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Abstract 

An Mg-0.41Dy (wt. %) alloy was successfully processed by high-pressure tension (HPT) 

through 5 turns at room temperature. The evolution of the recrystallization microstructure and 

the texture and mechanical properties of the deformed alloy were investigated after annealing 

at 200 and 400 °C for 1 h using Electron Backscatter Diffraction (EBSD) and Vickers 

measurements. The recrystallization temperature and activation energy were evaluated using 

Differential Scanning Calorimetry (DSC). Processing by HPT led to significant grain 

refinement with an average grain size of ~0.5 ± 0.1 μm which increased to ~1.2 ± 0.8 μm after 

annealing at 400 °C. This slow increase in grain size at a high temperature demonstrates a 

good thermal stability of the microstructure. The alloy exhibited two main fiber textures after 

HPT processing: firstly a typical basal fiber (φ1 = 0–360º, Φ = 0º and φ2 = 0–60º) and 

secondly a fiber localized at φ1 = 180º, Φ = 60º and φ2 = 0–90º. These textures were retained 

after annealing at 400 °C. There was no change in the microhardness value after annealing at 

200 °C (41 ± 1 Hv) and only a minor decrease after annealing at 400 °C (38.4 ± 0.5 Hv). The 

DSC results showed that the temperature associated with the recrystallization process 

increased with increasing heating rate and the activation energy for recrystallization was 

measured as ~25 kJ mol-1. 

 

Keywords: DSC; HPT; Mg-Dy alloy; microstructure; recrystallization; texture. 
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1. Introduction 

 Severe plastic deformation (SPD) techniques such as equal-channel angular pressing 

(ECAP) and especially high-pressure torsion (HPT) have proven effective in producing 

ultrafine-grained (UFG) microstructure down to the sub-micrometer level in several Mg-

based alloys [1–9]. Furthermore, HPT processing generally produces smaller grains sizes than 

ECAP processing due to the imposition of higher strains [10]. For example, a microstructural 

characterization of Mg–Gd–Y–Zr alloys showed that nano-sized grains of ~72 ± 5 nm were 

obtained after 8 HPT turns whereas the grain size of the same alloy was ~2.2 ± 0.2 m after 4 

ECAP passes [6]. In addition, in the AZ61 alloy the average grain sizes were reported as 

~0.22 μm after HPT processing at 150 °C and ~0.11 μm after HPT at room temperature [11] 

and there were larger grain sizes after ECAP processing at 250 °C (~1.35 μm) and 200 °C 

(~0.62 μm) [12]. 

 One major advantage of HPT processing is that the grain refinement of Mg-based 

alloys may be achieved at room temperature without sample cracking and/or segmentation 

due to the high imposed hydrostatic pressure which effectively prevents propagation of 

fracture during torsional straining [13]. Moreover, HPT processing may significantly affect 

the kinetics, size and distribution of precipitates within the crystalline matrix [14, 15]. 

 Significant improvements in the mechanical properties were reported in various Mg-

based alloy caused by the grain refinement, the very high dislocation densities and the point 

defects that are introduced through the application of intense deformation [7, 16–18]. 

Furthermore, it was demonstrated that texture strengthening makes a significant contribution 

to the rapid increase in hardness in the early stages of deformation [8, 19]. Recent 

investigations have demonstrated that grain refinement plays a more significant role than 

dislocation strengthening since the dislocation density saturates earlier than the grain size and 

grain refinement continues even after the saturation of the dislocation density [16, 18]. The 
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continuously decreasing grain size was attributed to the annihilation of dislocations during 

dynamic recovery or dynamic recrystallization. 

 It is well established that HPT processing may produce excellent superplastic flow in 

numerous Mg-based alloys [11, 17, 20–24]. An exceptional elongation of 1330% at 200ºC 

was reported for Mg-8Li alloy after HPT processing at room temperature through 5 turns [24]. 

In practice, a high superplastic ductility after deformation processing requires an ultra-fine 

microstructure with high-angle grain boundaries and a grain size that is reasonably stable at 

elevated temperatures [11]. 

 Accordingly, the ability of Mg-based alloys to maintain grain refinement during 

recrystallization annealing is an important requirement for achieving superplastic properties 

and thereby extending the use of these alloys to industrial superplastic forming applications. 

Improving the thermal stability of UFG materials may be achieved by reducing the grain 

boundary mobility and the driving force for grain growth, and this may be realized through 

the addition of different alloying elements or by the precipitation of second phase particles 

[25, 26]. The objective of the present study was to evaluate the effect of annealing 

temperature on the thermal stability, and specifically on the microstructure, texture and 

mechanical properties, of an Mg-0.41Dy alloy after processing by HPT for up to 5 turns. An 

earlier study reported the mechanical properties, deformation microstructures and texture of 

the same Mg-0.41Dy alloy after processing by HPT through 1/4 to 15 turns [8].  

 

2. Experimental material and procedures 

 The as-cast Mg-0.41Dy (wt.%) alloy was provided by the Institute für Metallkunde 

und Metallphysik, Aachen, Germany. The alloy was produced by induction melting and 

casting under a protective gas atmosphere of Ar/CO2 using preheated copper mold, followed 

by a heat treatment at 420 °C for 20 h. 
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 Discs with diameters of 10 mm and thicknesses of ~0.9 mm were processed by HPT at 

room temperature through 5 turns. More details on the sample preparations and the processing 

history were given earlier [8]. After HPT processing, samples were annealed at 200 and 400 

°C for 1 h in a radiation furnace under argon gas. 

 Electron backscatter diffraction (EBSD) measurements were performed in the rotation 

direction-shear direction (RD-SD) plane of the recrystallized samples using a scanning 

electron microscope (SEM) with a field emission gun JEOL JSM-7001F working at a voltage 

of 20 kV. The EBSD step size was 50 nm and the acquired raw EBSD data and orientation 

distribution functions (ODFs) were analyzed and calculated using MTEX software [27].  

 The surface morphology and chemical compositions were characterized in the RD-SD 

plane of the samples using an SEM coupled with energy dispersive X-ray spectroscopy 

(EDS). The surface preparation consisted of grinding with progressively finer SiC paper 

followed by mechanical polishing using a diamond solution with particle sizes ranging 

between 3 and 1 µm. The grain structure was revealed by subsequent etching at room 

temperature in an acetic-nital solution (5% HNO3, 15% acetic acid, 20% distilled water and 

60% ethanol) for 3 s. 

 The Vickers microhardness was measured using a SHIMADZU type HMV-2 tester. At 

least five indentations were made to give an average hardness value (Hv) using a load of 100 

g and a dwell time of 10 s. 

Differential scanning calorimetry (DSC) analyses were performed with a 2920 MDSC 

calorimeter under constant heating rates of 10, 20, 30 and 40 °C/min in a nitrogen atmosphere 

under a pressure of 1 bar. Samples of 12–19 mg were cut and placed in an aluminum holder 

and a separate empty aluminum holder was used as a reference.  
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3. Experimental results  

 Figure 1 illustrates the initial microstructure of the as-cast Mg-0.41Dy alloy where the 

grains are large and elongated with an average grain size of ~630 μm. The SEM and EDS 

shown in Fig. 2 reveals the presence of small amounts of second particles. The EDS results 

confirm the presence of two types of particles: large particle (point 1) with diameters of ~2 

μm containing 16.57% of Mg and 83.43% Dy which is associated with MgDy precipitates and 

smaller particles that may be Mg41Dy5 precipitates with diameters of ~0.8 μm (point 2). 

 

Figure 1: Optical micrograph showing the initial microstructure of the as-cast Mg-0.41Dy 

alloy. 

 

Figure 2: SEM micrograph with analysed points obtained by EDS of as-cast Mg-0.41Dy 

alloy. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

6 
 

 Figure 3a presents the SEM microstructure of the Mg-0.41Dy alloy after HPT 

processing through 5 turns. Thus, HPT processing leads to strong grain refinement with an 

average grain size of ~0.5 ± 0.1 μm. A similar average grain size was reported in the same 

alloy measured by EBSD analysis [8]. Figure 3b indicates the presence of three types of 

particles with different diameters (marked by arrows and numbers) having chemical 

compositions summarized in Fig. 3. The concentration of Dy in these particles decreased from 

the as-cast state to 67.42 % (point 1), 41.86 % (point 2) and 15.36% (point 3) after HPT 

processing, thereby demonstrating a very significant change in composition. These results 

show that the HPT processing tends to decompose and dissolve the Mg-Dy particles. It is 

interesting to note that the smaller particles (from point 3) with sizes less than ~0.3 μm are 

well-dispersed in the microstructure (arrows in Fig. 3a) and have a volume fraction of ~ 0.5%. 

 

Figure 3: (a) SEM micrograph with analysed points obtained by EDS (b) of Mg-0.41Dy alloy 

after HPT processing through 5 turns. Arrows in Fig. 3a indicate the presence of particles of 

point 3. 

 

 Figure 4 illustrates the orientation imaging micrographs in inverse pole figure (IPF) 

maps in the RD-SD plane showing the microstructures of the Mg-0.41Dy alloy after 5 HPT 
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turns and annealing at 200 and 400 °C for 1 h, respectively. The distributions of grain sizes 

for both samples are also presented in Fig. 4. It is noted that the microstructures after 

annealing at 200 and 400 °C show the presence of particles with the same concentrations 

found in the microstructures of the deformed sample (not shown here). The variation of grains 

size after annealing at 200 °C shows a log-normal distribution with an average grain size of 

~0.9 ± 0.2 μm. It is observed that annealing at 400 °C produces an increase in the grain size 

ranges leading to essentially a bimodal distribution. Nevertheless, there was only a small 

increase in the mean grain size to ~1.2 ± 0.8 μm.  

 

Figure 4: IPF maps and grains size distribution of the Mg-0.41Dy alloy after 5 HPT turns and 

annealing at 200 and 400 °C for 1 h, respectively. Arrows indicated color gradients inside 

some relatively large grains. 
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 The annealed sample at 400 °C for 1 h contains different types of particles as shown in 

Fig. 5. Once more, the concentration of Dy in these particles seems to decrease compared 

with those in the as-deformed to 23.21 % (point 1), 34.49 % (point 3) showing that annealing 

has a great influence on the Dy element distribution. The particles with 14.88% (point 2) still 

exist and seem to be stable with similar size and volume fraction (~ 0.6 %) as in the deformed 

sample (Fig. 3, point 3).  

 

Figure 5: SEM micrograph with analysed points obtained by EDS of the Mg-0.41Dy alloy 

after 5 HPT turns and annealing at 400 °C for 1 h. 

 

 The distributions of the grain boundary misorientation angles are shown in Fig. 6 after 

5 HPT turns and annealing for 1 h at (a) 200 and (b) 400 °C, respectively, where the solid 

lines show the calculated distributions for randomly oriented hexagonal materials [28]. It was 

reported earlier that the microstructure in the as-deformed state exhibits a high fraction of 

low-angle grain boundaries (LAGBs) [8] but it is readily apparent from Fig. 6 that there are 

predominantly high-angle grain boundaries (HAGBs) at both annealing temperatures.  
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Figure 6: Misorientation angle distributions of Mg-0.41Dy alloy after 5 HPT turns and 

annealing for 1 h at: a) 200 and b) 400 °C. 

 

 As shown in Fig. 6, the relative fraction of LAGBs with misorientation angles below 

15° was less than 9% for both annealing conditions. Inspection shows the misorientation 

distribution after annealing at 200 °C displays a local peak at 30° which corresponds to 30° 

[0001] grain boundaries (GBs) and it is known that this boundary type is responsible for the 

formation of a basal fiber texture [29]. Conversely, there is a shift in the number fractions of 

the grain boundaries towards higher angles after annealing at 400 °C. 

 

Table 1. Evolution of the microhardness of the Mg-0.41Dy alloy processed by HPT trough 5 

turns and after annealing at 200 and 400 °C for 1 h. 

 

Sample 5 HPT 200°C 1h 400°C 1h 

Hv 40.6 ± 0.9 41.0 ± 1.0 38.4 ± 0.5 

  

 The variations of the microhardness of the processed Mg-0.41Dy alloy are presented 

in Table 1 as a function of the annealing temperature. The microhardness for the as-cast state 

was ~33.5 Hv and HPT processing through 5 turns increased the microhardness to ~40.6 ± 
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0.9. There was no measurable change in the microhardness value after annealing at 200 °C 

(Hv  41.0 ± 1.0) but there was a minor decrease after annealing at 400 °C (Hv  38.4 ± 0.5). 

 

Figure 7: Recalculated pole figure (0002) and ODF sections at φ2 = 0 and 30 ° of Mg-0.41Dy 

alloy after: a) 5 HPT turns and annealing for 1 h at b) 200 °C and c) 400 °C. 

 

 Figure 7 shows the texture evolution in terms of the recalculated pole figure (0002) 

and the ODF sections at φ2 = 0 and 30° for the Mg-0.41Dy alloy after 5 HPT turns and 

annealing at 200 and 400 °C for 1 h, respectively, and Fig. 8 presents the distributions of the 

basal pole intensity as a function of the polar angular tilt towards SD for the same 

experimental conditions. Thus, this alloy exhibits two main fiber textures after 5 HPT turns, 

with a typical strong basal fiber (~11 mrd; multiples of random distribution) and a second 

weak fiber (~3 mrd) localized at φ1 = 180º, Φ = 60º and φ2 = 0–90º. This second fibre 
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corresponds to a splitting of the basal poles in the shear direction SD which is tilted by 60° 

towards the SD (Fig. 8). Annealing at 200 °C for 1 h leads to a typical basal texture with a 

disappearance of the second fiber. Nevertheless, this fiber exists after annealing at 400 °C for 

1 h and has a similar intensity to the typical basal texture (~8.5 mrd) as shown in Fig. 6(c) and 

Fig. 8. 

 

Figure 8: Basal pole intensity distribution as function of tilt towards SD of Mg-0.41Dy alloy 

after 5 HPT turn and annealing for 1 h at 200 and 400 °C, respectively.  

 

 Figures 9 and 10 illustrate the Schimd Factor (SF) distribution maps of the Mg-0.41Dy 

alloy after 5 HPT turns and annealing for 1 h at 200 and 400 °C for the basal <a>, prismatic 

<a>, and pyramidal <c+a> slip systems in tension along SD and RD, respectively. The grain 

number fractions as a function of the SF value for different slip systems are also presented in 

Figs 9 and 10 where the SF values are divided into low (SF <0.3) and high (SF >0.3) 

according to a suggested protocol [30]. Thus, grains with high FS values can accommodate 

larger amounts of deformation compared to those with low SF values.   
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Figure 9: SF distribution maps in tension along SD for Mg-0.41Dy alloy annealed at 200 and 

400 °C: (a) and (d) SF for basal <a> slip, (b) and (e) SF for prismatic <a> slip, (c) and (f) SF 

for pyramidal <c+a> slip. 
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Figure 10: SF distribution maps in tension along RD for Mg-0.41Dy alloy annealed at 200 

and 400 °C: (a) and (d) SF for basal <a> slip, (b) and (e) SF for prismatic < a> slip, (c) and (f) 

SF for pyramidal <c+a> slip. 

 

 It is apparent from Figs. 9 and 10 that the activation of different slip systems depends 

strongly on the grain orientations and the loading direction. Basically, grains orientated for a 

basal texture have low SF values for basal slip, indicating that it is less favored after annealing 
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at 200 and 400 °C and when the loading direction is along SD. Grains with second fiber 

orientation after annealing at 400 °C are not suitable for the activation of a basal slip system 

(Fig. 9d). Prismatic <a> and pyramidal <c+a> slip systems appear to have a high SF value for 

both microstructures, except for grains aligned in bands in the microstructure after annealing 

at 200 °C (Fig. 9b) which are not favored for <a> prismatic slip. When the loading direction is 

along RD, the activation of basal slip is more favoured after annealing at 400 °C (Fig. 10d) 

while grains with a second fiber have lower SF values for prismatic slip (Fig. 10e). It is 

interesting to note that the pyramidal <c+a> slip has high SF values in both microstructures 

and in both loading directions. 

 Figure 11(a) shows the DSC curves for heating rates of 10, 20, 30 and 40 °C/min for 

the Mg-0.41Dy alloy after 5 HPT turns. Thus, the DSC curves exhibit one single exothermic 

peak which corresponds to the recrystallization process and the recrystallization temperature 

increases with increasing heating rate within the range of ~120–200 °C. It was reported earlier 

that the peak temperature of recrystallization decreases with increasing numbers of HPT turns 

in Mg-1.44Ce (wt.%) processed by HPT at room temperature [31]. 

 In practice, the recrystallization temperatures of cold-deformed Mg-based alloys 

depend strongly on the deformation strain and it was reported that at low strains (ε <0.1) the 

recrystallization of the cold-deformed AZ31 alloy occurs only above ~200 °C whereas by 

increasing the strain (ε >0.3) the recrystallization temperature decreases to ~150 °C [32]. 

Following the Boswell-Kissinger method, the activation energy for recrystallization 

may be obtained from the slope derived by plotting the following equation [33]: 

𝑙𝑛 (
𝑉

𝑇𝑝
) = 𝐶 −

𝐸

𝑅𝑇𝑝
                                                           (1)  

where V is the heating rate, E is the activation energy, Tp is the temperature associated with 

the peak in the DSC curve, R is the universal gas constant and C is a constant.  
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Figure 11: a) DSC curves at different heating rates and b) Boswell plots for recrystallization 

peak for Mg-0.41Dy alloy processed by HPT up to 5 turns. 

 

 Using eq. (1), the evolution of ln(V/Tp) as a function of (1000/Tp K-1) for the 

recrystallization peaks are shown in Fig. 11(b) and the activation energy is estimated as ~25 

kJ mol-1.  

 

4. Discussion 

4.1 Significance of decomposition and recrystallization during HPT processing in the Mg-

0.41Dy alloy  

It is shown in this investigation that HPT processing may produce a decomposition of 

second particles by decreasing Dy in the Mg24Dy5 and MgDy particles during 5 HPT turns 

which lead to the formation of new particles (Fig. 3). A similar decomposition of the 

precipitate phases was reported in a nickel-iron-based alloy processed by HPT at room 

temperature and it was attributed to a mechanical mixing probably mediated by the very high 

hydrostatic stresses induced by HPT and localized plastic flow [34]. Additionally, the 

morphology and distribution of the β-Mg17Al12 phase in AZ91 and AZ80 alloys was changed 
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by HPT processing [23, 35]. It was also reported that ECAP processing through 2 passes leads 

to a disappearance of Mg17Al12 in a Mg–10Al–0.5Sb alloy [36] and a fragmentation of the 

(Mg,Zn)12Ce phase during HPT processing of an EZ33A alloy [7]. The presence of a high 

dislocation density in the microstructure may lead to the dissolution of second particles by 

enhancing the diffusivity through pipe diffusion [36]. Also, the deformed particles may 

become unstable due to an inherent high surface energy between the precipitates and the 

matrix due to the increasing strain and the change in the atomic configuration [36, 37]. 

Although dissolution is reported only in metastable particles, stable particles have a 

tendency to grow under SPD processing [37]. In fact, the Mg24Dy5 and MgDy precipitates 

existing in the present as-cast alloy with 0.41 % of Dy are unstable since the Mg-Dy phase 

diagram shows that the solubility of Dy in the Mg matrix is relatively high and the 

concentration of Dy is 24.5% and 10.2% (wt.%) at 540 and 200 °C, respectively [38]. Thus, 

the presence of those precipitates may be explained by their formation during the 

solidification process in the absence of any effective homogenization treatment. 

 The generation of dislocations during HPT processing leads to excellent grain 

refinement as shown in Fig. 3. Practically, the grain refinement mechanism in hexagonal 

close-packed (HCP) metals occurs through a dynamic recrystallization process [1, 8]. The 

OIM maps show that after annealing at 200 and 400 °C for 1 h the grain size undergoes a 

relatively small increase (Fig. 4). This slow increase in the mean grain size at the relatively 

high temperature of 400 °C demonstrates that the microstructure has a good thermal stability. 

Moreover, the microhardness values in the deformed and annealed state are very similar as 

shown in Table 1.  

 The activation energy of recrystallization in the present study was found to be ~25 kJ 

mol-1 (Fig.11b). This value is lower than the value for self-diffusion through the lattice in Mg 

(~135 kJ mol-1) or for boundary self-diffusion (~92 kJ mol-1) [39]. Very recently, a similar 
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value of the activation energy (~22.2 kJ mol-1) was reported for pure Mg processed by ECAP 

[40]. However, the activation energy of recrystallization was reported earlier as lying in the 

range of ~72–87 kJ mol-1 in an Mg-Ce alloy processed by HPT at room temperature [31].  

 The low activation energy found in the present study could be attributed to the ability 

of SPD processing to introduce high deformation leading to more nucleation sites including 

HAGBs, a high concentrations of vacancies and/or vacancy agglomerates [41]. On the other 

hand, it was suggested that ultrafine grain sizes and strong basal texture may cause a decrease 

in the activation energy of recrystallization [42] which is the case in the present alloy. 

Although the as-deformed sample has already dynamically recrystallized, it is expected that 

during heating the pre-existing recrystallized grains will grew immediately and new statically 

recrystallized grains are nucleated and grow at the same time so that a lower activation energy 

is needed for the transformation. 

 Unfortunately, there are few results available in the literature dealing with the 

activation energy of recrystallization in severely-deformed Mg-based alloys and therefore 

there is no complete understanding of the recrystallization mechanisms. 

 The good thermal stability in this alloy is attributed to the presence of particles, most 

probably to those containing 15.36% of Dy, since they are stable, very small and well-

dispersed in the microstructures of the deformed and annealed samples (Figs. 3 and 5) and 

therefore they restrict grain growth by pinning the grain boundaries. It is well known that 

stable dispersed particles exert a retarding force by solute drag and/or Zener pinning on grain 

boundary mobility and grain growth [43–45]. A much larger grain size of ~5 μm was reported 

in an AZ31 alloy after HPT processing and annealing at 400 °C for 30 min [46]. The variation 

of grain size as a function of annealing temperature for the AZ61 alloy processed by HPT 

through 5 turns at 150 °C and then annealed for 1 h at temperatures from 25 to 250 °C 
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revealed excellent grain stability up to 200 °C (~0.3 μm) but there was significant grain 

growth to ~1.2 μm at 250 °C [11].  

 Nevertheless, both OIM maps show color gradients within some relatively large 

grains, as denoted by the arrows in Fig. 4, and this indicates that recrystallization is not 

complete after annealing at 200 or even 400 °C for 1 h. By contrast, the DSC results show that 

the recrystallization process may occur at lower temperatures of 120–200 °C and these grains 

are fragments that have not fully refined; similar observation were also reported in other 

studies [26, 47]. This phenomenon was attributed to the disappearance of the sub-structure 

due to dislocation recovery or recombination under high temperature conditions leading to the 

occurrence of exceptionally large grains [26].  

 Another microstructural feature for the sample annealed at 200 °C is that grains with 

different orientations are aligned in bands. The nucleation and growth of these randomly 

oriented grains is indicative of shear banding and recrystallization at shear band is known as a 

mechanism responsible for random texture in Mg-Rare Elements (RE) alloys [48–50]. 

Unfortunately, it was not possible to directly confirm the presence of shear bands after 

processing for 5 turns but it is known that at high strains the recrystallized grains in Mg-based 

alloy are formed along HAGBs and within shear bands [32].  

 

4.2 Development of a deformation texture in the Mg-0.41Dy alloy 

 The evolution of the deformation texture in the present work is different from earlier 

reports for pure Mg [51] or Mg-RE alloys [52] processed by HPT at room temperature. 

Usually after HPT processing there is a typical basal fiber texture where the basal (0002) 

planes are parallel to the shear (SD, RD) plane [51] while the textures of Mg-RE (RE=Nd, 

Ce) alloys after HPT processing are characterized by an asymmetric basal texture shifted by 

15° towards the shear direction [52]. The texture of the as-cast Mg-0.41Dy alloy was 
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considered random and the deformation texture developed starting from 1 HPT turn but 

appeared to saturate after 5 HPT turns because of dynamic recrystallization [8]. Generally, the 

dynamic recrystallization in Mg-based alloys leads to the same deformation texture [44, 53–

55].   

 It has been shown that the development of a basal texture during the early stages of 

HPT processing is due to the activation of extension twinning {101̅2}<101̅1̅> where the c-

axis of the crystals is re-oriented by 86.8° so that it is nearly parallel to the loading direction 

[8, 56]. The development of a weak second fiber in the present alloy, in which the basal poles 

are tilted about 60° towards the SD (Fig. 7), may be attributed to the activation of <a> 

prismatic slip and <c+a> pyramidal slip [8] during HPT processing at room temperature. The 

activation of <a> prismatic slip and <c+a> pyramidal slip is usually hard in conventional Mg-

based alloy deformed at room temperature [57] but it becomes easier in Mg-RE alloys 

because of the effect of the RE elements in decreasing the stacking fault energy and providing 

an ability for cross-slip as the solutes diffuse in the dislocation cores [8, 58].  

 In practice, the origin of the strong texture during dynamic recrystallization is not well 

understood. For many years the strong basal texture observed in Mg-based alloys upon 

dynamic recrystallization was attributed to the activation of basal slip and dynamic recovery 

mechanisms [59]. Thus, basal slip allows the basal plane to mitigate stress by reorienting the 

c-axis normal to the loading direction, while dynamic recovery allows dislocations to 

rearrange into subgrains while maintaining the basal plane parallel to the main loading axis 

[55, 59, 60]. By contrast, recent studies revealed that the grain boundary properties are a 

fundamental characteristic in the dynamic recrystallization of Mg-based alloy [59, 61] and it 

was proposed that the strong segregation of RE elements to the grains boundaries may 

homogenize the grain boundary energy and affect the boundary mobility, thereby reducing the 

preferred selection of special 30° [0001] boundaries and allowing other orientations to 
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develop and stabilize to produce a more randomized texture [61]. However, as reported earlier 

[8] and consistent with the present study, the grains with 30° [0001] boundaries remain 

dominant (Fig. 5) with an enhancement of the basal fiber orientation in the deformed state and 

in the annealed state after annealing at 200 °C. In this case the development of a basal texture 

in the Mg-0.41Dy alloy is attributed to an insufficient Dy segregation at the grain boundaries 

for the nucleation of dynamic recrystallization.  

 It is well known that the final recrystallization texture depends either on the oriented 

nucleation of new grains or the subsequent favorable growth of grains with specific 

orientations or on both of these effects [62]. It was demonstrated by quasi-in-situ EBSD 

measurements that cold rolled Mg-0.4Zn and Mg-0.1Ca alloys (wt.%) annealed at 350 °C for 

900 s develop a weak recrystallization texture in the early stage of recrystallization but this is 

gradually replaced by a strong basal texture via the preferential growth of recrystallized grains 

with specific orientations [63]. Nevertheless, as shown in Fig. 6, the recrystallization textures 

are slightly weaker than the deformed textures but they are retained and no new components 

are observed. Generally, the recrystallization annealing treatment after deformation does not 

significantly alter the deformation texture of Mg-based alloys [44, 53, 54] and this is 

explained by the quasi-complete dynamic recrystallization occurring in HPT processing.  

 

4.3 The deformation modes in the Mg-0.41Dy alloy 

 The present work demonstrates that the grains sizes of the Mg-0.41Dy alloy are 

reasonably stable and the microstructures have HAGBs which suggest this alloy is a good 

candidate material for exhibiting high ductilities and possibly even superplastic behavior.  

 The relative activation of each deformation mode in Mg-based alloys is fundamental 

for predicting the deformation behavior. The Schmid factor (SF) is frequently applied to 

analyze the possibility of the activation of deformation modes with different values of the 
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critical resolved shear stress (CRSS) with respect to the loading direction [64]. For example, it 

was reported that the macroscopic yield stress is largely affected by the CRSS of the 

deformation mode having the highest value of the SF [65]. 

 The evolution of SF values shown in Figs. 8 and 9 supports that at elevated 

temperatures pyramidal <c+a> slip becomes more dominant as it supplies strain 

accommodation along the c-axis of grains [57, 66]. It was reported that the activation of non-

basal slip is beneficial for enhancing the ductility of Mg alloys [67]. Therefore, it may be 

speculated that the Mg-0.41Dy alloy will have high ductility under tensile loads (RD and SD) 

due to the activation of different deformation modes. 

 

5. Summary and conclusions 

1. Experiments were conducted on an Mg-0.41Dy (wt. %) alloy to evaluate the thermal 

stability after processing by HPT through 5 turns at room temperature. Following HPT 

processing, samples were annealed for 1 h at temperatures of 200 and 400 ºC. 

2. Processing by HPT produces a significant refinement in grain size from an initial 

value larger than ~2 mm to a value of ~0.5  0.1 m.  Following annealing, the grain sizes 

increased slightly to ~0.9  0.2 and ~1.2  0.8 m at annealing temperatures of 200 and 400 

ºC, respectively. These results demonstrate a good thermal stability. 

3. After HPT processing, there was a typical basal fiber (φ1 = 0–360º, Φ = 0º and φ2 = 0–

60º) associated with a second fiber localized at φ1 = 180º, Φ = 60º and φ2 = 0–90º. These 

textures were retained after subsequent annealing at 400 °C for 1 h. 

4. The microhardness values were stable after annealing at 200 °C but there was a slight 

decrease in hardness after annealing at 400 °C. The recrystallization temperature was 

measured in the range of ~120–200 °C and it increased with increasing heating rate. The 

activation energy for recrystallization was ~25 kJ mol-1. 
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5. HPT processing and an annealing treatment leads to significant decomposition of 

second particles by the decreasing Dy element in the different types of particles that are 

present in this alloy. 

6. The good stability of the Mg-0.41Dy alloy after annealing up to 400 °C is attributed to 

the occurrence of dynamic recrystallization during HPT processing, the presence of particles 

and the effect of the Dy elements on grain boundary mobility.   
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Highlights 

 Processing by HPT up 5 turns produces a significant refinement in grain size.  

 The recrystallization temperature was measured in the range of ~120–200 °C. 

 The activation energy for recrystallization was ~25 kJ mol-1.  

 The texture was retained after subsequent annealing at 400 °C for 1 h. 

 A good thermal stability was demonstrated after annealing at 400 °C for 1 h. 
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