
Brushing Element Fields
Chen-Yuan Hsu

Bournemouth University
Li-Yi Wei

Adobe Research

Lihua You
Bournemouth University

Jian Jun Zhang
Bournemouth University

(a) 2D graphic design (b) surface artistic collage (c) volumetric aggregate modeling

Figure 1: Oriented element synthesis. Our brushing system can be applied for different domains such as 2D planes (a), 3D
surfaces (b), and 3D volumes (c); diverse elements such as rigid (a) and deformable (c); and various applications such as design
(a), collage (b) and modeling (c). Users can mix a variety of elements with distinct shapes (a) or types (rigid and deformable) (b)
from the interface. The system can automatically complete the remaining work based on the partially user-specified strokes
(a) (inset), enable the users to interactively author the elements (b) or directly synthesize the elements along a given field (c).

ABSTRACT
Aggregate elements following certain directions have a variety
of applications in graphics, design, and visualization. However,
authoring oriented elements in various output domains, especially
in 3D, remains challenging. We propose a novel brushing system to
facilitate interactive authoring of aggregate elements with diverse
properties over given output domains via an element synthesis
approach. To increase output quality and reduce input workload,
we further propose element fields that can automatically orient
the entire elements in better alignments over the output domains
according to partially user-specified strokes. The proposed system
can effectively synthesize distinct types of elements within various
output domains in higher quality and efficiency and offer more user
friendliness than existing practices. Our method can be applied to
practical applications such as graphic design, artistic collage, and
aggregate modeling.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6062-3/18/12. . . $15.00
https://doi.org/10.1145/3283254.3283274

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Computing methodologies → Texturing;

KEYWORDS
element, field, synthesis, packing, anisotropy, interface, modeling
ACM Reference format:
Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang. 2018. Brushing
Element Fields. In Proceedings of SIGGRAPH Asia 2018 Technical Briefs ,
Tokyo, Japan, December 4–7, 2018 (SA ’18 Technical Briefs), 4 pages.
https://doi.org/10.1145/3283254.3283274

1 INTRODUCTION
Aggregate elements following directions are ubiquitous in natural
and man-made objects. Authoring such elements remains chal-
lenging, especially in 3D [Cho et al. 2007]. There exist methods
for interactively authoring 2D elements (e.g. [Kazi et al. 2012])
or synthesizing 3D elements via batch processing (e.g. [Ma et al.
2011]), but there is a lack of friendly user interfaces for interactive
authoring of 3D elements with general shapes, distributions and
alignments [Roveri et al. 2015].

Interactive brushing interfaces have been widely adopted for
digital painting and pattern authoring [Lu et al. 2014; Zhou et al.
2014]. We propose a novel brushing system for interactive author-
ing of distinct types of aggregate elements across different output

https://doi.org/10.1145/3283254.3283274
https://doi.org/10.1145/3283254.3283274

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang

(a) inputs (b) output domain (c) user-specified strokes (d) autocomplete (e) final arrangement

Figure 2: The workflow in our brushing system.Users select one or several input exemplars (a), brush the selected elements over
the output domain (b) and interactively see the brushing results (c). To reduce the users’ workload, our system can automat-
ically generate the remaining outputs (d) according to the partially user-specified strokes (c). The users can further arrange
the elements for the final outcome (e) via corresponding brush operations.

Figure 3: User interface. Our system is directly integrated
into Autodesk Maya. The control panel is on the left, and
the main canvas is in the middle. Users can choose input ex-
emplars from the element palette, perform corresponding
operations, and tune relative parameters from the control
panel to create desired works in different output domains.

domains (Figure 1). The basic workflow of using the brushing sys-
tem can be seen in Figure 2. Through the interface (Figure 3), users
can select and even mix elements from an element palette of input
exemplars. Analogous to common painting interfaces, the element
palette enables the users to save multiple selected exemplars as a
new input exemplar and then reuse it in an efficient way.

Moreover, anisotropic elements often require proper direction
fields for proper alignments, and it can require significant expertise
or labor for users to fully specify these fields. To enhance output
quality and reduce input workload, our main idea is element fields
that can automatically complete all the element alignments in better
quality based on partially user-specified inputs like manual strokes.

Our system can handle general element shapes, distributions and
alignments, has a friendly user interface, and can produce outputs
with high quality that match the user specifications and domain
shapes. Unlike prior example-based approaches, which the outputs
are limited by the inputs, the developed system, centered on the
idea of element fields, can effectively solve a complex authoring
issue and enable users to create compelling artwork like Figure 1b
without requiring significant artistic expertise or manual labor.

2 ELEMENT REPRESENTATION
We extend the sample-based representation in [Ma et al. 2011],
where each element e is represented as a set of samples {s1, . . . , sn }.
However, only using samples is not sufficient to properly depict
distinct elements such as deformable or anisotropic elements. Thus,
we devise a framework that different types of elements with various
properties such as scale and rigidity can be better characterized.

2.1 Sampling
Since we represent elements via samples, the number and locations
of these samples are important. Ideally, we would like to use as few
samples as possible while representing the elements as accurately
as possible. As illustrated in Figure 4, instead of using unweighted
samples in [Ma et al. 2011], we adopt weighted samples to better
characterize diverse elements with fewer samples which can be ei-
ther overlapping or nonoverlapping depending on the requirement
of synthesis quality and performance.

(a) treble clef (b) eggplant (c) leaf (d) grass

Figure 4: Element representation. The black dots indicate the
sample positions. The yellow circles represent the relative
sample weights. The blue lines denote the element graphs.

2.2 Element graph
In Figure 4, in order to well tackle different types of elements,
we further employ a graph structure G, inspired by Sumner et al.
[2007], to indicate the connectivity among samples and coherently
deal with the relationship between the element shape and samples.
While Ma et al. [2011] incorporate an extra physics solver with
their algorithm to improve synthesis quality, by applying this graph
structure in our algorithm, we can efficiently handle a variety of
elements without any physics solvers.

In our current implementation, wemanually sample the elements
and connect the samples into graphs.

Brushing Element Fields SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan

3 ELEMENT SYNTHESIS
Given an input exemplar I consisting of a collection of elements
{e1, . . . , el } along with their overall distributions, an output domain
D with desired size and shape, and an optional direction fieldO over
D, our goal is to compute an output X composed of {e1, . . . , el }
that have similar distribution to I and orientation to O .

3.1 Distribution similarity
As in [Ma et al. 2011], to determine whether an outputX has similar
element distribution with the input exemplar I , we can measure
their distribution similarity via sample neighborhoods. Each neigh-
borhoodN centered at s with differences of all neighboring samples
Ns = {s ′1, . . . , s

′
n } is defined as N(s) = {p̂

(
s ′1, s

)
, . . . , p̂

(
s ′n , s

)
},

where p̂ indicates the displacement between s ′ and s . For an out-
put sample so and an input sample si , their neighborhood distance
d (N(so),N(si)) can be computed as:

d (N(so),N(si)) =
∑

s ′o ∈Nso

��p̂ (
s ′o , so

)
−wscaleo(so)p̂

(
s ′i , si

) ��2 ,
wscale

(
si , s

′
i , so , s

′
o
)
=

c(s ′o)ws (s
′
o) + c(so)ws (so)

ws (s
′
i) +ws (si)

,

(1)

where o, c and ws denote the sample’s local orientation, scale and
weight respectively. Furthermore, for the output X composed of
elements from multiple input exemplars {I1, . . . , Im }, the distance
betweenN(so) andN(si) for each pair of so and si should be properly
computed according to the corresponding input exemplar Iκ(so),
where κ(so) ∈ {1, . . . ,m}, and Iκ(so) means the exemplar where so
originates from. We devise the overall distribution similarity Ed as:

Ed (X , {I1, . . . , Im }) =
∑
so ∈X

min
si ∈Iκ (so)

d (N(so),N(si)) . (2)

3.2 Conflict check
Mixtures consisting of elements with extremely distinct sizes and
shapes (such as Figure 1a) might not have the relevant distribution
information captured in the input exemplars, so we apply a conflict
check term to avoid conflicts between samples by checking the
distances between these weighted samples. Since the distances
between two samples should not be less than the sum of their
weights (which act like bounding spheres as illustrated in Figure 4),
we can formulate the conflict check Ek as:

Ek (X) =
∑
so ∈X

∑
s ′o ∈Nso

wk
(
so , s

′
o
) ��p̂ (

s ′o , so
)
−wcheck p̌

(
s ′o , so

) ��2 ,
wk

(
so , s

′
o
)
=

{
1 if wcheck > 1 and so ∈ e, s ′o ∈ e ′, e , e ′

0 if wcheck ≤ 1 or so , s ′o ∈ e
,

wcheck
(
so , s

′
o
)
=

c(s ′o)ws (s ′o)+c(so)ws (so)
|p̌(s ′o,so) |

,

(3)

where p̂ is the same as in Equation (1), and p̌ represents the current
displacement between s ′o and so treated as a constant quantity for
optimization.

3.3 Graph similarity
Besides the global distribution similarity, the local graph similarity
is considered for those elements consisting of multiple samples to

well maintain the element shapes based on their element graphs.
Analogous to the distribution similarity, we can minimize the dis-
tance between the current graphG(so) and the original graphG′(so)
for each output sample so to optimize the graph similarity Eд as:

Eд (X) =
∑
so ∈X

d
(
G(so),G′(so)

)
,

d
(
G(so),G′(so)

)
=

∑
s ′o ∈Gso

��p̂ (
s ′o , so

)
− c(so)o(so)p̂′

(
s ′o , so

) ��2 , (4)
where Gso denotes a set of all connected samples of so , and p̂′

represents the displacement between s ′o and so in the original graph.

4 ELEMENT FIELDS
Prior methods usually place anisotropic elements via a two-phase
process: produce a full direction field, upon which the elements
are placed to follow. The first step might be unnecessary and the
second might be suboptimal. For better synthesis quality and user
efficiency, our one-step process can directly construct element fields
following the partially or fully specified input as shown in Figure 5.

(a) user-specified stroke (b) element fields from (a)

(c) field preprocessing (d) element fields from (c)

Figure 5: Element field comparison. Our method can directly
compute element fields (b) from a partially specified input
(a) and adaptively fit different elements to the field, with bet-
ter quality than (d) preprocessing a full input (c) from (a)
first via Laplacian interpolation.

4.1 Field alignment
Since each sample s ∈ e is associated with a local orientation o, the
orientations of samples in the specified domain should be properly
aligned with the given domain field O . Thus, the distance between
o(s) and O(p) for each sample s in the specified areas should be
minimized for the field alignment Ea as:

Ea (o,O) =
∑
s ∈X

exp−
d2(s,p)
σ 2 d (o(s),O(p)) , (5)

where O(p) indicates the field direction at the point p which is the
closest domain point to the sample s .

SA ’18 Technical Briefs , December 4–7, 2018, Tokyo, Japan Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang

(a) initialization (b) iteration 2 (c) iteration 4 (d) iteration 8 (e) iteration 24 (f) iteration 48

Figure 6: Iteration process.At the beginning, individual elements from different input exemplars are randomly placed into the
output domain and initially aligned along the partially user-specified strokes (Figure 1a). Then our solver iteratively optimizes
the position and orientation of each element as a one-step automatic optimization of element distributions and alignments.

4.2 Field continuity
If the field O is partially specified, a field continuity term is con-
ducted to not only automatically construct the orientations of sam-
ples within the unspecified regions but also smoothly fit all the
samples with their nearby samples. We can minimize the distances
between the orientations of samples and their nearby samples to
optimize this field continuity Ec as:

Ec (o) =
∑
s ∈X

∑
s ′∈Ns

exp−
d2(s,s′)
σ 2 d

(
o(s), o(s ′)

)
. (6)

4.3 Element rigidity
If the element e is rigid, all samples s ∈ e should have identical local
orientations o(s) = o(s ′), ∀s, s ′ ∈ e . If e is deformable, all samples
s ∈ e might have different local orientations. Hence, to distinguish
between rigid and deformable elements, the element rigidity Er can
be formulated as:

Er (o) =
∑
s ∈X

∑
s ′∈Gs

wr (e)d
(
o(s), o(s ′)

)
, (7)

where wr (e) represents the rigidity of elements.

5 SOLVER
We iteratively optimize the set of samples for all objectives via a
combination of the element-based method in [Ma et al. 2011] and
gradient-based optimization (e.g. LBFGS) as exemplified in Figure 6.

6 DISCUSSIONS
The interactive brushing is a key feature to help users produce a
variety of outputs, and the optimization of element fields can help
reduce users’ workload without compromising their control by
automatically arranging the elements. In Figure 7, we show more
works generated via our brushing system.

Our current prototype cannot synthesize continuous elements
[Roveri et al. 2015] due to the complexity of brush controls in 3D
and the difficulty of arbitrarily mixing these kinds of elements. A
potential research direction is to extend our one-step process with
[Lu et al. 2014; Zhou et al. 2014] for synthesizing continuous artistic
patterns following direction fields.

Creating input exemplars can be tedious for ordinary users. To
promote our developed system in public communities, we are in-
vestigating a more advanced framework to reduce the workload of
preparing the input exemplars.

(a) 2D graphic design (b) surface aggregate modeling

(c) volumetric artistic collage (d) volumetric aggregate modeling

Figure 7: Applications. The works in (a) and (d) are automat-
ically optimized from partially user-specified inputs.

REFERENCES
Jun Han Cho, Athena Xenakis, Stefan Gronsky, and Apurva Shah. 2007. Anyone Can

Cook – Inside Ratatouille’s Kitchen. In SIGGRAPH 2007 Courses.
Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and Richard Davis. 2012. Vi-

gnette: Interactive Texture Design and Manipulation with Freeform Gestures for
Pen-and-ink Illustration. In CHI ’12. 1727–1736.

Jingwan Lu, Connelly Barnes, Connie Wan, Paul Asente, Radomir Mech, and Adam
Finkelstein. 2014. DecoBrush: Drawing Structured Decorative Patterns by Example.
ACM Trans. Graph. 33, 4, Article 90 (2014), 9 pages.

Chongyang Ma, Li-Yi Wei, and Xin Tong. 2011. Discrete Element Textures. ACM Trans.
Graph. 30, 4, Article 62 (2011), 10 pages.

Riccardo Roveri, A. Cengiz Öztireli, Sebastian Martin, Barbara Solenthaler, and Markus
Gross. 2015. Example Based Repetitive Structure Synthesis. Comput. Graph. Forum
34, 5 (2015), 39–52.

Robert W. Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded Deformation
for Shape Manipulation. ACM Trans. Graph. 26, 3, Article 80 (2007).

Shizhe Zhou, Changyun Jiang, and Sylvain Lefebvre. 2014. Topology-constrained
Synthesis of Vector Patterns. ACM Trans. Graph. 33, 6, Article 215 (2014), 11 pages.

	Abstract
	1 Introduction
	2 Element Representation
	2.1 Sampling
	2.2 Element graph

	3 Element Synthesis
	3.1 Distribution similarity
	3.2 Conflict check
	3.3 Graph similarity

	4 Element Fields
	4.1 Field alignment
	4.2 Field continuity
	4.3 Element rigidity

	5 Solver
	6 Discussions
	References

