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SUMMARY

A 2-dimensional model of a mill 1roll temperature
distribution and radial thermal expansion is presented. The
emphasis is on selective axial coolant distribution as a
method of controlling strip profile. The Fourier equations
describing heat conduction are solved using the method of
finite differences. The following effects are considered:
(i) The temperature distribution within the roll and strip
just prior to entry to the roll bite. (ii) The heat
generated in the strip due to deformation. (iii) The heat
generated by friction between the strip and the roll. (iv)
The temperature distribution of the strip and roll after
each pass. (v) The heat conducted into the roll when in
contact with the strip. (vi) The heat removed from the roll

by the coolant, the air and the back=-up rolls . The model
also takes account of the geometry of the roll. This

complexity means that different models for the roll and
strip temperature distributions are required. The model
evaluates individual heat transfer coefficients along the
axis of the roll in order to simulate the effectiveness of
each spray 2zone in removing heat from the roll. A
simplified method of evaluating roll thermal cambers,
derived from the model, is presented. The model shows good

agreement between predicted and measured roll thermal
cambers.

The model is linked to a strip profile prediction model and
used to investigate the effects of changing spray patterns

and roll bend on profile. It was found that changing spray

pattern has a significant effect on strip profile. It was

concluded that: (i) Level spray patterns gave the best

shape. (1i1) Edge sprays sensitivity is important. (ii)
Over-cooling outside the strip provides good parabolic
shape. (iv) A change to exit side spray levels has a
significant effect on strip profile. (V) Exit side sprays

viii




only has a tendency of rolling out the middle of the slab
(i.e. a flat middle). (vi) All level sprays on the exit
side of the roll only produce a distorted profile on the
strip. It was also found that for any given change in roll
thermal camber, there is a corresponding change in strip
profile. The two changes can be related by a linear factor.
The value of this factor has been investigated and found to
be product and mill dependent.



CHAPTER 1

INTRODUCTION

During the rolling of a hot aluminium slab, its cross-
sectional area is reduced by a succession of passes through
two steel or iron work rolls, rotating in opposite
directions. In a four-high mill <the work rolls are

supported by two back-up rolls of larger diameters (as in
fig. 1l.1). The mills may be arranged in a tandem train
where the thickness of the metal is reduced successively in
two or more stands. Rolling of the slab can also be carried
out in the single stand of a reversing mill by forcing the
metal to travel firstly in one direction, then in the other
direction . Coolant flowincj over the rolls removes heat
imparted to the rolls due to contact with the hot strip and

friction between strip and rolls. The product from the hot
mill may be further rolled in a cold mill.

The markets for flat-rolled aluminium products include can
stocks, car and other commercial vehicle body panels and
household aluminium foil. The clients demand that the

rolled product be of high quality, in particular, exhibits
no sheet defects, such as surface buckles, and be of

acceptable surface finish. The producers of these products

themselves demand, due to the present economic conditions,

continually greater efficiencies in production. The
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simultaneous demands of producers and end-users require the
accomplishment of the extremely difficult task of producing
aluminium strip to narrow dimensional tolerances, tight
flatness, temperature and metallurgical specifications at
very high rolling speeds. These difficulties are compounded
when it is understood that the constraints above apply to
products which may differ 1in alloy types, widths,
thicknesses and coil weights, and, on occasions, in product
batches of less than ten coils. Thus, when "steady-state"
rolling conditions are not achieved, a large number of
process variables have to be re-adjusted from product to
product to ensure acceptable product quality. Some of these
variables are strip entry and exit temperatures and
thicknesses, work roll temperatures, mill power
consumption, lubricant and coolant flows and strip
tensions. Former industrial practices involved adhering to
rigid rolling patterns to ensure good quality products. The
many process variables proving impossible to control
manually to meet the stated criteria, have pushed the
rolling industry towards the installation of automatic

monitoring and adaptive computer control systems in order
to produce strips of acceptable shape. |

Shape, as a measure of. product quality, is defined by
Bryant et al.?7 as the "departure from flatness of the
rolled strip (that is, the degree of buckling), and is
caused by non-uniform transverse stress distributions at
the roll gap exit" when laid flat under zero tension
conditions. If residual stresses are large enough to cause
visible buckling of the strip, then the term "manifest
shape" 1s applicable and during rolling may be influenced
by changing the mean tension in the strip. The term "latent

shape" applies when the tension stresses are insufficient

to cause visible buckling. Figure 1.2 illustrates some

typical flatness problems including tight edge and quarter
buckles.
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The transverse gauge distribution, termed profile (see fig.
1.3), which is of interest to this study, has a significant
effect on strip shape. The highly complex interactions 1in
the pre-set roll-gap between elastic deformation and
deflection of the rolls, plastic deformation of the strip,
roll wear and the heat transfer between the strip, rolls
and the external environments are the final contributors to
the shape of the end product.

High epot
/
L
| /
|
3 |

Cdoe @ron

VIdUN commmrc—————

Fig. 1.3 Illustration of strip showing profile
(crown, edge drop and high spots).

It is accepted in the rolling industry that in order to
produce high quality flat cold-rolled strip, the degree of
crown 1in the hot strip has to be minimised. Indeed, can
makers in particular are demanding zero crown so that
consistency in their production processes can be achieved.
It is therefore essential that hot strip mills are capable
of producing low strip profile. A. hot mill with this
capability will have an important market advantage, so the

significance of adopting a profile control policy and
control system becomes apparent.

Deflection of the work rolls is partly compensated for by
using larger back-up rolls. Further restriction and control




of elastic roll bending is provided by the use of external
bending jacks, and by careful roll grinding. Dynamic mill
scheduling control also has an important part to play in
the achievement of high quality strip and consistency of
product. These methods, among others, offer a wide range of
control, but an important additional method, control of the

roll thermal expansion by selective coolant application,

has been relatively neglected by the rolling industry. It
is in this area that this study is undertaken. Roll thermal
camber, or the difference in transverse expansion of the

work rolls, is readily admitted as a serious cause of bad
shape.

At present selective spray control 1in hot rolling is
handicapped by inaccurate dynamic measurements of strip
shape. This is because the technical difficulties are
formidable, due mainly to the operating environment. A

shape detector for a hot strip mill must operate during
high temperatures (in the range of 300 °c - 500 °C for hot

aluminium rolling; and between 800 °C - 1000 ©C in steel
mills). The sensor needs to be shock resistant, easy to
install and maintain, and require accuracies of the order
of 1 um. The continuing basis towards higher rolling speed

will therefore amplify the difficulties of controlling roll
thermal camber.

The temperature distribution, and thence the <thermal

expansion can, however, be simulated by mathematical
models, and are important since they can be used to predict

the complete temperature history of the rolls. Such

information can be used to determine <the coolant

distribution on-line in real-time control systems, or off-

line in simulation and optimisation studies of schedule and
plant design.

Engineering science is continually faced with the problem
of improving the mathematical models used in the design and

evaluation of equipment and processes; hot aluminium



rolling is no exception. This can often be achieved by the
eradication of simplifying assumptions. Elimination of
assumptions frequently 1leads to the elucidation of an
unrecognized problem, formulation of a corrective theory
and an enhancement of the state of the art. Often, too, the
solution of the mathematical equations 1involved becomes
increasingly difficult.

The problem of predicting the transient temperature
behaviour in the work rolls is to derive an acceptably
accurate analytical model for a cylinder of finite length,
rotating at high speeds, and subjected to heat transfer

over its surface. An accurate model can suggest simplified
methods of calculations.

The aim of this work is to provide a unified theory of the
spray cooling of mill rolls and its effect on strip profile
and to present a functional control algorithm for on-line

process control during rolling. To achieve this objective
it is proposed to:-

1. Solve the time dependent heat conduction equation in
cylindrical co-ordinates using the finite difference

techniques. The boundary conditions will be based on
conditions experienced by mill rolls.

2. Calculate the variation of radial expansion along the

roll axis based on the temperature distribution
throughout the rolls.

3. Check the thermal camber model against mill data. This
includes on site data collection and processing.

4. Use the time dependent heat conduction equations to

predict the angular distribution of temperature in a
roll subjected to spray cooling.



5. Use the mathematical models to investigate the effect of

various types of spray cooling on the angular
temperature distribution and thermal camber of mill
rolls.

6. Develop a mathematical model of spray cooling and

correlate it with experimental data gathered from an
in-house test rig. .

Following this introductory chapter, a discussion on the
literature related to this work can be found in Chapter 2.
A detailed mathematical analysis of the roll temperature
function is presented in Chapter 3. Supporting models of
roll thermal expansion and roll bite heat transfer are

given 1in appendix B and C, respectively. Analytical
solutions to the roll temperature equations for simple heat

transfer conditions, such as constant boundary conditions,
can be found in appendix A. Appendix D gives a description
of the structure of the computer algorithms based on the
models mentioned above. The method of data collection at
actual rolling mills is given in Chapter 4. Chapter 5 shows
the comparison between actual plant data and predicted
results from the modelling programs. The complexity of the
roll thermal camber model 1is reduced to simpler forms in
Chapter 6. The linking of the thermal camber model and a
strip profile prediction model is presented in Chapter 7.
The conclusions from this study are set out in Chapter 8



CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

It was pointed out in the previous chapter that strip
profile has a significant effect on the final strip

flatness of the cold-rolled product. Consequently, it has

become of vital necessity for the producer of hot aluminium
products to monitor and control aluminium strip profile.
Some of the available actuators such as roll bending, roll

grinding, dynamic mill &scheduling and tension levelling
have also been mentioned. These combined methods have, to
some degree, contributed to reducing the problem of profile
control, but the control of roll thermal camber is agreed
to be vital, if total success in combating this problem is
to be achieved. Studies?3¢32,72,30 have shown that as a
contribution to bad shape, thermal camber affects the roll
gap to a similar extent as roll bending and roll
flattening. This establishes the ' requirement of an

understanding of the mechanisms affecting the control of
roll thermal behaviour.

Thermal canmber arises through uneven cooling of the work
rolls. Severe buckling can develop 1f a correct coolant
control strategy is not employed. A viable coolant control



strategy must embrace the maintenance of the optimum roll
and strip temperature distribution along the entire roll-
strip contact length. The consequence of which will be the
optimization of roll shape, strip profile, flatness and
surface quality. It can be appreciated that temperature
control during the entire process cycle can only be
achieved by an exact degree of selective axial coolant
distribution on the work rolls as a means of controlling
local roll radial expansion. It follows then that before a
reliable control strategy can be implemented, the problem

of dynamic temperature measurement or prediction must be
solved. |

The solution to the problem of controlling thermal camber
through correct coolant application can best be tackled

through the development of a reliable mathematical model of
the transient temperature behaviour of the rolls, and

determining exactly the ability of the coolant sprays to
remove heat from the rolls, that is, the governing heat

transfer coefficient of the cooling fluid. Thus, if the
thermal camber could be calculated, when added to the other
profile control actuators, it would be possible to adjust
rolling schedules on the basis of a few intermittent
temperature measurements. to constantly re-calibrate the

model. If a reliable roll temperature model could be

established to give a "primary standard", a simplified

method or model could be realised and be used in control
software.

The modelling of strip and roll temperature is a complex
heat transfer problem which must consider’©

l. The temperature distribution within the roll and strip
just prior to entry to the roll bite.

2. The heat generated in the strip due to deformation.

10



3. The heat generated by friction between the strip and the
roll.

4. The temperature distribution of the strip and roll after
each pass.

5. The heat conducted into the roll when in contact with
the strip.

6. The heat removed from the roll by the coolant, the air
and the back-up rolls .

This complexity means that different models for the roll
and strip temperature distribution are required. This study

is primarily concerned with the former problem, although it
is evident that the ¢two 1issues cannot be entirely

separated. For an effective knowledge of the roll coolant
strateqgy, an exact knowledge of the coolant heat transfer

characteristic is also required. The latter problem will be
examined in section 2.4 and in Chapter 3.

Several workers have produced models of the roll thermal

behaviour. These models are all based on generalised forms
of Fourier's heat conduction equation. The models differ
in complexities according to the number of simplifying

assumptions made. The more important contributions will now
be examined.

2.2 ROLL TEMPERATURE MODELS

Peck, et al.l? (1954) presented the first genuline thermal
and mechanical analysis of the roll. This arose from an

interest in the failure of iron work rolls caused by
thermal stresses. The types of failures that were of

interest to these workers involved breaks in the roll. The
problem was examined from a "cause" and "“effect" stand-

11



point in which the causes involved the temperatures of the
hot sheet and coolant, roll speed and the heat equivalent
of work done by the rolls. Effect was deemed mainly to be
the tenmperature pattern of the roll and the normal and
shearing stresses on corresponding surfaces due to the
unequal temperatures. This was a cold rolling study.

The mathematical model for heat conduction presented by
Peck and his co-workers assumed no axial heat conduction.
It was further assumed that the heat transferred to the
roll due to contact with the strip was removed by uniform
circumferential cooling. The heat input was approximated by
a line source. Cilrcumferential heat flow was neglected
because it was assumed that contact with the heat source
was brief compared to the roll speed and that the zone of
high temperature on the roll was thin in comparison to the
roll circumference. An average and uniform deformation
through the arc of contact was assumed based on an average
strip velocity, which with frictional heating was factored
in by a complex dgraphical method from an experimental

knowledge of roll torque. The roll surface temperature
distribution was considered constant. Based on the above

discussions, the authors presented the equation below for a
one dimensional bar insulated on its sides:

oT k oT - (2.2.1)

& pC o

where:

ct
Il

tinme

radial direction

temperature

n H H
!

coefficient of thermal conductivity

p = roll density

Cp = heat capacity at constant pressure.

19



The determination of the temperature stresses were based on
the following equation:

cE | 32T &T 2.
o, o, Fo_ A&l In .22
3 arzayz ay"' 1-pl o oy

where

¢ = stress function

@ = coefficient of linear expansion
E = Modulus of Elasticity

i = Poisson's Ratio

r, y = radial and axial direction, respectively

The authors considered the equations above suitable for hot
rolling operations, and solved them by the method of finite
differences because it was thought <that the number of

variables was excessive for analytical solutions. The

solution of eqn.(2.2.1) visualised the roll as shown in
fig.(2.2.1).

Fig. 2.2.1 pivisionm of the- roll into 36 sections

for Peck's temperature studies

17



Several objections can be made to the Peck model, not least
of which is the fact that an analysis was made of the case
of partial roll cooling. The strip was not treated
explicitly and the work of deformation and frictional
heating were crudely handled by the introduction of a
complicated graphical method. The method, though, can be
considered justifiable if it is desired to study the system

of the distribution of stresses in only one section of the
roll.

Further progress in the area of roll temperature (and
stress) prediction was forwarded by cernil? in 1961 when he
presented a two-dimensional transient tenperature
distribution model. He arrived at the following equation:

lar vy 2.2.3)
K ot
where:

T*(r,eyt) = temperature at any point on the roll
(r,0) as in fig.(2.2.2).

Fig. 2.2.2- Diagram of
stationary roll of radius a
with an instantaneous 1line

source of e?t placed at
position (x/,48/)

Cerni considered the roll to be stationary, of radius R

with an instantaneous unit line source of heat placed at
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position (x/, 6/ ). Cerni considered the following boundary
conditions:

T*(r,8,0) = 0
T*(O,e,t) finite

T*(ryﬂ,t) periodic 1in §

T’

RO _ 1
k y "hT(R,e.z)

(2.2.4)

where h = coefficient of heat transfer

He assumed that there was no axial heat flow, that the heat
flux to the roll is uniform over the arc of contact, that

there were no heat losses to the bearings, and that the
heat flux decays exponentially with time. Cerni resorted to

a technique used by Jaeger3 for a rotating line source on a
cylinder to solve eqn.(2.2.3) analytically.

Although Cerni's work was more involved than Peck et al,l2
it could likewise be objected to because of the omission of
axial conduction which meant it was a sectional study only.

The work does not provide the flexibility needed to study
cooling 1in depth (which 1is understandable, since the
computing techniques then available, ensured that these
solutions had to estimate the effects).

The next major contribution in developing a mathematical
model capable of predicting work roll temperatures came
from Pawelski?® in 1971. He presented a one dimensional
model of the temperature field in a roll suitable for hot
and cold rolling. He assumed that no heat was conducted
axially, and that conduction occurred only in a radial
direction, whilst at the surface heat was transferred
circumferentially by convection. Therefore, in the roll
body heat transfer is governed by the equation:
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aT_ |21, lor (2.2.5)

It was further assumed that the roll is long enough for
thermal equilibrium to be achieved, so that, considered
from the spatial context, a stable temperature field should
exist. It follows then that only a section of the roll will
vary in temperature, restricted to a thin surface layer for
the usual situation of very rapid roll revolutions. Below
this 1layer Pawelskl considered that the temperature is
close to that of the roll core, and for such a situation
radial conduction 1is also limited to the surface 1layer.
Hence, eqn. (2.2.5) can be modified to give:

oT - Kls?.lz'.J, ..lﬁ.ﬂl 2.2.6)
ot or or

Making the substitution

(2.2.7)

to generate the equation
al- [ Ll (2.2.8)

means that the heat flow in the Z direction is opposite to
the direction of r. For a boundary condition it was assumed
that the periodical changes in temperature of a surface

element is known. Pawelski presented the solution of edqn.
(2.2.8) to be

31

'r=

[M cos(j¢-B x) + N sin (jo — x)] (2.2.9)

.|=0

where oO=mt

o = angular velocity of roll
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and Mj , Nj are arbitrary constants

For x = 0, egqn. (2.2.9) yilelds

T = i (Mj cos (j9) + Nj sin G¢)) (2.2.10)
j=0

where T, is the surface temperature and is to be assumed
known.

Pawelski examined the special case for

T =e

A 0S6<2n (2.2.11)
for which T, is the "related excess temperature Tw/ Tnaxe
The "excess temperature", T,, is the difference in
temperature compared with the temperature at the entrance
to the roll gap. The increase in temperature in the roll

gap is Typayxe Flg. 2.2.4 is a plot of the function To (9)
for different values of the exponent H.

Fig.2.2.3 Diagram of roll for
Pawelski's. model.,

Fig.2.2.4 Related excess temp. Vv
heat transfer coefficient
(eqn. 2.2.11)

1%



In fig.2.2.4 the position of the clearance between the

rolls is at the points ¢ = 0 or 2 so that the related
excess temperature increases instantaneously from 0 to 1
(because of the assumption of negligible circumferential
conduction of heat). In.the next revolution T, 1s equal to
zero once more due to cooling, the exponent H being a

measure of the speed of reduction of temperature.

Hence, the Fourier series which results from the conditions
discussed above is stated as:

j=1 Hz +]

and for which the temperature distribution in the roll is:

'r..-- 1. ¢2H), (1+2H2

j=1 H +J

1 2xH
= (1-c2) |1 +2H

(Hcos_1¢ + sm_]tb) (2.2.12)
2rH

[Hcos(]q; x)+Js1n(j¢ Bx)]) (2.2.13)

AS X =-=-> o eqn.(2.2.13) becomes (2.2.14) which 1is the
temperature in the core of the roll.

L (5

(2.2.14)

Using eqn. (2.2.13) Pawelski presented an examination of
the roll temperature distribution for values of 0 < x < 3mm
and for 0 < ¢ < 2n, and various values of w. He found that
almost no temperature fluctuation exists below 3mm from the
roll surface, and fluctuations decrease in size as the
angular velocity is increased. Pawelski also found that the
better the cooling, i.e. the larger the value of H, the
smaller the penetration depth of the temperature waves, and
from which it may be concluded that cooling should be
effected as soon as the strip leaves the roll bite.

Although Pawelski did not present a comparison of his model
with measured data,

his assumptions are reasonable, and
hence the model,

subject to some impoftant cqualifications.
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heat conduction in the direction of the roll axis can only

be ignored where the temperature gradients across the roll
are small, such as the section of the roll covered by the
strip. However, at the strip edge there are quite large
temperature gradients so that Pawelski's model does not
represent that section of the 1roll. 1In a general

application of the model, the roll barrel could be
considered in sections of individual discs, independent of

each other, then applying the equations. The assumption of
known surface temperature as a boundary condition and the
assumption of thermal equilibrium in the roll invalidates
the use of the model in real time application. The
analytical solution chosen by Pawelski means that it would
be limited to a few special cases in order to arrive at
values for the arbitrary constants in the Fourier series

developed from eqn.(2.2.9). The model could, however, give

a qualitative insight into the important parameters
influencing roll temperature.

In 1971, Stevens et al.2’ published a paper on roll cooling
based on actual roll temperatures for a medium-width steel
hot strip mill. These workers were primarily interested in

the problems of thermal fatigue which can be an important

factor in roll wear and. roll breakage. They presented a

simplified analysis of the thermal and plastic- elastic
behaviour of the roll surface. To predict the roll surface
temperature, a one-dimensional transient heat conduction
equation was suggested, based on the idea that the
conditions in the roll bite may be considered similar to a

flow of heat between two semi-infinite Dbodies,

instantaneously coming into contact with a thin insulating
layer between them. This leads to the equation

ﬂ: aﬂ
ot

o (2.2.135)

with the boundary conditions:
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: %F..-.-.h(-rs-'rR) (2.2.16)

where:

T, = temperature of the strip

Tp = temperature of roll surface
r = distance from interface

a = thermal diffusivity

The solution of eqn.(2.2.15) gives

T, =To, * (0 i)

where A =

where:
H = conductance of insulating layer.
Suffices:
1 = initial time
2 = at time t
R = roll
8 = strip

For x =0

TRa=TR1 +(TSI-TR1).I-LAJ§ * (I'C#t- crf‘”"\ﬁ) (2.2.19)

Stevens et al.?’ reported good agreement with experimental

measurements using equation (2.2.19). They concluded that
thermal fatigque can be a major factor in the roughing train
and early finishing stands. They also reported a
temperature fluctuation of between 20 °C and 500 °C on each

revolution as the roll passed under the spray header and

entered the roll gap. Extreme temperature rises were
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limited to a thin surface layer at less than 3.5 mm and is
essentially constant at a depth below 7 mm of the roll
surface.

The work of Stevens et al.?’” was 1limited in that no
fundamental studies of the mechanisms of roll cooling or

roll wear were offered. The study was useful 1in

implementing a method for getting actual temperatures,
although somewhat involved to be used readily in rolling
mills. The study showed the need to design proper cooling
systems. They made use of their findings to implement a new
cooling system for the mill investigated. However, the work
did not examine roll camber and 1its effect on strip
profile.

Following the work of Stevens et al., Parke and Baker<® in
1972 published a report on roll cooling for a hot strip
mill with the objectives of determining the methods through
which roll cooling regimes may be evaluated, deciding the
best means of roll cooling, and developing guide lines for
work roll cooling in hot rolling. To meet these objectives,
it was reasoned that a knowledge of the temperature of the
roll's surface 1layers would suffice. These workers
reported, for reasons of financial constraints and the
impracticability of obtaining roll surface temperatures, a
limitation of the study to a computational method.

To study the temperature variations during the rolling
cycles, Parker and Baker presented a mathematical model, as
well as the computer program, of a central cross-section of

a long cylinder rotating through the varying cooling
conditions that occurs during rolling. The model assumes

fixed boundary conditions in time and predicts temperatures

close to the roll surface. Heat transfer to the work rolls
is assumed to result from conduction from the roll surface

towards the roll interior, at the slab - roll interface

(due to the heat of deformations), ambient cooling,
radiation from the slab on entrance to and exit from the
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roll bite, spray cooling, cooling by water that adheres to

and flows along the roll surface, and heat conducted
between the back-up and work rolls.

The heat transfer coefficients for the effect of spray
cooling are determined by an equation of the form:

(rR_Tw)n (2-2-20)
h=hy 700

where:

h = actual heat transfer coefficient

h, = basic heat transfer coefficient

-
py
|

roll surface temperature

Ty = water temperature

n - = exponent dependent on flow regime

Parke and Baker<3 reported values for h of between 5.5 - 30
kW m~2 ©Og-i depending on the spray configuration. The
exponent n was determined from the literature on the
cooling of heated plates. The determination of valid heat
transfer coefficient is- - paramount in any model of the
transient roll temperatures, and as such eqn.(2.2.20) is
too over-simplified for use in an automatic spray control
system. The heat transfer coefficient for spray cooling
needs to be modelled as a function of temperature, jet
velocity and flow patterns on the roll surface, the nature
of the cooling fluid, and any other relevant parameters.

This model divides the roll circumferentially by a series
of equally spaced radial lines into wedges. Radial division

is through a pattern of concentric circles not necessarily

of equal radial distances apart. Nodes result where radial

lines intersect the concentric circles. Thus, the

temperatures of an element surrounded by a set of nodes are

computed, 1i.e. the temperature change at each node is
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computed during the rotation through an angular width. The
calculated change in temperature of an element is derived
from the quantity of energy required to store the excess
energy transferred from the neighbouring elements during
the interval, for a rotation through one wedge angle.

Fig. 2.2.5

The total heat flow through A8 alag 4O
(from O to #) will Le given appxaximataly

by wij"ri.ifl) (I'J-M'J'/z) ' ].Y- k/m'J

viere T.‘j iy the wwrege tuguratury acasunsl ot 0 wal Ti.irl i3 i avirwg
Wanuratuge seasurud at ¥ during Uss Linge intogval ¢ - A/2 2 &, > L, +du/2;

30 Iy Une anplar spacing of Une vadinl liest AC winl 82 sl Ars 18 Uwnr distan

taclinlly hutween ¥ and @3k is Uw Qastiiciant of Uwnasl conbuctivity .

This computational scheme is useful in performing
detailed calculation of the roll

a

surface temperature,
providing the correct heat transfer coefficients are

arrived at, but it is too computationally expensive for
consideration for on-line applications for spray cooling
control. Moreover, only a section of the roll can be
considered at any one time, since the model does not assunme
axial conduction of heat. Although the authors presented
much calculated data, they did not measure the roll
temperature directly, and hence their model
untested against good experimental data.

remalins

Parke and Baker found that for entry side cooling, heat
transfer from the work rolls is greatest immediately the
strip leaves the exit side of the roll bite when surface
quenching by the back-up rolls occurs, prior to any effect
of the cooling sprays. This fact, they reasoned, is due to
greater heat flux towards the core of the work and back-up
rolls because metal conduction 1is equivalent to surface
film coefficients of heat transfer in the order of 70
kW m~¢ ©c¢c~1 , or more. These relatively 1large heat flux
rates are due to the steep radial temperature gradients.
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Hence, these workers concluded that cooling on the strip
entry side is inefficient.

Beeston and Edwards=>© described a comprehensive
mathematical model of the cold-rolling process in 1973.
Much of this work is applicable to hot rolling with the
appropriate modification of some assumptions. These workers
assumed a mean heat transfer coefficient and heat input
averaged around the roll circumference. Heat conduction to
the back-up rolls were assumed negligible as was the cyclic

variation in temperature. Hence, Beeston and Edwards=0 were

able to employ the Fourier equation for heat conduction
within a solid1®, namely,

e (BB

! 2.2.21
x \a Tx o) | )

where:

q/ = heat addition to an element per unit volunme
= density of work roll

p
C = specific heat of roll

8 = roll temperature function
k

= roll thermal conductivity

X, r = axial and radial coordinates,
respectively

Axial symmetry and an equivalent 1roll length as an
approximation to the actual roll length were assumed. This

led to the boundary conditions necessary to solve eqn.
(2.2.21) using finite difference techniques.

In the same year as the Beeston and Edwards publication30,

Wilmotte and Mignc:n32 published their work on thermal

camber of work rolls during hot rolling. The mathematical
model for the temperature field in the roll is similar to

that presented by Beeston and Edwards. Radiative heat
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transfer is considered negligible and the heat removed Ifrom
the work rolls assumed to be by the cooling water, by the
air, the back-up rolls and by the bearings. Equivalent heat
transfer coefficients are assumed along the roll surface to
account for the heat exchanges occurring along these
boundaries. Equivalent temperatures are also assumed for

the surroundings. The authors resorted to an explicit
numerical solution of egn. (2.2.21)

r
C D
E & G
H
B
O X
Fig. 2.2.6 . Schematic view of roll section and

its surroundings

Consider the roll boundaries above.

The boundary conditions were given by Wilmotte and Mignon
as follows. Along the roll axes, OA and OB of fig. 2.2.6,
respectively |

9T _

a,'o (2.2.22)
and

9T _, g (2.2.23)

ox
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Along ACD, EFGH, there is an equivalent heat <transfer
coefficient g*(x) , and an equivalent external environment
temperature V*(x), so that

.V )) (2.2.24)

and analogously'along boundary DE :

'kﬂ = * - V‘
x 0 Ty Ve (2.2.25)

The characteristics of the equivalent surroundings are as
follows

Boundary DEF:

(2.2.26)

il
Te
9

*%
9 DEF

|
<

%
V' DEF

Boundary CD:

Any given point along this boundary comes into contact
consecutively with air, back-up roll and the coolant.
Hence, during one revolution of the roll, the amount of
heat exchanged per unit of surface with air is

%
q.=gaj (Tt'va)-dt | (2.2.27)
0

where:
r = time interval

T, = ambient temperature in contact with the
roll |

Similar relations apply in respect to the areas in contact

with the back-up roll and coolant, i.e., qgpyg and g,

respectively. Hence the total quantity of heat transferred
per unit of surface per revolution of the roll is
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q=gCD T(x)-VCD 9 (2-2-28)

# = time for one revolution

Wilmotte and Mignon assumed that the surface temperature

T(x) remains constant at T, for work roll contact with the

air, coolant and back-up roll. Similarly the external
temperature V'op is assumed constant at V,.

Hence,

8 (2.2.29)

The authors suggested that the work of Lambert angd

Econom.upoulus109 could be wused ¢to determine the heat

transfer coefficients, ga and g,, whereas the term Jgyr <an
be calculated from an expression proposed by Pawelski??:

g k
BUR "BUR _ m LT (2.2.30)
0 2nR

W

an:
where:

= thermal diffusivity of the roll
length

linear speed of work rolls

"R
1

U

R,, = roll radius
m

constant determined by state of contact
between back-up roll and work roll

= 0.3 for imperfect contact

Boundary AC:

The expression for

equivalent heat . transfer coefficient
is given as
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1
i BR ., C=¢g 2.2.31
gm‘g;+gwae gg & ( )

and for equivalent temperature

(1-_)v +_&v’+_ L (v-V) + .(v-v’)-

L+ (2.2.32)
Kof
—;—.T' v jcxp(ﬁzrt)cﬁc(ﬁJ—)dt
5=Ksnr |+g (2-2-33)
XK a

« = coefficient of thermal expansion

v/ = temperature of roll before contact:
defined as the value of the surface
temperature at the middle of the barrel
determined for the preceeding interval

s — thickness of oxide layer
suffix

g = roll gap

Reported values of g, and g, are given as:
gy, = 1.5 x 10-3 cal mm™2 s~1 O¢c~i

go = 5.0 x 10-3 cal mm~2 s™* 97!

Good agreement was reported between measured and calculated
thermal camber.

Patula®? in 1981 published an analytical model for the
steady-state temperature distribution in a 1long cylinder
rotating at constant speed and subjected to constant
surface heat fluxes and convective cooling. Patula assumed
that axial heat conduction, because of the 1long roll
assumption, could be neglected; that the cylinder is heated
and cooled at various section of the roll surface, thermal
properties are uniform and independent of temperature. For

this model it was also assumed that steady state
temperature existed for any control volume. Based on the

above assumptions, eqn. (2.2.34) (refer to fig.2.2.7 below)
can be derivedl©9:
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(2.2.34)

where:
s = roll surface speed
k = roll thermal conductivity
x = K/pC
§ = angular coordinate

T = temperature difference define as Tp - Tp

To coolant temperature

Tp = actual roll temperature

r = radial coordinate

T
1,

Fig.2.2.7. Schematic diagram of rotating roll
showing locations of heat transfer.

The relevant boundary conditions are given as
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- 0 <0<+
(RO) _ 2.2.35)
Kk = . +o<cf<o+a+O (
or hT(&e) 0
0 O+ +9<O<2n

: heat input and
o, = angular separation between the
where the cooling regions (radians)

Q= anglc for convective cooling, radians

9 = angle for heat input, (radians)

h = (constant) heat - transfer coefficient

A solution of egqn. (2.2.34 ) can be reached by consulting
Patula's>? publication. In applying egn. (2.2.34), the
author reported that the penetration of the surface
temperature variations is only about 6 per cent of the roll

radius under steady state conditions for relatively slow
rolling speeds. In particular he found that relocating the
sprays had a negligible effect on the roll centre 1line
temperature except for 1low values of the parameters
[/(sR/x][k/(hR)] (it should be greater than 10).

Patula's examination can be considered useful for analysis
of the bulk roll temperature and thermal roll crowns, but
is limited in not being able to predict the 1localised
thermal displacements or temperatures at the roll surface
accurately. The assumption of steady state roll temperature
is clearly unreasonable for actual rolling situations.

In the same year as Patula's publication Weber and Unger53
brought out a paper which detailed the examination of the

influence of the barrel length, strip width and roll gap

temperature on the roll temperature: during cold rolling
with reference to certain parametric valuesiQ1:102 qhege
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authors modelled the roll temperature with the equation :

oo h " (2.2.36)
=T, + Z j v(0)e_(C ).dC. Bm(x).lo(l' Cm)
0

T(r x) = temperature field

!

Ty = ambient temperature

L, = half modified roll barrel length

h = mean relative heat transfer coefficient on
the cylinder jacket

§€q = broper value

I, modified Bessel function of the first kind,

Zero order

Iy = modified Bessel function of the second
kind, 1lst order

n = coefficient of transverse expansion
® = characteristic function

¢e = integration variable

Based cn the application of egqn. (2.2.36) these workers
concluded that the temperature variation within the width

of the strip was independent of barrel length, the 1longer

the barrel, but the roll temperature decreases towards the
barrel end. They also concluded that with increasing strip
width, higher surface temperatures can be expected with

otherwise constant conditions. Not surprisingly, they also

reported that for increased roll gap.temperatures, higher
surface and bulk temperatures will result.

Pavlossoglou57 in 1981 produced a mathematical model for
hot flat rolling in the deformation zone, and aimed to
predict the temperature profile of the roll and strip in

the absence of any cooling. Since this model ignores
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cooling by convection, is one dimensional (only radial
conduction of heat is considered), and assumes constant
centre line temperatures of both the roll and strip, it can
be considered unsuitable to the present area of study. In
continuation of this work, Pa*s.rlc::<.=;s<::\g].c>u58 later extended
this model to include heat 1losses due to radiation and

convective cooling but not due to a liquid coolant when the

rolls are not in contact with the strip. In any event the
work did not include any reference to experimental data.

Pallone’? considered that it was of paramount importance to
include axial conduction in any model of the work roll
temperature behaviour. Citing the work of Patulasz, Pallone
decided that only the bulk roll temperature need be
considered in an examination of the roll thermal expansion.
Patula had found that only four per cent of the radius

experienced any temperature fluctuations under steady-state

conditions. Thus, to develop his model Pallone dismissed

radial and circumferential heat conduction, and considered

that heat input from hot slabs and heat removal by coolant

sprays 1is even at any given cross- section along the
circumference of the roll (because of high roll rotational
speeds). He further assumed that constant heat transfer
coefficients existed between the slab and the roll over the

slab width and that between the coolant and the full roll

length. In hot rolling, the coolant is not necessarily

sprayed over the entire length of the roll, nor is the

quantity of coolant evenly distributed across the roll. In
addition, Pallone assumed that the heat gained by the roll

from the slab i1s through contact conductance. Finally, he

assumed that the roll 1length can be divided into two

regions, namely, where the slab and coolant sprays are

active. The above assumptions 1led h.:i.m to arrive at the
following equations (see fig. 2.2.8):

oT 0°T ht o
—l — a—l- + 2 T-~-TY _ C(P T-T

and for region II
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dT *T P
[ = g—2 -2 o

x a  eCmd

(TII-Tf) (2.2.38)

At the interface where region I and II meet the boundary
conditions are given as

dT /7w aT W :)
Ll —t ::'-lL —t
ax(z ) o \2 . (2.2.39)
W hd (2.2.40)
Fq[(}§712)1= 1}[(::!JC)
where:

w = slab width

Cp = specific heat of work roll

d = work roll diameter

coefficient of forced convection

g
0
I

hT = coefficient of thermal contact

-3
H
I

coolant spray temperature
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8Y YRTER SPRAYS HALF 20LL

LENGTH
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|
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*
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Fig. 2.2.8. Location of heat input and heat loss in
work roll
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The additional boundary and initial conditions required 1in
order to solve ean. (2.2.37) are given as

aT‘ (0,1)
=0 (2.2.41)
ox
and
'QCLQ)uT}
and corespondingly for eqn. (2.2.38)
and (2.2.42)
T“ x0) =T

From a solution to the above equations the diametral
expansion based on the mean temperature distribution can be
derived. It is clear from the analysis that this model is
not suitable for the evaluation of roll thermal cambers
which is a pre-requisite for effective strip crown control.

Bennon’’ continued the search for an  appropriate
mathematical model of the transient thermal behaviour of

work rolls by developing an implicit three-dimensional,
control-volume based, finite difference solution for <the
Fourier equations of heat conduction 1in a section of a

solid rotating c¢ylinder. He assumed constant thermo-

physical material properties and axial symmetry to arrive
at the equation:

k B_ k 321‘ 32T

where:

§ = circumferential coordinéte

w = angular velocity

The boundary conditions do not stipulate constant heat
transfer coefficients but this model can be considered one

of the more realistic representation of a typical work roll
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environment. It may be that the computing requirements are
too great if circumferential temperature variations are
considered. The author did not report any comparisons for
his calculated results and experimental data.

The latest published attempt at modelling the problem of
roll thermal behaviour came from Beaudoin and Woc::dl:mryr106
who favoured the use of a finite element model coupled with
a finite difference model. However, this analysis is
limited to the steady-state but may be considered seriously

for its examination of the behaviour at the interface
between the strip and roll.

2.3 ROLL THERMAL CAMBER

The importance of the effect of work roll thermal camber on
strip profile in hot rolling has been pointed out earlier
and in the 1literature39:39,43,72 Thermal camber arises
from the process of heat transfer to and from the work
rolls. Heat is provided intermittently to the rolls through
contact with the hot plate or strip. Additional heat
transfer results from the frictional contact in the roll
bite where metal and roll surfaces move at different
speeds, sliding across each other. Heat is also generated
as the strip passes through the roll gap and is deformed.
Thus, as the rolls are heated, they expand. The rolls are

usually cooler at the sides and hotter in the middle and so
develop a "positive" thermal camber.

Heat is removed from the rolls mainly by coolant flowing
over the roll surface, but some heat is also extracted by
conduction to the cooler roll ends, by convection to the
air and by conduction to the back-up rolls. The position of
the sprays is important. Putting sprays at the sides would
result in the centre heating up more than the sides, thus
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increasing the positive thermal camber. Sprays at the
centre reduce this positive camber. Localised differences

in cooling will also affect the shape of the thermal
camber.

An attempt can be made to model the existence of thermal
camber by considering the important parameters which affect
it. From experience, these parameters are the mill pacing+,
the form of heat transfer to the rolls, the strip width and
the conditions of deformation in the roll gap3®2. The
thermal camber model must aim to determine the roll surface

displacements as a function of time and heat flows at the
roll surface.

An exact calculation of thermal camber can be separated

into the following stages3°, heat 1input calculation:
solution of the differential equation governing heat

conduction for the particular boundary conditions to give
the temperature distribution in the roll interior as a

function of time; and thermal strain analysis. This
procedure 1is possible because thermal strains have no
direct influence on the temperature distribution. However,
since the strip shape is a function of the thermal camber,
this will result in a change in the heat input distribution
across the strip width, and so ensures an indirect 1link
between thermal strains and the temperature distribution.

Finding the thermal camber at any one instant of the
rolling operation is very complex, and the fact that the
ground camber may subsequently vary at any moment due to

+M1ill pacing deals with controlling the rate at which slabs
pass through the mill; and is aimed at specifying the
transient slab temperature everywhere in the mill so that

metallurgical needs are met. Mill pacing is the subject of
other studies32,63 and will not be dealt with here.
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wear and thermal effects, adds to the difficulty of
predicting camber. The progress of wear is continuous, and
allowance is made for this factor by imparting an
appropriate shape to the rolls prior to rolling.
Contrasting this, the thermal camber 1is dependent on the
rate of rolling and possible incidents causing stoppages.

The earliest models for calculating thermal cambers are
extremely elementary in concept, depending on the
assumption of a parabolic shape of the work rolls. This
method was initially proposed by Mortll3 in 1947 and
subsequently emulated by several authors, including
Larkell4 (1963) and Hinkforthll® (1972). It has been
evident from actual thermal camber measurements after

rolling that this assumption cannot be validated

in
practice115'117.

Beeston and Edwards3© adopted a solution to the radial

surface displacement for a heated solid «cylinder,
originally given by Timoshenko and Goodier”®. According to

Timoshenko and Goodier the surface displacement depends on

the moment of the temperature distribution ¢ (x/ ,T") about
the roll centre. Timoshenko and Goodier, by assuming an

infinite 1length 1roll - with temperature distribution
9(x/,r*), for the areas of the roll with relatively small

temperature differences, give an approximation of the roll
surface displacements as:

\
u(x’) = ZGFJG(X’,r')r'dr‘ (2.3.1)
0

where:

u(x/) = roll surface displacement

a = coefficient of thermal expansion
R = roll radius

r* = r/R
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Due to axial symmetry

u(x/) = u(-x/)

and

g(x*, ¥/) = g(=x*, -x/)

It 1is evident that y@(x*) need only be solved for
0 g,x* < 1/R and not for the entire roll length.

An even function (8/./2n)exp -&[ﬁ(x* - x/) ]2 was assumed for
g(x*, x/ ). The constant g can be adjusted to give the
required results (see Appendix B). Compensation for end

effects can be obtained by normalizing the
function to have unit area , i.e.

e “-‘P(--Iﬂ(x x’)r)
erp(-_[ﬂ(x x)r) (2.3.3)

Wilmotte and Mignon

influence

gave the same solution to the surface
displacement problem as Beeston and Edwards=?, but made no

accommodation for error near the strip edge that eqn.
(2.3.1) implies.

For the prediction of roll thermal camber,

Weber and
Unger53 proposed the equation:

R
2(v-1)'Q

. .
" m.!r{ Ten™ Tab e+ :2(; 1:)1 RO{ Tg =T, }

R

3 Q .
N (\,2+uzul)(t)+ 1) EI { r('n")- fA}.dr

(2.3.4)
2
.

(VW + V- -1)(0 + 1) RQI T(R"".- T“'] (18(0.1-)) |
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where Q = constant
u(x) = thermal camber relative to the roll radius

Using eqn. (2.3.4) they concluded that thermal camber
increases for increasing barrel 1length for a given

distribution of cocoling and lubrication. The thermal camber
will also increase 1if cooling is more intense towards the

edge of the barrel. These workers also reported that
thermal camber is greatest during the rolling of a medium
strip width, for various rolling conditions. The same
result can be expected from higher roll gap temperatures.

Roll camber, they concluded, is greatly influenced by the
distribution of coolant over the roll surface.

Pallone’? proposed the equation:

AD = Dguap(Ty 11 = Tg) (2.3.5)

where:

D, = work roll diameter

TI,II' Tf are referred to in edn. (2.2-37)
and (2.2.38)

to represent the diametrical expansion AD along the roll
axis based on the roll temperature distribution.
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2.4 HEAT TRANSFER COEFFICIENT FOR A ROTATING CYLINDER UNDER
VARIOUS COOLING CONDITIONS

Even if the mathematical models of the transient work roll
temperature and thermal expansion were exact in the sense

that all the simplifying assumptions mentioned in <the
sections above were true, modelling of the complex heat
transfer regimes at the roll surface would have to be
overcome before any of the remaining parts of the model
could be seriously considered for on-line automatic coolant
control. A consideration of the environment existing at the
roll surface for one revolution for an axial section of the
roll during rolling, reveal that on contact with the hot
strip the roll experiences a rapid rise in temperature
which continues as the strip progresses through the roll
bite. (See fig. 2.4.1). Directly the strip exits the roll
bite coolant sprays are applied to the roll which will also
certainly experience cooling in the air during part of the
time the roll takes to travel from strip exit to back-up
roll contact. Depending on the efficiency of the exit
sprays, quenching of the work rolls by the back-up rolls
will occur to some degree. If entry sprays are present more
coolant may be applied. Finally, the section of roll being

considered will undergo some more cooling in the air before
conpleting the revolution.

An exact knowledge of the individual heat <transfer
coefficient at each of the cooling regimes would be ideal,

although in the context of the model adopted by the author
generalised values are sufficient. For models that consider
circumferential variation in the roll temperature, the

mathematical relationships between the cooling regimes and
heat transfer coefficient have to be more exact.
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Temperature

30 {7 180 270
Roll angle - degrees from last contact

Fig. 2.4.1 Diagram of roll with sprays and strip
going through. The back-up rolls are not shown.

In general the 1literature on spray heat <transfer
coefficient can be divided broadly into theoretical and
experimental investigations. This survey will concentrate
on relevant experimental works. Bolle and Moureau®® have
published an extensive literature review of this area of

work. They summarised the published results between 1966
and 1973 as in fig. 2.4.2 and table 2.4.1.

The general conclusion from the work of Bolle and Moureau®?
is that experimental heat-transfer results show no reliable
degree of correlation. This fact, they proposed, is quite
likely to be due to the many parameters that can influence

heat transfer and differing spray characteristics such as
droplet size.
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Heat flux density at the wall as a function of wall
temperature (for the nomenclature of the curves, see

Table 2.4.1
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The earliest example found in the literature of an attempt
to present mathematical equations for heat transfer
coefficients for a rotating cylinder was by Anderson and
Saundersil (1952). They considered the case of heat
transfer from a heated cylinder rotating about its axis in
air. These workers deduced a dependency of heat transfer on
rotational speed, and also concluded that for this type of
heat transfer the Nusselt number was independent of the
Reynolds number up to a critical value, beyond which the

Nusselt number increased with the Reynolds number. They
proposed the expression

Nu = 0.14Re2/3 (2.4.1)
where:

Re = Reynolds number

Nu = Nusselt number

to relate the heat transfer coefficient to environmental
conditions. Anderson and Saundersil suggested that this

equation is valid for other fluids other than air. Since

other workers have proposed other equations for heat
transfer coefficients, this generality is highly doubtful,
but the form of eqn. (2.4.1) has a general application.

Dropkin and Carmi®® developed this work when investigating

the factors that could be employed to determine the heat

transfer coefficient for a horizontal cylinder, rotating in
air. They arrived at the relationship

J ] 2 7 3 _
_pip_=c1(D;2g) (%E (Aﬁ) (2.4.2)

where:

h = convective heat transfer coefficient

o
II

outside diameter of cylinder
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k = thermal conductivity
p = density of air
g = gravitational constant
u = absolute viscosity
v = surface velocity of cylinder
A = coefficient of volumetric expansion

constant

Cq

X,Y,2 exponents

To evaluate the constant C, and the exponents x, y, gz,
Dropkin and Carmi kept two of the parameters of the right-
hand side of equation (2.4.2) constant while varying the
remaining parameters. From their experimental results they
concluded that up to a certain Reynolds number, rotating
the roll has no effect on the heat transfer coefficient.
However, above this critical value of the Reynolds value
the heat transfer coefficient will increase with increases

in the speed of rotation and is also influenced by free
convection. They further concluded that there is a region

where the heat transfer coefficient is only proportional to
the speed of rotation.

For Reynolds number larger than 15,000, Dropkin and Carmi®®
recommended the use of the simplified equation

Nu = 0.073 (Re)0-7 (2.4.3)

and for the region in which the heat transfer coefficient
is influenced by rotation of the roll, the equation

Nu = 0.095 (0.5 Re® + Gr)9:25 (2.4.4)

may be used,
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where:

Gr = Grashof number

D2,2gag/ u?
The authors reported good experimental correlation.

Kadinova and Krivizhenko? investigated the problem of
predicting heat transfer coefficients by examining the
cooling efficiency of single round and flat spray nozzles.
The experiments were not directly related to cooling of
cylindrical rolls, but rather of a flat plate. The factors

that they considered important included the shape and

structure of the spray, the degree of dispersion, its
distance from and orientation with respect to the cooled

object. From this investigation they concluded that there
is a quantitative dependence of the heat transfer
coefficient on the geometrical parameters of the system

being investigated. They found that cooling is greatest in

the centre of the sprays, gradually decreasing toward the

edge of 1its sprayed area. In addition, they pointed out
that the greater the distance between the jet and the
cooled object, the higher the flow velocity and amount of

water needed to achieve a given cooling rate. Based on

these considerations, they modelled the heat transfer
characteristics using a form of eqn. (2.4.2),

suggesting
for a round jet -0.43
h = 2.47%- Re%* s 03¢ ('51')
. : (2.4.5)
1/d, = 22 - 38
and for a flat jet with 1/, = 130
-0.43 '-
h = 2.47-&- Re >4 p° (';1‘) (2.4.5)
. :

where:

h = heat transfer coefficient
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Re, Pr = Reynolds and Prandtl number,
respectively

d., §g = nozzle diameters of round and flat jets,

respectively

lg, og = distance from plate with round and flat

Jjets, respectively.

In a later investigation Kadinova and Kheifets2®
characterised the effect of the angle, 3, of the water

stream to the cooled surface. They proposed the generalised
equation

Nu = cRen Pr0.36 (l/dc)0-4 B 0-27(dz/d ~0.06

(2.4.7)
where the values of the coefficients ¢ and n are

characteristics of the nozzle and d, is the
diameter of the spray zone.

c)

In general, the literature on spray cooling reveal that
heat transfer coefficient can be characterised by equations

of the form of eqn. (2.4.1). The important
parameter526'103'119 to consider are surface temperature,

water impingement density, droplet impulse and the

proportion of the cooled surface material. The important
coefficients based on these variables seem to be highly
specific to the system investigated.

48



2.5 FAST THERMAL CAMBER MODELS

As a pre-requisite to controlling the spray behaviour, it
is necessary that the computing time of the roll thermal
camber model be as rapid as possible whilst maintaining
computational accuracy. This 1is in order to co-ordinate
mill-scheduling and spray behaviour. Thus, the approach to
developing a simplified roll thermal camber model is that
such a model must closely match the results of the more
comprehensive model.

Beeston & Edwards3? have examined this problem by
considering the most computationally time consuming area of
thermal camber calculations. Computing time is mostly used
during the integration of the heat conduction equations
such as eqn. (2.2.21) and egn. (2.3.1). Hence, these types
of equations were replaced by a simpler model for
determining the radial displacements axially, U(x),
eqn. (2.3.1]). They proposed that for work rolls with
specified dimensions and physical properties, U(x) can be
approximated if considered as a function of strip width,

heat input and heat transfer coefficient. The proposed form
of the model was therefore:

Isw (2.3.1)
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i

R 3
- ( mrz)

H(x) = Hr' lxl <W
H (x) = I-IIrz lxl > W
W = —3 - aRAS

v ZRHQ -

w = strip width

R = roll radius

q =specific heat input
H = heat trasfer coefficient

a =coefricient of thermal expansion
X = axial coordinate

Beeston & Edwards-0 reported good agreement between this

model and their more accurate model of eqn.(2.3.1) as shown
in fig. 2.5.1.

Fig.z.si% Simplified model performance by Beeston &
Edwards~"~.
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The Beeston & Edwards=°? model represented by eaqn. (2.5.1)

shows an interesting approach to the development of a
simplified model. They admitted <the difficulty of
deternmining heat transfer coefficient from an analysis of

the parameters of the spray system, and recommended that
each mill be calibrated to determine heat transfer.

Oshima et al.®’ have suggested a fast thermal camber model
In this model the work roll is divided into three radial
layers of equal area. Since the temperature gradients are
greatest near the roll surface, division of the roll in

this way means that the finite difference mesh points
become finer closer to the roll surface, giving a faster
approximation to the roll temperature (see fig. 2.5.2).

The model for thermal strain calculations proposed by
Ohshima et al. is described by the equation:

3

Ui,y =a(1l +“)RT¢2T!I.].t‘I (2'5'3)
_______—l-
3 J
where:

Ui,j = surface expansion

a = coefficient of thermal expansion

<
|

Poisson's ratio

Iy = reference temperature

The term » in the above equation reflects the fact that
generally 1in a continuous body expansion cannot proceed
freely and stresses caused by heating are set up.

Yamamot et al.120 haye gerived simple equations for roll

surface temperature and thermal crown by taking the thermal
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conduction in the axial and radial directions into account.
From a simplification of the heat conduction equation,

(eqn. 2.2.21), the following equations are obtained for
roll surface temperature under spray cooling:

TRx.0) - T

TRX!)=

a-
Eﬁ;—————- +'T (2.5.4)

(2.5.5)
where:
To = T(R,x,0) = initial roll temperature
Co = C(x,0) = initial thermal crown
T,, = cooling water temperature

a, = thermal conductivity of roll surface during
water cooling

Ym(x), ¥o = ¥, (X) = compensating
coefficient taking heat transfer into
account.

by, b&!”ir o5+ By1:B5+ = constants which make the

simple equa ion agree with the absolute
solution. -

vamamot et al.l20 reported good agreement with the more

detailed model, but it is apparent that this model cannot
account for changes in the spray configquration.

2.6 ROLL BITE TEMPERATURE MODELS

The importance of being able to predict the temperature
changes at all points in the mill has already been stated.

Modelling of the work roll thermal: behaviour has been

considered from three separate inter-linked mechanisms,
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viz., the heat input calculations, the heat conduction and
thermal expansion evaluation. The literature on the latter
two considerations have been dealt with in the preceding

sections. It is now proposed to review the literature on
the heat input section.

It is accepted that during the earlier passes of the hot
rolling process the bulk temperature of the hot>® slab
falls gradually, but the slab experiences rapid falls in
temperature when its thickness is reduced to below 13mm. It
is suggested by Bradley7° that frictional effects are
negligible during the hot rolling process and that nearly

all the mill power applied to strip goes into deforming it.
During hot rolling, the roll is generally cooler than the
slab, and since contact duration is brief, only the surface

layer of the slab 1is chilled because of contact with the
rolls.

Bradley, et al.7°, have postulated four separate mechanisms
of roll - slab temperature behaviour, namely,

i. The flow of heat from the hot aluminium slab to the
(relatively) cold steel roll during the contact phase.

ii. The cooling of the roll and slab in the air or by the
coolant sprays.

iii. The internally generated heat produced by the plastic
deformation of the slab.

iv. The increase in roll temperature on each rotation when
the slab becomes longer than one roll circumference.
This affects the heat transfer mechanism of (1) .

On considering the amount of heat flowing from the slab to
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the rolls, Bradley and his co-workers’0 thought 1t was
important to consider the contact time, but admitted the
difficulty of predicting this time without some
assumptions. By assuming an average between the entry and

exit speeds for a point on the slab in contact with the

roll, they proposed that the contact time can be determined
from

ROT
s |

(Lu"' L“)z r RY (2.6.1)

where:

R = roll diameter

Lins Loyt = slab lengths before and after

T = The total pass time that respectively the
slab and roll are in contact

Hl, H2 = input and output slab thicknesses,
respectively

For the temperatures of- the slab and rolls in contact,
Bradley et al.’® proposed the equations:

x<( (2.6.2)

x>0

(2.6.3)

where:

b10 62
from the interface at time t

Respectively,

Q a5 = thermal d4dj i %7 3
roll and strip. Lifusivity of

= slab and roll temperature distance x
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By assuming no thermal contact resistance, then

0 =0 . x=0 t>0 (2.6.4)

(2.6.5)

ke, ko, thermal conductivities of the slab and
roll respectively.

on first contact, if all temperatures are measured relative
to the roll, then

64 0o o t =0 (2.6.6)

and

I
o
ct
I
O

92 (2.6.7)

to give the boundary and initial conditions.

Laplace transformation techniques can be used to solve the
equations for 6, and 4,. This method of solution is
doubtful as regards to its applicability since the boundary

conditions are continually changing, and the physical

parameters are known to display some dependency on

temperatures of the magnitudes involved in this part of the
rolling process.

Bradley et al.’Q considered that deformation heating can be
accounted for by assuming that only a fraction (about 80%)

of the energy expended by the mill motors is converted into

heat within the slab. The remaining part of the mill power
input can be assumed lost in frictional effects at the roll
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slab interface. Since this is difficult to quantify, and
the frictional effect is indistinguishable from a change in
contact resistance, then it 1is reasonable to assume that
all the energy transmitted by the motors appears as
deformation heat, evenly distributed throughout the slab.

Hollander®3 paralleled the modelling technique of Bradley
et al.’% put chose a numerical solution based on finite
differences.
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CHAPTER 3
ROLL TEMPERATURE ANALYSIS

3.1 INTRODUCTION

This chapter contains the complete mathematical analysis of
a transient work roll temperature model in two spatial
dimensions. The model is developed from an energy balance

for the work roll. The partial differential equations
generated are solved numerically by replacing the Fourier
equations describing heat transfer with finite differences.

The resulting set of ordinary differential equations are
solved with respect to time.

The exact geometry of the work roll will be considered. Heat
input to the work rolls will be considered as a boundary
condition which permits the ‘development of a more elegant
computer algorithm. Heat transfer coefficients relating the

various modes of heat transfer from the roll to its
surroundings, will be considered as a single parameter which

can vary across the roll. The complete development of the
model and the attendant computer algorithm allows the axial

elements resulting from this method to have localised heat
transfer coefficients . Each element can be switched on and

off at set times to examine the effects of spray switching
during rolling. Values of this heat transfer ccefficient for
different spray configurations will be determined initially
from a calibration of the roll temperature model. The
calibration is performed by matching predicted roll surface
temperatures to measured roll surface temperatures at known
times during the rolling programme. Another method of

determining spray heat transfer cofficient will also be
suggested.
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The model is used to calculate the temperature changes in
the roll during rolling and for a given time after rolling
has ended and the coolant is turned off. The thermal
expansion is calculated by assuming that the surface
displacement depends on the moment of the temperature
distribution based on the method suggested by Timoshenko an
Goodier?®. The method is detailed in appendix B.

The roll bite model is detailed in appendix C.

3.2 ROLL TEMPERATURE ANALYSIS

The following assumptions are made in the roll temperature
model

(1) Cyclic temperature varliations in the tangential
direction can be ignored because the period of roll
revolution 1is two orders of magnitudé smaller than the
response time of the roll thermal camber to a change in
rolling conditions. Negligible discrepancies will occur near
the roll surface for a depth of approximately 5mm3°.

(2) The roll exhibits uniform physical properties . This

assumption implies a non-dependency on temperature.
with reference to fig. 3.2.1:

ALy = 2% T Or
Am}lt = 2% or
A . = 2% T OX

A

utsige = 2% (r + Or) Ox
where:

A = cross—-sectional area of roll

Q,(x) = total heat flow rate into element through Arast

Q. (x + 0X) = total heat out of element through Arignt.

S9






Q.(r) = total heat flow rate into element through

Ainside

Q.(r + &r) = total heat out of element through A .., ..

0 is to be taken as positive in the positive r direction.

Hence a heat balance on the element gives:

F(xr)=Q(x) -Qx + dx) + Q(r) - Q/(r+ dr) (3.2.1)

where
F = Heat flow rate into element
t = time

Using a Taylor series expansion and neglecting the higher
terms, eqn. (3.2.1) becomes:

RS
F(xrt) = Q(x) - (Q,t + aa%liﬁ'.t) + Q(r) - (Q(r) +%|r.xit) +...

aQ_| -ox aQ, | .or

T X,I,t B Xt o22)

Let the heat content of the element be W, then
F (x,r,t).0t = W(x,r,t+0t) — W(x,r,t)

ow} .ot
= W(x,r,t) + — - W(x,rt) + ...
X,I,t
F (x,1,t) oW (3.2.3)
X,J,l) = = obao
ot

Substitute eqn. (3-2.2) into eqn. (3_2.3) to get:

&



o,

dx

0x BQ
X,I.t B or

Or
- (3.2.4)

X,I.t ot

Using the heat conduction equation, we get

where:
k = thermal conductivity (W m~! o~y

T = roll temperature function ( °K)
And

W(x, r, t) CoT 2nr &r &% (3.2.5)

where

p = density of roll (kg m™)
C = volumetric specific heat capacity (kJ kg™! K™! m™3)

d & 2y ordl 9 f -x2rrs oT
_ax( ax).ﬁx ar( iT xar &

=-§t- (CpT.Zz: ror Sx)
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2 ar
kL'E. 4 '1:-"53;(1' ar) = Cp'a—T' (3-2-6)

ox ot
Expand and re-arrange eqn. (3.2.6) to get
2
of _  f 2T, L3aT T
pC > - K % T o g (3.2.7)

THE BOUNDARY CONDITIONS
The existing boundary conditions are (with reference to fig.
3.2.2):

Boundaxy OA4
Since the temperature distribution is symmetrical with

respect to the r-axis:

oT
— =0  when x=0 3.2.8
-~ (3.2.8)
Boundary ED
dT
ck = Hm(T'Tm) (3.2.9)
ox
where :  Hy, = heat transfer coefficient along boundary ED

T, = external temperature at ED

—x 4L - H, (T - Te(x)) (3.2.10)

where: H, heat transfer coefficient at RG

T,(X) = Te = temperature of endplate coolant.

Boundary OB

when r = {

oL _
al.---0

3.2.11)
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(Since there is symmetrical temperature distribution with

respect to the x-axis).

-kB— = H(x) (T T (x)) (3..2.12)
2uR.

where H_(x) = heat transfer coefficient at r =R

T = roll temperature function

T (x) = temperature of cocolant

q/ = heat input per unit width (W m™1)
Boundaries EEF and EG
[/
-k% = Hx) (T = Tb(x)) = q,(x) (3.2.13)
where : T, (x) = external temperature of area EFG

q,/ = heat generated in bearings (W m™)

3.2.1 THE DIMENSIONLESS FORM OF THE HEAT CONDUCTION
EQUATIONS

In dimensionless form, eqn. (3.2.6) becomes:

oT 82T 1 dT azT

—_— — (3.2.14)

T x rar ax

where:
T = roll temperature function

(3.2.15)
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The boundary conditions are:
For x":
Boundary OA, X* = 0

2l -9 (3.2.16)

T _ - R (T-Tre) (3.2.17)

aT _ _%_HG(T-T,(x)) (3.2.18)

For r

when r* = (Q,

aT. _

- (3.2.19)

or 2Rk
T RH(x)
of _ _ (T - T&) + q(x) (3.2.20)
/
where: q‘ = 0
2 k
Boundary EFG:
T JX) T .
o ——— (T -Ty) +q ' (3.2.21)
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3.3 THE EHOLLOW CYLINDER CASE

coolant In
Tﬂﬂ

Fig. 3.3.1 Roll with hollow centre.

In some cases of mill operation a cylindrical hole is
drilled in the centre of the work roll through which coolant
flows in order to remove heat from the centre of the roll.

The partial differential equations describing this situation
is arrived at by a similar method to that previously

described for a solid cylinder. An important change, however

arises in the boundary conditions, this being, ét r = r,

(fig. 3.3.1)
T -
i % = M (ch"" T) (3.1

where:

T..tx) = roll coolant temperature functicn at centre

h(x) = heat transfer coefficient at the centre of the
roll

In dimensicnless form this becomes

"" T (%)
ar —(T - T.(x) (3.3.2)
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3.4 THE FINITE DIFFERENCE REPRESENTATIONS

Equations (3.2.14 - 3.2.21) can be solved numerically by

replacing the partial derivatives with finite
differencesi?® 12l and integrating the resulting set of
ordinary differential equations with respect to time.

The forward difference representation of egqn. (3.2.14) \is
given as:

k k k k k
a L= 2T+ T 1 Ty - T
VTJ;' = 2 T — T
AT 1‘j 2Ar
k k k
Ti+1,.,j ) 2Ti.i T Ti- 1,; |
> (3.4.1)

Ax

where: k = k! time interval
i = it? column of elements

j = 4! row of elements

,--'""f

s j=n
1Tl 001

b

i -t
IIWII_I=
i -y

f—t

i=1 i=m

P

Ax

Fig. 3.4.1. Regular network of mesh Ax™, Ar’
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From fig. 3.4.1, showing the mesh arrangement, it is clear

that equation 3.3.1 is unworkable, since the term r”y is

equal to zero at j equal to zero. However, if egqn. (3.2.6)

is examined, we can see that the term 1/r (dT/dr), which at

"

r* = 0 = r, dT/dr = 0, is equivalent to zero divided by
Zero.

Thus, using L' Hopital's rule we get for r = 0
. (laT\ _a°T
—o\" o/ a

So eqn. (3.2.6), for r = 0, can be replaced by

oT _ , 8T 2T
2 2

(3.4.2)
T ¥
and the finite difference form becomes (j = 0):
2 1'2Ti_o+T' .1 T -2T, . + T.
Wi.o _ (Ti. - iy ) + i*L0 1.‘;) i- 1,0 3.4.3)
Ar Ax

This latter form will be used in the computer algorithm

since it has the advantage of ignoring the fictitious nodes
at j= -1.

4(Tii"Tio) Tiono -2To*+Tilro
Vo= —— +———— (3.4.4)
Ar Ax

For eqn. (3.3.2), the finite difference form is (b =a/R):

Ti.. b+l Ti. b-1 Rh(x) (TLb - ch(x))

2Ar
Rh
- ¥ (x) -
Tiver - Tipoy = 24r kx (T ch(x))
Rh
- * " (x) -

Eqn. (3,2,16) becomes:

(when x* =0, QZE.._._ 0) =
ox
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l"‘l.j Ti'lij

T. ,.= T. WL 1=0,j=0,1, ..n (3.4.6)

1+1,) 1-

Eqn. (3.2.17) becomes (boundary DE):

- DE(r Tpe) =

ax
T,y :=Ti_y RH,
i+l ] ‘1 3 N kE (Ti.j-TDE)
2Ax
2Ax RH
e DE T -
LR " (T - Toe) + LU
i=u, Jd=v, v+l, n
(3.4.7)

Eqn. (3.2.18) becomes (boundary BG, x* = ():

T, T. , . RH
..i_.".'..l._J._.r_.l:_J.:: ---k—e- i Te(x)) . i=m,j=0' I, .v
2Ax '
.o (3.4.8)
Whenr = 0, gl,:- = 0, (boundary OA), the finite difference representation is:
r
Ti.j+ I=Ti.j-l' 1=0, i=0, 1, ...,n (3.4.9)
Eqn. (3.2.20) becomes (boundary ACD), r" = 1,
RH(X)
ﬂ (T - TM) + q
or
=5
T, . , - T RH (x)
i j+1 Lj-l=_ r = T (x)\ - ¢
2A1'. k (Tl-.l c( )) + qi
* = ’ .=n
where g, X )
=4, j<n
* H(X)
w5 B0, )] e e



Eqn. (3.2.21), (boundary EFG), becomes:

.| . RHKX) . .
T.j+1=2Ar [qb— l; (Ti.j ) b)]+TLj_l.1-uu+L...m.J—v

i,
(3.4.11)

3.5 DIVISION OF ROLL INTO ELEMENTS

®j T~ k) A X

Fig. 3.5.1 Roll element notation.

When the roll is divided according to fig. 3.5.1, the
distance r, lies midway between the radial elements j and
j+1. The position X, 1s similarly defined. This means that

the last radial plane does not coincide with the surface of
the roll. From this fact it can be deduced that the actual
roll surface temperature will be a little higher than that
predicted by the model. The magnitude of the difference will

be dependent on the number of radial nodes used, neglecting
error terms and inaccurate data.

CASE 2

If the roll is to be divided into n radial elements, the
distance between any adjacent two (see fig. 3.4.1) is found
simply as

Ar* = 1/n (3.5.1)
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bearing in mind that the number 1 of eqn. (3.5.1) represents

the plane at which r* is equal to 1. This method of dividing
the roll implies that a plane of nodes will coincide with
the surface of the roll as well as with the centre line of
the roll.

It is also implicit that

r*, = jAr* (3.5.2)

A similar treatment lies behind the positioning of the axial

elements, due to the matching of the nodes with the actual
spray nozzles.

However, this method of dividing the roll may not account
for the position of the coolant sprays. This disadvantage
can be negated somewhat by increasing the number of radial
nodes, but this in turn results in increased computation
times and the need to use more individual heat transfer

coefficients.

CASE 3

Fig. 3.5.2 shows the situation in which one of the strings

from the node (1l,3) 1is intersected by the boundary OA. The
distance between

the node (1l,3j) and the boundary OA, €Ax*, where 0 <S£gS 1,

is less than the mesh size Ax*,.

The boundary condition existing at x* = 0 is given by eqn.
(3.2.16), |

L=

3.2.16
5 (3.2.16})

and its finte difference representation By:
1= T, j (3.5.3)

since we can make the fictitious distance between i = -1 and

i = 0, and the distance between i=0 and i=1, equal, i.e,

eAx*. However, since the distance between i = 0 and { = 1,

/2



Fig. 3.5.2. One string intercepted by a curved boundary.

r * *
eAX AX

<

Illlllllllllll
T
e
IMEEEEEEEERENN
ar*] Illllllllllll_
NEEEEEEEEEEN
IIIII I T M

e e vy
JEEEEEEEEEEENN
JNNEEEEEEEEEN B

-[ot =

*
o -

(=1,3) i(O,j)" (2,3)

Fig. 3.5.3 Arrangement of nodes near the mlnor axis of the
roll (boundary OA, fig. 3.2. 1)
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and from i = 1 to i = 2 are not equal we can modify the
relevant finite equations of section 3.2 to account for
this. Let us examine the position at node (1l,3j). By a Taylor

series expansion of (-2eAx*) and Ax* we, respectively,
obtain:
*\ 2
* 9T (26e8x) g1
T"l] — le—zﬁAX. * + o 4+ ...

Multiply egqn. (3.5.5) by 2¢€¢ and add to egqn. (3.5.4) to

eliminate dT/dx we get:
2 *\ 2

+
3 21,

T,.+2eT =T + 2eT +
v ] va l!J le
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e(2e + 1)(Ax )2 82T ZeT - T (l+28) +T

Bx ]
21 Zesz- Tl_(1+2s-:) + T ]
-_:2' ' - ) : (3.5.6)
Sl e(2e + 1)Ax

Ife=1/2

PT DY TR
et J e e— 3.5.7)
x (1) Ax

which is the same form as eqn. (3.4.1)
eqn. (3.5.3) '1‘_,“'1”j = T,,4 + then,

. Further, since from

Sl I

I
#*
[

(3.3.8)

For the purpose of the computer algorithm it is now
necessary to modify the axial dimensions of the roll to

ensure that the boundaries at DE and BG coincide with the

nodes at i = u. This will ensure that the boundary

conditions are easily approximated by the finite difference
equations.
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3.6 ERROR TERMS FOR FINITE DIFFERENCES

A Taylor series can be used to determine the error involved
in the finite difference approximation for eqn. (3.2.14).

Consider that temperature T is a function of t, x, and r, so
that, based on the Taylor theorem, T can be expanded at t +

At in terms of T at t as:

T(t+At, x,y) =T(x,y) + 3_'['._ At +

LOT p2, L 2T \3, LT,
x - > At +3!. 3+ At +4!. At

. Ot ot o

(3.6.1)
Eqn. (3.6.1l) can be re—arranged to give

T _ T(t+ At x,y) = TG, x,Y)

. v + Ocay (3.6.2)

where O (At) is the term containing the first and higher

order powers of At. Eqn. (3.6.2) is the basis for the

forward difference approximation, hence,

%‘ = ﬂ'z;—‘i + Oy | (3.6.3)

which has an accuracy of order At. The error 1is

approximately reduced by half for At/2.

Similarly, an expansion of T(t-At,x,y) in terms of T at t

gives:

3
T(t -At, x, y) =T(,x,y) —B—T-. At + 'L.ﬂ At ——1-. L;l‘ AL + -l-.ﬂ:At4

ot 2 N 3 4
(3.6.4)

Eqn. (3.6.4) - (3.6.1)
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T _ T(t+ At,x,y) = T(t-At, x,y) . O(At)2 3.6.5)
ot 2At o
which is the basis for the central difference approximation
of oT/0dt, viz.,
Er ok ;
AL _ i ki 4+ O(a) (3.6.6)
ot 2At

The technique demonstrated above can be applied to the terms
in 0%T/0x%, 0°T/dr?, 9oT/Jr. Hence,

R S
%}L_ =_LL‘-.L_..;_X.2..___.. + O(axy’ (3.6.7)
J

) Tk - 2Tk +Tk
%rzl g IFLA m‘;’ il Ocary (3.6.8)

k
LI T ’” Tiiol g Oy 3.6.9)

oT _ . [ &1 . 2T] 14T
pcal k axz.."' .+r'ar

0.1
i Brz L] i3 (3.6.10)
leading to
+1 _ k
T:j Titlj=_k_ Tik'fl;j 2th+Tik' Li+Tik-i+l -ZTik.j-l-Ti.i-l +1 +e
t pe Ax’ Ar®
_l_ Tik.i-l-l -T:j.l
5 2Ar
(3.6.11)

where : cA;s the error term of order (2Ar + AX + At)
T =]
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3.7 STABILITY AND CONVERGENCE CRITERIA

By the explicit method , egqn. (3.6.1ll) becomes:

+1 ’)
T]‘:.i - T:j ©CAx)* (ArY { ( i+1,j 1. T Tf 1.,-)'(Ar) T

whereg= =7
pC(Ax)~ (Ar)

ILet O represent the exact solution of eqn. (3.6.10), and T

the numerical solution. Assume that T is without round-off

errors for now, such that T and 0 differ only in the error
caused by replacing eqn. (3.6.10) by eqn. (3.6.11). Let

l’j - '[tj,atthepoint

X = xi' r == rj; L = tk- Su.bStituting

T =0 -~ e into egqn. (3.7.1) to get

1’+1—8{(1+l] 5. 11)(&) -+

/8



0, j (1 - 2¢(ac? + sz)) T (3.7.2)

A Taylor series expansion gives:

k k
9i+l.j- i, }

) ¢ _ 20| L axd 8, .

91 l',l= 1'1- ax +-—2—-—3T+ see X _1<§2<xi
Ljt

k k 4, 90 Ar’ 329(” T

ei.j-l-l: i"'+3r Ar +T~T+.. rj'<1t:1<r_‘_1
LJ,t
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Ar (i %, 7)
R =g - 8ar +— l'ztk+ r. <N, <T
i, j-1 Li  Jr y) ar2 1 72
L, ], b
k+1 k ae(i.i'ﬂ)
4= )
ei'j = Bi’j + At.-—-———at +.. t <<t

Substituting these equations into eqn (3.7.2) gives:

c’“‘l-e{(lﬂj €. 11)(Ar) +

1
°1.1+1 (1+— (Ax) T+ °1.1+1(1-_) (Ax) } -+

e: (1 - 2¢(ar’ +Ax2)) B

2
e (An)? (A;) —Gebw

df
(ll le L‘) l (L, Js "‘)

jAr' or

| i, X
a(Ax)z-E‘-i)-{ (1+— (

00
At (i, j» M)

ot

kAt
pC (Ax)® (Ar)’

Since €=

80




SN S v X S
tk tk-l-l gsx-l-l' j- 1<1t$rj+1

T

Let E' be the magnitude of the maximum error in the row of

calculations for t = t, and let M > 0 be an upper bound fo
r

th
e magnitude for the expression in the second set of
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brackets in eqn.(3.7.3).

If e((Ar)? + (Ax)?%) < 1s2, all the coefficients in eqn.
(3.7.3) are positive or zero, to give the inequality:

Ic:;llsz.s(Ar)ZEk+ 2¢ (Ax)"E* + E:j (1 - 28((Ar)2+(Ax)2)) + MAt

This is true for all e, &+ at t = t.,,, hence,
E‘"!'<E"+ MAt

Since this is true at each time step,

Et <Y+ MAt <E5°! + 2MAt ...

<B4+ k+ 1) MAt = E°+ M,
. 4

- Mt'tn

because at t = 0, E° is zero since 6 is given by the initial

conditions.

As Ax — 0, Ar = 0 and At— 0 if

2 2
k At (Ar)” (Ax
pC (Ax)” (Ar)

because as Ax, Ar and At get smaller,

326 320
{ Biim K (&0 o &) (&0 1) 90 5 1)

-—— |+

ot 2pC X x> . or
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The last equation follows from eqn. (3.6.10). Hence, it

follows the explicit method is convergent for

e ((an? + ax)?) < é-

orx

2 2
k At (Ar)+ (AXx
(An)+ (Ox) < l-. because

pC (Ax)” (Ar)® 2

the errors approach zero as At, Ax and Ar are made smaller.

In dimensionless units, the convergence criterion becomes:

A‘cl (Arm)2 + (Ax')zl .

1
(ar)> (ax )’ 2
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3.8 STANDARD (DAVY McKEE) SPRAY BAR ARRANGEMENT

A standard Davy McKee (Poole) Ltd. spray system is
configured around the work rolls as shown in fig. 3.8.1.
The seven spray levels are achieved through the combination
of valves shown in Table 3.8.1. Table 3.8.2 shows how the
the levels are defined for each nozzle position.

Fig. 3.8.1. Standard spray bar arrangement.

Nozzle type

Level Spray combinatio

no spray
only
only

+ B
only

+ C

+ C

+ B+ C

~SN MWV O

A
B
A
C
A
B
A
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Table 3.8.1. Arrangement of nozzles according to

levels across the roll length for the roll shown in
fig. E7.

Level No.of type 1 No.of type 2 No.of type 3
Nozzles Nozzles Nozzles

~S N oW
WOWOWVWOW
OWOVOOWWOo
O OVWOUWOWO OO

Table 3.8.2. Definition of levels for each nozzle

position.
For each nozzle position
Level No.of type 1 No.of type 2 No.of type 3
Nozzles Nozzles Nozzles
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 1 O 1
6 0 1 1
7 1 1 1

3.8.2 SPRAY HTC EQUATIONS

Based on a report submitted by F. Robinsonl26 on the effect
of each relevant parameter, such as coolant flow rate,
nozzle diameter, and nozzle angle, on the cooling ability

of each type of spray, the following equation was
derivedl?’:

where

NUu = Nusselt number

hd_/k -
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Re Reynolds number

d.v/,M
Pr = Pradtl number = Cpg/k = 5,25
p = Coolant density (kg m~3)

4 = Fluid dynamic viscosity = 8 x 10™% kg s™% m™2

v= Kinematic wviscosity = u/p 8 x 107/ n? s™1

C Fluid specific heat capacity =
P 4.2 x 1073 7 kg~ ok~1

k = Thermal conductivity = 0.64 Wm~1 Og~1
d. = Nozzle diameter (m)
IL = Distance of nozzle from surface

¢ = Nozzle angle = 15° for flats and cone type
nozzles

Q = Volumetric flow rates (m3 s™1)

h = Heat transfer coefficient due to water spray
cooling

v = Spray velocity = Q/ 2\ (m s~1)

" dc

Thus equation (3.8.1l) can be simplified to:

for the special case of Mill B spray system (figs. 3.8.1
and E7).
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CHAPTER 4

PLANT MEASUREMENTS

4.1 TEST PROCEDURES AT MILL A

Data collection took place during the period 14 - 18
October, 1985 at Mill A, a single stand reversing mill for

rolling aluminium alloys. The procedure used to collect
data 1is outlined below.

For a fixed rolling schedule the following data was
gathered:

1. Chart recordings, (see fig. El), were made of rolling
load, current and voltage supplied to drive motors, and
roll speed. Normal plant sensors were used to provide
inputs to the chart recorders. The rest and rolling
times were deduced from the chart recordings. Figure E2
shows a summary of part of the data collected at Mill
A. Figure E3 shows a chart detailing the movement of
slabs through the mill. Figure E3 reads, for example,
that the temperature measurement of +the roll was
started 200 seconds after completion of the rolling of

slab 1. This was followed by a further 205 seconds
before rolling of the next slab began. (Seven slabs
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were rolled following a rolling change, prior to the
start of data gathering).

2. Temperatures were recorded at alternative passes,
starting with the first pass, using a hand-held two-
pronged K-type chromel-alumel thermo-couple probe.
Strip entry temperatures for the passes when the
temperatures were not measured were estimated using
methods developed at Davy McKee (Poole) Ltd.

3. Coolant zone settings are shown by fig. E4. Coolant,
roll end, bearing and ambient temperatures were

recorded. No data was available for coolant flowrates,
nozzle type or size at Mill A.

4., Roll surface temperatures were measured for the bottom

work roll as soon as possible after the mill stopped.
The hand-held thermocouple probe was placed on the roll

at desired points. These points were located by using a
wooden template. The template was marked with test

points symmetrical about the roll centre 1line to a
distance of 1000mm from the centre line.

5. Roll cambers were recorded by compressing rods of a soft
aluminium alloy in the roll bite for the cold rolls (to
measure ground crown) and immediately after rolling a
given number of slabs . The aluminium rods were fixed
50mm apart, 1n an aluminium bar. The difference 1in
indentation of the rods were measured by a micrometer.
Subtracting ground camber from rolled camber gave the
thermal camber across the roll. Repeatability of the
readings were within the range niicrons. These errors
were due to the care required in locating the point of
maximum indentation for each rod. The thermal cambers
were taken as being relative to the expansion of the
roll 800mm from the drive side of the roll centre line.
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The measured thermal cambers across the work roll are
shown in fig. ES.

4.,1.1 OBSERVATIONS ON TEST PROCEDURES AT MILL A

The roll temperature test began within 200 seconds after
the coiling pass and took three to five minutes. The
tenperature of the roll did not appear to change during
that time. An unknown quantity of coolant flowed for 224

seconds after the rolling of slab 3 (the third slab rolled
after temperature readings commenced). The flow was
observed to be less than that during rolling.

4.2 TEST PROCEDURES AT MILL B

Data collection took place on Friday, 7th November, 1986,

at Mill B, a single stand hot reversing mill. Data was

collected for alloy 3004, a 1.3208m wide strip. The

procedure was as follows:

1. Rolling loads, power, times were provided by normal mill
sensors and chart recordings.

2. The sprays were set to level 37 on both entry and exit

sides of the roll (according to fig. E7). Two coils
were rolled.

3. Roll centre and edge temperatures were recorded.

4. Roll cambers were recorded as detailed above. The
aluminium rods were placed 4 inches (101.6mm) apart,

+ Each spray level corresponds to a specific arrangement

of the spray nozzles, and hence to the volume of coolant
flow (see pp. 84 - 85),
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corresponding to nozzle positions across the roll. The
thermal cambers were taken as being relative to the

radial expansion at the edge of the roll from the
operator side (see fig. E8).

The whole procedure was repeated with sprays set at levels

2 and 1, respectively. The complete list of recorded data
is given in fig. E6.

4.3 CALIBRATION OF THERMAL CAMBER MODELS

The thermal camber models were calibrated using the data
summarised in Table 4.3.2 below. The physical properties

assumed for the work roll and strip are given in Table
4.3.1.

Table 4.3.1 - Roll and strip physical properties.

Roll

Thermal conducEiv1ty 0.045
KW m™4

Thermal diffusivity 1.24 x 107>
m
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CHAPTER 5

COMPARISONS BETWEEN MILL MEASUREMENTS AND THE MATHEMATICAL
MODELS

5.1 INTRODUCTION

The most important test of the mathematical models for
predicting work roll thermal cambers and strip profiles are
their abilities to accurately reflect actual data. Data was

obtained at two mills during the course of this project, as
detailed in Chapter 4.

This section of <the thesis will compare measured
temperatures and cambers with the results of the thermal
camber model of Chapter 3 and that based on the ideas of
Oshima et al.®’ detailed in Chapter 2. The former model is
termed the "large" model and the latter, the "fast" model,

hereafter. The prediction of strip profile using a strip
profile model will also be examined in.Chapter 7. However,
no measured data on strip profile was available.

5.2 COMPARISONS FOR MILL A

92




Plant data were obtained at Mill A as described in Chapter
4.

5.2.1 ROLL TEMPERATURE MATCHING WITH DATA FROM MILL A

One deficiency of the modelling process is that there is no
reliable method of calculating heat transfer coefficients
based solely on the spray configquration. In view of this
fact, the operating heat transfer coefficients for <the
modelling of roll thermal camber were obtained by matching
the calculated temperatures to the measured temperatures at
equivalent points on the actual roll and that of the
models. In practice roll temperatures are relatively simple

to obtain after the coiling pass with minimum disruption of
the rolling program, as discussed in Chapter 4.

5.2.1.1 DETERMINATION OF HEAT TRANSFER COEFFICIENTS

No quantitative data on the spray levels was available at
Mill A. The heat transfer coefficients were determined fronm

the combination of overall and ambient heat transfer
coefficients which resulted in the nearest mnatch to the

measured temperatures. A .further criterion was that the
value of the ambient heat transfer coefficient must be such

the roll at the time of measurement. After that,

nozzle ratio can be tuned to match the
temperatures as closely as desired.

measured

5.2.1.2 MEASURED THERMAL CAMBERS FOR MILL A

curves of thermal camber development on the work roll

against time are shown in fig. ES5. The curve marked "ist
slab" represents the measured camber across the work roll
immediately after the rolling of the first slab. The

thermal camber at the centre of the roll was measured at
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193 microns and remains close to this value up to a
distance of 300mm from the roll centre line where the
camber was found to be 190 microns. At the strip edge,
550mm from the centre line, the thermal camber falls to 75
microns, and at 800mm from the centre line to 35 microns.
The roll thermal camber was next measured after a further
two slabs were rolled, 29 minutes after the first slab, and
is shown by fig.E5 by the curve marked "3rd slab". The
pattern of this curve is similar to that described above,
except that higher thermal cambers were in evidence. The
thermal camber at the roll centre line is now 244 microns,
falling off to 158 microns at the strip edge, and 43

microns at 800mm from the centre line (on the operator
side). After the seventh slab was rolled the thermal camber

at the roll centre had risen to 305 microns and 23 mnmicrons
at 800 mm from the roll centre line.

5.3 COMPARISONS BETWEEN MEASURED AND PREDICTED CAMBERS
USING "LARGE" AND "FAST" THERMAL CAMBER MODELS.

Figure E5 clearly indicates the dynamic nature of thermal
camber. However, Dbecause thermal camber builds up
relatively slowly, as fig.E5 shows, we can place some

reliance on the data, especially since the method of
measurement was so simple and elegant.

i

5.3.1 H.T.C. 17.5 Large Model. HTC = 17.5: Poisson's
Ratio, v = 0.33, Fast Model (eqn. 2.5.3),

The temperatures across the roll surface were calculated
using the "large" model to closely match the measured
temperature after the third slab was rolled (see appendix E
for the complete set of data). This resulted in a coolant
heat transfer coefficient (H.T.C) of 17.5 kw m™¢ 9¢c~1, o.1
kW m™4 °C'1, for the bearings and end plate, 0.06 and 2.5
kW m~2 9c™! for the ambient and centre pipe, respectively.
These values of heat transfer coefficients were then used
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to calculate the temperatures after slab 1 was rolled. Thus
if the amount of coolant did not vary too greatly during
the period of rolling, then these values should be valid

for the entire rolling programme. The "fast" camber model
should follow the same reasoning.

Fig. F1, curve 1, shows the measured temperatures across
the roll (on the operator side), after slab 1 was rolled.
curves 2 and 3 show the calculated temperatures using the
large and fast thermal camber models, respectively. Both
models assumed a heat transfer coefficient of 17.5
kW m™2 Oc=l for the coolant nozzles 1 - 14, and 0.06
kW m™2 oc=l at nozzle positions 15 - 17. The close
matchings of calculated temperatures for the large model
can be clearly seen, but the fast model predicts
temperatures 6 Oc higher, up to 400mm from the roll centre

1ine, dropping to a 3 ©c difference at the strip edge.

Thereafter the difference in predicted temperatures becomne
less.

The comparison between measured and calculated cambers for
the roll after slab 1 was rolled (fig.F2) also show good

agreement for the large model. Again the fast model does
not compare too well.

Fig. F3 shows similar comparisons between predicted and
calculated temperatures, after the third slab was rolled.
In this instance both the large and fast camber models
predicted higher temperatures than those measured. This is
not surprising because this is the case where coolant still
flowed on the roll for 224 seconds after rolling. Although
the model can simulate this event, no-data existed on the
coolant flow (which was visibly less than that during

rolling); and hence no valid conclusions from a match of
calculated and measured temperatures.
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For the fast thermal camber model, the calculated cambers
of figs. F2, F4 and F6 reflect the case where a value of
0.33 was used for Poisson ratio in eqn.(2.5.3). In this
case, the roll ends were assumed to be under constrained
expansion. (This assumption is not made in the large camber

model, although the normalized coefficients of eqn. B3

the
were used as a compensation). Hence, combined with, fact

that the calculated temperatures were greater with the fast
model, using the value of 17.5 kW n~¢ 9”1 for the overall
heat transfer coefficient, significant differences in
thermal cambers resulted from those measured. Thus, fig. F2
and Table 5.3.2 show a close matching of the calculated
cambers to the measured cambers (after slab 1 was rolled),
for the large model only (with 50 radial nodes). A maximunm
difference of 33 microns beyond the strip edge is shown.
This fact can be attributed to the 1lower temperatures
predicted in this area by this model and are depicted in
fig. Fl. (This 1is Dbecause 1lower roll expansions are

therefore predicted). The fast model only partly show good
agreement with the measured cambersfor the same comparison

with measured data. This holds true up to 400 mm from the
roll centre line, deteriorating to a difference of 115

microns at the strip edge, and 231 microns, 800mm from the
roll centre line (see Table 5.3.2).

Applying the same heat transfer coefficients to account for
heat transfer from the roll after slab 1 was rolled,

produced matching thermal cambers to within 24 microns
between the large camber model (with 50 radial nodes) and
the measured data at the strip edge. Thirty four microns
difference 1s shown 800mm from the roll centre line (see
fig. F2). However, for the same comparison the fast camber
model differs by 50 microns at the strip edge and 115
microns 800mm from the centre line. That is , @ difference
of 149 microns, 800mm from the centre 1line between the

large and fast camber models. This fact could be expected

on examination of fig. Fl1 showing the larger predicted
temperature differences between the models across the roll.
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Comparisons of thermal camber of the work roll following
the rolling of slab 3, not surprisingly show much more
marked deviations. These are attributable to the fact
coolant still flowed on the roll after the coiling pass.
This could not be modelled correctly due to insufficient
data. This demonstrates the necessity of being able to

account for the heat transfer regime at all times during
rolling.

Good matches with predicted roll temperatures and thermal
cambers and those measured are shown in fig. F5 and Fe,

respectively. This comparison 1is with reference to the
state of the roll after the seventh slab was rolled.

TABLE 5.3.1 SLAB 1. Variations in thermal cambers

o w2BGen, ¥ Thermal Cambers Gum) at:

Roll Centre  Strip Edge 800mm

_ from
odel ine Centre ILine
Measured — | 193 75 - 35

Large 50 Nodes 17.5 194 99 - 1
Model 3 Nodes 17.5 194 73 - 50
Fast 3 Nodes 17.5 0.33 197 25 -150
Model 17.5 0.0 197 61 - 72
22.0 0.33 190 49 - 97

22.0 0.0 194 85 - 23
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TABLE 5.3.2 slab 7. Variations in thermal cambers

HTC v Thermal Cambers/(um) at:

(kW m~2 °c™1) = @ eememmcmemmec—eeeeeeeeo

Roll Centre Strip Edge 800mm

from

Model No. of nodes Line Centre Line
Measured —> 305 80 23

Large 50 Nodes 17.5 305 50 0
Model 3 Nodes 17.5 305 73 37
Fast 3 Nodes 17.5 0.33 305 43 -208
Model 17 .5 0.00 305 06 - 81
22.0 0.33 305 98 -114

22 .0 0.00 305 146 - 10

5.3.2 H.T.C. = 17.5 Large Model; HTC = 22.0 , v = 0.33 Fast
Model (egn 2.5.3).

It was found that an ‘overall coolant heat transfer

coefficient of 22 kW m~¢ ©¢~1 gave a good match between the
measured and calculated temperatures using the fast model

(see fig. F7) with the data after the 7th slab was rolled.
As in section 5.3.1 v was equal to 0.33 (from eqn. 2.5.3).

The Oshima67 (fast) model again showed large deviations

between the measured camber and calculated cambers, as

shown in fig. F8. This suggested that free expansion of the

roll ends had to be assumed, i.e v = 0. For the comparative

thermal cambers, however, the deviations in calculated to
measured cambers had decreased to 32 microns at the strip
edge and at 800mm from the roll centre line.
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5.3.3 HTC = 17.5 Large Model. HTC = 17.5, v = 0 Fast Model
(Fig. F9)

Since the value of Poisson ratio does not affect the
calculated temperatures, the graphs of temperatures v.
axial positions using the parameters above, are the same as
in F1, F3 and F5 (when Poisson's ratio was equal to 0.33).
However, now that free expansion of the roll ends is

assumed, the differences in measured to calculated thermal

cambers (using the fast tIﬂOdel) are now greatly decreased.
e

Fig. F9 now shows that ,fast model calculates a thermal

camber which differs by 74 microns at the strip edge, and

104 microns 800mm from the roll centre line after a seven
slab simulated rolling.

5.3.4 H.T.C. = 17.5 Large Model. H.T.C. = 22.0, v = 0 Fast
Model (fig. F10)

The most suitable heat transfer coefficient for the coolant
effects, as accepted by the Oshima (fast) model, was 22.0

XW m~¢ ™! and v was given the value zero for the
simulated rolling of slab 7. Figure F7, curve 4,

the match between measured and calculated

depicts

_ surface
temperatures against distance from the roll centre 1line

using the fast model. The resulting cambers shown in Fig.
F10 point to good agreement between measured and calculated
cambers. The cambers match to within 14 microns, 400mm from

the roll centre line, but diverges to 34 microns at the
strip edge and 33 microns 800mm from the roll centre line.
The measured cambers are 305 microns at the roll centre,

263 and 23 microns, 400mm and 800mm from the roll centre
line, respectively.

" 5.4 COMPARISONS FOR MILL B

In calibrating the "fast" thermal camber model on site, it
was found that suitable heat transfer éoefficients could be
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estimated based on the spray levels by using the following
equation derived from a model of the roll angular

temperature distribution.

hs = hb + f*hn (S.4.1)

where:

he = coolant heat transfer coefficient based on
spray levels set.

hy = "hbase" heat transfer coefficient = 0.8
xw m~¢ ©c~i

h, = nominal heat transtfer coefficient = 3.59

f = multiplication factor based on spray levels.
Therefore, based on the configuration of
the sprays shown in Table 3.8.1 and on
equation (5.4.1), heat transfer
coefficients are evaluated and shown in
Table 5.4.1.

Table 5.4.1 Factors used to evaluate HTC according
to eqnl (514-1)

spray level

O 1 2 3 4 D 6 7
0 0,94 | 1.6 e 18 61 61 1.86
h 0.8 7.549 9,416 12.432 9,272 12,360 . 360 14,155

S

Figs. F11 - F13 depict the comparisons between measured and
calculated temperatures and cambers along the roll axis. In
this case. Cambers are taken relative to the end of the
roll barrel. Figs. Fll, Fl12 and Fl3 refer to data after 4,
¢ and 8 coils were rolled, respectively, after a roll
change. The curves 1labelled "predicted camber (1)" and
ncalculated temperature (1)" were obtained by setting the
heat transfer coefficient to those given by H(1) on the
coolant HTC v distance from roll centre line graphs. These
values of heat transfer coefficients are based on the
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method in 6.6. Correspondingly, the curves labelled (2)
refer to H(2) found from egqn. (5.4.1) and Table 5.4.1.

The values of heat transfer coefficients according to H(1)
gave an almost exact match of cambersin each case, although
slightly higher temperatures than measured at the roll

centre had to be assumed. This could not be said of the
method suggested by eqn. (5.4.1).

5.5 DISCUSSION

In all the cases considered, using values of heat transfer
coefficients evaluated according <to the two nmethods

mentioned above, the match between measured and calculated
cambers between the two models differed sharply across the
length of the roll. For example, in fig. F19 the difference
in measured and calculated camber at 50.8mm from the roll

centre line is 30 microns. At the strip edge the difference
is 5 microns. Thus if cambers were matched at the centre, a
difference of 25 microns would occur at the strip edge.

It is not immediately clear why the "large" and "fast"
camber models produced different results for the same
conditions. Different values of heat transfer coefficients

are required because to the nature of the derivation of
these values. In the latter case, it is assumed that the
heat transfer conditions across the roll will be the same
because the sprays were set to one level. However, it was
clear from visual observations that blocked nozzles and
leaking pipes resulted in uneven coolant distribu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>