suggests that the GT played a more important role than the gills in the uptake of the 375 

sediment-derived 111Cd in the water (which might be as particle-associated Cd), while 376 

the two tissues had comparable importance in the uptake of dissolved waterborne 377 

110Cd, which has been not been demonstrated previously in fish species. Indeed, the 378 

dominant role of GT in the uptake of sediment-associated metals has been previously 379 

found only in the aquatic invertebrates that ingest sediments as food resources (e.g., 380 

Oligochaetes [31]), or in the suspension-feeders that ingest metal-enriched particles 381 

(e.g., snail [32]); clam [33], oyster [34]; and mussel [35]). In the present study, 382 

therefore, we suggest that the more important role of the GT than the gills in the 383 

uptake of sediment-associated 111Cd might result from the ingestion of 111Cd bound to 384 

sediment particles, based on the above empirical studies [32-35]. Thus, further 385 

attempts are needed to quantitatively determine the uptake of sediment-associated Cd 386 

from the dietary phase via ingestion of particles.  387 

 388 

4.3. The tissue-specific relative importance of Cd from multiple routes 389 

In the present study, we found that fish accumulated most Cd from dietary and 390 

waterborne routes, and the contribution of sediment-associated 111Cd to the total Cd in 391 

the fish was very small in all four tissues (less than 5.6 %, Fig. 6). This indicated that 392 

only small amounts of sediment-associated Cd could be directly taken up by the 393 

demersal fish without ingestion of bulk of sediments. Previous studies have reported a 394 

small contribution of sediment-associated Cd to uptake in zebra mussels (5-8% [35]), 395 
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and aquatic oligochaetes (9.8% [36]). Under the simultaneous exposure of Cd from 396 

the three routes, our findings shed new light on the relative importance of Cd taken up 397 

directly from the sediments in demersal marine fish. Results suggested that when 398 

conducting population health and/or ecological risk assessments in benthic fish 399 

species, there need be little extra concern over the direct uptake of 400 

sediment-associated metals in benthic fish species in comparison with the dietary and 401 

waterborne Cd bioaccumulation.  402 

 403 

4.4. The successful application of the triple Cd stable isotope tracing method  404 

The inductively coupled plasma-mass spectrometry (ICP-MS) technologies have been 405 

fully developed in the past decades, which allows the accurate and cost-effective 406 

measurement of the low abundance stable isotopes. Manipulation of stable isotope 407 

ratios was thus quickly developed as a particularly useful tool in determining trace 408 

metal uptake in aquatic animals, such as snails, clams, mussels and fish 409 

[23,24,26,35,37]. In relation to the traditional gamma emitting radioisotopes, the 410 

stable isotope tracing method has several significant advantages, including the lack of 411 

handling/disposal hazard materials, the low healthy risk to researchers, relatively 412 

inexpense of the pure stable isotopes, commercial availability of stable isotopes for 413 

most metals and so forth [37]. Moreover, most elements have 2 or more stable 414 

isotopes, which combined with low detection limits by ICP-MS, allows the high 415 

potentiality to determine the simultaneous uptake of ambient trace metals through 416 

different routes [35,37]. The present study developed a triple Cd stable isotope tracing 417 

method (110Cd, 111Cd and 113Cd) to successfully determine Cd uptake from water, 418 

sediment and diet in a demersal fish. We strongly recommended the use of multiple 419 

stable isotope tracing methods as they proved highly useful in the study of 420 

simultaneous uptake and interaction of the different exposure routes in aquatic 421 

animals. Such investigations reflect realistic exposure scenarios in which organisms in 422 

contaminated environments are simultaneously exposed metals through multiple 423 

routes, but few such studies are reported in the literature. 424 
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In conclusion, using a triple stable isotope tracing method, the present study 425 

successfully demonstrated the tissue-specific simultaneous uptake of Cd from water, 426 

sediment and diet sources in the demersal marine fish. The results revealed that the 427 

uptake of Cd by each of the three routes was not apparently affected by the 428 

simultaneous exposure to Cd from other routes. Moreover, we found that the relative 429 

contribution of sediment-derived Cd to the total Cd in the fish was very small (less 430 

than 5.6 %). In demersal fish species, therefore, we suggested the further attempts are 431 

required to evaluate the importance of trophic transfer of dietary metals derived from 432 

sediments, as secondary contaminated sources of sedimentary metals in aquatic 433 

ecosystems. 434 
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Figure Captions 558 

Fig. 1. The time-course Cd bioaccumulation by the yellowstripe goby of waterborne 559 

110Cd contents (ng g-1) in the gills (panel A), gastrointestinal tracts (GT, panel B), 560 

muscle (panel C) and carcass (panel D) in treatments T1 to T4 under conditions of 561 

simultaneous exposure to Cd via of three routes. The concentration of waterborne 562 

110Cd was 15 (T1), 40 (T2), 87 (T3) and 178 μg L-1 (T4). Values of each point are 563 

means of 4-8 replications (the data was not included when there was the unsuccessful 564 

measurement due to the insufficient amount of sample/low concentration of 110Cd). 565 

Error bars are 1 standard deviation. 566 

 567 

Fig. 2. The regression of waterborne 110Cd uptake rate (Jin, ng g-1 h-1) with the 110Cd 568 

contents in water (panel A), sediment-associated 111Cduptake rate with the 111Cd 569 

contents in sediment (panel B), and dietary 113Cduptake rate with the 113Cd contents in 570 

diet (panel C) when the yellowstripe goby was simultaneously exposed Cd from water, 571 

sediment and diet. Values of each point are means of 4-8 replications. Error bars are 1 572 

standard deviation. 573 

 574 

Fig. 3.The time-course Cd bioaccumulation by the yellowstripe goby of 575 

sediment-associated 111Cdcontents (ng g-1) in the gills (panel A), gastrointestinal tracts 576 

(GT, panel B), muscle (panel C) and carcass (panel D) in treatments T1 to T4 under 577 

conditions of simultaneous exposure to Cd via of three routes. The concentration 578 

ofsediment-associated111Cd was 6 (T1), 22 (T2), 45 (T3) and 90 μg g-1 (T4) in DW. 579 

Values of each point are means of 3-8 replications (the data was not included when 580 

there was the unsuccessful measurement due to the insufficient amount of sample/low 581 

concentration of 111Cd). Error bars are 1 standard deviation. 582 

 583 

Fig. 4.The time-course Cd bioaccumulation by the yellowstripe goby of dietary 584 

113Cdcontents (ng g-1) in the gills (panel A), gastrointestinal tracts (GT, panel B), 585 

muscle (panel C) and carcass (panel D) in treatments T1 to T4 under conditions of 586 
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simultaneous exposure to Cd via of three routes. The concentration of dietary 113Cd 587 

was 5.17 (T1), 28.5 (T2), 54.1 (T3) and 69.2 (T4) μg g-1 in DW. Values of each point 588 

are means of 4-8 replications (the data was not included when there was the 589 

unsuccessful measurement due to the insufficient amount of sample/low concentration 590 

of 113Cd). Error bars are 1 standard deviation. 591 

 592 

Fig. 5. The time-course percentage of the newly bioaccumulated waterborne 110Cd 593 

(panel A), sediment-associated 111Cd (panel B), and dietary 113Cd (panel C) among the 594 

gills, gastrointestinal tracts (GT), muscle and carcass of yellowstripe gobies 595 

simultaneously exposed to Cd via three routes. Values are means of pooled data of 596 

T1-T4 in each sampling time. Error bars are 1 standard deviation. 597 

 598 

Fig. 6. The time-course relative importance (%) of newly bioaccumulated waterborne 599 

110Cd, sediment-associated 111Cd, and dietary 113Cd in the gills (panel A), 600 

gastrointestinal tracts (GT, panel B), muscle (panel C) and carcass (panel D) of 601 

yellowstripe gobies simultaneously exposed to Cd via three routes. Values are means 602 

of pooled data of T1-T4in each sampling time. Error bars are 1 standard deviation. 603 
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Table 1 The estimated waterborne 110Cd influx rate (Jin, ng g-1 h-1) in the gills, 

gastrointestinal tracts (GT), muscle and carcass of the yellowstripe goby 

simultaneously exposed to Cd from water, sediment and diet. The concentration of 

waterborne 110Cd was 15 (T1), 40 (T2), 87 (T3) and 178 μg L-1 (T4). The “ud” was 

the undetectable data because of the unsuccessful measurement due to the insufficient 

amount of sample/low concentration of 110Cd (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Treatments 
Gills  GT  Muscle  Carcass 

Jin S.E.  Jin S.E.  Jin S.E.  Jin S.E. 

T1            
0-12h 

 

9.11 0.16  6.83 0.70  ud ud  0.82 0.09 
12-24 h 7.67 0.45  7.96 0.45  0.15 0.004  1.11 0.09 
T2            

0-12h 
 

23.75 0.167  17.51 1.74  ud ud  2.12 0.17 
12-24 h 20.06 1.10  21.06 1.42  0.34 0.009  2.83 0.31 
T3            

0-12h 
 

42.77 1.04  34.93 3.81  ud ud  3.85 0.21 
12-24 h 39.02 6.24  38.99 3.69  0.83 0.08  5.08 0.42 
T4            

0-12h 
 

79.44 4.79  69.95 2.59  2.57 0.57  7.06 0.47 
12-24 h 71.98 9.43  79.17 1.56  1.63 0.22  10.14 0.85 
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Table 2 The estimatedsediment-associated111Cd influx rate (Jin, ng g-1 h-1) in the gills, 

gastrointestinal tracts (GT), muscle and carcass of the yellowstripe goby 

simultaneously exposed to Cd from water, sediment and diet. The concentration of 

sediment-associated 111Cd was 6 (T1), 22 (T2), 45 (T3) and 90 μg g-1 (T4) in DW. The 

“ud” was the undetectable data because of the unsuccessful measurement due to the 

insufficient amount of sample/low concentration of 111Cd (Fig. 3). 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Treatments 
Gills  GT  Muscle  Carcass 

Jin S.E.  Jin S.E.  Jin S.E.  Jin S.E. 

T1            
0-12h 

 

0.42 0.02  0.69 0.04  ud ud  - - 

12-24 h 0.39 0.03  0.70 0.03  ud ud  0.06 0.001 

T2            
0-12h 

 

1.48 0.06  2.75 0.08  ud ud  - - 

12-24 h 1.29 0.08  2.53 0.09  ud ud  0.21 0.006 

T3            
0-12h 

 

2.99 0.08  5.26 0.21  ud ud  0.42 0.01 

12-24 h 2.54 0.09  5.10 0.11  ud ud  0.37 0.01 

T4            
0-12h 

 

5.49 0.19  9.15 0.32  ud ud  0.72 0.03 

12-24 h 4.34 0.11  8.42 0.23  0.07 0.003  0.69 0.02 
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Table 3 The estimated dietary113Cd influx rate (Jin, ng g-1 h-1) in the gills, 

gastrointestinal tracts (GT), muscle and carcass of the yellowstripe goby 

simultaneously exposed to Cd from water, sediment and diet. The concentration of 

dietary 113Cd was 5.17 (T1), 28.5 (T2), 54.1 (T3) and 69.2 (T4) μg g-1 in DW. The “ud” 

was the undetectable data because of the unsuccessful measurement due to the 

insufficient amount of sample/low concentration of 113Cd (Fig. 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Treatments 
Gills  GT  Muscle  Carcass 

Jin S.E.  Jin S.E.  Jin S.E.  Jin S.E. 

T1            
0-12h 

 

1.97 0.02  92.78 5.48  ud ud  3.47 0.01 
12-24 h 0.46 0.01  -28.57 1.12  0.10 0.01  1.08 0.03 
T2            

0-12h 
 

7.20 0.12  355.93 9.45  0.91 0.02  12.73 0.36 
12-24 h 1.66 0.02  -63.09 2.05  0.51 0.03  2.90 0.11 
T3            

0-12h 
 

13.31  0.55   752.40  8.14   1.69  0.03   24.06  0.67  
12-24 h 3.18  0.08   -86.96  3.14   0.98  0.04   5.56  0.28  
T4            

0-12h 
 

24.23 0.78  1490.31 15.99  2.98 0.05  45.77 0.87 
12-24 h 7.05 0.12  -148.24 6.241  1.33 0.06  12.97 0.54 



Please note that this is the authors’ version of the manuscript. Changes may have been made 
to the final publication, which is available at https://doi.org/10.1016/j.jhazmat.2018.09.045 
 

25 / 30 
 

 

 
 

Fig. 1. 
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Fig. 3. 
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Fig. 4. 
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