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Text S3: Supplementary Methods - regularisation of the input to the decoder
network

The output of the array of coincidence detectors, based on the summary autocorrelation function (SACF)
[1-3] for each characteristic period A, (t), was regularised A, (t) — A, (t) through a four-step procedure
in order to reduce its dependence with stimulus intensity levels and to minimize strong signal-to-noise
variations with different stimulus timbres.

In the first step, A, (t) is low-pass filtered using a 7 = 20 ms leaky-integrator that reflects the degrada-
tion of phase-locked activity over 50 Hz in auditory cortex [4]. The low-pass A,,(t) is then normalised by
dividing the overall signal by the low-passed summary self-correlation of the auditory nerve activity [5].
A fixed baseline by = 0.35 is then subtracted from the overall function. Baseline was chosen such that a
white noise stimulus elicits no activation, in agreement with fMRI studies that reported pitch-selective
activation in inferior colliculus [6,7].

Last, the normalized baseline-corrected A, (t) is rescaled to firing rate units (Hz) by a constant
factor Ag = 75Hz/(1 — bg) that yields typical input activation peak values of ~ 60Hz, in agreement
with previous cortical models of perceptual integration [8]. Average activation in the regularised SACF
associated to dyads was around half of the size of the average activation elicited by single IRNs (with the
only exception of the unison, which was essentially a single IRN). Thus, in order to preserve the same
~ 60 Hz peak activation also in dyads we used a doubled rescaling factor (AgyadS =2 Ay).
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