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Abstract In recent years, there is a rapid increase in the population of elderly
people. However, elderly people may suffer from the consequences of cognitive
decline, which is a mental health disorder that primarily affects cognitive abil-
ities such as learning, memory, etc. As a result, the elderly people may get
dependent on caregivers to complete daily life tasks. Detecting the early indi-
cators of dementia before it gets worsen and warning the caregivers and med-
ical doctors would be helpful for further diagnosis. In this paper, the problem
of activity recognition and abnormal behaviour detection is investigated for el-
derly people with dementia. First of all, the paper presents a methodology for
generating synthetic data reflecting on some behavioural difficulties of people
with dementia given the difficulty of obtaining real-world data. Secondly, the
paper explores Convolutional Neural Networks (CNNs) to model patterns in
activity sequences and detect abnormal behaviour related to dementia. Activ-
ity recognition is considered as a sequence labelling problem, while abnormal
behaviour is flagged based on the deviation from normal patterns. Moreover,
the performance of CNNs is compared against the state-of-art methods such
as Näıve Bayes (NB), Hidden Markov Models (HMMs), Hidden Semi-Markov
Models (HSMM), Conditional Random Fields (CRFs). The results obtained
indicate that CNNs are competitive with those state-of-art methods.
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1 Introduction

Studies indicate that by year 2030, the number of people aged 65 to 74 will
be about 3% of the total population [1]. Elderly people may suffer from the
consequences of dementia, which is a condition that causes problems with mo-
bility, physical and mental abilities such as memory and thinking [2]. It may
also cause decrease in the ability of speaking, writing, distinguishing objects,
performing motor activities and performing complex functional tasks (pay-
ing bills, preparing a meal, etc.) [3]. An elderly person having such cognitive
decline loses independence in daily life and requires care and support from
caregivers. On the other hand, the use of assisted living technologies such as
smart homes can substantially help a person with dementia to live indepen-
dently. Unfortunately, currently there are no dementia friendly smart homes
addressing elderly people’s special needs.

Cognitive diseases, like dementia, need to be detected at an early stage so
that early treatment will be possible. However, research shows that 75% of
dementia cases go unnoticed [4] and many cases are diagnosed only when the
impairment reaches moderate or advanced stage. The best markers of cogni-
tive decline may not necessarily be detected based on a person’s performance
at any single point in time, but rather by monitoring the trend over time and
the variability of change in a duration [5]. Most common types of dementia
(Alzheimer, Parkinsons disease) can be identified by behavioural changes like
sleep disturbances, difficulty of walking and inability to complete tasks. Thus,
such changes can provide key information about memory, mobility and cog-
nition of a person. For instance, an old person suffering from Alzheimer may
forget to have his lunch, take multiple lunches instead, wake up in the middle of
the night, go to the toilet frequently, or have dehydration problems because of
forgetting to drink daily amount of water. In particular, the daily home activ-
ity involving basic functions like preparing food, showering, walking, sleeping,
etc. can be used to assess the well-being of elderly people.

The development of ambient home assessment environments has begun to
provide the opportunity to assess behaviour change unobtrusively in real-time
[6,4,5]. Prevention or delay of dementia onset is contingent upon the ability
to detect early, meaningful, cognitive change during the life course [6,4]. The
identification of early onsets of dementia using non-medical diagnosis methods
requires the development of new diagnostic tools. Although a few promising
methods have been experimentally validated [6,7,8,9,10], the translation of
the current knowledge into smart homes still requires more dedication and
work. Current assessment methods mostly rely on queries from questionnaires
or in-person examinations, which depend on recall of events or brief snap-shots
of function that may poorly represent a person’s typical state of function. Also
the clinical methods have some limitations such as their episodic nature, and
possible biased reporting. The main motivation for our work is that cognitive
decline can be observed in daily activities and routines of an elderly person.
Real-time monitoring of activities performed by an elderly person in a smart
home would be beneficial for early detection of such decline.
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In machine learning, a convolutional neural network (CNN) is a class of
deep, feed-forward artificial neural networks. Recently, CNNs are popular due
to their ability to learn fruitful representations and capture local dependency
and spatial information of granular-level patterns. For example, in image recog-
nition, CNNs firstly detect pixels, then edges and shapes, then parts of objects
as the layer level increases. Similar to images, there are granular-level patterns
in daily life activities. For example, when the activity preparing coffee is con-
sidered, it is seen that this activity is constructed by many steps such as getting
closer to the sink, turning the water on, filling the coffee machine with water
and turning the machine on, etc. In [11], granular-level activity patterns, which
they call as movement vectors, are extracted by using a decomposition based
unsupervised approach. It is shown that the movement vector can distinguish
different high-level activities. The occupant tends to have the same routine of
performing the same activities, but has different movement patterns in differ-
ent activities. For example, the occupant may mainly move around the kitchen
sink in Wash Dishes activity, and stay around the bedroom area during Sleep-
ing activity. A combination of some motion sensors are mostly seen in the
instances of relax activity while usage of some other motion sensors indicates
the movement between kitchen range and the sink and this movement pattern
is seen in the instances of wash dishes activity. CNNs are good at modelling
these granular-level patterns and defining their relationship with each other
by using spatial information. Thus, in the present study, CNNs are exploited
to model sensors and their relationship with each other in daily life activity
recognition.

Unfortunately, there exists no publicly available dataset on abnormal be-
haviour of people with dementia. Producing such a dataset requires time and
adequate experimental environment. When there is no real-world dataset avail-
able, data simulation can be a solution [12,13,14,15]. Given the scarcity of such
data, simulating daily life abnormal behaviours of elderly people suffering from
dementia would be helpful for providing automatic assessment methods. Thus,
in this paper, a method is proposed to artificially produce abnormal activities
reflecting on typical behaviour of elderly people with dementia.

In a nutshell, the present paper introduces the following contributions.

1. A method is proposed to generate synthetic data that simulates the abnor-
mal behaviours of people with dementia.

2. To the best of our knowledge, our study is the first to apply CNNs, thanks
to their ability to model granular-level patterns, for daily life activity recog-
nition and dementia related anomaly detection task.

The rest of the paper is organised as follows. Section 2 provides an overview
of literature work. Section 3 presents the details of the proposed methodology
together with the datasets and models used. Section 4 describes the experi-
mental set-up and results of the experiments followed by a discussion. Finally,
Section 5 concludes the paper.
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2 Literature Review

In-home automatic assessment of cognitive decline has been the subject of
many studies [16,17,6,7,18,19,20]. Many machine learning approaches such
as SVMs and Näıve Bayes methods [21,22], Restricted Boltzmann Machines
(RBMs) [19] and Markov Logic Networks [7,18,20], Hidden Markov Models
(HMMs) [14], Random Forest methods [15], and Hidden Conditional Random
Fields [23] have been exploited.

In some studies [16,24], assessment of cognitive status is done by providing
patients some instructions during the completion of pre-defined tasks (e.g.,
sweeping the kitchen). In the end, the patients receive scores which are cal-
culated based on the time spent, the frequency of the sensor triggered, etc.
These scores are used to assess the cognitive status of elderly people. In [16],
cognitive decline assessment is done by asking elderly people to complete a
sequence of scripted instrumental activities of daily living (IADLs). The par-
ticipants are monitored via a camera while they perform tasks such as cooking
oatmeal on the stove and in the end, they receive scores by trained experts.
In [24], the authors first extract sensor based features (the duration the activ-
ity and the number of sensors triggered) and then use SVMs, NB and neural
networks to assess the activity quality and cognitive status of elderly people
in smart homes. However, participants are provided with a brief description
of each sub-task that they should refer to during the simulated activities such
as planning a bus route, finding a recipe in the recipe book. These studies
fail to provide an unobtrusive way of assessment since they are not done in
the natural flow of daily living and in real life scenarios. Moreover, using rule-
based systems, an expert is needed to manually integrate specific rules to the
system since every person has own daily life routines. For example, waking up
and drinking water in the middle of the night might be normal for a person,
while abnormal for some other person. However, our approach does not re-
quire any expert knowledge, since it learns what is normal and abnormal from
the training data automatically. Specifically, we aim in this study to detect
anomalies in the natural flow of daily living without giving any instruction
and considering not only some time interval, but everyday living scenario.

Some studies [25,26] focus on anomalies related to the duration and the
timing of performed activities and other type of anomalies related to demen-
tia such as repetition of activities are not taken into account. In [25], the au-
thors introduce activity curves which models an individual’s generalised daily
activity routines based on automatically recognized activities. Deviations in
behavioural routines are detected by comparing activity curves in order to do
health assessment. In [26], the authors use a probabilistic model based on the
location and outing interference of each activity. Then cross-entropy measure
is used to detect anomalies such as staying in bed for a long time or not using
the bedroom for sleeping during the night. In [14], the authors exploit HMM
and fuzzy rules to detect duration, time and frequency related anomalies.

In the literature, there is some work dedicated to the synthesis of activity
related data [12,14,15]. In [14], the authors modified real-world dataset in
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order to synthesise health related abnormal behaviours for their experiments.
8 daily activities such as sleeping, waking up, walking, eating are chosen and
health related abnormal behaviours like frequent toilet visit, no exercise, slept
without dinner are synthesised. In [15], more data is synthesised using HMMs
based on a small set of real data collected. To increase the realism of data
simulation, the sensor events were modelled by a combination of Markov chains
and the Poisson distribution. However, in both [14,15], it is not mentioned in
detail how the data synthesis was done. In [12], the authors modified a real-
life dataset of an older adult converting basically the rooms into activities.
The authors focused on walking and eating in conjunction with the sleeping
activity and samples of these activities are manually inserted in the XML data
set.

In [23], the authors exploit Hidden State Conditional Random Field (HCRF)
method to detect abnormal activities that often occur in homes of elderly peo-
ple by considering sub-activity relations. First, HCRF is used to recognise
activities by producing a recognition confidence value for each activity. Then,
a threshold based method is used to decide the activities as normal and ab-
normal. In [7], the authors detect anomalies of mild cognitive impairment by
exploiting Markov Logic network. They use a hybrid technique including super-
vised learning, rule-based reasoning and probabilistic reasoning. However, they
construct their model prior by defining each steps of each action. Those rules
strongly depend on the specific home environment, on the used sensors, and
on the particular habits of the elderly people; hence, their definition is time-
expensive, and rules are not portable to different environments. In order to
address this issue, the same authors propose a method to automatically learn
the rule-based definitions of behavioural anomalies [18]. They exploit formal
rule induction methods and a training set of normal and abnormal behaviours.
However, the authors claim that their proposed rule learning method infers
deterministic rules, which are prone to generate anomaly mispredictions in the
presence of noise from the sensor infrastructure. In our study, normal daily life
patterns are learnt for each individual from training data automatically and
without the integration of any rules. Similar to [23,7], in our proposed work,
anomaly is defined not activities alone but defined in the context of sequences,
with other activities happened before and after.

Recently, there has been growing interest in CNNs [27,28,29,30,31,32,33,
34,35,36], Deep Belief Networks (DBN) [37], Restricked Boltzman Machines
(RBMs) [38,19,37,39] and Recurrent Neural Networks (RNNs) [29,30,40,41].
In [38], RBMs are used for feature extraction and selection from sequential
data. In [39], results with RBM on CASAS dataset outperformed HMMs and
NB in most of the cases. In [29], the authors use a combination of CNNs and
Long Short Term (LSTM) RNNs to do multi-modal wearable activity recogni-
tion. In [30], the authors explore deep, convolutional and recurrent approaches
on movement data captured with wearable sensors. Moreover, they describe
how to train recurrent models in this setting and introduce a novel regularisa-
tion. In [34], the authors utilised convolutional networks to classify activities
using time-series data collected from smart phone sensors. In [35], in a real
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world setting, an automatic stereotypical motor movement in Autism detec-
tion systems is developed exploiting CNNs. The discriminating features from
multi-sensor accelerometer signals are learnt via CNNs and this knowledge is
transferred to a new dataset. In [36], CNNs are exploited to learn features
from raw physiological signals in an unsupervised manner analysis and then
using multivariate Gaussian distribution, anomalies are detected to identify la-
tent risks. In our previous work [41], RNNs are exploited to detect anomalies
related to dementia in a daily living scenario.

CNNs have been exploited for activity recognition using movement datasets
that are generated by wearable sensors [38,27,28,29,31,34,37]. Except the
work by Fang et al. [39,41], none of these studies focus on daily activity
datasets collected by sensors placed at home. Previous work on activity recog-
nition based on wearable sensor datasets shows that CNNs and RNNs are
useful to recognise activities, but leaves a lot of room for improvement. In
this work, CNNs and their combination with LSTMs are investigated on daily
activities datasets, namely Aruba [42] and WSU testbeds of CASAS smart
home datasets [22] since the activities in these datasets are good examples to
reflect daily life patterns of elderly person and to synthesise anomalies related
to dementia.

3 Methodology

To assess CNNs in daily life activity recognition and abnormal behaviour de-
tection tasks, the following steps are proposed: Firstly, a real-world dataset is
modified in order to simulate abnormal behaviours related to dementia. Sec-
ondly, this dataset is segmented into time-slices by using a sliding window
approach as described in [43]. Thirdly, sensor-based raw data is mapped into
last-fired representations as described in [43]. Fourthly, CNNs are trained to
recognise daily activities and encode daily-life behaviour routines. Lastly, the
trained model is used to detect anomalies deviating from the normal daily-life
sequences. In the following, the datasets are described as well as the method-
ology used to generate artificial dataset that reflects on the typical behaviour
of a person with dementia.

3.1 Dataset

In this study, two datasets are used to evaluate activity recognition and ab-
normal behaviour detection. These datasets are namely Aruba [42] and WSU
testbeds of CASAS smart home project [22].

In Aruba testbed, motion, door and temperature sensors are used. How-
ever, temperature sensors are excluded in this study and other 34 sensors (3
door and 31 motion sensors) are used. The data is provided as a list of (sensor,
time-stamp) sensor measurements. In this dataset, there are 11 daily activities
performed by a single user and it spans 224 days. These activities are Meal
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Preparation (1606 instances), Relax (2910 instances), Eating (257 instances),
Work (171 instances), Sleeping (401 instances), Wash dishes (65 instances),
Bed to toilet (157 instances), Enter home (431 instances), Leave home (431
instances), Housekeeping (33 instances) and Respirate (6 instances). The ac-
tivities performed in this dataset are totally normal and some of these normal
activities will be modified for anomaly detection.

In WSU testbed [22], there are 5 activities, which are Make a phone call,
Hand washing, Meal Preparation, Eating, Cleaning. There are 20 instances
of each activity performed by 20 students in both adlerror and adlnormal
versions. The adlnormal version consists of totally normal behaviours while
in the adlerror version, there are specific errors in the task completion of
these activities. Errors were selected to reflect common difficulties that can
compromise everyday functional independence. The participants are told to
include these errors during their performance. These errors can be seen in
daily life activities and activity patterns of elderly people who are suffering
from the consequences of cognitive decline.

3.2 Synthesis of Abnormal Activities Related to Dementia

This study aims to detect the following 3 different kinds of anomalies that can
be seen in daily-life routines of elderly people with dementia: 1) Repeating
activities, 2) Disruption in sleep, and 3) Confusion (getting confused during
the activities).

1) Repeating activities: Elderly people suffering from dementia may
forget whether they performed a particular daily activity or not, so they may
repeat that activity. Frequency sensitive activities such as having a snack or
drink, brushing teeth, taking medicine multiple times, etc. are the ones only the
number of occurrences matters in terms of medical assessment. For instance,
an elderly person suffering from Alzheimer may forget to have lunch, take
multiple lunches instead [44], may forget to have dinner and start to prepare
it in the middle of the night.

To reflect on this cognitive problem, we generate this kind of abnormal
activities by manually inserting a specific set of actions within a random area
of the normal activity sequence. This will result in multiple occurrences of
that activity, which will occur in some inadequate time of the day such as
having dinner in the middle of the night. We inject the instances of the fol-
lowing activities: brushing teeth, preparing dinner, eating, getting snack into
the normal activity sequences to generate abnormal activities related to the
frequency. For example; let’s assume that S is a sequence of activities occur-
ring in a day such as S = d1, d2, d3, ..., dx, b1, b2, ..., bt, dx+1, ..., dn where each
di is a time-slice of some activities and each bj is a time-slice of brushing teeth
activity. Here, there are t time-slices of brushing teeth activity which consec-
utively results in only one instance of brushing teeth activity in the whole
day sequence. Then, time-slice instances of brushing teeth activity are injected
into the sequence S to have the abnormal version. Then modified S becomes
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S = d1, d2, d3, ..., dm, b1, b2, ..., bt, dm+1, ..., da, b1, b2, b3, ..., bk, da+1, ..., dn. As a
result, we have two occurrences of brushing teeth activity in the sequence.

2) Disruption in sleep: Degeneration of the sleep-waking cycle and night
time wandering are among the most severe behavioural symptoms of dementia.
For example, elderly people may wake up many times in the night to use the
toilet and go back to sleep or may forget to take daily amount of water [44,
45].

We simulate these anomalies by inserting some specific synthetic activ-
ities in the normal night-time activity sequences of a person. More specif-
ically, we inject Eating, Bed to Toilet into a random area of sleeping ac-
tivity in the normal daily activity sequence. This will emulate the activ-
ities of getting drink and going to the toilet frequently in the middle of
the night. For example; given a sequence of sleeping activity such as S =
s1, s2, s3, ..., sn where each si is a time-slice; time-slice instances of getting
drink are injected into a random area of S. Then modified S becomes S =
s1, s2, s3, ...., sm, d1, d2, d3...dk, sm+1, ..., sn where each time-slice dj is from get-
ting drink activity. As a result, we simulate disruption in sleep anomaly where
the person wakes up in the middle of the night and gets drink.

3) Confusion: Older adults suffering from cognitive decline tend to con-
fuse things and perform some steps of activities more than once during the
completion of activities. For example, they may fail to remember how to turn
a CD player on, or may forget to turn off the television, air conditioning or
house utilities such as kettle, oven, or they may leave the refrigerator door,
the main door open. In order to test our methods on these kind of anomalies,
the adlerror set of WSU dataset is used since confusion and forgetting anoma-
lies are reflected in this dataset. For example, leaving the water running after
washing hands, leaving the burner on after cooking the oatmeal, forgetting to
take medication with the meal, wiping off the dishes without using running
water to clean them are some examples to these kind of anomalies in the WSU
adlerror set.

The first two types of anomalies are simulated by modifying Aruba testbed.
Here, there is only one subject in the dataset. The lifestyle in the training
data is taken as a norm and then we synthesise the abnormalities deviating
from this norm and introduce these abnormalities in the test data. These
activities are totally normal on their own but they become abnormal when
they occur at a wrong time of the day and after or before a specific activity.
Hence, capturing these abnormalities within the context is important. In all,
150 abnormal activity slices are generated manually. The third anomaly type
is already reflected in WSU dataset; thus it is used directly without modifying
any sensor reading.

3.3 Sensor Reading Representation

Firstly, time-slice chunks are extracted from raw sensor readings via a sliding
window approach [43]. Data is discretised using the time-slice length of 60
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seconds. A time-series chunk is a matrix of t× f size, where t is the length of
time-slices and f is the number of sensor features. Then raw sensor readings
are mapped into last-fired representation. Last-fired representation indicates
which sensor is fired last. The sensor that changed state last continues to give
1 and changes to 0 when another sensor changes state. Previous work [41]
shows that this representation gives better activity recognition accuracy rates
than other representations as proposed in [43].

In the following, a description of CNNs used in this work is given.

3.4 Convolutional Neural Networks (CNNs)

CNN takes inputs of dimensions h×w× d, where h is the height of the input
matrix, w is the width of the input matrix and d is the number of different
channels of the input matrix. In our study, d is 1 since time-slice input matrices
has only one channel.

A local filter (kernel) with a size of n × m × q is used to extract fruit-
ful feature patterns and capture local dependencies on the given input. Here,
n is the number height of the filter, m is the width of the filter, while q is
the number of filters used. These values are given as a parameter during the
network construction process. The weight of these filters are initialised ran-
domly in the beginning and then CNN learns these weights on its own during
the training process by optimising the values. In this study, random uniform
initialisation is used to initialise the filters and Stochastic gradient descent is
used to optimise the values during the training. An additional operation called
activation function has been used after every convolution operation. In this
study, Rectified Linear Unit (ReLU) is used as the activation function. Then
a max-pooling layer, which is followed by a fully connected layer is added to
the network. The fully connected layer used in our network is a traditional
Multi Layer Perceptron that uses a softmax activation function in the output
layer. The purpose of this layer is to use these features for classifying the input
image into various classes based on the training dataset.

CNNs can contain one or more pairs of convolutional and max-pooling
layers, where higher layers use broader filters to process more complex parts
of the input. The top layers in CNNs are stacked by one or more fully connected
normal neural networks. These fully connected neural network are expected to
combine different local structures in lower layers for final classification purpose.
In the training stage, CNN parameters are estimated by standard forward and
backward propagation algorithms to minimise objective function.

3.4.1 Activity Recognition and Abnormal Behaviour Detection

In order to recognise daily activities, training instances of the datasets and
their corresponding labels are fed into CNNs to be trained. The models assign



10 Damla Arifoglu, Abdelhamid Bouchachia

a class label to each instance with a confidence value. Firstly, the mean of
confidence values of training instances for each class is calculated as follows.

mj = 1/N

N∑
t=1

pt (1)

where mj is the mean confidence value of class j and pt is the confidence
value for training instance t of that class and N is the total number of instances
in that class.

Then when a new test instance is introduced, if the model assigns it to a
class with a confidence value which is bigger than the mean of that class (mj),
that instance is considered as a normal activity, otherwise it is flagged as an
abnormal activity.

In order to test the affect of convolutions on different dimensions and dif-
ferent architectures, the following networks are tested on Aruba dataset (see
Figure 1). Here, the input matrix is N×M , where the rows are sensor readings
for each time-slice and columns are the values of each sensor as time passes.

1D Convolution: In this model, convolution is done on temporal dimen-
sion. As depicted in Figure 1a, in the convolutional layer, 100 filters with a
length of 10 is used. 1D convolution is followed by a max-pooling layer, which
has a stride of 2. Then another convolutional layer (with 50 filters and a length
of 5) and a max-pooling layer are added. After the extracted features are flat-
tened, these features are fed into dense layers (3 hidden layers having 512, 128
and 50 units respectively) and then the final decision is given by a softmax
layer producing the confidence values of assigned class labels.

2D Convolution: In this model, convolution is done on both of the di-
mensions, specifically on feature and temporal dimension. 100 filters with a
size of 10 × 34 are used in the first convolutional layer which is followed by a
2 × 2 max-pooling. Then another 2D convolution operator is added this time
with 20 filters with the size of 5 × 34. The flattened features are fed into the
same dense layer and the softmax layer described above.

CNN and LSTM (2D CNN + LSTM): CNNs can learn spatial rela-
tionships on a given N×M input but they cannot relate a current input to the
next one in the occurrence order of the input sequence. To overcome such lim-
itation, LSTMs are used at the end of the CNN network. In this combination,
firstly, the 2-layer 2D-CNN described above is used to learn the fruitful feature
representation. And then the extracted feature maps are fed into LSTM layers
which will be taking further temporal information of the slices into account.
LSTM has hidden layers of size 30 × 50 respectively. LSTM layer is followed
by a dense layer with 128 hidden units and then another dense layer with 50
units. Eventually, softmax layer classifies the input into one of the activity
classes with a probability value.
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Max-pooling (2)
1D Convolution

(100x10x1)

Max-pooling (2)
1D Convolution

(50x5x1)

Flatten

Dense
(512x128x50)

Softmax (12)

(a)

Max-pooling (2x2)
2D Convolution

(50x10x34)

Max-pooling (2x2)
2D Convolution

(20x5x17)

Flatten

Dense
(512x128x50)

Softmax (12)

(b)

Max-pooling (2x2)
2D Convolution

(50x10x34)

Max-pooling (2x2)
2D Convolution

(20x5x17)

Flatten

Dense
(512x128x50)

Softmax (12)

LSTM
(30x50)

(c)

Fig. 1: Convolutional neural network architectures used. (a) 1D convolutional
along temporal dimension (b) 2D convolutional both along temporal dimension
and feature dimension (c) 2D convolution followed by an LSTM layer.

4 Experiments

In order to evaluate our methods, first the datasets are splitted (see Sec. 3.1)
into train and test sets. However, the split is not done with a traditional split
method since dividing daily activity datasets based on a fixed time period such
as day is more meaningful [17]. Aruba testbed was collected in 224 days, thus 70
days are used as test, 15 days for validation and the remaining days are used
for training. The first WSU set adlnormal, representing normal behaviours,
are used to train the classifiers, while the second set, adlerror, containing the
abnormal activity, is used for test set.
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Keras Deep Learning library’s [46] and Theano’s [47] implementations of
the CNNs and LSTM are used in this study. Moreover for the sake of compar-
ison, results with NB, HMM, HSMM and CRF are provided which are based
on the implementation provided in [43]. In the CNN experiments below, Adam
optimiser [48] is used and the instances are fed into the system with a batch
size of 20. In the following, the evaluation metrics are explained further.

4.1 Evaluation Metrics

In order to assess the activity recognition success, the following metrics are
used: Precision, Recall, F-measure and Accuracy. As seen in Formula 2 and 3,
final precision and recall values are calculated by taking average over classes.
Precision and recall measures are used in order to show how well the models
perform on imbalanced datasets like the one in this study. On the other hand,
the accuracy represents the percentage of correctly classified time slices, there-
fore more frequently occurring classes have a larger weight in this measure.
Here, TP is true positive, TT is total number of instances, TP is total true
labels, TI is total of inferred labels, N is the number of classes in a specific
class of the dataset and Total is the total number of instances of all classes in
the dataset

Precision =
1

N

N∑
i=1

TPi

TIi
(2)

Recall =
1

N

N∑
i=1

TPi

TTi
(3)

F-measure =
2 × Precision × Recall

Precision + Recall
(4)

Accuracy =

∑N
i=1 TPi

Total
(5)

Abnormal behaviour detection success rate is evaluated by sensitivity and
specificity metrics. Sensitivity or True Positive Rate (TPR) refers to the method’s
ability to correctly detect instances which are abnormal. Specificity or True
Negative Rate (TNR) gives the percentage of correctly recognized normal in-
stances, thus reflects the method’s ability to differentiate between normal and
abnormal.

Sensitivity (TPR) = TP/(TP + FN) (6)

Specificity (TNR) = TN/(TN + FP ) (7)
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4.2 Results

Two types of experiments are performed: 1) Activity recognition, and 2) Ab-
normal activity detection. Activity recognition success rates by both genera-
tive and discriminative methods on Aruba set are depicted in Table 1. The
results indicate that CNNs with 2D convolution (accuracy of 89.67%) and also
CNN-2D followed by an LSTM classifier (accuracy of 89.72%) outperforms
CRF (accuracy of 88.58%). The reason is CNNs extract their own fruitful
features while CRF only relies on the given input. HMM and HSMM give
the worst accuracy results (77.90% and 77.98% respectively). NB gives better
accuracy result (84.37%) than HMM and HSMM but it results in lower preci-
sion (42.87%) and recall (61.04%) rates. Although HMM and HSMM give the
best recall rates (72.03% and 71.56% ), they fail in giving good precision rates
(43.66% and 43.97% respectively). It is seen that CNN-1D network has an ac-
curacy of 87.50% while it fails in high precision (31.42%) and recall (36.78%)
values. CNN-1D extracts features on temporal dimension, so it takes temporal
information within a time-slice chunk into account but on the other hand, it
ignores the relationship between sensors since it doesn’t do convolution on the
feature dimension. Thus, it doesn’t learn class specific feature maps to differ-
entiate between different classes resulting in low precision and recall. When
2D convolution is used, both temporal and spatial information are taken into
account and the networks learn more informative features. Thus, it gains the
ability to learn class specific features, which results in higher precision and
recall values (46.84% and 41.68%) and high accuracy results (89.67%). CNNs
cannot remember the previous and the next inputs, but feeding the feature
maps into an LSTM layer helps us process the temporal dimension further.
In result, CNN with 2D convolution followed by LSTM (CNN-2D + LSTM)
achieves a precision rate of 51.20% and a recall rate of 50.55% and an accuracy
of 89.72%.

Table 1: Activity recognition results with last-fired representation on Aruba
dataset

Model Precision Recall F-measure Accuracy
NB 42.87% 61.04% 50.36% 84.37%
HMM 43.66% 72.03% 54.36% 77.90%
HSMM 43.97% 71.56% 54.47% 77.98%
CRF 50.24% 52.83% 51.50% 88.58%
LSTM 38.65% 41.29% 39.92% 89.00%
CNN-1D 31.42% 36.78% 33.89% 87.50%
CNN-2D 46.84% 41.68% 44.11% 89.67%
CNN-2D + LSTM 51.20% 50.55% 50.87% 89.72%

In Figure 2, extracted feature maps from first and second layer and the
flatten layer are visualised for CNN-2D network as described in Figure 1. It
is seen that noise is reduced and more informative features are learnt as the
layer level increases. The x-axis represents features while y-axis is time axis
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(a)

(b)

(c)

Fig. 2: a) Extracted features from the first layer. b) Extracted features from the
second layer. c) Extracted features from the flatten layer. The x-axis shows
time while y-axis represents features. Successive model layers learn deeper
intermediate representations. The features get more discriminative and visible
in the last layer.
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and the white pixels are activations of neurons. It is seen that as the times
passes, different activities give different features.

Moreover, we calculate Cohen’s Kappa statistics in order to show the ro-
bustness of the proposed method, CNN-2D classifier. Kappa statistics is mea-
sure that can handle well on both multi-class and imbalanced class problems.
It tells how much better the classifier is performing over the performance of
a classifier that simply guesses at random according to the frequency of each
class. It is thought to be a more robust measure than simple percent agreement
calculation, since Kappa takes into account the possibility of the agreement oc-
curring by chance [49]. The calculated Kappa statistics for CNN-2D classifier
is 0.64431, which is a substantial agreement according to [49].

Results on Aruba dataset show that classifiers are mostly successful in
detecting the instances of leave home and enter home activities since they
are the only activities involving door sensors, thus they are not confused with
any other activities. Moreover, meal preparation activity is confused with wash
dishes activity most of the time since they involve same kind of sensors and
they both take place in the kitchen. Also house keeping activity is generally
confused with work activity since they may take place in the same room and
may involve same sensors.

Table 2: Abnormal behaviour detection results on Aruba Modified dataset

Aruba Modified WSU
Model Sensitivity Specificity Sensitivity Specificity
NB 99.33% 33.89% 46.17% 98.42%
HMM 45.54% 27.71% 100% 50.55%
HSMM 100% 35.61% 100% 42.89%
CRF 100% 66.03% 47.87% 72.17%
LSTM 98.67% 75.48% 86.50% 77.89%
CNN -2D 85.33% 33.89% 88.70% 67.46%

The second experiment, abnormal activity detection is performed firstly
on modified Aruba set. As a representative of CNN networks, the results are
presented with the CNN-2D network. After training the models with normal
behaviours, test set which includes the abnormal behaviours is introduced
to the classifier and activity instances which are assigned a label with low
confidence values are flagged as abnormal. In Table 2, it is seen that the
highest specificity is achieved by LSTM networks giving an accuracy of 75.48%
(and sensitivity rate of 98.67%). Although NB, HMM and HSMM models gives
higher sensitivity rates (99.33%, 100%, 100% respectively), the specificity rates
are smaller (33.89%, 27.71% and 35.61% respectively). HMM gives the worst
results (a sensitivity rate of 45.54% and a specificity rate of 27.71%). CNN-
2D gives a sensitivity rate of 85.33% and a specificity of 33.89%. This shows
that LSTMs are more suitable to detect repetition and order related abnormal
activities since it can relate current input with the upcoming ones what CNN
cannot do.
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The second part of anomaly detection experiments are performed on WSU
testbed. 30 second time-slice chunks are extracted from sensor readings from
WSU. This dataset is not collected in a daily life scenario, thus sensor readings
are not in a sequential order. Thus the sensor readings are available only for
activities labelled in the dataset. The adlnormal set is used as training set and
the adlerror set is used as test dataset. The aim here is to see how successful the
classifiers are to detect the anomalies, given normal behaviours. The results
in Table 2 indicate that the highest sensitivity rate is given by HMM and
HSMM (both 100%), while HMM gives a specificity rate of 50.55% and HSMM
achieves specificity of 42.89%. The highest sensitivity rate is achieved by CNN-
2D classifier (86.70%), but LSTM gives a very close sensitivity rate (86.50%)
and a higher specificity rate (77.89%) where CNN-2D achieves a specificity
rate of 67.47% only.

As a comparison, in [22], the authors present their results as follows. The
number of correctly detected activities are 95 for adlnormal and 76 for adler-
ror, both out of 100. Experiments in our study are performed on activity slices,
on the other hand. in [22] they take whole activity and extract features from
that activity and then try to decide if it is normal or abnormal. The problem
here that is in real-life scenario, it cannot be known, where an activity starts
and ends. Thus using slice-based detection is more meaningful.

LSTM is better to capture repetition related activities, while CNN is better
to detect “confusion related activities”. CNN can detect changes in feature
patterns. Even though it is not explicitly defined in daily activity datasets each
activity is formed by steps. The steps in this dataset are based on the motion
sensors triggered. For example, when the sleeping activity is considered, it is
seen that the resident first goes out of bed, then goes to the middle of the
room and then goes to the bathroom in the bed to toilet activity. CNN doesn’t
need to extract them, but it exploits them hierarchically in each layer. In the
end, model cannot identify the steps involved, but it detects the anomaly in
the higher level. Thus, whenever the orders of sensors or these steps change,
input matrix changes which leads different feature maps extracted by CNNs.

Our method cannot detect anomalies such as incorrectly measuring the
oatmeal, not using soap when cleaning, washing hands multiple times, confus-
ing the location of items, and using too much soap or leaving kitchen utilities
on. Because there were no specialised sensors for the items involved in these
steps, the algorithm could not detect these errors and future research will
be needed to deal with these errors. Moreover, our current approach may
fail to detect abnormalities, when there is gradual deterioration regarding the
health of an elderly person. This issue will be taken into consideration in fu-
ture while collecting real-world data in which gradual deterioration can be
observed. Moreover, it is planned to extract sub-activities involved in daily
life activities and model their relations hierarchically. Then, this information
can be used in order to provide more robust and accurate cognitive assessment
tools.
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5 Conclusion

This paper introduces a method of recognising sensor based activities and
detecting anomalies related to dementia in smart homes. CNNs are exploited
as well as their combination with LSTM in order to achieve these tasks. Our
results on activity recognition shows that these methods are better than their
competitors such as NB, HMMs, HSMMs and CRFs. Moreover, results on
anomaly detection gives promising results to detect most of the abnormal
behaviours simulating the daily life behaviour of elderly people suffering from
dementia.
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