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a b s t r a c t

We introduce a methodology for reconstructing geographical effects on dispersal and diffusion patterns,
using georeferenced archaeological radiocarbon databases. Fast Marching methods for modelling front
propagation enable geographical scenarios to be explored regarding barriers, corridors, and favoured and
unfavoured habitat types. The use of genetic algorithms as optimal search tools also enables the deri-
vation of new geographical scenarios, and is especially useful in high-dimensional parameter spaces that
cannot be characterized exhaustively due to computer runtime constraints. Model selection is guided by
goodness-of-fit statistics for observed and predicted radiocarbon dates.

We also introduce an important additional model output, namely, modelled phylogenies of the
dispersing population or diffusing cultural entity, based on branching networks of shortest or 'least cost'
paths. These 'dispersal trees' can be used as an additional tool to evaluate dispersal scenarios, based on
their degree of congruence with phylogenies of the dispersing population reconstructed independently
from other kinds of information.

We illustrate our approach with a case study, the spread of the Neolithic transition in Europe, using a
database from the literature (Pinhasi, Fort and Amerman 2005). Our methods find support for a
geographical model in which dispersal is limited by an altitudinal cut-off and in which there is a climate-
related latitudinal gradient in rate of spread. This model leads to a deceleration in front propagation rate
with geodesic distance, which is also consistent with models of the propagation of the Neolithic tran-
sition under space competition with pre-existing populations of hunter-gatherers. Our genetic algo-
rithms meanwhile searched the parameter space and found support for an alternative model involving
fast spread along the northern Mediterranean coast and the Danube/Rhine riverine corridor. Both these
models outperformed the geography-free Great Circle distance model, and both also outperformed
another, almost geography-free, model that constrains dispersal to land to and near-offshore coastal
waters. The adjusted coefficient of determination for modelled and observed radiocarbon dates for first
arrival supports the GA-derived model; the shortest path network analysis, however, gives greater
support to the model with altitudinal cut-off and latitudinal gradient in dispersal rate, since it produces
branching 'dispersal trees' that are more congruent with these archaeological sites' clade memberships
(as defined by archaeological material culture).
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Prehistoric human dispersals, and the spread of major cultural
innovations, can often be tracked using radiocarbon dates. Such
dates, if accurate, give first observed arrival times at specific loca-
tions; by aggregating dates across sufficiently large distances in
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space and time, patterns can be discerned which indicate the rates
and routes of population dispersal or innovation diffusion. Such
patterns can then be interpreted in terms of the underlying cultural
and demographic dynamics.

Typically, we can also expect that geographical features (bar-
riers, corridors, favourable and unfavourable habitat types) would
have affected the pattern of spread of prehistoric populations and/
or of cultural innovations. However, models of the underlying dy-
namics have tended in the past to ignore such variation, and to have
had their parameters estimated in relation to some averaged
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overall observed rate of spread throughout thewhole of the studied
geographical domain (e.g. Ammerman and Cavalli-Sforza, 1971).
This is acceptable as a first approximation, if our aim is to under-
stand at an abstract level the underlying processes that could have
given rise to these kinds of archaeological patterns. Nevertheless, it
is an inescapable fact that the earth's surface is highly inhomoge-
neous, and that these inhomogeneities are often of the same spatial
scale as the geographical domains onwhich our studies are focused.
Geographical features cannot, therefore, be treated simply as low-
level noise and averaged away if we wish to reconstruct the dy-
namics of any specific dispersal or diffusion episode, even at a
continental scale. Recent work has increasingly often recognized
this fact, and analyses of large-scale radiocarbon datasets are
increasingly focused on variation in rates of spread that may indi-
cate the effects of corridors, barriers, and favourable versus
unfavourable habitat types (e.g. Bocquet-Appel et al., 2009, 2012;
Baggaley et al., 2012; Russell et al., 2014). Similarly, demographic
models of population dispersal are increasingly often geographi-
cally explicit, and take such features into account when simulating
the underlying dynamics of the spread process (Wirtz and
Lemmen, 2003; Ackland et al., 2007; Patterson et al., 2010;
Lemmen et al., 2011; Banks et al., 2013; cf. Isern and Fort, 2012;
Isern Sardo et al., 2012; Fort et al., 2012). Analogous approaches
are increasingly common in models of genetic diversification dur-
ing and after a dispersal phase (e.g. Ray, 2005; Ray et al., 2005; Kidd
and Ritchie, 2006).

Full integration of empirical analysis with forward modelling
requires us to be able to estimate the effects of geographical fea-
tures on spread rates using radiocarbon datasets of first observed
arrival times, and to calculate actual spread rates (or front propa-
gation rates, to use a more technical term) across different types of
habitat and along different kinds of corridor. Our purpose in this
paper is to outline some methodological innovations which should
enable such tasks to be more easily undertaken, and which should
enable analysts to achieve more reliable results. We summarise
below a fast and numerically stable method of modelling front
propagation across a geographically-realistic surface, closely
related to the cost-surface routines familiar to GIS users; we explain
ways of estimating probable effects of geography on dispersal or
innovation diffusion, using a coefficient of correlation between
dates and distances from an origin point; we discuss how to use
automated search algorithms to find the optimal solution to the
problem of estimating multiple geographical effects when that
search is only weakly constrained, or not at all, by a priori hy-
potheses; and finally, we introduce a method of using independent
cultural data to choose between possible geographical scenarios,
when the radiocarbon data alone are insufficient to indicate which
one is more likely to be correct. We then illustrate the application of
these methods, using a well-known published dataset for a well-
studied prehistoric case (the Neolithic transition in Europe).

2. Methodology

2.1. Regression estimation of front propagation rate

Regression techniques enable us to discern, and characterize,
coherent spatial gradients (where they exist) in observed first
arrival times for some archaeological entity, whether this is the
appearance of people in an empty continent, of farming in a world
of hunter-gatherers, or of some other cultural group or innovation.
Such approaches have been used for over 40 years, with radio-
carbon date as the time variable and distance from some origin
point as the space variable in a bivariate regression analysis (e.g.
Ammerman and Cavalli-Sforza, 1971; Russell, 2004; Hazelwood
and Steele, 2004; Pinhasi et al., 2005). The correlation coefficient
estimates the strength of the relationship (the coherence of the
spatiotemporal pattern); the intercept gives the mean expected
time of first observed appearance of the entity at the origin point;
and the slope coefficient gives the mean rate of spread (the front
propagation velocity).

Choice of correlation coefficient should be determined by the
nature of the relationship between the two variables: where the
relationship is linear and there are no or few strong outliers,
Pearson's r may be most appropriate, but where the relationship is
monotonic and nonlinear, and/or where there are strong outliers,
Spearman's r will be the more robust estimator.

Choice of regression line-fitting technique should be deter-
mined by the distribution of error among the measured variables.
Conventional (ordinary least squares, OLS) regression assumes that
measurement error is concentrated in the dependent variable,
while reduced major axis (RMA) regression assumes a symmetrical
distribution of measurement error between both variables. As we
have previously noted (Steele, 2010), simulations (Babu and
Feigelson, 1992) have shown that reduced major axis regression,
whose slope is the geometric mean of the two ordinary least-
squares slopes, performs well in recovering the true functional
relationship between two error-prone variables. In practice it is also
common for archaeological modellers to estimate front speeds as
within the range indicated by the two possible OLS slopes (i.e. with
variable 1 and variable 2 each treated as the dependent). Either of
these approaches is preferable to using only one of the two possible
bivariate OLS model fits without adjusting the slope for error in the
independent variable: Cantrell (2008) has used simulations to
assess the ability of a single OLS regression to estimate a functional
relationship between two variables where each contain error, and
where the underlying relationship is unity (a slope of value 1),
finding that OLS underestimated the true slope, with a systematic
fractional error of underestimation of the order 1 � r, where r is
Pearson's correlation coefficient. An empirical illustration of the
points at issue can be seen in Steele (2010, Fig. 6 b,d,f), where
reducing the size of an already small archaeological dataset reduces
the correlation coefficient and causes the two OLS lines to diverge,
while the RMA fit recovers the same underlying slope.

We illustrate this point again in Fig. 1, which shows the effect of
adding random noise sampled from a Rayleigh distribution to both
variables when the underlying relationship is a perfect linear
function. The Rayleigh distribution was chosen because it enables
noise to be added in one direction only, so that ages and distances
are always underestimated e reflecting an archaeological situation
where limited field sampling yields earliest observed sites post-
dating the true front passage time, and where distance estimates
fail to take account of the finer-grained geographical structure of
patches and barriers (cf. Perreault, 2011). As the correlation coef-
ficient decreases due to increasing magnitude of the noise (that is,
an increasing Rayleigh scale parameter), so the slopes estimated by
each of the two possible OLS models (as it were, space on time and
time on space) diverge from the true functional slope and from one
another, while the RMA model continues to detect the true
relationship.

If the measurement error in both variables were known, and we
wished to analyse the remaining (systemic) equation error that is
due to effects of some other variable, then (as a number of authors
recommend, e.g. McArdle, 2003) we could simply correct the OLS
slope to control for that measurement error. However, in the pre-
sent case, there is unknown measurement error in both variables e
the dates will sometimes be inaccurate and are certainly intrinsi-
cally imprecise, while the distances are only approximations of the
true distances covered by the propagating front at any given date
(since the datable archaeological record is both incomplete, and
incompletely sampled in space). The fact that these measurement



Fig. 1. (Top) Three illustrative Rayleigh distributions for three different scale parameters; (Bottom) Error in fitted speeds (inverse of regression slopes) for different regression
methods (OLS and RMA) applied to a simulated dataset with an underlying perfect linear functional relationship, but with added random noise sampled from a Rayleigh distribution
(with identical parameters for both variables). Speed error is given by the difference between the fitted value and the expected value (from the underlying rule).
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errors are unknown makes it impossible to correct the OLS slope to
derive the correct model, and RMA therefore gives a more conser-
vative first approximation solution.

2.2. Distance estimation across heterogeneous surfaces using the
Fast Marching algorithm

Calculating such bivariate regressions requires us to obtain
values for the calendar date of first appearance of the archaeolog-
ical entity at each site, and for the distance to each site from some
origin location. A set of calendar dates can be obtained by taking the
means or medians of the calibrated radiocarbon ages for each site,
with the robustness of the obtained regression fit checkable by
bootstrapping (e.g. Steele, 2010). In compiling such datasets there
are usually also archaeological issues to be resolved to do with
sample integrity and sample provenience, where the dated mate-
rial acts only as a proxy for the true archaeological entity of interest;
we do not consider these important issues further here, since our
aim is to present a modelling methodology.

Sets of distances have often been calculated for such regression
analyses, as a first approximation, as Great Circle distances
(geodesic, in the original sense of that word). However, if we wish
to explore the possibility that geography influenced directions and
rates of spread from some origin point, then we must obtain sets of
distances that reflect the influence of geographical features. Cost-
surface techniques are most commonly used to obtain such dis-
tance estimates (e.g. Glass et al., 1999; Field et al., 2007). In a cost-
surface analysis, a front is propagated across a grid of cells from
some origin location, with the local rate of propagation in each
direction determined by the friction factor assigned to the different
cells in the neighbourhood. These friction factors will typically be
assigned in a GIS raster layer according to some set of reclassifi-
cation rules operating on an input layer containing geographical
features. For example, to test a specific hypothesis about corridors
and barriers, cells containing major rivers might be assigned a low
friction value, while cells containing very arid habitat might be
assigned a very high friction value, reflecting their different affor-
dances (and thus invasibility) to a dispersing population. When the
complete cost-surface has been calculated for the entire domain,
values can be read off for the locations of each site, representing the
length (in cost units) of the shortest path to that site from the origin
location, for a given hypothesis about the frictions afforded by
different geographical features. The correlation coefficient for dis-
tances (obtained in this way) with dates then becomes an estimator
of the explanatory power of that particular geographical hypothe-
sis, with the correlation coefficient obtained using only Great Circle
distances providing the baseline (the geographical ‘null hypothe-
sis’). The intercept and slope coefficient of the regression model
meanwhile enable the cost surface to be reclassified as an arrival
time surface, while the slope coefficient and the grid cell resolution
enable the rule set (the friction factors) to be translated into a set of
modelled front propagation rates across each type of geographical
feature in the domain.

In GIS applications, cumulative cost surfaces are typically
calculated using Dijkstra's algorithm (Dijkstra, 1959), which solves
the single-source shortest-path problem when all edges have non-
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negative weights. This algorithm starts from the source and works
outwards, starting at each iteration with the cell with the lowest
cumulative cost value among the cells that the front has already
reached and adding this to the values of the cells in its neigh-
bourhood. The neighbourhood is typically defined on a regular grid
or raster as including the cells that are reachable in a single step in a
Rook's pattern (4-cell neighbourhood), a Queen's pattern (8-cell
neighbourhood) or a Knight's pattern (16-cell neighbourhood). In
our ownwork, we use a closely-related approach known as the ‘Fast
Marching’ method (Sethian, 1996, 1999), implemented in MATLAB.
Dijkstra's algorithm with a graph-based (i.e. grid cell neighbour-
hood) update is prone to introduce artefactual ‘staircasing’ into
least cost paths. The Fast Marching method instead overcomes
these constraints by replacing the graph update with a local reso-
lution of the Eikonal equation (in our case, by a second-order finite-
difference approximation; Silva and Steele, 2012, their Eq. 4). This
produces a more accurate treatment of the underlying continuous
spatial surface. Instead of the Dijkstra update algorithm, where D is
the distance from cell j to the source of the dispersal evaluated
according to the above iteration rule, and dx and dy are the distance
from the nearest neighbour on the x and y axis respectively to the
same source:

DðjÞ ¼ minðdxþWðjÞ; dyþWðjÞÞ;
We use an Eikonal update:

D ¼ 2*WðjÞ � ðdx� dyÞ2;
if D � 0

DðjÞ ¼
�
dxþ dyþ

ffiffiffiffi
D

p �.
2;

else

DðjÞ ¼ minðdxþWðjÞ; dyþWðjÞÞ

whereW is the neighbourhood metrical weight (Baerentzen, 2000;
Sethian, 1999). The most time consuming aspect of Dijkstra-like
approaches is the management of the list of cells for which cu-
mulative costs have been computed. The Fast Marching method
streamlines this process by singly focussing on the narrow band
that encloses the propagating front, and using only known upwind
values to estimate the cumulative costs (Sethian, 1999). We have
introduced elsewhere a generalization of this approach to model
multiple competing fronts with different origin locations, onset
times and propagation rates, where each cell in a grid is populated
by the descendants of one or other source population accord to a
first arrival rule (Silva and Steele, 2012).

It is also common in Fast Marching implementations to express
the metrical weight as a function of the local speed of the propa-
gating front. This allows for a new generalization, introduced here
to model dispersals over heterogeneous domains. For each indi-
vidual cell, Wj can be multiplied by a friction factor, boosting or
inhibiting the speed with which the front will propagate locally: a
friction value of 0.5 on a given cell will mean the front propagates
locally at half its base speed. Implementation of this generalization
requires the construction of friction raster layers covering the
computational domain. For current purposes these were obtained
by reclassifying freely available present-day biogeographical dis-
tributions according to some rule set (see below), using GRASS GIS,
and then exporting them to Matlab ready to be used by our Fast
Marching algorithm.

The Fast Marching algorithm outputs a raster where each cell
value is given by the shortest-path distance to the source of
dispersal according to the constraints of the model (landcover,
friction layers). This cumulative cost-surface is then queried for the
cost-distance values of each site in the archaeological database,
yielding the distances that are used for the regression analysis. As a
derivative of the regression models which are then estimated from
dates and cost distances, we obtain a predicted set of spatially
heterogeneous, feature-specific local front propagation rates which
can then be interpreted in terms of Fisher-KPP reaction-diffusion
theory.

2.3. Parameter space search using genetic algorithms

We have now outlined a procedure for estimating sets of dis-
tances from some origin point to each site in an archaeological
database, as a function of the intervening geographical features and
their affordances to movement (of people in a dispersal case, or of
ideas in a case of innovation diffusion). There may however be
many such geographical features whose influence needs to be
evaluated, and many different possible relative friction weights
assignable to each such feature. The problem is one of optimization,
i.e. of finding the set of parameter values that maximizes a fitness
function: in this case the correlation coefficient. If wewish to obtain
the parameter set that provides the best fit to the radiocarbon
dataset independently of prior hypotheses in the literature, a
comprehensive characterization of that parameter space may be
computationally intractable (since for a parameter space with n
independent geographical features, each with k possible friction
weights, the number of possible combinations will be of the order
kn). Where fully exploring the parameter space is not an option, we
need to deploy some kind of search heuristic.

We have therefore implemented a Genetic Algorithm (GA). GAs
are optimization and search techniques, based on an analogy with
the evolution of gene frequencies under natural selection. They
mimic the natural processes of reproduction, including selection,
mating with crossover, and mutation, in order to ‘evolve’ a best-fit
parameter set out of a random population of parameters. GAs were
developed originally by Holland (1975) and, particularly since the
1980s, have increased in popularity due to their usefulness for
function optimization and other applications. They have since
become standard techniques in several disciplines, including bio-
informatics, computational science, mathematics and engineering
(Haupt and Haupt, 2004). A typical GA run starts with a random
population of models (i.e. a set of models with random values for
the parameters e in our case, friction weights for the different
features in the map layers) whose fitness is evaluated by some
function (in our case, the coefficient of correlation between date
and cost-distance). The best-fit models are then copied to the next
generation unscathed (cloned), whereas less fit models are dis-
carded. To keep the population size constant, the best-fit models
are also allowed to reproduce. This involves the genetic principle of
crossover, in which both parent models give only a part of their
parameter set to the child model. Mutation can then occur on any
model of the new generation, except for the very best one. This
process is iterated until some convergence criterion is satisfied.
Crossover and mutation are controlled by fixed rates and are
essential to ensure that the GA does not become confined to a local
maximum of the fitness function, but instead samples enough of
the parameter space to locate a global maximum. After some
generations the population begins to converge on the parameter
set that maximizes the fitness function.

This application of GAs was developed specifically for the kinds
of archaeological problems outlined here, and implemented in
MATLAB. The GA parameters were as follows: population size was
kept constant at 10; each generation kept 50% of the models from
the previous one, and the other half was populated by heuristic
crossover (Haupt and Haupt, 2004: 58); and a mutation rate of 20%
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was used. The GA was allowed to run for 100 generations;
convergence was then confirmed by checking the variation in the
best-fit models over the later generations, and checking that the
parameter space had been sufficiently sampled.We use Spearman's
rank correlation coefficient (which is robust to nonlinearity and to
strong outliers) to explore the parameter space. This correlation is
independent of any subsequent regression model fitting. The best-
fitting solution (or set of rules for reclassifying the geographical
surface by friction), optimised using a correlation coefficient for
dates and cost distances, can then be analysed using regression
techniques and an interpretation developed in terms of the un-
derlying ecological and behavioural dynamics.

However, we may subsequently wish to evaluate the fit of
alternative regression models. Where we have multiple possible
models (for example, those based on scenarios in the literature and
those derived in an unconstrained or less constrained parameter
space search using GAs), we can compare them formally using
model selection tools such as adjusted R2 or Akaike's Information
Criterion (Akaike, 1974; Burnham and Anderson, 2002). These
indices allow models with a different number of parameters to be
compared on equal grounds. Here, where different geographical
scenarios impose differing samples sizes, we use the adjusted R2:

R2adj ¼ 1� n� 1
n� p

*
�
1� R2

�
;

where n ¼ sample size and p ¼ number of parameters, and

R2 ¼ 1� Sðy� byÞ2
Sðy� yÞ2

with y ¼ observed value of ‘dependent’ variable, ŷ ¼ its fitted value
and y ¼ the mean observed value. Note that in our analyses we
calculate the residuals perpendicular to the RMA line (cf. McArdle,
1988), and thus R2 is not equivalent to the square of Pearson's r.

2.4. Shortest Path Trees

Having obtained a model of the effects of geographical features
on the spread of some archaeologically-documented phenomenon,
we may then wish to evaluate our results against other indepen-
dent evidence. Where our modelling aims to reconstruct a pattern
of population dispersal, it will often be appropriate to compare our
results with other evidence of phylogenetic branching processes
associated with the same episode. That evidence may come from
historical linguistics, from genetics, or from archaeological studies
of traditions of material culture (e.g. Rogers et al., 2009; Gray et al.,
2010; Currie et al., 2013). If our best-fit dispersal model, condi-
tioned as it is by archaeological radiocarbon dates, predicts a
geographical branching pattern that is congruent with the clus-
tering of variation into clades found independently in associated
cultural or genetic histories, then this provides independent sup-
port for our model. Where our search has found multiple closely-
comparable local optima in the parameter space, then the degree
of congruence with this independent evidence may also indicate
which solution is more likely to be the more empirically correct
one.

To make such comparisons, we must obtain a phylogenetic
summary of themodel output. This can be done by representing the
modelled dispersal pattern as a network of least-cost paths leading
from the source location (or dispersal origin) to each point in space
for which we have relevant independent evidence, such as cultural
affiliation by archaeological pottery style. Points where such paths
branch, can be considered as nodes on a tree. With a single source
location, the network will necessarily have a branching tree
topology; we therefore need to calculate accurately the shortest
paths across the modelled cost surface, and then extract the tree in
a format that will enable comparisonwith trees and/or lists of clade
memberships obtained elsewhere from other forms of evidence.

In our work, the cumulative cost-surface is used to derive these
shortest paths: the shortest-path from any point on the surface to
the dispersal centre can be traced by analogy to water flowing
downslope, from a point of high elevation (cost-distance) to low
elevation (the source of dispersal). The closest GIS analogy is with
algorithms that route downslope flows across a raster elevation
map (such as GRASS's r.drain; GRASS Development Team, 2012).We
calculate the paths using MATLAB algorithms, and extract and
convert the set of such paths and their branch points into the
required format again using a purpose-built MATLAB algorithm.
Paths estimated in a raster grid, that begin at the terminus point
(for example, an archaeological site) and incrementally derive a
shortest path across a cumulative cost surface to the source location
using only direct neighbours (Rook's or Queen's pattern, see above),
are prone to strong discretization effects. Consider, for example, a
plane uniformly inclined and sloping at an angle of 20 degrees to
the y-axis of the grid. A path calculated from any point on the plane
using only information from the Queen's pattern neighbours will
run parallel to the y-axis until it reaches the edge of the domain,
when it will turn and run along the domain boundary until it
reaches the lowest corner. This is clearly not the optimal solution. In
our own algorithm this is done using a Knight's pattern neigh-
bourhood. The slope of all cells in this neighbourhood with respect
to the central one is calculated, with appropriate metric correction.
The next cell of the path will then be the one with the greatest
downslope. To ensure the shortest path links together a continuous
stream of raster cells, if a knight's move is selected as the next
move, the nearest inner diagonal is also tagged as an intermediate
step.

We turn now to an empirical illustration of the application of
these methods.

3. Case study: the Pinhasi et al. (2005) dataset for the
European Neolithic transition

To illlustrate these methods we now apply them to a published
dataset previously used to estimate the rate of propagation of the
European Neolithic transition (Pinhasi et al., 2005). Radiocarbon
dates for the earliest Neolithic occupation from the earliest-dated
levels of 765 sites in the Near East, Europe, and Arabia were
collated from four pre-existing online databases (Pinhasi et al.,
2005; Table S1). The collated database recorded single radio-
carbon assays in each case, recording for each such site/phase the
oldest date which had a standard error no greater than ±200 14C
years, and which had not previously been flagged by archaeological
consensus as anomalous. The vast majority of these dates are
conventional radiocarbon measurements: Pinhasi et al. (2005)
acknowledge that this might introduce extra uncertainty, but
argue that the size of the sample and its large geographical
coverage should still enable accurate discernment of the major
trend. We have excluded 30 sites in Arabia, as this is outside the
geographic domain of interest for our re-study, leaving 735 sites for
analysis (Fig. 2; we should also note that Pinhasi, Fort and
Ammerman's data table includes no value for the standard error of
the radiocarbon measurement for 44 of the retained dates).

The dates were calibrated using OxCal ver.4.2b (Bronk Ramsey,
2009) and the INTCAL09 calibration curve (Reimer et al., 2009),
and a value was obtained in each case for the mean calibrated age
BP from anMCMC sample (cf. Steele, 2010). Pinhasi et al. (2005) had
used CalPal (Weninger and Joris, 2004) and the CalPal 2004_Jan
calibration curve; their and our results are essentially identical



Fig. 2. Map showing the 735 sites in Pinhasi, Fort and Ammerman's (2005) dataset that were used in the present analysis, with their calibrated dates spatially interpolated in GRASS
GIS.
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(Pearson's r ¼ 0.9999 for the correlation between their and our
point values for the 735 calibrated ages; note that the INTCAL04
and INTCAL09 curves are identical for the relevant period).

Using a set of archaeological sites as possible dispersal origin
points (note that this is a heuristic device to anchor the spatial
modelling, and should not be taken literally), Pinhasi et al. (2005)
compared the values for Pearson's correlation coefficient for cali-
brated age and distance in the above sample of 735 dated sites
using Circle distances, and shortest path distances along land- and
near-offshore based dispersal routes. Çay€onü in southern Turkey
was the archaeological site whose location as an origin gave the
best fit for the terrain-dependent shortest path lengths
(r ¼ �0.823, an apparent improvement on their Great Circle dis-
tance fit for the same origin point of r ¼ �0.793); using the
relevant data from their Table S1, those values are confirmed and
the respective values for Spearman's r are also obtained as
r ¼ �0.775 and r ¼ �0.751.

The original authors had therefore already explored the possi-
bility of explanatory gains from including basic geography. In Pin-
hasi, Fort and Ammerman's methodology (2005: Supplementary
information), land- and near-offshore shortest path distances
from Çay€onü were estimated by rule of thumb. For 128 sites in the
Near East, Anatolia and Asia, unadjusted Great Circle distances
were used. For 594 sites in non-Iberian Europe, the paths are
described as having been calculated as the sums of the Great Circle
distances from Çay€onü to a point on the Dardanelles Strait, and
from that intermediate point to the site itself (but in a minor
calculation error, a constant of 967.05 kms, the Great Circle distance
from Çay€onü to that point on the Dardanelles was instead added to
the Great Circle distances from Çay€onü to all 594 sites, see their
Table S1; we have not checked or recalculated land-based distances
from other possible centres of origin in that Table, since our
intention here is to illustrate our new methods and not to
exhaustively replicate this earlier study). For the 13 Iberian sites, an
additional intermediate point to that at the Dardanelles was
described as having been introduced on the Spanish/French border;
however, the obtained differences from the Great Circle distances
without any intermediate points are in the range 1.65e168 kms
(their Table S1), which is a smaller adjustment than might be ex-
pected. We have therefore checked and confirmed the Great Circle
distances from Çay€onü using the set of site coordinates given by
Pinhasi et al. (2005), and will use the associated correlation coef-
ficient values henceforward for the baseline (no geography) model
(r ¼ �0.793; r ¼ �0.751). Meanwhile we have also obtained the
correlation coefficients for the geographically-constrained shortest
path distances from Çay€onü (but this time with those lengths
calculated correctly using the above-described rule-of-thumb),
obtaining values of r ¼ �0.800 and r ¼ �0.770; the value for r now
shows no significant improvement in fit as a result of including that
element of geography. These adjustments are minor in the context
of Pinhasi, Fort and Ammerman's (2005) important main result,
which was to confirm an overall average front propagation rate that
was robust to factors such as whether or not the radiocarbon dates
were uncalibrated or calibrated; but for our purposes here, where
we wish to consider the extra explanatory power gained by
allowing for geography, it is useful to set out clearly the results
already obtained by other authors.

For our base maps (Fig. 3), we have calculated areas represent-
ing the Mediterranean and other coastal corridors; the Mediterra-
nean, temperate forest and other present-potential biomes; the
Danube-Rhine river corridor; and polygons defining inaccessible
areas with a 1100 m altitudinal cut-off. These were obtained using
public-domain GIS map layers (rivers from ESRI World Rivers
shapefile, elevations from the ETOP05 Digital Elevation Model, and
biomes from the Terrestrial Ecoregions of the World shapefile
compiled by Olson et al. (2001) and projected into a Lambert
Azimuthal Equal Area projection centred at 45 N, 45 E using GRASS
GIS (GRASS Development Team, 2012).

To determine the optimal set of reclassification rules (friction
factors), we analysed the radiocarbon dataset in relation to several



Fig. 3. Geographical features included in one or more of the models. The different Olson biomes are identified by colours: red for Mediterranean Forests, Woodland & Scrub; green
for Temperate Broadleaf & Mixed Forests; and yellow for Temperate Conifer Forests. The Danube-Rhine corridor is marked in blue, whereas the northern Mediterranean coastal
corridor is marked in purple. Greyed-out areas exceed the 1100 m above sea level altitudinal cut-off. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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existing hypotheses in the literature, as well as using an uncon-
strained GA search. In all models only land is colonisable, subject to
a near-offshore coastal buffer of 45 kms which represents the
bridging potential of maritime transport. Except for the baseline
model, we used the Fast Marching method to derive shortest-path
distances on a cost-surface given by the model's contraints.
Although different centres might yield higher correlation co-
efficients for the different models, we are interested in exploring
the effects of adding biogeography and therefore, for direct com-
parison, we have used Çay€onü as the source of dispersal on all
models.

Model 1 (the baseline model) uses Great Circle distances only
(geography-free).

Model 2 uses shortest paths across land surface only, but with
near-offshore bridges created by buffering out from the coastline.

Model 3 gives the Mediterranean coastal corridor a 10-fold ac-
celeration factor and the Danube-Rhine corridor a 5-fold acceler-
ation factor compared to the rest of the land surface, based on early
empirical observations by Ammerman and Cavalli-Sforza (1971; cf.
Davison et al., 2006: 642).

Model 4 has a uniform base speedwhich however decreases as a
linear function of increasing latitude, from a base value at Medi-
terranean latitudes (40�N) to half of that by the latitude of Denmark
(55�N), and an altitudinal cut-off of 1100 m above sea level, based
on a scenario from Davison et al. (2006).

Model 5 is a combination of the rules for Model 3 and for Model
4, based again on a scenario from Davison et al. (2006).

Model 6 is the best-fit solution found in an unconstrained search
by GAs of a parameter space in which the following corridors and
biome types are all free to vary: Northern Mediterranean coasts; all
other coasts in the modelled domain; the Danube-Rhine corridor;
Mediterranean Forests, Woodland & Scrub; Temperate Broadleaf &
Mixed Forests; Temperate Conifer Forests.
As an independent check on the fit of our models (as visualised
using Shortest Path Trees), we have identified a subset of the dated
sites in the Pinhasi et al. (2005) dataset that are associated in that
database with pottery of the LBK and Cardial Ware traditions.
Colouring the branches of the Shortest Path Trees by these cultural
affiliations will enable us to visually determinewhich of ourmodels
best segregate these sites into their cultural ‘clades’.

4. Results for the case study

Table 1 gives the results for the six models. Consistent with
earlier results (Pinhasi et al., 2005), Models 1 and 2 (Great Circle
and land-based distances, respectively) are able to account for up to
60% of the variation in dates in this dataset, based on the adjusted
R2 values. Pinhasi et al. (2005) had obtained confidence intervals of
0.6e1.0 and 0.7e1.1 km/yr, respectively, for front speeds in a Great
Circle and a land-based model. Our fitted front speeds for these
geography-free, or near-geography-free models are near to or
slightly lower than the middle of their ranges (we obtain 0.72 and
0.74 km/yr for Models 1 and 2 respectively), reflecting the different
choice of line-fitting technique, the different choice of dispersal
origin for the Great Circle analysis and, for the shortest paths by
land, an overestimation of distances from Çay€onü to themajority of
the sites in the original study (see preceding Section).

Among our more geography-rich models, Model 4 (which stip-
ulates an altitudinal cut-off, and a linear decrease in front propa-
gation rate with latitude) yields a linear association between date
and cost distance, with a front speed in southern parts of the
domain of 1.05 km/yr, decreasing to 0.525 km/yr in more northerly
latitudes. This model accounts for 63.4% of the variation in dates,
which is an improvement on Models 1 and 2.

In contrast to those models, we find that Models 3, 5 and 6 e all
involving rapid dispersal along coastal and riverine corridors e



Table 1
Reclassification rule sets (friction weights), fitted regression models, geography-dependent front speeds, and goodness-of-fit statistics for the six models. Dates are treated as
the y variable, and distances as the x variable (model 1 uses Great Circle distance, all others use cost distances).

Model Parameters and relative friction weights N sites RMA equation Front speed (s),
km/yr

Pearson's ra Spearman's r R2adj

1 Great Circle distances 735 y ¼ 10,522 � 1.387x 0.72 �0.793 �0.751 0.586
2 Land only 734 y ¼ 10,504 � 1.359x 0.74 �0.801 �0.768 0.601
3 NMed. coasts 10: Danube/Rhine 5: rest of land 1 734 log10(y) ¼ 4.874 � 0.351 log10(x) N/A �0.745 (�0.708) �0.786 0.488
4 Latitude gradient; altitude cutoff at 1100 m 688 y ¼ 10,062 � 0.950x 1.05e0.53 �0.818 �0.815 0.634
5 Models 3 and 4 combined 688 log10(y) ¼ 4.672 e 0.278 log10(x) N/A �0.776 (�0.683) �0.794 0.548
6 Best-fit GAb 734 log10(y) ¼ 4.806 e 0.266 log10(x) N/A �0.834 (�0.783) �0.856 0.665

a (In brackets: Pearson's r for the untransformed variables, for Models 3, 5 & 6).
b Best-fit GA e relative friction weights: northern Mediterranean coasts 2.0: Danube/Rhine 0.5: Temperate Broadleaf &Mixed Forest, and Mediterranean Forest, Woodland

& Scrub biomes 0.2: other coasts, and Temperate Coniferous Forest biome 0.1: rest of land 1.0.
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yield nonlinear relationships between date and cost distance, with
the front accelerating as a function of time. This nonlinearity is
apparent from the scatterplots (Fig. 4), and also from the offset
between Pearson's r and Spearman's r for the untransformed var-
iables (r having the higher value). We have therefore computed the
regressions on the log-transformed values of both variables for
these three Models. In these cases, it is not possible to fit a fixed
front propagation speed across each type of geographical feature,
because the front propagation rate also has a time dependence.
Nevertheless it is striking that Models 3 and 5, that impose coastal
and riverine corridoring effects, do not have as much explanatory
power as the geography-free, or the altitude and latitude-governed
geography-dependent models. One of the possible reasons behind
this is that the parameters of these models were taken from the
existing literature and not allowed to vary in order to find the ones
Fig. 4. Scatterplots of dates versus cost distances for the six models (model number in uppe
relationship between the two variables in Models 3, 5 and 6 is apparent. Nonlinear regressio
cases. (For interpretation of the references to colour in this figure legend, the reader is refe
that provide the best fit to the data. This highlights the importance
of using optimisation algorithms, such as the proposed GA meth-
odology. Model 6, the best-fit model obtained by the GAs, has the
highest value for adjusted R2 of any model considered. It explains
66.5% of the variation in the dates, which is proportionally a 10%
increase in explanatory power over the geography-free or near-
geography-free Models 1 and 2. The relative friction weights
recovered by the GAs for Model 6 suggest an important accelerating
role for a northern Mediterranean coastal dispersal corridor, a
significant but less marked accelerating role for the Danube/Rhine
corridor, and a decelerating effect of forested biomes away from
these corridor, most markedly in the higher-altitude temperate
coniferous forest biome.

We turn now to independent checks on the accuracy of our
models, using culture-group colourings of the Shortest Path Trees.
r right corner of each graph), with their linear regression lines in black. The nonlinear
n lines, obtained by log transforming both variables, also plotted in red for these three
rred to the web version of this article.)



Fig. 5. Results for the five geography-based models (parameters as in Table 1; ‘geography-free’ Great Circle model not shown). Top to bottom: results successively for Model 2, 3, 4,
5 and 6. Left to right: (a) cost surface, reclassified as an arrival time surface using the results of the RMA regression (Table 1); (b) routing of the shortest path tree, for a subset of sites
with cultural affiliations (red ¼ LBK sites, blue ¼ Cardial); (c) shortest path tree represented ultrametrically for the same sub-sample, with branch colours as for (b). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5 shows for each of the geographically explicit models the
modelled arrival times obtained by applying the regressed equa-
tions (Table 1 and Fig. 4) to the cost-distance surface of each model.
Also shown for each model is the network of shortest path routes
from Çay€onü to those sites in the database that were labelled as
belonging to the LBK or CardialWare ceramic traditions, and a chart
with that shortest path network represented as a (coloured)
ultrametric tree.

One can readily see, from the ultrametric trees, that Model 4
does very well in recovering a deep split between the paths leading
to the majority of the LBK sites (coloured in red), and those leading
to the Cardial Ware sites (coloured in blue). Themain discrepancy is
a group of LBK sites nested within the blue clade, which are located
in northern France and Belgium and which Model 4 predicts would
have been reached northwards from the Mediterranean coast of
Franceeas opposed to westwards from the Early LBK zone of Cen-
tral Europe. Model 6, obtained by GAs, has a higher value for the
adjusted R2; however, its shortest path network structure appears
less congruent with the pottery-based clades. In addition to repli-
cating the ‘misplacement’ of the northwestern branch of the LBK,
Model 6 conflates ‘blue’ sites in the Eastern Adriatic within the
main LBK clade because it routes the LBK-directed dispersal paths
along that seaboard and then north to the middle Danube, whereas
Model 4 routes the LBK-directed dispersal paths inland through
Fig. 6. Predicted arrival time plotted against geodesic distance from Cayonu for Model 4 (a
(black) and quadratic (red) fits, with the latter showing a linear decline in front speed with ge
in the underlying Model 4 cost-distance analysis. (For interpretation of the references to co
eastern Europe towards the lower Danube corridor. Thus, inde-
pendent evidence of branching patterns e here, in early Neolithic
material cultural traditions e can provide an extra tool for model
selection, suggesting in this case that while the GA-derived model
may have greater power to predict overall arrival times, it is less
successful than Model 4 at recovering the axes of major Neolithic
dispersal pathways and their branching points inferred from ma-
terial cultural traditions. It would be interesting in the future to test
for model congruence with palaeoeconomy datasets (showing
patterns of plant and animal exploitation), such as those already
used to explore the effects of historical divergence and ecological
convergence on interassemblage variability in early Neolithic
Europe (Coward et al. 2008, Manning et al. 2013).

5. Discussion

We have introduced a set of methods for reconstructing
geographical effects on dispersal and diffusion patterns, using
georeferenced archaeological radiocarbon databases. These
methods enable geographical scenarios to be explored regarding
barriers, corridors, and favoured and unfavoured habitat types. The
use of genetic algorithms as optimal search tools also enables the
derivation of new geographical scenarios, and is especially useful in
high-dimensional parameter spaces that cannot be characterized
ltitudinal cut-off, and latitude gradient in front speed). The curves added are for linear
odesic distance of the same order as the south-north gradient in front speeds modelled
lour in this figure legend, the reader is referred to the web version of this article.)
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exhaustively due to computer runtime constraints. Model selection
is guided by goodness-of-fit statistics for observed and predicted
radiocarbon dates, but we have also introduced an important
additional model output, namely, modelled phylogenies of the
dispersing population or diffusing cultural entity, based on
branching networks of shortest or ‘least cost’ paths. These
‘dispersal trees’ can be used as an additional tool to evaluate
dispersal scenarios, based on their degree of congruence with
phylogenies of the dispersing population reconstructed indepen-
dently from other kinds of information.

We have then illustrated our approach with a case study, the
spread of the Neolithic transition in Europe. We have chosen this
case study because it is well-known and well-studied, and because
a suitable georeferenced radiocarbon dataset already exists in the
peer-reviewed published literature. Our methods find support for a
geographical model outlined by Davison et al. (2006), in which
dispersal is limited by an altitudinal cut-off and in which there is a
latitudinal gradient in rate of spread (duee they had suggestede to
the limiting effects of the harsher northern climate). Interestingly,
this model also predicts a deceleration in front propagation rate
with geodesic distance (Fig. 6), which is consistent with models of
front delay and deceleration proposed by Isern and Fort (2012; cf.
Isern Sard�o et al., 2012) where there is competition with pre-
existing populations of hunter-gatherers.

Our GAs searched the parameter space and found support for
an alternative model with fast spread along specific coastal and
riverine corridors. This model required a nonlinear curve-fit for
the effect of cost-distance on archaeological first arrival date; the
structure of the modelled arrival time surface (Fig. 5, Model 6)
suggests that this is due to an initially slow front propagation rate,
which increases once the northern Mediterranean coastal
corridor is reached and enables locally rapid long-distance
dispersal.

Both these models outperformed the geography-free Great
Circle distance model, and both also outperformed another, almost
geography-free, model which constrains dispersal to land and near-
offshore coastal waters. The coefficient of correlation for modelled
distances and archaeological radiocarbon dates supports the GA-
derived model; the Shortest Path Trees, however, give greater
support to the model with altitudinal cut-off and latitudinal
gradient in dispersal rate, since the latter produces branching
‘dispersal trees’ that are more congruent with the terminal nodes'
(i.e. the archaeological sites') clade memberships as defined by
material culture.

Further work on the database and its geographical analysis
should enable some of these residual uncertainties to be resolved.
We have meanwhile also applied the same methods elsewhere to a
new dataset of georeferenced radiocarbon dates associated with
the so-called Bantu language/farming dispersal episode in sub-
Saharan Africa (Russell et al., 2014). Future work should also
address demographic interpretations of these geographical effects
and of the possible nonlinearities in front propagation rate.
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