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Abstract

In the area of character animation, skin surface modelling, rigging and

skin deforamtion are three essential aspects. Due to the different com-

plexity of the characters, the time cost on creating corresponding skin

surface model, animation skeleton in order to achieve diverse skin de-

formations, fluctuates from several hours to several weeks. More im-

portantly, the data size of skin deformations could sharply influence the

efficiency of generating animation. Smaller data size can also speed up

character animation and transmission over computer networks. Over

years, researchers have developed a variety of skin deformation tech-

niques. Geometric skin deformation approaches have high efficiency but

low realism. Example-based skin deformation approaches interpolate a

set of given example poses to improve realism and effects that cannot

be easily produced by geometric approaches. Physics-based skin defor-

mation methods can greatly improve the realism of character animation,

but require non-trivial training, intensive manual intervention, and heavy

numerical calculations. Due to these limitations, many recent activities

have initiated the research of integrating geometric, example-based, and

physics-based skin deformation approaches.

The current research is to develop techniques based on Ordinary Dif-

ferentical Equations (ODE) to efficiently create C2 continuous skin sur-

faces through two boundary curves, automatically generate skeleton to

make the rigging process fast enough for highly efficient computer anima-

tion applications, and achieve physically realistic skin deformations for

character animation by integrating geometric, physical and data-driven

methods. Meanwhile, it is the first attempt to obtain an analytical solu-

tion to realistic physics-based skin deformations for highly efficient com-

putation, to avoid the solving of a large set of linear equations, which

largely reduces data size and computing time. The basic idea is to build

ODE mechanics model, involve iso-parametric curves and Fourier Se-

ries representation, develop accurate and efficient solutions to calculate

physical skin deformations through interpolating input realistic recon-

structed 3D models. The proposed techniques will greatly avoid tedious
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manual work, reduce data size, improve skin deformation realism, and

raise efficiency of producing character animation.
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Thesis Outline

This thesis consists of seven chapters.

• Chapter 1 - Introduction: This chapter provides a brief intro-

duction to the importance of creating C2 ODE-based continuous

skin surfaces, automatical skeleton generation, efficient physically

realistic skin deformation, followed by conventional approaches for

physics-based skin deformation, and finally the aims and frame-

work of this research. At last, this chapter highlights the contribu-

tions of this research followed by a list of publications.

• Chapter 2 - Related Work: In this chapter, a thorough litera-

ture review of various skin deformation approaches is provided, fol-

lowing by a survey on automatically rigging and skin surface mod-

elling techniques which are neccessary processes in this work’s aimd

ODE-based efficient physical realistic skin deformation method.

These surveys review the strengths and weaknesses of state of the

art methods, identifies some research challenges, and presents sug-

gestions for future work.

• Chapter 3 - Controllable C1 Surface Method for Blending:

This chapter proposes a new surface blending method. It can not

only exactly satisfy blending boundary constraints but also achieve

a desirable shape of blending surfaces. This blending method is

based on the concept of sweeping surfaces controlled by fourth

order ordinary differential equations. It creates blending surfaces

by sweeping a three-dimensional curve called a generator along two

three-dimensional trajectories and making the generator exactly

satisfy the tangential constraints at the trajectories at the same

time. The shape of blending surfaces is controlled by manipulating

the generator with the solution to fourth order ordinary differential

equations.

• Chapter 4 - Interactive Creation of C2 Continuous ODE

Skin Surfaces: In this chapter, one efficient and simple technique

to create tangential or curvature continuous surface and achieve the
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smoothness between adjacent surface patches, through two bound-

ary curves is introduced. Additionally, the proposed technique can

be manipulated easily by simply changing first and second partial

derivatives, and shape control parameters. This proposed tech-

nique also provides one direct ODE representation of character

model for automatically generating skeleton to accelerate skin de-

formation process.

• Chapter 5 - Automatic generation of animation skeleton

to assist dynamic skin deformation: This chapter outlines a

new rigging algorithm for automatic generation of dynamic skin

deformation to quickly identify iso-parametric curves and create

an animation skeleton in a few milliseconds, which can be seam-

lessly used in curve-based skin deformation methods to make the

rigging process fast enough for highly efficient computer animation

applications.

• Chapter 6 - Application of Fourier Transformation in physics-

based skin deformation: This chapter presents a new, simple,

and efficient analytical approach for physics-based skin deforma-

tions, which is the first attempt to obtain an analytical solution to

realistic physics-based skin deformations for highly efficient com-

putation. Integrating physics-based and example-based approaches

leads to more realistic skin deformations. This proposed technique

utilize the physics-based mathematical model, in order to deter-

mine the correct force field acting on skin surfaces and achieve the

realism of skin deformations. With the obtained analytic solution

to the formulated ODE-based physics model, this approach trans-

forms a discrete example mesh into its continuous Fourier series

representations to avoid the solving of a large set of linear equa-

tions, which largely reduces data size and computing time.

• Chapter 7 - Conclusion and Future Work: This chapter

demonstrates the conclusion of research presented in this thesis

with its impact. It also discussed the limitations of the contribu-

tions presented and the possible future directions that can improve

xix



this research in the further.
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Chapter 1

Introduction

1.1 Background

As essential and standardized parts of many character animation ap-

plications, various rigging and skinning techniques have been developed

both in academia research and industry practices.

Existing rigging methods can be roughly classified into four different

categories: skeleton embedding, single shape-based skeleton extraction,

motion-based skeleton extraction, and combination of skeleton embed-

ding and extraction. Skeleton embedding methods require optimally em-

bedding pre-designed skeletons to skin meshes, which is often achieved

through optimization Baran & Popović [2007]. However, its main dis-

advantage is the requirement for pre-designed skeletons. Rhodin et al.

[2015] introduced one approach to address the problem that retargeting

is hard for nonhuman characters, with locomotion bound to the sens-

ing volume; and pose mappings are ambiguous with difficult dynamic

motion control. Single shape-based skeleton extraction methods obtain

skeletons from a single static pose Au et al. [2008]; Pan et al. [2009].

Since only one static pose is used, such down-sampling based approaches

may fail when converting a curve skeleton into its corresponding ani-

mation skeleton. Motion-based skeleton extraction methods use motion

data or multiple example poses to determine the skeleton and joint lo-
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cations, and overcome the disadvantage of single shape-based skeleton

extraction De Aguiar et al. [2008]; Le & Deng [2014]. The combination

of skeleton embedding and extraction tackles the disadvantage of single

shape-based skeleton extraction by locating a suitable template skeleton

in the extracted curve skeleton through classification rules, derived from

the general characteristics of each character class Pantuwong & Sugi-

moto [2012]. These methods mostly are not computationally efficient

in general. For example, on a typical off-the-shelf computer, they often

require at least a few seconds to complete automatic rigging for a model

with several thousand vertices and tens of minutes (or even hours) for a

model with tens of thousands of vertices.

Over the years, researchers also have developed a variety of skinning

techniques Jacobson et al. [2014], including geometric skinning (e.g., the

well-known linear blend skinning), example-based skinning (e.g., the pose

space deformation Lewis et al. [2000]), and physics-based skinning. Tra-

ditionally, animators need to spend non-trivial efforts to set up rigs before

a 3D model can be animated and deformed. As a result, not surprisingly,

numerous previous efforts have been focused on generating suitable rigs

for high quality skinning deformation. The usefulness of a skinning tech-

nique are generally measured in terms of three major characteristics:

realism, efficiency, and control.

All of existing skinning techniques were designed to achieve certain

trade-offs among the three factors. Purely geometric methods do not

consider any physics of skin deformations. This type of methods are

efficient in creating deformed skin shapes, but less realistic.

Data-driven methods create new skin deformations from known ex-

ample skin shapes. When example skin shapes are sufficient, this type

of methods can generate high realistic skin deformations. How to reduce

the number of example skin shapes but still keep good realism is a main

issue of data-driven methods. Since data-driven methods do not consider

any physics of skin deformations, they require sufficient skin shapes to

achieve realism.

Physics-based methods consider physics of skin and other tissues de-
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formations. This type of methods can generate more realistic skin de-

formations at the cost of heavy calculations. On the other hand, Curve-

based methods have also been proposed for modelling and simulating

3D character models in recent years. For example, Hyun et al. [2005]

proposed sweep-based human deformation.

You et al. [2007, 2008] presented a curve-based sweeping surface and

dynamic skin deformation method. Bartoň et al. [2013] discussed the the-

ory, discretization, and numerics of curves which are evolving such that

part of their shape, or at least their curvature as a function of arc length,

remains unchanged. Bartoň et al. [2014] sought congruent planar curves

to generate or approximately generate a freeform surface. Chaudhry

et al. [2015] investigated a finite difference solution to curve-based dy-

namic skin deformations. Brandt et al. [2016] introduces techniques for

the processing of motion and animations of non-rigid shapes. Although

curve-based approaches simplify physics-based skinning, analytical solu-

tions have not yet been presented to achieve both high efficiency and

good realism of physics-based skin deformations.

1.2 Main Challenges

Skin deformation technique in character animation stays an essential and

standardized part of many character animation applications these days

including academia and industry practices. Over years, researchers have

developed a variety of skin deformation techniques, including geometric

skin deformation, example-based skin deformation, and physics-based

skin deformation.

Geometric skin deformation approaches have high efficiency but low

realism. Example-based skin deformation approaches interpolate a set

of given example poses to improve realism or produce certain skin de-

formation effects that cannot be easily produced by geometric skinning

approaches. Therefore, example-based skin deformation approaches are

often used together with geometric skinning. In order to achieve satis-

factory realism, how to optimally design or obtain such a set of example
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poses is still considered as a widely open research problem. Physics-

based skin deformation methods can greatly improve the realism of char-

acter animation, but require intensive manual intervention, and heavy

numerical calculations. Due to these limitations, it is generally time-

consuming to implement them, and difficult to achieve a high runtime

efficiency. Integrating geometric and physics-based skin deformation into

a same simulation framework can alleviate the computational burden of

physics-based skin deformation and improve realism of geometric skin

deformation.

Many recent activities have initiated the research of integrating geo-

metric, example-based, and physics-based skin deformation approaches.

In order to tackle the above limitations caused by numerical calculations

of physics-based skin deformation, this research aims to develop more

effective combination operations which could remedy the shortages of

each kind of methods; especially to develop an fast analytical skin defor-

mation approach with corresponding automatically generating skeleton.

Since character surface generating and character rigging affect the pre-

processing time, I also propose an interactive creation of C2 continuous

ODE skin surface technique and one more efficient automatic rigging al-

gorithm to efficiently reduce the preprocessing time and data size. These

techniques can produce physically-realistic deformations with higher effi-

ciency while does not need specialized physics-based knowledge, tedious

manual operations and time-consuming numerical calculations.

1.3 Research Aims

As described above, physics-based skin deformation methods can greatly

improve the realism of character animation, but require intensive manual

intervention, and heavy numerical calculations. Due to these limitations,

it is generally time-consuming to implement them, and difficult to achieve

a high runtime efficiency. In order to tackle the above limitations caused

by numerical calculations of physics-based skin deformation, this research

aims to propose a simple, and efficient iso-parametric curve-based ana-
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lytical approach to generate physically realistic skin deformations.

Since non-automatic rigging requires heavy human involvements, and

various automatic rigging algorithms are less efficient in terms of compu-

tational efficiency. Especially for current curve-based skin deformation

methods, identifying the iso-parametric curves and creating the anima-

tion skeleton need tedious and time-consuming manual work. Although

several automatic rigging methods have been developed, but not aim at

curve-based models. To tackle this issue, this research aims to develop

an automatic rigging algorithm to accelerate the simulation of physically

dynamic skin deformation for character animation.

In addition, when implementing Differential Equation physical model

to generate realistic skin deformation for character animation, the tech-

nique of interactively creating C2 continuous character surface on the

basis of ODE iso-parametric curves is beneficial and aimed to provide

a direct representation of character model for automatically generating

animation skeleton.

1.4 Contributions

To fulfill the aims and objectives of the research, this thesis have made

three novel contributions, which are as follows.

• This research has developed a new surface blending method with

positional and tangential continuities based on sweeping surfaces

controlled by fourth order ODEs. The generator used to construct

blending surfaces is created with the closed form solution to fourth

order ODEs and its shape is manipulated by the shape control

parameters involved in the equations. Blending surfaces are gener-

ated by moving the generator along two three-dimensional trajecto-

ries and making it exactly satisfy the tangential constraints at the

trimlines. Due to the analytical nature of the proposed approach,

it can generate various blending surfaces quickly. Since blending

boundary constraints are explicitly included in the mathematical
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expressions of the blending surfaces, the proposed approach is easy

to use. The shape of the blending surfaces constructed with the

proposed approach is controlled effectively by manipulating shape

control parameters while still maintaining the same continuities at

the trimlines. Apart from its capacity in creating a blending sur-

face between two primary surfaces, it is also effective in blending

more than two primary surfaces together.

• This work also proposes a new technique to interactively create

C2 continuous surfaces for DE-based simulation of character skin

deformation, providing one direct ODE representation of charac-

ter model for efficiently automatically generating skeleton. With

this approach, the creation of a three-dimensional surface is trans-

formed into generating 2 boundary curves or 2 boundary curves

plus 4 control curves and solving a vector-valued sixth order ordi-

nary differential equation. Unlike the existing patch modelling ap-

proaches which require tedious and time-consuming manual oper-

ations to stitch two separate patches together and achieve the tan-

gential or curvature continuity between two stitched patches, this

proposed technique always maintains the C2 continuity between

adjacent surface patches naturally which avoids manual stitching

operations to produce character models. Besides, the technique

presented in this work can achieve more shape variations defined

by the same boundary constraints since the proposed technique

can manipulate surfaces through shape control parameters, and

the first and second partial derivatives.

• In the research, an efficient rigging algorithm for automatic genera-

tion of physically dynamic skin deformation is developed, including

vertex identification on iso-parametric curves, automatic skeleton

creation combined with curve-based skin deformation approach, in

order to quickly identify iso-parametric curves and create an an-

imation skeleton in a few milliseconds, which can be seamlessly

used in DE curve-based skin deformation methods to make the

rigging process fast enough for highly efficient computer animation

applications.
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• In this proposed approach, a new, simple, and efficient analytical

approach for physics-based skin deformations is developed. This

technique utilize the physics-based mathematical model, in order

to determine the correct force field acting on skin surfaces and

achieve the realism of skin deformations. With the obtained an-

alytic solution to the formulated ODE-based physics model, this

approach transforms a discrete example mesh into its continuous

Fourier series representations to avoid the solving of a large set of

linear equations, which largely reduces data size and computing

time. Specifically, (1) employ Fourier series to convert 3D mesh

models into continuous parametric representations through a con-

version algorithm, which largely reduces data size and computing

time but still keeps high realism, (2) introduce a Ordinary Differ-

ential Equation (ODE)-based skin deformation model to describe

the underlying deformation dynamics between given poses, which

is the first attempt to obtain an analytical solution to physics-based

skin deformations for highly efficient computation.

1.5 Publications

The research presented in this thesis has led to the following publications:

1. Shaojun Bian, Zhigang Deng, Ehtzaz Chaudhry, Lihua You, Xi-

aosong Yang, Hassan Ugail, Xiaogang Jin, Zhidong Xiao, Jian Jun

Zhang. Efficient and realistic character animation through analyti-

cal physics-based skin deformation, accepted and will be published

by journal of Graphical Models, 2019.

2. Shaojun Bian, Anzong Zheng, Ehtzaz Chaudhry, Lihua You, Jian

J. Zhang, Automatic generation of dynamic skin deformation for

animated characters, Journal of Symmetry, 2018;

3. Ruibin Wang, Jian J. Zhang, Shaojun Bian, Lihua You, A survey

of parametric modelling methods in high-speed train head design,

Journal of Rail and Rapid Transit, 2017;
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4. Shaojun Bian, Lihua You, Jian J. Zhang, Recent Developments

in Skin Deformation for Character Animation, in the Proceedings

of GRAPP 2015, published by SCITEPRESS, pp. 122-129;

5. E. Chaudhry, Shaojun Bian, Hassan Ugail, Xiaogang Jin, L. H.

You, Jian J. Zhang, Dynamic Skin Deformation using Finite Differ-

ence Solutions for Character Animation, Computers and Graphics

46, pp. 294-305, 2015;

6. Hui Liang, Jian Chang, Xiaosong Yang, Lihua You, Shaojun

Bian, Jian Jun Zhang, Advanced ordinary differential equation

based head modelling for Chinese marionette art preservation, Com-

puter Animation and Virtual Worlds 26, pp. 207-218, 2015.

Papers under revison:

1. Shaojun Bian, L.H. You, H. Ugail, Jian J. Zhang, Interactive

creation of C2 continuous ODE surfaces, to be submitted.

2. O. Li, Shaojun Bian, I. Kazmi, L.H. You, Efficient sketch-based

character modelling with primitive deformer and detail generator,

to be submitted.

3. L.H. You, X.S. Yang, J.J. Pan, Shaojun Bian, .etc, Fast character

modeling with sketch-based PDE surfaces, to be submitted.
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Chapter 2

Related Work

The focus of my research is to develop a fast solution to achieve efficient

physically realistic skin deformations. Since character surface generat-

ing and character rigging affect the preprocessing time, I also propose

a more efficient automatic rigging algorithm and interactive creation of

C2 continuous ODE skin surface technique to efficiently reduce the pre-

processing time and data size. Accordingly, in what follows, I review

existing work on skin deformations, character modelling and automatic

rigging approaches.

2.1 Related Work on Skin Surface Creation

Polygon modeling and skin surface creation Russo [2006] have been

widely applied in commercial available graphics package. This mod-

eling approach can produce detailed or branched models, assign UV

texture coordinates, and create hard edges more readily than NURBS

modeling. However, polygons are incapable of accurately representing

curved surfaces. Therefore, a large number of polygons must be used

to approximate curved surfaces in a visually appealing manner. The

typical patch modeling approach is NURBS modeling Piegl & Tiller

[2012]Farin [2014]. With NURBS modeling, smooth curved objects can

be created and edited with few control points. When rendered, both
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low and high tessellation setting can be obtained from a same model.

One obvious disadvantage for NURBS modeling is that a lot of manual

operations are required to stitch adjacent patches together and deal with

the continuity problem between different patches. Subdivision modeling

Stam [1998]DeRose et al. [1998]Warren & Weimer [2001]Cashman et al.

[2009] start the modeling with a coarse polygonal model, subdivides its

polygonal faces into smaller faces through approximating or interpolating

schemes, and generates a denser polygon mesh of the model. Subdivision

makes the modeling of complex geometry more easily and rendering more

efficiently. Some disadvantages of subdivision modeling are difficult to

specify precision and lack of underlying parametrization.

Physics-based modeling considers the underlying physics of surface de-

formation. It has a capacity to create more realistic appearances. Var-

ious physics-based modeling approaches are reviewed by Nealen et al.

[2006]. These approaches include finite element method, finite difference

method, finite volume method, mass-spring systems, mesh-free methods,

coupled particle systems, and reduced deformable models using modal

analysis. Partial differential equation based geometric modeling was pi-

oneered by Bloor & Wilson [1989].

The PDE based methods, since their advent two decades ago, have

found their applications in a lot of surface modeling tasks, including free-

form surface generation Bloor & Wilson [1990b], n-sided patch modeling

Bloor & Wilson [1989], surface blending Bloor & Wilson [1989], and in-

dustrial applications Athanasopoulos et al. [2009]. Compared with the

conventional surface modeling methods, the PDE-based methods pro-

vide the user with a higher level control of the shape of the generated

surfaces using the parameters and the boundary conditions of the PDE

instead of many hundreds of control points. Therefore they can be easily

implemented as an easy to use interactive modeling package. However,

before that can be realized, one serious hurdle need to be overcome, that

is to solve the corresponding PDE efficiently. Currently, it is done either

ad hoc or only for simple problems. For complicated problems, expensive

numerical methods are still the only available choice, such as the finite

element method Li [1998]Li & Chang [1999]Li & Chang [1999], finite dif-
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ference method Cheng et al. [1990], and collocation point method Bloor

& Wilson [1990a]. In order to improve the computational efficiency, the

Fourier series method was proposed Bloor & Wilson [1996] although it

is effective only when the high frequency modes are not strongly repre-

sented in the boundary conditions. In addition, another issue to be ad-

dressed is that the existing PDE based approaches only considered static

modeling of surfaces. Dynamic modeling of curves and surfaces with up

to curvature continuities using analytical Differentical Equations has not

been investigated yet.

2.2 Related Work on Dynamic Skin Defor-

mation and Automatic Rigging

Various approaches of skin deformations can be classified into four dif-

ferent types. They are: geometric skin deformation, example-based skin

deformation, physics-based skin deformation, and hybrid skin deforma-

tions.

LBS is the most well-known geometric skin deformation algo-

rithm Magnenat-Thalmann et al. [1988] due to its efficiency and sim-

plicity. However, its limitations include collapsing elbow, candy-wrapper

effects, and failure of secondary deformation Lewis et al. [2000]; Kavan

et al. [2008]. In recent years, various geometric skinning methods Jacob-

son & Sorkine [2011]; Saito et al. [2015] have been proposed to overcome

these limitations. In spite of its high efficiency, geometric skinning is less

capable of creating highly realistic skin deformations.

Example-based skin deformation is employed to address the real-

ism issue of geometric skinning, by learning deformation dynamics from

a set of given examples Kavan et al. [2008]; Li et al. [2013]; Le & Deng

[2012]. One of its major disadvantages is the design of a sufficient set

of example skin shapes in order to produce realistic skin deformations,

which is often a non-trivial task in practices.

Physics-based skin deformation simulate the underlying physics
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to create realistic skin deformations Lee et al. [2009]; Kim & Pollard

[2011]; Li et al. [2014]; Wang et al. [2015]. Physics-based skinning in-

cluding dynamic skin deformation, is usually solved by numerical meth-

ods that require specialized knowledge and skills, making it difficult and

time-consuming to implement and hard to reach a high animation rate.

Therefore, it cannot be used for many real-time graphics applications.

2.2.1 Geometric skin deformation methods

Geometric skin deformation methods Linear Blend Skinning (LBS)

also called skeleton subspace deformation (SSD) is the most well-known

geometric skinning algorithm Magnenat-Thalmann et al. [1988] due to

its efficiency and simplicity. However, its limitations include collaps-

ing elbow, candy-wrapper effects, and failure of secondary deformation

Lewis et al. [2000]. Sauvage et al. [2008] proposed one approach to ad-

dress the deformation of B-spline surfaces while constraining the volume

enclosed by the surface. Kilian et al. [2007] presented a novel frame-

work to treat shapes in the setting of Riemannian geometry. A novel

skinning algorithm based on linear combination of dual quaternions is

presented in Kavan et al. [2008] to tackle some serious drawbacks of lin-

ear blend skinning. By introducing an extra scalar weight function per

bone, a simple modification of the linear blend skinning (LBS) formula-

tion was presented in Jacobson & Sorkine [2011] that enables stretching

and twisting without changing the existing skeleton rig or bone weights.

To remedy the problems like collapsing elbow and candy wrapper joint,

curve skeletons along with the joint-based skeletons was used in Saito

et al. [2015] to animate the skin shape. Le & Hodgins [2016] choose

to pre-compute optimized centre of rotation for each vertex, and use

these centres to interpolate rigid transformations. Vaillant et al. [2013]

firstly provide one pure geometric method which could handle skin con-

tact and muscle bulge problem in real-time, but fails to address deep

self-intersections. To solve this problem, Vaillant et al. [2014] use new

composition operators enabling blending effects and local self-contact be-

tween implicit surfaces, as well as a tangential relaxation scheme derived
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from the as-rigid-as possible energy to solve the tracking problem. As

above mentioned, in recent years, various geometric skinning methods

have been proposed to overcome these limitations. But, in spite of its

high efficiency, geometric skinning is still less capable of creating highly

realistic skin deformations.

Due to the exiting problems of unrealistic deformation created by

geometric based methods, such as the collapsing-joint, candy-wrapper,

bulging-joint and distorted normal, more explorations have been launched.

Here, four influential algorithms are illustrated, which could effectively

improve skin deformation shapes generated geometrically.

Implicit Skinning with Contact Modelling

As traditional geometric-based skinning techniques, linear blending skin-

ning(LBS)Magnenat-Thalmann et al. [1988] or dual-quaternion skinning(DQS)

Kavan et al. [2008] are good at performances, which could meet the need

of industry, but the deformations generated are less realistic, because of

the collapsing-joint and candy-wrapper Magnenat-Thalmann et al. [1988]

and bulging joint and distorted normal Kavan et al. [2008].

Implicit skinning with contact modeling is one purely geometric method,

which could effectively address skin contact artifacts at joints and muscu-

lar bulges in real-time without using time-consuming collision detection

(Vaillant et al. [2013]).

The merits of this method include maintaining the character volume

after deformation, generating contact shapes and bulging near joint with-

out any optimization and collision, so that the computing time could be

saved.

The demerit of this method is that the deformed shape quality de-

pends on the option of the initial geometric skinning method. When the

method could avoid deep self-intersections, the results will be of high-

quality.
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Bulging-Free Dual Quaternion Skinning

This bulging free dual quaternion skinning method Kim & Han [2014]

also considers both the shortage of LBS in collapsing-joint and candy-

wrapper effects, and the problems of DQS in bulging joint and distorted

normal.

In order to tackle the above mentioned skinning shortage, the first

step, is to concern on correcting the positions of vertex. It pre-computes

every vertex distance in the rest pose. When the vertex is in the bone-

zone, the distance means to the bone. While the vertex in the joint-zone,

the distance is to the joint. Then, use the run-time algorithm to correct

vertex positions, pushing the red curve toward the corresponding bone

or joint.

The second step is to correct the distorted-normals. Firstly, give every

vertex a vector for reference. Then after deformation, another reference

vector is rotated by a transform for every vertex. Finally, use the trans-

form to correct the distorted normal. Some unnatural shading of the

deformed skin could be eliminated.

This method mainly uses two procedures to solve the bulging joint and

distorted problems of DQS. It is simple and easy to implement but the

normal correction algorithm still faces computation overhead problem.

Stretchable and Twistable Bones Skinning

Stretchable and Twistable Bones for Skeletal Shape Deformation ap-

proach (STBS) Jacobson & Sorkine [2011] makes some modifications on

the current popular method, skeleton-based linear blend skinning (LBS),

to tackle the problems on elbow-collapse and candy-wrapper effects.

This approach could keep the original model skeleton rig and bone

weights after stretching and twisting deformation, and still maintains a

good performance.
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Differential Blending Deformation

Creating a realistic character model and generating the diverse poses

of the model in computer is increasingly difficult and time-consuming,

generally because of two reasons. One is the character rig system may

limit the space of achievable poses, and the other is that manipulating

a character rig system to obtain desirable poses requires huge manual

work, due to lots of the rigging parameters.

The Differential Blending approach Öztireli et al. [2013] introduced

here, deals with the above mentioned shortages of skeletal deformation

by using the 2D hand-drawn animation as a guide Blair [1994].

The core of this novel blending method stays in blending skeletal

large and disparate transformations into small ones. Firstly, represent

all transformations differentially. Then, calculate the averages of these

transformations. Finally, obtain the desirable blended transformations

between animation key-frames with much lower time and labour cost.

The user draws a stroke to select a bone. Then transformations from the

frames on the drawn curve to the select bone are computed to get the

final deformed model.

2.2.2 Example-based skin deformation methods

Example-based skin deformation methods is employed to address

the realism issue of geometric skinning, by learning deformation dynam-

ics from a set of given examples Sloan et al. [2001]. An automated frame-

work was presented in Mohr & Gleicher [2003] to fit the parameters of

a deformation model using a set of examples consisting of skeleton con-

figurations paired with the deformed geometry as static meshes. Rhee

et al. [2006] develop one parallel deformation method using the GPU

fragment processors. Joint weights for each vertex are automatically

calculated from sample poses, thereby reducing manual effort and en-

hancing the quality of WPSD (Weighted Pose Space Deformation) as

well as SSD (Skeletal Subspace Deformation). Park & Hodgins [2008]

presents a data-driven technique for synthesizing skin deformation from
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skeletal motion. Eulerian representation of skin was proposed in Li et al.

[2013] to simulate thin hyperelastic skin that can stretch and slide over

underlying body structures such as muscles, bones, and tendons. One

automated algorithm, called Smooth Skinning Decomposition with Rigid

Bones (SSDR), was introduced in Le & Deng [2012] to extract the lin-

ear blend skinning (LBS) from a set of example poses. It outperforms

the state-of-the-art skinning decomposition schemes in terms of accuracy

and applicability. One major disadvantage of example-based skin defor-

mation methods is the design of a sufficient set of example skin shapes in

order to produce realistic skin deformations, which is often a non-trivial

task in practice.

Data-driven methods generate new skin deformations through exam-

ple character skin models, without considering any underlying physics.

Once example models are sufficient, this category of methods could cre-

ate highly realistic skin deformations. Here, I mainly take research on

four data-driven algorithms developed for decreasing the input character

example data but still could accomplish high realistic results.

Smooth Skinning Decomposition

Smooth Skinning Decomposition with Rigid Bones (SSDR), is one ef-

fective approach that automatically extract linear blend skinning (LBS)

from input example models.
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Figure 2.1: Overview of this skinning decomposition method.(Le &
Deng [2012])

As shown in Fig. 2.1, B means rigid bone transformations and W

means a sparse, convex bone-vertex weight map W Le & Deng [2012].a

set of example models are decomposed into bone transformations and a

sparse, convex bone-vertex weight map by the block coordinate descent

algorithm (right hand side). During the process, the example poses (indi-

cated as blue dots) can be reconstructed more accurately by alternatively

updating W and B while the other is kept fixed. Only these little rigid

bones and the weight map are used to simulate the skin deformations

of character models by SSDR Le & Deng [2012]. More specifically, this

skinning decomposition is solved as one constrained optimization prob-

lem.

The skinning methods in James & Twigg [2005] and Hasler et al. [2010]

make a novel treatment called soft constraints which are the constraint

of bone orthogonal transformation and bone-vertex convex weight map.

But this SSDR technique treats these constraints as hard constraints to

avoid the collision between totally satisfying the constraints and min-

imizing the reconstructing error. By employing the SSDR model, the

bone transformation could be obtained simply and the deformed shapes

are accurate but it needs high computational cost.
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Enriching Coarse Interactive Deformation

Simulating elastic object is really necessary in character modeling area.

Many efficient approximate deformation method have been developed,

but they always cannot do good on simulating complex geometric models

with nonlinear materials and dissatisfied computing cost.

Considering on the aforementioned problems, the enriching coarse

method follows the idea that, the non-linearly deformation of geometric

object could be decomposed as a superposition of an approximate model

and displacements on deviation between approximate model and real geo-

metric model Zhong et al. [2005]. It proposes one efficient dynamic inter-

active coarse model coupled with enriching details form a high-resolution

quasi-static model in a data-driven way Seiler et al. [2012].

The first stage of this algorithm is the pre-computation. During this

stage, theres an interactive tool which could be used to act on the object

and create object deformation. The aforementioned procedure acts again

but with higher resolution quasi-static simulation. After every example

interaction, the difference between the two models is calculated as a

displacement field for next times use, called stamp in this method.

The second stage of this algorithm is to obtain the approximated

character deformation model by coarse simulating. And weight (w) is

extracted to blend the stamps using non-linear correlation. Then ac-

cording to the coarse model of object and the blended stamp, the high

resolution model with enriching details could be produced Seiler et al.

[2012]. This approach proposes the stamping way to enhance the quality

of interpolation for simulating elastic object with details. But the usage

direction on dynamic deformation should still be exploded.

Sparse Localized Components Deformation

This Sparse Localized deformation method decomposes a whole model

deformation into some sparse and spatially localized modes through an

animated sequence Neumann et al. [2013].
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Figure 2.2: decomposed sparse and local deformations (blue) could be
added to create a new deformation needed (Neumann et al. [2013]).

As shown in Fig. 2.2, summing several deformations of localized com-

ponents produces one new facial expression. This method automati-

cally decomposes any mesh animations like performance captured faces

(left) or muscle deformations (right) into sparse and localized deforma-

tion modes (shown in blue). Left: a new facial expression is generated

by summing deformation components. This method automatically sep-

arates spatially confined effects like separate eyebrow motions from the

data. Right: This algorithm extracts individual muscle and bone defor-

mations. The deformation components can then be used for convenient

editing of the captured animation. Here, the deformation component of

the clavicle is over-exaggerated to achieve an artistically desired look.

Firstly, a sparsity-inducing regularizer is edited for mesh deformation

setting. Then design one mechanism to automatically decompose sparse

and localized mesh components efficiently which could be guided by input

data from user. Besides, one effective decomposition optimization way

has also been developed.

Based on the important theories on matrix decomposition such as

Non-Negative Matrix Factorization (NMF) Lee & Seung [2001], Robust

PCA Candès et al. [2011], and Sparse PCA Zou et al. [2006], this new ef-

ficient data-driven algorithm could decompose mesh sequence into sparse
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deformation components without considering the real underlying physi-

cal movements.

The sparse localized decomposition method highly deals with some

tough mesh processing and editing tasks, such as animation editing on

faces, body, cloth and statistical geometry processing.

Non-Linear Heterogeneous Soft Tissue Deformation

Recently, the methods on simulating soft object deformation have been

developed to solve the heterogeneous materials problem. But it exactly

is still a time-consuming work and another tough problem is material

nonlinearities.

This data-driven method proposes one novel way to simulate the defor-

mations of non-linear heterogeneous soft object. Finite element methods

and a range of measured example objects deformation have been used,

saving lots cost of choosing material parameters Bickel et al. [2009]. As

always, a four stage process applies:

(1) Every measured example deformation of objects is transformed

into a local element-wise strain space. (2) Model the stress-strain re-

lation of material deformation into locally linear sample. (3) Through

radial basis functions (RBFs) Buhmann [2003], interpolate and simu-

late the non-linear deformation of material in strain space. (4) Finally,

by using an easy-to-implement elastostatic finite-element solution of the

non-linear material examples based on incremental loading, the accurate

soft object deformation models could be generated on lower computation

cost Bickel et al. [2009].

2.2.3 Dynamic Skin Deformation and Automatic rig-

ging

Dynamic Skin Deformation, Chaudhry et al. [2015] integrate geo-

metric transformations, example-based, and physics-based approaches

to simulate dynamic skin deformations. Xu & Barbič [2016] integrate
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physics-based and pose-space skin deformations, where the latter com-

bines SSD Magnenat-Thalmann et al. [1988] with artist-corrected pose

shapes, and introduce pose-dependent model reduction to accelerate the

finite element simulation for real-time dynamic skin deformation appli-

cations. Physics-based dynamic skin deformation techniques play a very

important role in computer modelling and animation currently. This

kind of methods could produce more realistic skin deformed shapes but

commonly need high computing cost.

Automatic rigging, Generation and placement of an animation skele-

ton, is developed to avoid tedious and time-consuming manual rigging.

Here, an animation skeleton typically consisting of bones and joints is

used to drive the movements and deformations of skin meshes, while a

curve skeleton is defined as the medial axis Pan et al. [2009] or a curve

connecting the centres of closed curves on a skin mesh.

Existing automatic rigging methods can be roughly classified into four

different categories: skeleton embedding, single shape-based skeleton ex-

traction, motion-based skeleton extraction, and combination of skeleton

embedding and extraction. Skeleton embedding methods require opti-

mally embedding pre-designed skeletons to skin meshes, which is often

achieved through optimization Baran & Popović [2007]. However, its

main disadvantage is the requirement for pre-designed skeletons. Rhodin

et al. [2015] introduced one approach to address the problem that retar-

geting is hard for nonhuman characters, with locomotion bound to the

sensing volume; and pose mappings are ambiguous with difficult dynamic

motion control. Single shape-based skeleton extraction methods obtain

skeletons from a single static pose Au et al. [2008]; Pan et al. [2009].

Since only one static pose is used, such down-sampling based approaches

may fail when converting a curve skeleton into its corresponding ani-

mation skeleton. Motion-based skeleton extraction methods use motion

data or multiple example poses to determine the skeleton and joint lo-

cations, and overcome the disadvantage of single shape-based skeleton

extraction De Aguiar et al. [2008]; Le & Deng [2014]. The combination

of skeleton embedding and extraction tackles the disadvantage of single

shape-based skeleton extraction by locating a suitable template skeleton
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in the extracted curve skeleton through classification rules, derived from

the general characteristics of each character class Pantuwong & Sugimoto

[2012]. These methods mostly are not computationally efficient in gen-

eral. For example, on a typical off-the-shelf computer, they often require

at least a few seconds to complete automatic rigging for a model with

several thousand vertices and tens of minutes (or even hours) for a model

with tens of thousands of vertices. Rhodin et al. [2014] presented one

way to control charactors for real-time animation, avoiding the rigging-

skinning pipeline for arbitrary motion mapping. And Vögele et al. [2012]

introduced one fast method to rapidly combine available sparse motion

capture data with existing mesh sequences to produce a large variety of

new animations.

2.3 Related Work on Physics-based Skin

Deformation

2.3.1 Physics-based skin deformation methods

Physics-based skin deformation methods try to simulate the un-

derlying physics to create more realistic skin deformations. Nedel &

Thalmann [1998] propose a method to simulate human beings based

on anatomy concepts. In Angelidis & Singh [2007], volume preserving

method was presented to avoid extra bulge or wrinkle when deforma-

tion, and use vector field integration to avoid self-collision, however is

still computationally expensive. A comprehensive biomechanical model

of the human upper body was developed in Lee et al. [2009] that uses a

coupled finite element model with the appropriate constitutive behavior

to simulate biomechanically realistic flesh deformations and investigates

an associated physics-based animation controller. A physically based

simulation system for skeleton-driven deformable body characters is de-

veloped in Kim & Pollard [2011] that gives a well-coordinated combina-

tion of a reduced deformable body model with nonlinear finite elements,

a linear-time algorithm for skeleton dynamics, and explicit integration
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can boost simulation speed. An efficient algorithm based on a novel

discretization of corotational elasticity over a hexahedral lattice is exam-

ined in McAdams et al. [2011] to achieve near-interactive simulation of

skeleton driven, high resolution elasticity models, but it still need several

seconds per animation frame. Hahn et al. [2012] formulate the equations

of motions in the subspace of deformations defined by animator’s rig,

bringing the benefits of physics-based simulation to enhance the realism

of traditional animation pipelines, but need tens of seconds when simu-

late one normal character model. A closed-form skinning method is pro-

posed in Kavan & Sorkine [2012] to generate higher quality deformations

than both linear and dual quaternion skinning through optimize skinning

weights for the standard linear and dual quaternion skinning techniques

and introducing joint-based deformers. Elastic animation editing with

spacetime constraints was discussed in Li et al. [2014] that not only op-

timizes control forces added to a linearized dynamic model, but also op-

timizes material properties to better match user constraints and provide

plausible and consistent motion. By minimizing quadratic deformation

energy, built via a discrete Laplacian inducing linear precision on the

domain boundary, a method was presented in Wang et al. [2015] to de-

sign linear deformation subspaces, unifying linear blend skinning and

generalized barycentric coordinates. A fast physically based simulation

system for skeleton-driven deformable body characters is developed in

Jacobson et al. [2012] that gives a well-coordinated combination of a

reduced deformable body model with nonlinear finite elements, a linear-

time algorithm for skeleton dynamics, and explicit integration, to boost

simulation speed. In Kry et al. [2012], EigenSkin has been presented to

correct SSD results, it achieves high frames per second, but construct-

ing one proper error-optimal eigen displacement basis requires sufficient

experience and background knowledge. Since it is not easy to model the

different elastic behaviors of muscle, fat and skin using simple volumet-

ric mesh, Bender et al. [2013] introduce one novel multi-layer model to

simulate them, but it fails handle collisions during fast motions. Heeren

et al. [2012] presents one computational model for geodesics in the space

of thin shells and incorporate bending contributions into deformation
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energy, besides, Heeren et al. [2014] develop a time- and space-discrete

geodesic calculus to shoot geodesics with prescribed initial data, for sim-

ulation realistically trade off, they all need heavy computation. Although

physics-based skin deformations improve the realism, they require spe-

cific knowledge and skills, big computer memory, high computational

cost, and low efficiency. In order to reduce the computational cost of

physics-based skin deformations, model reduction has been introduced

into dynamic Teng et al. [2014] deformation simulations. It can achieve

real-time performance, but reduce the computational accuracy and in-

crease the implementation complexity. Elastic animation editing with

spacetime constraints was proposed in Li et al. [2014], where optimized

control forces are added to a linearized dynamic model, and material

properties are optimized to better match user constraints and provide

plausible and consistent motion. Recently, Wang et al. [2015] design lin-

ear deformation subspaces by minimizing quadratic deformation energy.

Physics-based techniques play a very important role in computer mod-

elling and animation currently. This kind of methods could produce

more realistic skin deformed shapes but commonly need high computing

cost. Here, I mainly review four physics algorithms which fairly solve

the tough tasks on deformation of complex heterogeneous objects and

soft materials.

Sparse Meshless Model

Physics-based methods consider the physics principles of skin and the

material attributes. Because of the complex heterogeneous material of

real objects, common methods often regard it into one homogeneous

material for modelling. Once taking use of current method for modelling

the complex heterogeneous objects realistically, it needs to deal with lots

of varying material parameters which seems unfeasible previously.

The Sparse Meshless model Faure et al. [2011] of complex deformable

solids deals with above questions using various stiffnesses to simulate

complex heterogeneous objects. By maintaining the frame-based mesh-

less framework introduced in Gilles et al. [2011], this method obtains
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the physical realism of character animation by using skeleton subspace

deformation (SSD) on character volume and continuum mechanics.

Compared with previous approaches, this Faure et al. [2011] model

adapts coarse deformation functions to efficiently simulate objects of

complex heterogeneous material at a high performance and less control

nodes but the accuracy should be improved.

Efficient Elasticity Technique

As for the high computational cost of physically based approach to gen-

erate the life-like human and animal models, geometric or data-driven

skinning approaches are always used. But in that case, the pinch-free

geometry could not be preserved. Therefore, some previous works have

been done to simplify the physical simulation. The principle component

analysis of off-line elasticity simulation Kry et al. [2002] is use to enhance

the interaction of physics-based SSD.

Figure 2.3: Overview of the efficient elasticity model (McAdams et al.
[2011]).

The novel elasticity model introduced in McAdams et al. [2011] focuses

on solving the soft tissue deformation problems. It innovatively dis-

cretizes co-rotational elasticity over a hexahedral lattice to diminish the

self-collision artifacts and maintains soft-constraints for character real-
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ism.

As shown in Fig. 2.3, there’s a character mesh and its skeleton (left).

Then a corresponding hexahedral lattice is defined (middle). The original

mesh is deformed by the rules of self-collision and volumetric elasticity.

Taking a reference on Chao et al. [2010], this corotational elasticity

discretization method accurately treats the force into derivatives to get a

more robust solver than the simplified warped-stiffness approaches with

little manual cost.

Skeleton and Skin Coupled Physics Framework

Recently some outcomes promote the controlling of human-like rigid

characters Yin et al. [2007],Coros et al. [2010] and highly dynamic mo-

tions Liu et al. [2012], Brown et al. [2013]. But sometimes the motions of

character skin and soft body always influence the dynamic of skeleton.

In the long run, biomechanical algorithms that truly simulate human

anatomy are exactly necessary to avoid the problem Lee et al. [2009],

unfortunately still need high computing cost.

Here, this physically based framework for simulating and controlling

life-like soft material characters could couples the dynamics of skeleton

and soft body Liu et al. [2013]. In detail, this simulation and control

system works as:

(1) Take the character skeleton and surface mesh as input data. (2)

In order to couple the skeleton dynamic and skin geometry, user should

construct one coarse volumetric mesh with a reference configuration X.

More exactly, one soft body dynamics solver is obtained to construct

the volumetric mesh. And a rigid body dynamics solver is obtained to

simulate the character skeleton.

By coupling the dynamics of skeleton and skin, this physics-based

framework shows good performance on character large deformation and

joint effects.
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Embedded Thin Shells Wrinkle Deformation

Wrinkles simulation takes a very important part in object deformation.

When the material properties of the surface and underlying volume

change, wrinkles will happen, causing by a force. The wrinkle appear-

ances commonly occur on human skin Danielson [1973], but also could

appear at other kinds of objects, like fruits and mountain Genzer &

Groenewold [2006].

The embedded thin shells framework showed in Rémillard & Kry

[2013] could highly simulate complex object with a soft interior and a

harder skin. The core of it is to combine high resolution thin shells with

coarse finite element lattices and confirm frequency based constraints.

And it could generate the predicted wrinkle by calculating the physical

parameters of characters. This method also adapts one novel two-way

coupled model to eliminate the computational cost of internal volumetric

elements Rémillard & Kry [2013]. To elaborate, this technique has the

following phases:

(1) Taking use of the embedded mesh method and replaces the em-

bedded mesh with a thin shell, combining both systems just with po-

sition constraints. (2) Considering the constraints. They should be

non-intervention with wrinkle formation or large character deformation.

(3) C1 quadratic shape functions to represent the interior deformations,

achieving seamless effect on discretization boundaries.

This solver produces static solutions for the shell. These shells are

thin enough and cannot cause visual dynamics. The high-resolution de-

formation of these shells could be used to contribute forcing on the low-

resolution interior dynamics Rémillard & Kry [2013]. Thus, the process

could largely eliminate the cost of deforming the interior of objects.

2.3.2 Curve-based skin deformation methods

Curve-based methods have also been proposed for modeling and sim-

ulating 3D character models in recent years. For example, Hyun et al.
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[2005] proposed sweep-based human deformation. You et al. [2007, 2008]

presented a curve-based sweeping surface and dynamic skin deformation

method. Bartoň et al. [2013] discussed the theory, discretization, and

numerics of curves which are evolving such that part of their shape, or

at least their curvature as a function of arc length, remains unchanged.

Bartoň et al. [2014] sought congruent planar curves to generate or ap-

proximately generate a freeform surface. Chaudhry et al. [2015] investi-

gated a finite difference solution to curve-based dynamic skin deforma-

tions. Brandt et al. [2016] introduces techniques for the processing of

motion and animations of non-rigid shapes. Although curve-based ap-

proaches simplify physics-based skinning, analytical solutions have not

yet been presented to achieve both high efficiency and good realism of

physics-based skin deformations.

The above discussions indicate that geometric, example-based, and

physics-based skin deformations have their own strengths and weak-

nesses. Integrating them together can maximize their strengths and

minimize their weaknesses. Inspired by You et al. [2008] which uses

a curve defined model to animate skin deformation, Chaudhry et al.

[2015] integrates geometric transformations, example-based and physics-

based approaches to simulate dynamic skin deformations. Xu & Barbič

[2016] integrates physics-based and pose-space skin deformations where

the latter combines skeleton subspace deformation (SSD) Magnenat-

Thalmann et al. [1988] with artist-corrected pose shapes, and proposes

pose-dependent model reduction to accelerate the finite element simu-

lation for hard real-time applications. Similar to Xu & Barbič [2016]

in spirit, this paper integrates SSD, example-based and physics-based

skin deformations. Different from Xu & Barbič [2016] which develops a

complicated numerical approach to deal with linear and nonlinear elas-

tic dynamic skin deformations including transient and steady-state skin

vibrations, this paper proposes a simple analytical solution to cope with

linear elastic dynamic skin deformations and steady-state skin vibrations

which is highly realistic and efficient, easy to learn, implement and use,

and requires much fewer manual operations and far smaller computer

memory requirement.
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Chapter 3

Controllable C1 Surface

Method for Blending

Surface blending with tangential continuity is most widely applied in

computer aided design etc. For such surface blending, two issues should

be addressed. One is to exactly satisfy blending boundary constraints,

and the other is to achieve a desirable shape of blending surfaces. Sur-

face blending with tangential continuity can be divided into G1 and C1.

G1 continuous surface blending achieves a desirable shape of blending

surfaces by adjusting the magnitude of boundary tangents in blending

boundary constraints. C1 continuous surface blending can exactly sat-

isfy blending boundary constraints but may have no capacity to adjust

the shape of blending surfaces.

This chapter proposes a new surface blending method. It can not only

exactly satisfy blending boundary constraints but also achieve a desirable

shape of blending surfaces. This blending method is based on the con-

cept of sweeping surfaces controlled by fourth order ordinary differential

equations. It creates blending surfaces by sweeping a three-dimensional

curve called a generator along two three-dimensional trajectories and

making the generator exactly satisfy the tangential constraints at the

trajectories at the same time. The shape of blending surfaces is con-

trolled by manipulating the generator with the solution to fourth order

ordinary differential equations. Since the blending boundary constraints
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are explicitly incorporated in the analytical mathematical equations of

the blending surfaces, it is easy to use and generates blending surfaces

quickly. In addition, it can blend more than two primary surfaces to-

gether, and manipulate the shape of the blending surfaces effectively

while keeping the same continuity at the trimlines between the blending

surface and primary surfaces.

3.1 Introduction

Surface blending is to generate a transition surface which connects two

or more surfaces together seamlessly and smoothly. The surfaces to be

connected are called primary surfaces or base surfaces and the transition

surface is called a blending surface. The interface curves between the

blending surface and the primary surfaces are called trimlines or bound-

ary curves. The constraints which a blending surface must satisfy at the

trimlines are called blending boundary constraints.

Surface blending is widely used in many applications such as computer-

aided design, manufacturing systems, and character modeling to achieve

a smooth transition between two or more separate primary surfaces for

strength, manufacturing, aesthetic and usage purposes. Due to its wide

range of applications, various surface blending approaches have been

proposed Vida et al. [1994].

Rolling-ball blending is the most popular method. It was proposed

by Rossignac and Requicha Rossignac & Requicha [1984]. Rolling-ball

blending can be used to blend both implicit and parametric surfaces.

Depending on whether the radius of the rolling ball changes or not,

rolling-ball blending can be divided into constant-radius and variable-

radius blends. Constant-radius blending was investigated in Rossignac

& Requicha [1984]; Choi & Ju [1989]; Barnhill et al. [1993]; Farouki &

Sverrisson [1996]; Kós et al. [2000]. Variable-radius blending was ex-

amined in Chuang et al. [1995]; Chuang & Hwang [1997]; Lukács [1998].

Recently, Whited and Rossignac introduced the concept of relative blend-

ing and a set theoretic formulation for variable-radius blending Whited &
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Rossignac [2009]. Blending surfaces constructed with rolling ball meth-

ods are circular. Some other blending methods can create noncircular

blending surfaces such as branching blends with Pythagorean normal sur-

faces Krasauskas [2008], vertex blending using S-patches Zhou & Qian

[2009, 2010], N-sided hole filling Schichtel [1993]; Hsu & Tsay [1998];

Piegl & Tiller [1999]; Li & Li [2002]; Hwang et al. [2003]; Yang et al.

[2006]; Shi et al. [2010], and the following partial differential equation-

based blends.

Surface blending using partial differential equations is an effective ap-

proach especially in dealing with various blending problems between two

separate primary surfaces. With such an approach, a blending surface

can be constructed from the solution to a vector-valued partial differ-

ential equation which satisfies the positional, tangential or higher or-

der continuities at trimlines. Partial differential equation-based surface

blending was pioneered in Bloor & Wilson [1989]. Since closed form

solutions to partial differential equations are difficult to obtain, some

numerical and approximate analytical solutions were investigated. Li Li

[1998]; Li & Chang [1999] and Li and Chang Li & Chang [1999] proposed

boundary penalty finite element methods of surface blending. Bloor and

Wilson developed a perturbation method to generate blending surfaces

Bloor et al. [2000]. They also investigated a pseudo-spectral method for

the construction of regular 4-sided patches Bloor & Wilson [2005]. You

et al. presented approximate analytical methods You et al. [2004b,a].

In addition to partial differential equation-based surface blending, solid

modelling using partial differential equations has also been investigated

in Bloor & Wilson [1993]; You et al. [2011].

In contrast to partial differential equations which are usually solved

by numerical or approximate analytical methods, the accurate analytical

solution to ordinary differential equations (ODEs) involving x, y and z

components can be obtained easily. The geometric representation of such

a solution is a three-dimensional curve.

Any two and three-dimensional surfaces can be defined with curves.

Therefore, these surfaces can be created and manipulated through curves.
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Some approaches have been developed for this purpose. Singh and Fiume

used wire curves to describe the shape of an object, and introduced

domain curves to define the domain of deformation on the object Singh

& Fiume [1998]. Pyun et al. extracted wire curves and deformation

parameters from a facial model for facial animation Pyun et al. [2004].

Qin and Wright proposed an approach to construct freeform surfaces

from unorganized curves Qin & Wright [2006]. Yoon and Kim generated

freeform deformations by sweeping key cross-section curves Yoon & Kim

[2006]. Nealen et al. designed freeform surfaces from 3D curves Nealen

et al. [2007]. You et al. used characteristic curves to describe dynamic

skin deformations You et al. [2008]. Liu et al. discussed how to use

nonparallel curve networks to construct surfaces Liu et al. [2008]. Gal

et al. employed intelligent wire curves as basic primitives to edit surface

models Gal et al. [2009].

How to manipulate the shape of a blending surface is also an interest-

ing topic. It has been investigated in the existing literature. For example,

the work reported in Filip [1989]; Hoschek et al. [1993] achieves different

shapes of a blending surface by scaling the length of boundary tangents.

Although such a treatment cannot satisfy blending boundary tangents

exactly, it can achieve visually continuity (G1 continuity) between the

blending and primary surfaces.

The main aim of this method is to propose a new surface blending

method which not only manipulates the shape of blending surfaces effec-

tively, but also satisfies blending boundary constraints exactly. This new

blending method constructs a C1 continuous blending surface by sweep-

ing a curve called a generator along two trimlines called trajectories and

exactly satisfies positional and tangential continuities at the trimlines.

The generator is created and manipulated by the solution to fourth order

ODEs subjected to blending boundary constraints consisting of trimlines

and first partial derivatives of the primary surfaces to be blended at the

trimlines.

In what follows, firstly discuss the mathematical model and closed

form solution of curve-based surface blending in Section 3.2. Then im-
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plement and validate the proposed closed form solution in Section 3.3.

Next, examine shape manipulation of blending surfaces and make a com-

parison between the proposed approach and surface blending based on

the cubic Hermite interpolation in Section 3.4. Finally, use an example

to demonstrate the application of the proposed method in blending more

than two separate primary surfaces together in Section 3.5 and 3.6. This

work also investigates how to approximate the proposed approach for

CAD-system processing in Section 3.7 and conclude the work given in

Section 3.8.

3.2 Mathmatical Model and Solution

The smoothness between primary and blending surfaces can be described

with different continuities. In most situations, blending surfaces with up

to tangential continuities are required. For the parametric representa-

tion of blending surfaces, the positional continuity is described by the

mathematical equation of primary surfaces at trimlines, and the tangen-

tial continuity is defined by first partial derivatives of primary surfaces

at the trimlines.

Therefore, for surface blending with positional and tangential conti-

nuities, blending boundary constraints can be written as,

u = 0 S(u, v) = C0(v), ∂S(u, v)/∂u = C̄0(v)

u = 1 S(u, v) = C1(v), ∂S(u, v)/∂u = C̄1(v)

(3.1)

where the vector-valued function S(u, v) = [Sx(u, v)Sy(u, v)Sz(u, v)]T

is the mathematical description of a blending surface, u and v are para-

metric variables, and C0(v) = [C0x(v)C0y(v)C0z(v)]T and

C1(v) = [C1x(v)C1y(v)C1z(v)]T are the vector-valued positional functions

of primary surfaces at the trimlines, C̄0(v) = [C̄0x(v)C̄0y(v)C̄0z(v)]T and

C̄1(v) = [C̄1x(v)C̄1y(v)C̄1z(v)]T are the first partial derivatives of primary

surfaces at the trimlines which stand for the tangential constraints.
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The determination of the functions C0(v), C̄0(v), C1(v) and C̄1(v)

in blending boundary constraints (1) has been solved in the existing

literature. If the trimline Ci(v)(i = 0or1) is an isoparametric line of a

primary surface P (u, v), Ci(v) can be easily determined by taking the

parametric variable U to be the parametric value um of the isoparametric

line, i.e., Ci(v) = P (um, v). Similarly, the first partial derivative of the

primary surface at the isoparametric line can be formulated as C̄i(v) =

∂P (um, v)/∂u(i = 0or1).

If the trimline is not an isoparametric line of a primary surface P (s, t)

where s and t are two parametric variables, the methods described in

Hoschek et al. [1993] can be used to determine an arbitrary trimline on

the primary surface and those presented in Filip [1989]; Hoschek et al.

[1993]; Koparkar [1991]; Bardis & Patrikalakis [1989] can be used to find

a tangent in the tangent plane of the primary surface P (s, t) at a point

of the trimline. The arbitrary trimline and tangent can be formulated

as Ci(v) = P (s(v), t(v)) = P (v) and C̄i(v) = T (v) such as T (v) =

l(v)∂P (s(v), t(v))/∂s + k(v)∂P (s(v), t(v))/∂t in Koparkar [1991] where

V is a curve parameter, and l(v) and k(v) are two functions or constants

which can be selected to manipulate the tangent T (v).

In order to manipulate the shape of blending surfaces, the parameters

which can affect the shape but have no influence on the blending bound-

ary constraints should be introduced into the mathematical description

of the blending surfaces. A vector-valued ordinary differential equation

(ODE) provides a good way of introducing such parameters due to the

following reason.

The geometric representation of the solution to a vector-valued ODE

is a three-dimensional curve and a blending surface can be created by

sweeping the curve, called a generator, along two trimlines and exactly

satisfying the boundary tangent at the trimlines at the same time. The

parameters involved in the differential equation have an influence on

the shape of the curve and can be used as a shape manipulator of the

blending surface. In this chapter, blending surfaces created with this

approach are called ODE blending surfaces.
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Since fourth order differential equations involve four unknown con-

stants which can be used to satisfy the four positional and tangential

functions in 3.1, I propose to use the following equations for surface

blending with positional and tangential continuities.

α
d4G(u)

du4
+ β

d2G(u)

du2
+ γG(u) = 0

(3.2)

where G(u) = [Gx(u)Gy(u)Gz(u)]T is a vector-valued function defin-

ing a generator which is used to create sweeping surfaces, and α, β and γ

are called shape control parameters which serve as shape control handles

for the generator.

The vector-valued ODE Eq. 3.2 can be changed into an algebraic

equation by taking each component of the vector-valued function of the

generator to be

Gγ(u) = eru

(γ = x, y, z)

(3.3)

Substituting Eq. 3.3 and the second and fourth derivatives of G(u)

with respect to the parametric variable u into Eq.3.2 and deleting eru,

the following algebra equation is reached,

αr4 + βr2 + γ = 0

(3.4)

Depending on different combinations of shape control parameters, Eq.

3.4 has different solutions. Here only give the solution for β2 = 4αγ and

α/β < 0. All other solutions are given in Appendix A.
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For β2 = 4αγ and α/β < 0, the roots of Eq. 3.4 are,

r1,2,3,4 = +− q1
(3.5)

where

q1 =
√
−β/(2α)

(3.6)

With the roots given in Eq. 3.5, the solution of Eq. 3.2 is,

G(u) = d1e
q1u + d2ue

q1u + d3e
−q1u + d4ue

−q1u

(3.7)

where d1, d2, d3 and d4 are vector-valued unknown constants.

In order to determine the unknown constants in Eq. 3.7, substitute

it into Eq. 3.1, conduct the sweeping operation by solving for the four

vector-valued unknown constants d1, d2, d3 and d4, and obtain,

d1 = [a22f1(v)− a12f2(v)]/a0

d2 = [a11f2(v)− a21f1(v)]/a0

d3 = C0(v)− [a22f1(v)− a12f2(v)]/a0

d4 = C̄0(v) + q1C0(v)− 2q1[a22f1(v)− a12f2(v)]/a0

−[a11f2(v)− a21f1(v)]/a0

(3.8)

where,
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a0 = a11a22 − a12a21
(3.9)

and,

a11 = eq1 − (1 + 2q1)e
−q1

a12 = eq1 − e−q1

a21 = q1e
q1 − q1e−q1 + 2q21e

−q1

a22 = (1 + q1)e
q1 − (1− q1)e−q1

f1(v) = −(1 + q1)e
−q1C0(v)− e−q1C̄0(v) + C1(v)

f2(v) = [q1e
−q1 − (1− q1)q1e−q1 ]C0(v)− (1− q1)e−q1C̄0(v) + C̄1(v)

(3.10)

Substituting Eq. 3.8 back into Eq. 3.7, the mathematical equation of

the swept surfaces for and can be written as,

S(u, v) = [e−q1u + q1ue
−q1u − (1 + q1)e

−q1g1(u) + [q1e
−q1

−(1− q1)q1e−q1 ]g2(u)]C0(v) + [ue−q1u − e−q1g1(u)

−(1− q1)e−q1g2(u)]C̄0(v) + g1(u)C1(v) + g2(u)C̄(v)

(3.11)

where,

g1(u) = [q1[e
q1 + (2q1 − 1)e−q1 ]u(e−q1u − eq1u) + [(1 + q1)e

q1

−(1− q1)e−q1 ][eq1u − (1 + 2q1u)e−q1u]]/A0

g2(u) = [[eq1 − (1 + 2q1)e
−q1 ]u(eq1u − e−q1u) + 2q1(e

q1 − e−q1)

ue−q1u + (eq1 − e−q1)(e−q1u − eq1u)]/A0

(3.12)
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and,

A0 = [eq1 − (1 + 2q1)e
−q1 ][(1 + q1)e

q1 − (1− q1)e−q1 ]

−(eq1 − e−q1)[q1eq1 − q1e−q1 + 2q21e
−q1 ]

(3.13)

With the mathematical equations of blending surfaces obtained in

Eqs. 3.11, 3.29, 3.34 and 3.40, it can tackle various surface blending

problems with positional and tangential continuities. I will demonstrate

this in the following sections.

Since the boundary constraints C0(v), C̄0(v), C1(v) and C̄1(v) are ex-

plicitly incorporated in the mathematical expressions 3.11, 3.29, 3.34 and

3.40 of the blending surfaces, the main task of surface blending is to de-

termine the boundary curves and first partial derivatives at the trimlines

which can be readily obtained from the primary surfaces. Therefore, the

proposed surface blending method is easy to use.

Once the boundary constraints at the trimlines are known, blending

surfaces are analytically determined from one of 3.11, 3.29, 3.34 and

3.40. Even boundary constraints are represented at the discrete points

at the trimlines, the proposed method can also construct blending sur-

faces quickly because of the explicit mathematical expressions of blending

surfaces.

3.3 Implementation and Validation

In this section, I implement the proposed method and validate it with

various surface blending tasks. The first task is to create a blending

surface between an open surface and a closed conic surface. This example

is used to validate Eq. 3.11 in surface blending. Denoting S = S(u, v) =

[SxSySz]
T , the boundary constraints for this blending task can be written
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Figure 3.1: Blending surface constructed with Eq. 3.11

as,

u = 0 Sx = 0.1 sinh(17y + 0.1) + 1.1297 sin v ∂Sx/∂u = −0.027 sin v

Sy = 0.3 cosh 0.3v + 1.1297 cos v ∂Sy/∂u = −0.027 cos v

Sz = −1.5 + e0.3 ∂Sz/∂u = −0.5e0.3

u = 1 Sx = 0.8 sin v ∂Sx/∂u = 0.2 sin v

Sy = 0.8 cos v ∂Sy/∂u = 0.2 cos v

Sz = −1.9 ∂Sz/∂u = −3.6

(3.14)

Substituting the vector-valued functions C0(v), C̄0(v), C1(v) and C̄1(v)

determined by Eq. 3.14 into Eq. 3.11, and setting the shape control

parameters to: α = γ = 1, and β = −2, the blending surface is obtained

and depicted in Fig. 1 where Fig. 3.1(b) and Fig. 3.1(c) are from

different views of the blending surface in Fig. 3.1(a).

The second blending task is to generate a blend between a circular

torus and an elliptic hyperboloid. This blending task is used to validate

Eq. 3.29 in surface blending. The boundary constraints for this blending
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Figure 3.2: Blending surface constructed with Eq. 3.29

task are,

u = 0 Sx = (1.7 + 0.45 cos 0.85) cos v ∂Sx/∂u = 2.45 sin 0.85 cos v

Sy = (1.7 + 0.45 cos 0.85) sin v ∂Sy/∂u = 2.45 sin 0.85 sin v

Sz = 0.45 sin 0.85 ∂Sz/∂u = −2.45 cos 0.85

u = 1 Sx = 1.5 cosh 0 cos v ∂Sx/∂u = (sinh 0 + cosh 0) cos v

Sy = cosh sin v ∂Sy/∂u = 0.7(sinh 0 + cosh 0) sin v

Sz = −1.5 sinh 0 ∂Sz/∂u = −1.5 cosh 0

(3.15)

For this blending task, I set the shape control parameters to: α =

γ = 1 and β = 2. The obtained blending surface was depicted in Fig.

3.2 where Fig. 3.2(a) is from the front view and Fig. 3.2(b) is from the

side view.

The third example is to construct a blending surface between two

conic frustums: one has some wrinkles on its surface and the other has

a circular cross section. This example is used to validate Eq. 3.34 in

surface blending. The boundary constraints for this blending task have

the form of,
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Figure 3.3: Blending surface constructed with Eq. 3.34

u = 0 Sx = 1.013[0.909 cos v + 0.051 cos(12v)]

∂Sx/∂u = 0.26[0.909 cos v + 0.051 cos(12v)]

Sy = 1.013[0.909 sin v + 0.051 sin(12v)]

∂Sy/∂u = 0.26[0.909 sin v + 0.051 sin(12v)]

Sz = 0.95 ∂Sz/∂u = −2.1

u = 1 Sx = 1.3 cos v ∂Sx/∂u = −0.5 cos v

Sy = 1.3 sin v ∂Sy/∂u = −0.5 sin v

Sz = −1.2 ∂Sz/∂u = −2

(3.16)

Setting the shape control parameters to: α = γ = 1 and β = 3, the

obtained blending surface was depicted in Fig. 3.3.

The fourth example is to produce a blending surface between a circular

cylinder and an elliptic cylinder of two sheets. This example is used to

validate Eq. 3.40 in surface blending. The boundary constraints for this

blending task are,
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Figure 3.4: Blending surface constructed with Eq. 3.40

u = 0 Sx = 0.9 cos v ∂Sx/∂u = 0

Sy = 0.9 sin v ∂Sy/∂u = 0

Sz = 0.4 ∂Sz/∂u = −1.8

u = 1 Sx = 0.6 sinh 1.4 cos v ∂Sx/∂u = 0.6 cosh 1.4 cos v

Sy = 0.4 sinh 1.4 sin v ∂Sy/∂u = 0.4 cosh 1.4 sin v

Sz = −1.5 cosh 1.4 ∂Sz/∂u = −1.35 sinh 1.4

(3.17)

With Eqs. 3.40 and 3.17, and setting the shape control parameters

to: α = β = γ = 1, the generated blending surface is given in Fig. 3.4

where Fig. 3.4(a) is from the front view and Fig. 3.4(b) is from the side

view.
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3.4 Shape Manipulation of Blending Sur-

faces

The advantage of the proposed blending approach is that the shape of

the blending surfaces is controllable by changing the shape control pa-

rameters in 3.2. With this shape manipulation method, the continuities

between the primary surfaces and the blending surface are well main-

tained. I will use an example below to demonstrate this. It is to blend

a petal-like surface to the frustum of an elliptic cone. The boundary

constraints for this example are,

u = 0 Sx = 1.015[0.9 cos v + 0.1 cos(7v)]

∂Sx/∂u = 0.02[0.9 cos v + 0.1 cos(7v)]

Sy = 1.015[0.9 sin v + 0.1 sin(7v)]

∂Sy/∂u = 0.02[0.9 sin v + 0.1 sin(7v)]

Sz = 1.65 ∂Sz/∂u = −0.1

u = 1 Sx = 1.6 cos v ∂Sx/∂u = 1.2 cos v

Sy = 1.2 sin v ∂Sy/∂u = 1.2 sin v

Sz = 0 ∂Sz/∂u = −1.8

(3.18)

When setting the shape control parameters to: α = γ = 1, and

β = 0.5, the obtained blending surface was indicated in Fig. 3.5(a). If I

changed these shape control parameters to: α = 3.7, β = 2.5 and γ = 1,

the blending surface given in Fig. 3.5(b) was produced. The blending

surface shown in Fig. 3.5(c) was created by taking the shape control

parameters to be: α = 3.7, β = 2 and γ = 18, and that presented in Fig.

3.5(d) was achieved by setting the shape control parameters to: α = 2,

β = 0.5, and γ = 1.

In order to demonstrate the shape changes of the blending surface

indicated in Fig. 3.5(a)-(d) more clearly, I depicted the profile curves
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Figure 3.5: Blending surfaces created with different shape control pa-
rameters (a) α = γ = 1, and β = 0.5, (b)α = 3.7, β = 2.5 and γ = 1,
(c) α = 3.7, β = 2 and γ = 18, (d) α = 2, β = 0.5, and γ = 1, (e)
profile curves of (a)-(d).

of the blending surface in Fig. 3.5(e) where the profile curves in blue,

green, purple and red are from Fig. 3.5(a), Fig. 3.5(b), Fig. 3.5(c) and

Fig. 3.5(d), respectively.

The images in Fig. 3.5(a)-(e) indicate that shape control parame-

ters are very effective in controlling the shape of blending surfaces. By

manipulating these shape control parameters, the shape of blending sur-

faces can be controlled effectively while the continuities at the trimlines

between the blending surface and primary surfaces remain the same.

Now, the proposed method investigate how the shape control parame-

ters affect the shape of blending surfaces. There are two factors affecting

the shape of a blending surface: one is the blending boundary tangents,

i. e., the first partial derivatives, and the other is shape control parame-

ters. In order to exclude the influence of the blending boundary tangents

on the blending surface, I keep the blending boundary constraints 3.18

unchanged. With this treatment, it can be investigated that the effects
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of the shape control parameters on the shape of the blending surface

only.

First, fix the second and third shape control parameters β = γ = 1,

take the first shape control parameter α = 1, and obtain the red profile

curve of the blending surface shown in Fig. 3.6(a). Next, change the first

shape control parameter to α = 2, the green profile curve of the blending

surface is generated. Further raising the shape control parameters to

α = 2.5, the blue profile curve of the blending surface is created. These

profile curves indicate that raising the first shape control parameters, the

whole blending surface becomes uniformly more concave.

Next, fix the first and third shape control parameters α = γ = 1.

When the second shape control parameter is set to β = 0.1, the red profile

curve indicated in Fig. 3.6(b) is produced. Increasing the parameter

to β = 1.5 and β = 3, respectively, the green and blue profile curves

of the blending surface are obtained. These profile curves demonstrate

that increasing the second shape control parameter, the blending surface

becomes less concave. When the increase of the parameter is small (β =

1.5), the influence mainly occurs in the lower part of the blending surface.

However, when the parameter is large (β = 3), the influence becomes

more uniform.

Finally, fix the first and second shape control parameters α = β = 1,

and change the third shape control parameter only. When γ = 0.1,

the achieved red profile curve of the blending surface is depicted in Fig.

3.6(c). Changing the parameter to 0.3 and 0.5, respectively, the green

and blue profile curves are created and shown in the same figure. These

profile curves suggest that increasing the third shape control parameter,

the blending surface becomes more concave. When the increase is not big

(γ = 0.3), the influence of the parameter on the top part of the blending

surface is more significant. However, when the increase becomes larger

(γ = 0.5), the influence changes to more uniform.

In order to demonstrate the advantage of the proposed approach in

effectively manipulating the shape of blending surfaces and exactly sat-

isfying blending boundary constraints, here make a comparison between

45



Figure 3.6: Relationships between shape control parameters and the
shape of blending surfaces (a) , (red profile), (green profile), (blue profile),
(b) , (red profile), (green profile), (blue profile), (c) , (red profile), (green
profile), (blue profile).

the proposed approach and surface blending using the cubic Hermite

interpolation.

For the blending example defined by 3.18, the blending surface using

the cubic Hermite interpolation in cubic Bzier form is described by Farin

[2014]

S(u, v) = H3
0 (u)C0(v) +H3

1 (u)C̄0(v) +H3
2 (u)C̄1(v) +H3

3 (u)C1(v)

(3.19)

where
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H3
0 (u) = B3

0(u) +B3
1(u)

H3
1 (u) = B3

1(u)/3

H3
2 (u) = −B3

2(u)/3

H3
3 (u) = B3

2(u) +B3
3(u)

(3.20)

and

B3
i (u) = 3!ui(1− u)3−i/[i!(3− i)!]

(i = 0, 1, 2, 3)

(3.21)

Substituting Eq. 3.18 into Eq. 3.19, to obtain the mathematical

equations of the blending surface and use them to produce the blending

surface in Fig. 3.7(a) whose profile curve is coloured red and indicated in

Fig. 3.7(c). With the proposed approach, the blending surface obtained

with the cubic Hermite interpolation Eq. 3.19 can be reproduced by

taking the shape control parameters to be α = β = 1 and γ = 0.1 in 3.34

whose profile curve is coloured green and shown in Fig. 3.7(c) as well.

By changing these parameters to α = γ = 1 and β = 11, the blending

surface is changed into that whose profile curve is coloured in pink in

Fig. 3.7(c). Further changing the parameter β to 17 while keeping the

parameters α and γ unchanged, a different shape of the blending surface

is obtained and depicted in Fig. 3.7(b) whose profile curve in blue is

shown in Fig. 3.7(c).

According to Eq. 3.19, the shape of bending surfaces determined

by the cubic Hermite interpolation can be manipulated by scaling the

magnitude of the boundary tangent at the trimlines. However, such a

manipulation method cannot achieve the same magnitude of boundary

tangents of primary surfaces at the trimlines. Consequently, it cannot
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exactly satisfy the constraints of boundary tangents in 3.1 required by

primary surfaces. In contrast, the proposed approach can obtain differ-

ent shapes of the blending surface through manipulating shape control

parameters without changing boundary tangents, i. e. C̄0(v) and C̄1(v)

in 3.1 as demonstrated in Fig. 3.7(c) and Fig. 3.6.

The above discussions explain why one of the analytical closed form

solutions 3.11, 3.29, 3.34 and 3.40 is required for surface blending. Al-

though they are more complicated than 3.19 obtained with cubic Her-

mite interpolation, they have the advantage of exactly satisfying blending

boundary constraints and effectively manipulating the shape of blending

surfaces which cannot be achieved by the surface blending using cubic

Hermite interpolation.

The blending surfaces depicted in Figs. 3.7(a) and 3.7(b) are from the

same view. Examining the profiles at the upper trimline highlighted by

the red circles, it can be found that a smoother transition between the

top primary and middle blending surfaces is achieved in Fig. 3.7(b). It

indicates that although both the proposed approach and the cubic Her-

mite interpolation satisfy the blending boundary constraints exactly, the

blending surface created with the method achieves better visual smooth-

ness due to the shape change of the blending surface caused by the shape

control parameters.

The different shapes depicted in Fig. 3.7(c) were created by 3.34

only. It indicates that each of 3.11, 3.29, 3.34 and 3.40 has a capacity to

create different shapes of a blending surface without changing boundary

constraints.

Apart from its advantage of effective shape manipulation and exact

satisfaction of boundary constraints, the method can also create blending

surfaces quickly. On a laptop with a 1.66 GHz CPU and using 100 ∗ 100

surface points, the cubic Hermite interpolation took 0.031 second to cre-

ate the blending surface in Fig. 3.7(a). The proposed approach took

0.063 second to generate the blending surface in Fig. 3.7(b). Although

the mathematical expressions of the blending method look more compli-

cated than the cubic Hermite interpolation, the time used to generate
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Figure 3.7: Comparison of blending surfaces between the proposed ap-
proach and cubic Hermite interpolation (a) Hermite interpolation (b)
ODE-based blending (c) profile curves of blending surfaces: Hermite in-
terpolation (red profile), ODE-based blending (green profile α = β = 1,
γ = 0.1; pink profile α = γ = 1, β = 11; blue profile α = γ = 1, β = 17).

the blending surface with the proposed approach is only about twice of

that using the cubic Hermite interpolation, suggesting that the proposed

approach can create blending surfaces fast.

In order to facilitate the application of the proposed approach in cur-

rent commercial CAD systems, in Section 3.7 I demonstrate how the

mathematical expressions of the proposed ODE blending surfaces are

approximated with cubic splines.

3.5 Blending Between More Than Two Pri-

mary Surfaces

The proposed approach is not only powerful in blending two primary

surfaces together, but is also effective in constructing blending surfaces

between more than two primary surfaces, which is usually a difficult task
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for some existing surface blending approaches such as partial differential

equation-based surface blending. I will demonstrate this with an example

below.

In this example, I will blend three planes together, as shown in fig.

3.8(a). First, construct blending surfaces between the top and front

planes, between the top and side planes, and between the front and side

planes. Then, generate a blending surface between the three constructed

blending surfaces.

The boundary constraints for the blending between the top and front

planes can be written in the form below,

u = 0 Sx(u, v) = lxv ∂Sx(u, v)/∂u = 0

Sy(u, v) = y0 + r ∂Sy(u, v)/∂u = −0.5ly

Sz(u, v) = z0 + lz + r ∂Sz(u, v)/∂u = 0

u = 1 Sx(u, v) = lxv ∂Sx(u, v)/∂u = 0

Sy(u, v) = y0 ∂Sy(u, v)/∂u = 0

Sz(u, v) = z0 + lz ∂Sz(u, v)/∂u = −0.5lz

(3.22)

The boundary constraints used to construct the blending surface be-

tween the top and side planes can be written as,

u = 0 Sx(u, v) = lxv ∂Sx(u, v)/∂u = 0.5lx

Sy(u, v) = y0 + r + lyy ∂Sy(u, v)/∂u = 0.0

Sz(u, v) = z0 + lz + r ∂Sz(u, v)/∂u = 0

u = 1 Sx(u, v) = lx + r ∂Sx(u, v)/∂u = 0

Sy(u, v) = y0 + r + lyv ∂Sy(u, v)/∂u = 0

Sz(u, v) = z0 + lz ∂Sz(u, v)/∂u = −0.5lz

(3.23)
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Similarly, the boundary constraints employed to construct the blend-

ing surface between the front and side planes take the form of,

u = 0 Sx(u, v) = lx ∂Sx(u, v)/∂u = 0.5lx

Sy(u, v) = y0 ∂Sy(u, v)/∂u = 0.0

Sz(u, v) = z0 + lzv ∂Sz(u, v)/∂u = 0

u = 1 Sx(u, v) = lx + r ∂Sx(u, v)/∂u = 0

Sy(u, v) = y0 + r ∂Sy(u, v)/∂u = 0.5ly

Sz(u, v) = z0 + lzv ∂Sz(u, v)/∂u = 0

(3.24)

In the above equation, y0, z0, lx, ly, lz and r are geometric parameters

used to define the top, front and side planes.

Taking the geometric parameters in the above equations to be: y0 =

lx = lz = 1, z0 = 0.5, ly = 1.2 and r = 0.25, and setting the shape control

parameters to: α = γ = 1 and β = 2, I constructed the blending surfaces

between these planes using 3.29 and depicted these blending surfaces in

Fig. 3.8(b).

Finally, generate the blending surface between the three constructed

blending surfaces shown in Fig. 3.8(b). This blending surface is a 3-sided

patch. The boundary constraints for this 3-sided patch were determined

from 3.29 of the constructed blending surfaces.

The top boundary at u = 0 for this blending problem is a point which

is determined by setting u = 0 and v = 1 in 3.29 of the blending surface

between the top and front planes, i. e., STF (0, 1) or by setting u = 0

and v = 0 in 3.29 of the blending surface between the top and side

planes, i. e., STS(0, 0) where the superscripts TF and TS indicate the

blend surface between the top and front planes and between the top

and side planes, respectively. Although the top boundary of the 3-sided

patch is a point, the boundary tangent changes continuously from that

determined by STF (u, v) to the one determined by STS(u, v), i. e., from
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T 0 = ∂STF (0, 1)/∂u to T 1 = ∂STS(0, 0)/∂u. The boundary tangent

T t(v) at any position v can be obtained by interpolating T 0 and T 1

which is T t(v) = T 0 +(T 1−T 0) where the superscript t indicates the top

boundary and l(v) is the normalized arc length of the bottom boundary

curve.

The normalized arc length of the bottom boundary curve can be deter-

mined as follows. First, calculate the total length of the bottom bound-

ary curve with the equation

L =
∫ 1

0

√
[dSFSx (u, 1)/du]2 + [dSFSy (u, 1)/du]2 + [dSFSz (u, 1)/du]2du where

SFS(u, 1) is the vector-valued equation of the bottom boundary curve

and the superscript FS indicates the blending surface between the front

and side planes. Then, calculate the length of the bottom boundary

curve from u = 0 to any position u which is

L(u) =
∫ u
0

√
[dSFSx (u, 1)/du]2 + [dSFSy (u, 1)/du]2 + [dSFSz (u, 1)/du]2du.

The normalized arc length l(v) of the bottom boundary curve is deter-

mined by l(v) = L(v)/L where the parametric variable u in L(u) has

been replaced by the parametric variable v.

The bottom boundary is a curve represented by Cb(u) = SFS(u, l)

where the superscript b indicates the bottom boundary of the 3-sided

blending surface. The boundary tangent at the bottom boundary is

determined by T b(u) = ∂SFS(u, 1)/∂v.

When constructing the 3-sided blending surface, the parametric direc-

tion u for the bottom boundary is changed into the parametric direction

v. Therefore, the boundary curve and boundary tangent for the bottom

boundary become Cb(v) and T b(v).

With the above treatment, the boundary constraints for the 3-sided

blending surface are represented by the following equation

u = 0 S(u, v) = STF (0, 1) ∂S(u, v)/∂u = T t(v)

u = 1 S(u, v) = Cb(v) ∂S(u, v)/∂u = T b(v)

(3.25)
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Figure 3.8: Blending between more than 2 primary surfaces

Still using the same shape control parameters, obtained the 3-sided

blending surface and depicted it in Fig. 3.8(c).

This example demonstrates that the proposed approach can blend

more than two primary surfaces together easily and effectively. In con-

trast, it is not easy to construct such blending surfaces by using some

existing surface blending methods such as partial differential equation-

based surface blending approaches.

3.6 Other Solutions of EQ. 3.2

For β2 = 4αγ and α/β > 0, the roots of Eq. 3.4 are,

r1,2,3,4 = ±iq2
(3.26)

where i is an imaginary unit and,
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q2 =
√
β/(2α)

(3.27)

With the roots given in Eq. 3.26, the solution of Eq. 3.27 becomes,

G(u) = d1 cos q2u+ d2 sin q2u+ d3u cos q2u+ d4u sin q2u

(3.28)

where d1, d2, d3 and d4 are vector-valued unknown constants.

In order to determine the unknown constants in 3.28, perform the

same sweeping operation by substituting it into 3.1, and solving for the

four unknown constants d1, d2, d3 and d4. Then, substitute the unknown

constants back into 3.28, and obtain,

S(u, v) = (cos q2u+ A2 sin q2u− q2A2u cos q2u− u cot q2 sin q2u+

A2A5u sin q2u)C0(v) + (A3 sin q2u+ u cos q2u− q2A3u cos q2u

−u cot q2 sin q2u+ A3A5u sin q2u)C̄0(v) + (−A4 sin q2u

+q2A4u cos q2u+ u sin q2u/ sin q2 − A4A5u sin q2u)C1(v)

+(sin q2u− q2u cos q2u+ A5u sin q2u)C̄1(v)/A1

(3.29)

where,
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A1 = q2/ sin q2 − sin q2

A2 = [q2 sin q2 + cot q2(sin q2 + q2 cos q2)]/A1

A3 = [−(cos q2 − q2 sin q2) + cot q2(sin q2 + q2 cos q2)]/A1

A4 = (sin q2 + q2 cos q2)/(A1 sin q2)

A5 = (q2 cos q2 − sin q2)/ sin q2

(3.30)

For β2 > 4αγ, the roots of 3.4 are found to be,

r1,2 = ±iq3
r3,4 = ±iq4

(3.31)

where i is an imaginary unit and,

q3 =
√
β(1−

√
1− 4αγ/β2)/(2α)

q4 =
√
β(1 +

√
1− 4αγ/β2)/(2α)

(3.32)

With the roots given in 3.32, the solution of 3.2 takes the form of,

G(u) = d1 cos q3u+ d2 sin q3u+ d3 cos q4u+ d4 sin q4u

(3.33)

where d1, d2, d3 and d4 are vector-valued unknown constants.

Same as above, substitute 3.33 into 3.1, carry out the sweeping opera-

tion, and determine the four unknown constants d1, d2, d3 and d4. After
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substituting these unknown constants back to 3.33, the mathematical

equation of blending surfaces becomes,

S(u, v) = [−g3(u) cos q4/A6 − g4(u)q4 sin q4/A6 + cos q4u]C0(v)

[−g3(u) sin q4/q4/A6 + g4(u) cos q4/A6 + sin q4u/q4]

C̄0(v) + g3(u)C1(v)/A6 − g4(u)C̄1(v)/A6

(3.34)

where,

A6 = q3(cos q3 − cos q4)
2 − (sin q3 − q3 sin q4/q4)(q4 sin q4 − q3 sin q3)

(3.35)

and,

g3(u) = q3(cos q3 − cos q4)(cos q3u− cos q4u) +

(q4 sin q4 − q3 sin q3)(q3 sin q4u/q4 − sin q3u)

g4(u) = (cos q3 − cos q4)(q3 sin q4u/q4 − sin q3u) +

(sin q3 − q3 sin q4/q4)(cos q3u− cos q4u)

(3.36)

For β2 < 4αγ, the roots of 3.4 are found to be,

r1,2,3,4 = ±q5 ± iq6
(3.37)

where i is an imaginary unit and,
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q5 = 4
√
γ/α

√
0.5− β/(4√αγ)

q6 = 4
√
γ/α

√
0.5 + β/(4

√
αγ)

(3.38)

With the roots given in 3.38, the solution of 3.2 takes the form of,

G(u) = d1e
q5u cos q6u+ d2e

q5u sin q6u+ d3e
−q5u cos q6u+ d4e

−q5u sin q6u

(3.39)

where d1, d2, d3 and d4 are vector-valued unknown constants.

Substituting 3.39 into 3.1 and doing the sweeping operation, the 4

unknown constants are determined and blending surfaces satisfying 3.1

and 3.2 are found to be,

S(u, v) = [−A9g5(u)/q6 − (A7q5/q6 − A8)g6(u) + e−q5u cos q6u

+q5e
−q5u sin q6u/q6]C0(v) + [−A7g6(u)/q6 − e−q5

sin q6g5(u)/q6 + e−q5u sin q6u/q6]C̄0(v)

+g5(u)C1(v) + g6(u)C̄1(v)

(3.40)

where,
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A7 = q6e
−q5 cos q6 − q5e−q5 sin q6

A8 = q5e
−q5 cos q6 + q6e

−q5 sin q6

A9 = q5e
−q5 sin q6 + q6e

−q5 cos q6

g5(u) = 1/A14

{A12[(e
−q5u − eq5u) sin q6u] + A13[(e

q5u − e−q5u) cos q6u− 2q5e
−q5u sin q6u/q6]}

g6(u) = 1/A14

{A10[(e
q5u − e−q5u) sin q6u] + A11[(e

−q5u − eq5u) cos q6u+ 2q5e
−q5u sin q6u/q6]}

(3.41)

and,

A10 = (eq5 − e−q5) cos q6 − 2q5e
−q5 sin q6/q6

A11 = (eq5 − e−q5) sin q6

A12 = (q5 cos q6 − q6 sin q6)e
q5 + A8 − 2q5A7/q6

A13 = (q5 sin q6 + q6 cos q6)e
q5 − A9

A14 = A10A13 − A11A12 (3.42)

3.7 Approximation of One Blending Sur-

faces for CAD-system Processing

Compared to algebraic functions, some transcendental functions can de-

scribe the curves or surfaces with special and useful shapes. Therefore,

they have been widely applied in engineering. Involute gears are such an

example which are commonly used for motion and power transmission,

whose tooth profiles are involutes. Similarly epicycloids and hypocycloids

are used in cycloidal gears. The proposed approach also demonstrates

that without changing boundary tangents, the surface blending involv-

ing transcendental functions proposed in this chapter can create different
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shapes of a blending surface.

Transcendental functions cannot be directly incorporated into current

commercial CAD systems. However, they can be approximated by the

functions accepted by the systems as investigated by Ling et al. Ling

et al. [2010] and Higuchi et al. Higuchi et al. [2007]. Here, I will approx-

imate the mathematical expressions of the blending surfaces proposed in

this chapter with the cubic spline interpolation method. It can be seen

that this treatment is simple and computationally efficient, and has high

approximation accuracy.

Observing the mathematical expressions Eq. 3.11, 3.17, 3.22 of the

blending surfaces created with the proposed approach, all of them can

be written as

S(u, v) = r1(u)C0(v) + r2(u)C̄0(v) + r3(u)C̄1(v) + r4(u)C̄1(v)

(3.43)

where C0(v), C̄0(v), C1(v) and C̄1(v) are boundary curves and boundary

tangents defined in Eq. 3.1.

If the functions r1(u), r2(u), r3(u) and r4(u) can be approximated

with one of those accepted by the current CAD systems, surface ap-

proximation of the proposed approach can be transformed into curve

approximation.

There are many methods for curve approximation. Here use the

clamped cubic spline interpolation which has good approximation ac-

curacy, and more importantly, the first derivative at the two boundaries

of the domain where a function is defined can be exactly satisfied. There

are a lot of resources on the internet including computer source code

for the clamped cubic spline interpolation method. Here, take r1(u) as

an example, and briefly introduce how to determine the cubic spline

approximating r1(u).

In order to use one subscript in the following discussions, drop the

subscript 1 of r1(u) and change it into r(u). If the values of r(u) at

u0 = 0, u1 = 1/n, u2 = 2/n, Λ, un−1 = (n − 1)/n, and un = 1 are
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known to be r0, r1, r2, λ, rn − 1, and rn where n is the total number of

the intervals on [0, 1], can determine a cubic spline f(u) consisting of n

cubic functions fj(u) = aj + bju+ cju
2 + dju

3(j = 1, 2, λ, n− 1, n) which

approximates r(u) by satisfying the following conditions:

(1). f(u) is a cubic function fj(u) = aj + bju+ cju
2 + dju

3

on [uj−1, uj](j = 1, 2, λ, n− 1, n),

(2). fj(uj−1) = rj−1 and fj(uj) = rj(j = 1, 2, λ, n− 1, n),

(3). f ′j(uj) = f ′j+1(uj)(j = 1, 2, λ, n− 1),

(4). fj”(uj) = fj+1”(uj)(j = 1, 2, λ, n− 1),

(5). f ′1(u0) = r′(u0) and f ′n(un) = r′(un).

In the above equations, f ′j(uj) = dfj(uj)/du(j = 1, 2, λ, n − 1, n)

and fj”(uj) = df 2
j (uj)/du

2(j = 1, 2, λ, n − 1), f
(
1u0) = df1(u0)/du, and

r′(uk) = dr(uk)/du(k = 0, n).

The convergence, accuracy and efficiency of the clamped cubic spline

interpolation are investigated by using a cubic spline with n (n=2, 4

and 6) cubic functions to approximate each of the functions r1(u), r2(u),

r3(u) and r4(u) involved in Eq. 3.22. The values of these functions at

u = i/n(n = 2, 4, 6; i = 0, 1, λ, n) and their first derivatives with respect

to the parametric variable u at the boundaries u = 0 and u = 1 are used

to determine the n cubic functions.

Under the blending boundary constraints, the blending surface cre-

ated using the combination of the original functions r1(u), r2(u), r3(u)

and r4(u) with the boundary functions C0(v), C̄0(v), C1(v) and C̄1(v)

through Eq. 3.43 is the left one in Fig. 3.9 and that obtained using

the combination of 2 cubic functions with the boundary functions is the

middle one in the same figure. Examining the shape in both images, I

cannot find any visual differences. I have also depicted the profile curve
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Figure 3.9: Comparison between the original blending surface and that
from the cubic spline interpolation

of the blending surface created with the original functions r1(u), r2(u),

r3(u) and r4(u) and those approximated with 2, 4 and 6 cubic functions

in the right one of Fig. 3.9. Once again, all the profile curves look the

same and no visual differences can be found.

In order to quantify the difference between the original and approxi-

mation blending surfaces from the cubic spline interpolation and between

their profiles, the following error formula is used

E =
I∑
i=1

√
[(xi − x̄i)2 + (yi − ȳi)2 + (zi − z̄i)2]/[x2i + y2i + z2i ]/I

(3.44)

where xi, yi and zi without an overbar are the coordinate values of

the I uniformly distributed points on the original blending surface or

its profile curve, and those with an overbar are on the approximation

blending surface or its profile curve created with the cubic spline inter-

polation, and I is the number of all points. For the blending surface,

J =
√
I points are uniformly collocated in both parametric directions u

and v.
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Table 3.1: Computational error and time of various methods.

TA CSI(n=2) CSI(n=4) CSI(n=6)
EPC 0 2.907e-3 1.854e-4 3.006e-5
EBS 0 3.7507e-3 2.300e-4 3.749e-5
T(second) 6.3e-2 4.7e-2 6.2e-2 7.8e-2

For the calculation of the errors between the original blending surface

and the approximation one, J = 100 points are uniformly collocated in

both parametric directions u and v of the blending surface with the total

points I = 10000. For the determination of the error of the profile curve

between both blending surfaces, I = 100 points are uniformly collocated

in the parametric direction u.

The error between the original blending surface and the approxima-

tion blending surface together with the error between their profile curves

are listed in Table 3.1 where TA stands for the proposed approach, CSI

means the cubic spline interpolation with the number of the used cubic

functions being given in the round parenthesis, EPC indicates the error

for profile curves, EBS denotes the error for blending surfaces, and T is

the computational time. The errors shown in Table 3.1 are very small

compared to the maximum radius of the blending surface which is 1.937.

Examining these errors, it can be concluded that the cubic spline inter-

polation converges very quickly, and very few cubic functions (2 cubic

functions in this example) can also generate good approximation results.

In addition to its good accuracy, the cubic spline interpolation also

has high computational efficiency. On the same laptop and including

the time used to generate the values of the functions r1(u), r2(u), r3(u)

and r4(u) at u = i/n(n = 2, 4, 6; i = 0, 1, λ, n) and their first derivatives

at the boundaries u = 0 and u = 1 with the proposed approach, the

total time for the cubic spline interpolation with n (n=2, 4 and 6) cubic

functions to create the approximation blending surfaces is also given in

Table 3.1. These timing data indicate the cubic spline interpolation can

produce good approximation of blending surfaces efficiently.
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3.8 Discussion and Conclusion

This chapter has developed a new surface blending method with posi-

tional and tangential continuities based on sweeping surfaces controlled

by fourth order ODEs. The generator used to construct blending sur-

faces is created with the closed form solution to fourth order ODEs and

its shape is manipulated by the shape control parameters involved in

the equations. Blending surfaces are generated by moving the generator

along two three-dimensional trajectories and making it exactly satisfy

the tangential constraints at the trimlines. A number of examples were

presented to demonstrate the applications of the proposed approach in

surface blending.

Due to the analytical nature of the proposed approach, it can gen-

erate various blending surfaces quickly. Since blending boundary con-

straints are explicitly included in the mathematical expressions of the

blending surfaces, the proposed approach is easy to use. By making

blending surfaces exactly meet the constraints of boundary curves and

first partial derivatives at the trimlines, surface blending with positional

and tangential continuities is achieved. The shape of the blending sur-

faces constructed with the proposed approach is controlled effectively by

manipulating shape control parameters while still maintaining the same

continuities at the trimlines. Apart from its capacity in creating a blend-

ing surface between two primary surfaces, it is also effective in blending

more than two primary surfaces together.
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Chapter 4

Interactive Creation of C2

Continuous ODE Skin

Surfaces

In this chapter, a new technique of interactive creation of C2 continuous

surfaces is introduced. With this approach, the creation of a three-

dimensional surface is transformed into generating 2 boundary curves or

2 boundary curves plus 4 control curves and solving a vector-valued sixth

order ordinary differential equation subjected to boundary constraints

consisting of boundary curves, first and second partial derivatives at the

boundary curves. Unlike the existing patch modeling approaches which

require tedious and time-consuming manual operations to stitch two sep-

arate patches together and achieve the continuity between two stitched

patches, the proposed technique maintains the C2 continuity between

adjacent surface patches naturally which avoids manual stitching oper-

ations. The proposed technique not only creates those by Maya loft

operation but also much more surface shapes since the shape of the sur-

faces created with this proposed technique can be manipulated easily by

simply changing first and second partial derivatives, and shape control

parameters.
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4.1 Introduction

Surfaces creation approaches are widely applied in creative, digital and

design industries to create external appearances of various objects. De-

pending on different mathematical representations, surfaces can be di-

vided into implicit, explicit and parametric ones. Among them, para-

metric surfaces are the most common.

Current popular surface creation techniques are polygon, patch mod-

eling such as NURBS, and subdivision. The polygon technique creates

complicated models from simple geometric primitives through manipu-

lating surface points. The patch technique divides a complex model into

a lot of patches, creates all these patches separately, and stitches them

together to produce the model. The subdivision technique uses approx-

imating or interpolating schemes to subdivide the polygonal faces of a

coarse polygonal model into smaller faces and generates a denser poly-

gon mesh of the model. Among them, the patch technique is especially

suitable for smooth curved surfaces with a small data size.

In spite of the suitability of the patch technique in creating smooth

curved surfaces, further improvements are required in the following as-

pects. First, when using this technique to create a three dimension (3D)

objects, tedious and time-consuming manual operations are required to

stitch adjacent surface patches together and achieve the smoothness be-

tween adjacent patches. Second, when the control points of a surface

patch are plenty to keep the details, the global shape of the patch is dif-

ficult to manipulate. Thirdly, the traditional patch modeling technique

is purely geometric which does not consider any underlying physics of

object deformations. Introducing physics into the patch technique usu-

ally involves computationally expensive numerical calculations leading

to slow surface modeling.

Ordinary differential equation (ODE)-based surface creation gener-

ates a surface from the solution to a vector-valued Ordinary differential

equation subjected to boundary constraints. This technique is simple and

efficiency in manipulating the global shape of a surface patch. However,
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how to achieve the solution is not an easy work. For complicated surface

creation, it also depends on heavy numerical calculations. In addition,

it is very difficult to analytically achieve tangent or curvature continuity

in two different parametric directions of a 4-sided surface patch at the

same time.

In the work of this chapter, I develop a new surface creation technique

which transforms creation of curvature continuous surfaces into the task

to find the closed form solution of a vector-valued sixth order ordinary

differential equation subjected to the constraints of boundary curves,

and first and second partial derivatives at the boundary curves. With

this technique, only two boundary curves or two boundary curves and

four control curves are required. Different surface shapes can be created

easily and efficiently through the shape control parameters.

Compared to the existing patch modeling technique, the proposed

technique achieves up to curvature continuities naturally. No manual

operations are required to stitch adjacent patches together and deal with

the continuity problem between them. The global shape of a surface

patch can be manipulated easily and efficiently through simply changing

one of the first and second partial derivatives at boundary curves and

shape control parameters. Even a surface patch must exactly satisfy the

constraints of position functions, and first and second partial derivatives

at boundary curves, the shape of surface patches can also be manipulated

by changing one of shape control parameters. Since the curves used

to define a surface are controlled by differential equations usually used

to characterize natural physical process, the proposed technique can be

regarded as physics-based. Compared with ODE based surface creation,

the proposed technique is simpler and more efficient due to its analytical

nature.

4.2 Mathematical Model

Any 3D parametric surfaces always can be described by the vector-valued

mathematical equation X = S(u, v) where u and v are two parametric
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variables usually defined in the region: 0 6 u 6 1 and 0 6 v 6 1 ,

X is a vector-valued position function which has three components x,

y and z, and S(u, v) also has three components Sx(u, v), Sy(u, v) and

Sz(u, v). When the parametric variable v takes the constant vi, the

surface at the position becomes a parametric curve Ci = S(u, vi) where

the vector-valued function Ci has three components Cxi, Cyi and Czi.

Therefore, the surface X = S(u, v) can be regarded as the set of the

parametric curves C0, C1, C2, ..., which are obtained by changing vi from

0 to 1 continuously. Based on this consideration, the modelling of 3D

parametric surfaces can be transformed into that of a set of parametric

curves.

In order to achieve the C2 continuity between two adjacent surface

patches, the two surface patches should share the same position function,

and first and second partial derivatives with respect to the parametric

variable u at their joint interface. That is to say, a C2 continuous surface

patch in the parametric direction u should exactly satisfy the boundary

constraints at u = 0 and u = 1 which consist of position functions,

and the first and second partial derivatives determined by the adjacent

surface patches at the positions. If the position functions, and the first

and second partial derivatives at the positions u = 0 and u = 1 are

cj(v)(j = 1, 2, 3, 4, 5, 6), the boundary constraints which a C2 continuous

surface patch should satisfy can be written as

u = 0 S(0, v) = c1(v), ∂S(0, v)/∂u = c2(v), ∂S2(0, v)/∂u2 = c3(v)

u = 1 S(1, v) = c4(v), ∂S(1, v)/∂u = c5(v), ∂S2(1, v)/∂u2 = c6(v)

(4.1)

where c1(v) and c4(v) are position functions, c2(v) and c5(v) are the

first partial derivatives, and c3(v) and c6(v) are the second partial deriva-

tives at the boundaries.

With the above treatment, the task of surface modeling is to determine

the mathematical equation of the set of the parametric curves which
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meets Eq. 4.1 at their two ends.

A parametric curve can be described by some popular curve functions

such as NURBS. However, these curve functions are purely geometric

and did not involve any underlying physics. It has been realized that

the physics can be introduced into geometric modeling to improve the

realism of geometric modeling and many research studies have addressed

physics-based geometric modeling and deformations. Ordinary differen-

tial equations (ODEs) usually can be used to describe the deformations

of curve-like objects such as beams and members. It is known that the

accurate solution of second order ODEs has two unknown constants only

which are used to satisfy the constraints of two position functions, and

that of fourth order ODEs has four unknown constants which can be

used to meet the constraints of two position functions and two first par-

tial derivatives at boundaries. In contrast, the solution of sixth order

ODEs contains six unknown constants which can be used to satisfy all

the position functions, and the first and second partial derivatives given

in boundary constraints Eq. 4.1. Therefore, the following vector-valued

sixth order ODE is introduced

ρd6S(u, vi)/du
6 + ηd4S(u, vi)/du

4 + λd2S(u, vi)/du
2 = F (u) (4.2)

where ρ, η and λ are shape control parameters, S(u, vi) represents a

3D parametric curve Ci whose components are Sx(u, vi), Sy(u, vi) and

Sz(u, vi), and F (u) is the virtual sculpting force function whose compo-

nents are Fx(u), Fy(u) and Fz(u).

The set of parametric curves can be obtained by finding the solu-

tion to Eq. 4.2 subjected to boundary constraints Eq. 4.1. The solution

consists of two parts: complementary solution of the associated homo-

geneous equation of ODE Eq. 4.2 and particular solution. In this work,

the interactive surface creation using the complementary solution is in-

vestigated. The surface manipulation using the particular solution will

be addressed in the following work.
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Before investigating the complementary solution to ODE 4.2, first

discuss how to generate the boundary constraints 4.1. Here two different

approaches are proposed.

The first approach is to draw two boundary curves c1(v) and c4(v)

as shown in Figure 4.2(a) and Figure 4.4(a). Then boundary tangents

and boundary curvature are taken to be the same forms as the boundary

curves modified by different coefficients, i.e., c2(v) = w1c1(v), c3(v) =

w2c1(v), c5(v) = w3c4(v), and c6(v) = w4c4(v) where wk(k = 1, 2, 3, 4)

are different coefficients. Some surfaces generated with this approach

were depicted in Figure 4.2(a) and Figure 4.4(a).

As shown in Figure 4.3 and Figure 4.5, the second approach is to create

two boundary curves c1(v) and c4(v) at u = 0 and u = 1, respectively,

and generate the other four control curves c̄2(v) at u2(0 < u2 < u3),

c̄3(v) at u3(u2 < u3 < u4), c̄5(v) at u5(ū4 < u5 < u6) where ū4 is different

from u4, and c̄6(v) at u6(u5 < u6 < 1) by duplicating the boundary

curves and deforming the duplicated curves through some of geometric

transformations: translation, scaling and rotation.

For an arbitrary point on the boundary curve c1(v) at the position vi,

firstly use the following forward difference formula to calculate the first

derivative at the points c1(vi) and c̄2(vi), i.e.,

c2(vi) = [c̄2(vi)− c1(vi)]/u2
c̄′2(vi) = [c̄3(vi)− c̄2(vi)]/(u3 − u2) (4.3)

Then the same forward difference formula is used to calculate the

second derivative at the point c1(vi)

c3(vi) = [c̄′2(vi)− c2(vi)]/u2
= {[c̄3(vi)− c̄2(vi)]/(u3 − u2)− [c̄2(vi)− c1(vi)]/u2}/u2
= [u2c̄3(vi)− u3c̄2(vi) + (u3 − u2)c1(vi)]/[u22(u3 − u2)] (4.4)
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Similarly, for an arbitrary point on the boundary curve c4(v) at the

position vi, the following backward difference formula is used to calculate

the first derivative at the points c4(vi) and c̄6(vi), i.e.,

c5(vi) = [c4(vi)− c̄6(vi)]/(1− u6)

c̄′6(vi) = [c̄6(vi)− c̄5(vi)]/(u6 − u5) (4.5)

Next, use the same backward difference formula and the first deriva-

tive at the points c4(vi) and c̄6(vi) to calculate the second derivative at

the point c4(vi)

c6(vi) = [c5(vi)− c̄′6(vi)]/(1− u6)

= {[c4(vi)− c̄6(vi)]/(1− u6)− [c̄6(vi)− c̄5(vi)]/(u6 − u5)}/(1− u6)

= [(u6 − u5)c4(vi) + (1− u6)c̄5(vi)− (1− u5)c̄6(vi)]/[(1− u6)2(u6 − u5)]

(4.6)

When vi changes from vi = 0 to vi = 1, the boundary tangents and

boundary curvature in the above equations are continuous functions of

the parametric variable v. Therefore, the functions c2(v), c3(v), c5(v)

and c6(v) in Eq. 4.1 can be written as

c2(v) = [c̄2(vi)− c1(vi)]/u2
c3(v) = {[u2c̄3(vi)− u3c̄2(vi) + (u3 − u2)c1(vi)]/[u22(u3 − u2)]

c5(v) = [c4(vi)− c̄6(vi)]/(1− u6)

c6(v) = {[(u6 − u5)c4(vi) + (1− u6)c̄5(vi)− (1− u5)c̄6(vi)]/[(1− u6)2(u6 − u5)]

(4.7)

In Figure 4.3 and Figure 4.5, some surfaces which are generated with

the second approach are presented.
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The surface created by the complementary solution of the associated

homogeneous equation of ODE 4.2 subjected to boundary constraints

Eq. 4.1 can be manipulated by the shape control parameters in Eq. 4.2,

and the first and second partial derivatives in Eq. 4.1. In order to in-

crease the capacity of surface manipulation, I can further manipulate

the created surface through deforming some curves on the surface using

the particular solution of ODE Eq. 4.2 which involves a sculpting force

represented by the term of the right-hand side of ODE Eq. 4.2. I will

address this issue in the following work. The sections below discuss how

to achieve the closed form complementary solution of ODE Eq. 4.2 sub-

jected to boundary constraints Eq. 4.1 and use the solution to create

various parametric surfaces.

4.3 Closed Form Complementary Solution

After drawing two boundary curves or 2 boundary curves plus 4 control

curves used for the determination of the first and second partial deriva-

tives, the above two approaches can be used to obtain the boundary

constraints Eq. 4.1, and create 3D parametric surfaces with the com-

plementary solution S̄(u, vi) of the associated homogeneous equation of

ODE Eq. 4.2, i.e.,

ρd6S(u, vi)/du
6 + ηd4S(u, vi)/du

4 + λd2S(u, vi)/du
2 = 0 (4.8)

subjected to the boundary constraints Eq. 4.1.

The sixth order ODE Eq. 4.2 can be changed into a fourth order

ODE by introducing the following vector-valued second order ordinary

differential equation

S̄(u, vi) = d2S(u, vi)/du
2 (4.9)

Calculating the second and fourth derivatives of S̄(u, vi) with respect
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to the parametric variable u and substituting them as well as Eq. 4.9

into Eq. 4.8, the following fourth order ordinary differential equation is

reached

ρd4S̄(u, vi)/du
4 + ηd2S̄(u, vi)/du

2 + λS̄(u, vi) = 0 (4.10)

The vector-valued ordinary differential equation Eq. 4.10 can be trans-

formed into an algebra equation by considering

S̄φ(u, vi) = eru

(φ = x, y, z) (4.11)

Substituting Eq. 4.11 together with the second and fourth derivatives

of S̄φ(u, vi) with respect to the parametric variable u into Eq. 4.10 and

deleting eru, the following quartic equation is obtained

ρr4 + ηr2 + λ = 0 (4.12)

If q = r2 is further introduced, the quartic equation Eq. 4.12 is

changed into a quadratic equation below

ρq2 + ηq + λ = 0 (4.13)

whose roots are

q1,2 = −η(1±
√

1− 4ρλ/η2)/(2ρ) (4.14)

For the sake of conciseness, here only consider the situation of 4ρλ/η2 <

1. The other situations can be treated with the same methodology. After

substituting Eq. 4.14 into the relation q = r2 , and introducing two new
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constants ξ1 and ξ2 which are determined by

ξ1,2 =

√
η(1±

√
1− 4ρλ/η2)/(2ρ) (4.15)

the following four roots of the quartic equation Eq. 4.12 are obtained

r1,2 = ±iξ1
r3,4 = ±iξ2 (4.16)

According to the above four roots, the solution to Eq. 4.10 can be

written into the following form

S̄(u, vi) = b̄1 cos ξ1u+ b̄2 sin ξ1u+ b̄3 cos ξ2u+ b̄4 sin ξ2u (4.17)

where b̄k(k = 1, 2, 3, 4) are vector-valued unknown constants.

Substituting the above equation into Eq. 4.9 and solving the second

order ordinary differential equation, the following solution to the sixth

order ordinary differential equation Eq. 4.8 is achieved

S(u, vi) = b1 cos ξ1u+ b2 sin ξ1u+ b3 cos ξ2u+ b4 sin ξ2u+ b5u+ b6 (4.18)

where bk(k = 1, 2, ..., 6) are vector-valued unknown constants. Inserting

Eq. 4.18 into the boundary constraints Eq. 4.1, solving for the 6 vector-

valued unknown constants bk(k = 1, 2, ..., 6), and substituting them back

into Eq. 4.18, the following functions which define a 3D parametric sur-

face satisfying the ODE Eq. 4.8 and the boundary constraints Eq. 4.1

exactly is reached, and organized as below equation:

S(u, v) = g1(u)c1(v)+g2(u)c2(v)+g3(u)c3(v)+g4(u)c4(v)+g5(u)c5(v)+g6(u)c6(v)

(4.19)

where
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g1(u) = −d1 cos ξ1u− d4 sin ξ1u+ d1(e11 + 1) cos ξ2u

+e9 sin ξ2u− (ξ2e9 − ξ1d4)u− (e11d1 − 1)

g2(u) = −(d1 + d2) cos ξ1u− (d3 + d4) sin ξ1u+ (e9 + e10) sin ξ2u−

[ξ2(e9 + e10)− ξ1(d3 + d4)− 1]u− e11(d1 + d2)

g3(u) = −d5 cos ξ1u− d7 sin ξ1u+ d10 cos ξ2u+ (e5e9 + e6e10

+e12/ξ2) sin ξ2u− [ξ2(e5e9 + e6e10)− ξ1d7 + e12]u− (e11d5 − 1/ξ22)

g4(u) = d1 cos ξ1u+ d4 sin ξ1u− d1(e11 + 1) cos ξ2u− e9 sin ξ2u+ (ξ2e9 − ξ1d4)u+ e11d1

g5(u) = d2 cos ξ1u+ d3 sin ξ1u− d2(e11 + 1) cos ξ2u− e10 sin ξ2u+ (ξ2e10 − ξ1d3)u+ e11d2

g6(u) = −d6 cos ξ1u− d8 sin ξ1u+ d6(e11 + 1) cos ξ2u+ (e7e9 + e8e10 −

e13/ξ2) sin ξ2u− [ξ2(e7e9 + e8e10)− ξ1d8 − e13]u− e11d6
(4.20)

here, the di(i = 1, 2, 3...10) in Eq. 4.20 are obtained by:

d1 = e1/(e1e3 − e2e4)

d2 = −e2/(e1e3 − e2e4)

d3 = e3/(e1e3 − e2e4)

d4 = −e4/(e1e3 − e2e4)

d5 = d1e5 + d2e6

d6 = d1e7 + d2e8

d7 = d4e5 + d3e6

d8 = d4e7 + d3e8

d9 = (e11 + 1)(d1 + d2)

d10 = −1/ξ22 + (e11 + 1)d5 (4.21)

and the ei(i = 1, 2, 3...13) in Eq. 4.20 and Eq. 4.21 are obtained by:
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e1 = ξ1(cos ξ1 − 1) + ξ21 sin ξ1(1− cos ξ2)/(ξ2 sin ξ2)

e2 = sin ξ1 − ξ1 + ξ21 sin ξ1(1/ sin ξ2 − 1/ξ2)/ξ2

e3 = cos ξ1 − 1 + ξ21(1− cos ξ2)/ξ
2
2 + ξ21(cos ξ2 − cos ξ1)(1/ξ2 − 1/ sin ξ2)/ξ2

e4 = ξ1(− sin ξ1 + ξ1 sin ξ2/ξ2) + ξ21(cos ξ2 − cos ξ1)(cos ξ2 − 1)/(ξ2 sin ξ2)

e5 = (1/ξ2 − cos ξ2/ sin ξ2)/ξ2

e6 = (sin ξ2 + cos2 ξ2/ sin ξ2 − cos ξ2/ sin ξ2)/ξ2

e7 = (1/ sin ξ2 − 1/ξ2)/ξ2

e8 = (1− cos ξ2)/(ξ2 − sin ξ2)

e9 = ξ21 [d4 sin ξ1 − d1(cos ξ2 − cos ξ1)]/(ξ
2
2 sin ξ2)

e10 = ξ21 [d3 sin ξ1 − d2(cos ξ2 − cos ξ1)]/(ξ
2
2 sin ξ2)

e11 = ξ21/ξ
2
2 − 1

e12 = cos ξ2/(ξ2 sin ξ2)

e13 = 1/(ξ2 sin ξ2) (4.22)

4.4 Continuity between Adjacent Surface

Patches

The mathematical equations describing parametric surfaces involve two

parametric variables u and v. When parametric surface patches are

connected together, they should maintain specified continuities in both

u and v parametric directions. In what follows, I will investigate the

continuity in the u parametric direction, and then the continuity in the

v parametric direction.

4.4.1 Continuity in Parametric Direction U

For the continuity of two connected surface patches in the u paramet-

ric direction, assuming the two parametric surface patches to be con-

nected together are S(u, v) and Ŝ(u, v), respectively. They are defined
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by Eq. 4.1 and Eq. 4.8. For the surface patch Ŝ(u, v), the vector-valued

function S(u, v), known vector-valued functions cj(v)(j = 1, 2, 3, 4, 5, 6),

and shape control parameters ρ, η and λ in Eq. 4.1 and Eq. 4.2 are

replaced by Ŝ(u, v), cj(v)(j = 1, 2, 3, 4, 5, 6), and ρ̂, η̂, λ̂, respectively.

If the two surface patches are required to maintain up to the curvature

continuities at the interface where the two surface patches are connected

together, the constraints S(1, v) = Ŝ(0, v), ∂S(1, v)/∂u = ∂Ŝ(0, v)/∂u,

and ∂S2(1, v)/∂u2 = ∂Ŝ2(0, v)/∂u2 must be satisfied. If the surface patch

Ŝ(u, v) with the following boundary constraints are created,

Ŝ(0, v) = c4(v) ∂Ŝ(0, v)/∂u = c5(v) ∂Ŝ2(0, v)/∂u2 = c6(v)

Ŝ(1, v) = ĉ4(v) ∂Ŝ(1, v)/∂u = ĉ5(v) ∂Ŝ2(1, v)/∂u2 = ĉ6(v) (4.23)

the continuities of the position, tangent and curvature between the

two surface patches in the u parametric direction are achieved.

The above conclusion is also demonstrated visually in Figure 4.1(a).

In the figure, the top surface patch is created by introducing the following

boundary conditions into Eq. 4.19 and Eq. 4.20.

S(0, v) = c1(v) ∂S(0, v)/∂u = w1c1(v) ∂S2(0, v)/∂u2 = w2c1(v)

S(1, v) = c4(v) ∂S(1, v)/∂u = w3c4(v) ∂S2(1, v)/∂u2 = w4c4(v)

(4.24)

and the bottom surface patch is generated by using the following

boundary constraints

Ŝ(0, v) = c4(v) ∂Ŝ(0, v)/∂u = w3c4(v) ∂Ŝ2(0, v)/∂u2 = w4c4(v)

Ŝ(1, v) = ĉ4(v) ∂Ŝ(1, v)/∂u = w5ĉ4(v) ∂Ŝ2(1, v)/∂u2 = w6ĉ4(v)

(4.25)
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4.4.2 Continuity in Parametric Direction V

For the continuity of two connected surface patches in the v parametric

direction, the first and second partial directives of

S(v, u) = [Sx(u, v), Sy(u, v), Sz(u, v)]T with respect to the parametric

variable v are required and can be determined from Eq. 4.19. The first

and second partial directives of S(u, v) and the mathematical equations

of the surface S(u, v) can be unified as

S(i)(u, v) = g1(u)c
(i)
1 (v) + g2(u)c

(i)
2 (v) + g3(u)c

(i)
3 (v)

+g4(u)c
(i)
4 (v) + g5(u)c

(i)
5 (v) + g6(u)c

(i)
6 (v) (4.26)

where i = 0, 1, 2 indicates the surface of S(u, v), its first and second

partial derivatives with respect to the parametric variable v, respectively,

and c
(i)
k (v) = (i = 0, 1, 2; k = 1, 2, ..., 6) can be determined from boundary

constraints 4.1.

I still denote the two surface patches to be connected together with

S(u, v) and Ŝ(u, v), and use Eq. 4.26,4.20,4.21,4.22,4.15 to determine

them and their first and second partial derivatives with respect to the

parametric variable v. In the equations, with and without the symbol ∧
on top, denotes for the two surface patches Ŝ(u, v) and S(u, v) and their

first and second partial derivatives, respectively.

At the interface where the two surface patches S(u, v) and Ŝ(u, v) are

to be connected together, the continuity of the position function, first and

second partial derivatives requires S(i)(u, 1) = Ŝ(i)(u, 0)(i = 0, 1, 2) to be

met. According to Eq. 4.26, if g
(i)
k (u) = ĝ

(i)
k (u)(i = 0, 1, 2; k = 1, 2, ..., 6)

and c
(i)
k (1) = ĉ

(i)
k (0) the constraints S(i)(u, 1) = Ŝ(i)(u, 0) are always

satisfied.

If setting ξn = ξ̂n, have ejp = êjp(p = 1, 2, ..., 13) according to Eq. 4.22,

dl = d̂l(l = 1, 2, ..., 10) from Eq. 4.21, and g
(i)
k (u) = ĝ

(i)
k (u)(i = 0, 1, 2; k =

1, 2, ..., 6) according to Eq. 4.20. Therefore, two adjacent surface patches

achieve up to C2 continuities at their interface if ξn = ξ̂n(n = 1, 2)
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Connected surface patches with up to C2 continuities

and the position of the boundary curve and its first and second partial

derivatives with respect to the parametric variable v for the first surface

patch are equal to the ones for the second surface patch at the interface

point of the two boundary curves.

Image in Figure 4.1(b) is also used to visually indicate two surface

patches are connected together in the parametric direction v and achieve

up to C2 continuities. The shape control parameters for the two surface

patches are: ρ = 1, λ = 1, η = 3, ρ̂ = 0.1, λ̂ = 0.1 and η̂ = 3 and the

function of the boundary curves for the two surface patches are c1(v) and

ĉ1(v).

More examples are presented in Figure 4.1 to demonstrate various

patches can be smoothly connected together with up to C2 continuities,

both in direction u and direction v.
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(a) (b) (c)

(d) (e)

Figure 4.2: Closed surface modelling by using two boundary curves

4.5 Creation of Single Surface

With the implemented users interface, firstly used the first approach to

create a closed surface. I draw two boundary curves which were depicted

in Figure 4.2(a). The surface created using Maya loft operation was

shown in Figure 4.2(b).

Then, took the mathematical equation of the first and second partial

derivatives to be the same form as the corresponding boundary curves

but modify them with the modifying coefficients wk(k = 1, 2, 3, 4). When

wk = 0(k = 1, 2, 3, 4) , the surface is generated in Figure 4.2(c) which is

the same as that achieved with Maya loft operation.

If only the first partial derivative is changed and kept the second

partial derivative unchanged, i. e. take w1 = −1, w3 = 10 and w2 =

w4 = 0, the surface indicated in Figure 4.2(d) was produced. If the

modifying coefficients were changed into: w1 = w3 = 0, w2 = 1 and

w4 = −10 which means only the second partial derivative was modified,

the surface shown in Figure 4.2(e) was obtained.

These images indicate that the proposed surface creation method not

only can produce surface shapes generated by Maya loft operation, but

also can create different shape changes through manipulating the first

and second partial derivatives.
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Next, used the second approach to create a closed surface. Firstly,

draw two boundary curves which are the top and bottom ones on the

image shown in Figure 4.3(a). Then use the top boundary curve as

reference to create another two curves as the control curves of the top

boundary curve. Similarly, generate the other two control curves of the

bottom boundary curve. Using Maya loft operation, obtain the surface

given in Figure 4.3(a) which interpolates the 2 boundary curves and four

control curves. Using Eq. 4.2 to determine the first and second partial

derivatives at the top and bottom boundary curves and first taking the

shape control parameters to be ρ = λ = 1, and η = 3, the surface created

with the proposed second approach is given in Figure 4.3(b).

Comparing Figure 4.3(a) with Figure 4.3(b), it can be concluded that

this approach can also create the similar surfaces to those by Maya loft

operation. However, this approach has two advantages over Maya loft

operation.

First, this approach can achieve up to C2 continuities between the

adjacent patches and there are no manual operations to stitch these ad-

jacent patches together. This is because that the two adjacent patches

created with this approach share the same first and second partial deriva-

tives.

Second, the shape of the surfaces created with this approach is con-

trollable. This can be well demonstrated by comparing Figure 4.3(b)

and Figure 4.3(c) where the surface in Figure 4.3(c) is obtained with the

same boundary and control curves as those in Figure 4.3(b) but the shape

control parameters ρ and λ are reduced to 0.0001. The shape change be-

tween Figure 4.3(b) and Figure 4.3(c) can be more clearly observed from

Figure 4.3(d) where the surfaces in Figure 4.3(b) and Figure 4.3(c) are

shown in the same figure.

If the four control curves in Figure 4.3(a) are scaled down, different

surfaces are achieved, given in Figure 4.3(e) to Figure 4.3(h) where the

surface in Figure 4.3(e) is from Maya loft operation, that in Figure 4.3(f)

is from the proposed second approach with the shape control parameters

ρ = γ = 1 and η = 3, the one in Figure 4.3(g) is from ρ = λ = 0.0001 and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Closed surface modelling by using two boundary and four
control curves

(a) (b) (c) (d) (e)

Figure 4.4: Open surface modelling by using two boundary curves

η = 3. Figure 4.3(h) is used to compare the surfaces given in Figure 4.3(f)

and Figure 4.3(g).

The images in Figure 4.3 also indicate that the surfaces created with

this approach may or may not pass through the four control curves de-

pending on different values of the shape control parameters.

Apart from the applications in creating closed surfaces, the proposed

two approaches also apply to open surfaces. I demonstrate this in the

following Figure 4.4 and Figure 4.5.

In Figure 4.4, use two boundary curves and the first approach to cre-

ate different shapes of the surface defined by the two boundary curves

and different first and second partial derivatives. Figure 4.4(a) indicates

the two boundary curves, Figure 4.4(b) is from Maya loft operation, Fig-

ure 4.4(c) to Figure 4.4(e) is from the first approach where Figure 4.4(c)

is from zeroed first and second partial derivatives, Figure 4.4(d) is from

the first partial derivative w1 = −1, w3 = 10 and zeroed second partial

derivative, and Figure 4.4(e) is from zeroed first partial derivative and

the second partial derivative w2 = 1 and w4 = −10. These images also

demonstrate that the proposed first approach not only can create those
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(a) (b) (c) (d)

Figure 4.5: Open surface modelling by using two boundary and four
control curves

generated by Maya loft operation but also those which cannot obtained

from Maya loft operation.

In Figure 4.5, use two boundary curves, four control curves shown in

the figure and the second approach to generate different surface shapes.

Figure 4.5(a) is generated by Maya loft operation, Figure 4.5(b) is from

the second approach and the shape control parameters ρ = λ = 1 and η =

3, and Figure 4.5(c) is from the second approach and the shape control

parameters ρ = λ = 0.0001 and η = 3. The influence of the shape control

parameters on surface shapes can be clearly observed from the side view

Figure 4.5(d) of the surfaces in Figure 4.5(b) and Figure 4.5(c) where the

surface in yellow is from Figure 4.5(b) and the other is from Figure 4.5(c).

These images also indicate that the proposed second approach not only

creates the surface shapes by Maya loft operation, but also other surface

shapes which cannot be obtained through Maya loft operation.

4.6 Creation of Surface Objects

This section introduces how to create complicated objects with the above

developed approach. Two approaches will be discussed below.

The first approach is to decompose a surface object into parts. For

some complicated parts, they are further decomposed into simple surface

patches. The proposed approach is used to create each surface patch

which shares the same boundary constraints of position and first and

second partial derivatives with the adjacent patch at its four edges.
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Figure 4.6: Creation of surface model

Taking the dog model in Figure 4.6 as an example, first decompose

the dog model into parts of head, neck, torso, tail, ears, eyes, front legs

and rear legs. Each of the front legs is further decomposed into three

surface patches and each of the rear legs is divided into two surface

patches. Then, each surface patch is created and two adjacent patches

share the same constraints of the position and the first and second partial

derivatives.

The second approach is to generate some sketched curves on the model

to be created. These sketched curves define some 4-sided and 3-sided

patches. For each of 4-sided or 3-sided patches, an ODE surface is cre-

ated with the constraints of the position and the first and second partial

derivative being the same as those of the adjacent surface patches. Here

take the creation of a female face as an example. Some sketched curves

in Figure 4.7(a)(b) are used to define the female model, and accord-

ingly, ODE surface patches are used to build the female model, shown

in Figure 4.7(c)(d).
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(a) (b)

(c) (d)

Figure 4.7: Creation of facial surface

4.7 ODE based Curve Network for facial

Modeling

In this section, one application of C2 continuous surface based on the

Ordinary Differential Equation(ODE) is demonstrated to build one curve

network structure to represent 3D facial mesh, which could be used to

obtain diverse faces in world by changing corresponding parameters.
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4.7.1 Facial Action Coding System

Facial Action Coding System (FACS) is a system to taxonomize human

facial movements by their appearance on the face, based on a system orig-

inally developed by a Swedish anatomist named Carl-Herman Hjortsj

Hjortsjö [1969]. It was later adopted by Paul Ekman and Wallace V.

Friesen, and published in 1978 Ekman & Friesen. Ekman, Friesen, and

Joseph C. Hager published a significant update to FACS in 2002 HAGER

[2002]. Movements of individual facial muscles are encoded by FACS

from slight different instant changes in facial appearance Hamm et al.

[2011]. It is a common standard to systematically categorize the physi-

cal expression of emotions, and it has proven useful to psychologists and

to animators. Due to subjectivity and time consumption issues, FACS

has been established as a computed automated system that detects faces

in videos, extracts the geometrical features of the faces, and then pro-

duces temporal profiles of each facial movement Hamm et al. [2011]. The

pioneer F-M Facial Action Coding System 3.0 (F-M FACS 3.0) Freitas-

Magalhães [2018] was created in 2018 by Dr. Freitas-Magalhes, and

presents 4,000 segments in 4K, using 3D technology and automatic and

real-time recognition (FaceReader 7.1).The F-M FACS 3.0 features 8 pio-

neering action units (AUs) and 22 pioneering tongue movements (TMs),

in addition to functional and structural nomenclature Freitas-Magalhães

[2018].

Using FACS, Freitas-Magalhães [2013] human coders can manually

code nearly any anatomically possible facial expression, deconstructing

it into the specific action units (AU) and their temporal segments that

produced the expression. As AUs are independent of any interpretation,

they can be used for any higher order decision making process includ-

ing recognition of basic emotions, or pre-programmed commands for an

ambient intelligent environment. The FACS Manual is over 500 pages in

length and provides the AUs, as well as Ekman’s interpretation of their

meaning.

FACS defines AUs, which are a contraction or relaxation of one or

more muscles. It also defines a number of Action Descriptors, which
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differ from AUs in that the authors of FACS have not specified the mus-

cular basis for the action and have not distinguished specific behaviors

as precisely as they have for the AUs.

For example, FACS can be used to distinguish two types of smiles as

follows Del Giudice & Colle [2007]:

Insincere and voluntary Pan-Am smile: contraction of zygomatic ma-

jor alone Sincere and involuntary Duchenne smile: contraction of zygo-

matic major and inferior part of orbicularis oculi. Although the labeling

of expressions currently requires trained experts, researchers have had

some success in using computers to automatically identify FACS codes,

and thus quickly identify emotions. Computer graphical face models,

such as CANDIDE or Artnatomy, allow expressions to be artificially

posed by setting the desired action units.

The use of FACS has been proposed for use in the analysis of depres-

sion Reed et al. [2007], and the measurement of pain in patients unable

to express themselves verbally Lints-Martindale et al. [2007].

FACS is designed to be self-instructional. People can learn the tech-

nique from a number of sources including manuals and workshops, and

obtain certification through testing Hager [2003]. The original FACS

has been modified to analyze facial movements in several non-human

primates, namely chimpanzees Parr et al. [2007], rhesus macaques Parr

et al. [2010], gibbons and siamangs Waller et al. [2012] and orangutans

Caeiro et al. [2013]. More recently, it was adapted for a domestic species,

the dog Waller et al. [2013].

Thus, FACS can be used to compare facial repertoires across species

due to its anatomical basis. A study conducted by Vick and others (2006)

suggests that FACS can be modified by taking differences in underlying

morphology into account. Such considerations enable a comparison of

the homologous facial movements present in humans and chimpanzees, to

show that the facial expressions of both species result from extremely no-

table appearance changes. The development of FACS tools for different

species allows the objective and anatomical study of facial expressions
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Table 4.1: Emotion-related facial action units

Emotion Action units
Happiness 6+12
Sadness 1+4+15
Surprise 1+2+5B+26
Fear 1+2+4+5+7+20+26
Anger 4+5+7+23
Disgust 9+15+16
Contempt R12A+R14A

in communicative and emotional contexts. Furthermore, a cross-species

analysis of facial expressions can help to answer interesting questions,

such as which emotions are uniquely human Vick et al. [2007].

EMFACS (Emotional Facial Action Coding System)Friesen et al. [1983]

and FACSAID (Facial Action Coding System Affect Interpretation Dic-

tionary) consider only emotion-related facial actions. Examples of these

are:

For clarification, FACS is an index of facial expressions, but does

not actually provide any bio-mechanical information about the degree of

muscle activation. Though muscle activation is not part of FACS, the

main muscles involved in the facial expression have been added here for

the benefit of the reader.

Action units (AUs) are the fundamental actions of individual muscles

or groups of muscles.

Action descriptors (ADs) are unitary movements that may involve the

actions of several muscle groups (e.g., a forwardthrusting movement of

the jaw). The muscular basis for these actions hasn’t been specified and

specific behaviors haven’t been distinguished as precisely as for the AUs.

For most accurate annotation, FACS suggests agreement from at least

two independent certified FACS encoders.

Intensities of FACS are annotated by appending letters AE (for minimal-

maximal intensity) to the action unit number (e.g. AU 1A is the weakest

trace of AU 1 and AU 1E is the maximum intensity possible for the in-
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Table 4.2: Intensity scoring

A Trace
B Slight
C Marked or pronounced
D Severe or extreme
E Maximum

Figure 4.8: One practical facial Curve Network

dividual person).

There are other modifiers present in FACS codes for emotional ex-

pressions, such as ”R” which represents an action that occurs on the

right side of the face and ”L” for actions which occur on the left. An

action which is unilateral (occurs on only one side of the face) but has

no specific side is indicated with a ”U” and an action which is unilateral

but has a stronger side is indicated with an ”A”.

4.7.2 Curve Network Structure

As analysis above, Facial Action Coding System could be used as pow-

erful rules to achieve any anatomically possible facial expression.

But how FACS could be implemented into computer application, to
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Table 4.3: List of action units and action descriptors (with underlying
facial muscles: Main codes

AU No. FACS name Muscular basis
0 Neutral face
19 Tongue show
14 Dimpler buccinator
15 Lip corner depressor depressor anguli oris
4 Brow lowerer depressor glabellae, depressor supercilii
16 Lower lip depressor depressor labii inferioris
25 Lips part depressor labii inferioris
2 Outer brow raiser depressor labii inferioris
1 Inner brow raiser frontalis (pars medialis)
18 Lip pucker incisivii labii superioris
13 Sharp lip puller levator anguli oris (also known as caninus)
9 Nose wrinkler levator labii superioris alaeque nasi
10 Upper lip raiser levator labii superioris, caput infraorbitalis
5 Upper lid raiser levator palpebrae superioris, superior tarsal muscle
26 Jaw drop masseter; relaxed temporalis and internal pterygoid
17 Chin raiser mentalis
6 Cheek raiser orbicularis oculi (pars orbitalis)
7 Lid tightener orbicularis oculi (pars palpebralis)
8 Lower lip depressor depressor labii inferioris
22 Lip funneler orbicularis oris
23 Lip tightener orbicularis oris
24 Lip pressor orbicularis oriss
28 Lip suck orbicularis oris
21 Neck tightener platysma
27 Mouth stretch pterygoids, digastric
20 Lip stretcher risorius w/ platysma
12 Lip corner puller zygomaticus major
11 Nasolabial deepener zygomaticus minor
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Table 4.4: Eye movement codes

AU No. FACS name
61 Eyes turn left
M61 Eyes left
62 Eyes turn right
M62 Eyes right
63 Eyes up
64 Eyes down
65 Walleye
66 Cross-eye
M68 Upward rolling of eyes
69 Eyes positioned to look at other person
M69 Head and/or eyes look at other person

Table 4.5: Visibility codes

AU No. FACS name
70 Brows and forehead not visible
71 Eyes not visible
72 Lower face not visible
73 Entire face not visible
74 Unsociable

replace tedious manual work with automatically processing.

In order to solve the above-mentioned problem, this work here devel-

ops one curve network as the mathematical representation of FACS.

Based on the Facial Action Coding System (FACS) mentioned in

above section, one Curve Network is build to represent both the neu-

tral human face and approximate diverse facial actions only by several

curves, and could reconstruct the whole facial model from C2 continu-

ous ODE surface method. The contributions include greatly reducing

the data size for facial models and provide one new quick approach to

build different human faces.

One practical facial Curve Network structure is created by implement-

ing ordinary differential equation (ODE)-based parameterization method

with C2 continuity, and carry on experiments to create a curve net-

work as the mathematical representation of Facial Action Coding Sys-

tem (FACS), in order to replace tedious manual work with automatically

90



Table 4.6: Gross behavior codes, these codes are reserved for record-
ing information about gross behaviors that may be relevant to the facial
actions that are scored.

AU No. FACS name
29 Jaw thrust
30 Jaw sideways
31 Jaw clencher
32 [Lip] bite
33 [Cheek] blow
34 [Cheek] puff
35 [Cheek] suck
36 [Tongue] bulge
37 Lip wipe
38 Nostril dilator
39 Nostril compressor
40 Sniff
41 Lid droop
42 Slit
43 Eyes closed
44 Squint
45 Blink
46 Wink
50 Speech
80 Swallow
81 Chewing
82 Shoulder shrug
84 Head shake back and forth
85 Head nod up and down
91 Flash
92 Partial flash
97 Shiver/tremble
98 Fast up-down look
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Mathematical

representation

FACS

ODE-based Curve Network

Figure 4.9: Mathematical representation of Facial Action Coding Sys-
tem (FACS)

processing for achieving various facial expressions, shown as below Fig.

4.8

Using this curve-net work, (1) could keep the essential feature of hu-

man face, shown as Fig. 4.9; (2) provide a way to set values to FACS

Unit attributes for more accurate computing; (3) use it as one underly-

ing driver to transmit the diverse expressions between different human

faces, shown as Fig. 4.10:

The proposed process of presenting different Facial Action units by

curve network include:

(1) Extract Curve Network from one template mesh, Fig. 4.11.

(2) Generate mesh by Curve Network based on C2 continuous ODE

surface method, Fig. 4.12.

(3) Comparison between original mesh and the reconstructed mesh us-

ing curve network based on C2 continuous ODE surface method, shown
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Non-Rigid / Rigid Registration

Action Unit 01 Action Unit 01

Action Unit 02

Action Unit 03

Action Unit n

…

Action Unit 02

Action Unit 03

Action Unit n

…

Known

Calculated

Unknown

Figure 4.10: Use rigid/ non-rigid registration to transmit the diverse
expressions between different human faces

as Fig. 4.13 and Fig. 4.14.

(4) Detailed part of the reconstructed mesh, in this experiment, use

4 curves to reconstruct the ear part, shown as Fig. 4.15.

(5) Use the defined facial curve network to generate different Action

Units, examples shown as Fig. 4.16, Fig. 4.17, Fig. 4.18 and Fig. 4.19.

The implementation of GUI for showing the curve network structure

and use default parameters to generate initialized surfaces is shown as

below Fig. 4.20 and Fig. 4.21. This implementation of the ODE based

continuous surface algorithm is accomplished by C++(11) in Visual stu-

dio 2017, and Microsoft operating system.

Instead of using default values, could change controllers value in GUI

to optimize generated surface, the difference could be shown as Fig. 4.22.
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(b) Curve Network(a) Original Mesh

Figure 4.11: Extract Curve Network (b) from one template mesh (a)

4.8 Discussion and Conclusion

In this chapter, an efficient ODE-based surface generating technique has

been proposed to create C2 continuous surface. This technique is based

on the mathematical model consisting of a vector-valued sixth order or-

dinary differential equation and C2 continuous boundary constraints.

The solution to the vector-valued sixth order ordinary differential

equation is a three-dimensional curve which is used to define an isopara-

metric line of surface models. By making the isoparametric line satisfying

the constraints of the position, and the first and second partial deriva-

tives, a surface patch is created. The surface models consisting of such

surface patches always maintain C2 continuity between different surface

patches.

In order to create surface patches quickly, the analytical solution to

the vector-valued sixth order ordinary differential equation subjected to

the constraints of position and the first and second partial derivatives is

developed. With the obtained analytical solution, the users only generate

two boundary curves or two boundary curves plus four control curves,
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(b) Generated Mesh(a) Curve Network on Original Mesh

Figure 4.12: Generate mesh (b) by Curve Network based on C2 con-
tinuous ODE surface method (a)

the proposed approach transforms them into the boundary constraints

of the position and the first and second derivatives, and create a surface

patch satisfying the boundary constraints exactly.

When building surface models, existing patch modeling techniques re-

quire tedious and time-consuming manual operations to stitch two sep-

arate patches together and achieve tangential or curvature continuity.

The technique proposed in this work solves this problem. All created

surface patches are connected together automatically with C2 continu-

ity. Besides, the technique presented in this work can achieve more shape

variations defined by the same boundary constraints since the proposed

technique can manipulate surfaces through shape control parameters,

and the first and second partial derivatives.
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(b) Generated Mesh (Green)，

Original mesh (white).

(a) Original Mesh

Figure 4.13: (a) shows the Curve Network on original mesh, (b) com-
pare the difference between generated mesh by C2 continuous ODE sur-
face method in green and the original mesh in white.

Generated Mesh (Green)，Original mesh (white).

Figure 4.14: Comparison the difference between generated mesh by C2
continuous ODE surface method in green and the original mesh in white.
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(b) Original Mesh(a) Reconstruct the detailed part

Figure 4.15: (a) shows the reconstructed detailed ear part of facial
mesh, (b) shows the original mesh.

Action Uint 01

(a) (b) (c)

Figure 4.16: (a) shows the curve network on facial action unit 01, (b)
shows the combination of reconstructed part and the rest facial mesh of
action unit 01, (c) shows the comparison of reconstructed mesh by curve
network and C2 continuous ODE surface method in green and original
mesh in white.
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ActionUint 02

(a) (b) (c)

Figure 4.17: (a) shows the curve network on facial action unit 02, (b)
shows the combination of reconstructed part and the rest facial mesh of
action unit 02, (c) shows the comparison of reconstructed mesh by curve
network and C2 continuous ODE surface method in green and original
mesh in white.
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Action Uint 04

(a) (b) (c)

Figure 4.18: (a) shows the curve network on facial action unit 04, (b)
shows the combination of reconstructed part and the rest facial mesh of
action unit 04, (c) shows the comparison of reconstructed mesh by curve
network and C2 continuous ODE surface method in green and original
mesh in white.

Action Uint 09

(a) (b) (c)

Figure 4.19: (a) shows the facial action unit 09, (b) shows the combi-
nation of reconstructed part and the rest facial mesh of action unit 09,
(c) shows the comparison of reconstructed mesh by curve network and
C2 continuous ODE surface method in green and original mesh in white.
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Figure 4.20: GUI for showing the curve network structure and use
default parameters to generate initialized surfaces.

Figure 4.21: Use the GUI and default parameters to reconstruct seven
initialized patches of the facial mesh.
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Figure 4.22: (a) shows the patch surface generated by default shape
control values, (b) shows changing the values of shape control paremeters
will generate different surfaces.
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Chapter 5

Automatic Generation of

Animation Skeleton to Assist

Dynamic Skin Deformation

Since non-automatic rigging requires heavy human involvements, and

various automatic rigging algorithms are less efficient in terms of com-

putational efficiency. Especially for current curve-based skin deformation

methods, identifying the iso-parametric curves and creating the anima-

tion skeleton need tedious and time-consuming manual work. Although

several automatic rigging methods have been developed, but not aim at

curve-based models. To tackle this issue, this chapter propose a new rig-

ging algorithm for automatic generation of dynamic skin deformation to

quickly identify iso-parametric curves and create an animation skeleton

in a few milliseconds, which can be seamlessly used in curve-based skin

deformation methods to make the rigging process fast enough for highly

efficient computer animation applications.

5.1 Introduction

Skin deformation technique stays an essential and standardized part of

many character animation applications these days including academia
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and industry practices. The usefulness of a skin deformation technique

is generally measures in terms of three major characteristics: efficiency,

realism, and easiness. Over years, researchers have developed a variety of

skin deformation techniques to improve them. These skin deformation

techniques can be roughly classified into geometric skin deformation,

example-based skin deformation, and physics-based skin deformation.

Geometric skin deformation approaches directly bind skin deformation

with the underlying skeleton movement without taking any underlying

physics into consideration. Despite their simplicity and efficiency, they

cannot produce highly realistic skin deformation without non-trivial ad-

ditional efforts.

Example-based skin deformation approaches interpolate a set of given

example poses to improve realism or produce certain skin deformation

effects that cannot be easily produced by geometric skinning approaches.

Therefore, example-based skin deformation approaches are often used to-

gether with geometric skinning. In order to achieve satisfactory realism,

sufficient example skin shapes are required. In addition, how to opti-

mally design or obtain such a set of example poses is still considered as

a widely open research problem. For example, how many example poses

are sufficient for high quality skinning of a specific 3D model; and where

those example poses should be positioned in the deformation space.

Physics-based skin deformation approaches introduce physics rules or

musculoskeletal systems to drive and simulate the movement of the skin

surface, which probably have produced more physically-realistic skin de-

formation results to date. Although physics-based skin deformation ap-

proaches bring in good realism, they rely on heavy numerical calculations

and have the following limitations: 1) numerical calculations such as fi-

nite element simulations require specialized knowledge and skills, making

them more difficult to learn and use, 2) a lot of manual operations such as

mesh generation of finite elements and specification of boundary condi-

tions are involved leading to more pre-processing time, 3) large computer

memory requirements and high computational cost making them more

difficult to achieve high efficiency. Low efficiency caused by numerical
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calculations of physics-based simulations is due to large data size or high

dimension. Model reduction can be used to reduce the data size or di-

mension and obtain an approximation of lower accuracy in significantly

less time but more complicated implementation.

Animation quality of virtual characters without clothes is determined

by efficiency and realism of skin deformations. Automatic rigging can

raise the efficiency, and data-driven and physics-based skinning tech-

niques can improve the realism. In existing literature, a rigging process

includes generating and placing a skeleton inside a skin mesh and relating

skin shape changes to the skeleton movements.

The above discussions indicate that geometric, example-based, and

physics-based skin deformation approaches have their own strengths and

limitations. How to maximize their strengths and minimize their lim-

itations to achieve more realistic and efficient skin deformations easily

requires further investigations. Besides, rigging is usually done by hand,

especially for current curve-based skin deformation methods, identifying

the iso-parametric curves and create the animation skeleton need tedious

and time-consuming manual work. Although several automatic rigging

methods have been developed, but not aim at curve-based models.

To tackle this issue, this work proposes a new rigging algorithm to

quickly identify iso-parametric curves and create an animation skeleton

in a few milliseconds, which can be seamlessly used in physically curve-

based skin deformation methods to make the rigging process fast enough

for highly efficient computer animation applications.

Since modelling of skin surfaces and their deformations can be sim-

plified as those of the curves defining skin surfaces. When physics-based

approaches are used to deal with skin deformations, such a simplifica-

tion can significantly reduce computer resource and raise computational

efficiency.

Chaudhry et al. [2015] investigated a finite difference solution to curve-

based dynamic skin deformations, the curves are extracted manually

from these reconstructed skin deformation models, which is tedious and
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time-consuming. Thus, this chapter develops:

1) an automatic and quick vertex identification algorithm which quickly

identifies all the vertices at iso-paramteric curves on the example skin

meshes at two extreme poses for following physics-based skin deforma-

tion calculations. 2) an automatic and highly efficient rigging algorithm

which quickly creates a new skeleton and embeds it in the two exam-

ple skin meshes through shape matching with a template skeleton. 3)

integration of curve-based presentations, automatic rigging, ODE-based

simulation to achieve good realism, high efficiency for skin deformation

with small data size.

The chapter is structured below. First, an overview of the proposed

approach and developed animation system is given in Section 5.2. Then,

identifying iso-parametric curves is investigated in Section 5.3, and cre-

ating animation skeleton is developed in Section 5.4. After that, ODE-

based dynamic skin deformation experimental results are given in Section

5.5 and evaluations are given in Section 5.6. Finally, the concluded and

future work is discussed in Section 5.7.

5.2 Overview

This section gives an overview of the proposed approach. As shown in

Fig. 5.1, the proposed approach consists of three main parts: identifi-

cation of iso-parametric curves, creation of animation skeleton, and dy-

namic skin deformations. The purpose of identifying the iso-parametric

curves has two: one is to convert polygon meshes into curve-defined

models to be applied in ODE-based dynamic skin deformations discussed

in Section 5.6, and the other is to create curve skeleton which will be

changed into animation skeleton.
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Figure 5.1: Overview of the proposed approach

Most skin surfaces are polygon meshes defined by discrete vertices, since

volumetric models would require the information inside skin meshes that

is often unavailable in given skin examples. Due to the deformation com-

plexity of muscle, fat, and skin, current physics-based models, in spite of

better realism than geometric skin deformations, are still unable to ac-

curately predict skin shape changes. Thus, assuming skin deformations

are similar to elastic bending of thin plates and develop a surface model

of physics-based skin deformations, represented by Ordinary Differen-

tial equations (ODE) on the basis of iso-parametric curves, to describe

the underlying physics for skin shape creation between given examples

to achieve high realistic skin deformation results, which largely reduces

data size and computing time.

Meanwhile, the identified isoparametric curves naturally provide a

good basis to automatically and high efficiently determine the curve

skeletons of characters, using down-sampling algorithm and shape match-

ing algorithm.

Finally, the ODE based dynamic deformation model is proposed to

describe physics of curve deformations and its finite difference solution

is developed to determine shape changes of the iso-parametric curves.

So that the proposed dynamic skin deformation technique can create

realistic deformed skin shapes for character animation efficiently with

largely reduced computing time.
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5.3 Identify Iso-parametric Curves

The proposed automatic rigging method is specifically designed and tai-

lored for the purpose of character animation. It is not targeted for gen-

eral rigging on meshes with arbitrary topologies. Given that converting

a triangle mesh to a quad mesh has been well supported in many soft-

ware packages such as Autodesk Maya, without loss of generality, this

approach only focus on quad meshes as the input character poses.

Assuming that a parametric variable u is used to denote the circumfer-

ential direction (u = ui is an iso-parametric curve), and use v to indicate

the axial direction of each of the parts of a character model, the specific

goal of vertex identifier in the proposed approach is to identify all the

vertices on each iso-parametric curve, u = ui (i = 0, 1, 2, ..., I).

The proposed iso-parametric curves identification process starts from

the farthest end of the character parts such as limbs and tail, which can

be manually specified or automatically identified through the analysis of

curvature distribution. Specifically, several seed points are first selected

to start the construction of iso-parametric curves in their circumferen-

tial directions. Then, their neighboring vertices in the axial direction

are continuously added as new seed points. In this process, a vertex is

visited at most once, which would lead to closed loops at the beginning

and gradually open the loops especially at the connection place between

different body parts.

The first step is to identify the axial and circumferential directions of

each of the parts of a 3D character mesh. Fig. 5.2 illustrates an example

how this process is done. A ray is firstly drawn starting from the vertex

2 of a cat model in the normal direction of the facet 2-17-30-11-2, which

intersects another facet at a point P0 (shown in Fig. 5.2(c)). Then, 10

lines are drawn, including the line 2-P0, at the same angle of 18o, that

pass the middle point P1 of the line 2-P0 in the plane determined by the

triangle 2-P0-11-2, and obtain 20 intersecting points P 1
k (k = 1, 2, ..., 20)

illustrated in Fig. 5.2(d). Afterwards, the centre P 1
0 of the 20 points

are calculated and all the Euclidean distances d(P 1
0 , P

1
k ) (k=1,2,...,20),
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among which the minimal and maximal Euclidean distances are found,

d1min and d1max. At the end, the difference between the minimal and

maximal Euclidean distances can be calculated, d1 = d1max − d1min.

Similarly, in the plane determined by the triangle 2-17-P0-2, do the

same operations, i.e., drawing 10 lines in the plane, obtaining 20 in-

tersecting points P 2
k (k = 1, 2, ..., 20), calculating the minimal and max-

imal Euclidean distances d2min and d2max, and calculating the difference

d2 = d2max−d2min. If d1 < d2, the direction determined by the 20 intersect-

ing points P 1
k (k = 1, 2, ..., 20) is the circumferential direction. Otherwise,

the direction determined by the 20 intersecting points P 2
k (k = 1, 2, ..., 20)

is the circumferential direction.

An accurate method is proposed below to automatically identify the

vertices on the iso-parametric curve ui in the circumferential direction,

and use their indexes to obtain their coordinate values on the mesh.
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Figure 5.2: Illustration of Identifying Iso-parametric Curves on exam-
ple model

Starting with the vertex 2, and find all the edges which directly con-

nect the vertex 2 to some of its 1-ring vertices, i.e, 2-17, 2-11, 2-28 and

2-23 as illustrated in Fig. 5.2(a). Then, calculate the angles between

these edges and the plane in the circumferential direction. The one with

the minimum angle (e.g., the vertex 11 in Fig. 5.2) is selected to con-

nect to the vertex 2. Afterward, the same operations are performed on

the new selected vertex in order to select next vertex. The process is

repeated until connecting back to the vertex 2 to find all the vertices on

the iso-parametric curve ui.

Fig.5.3 shows the identified vertices on iso-parametric curves of a cat
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model (a). The computational times for the vertex identifier process are

given in Table 5.1.

Figure 5.3: The proposed iso-parametric curves identifying step trans-
forms a quad mesh (a) into discrete vertices on iso-parametric curves(b).

5.4 Creating Animation Skeleton

The identified isoparametric curves provide a very good basis to auto-

matically and quickly determine the curve skeletons of the decomposed

parts. To this end, calculate the centres of all isoparametric curves.

The curve skeleton is obtained by connecting these centres. Then, use

the following down-sampling algorithm and shape matching algorithm

to create an animation skeleton from the obtained curve skeleton and a

template skeleton as discussed below.

First, the centre of the points S̄0(ui, vj)(j = 0, 1, 2, ..., J) on one

isoparametric curve are calculated to obtain the curve skeletons for the

limbs and the torso including neck and head. The curve skeleton of a

human arm consisting of the calculated centres is shown as Figure 5.4(a).

Inspired by the work of Au et al. [2008]; Pan et al. [2009], a down-

sampling algorithm is introduced, to find the joints. Here set 20o shown

in Figure 5.4(b) as the minimal angle threshold between two connected

line segments of a curve skeleton. In other words, if the relative rotation

between two connected line segments of a curve skeleton is greater than

this threshold, a joint is specified at this point shared by the two adjacent
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Figure 5.4: Creation of the animation skeleton

line segments. Figure 5.4(c) depicts the joint between the forearm and

upper arm determined by the down-sampling algorithm.

Also, the centres of seam-curves are denoted as the joints between the

limbs and the torso labeled as 1, 2, 3 and 4. And the centres closest

to the fingers and toes are labeled as 12, 15, 18 and 21 on the curve

skeletons shown in Figure 5.4(d). With the down-sampling algorithm,

the joints 11, 13, 14, 16, 17, 19, 20 has the larger angle between two

adjacent line segments from the curve skeletons, thus can be identified,

shown in Figure 5.4(d).But for other joints, such as 10, which cannot be

identified with the above down-sampling algorithm, a template skeleton

and a shape matching algorithm can be used to identify it.

This approach uses the human skeleton in Bharaj et al. [2012], shown

in Figure 5.4 (e), as a template skeleton. Besides, the shape matching

algorithm is based on the matching of four feature joints 1, 2, 3, 4 gen-

erated by seam-curves and a symmetric axis from joint 6 to joint 24 in

the skeleton template Figure 5.4(e), and the similarity measure between

the curve skeleton and the template skeleton. Once a template skeleton

is selected, firstly check whether the joints 3, 4, and 5 are on one same

straight line, and the joints 1, 2, and 6 are on another straight line. In

Figure 5.4 (e), the double prime symbol is used to indicate the joints of

the template skeleton. For this template skeleton, the joints 3, 4, and 5

are on one straight line, and the joints 1, 2, and 6 are on another straight

line. The joints 5 and 6 are determined by 5.1
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t5 = t4 + (t3 − t4)/2

t6 = t1 + (t2 − t1)/2

(t = x, y, z)

(5.1)

After the joints 5 and 6 have been determined, they are connected to

the curve skeleton between the joint 5 and 6 to obtain the symmetric

axis. Then, determine the locations of the joints 7, 8, and 9 on torso

and the locations of the joints 22, 23 , 24 on neck and head according to

the length similarity measure. For example, the joint 9 is determined by

L59/L56 = L5”9”/L5”6” where L56 is the arc length of the curve skeleton

from the joint 5 to joint 6, and L5”6” = L5”9” + L9”8” + L8”7” + L7”6”.

Similarly, animation skeletons for other models such as a human hand

can be automatically generated in Figure 5.4(g). In Figure 5.4(g), the

top left hand shows the skeleton after the down-sampling algorithm, but

four fingers are almost spreading, use the template in the middle and the

matching algorithm to supplement the four joints (blue) shown as the

top right hand. The hand on the bottom right of Figure 5.4(g) shows the

skeleton extracted by Au et al. [2008] is based on mesh contraction. The

mesh contraction presented in Au et al. [2008] takes about 10 seconds

to obtain the skeleton of the mesh with 25,000 vertices. In contrast, the

proposed method takes less than 5 milliseconds to create the skeleton of

the mesh with 32,185 vertices.

If there are two or more skin meshes for one model at different poses,

the above algorithm can be used to obtain a skeleton for each of them for

revision. If some joints obtained from different meshes are different, the

joints with larger angles are used. For example, the joint 19 for the skin

mesh at the starting pose shown in Figure 5.4(d) is on the isoparametric

curve S̄0(ui, v), but the corresponding joint 19′ on the skin mesh at the

ending pose shown in Figure 5.4(f) is on the isoparametric curve S1(uj, v)

, the joint 19′ is taken to be the joint between the forearm and upper arm
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(a) (b) (c) (d)

Figure 5.5: Skeleton results generated by the proposed automatic rigging
algorithm.

since it has a larger angle. Here, the prime symbol is used to indicate

the skin mesh at the ending pose.

Only taking the mesh at one pose shown in Figure 5.5 as input (models

from Baran & Popović [2007]), the proposed automatic rigging algorithm

including both down-sampling and the shape matching with the template

skeleton are used to generate the skeletons in Figure 5.5(a) and (c), com-

paring them with the skeletons in Figure 5.5(b) and (d) obtained by the

rigging method in Baran & Popović [2007]. As shown in the figure, our

method can generate comparable skeletons as Baran & Popović [2007],

if not better.

5.5 ODE-based Dynamic Skin Deformation

After automatically identifying the iso-parametric curves and creating

the animation skeleton in high efficiency, the curve-based skin deforma-

tion method in Chaudhry et al. [2015] is employed to create the dynamic

deformation model for character animation which demonstrates the pro-

posed method can be used in curve-based skin deformation approach

to create physically realistic animation high efficiently. For the sake of

completeness, the physics-based skin deformation method presented in

Chaudhry et al. [2015] is introduced briefly.

The govern equation of dynamic bending of isotropic elastic beams
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can be written as Chaudhry et al. [2015]:

EI[∂4w/∂x4] + ρA[∂2w/∂t2] = F (x) (5.2)

where w is the deformation, x is a coordinate variable, t is a time

variable, F (x) is the bending force, E is Youngs modulus, I is the second

moment, ρ is the density, and A is the cross-section area of the beam.

If the skin mesh is described with a parametric representation, the

deformation will involve three components x, y, and z, the bending force

will involve three components fx, fy, and fz, and the coordinate variable

will become the parametric variable v. Accordingly, the above equation

is changed into:

EI[∂4q(v, t)/∂v4] + ρA[∂2q(v, t)/∂t2] = fq(x) (q = x, y, z) (5.3)

Since considering physicals-base skin deformations of human character

in this approach, I determine E and ρ with Youngs modulus and Poisson

ratio of human skin. If the skin shapes at the rest pose t = 0 and the

deformed pose t = 1 are known, the deformation and deformation rate

at the rest pose t = 0 are zero, and the deformation at the deformed

pose t = 1 is the difference between the skin shape at the deformed pose

t = 1 and the skin shape at the rest pose t = 0. Therefore, the following

constraints are obtained:

t = 0 q = q1 − q0 = 0 dq/dt = 0

t = 1 q = q1 − q0
(q = x, y, z)

(5.4)

Substituting the central finite difference formula of the fourth deriva-

tive of q with respect to the parametric variable v and the first and

second derivatives of q with respect to the time variable t into the above
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two equations, a system of linear algebra equations are obtained which

can be written in the matrix form below

[Knm]{Qnm} = {Fnm} (5.5)

where n indicates the nth time integration, and m stands for the mth

node of the finite difference grid.

For the undeformed skin mesh at the rest pose Fig. 5.6(a) and the

deformed skin mesh at the deformed pose Fig. 5.6(e), the above linear

algebra equations are solved to obtain the intermediate meshes shown in

(b), (c) and (d) of Fig. 5.6.

(a) (b) (c) (d) (e) (f)

Figure 5.6: The models (a) and (e) are input as examples, intermediate
models (b)-(d) are created efficiently, (f) is the rendered model.

Given multiple poses as the input, the proposed method can also

produce physically-realistic skin deformations. For example, the skin

shapes at the three poses shown in (a), (f) and (k) of Fig. 5.7 are known.

The skin shapes at (a) and (c) are used to create the deformed skin

shapes at the pose (b), and use the skin shapes at the pose (c) and (e)

to create the deformed skin shapes at the poses (d) of Fig. 5.7.

115



(a)

(b)

(c)

(d)

(e)

Figure 5.7: (a), (c), and (e) are three input example poses, all the
frames in (b) are in-between poses generated by the proposed approach
based on (a) and (c), all the frames in (d) are in-between poses generated
by the proposed approach based on (c) and (e).

5.6 Evaluation

In this section, the proposed iso-parametric curve identification, skeleton

creation, and ODE-based dynamic skin deformation are evaluated.

116



5.6.1 Evaluation of Iso-Parametric Curve Identifi-

cation

Figure 5.8: Character models and extracted curves with different meth-
ods. (a) manual extraction Chaudhry et al. [2015], (b) skeleton-mesh co-
representation Bærentzen et al. [2014], (c) iso-parametric curves identi-
fied by the proposed approach.

There are few research studies which investigate identification or ex-

traction of iso-parametric curves. In the existing curve-based geometric

modeling and deformation simulation, iso-parametric curves were manu-

ally extracted. As said in Chaudhry et al. [2015], even a Maya Embedded

language (MEL) script were used to assist the manual extraction of iso-

parametric curves, the whole extraction of a horse model with 30,134

vertices shown in Figure 5.8 (a) took two hours.

The curves defining skin surfaces are manually extracted, leading to

heavy and time-consuming human involvements. The method proposed

in Bærentzen et al. [2014] can be used to extract iso-parametric curves

from a triangular mesh. However, this method: (1) requires users to

manually specify the extreme points of a harmonic function to guide the

conversion, (2) its computational efficiency is less optimal. For example,

it requires 6.41 s to process a bunny mesh with 6966 triangles shown in

Figure 5.8 (b) into its polar-annular mesh representation using 100 slices

on an off-the-shelf computer Bærentzen et al. [2014]. The proposed iso-

parametric cure identification extracts a female model with a similar

vertex number shown in Figure 5.8 (c) only took 2.03 milliseconds.
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5.6.2 Evaluation of animation skeleton creation

In Chaudhry et al. [2015]; You et al. [2008], the animation skeleton used

for calculating skin deformation is manually created. It is unsuitable for

real-time animation or some applications that require high animation

frame rates. In contrast, the approach proposed in this chaper can

generate skeleton automatically.

As shown in Figure 5.9 (a), the mesh contraction method proposed

in Au et al. [2008] takes about 10 s to obtain the skeleton of the raptor

mesh with 25,000 vertices. The method proposed in this chaper takes

less than 5 milliseconds to create the skeleton of the human mesh with

32,185 vertices shown in Figure 5.9 (b).

Figure 5.9: Skeleton creation with different methods. (a) skeleton ex-
traction by mesh contraction Au et al. [2008] , (b) skeleton generated
by the proposed approach.

5.6.3 Evaluation of ODE dynamic skin deformation

The runtime time shows the proposed approach is highly efficient while

producing physically realistic skin deformations. Most existing physics-

based skin deformation techniques work in a discrete vertex space to ob-

tain discrete numerical solutions of skin deformation, causing the limita-
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tions of intensive manual intervention, and heavy numerical calculations.

The method in Kavan & Sorkine [2012] generates higher quality defor-

mations than both linear and dual quaternion skinning through skinning

weights optimization, but requires at least a few minutes to precompute

the deformation weights. The method in McAdams et al. [2011] still

needs at least several seconds for torso and arms simulation per frame

on GPU, it is still not fast enough for interactive posing.

In contrast, this method only needs few milliseconds to automatically

extract iso-parametric curves, generate skeleton and achieve dynamic

in-between skin deformations, as shown in Table 5.1, giving a runtime

breakdown of the proposed approach when it is applied to generate the

animation of the dancer model in Fig. 5.6 and a cat model in Fig. 5.7.

The runtime time statistics show this approach is highly efficient while

producing physically realistic skin deformations.

Table 5.1: Runtime breakdown of the proposed approach when it was
used to automatically process the different models. Here, VI: Vertex
Identifier on iso-parametric curves, SC: Skeleton Creating, SD: Skin De-
former.

Runtime (ms)
Model Vertices VI SC SD Total

Cat 7,207 1.32 0.269 1.517 3.106
Dancer 13,201 2.03 0.431 2.830 5.291

5.7 Discussion and Conclusion

This chapter presents an automatic rigging algorithm for ODE-based

simulation of dynamic skin deformation for character animation. It in-

cludes vertex identification on iso-parametric curves, automatic skeleton

creation combined with curve-based skin deformation approach. Sev-

eral experiments have been conducted to demonstrate the developed

approach can make the rigging process fast enough for highly efficient

computer animation applications.

The method proposed in this chapter is easy to learn, implement,
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and use. Among the three steps of the proposed approach, the iso-

parametric curve identification and automatic animation skeleton cre-

ation are straightforward and easiest to implement. Although the finite

difference solution of ODE-based dynamic skin deformation is a little

more difficult to implement, it is still much easier than the implementa-

tion of the corresponding finite element solution.

Several improvements can be made in the future. The proposed iso-

parametric curve identification is applicable to quad meshes with regu-

lar topology. Future work will investigate triangule meshes and arbitrary

topologies. The proposed automatic rigging requires a template skeleton.

In order to make the proposed automatic rigging applicable to various

character models, different character models will be classified into differ-

ent categories and a small template skeleton database with one skeleton

in the database for one category of character models will be created.
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Chapter 6

Application of Fourier

Transformation in

Physics-based Skin

Deformation

Physics-based skin deformation methods can greatly improve the realism

of character animation, but require non-trivial training, intensive man-

ual intervention, and heavy numerical calculations. Due to these limita-

tions, it is generally time-consuming to implement them, and difficult to

achieve a high runtime efficiency. Recent model reduction efforts accel-

erate numerical calculations, providing an effective solution to achieving

real-time performance at the expense of lowering computational accu-

racy and increasing implementation complexity. In order to tackle the

above limitations caused by numerical calculations of physics-based skin

deformation, a new, simple, and efficient analytical approach for physics-

based skin deformations are proposed. Specifically, I: (1) employ Fourier

series to convert 3D mesh models into continuous parametric represen-

tations through a conversion algorithm, which largely reduces data size

and computing time but still keeps high realism, (2) introduce a Ordi-

nary differential equation (ODE)-based skin deformation model, which

is the first attempt to obtain an analytical solution to physics-based skin
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deformations for highly efficient computation. This proposed approach

is efficient, easy to use, and capable to create physically realistic skin

deformations.

6.1 Introduction

Skin deformation techniques have been used as a standardized part of

many character animation applications these days in both academia and

industry practices. The usefulness of a skin deformation technique in

terms of three major characteristics are generally measured: efficiency,

realism, and ease of use. Over the years, researchers have developed a

variety of skin deformation techniques to improve these aspects. These

skin deformation techniques can be roughly categorized to geometric

skin deformation, example-based skin deformation, and physics-based

skin deformation, described below.

Geometric skin deformation approaches directly bind skin de-

formation with the underlying skeleton movement without taking any

underlying physics into consideration. Despite their simplicity and effi-

ciency, they typically fall short of producing highly realistic skin defor-

mations without non-trivial additional efforts. Example-based skin

deformation approaches interpolate a set of given example poses to

improve realism or produce certain skin deformation effects that can-

not be easily produced by geometric skinning approaches. Therefore,

example-based skin deformation approaches are often used together with

geometric skinning. In order to achieve high realism, a sufficient number

of skin examples are often required. In addition, how to optimally de-

sign or acquire such a sufficient set of example poses is still considered as

a widely open research problem. Physics-based skin deformation

approaches introduce physics rules or musculoskeletal systems to drive

and simulate the movement of the skin surface, which arguably have

produced the most realistic skin deformation results to date. Although

physics-based skin deformation approaches can generally lead to high re-

alism, they rely on heavy numerical calculations, specialized knowledge
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and skills; the requirements of numerical calculations including finite el-

ement simulations for a large memory footprint and high computational

cost make them difficult to achieve a high efficiency. Model reduction

can be used to reduce the data size or dimension and obtain an approxi-

mation of lower accuracy in significantly less time but more complicated

implementation.

Although some recent research efforts have pursued the direction of in-

tegrating geometric, example-based, and physics-based skin deformation

approaches, any approaches that are capable of describing physics-based

skin deformation (static or dynamic) with analytical solutions have not

been found, to the best of my knowledge. This poses an interesting open

question: Develop one skin deformation approach with analytical solu-

tion, which is capable of producing physically-realistic deformations with

high efficiency (e.g., much faster than the numerical approaches employed

by conventional physics-based skin deformations without model reduc-

tion), without requiring specialized knowledge, skills, and heavy manual

involvements.

Inspired by the above challenges, in this chapter a new analytical

approach are proposed to generate physically-realistic character skin de-

formation in a highly efficient manner. This proposed method can be

used only requiring at least two example meshes obtained from either

captured or artist-sculpted shapes; any two adjacent examples consti-

tute one sequence to create intermediate skin deformations (an example

is shown in Figure 6.1). The advantages of this approach include: high

efficiency, good realism, and ease of use, as detailed below.

High efficiency . With the obtained analytic solution to the for-

mulated ODE-based physics model, this approach transforms a discrete

example mesh into its continuous Fourier series representations to avoid

the solving of a large set of linear equations, which largely reduces data

size and computing time.

Good realism . Integrating physics-based and example-based ap-

proaches leads to more realistic skin deformations. It utilize a small

number of provided example meshes in this physics-based mathemati-

123



(a) (b) (c) (d) (e)

Figure 6.1: This proposed method can generate physically realistic char-
acter animation efficiently given two example poses, shown in (a) and
(e). (b)-(d) are intermediate poses generated by this proposed approach.

cal model, in order to determine the correct force field acting on skin

surfaces and achieve the realism of skin deformations.

Explicit solver . The solution of physics-based skin deformations is

fully analytical and able to explicitly and quickly determine physically

realistic skin deformations with high automation. Due to the fully ana-

lytical nature and few manual operations, it is easy to learn, implement,

and use without much physics-based knowledge and skills.

6.2 Approach Overview

Most existing physics-based skin deformation techniques work in a dis-

crete vertex space to obtain discrete numerical solutions of skin defor-

mation, causing the aforementioned limitations. Analytical solutions,

if obtainable, can overcome the limitations of numerical calculations of

physics-based methods. However, obtaining an efficient analytical solu-

tion to physics-based skin deformation is a non-trivial task. Currently,

no analytical solution is available to create physically-realistic skin de-

formation.

Most skin surfaces are polygon meshes defined by many discrete ver-

tices. Unlike numerical solutions that are essentially discrete represen-

tations, analytical solutions are continuous representations. In order
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to develop analytical solutions, discrete polygon models must be firstly

transformed into continuous surfaces. Two mathematical representations

can be used to define continuous surfaces: parametric and implicit sur-

faces. Since parametric surfaces are easier to develop analytical solutions

than implicit surfaces, I select parametric surfaces to describe 3D skin

surfaces.

Parametric skin surfaces can be mathematically written as S(u, v),

where u and v are two parametric variables. If S̄0(u, v) and S1(u, v) are

used to stand for the meshes at any two adjacent poses called starting

pose and ending pose, respectively, the shape change from S̄0(u, v) to

S1(u, v) can be decomposed into two parts: geometric shape change that

is resulted from affine transformations, and physical deformation that is

due to the force field acting on the skin surfaces.

Physics-based skin deformation approaches determine how skin defor-

mations change with external forces. When external forces are applied

slowly, skin deformations can be treated as static (called static skin de-

formations), which does not consider the effects of acceleration (inertial

forces) and velocity (damping forces) on skin shape changes. Other-

wise, skin deformations can be treated as dynamic (called dynamic skin

deformations) to include the influences of acceleration and velocity.

Introducing a time variable t, dynamic physical deformation is writ-

ten as D(u, v, t) in Fourier series representation, where a time-dependent

force field F(u, v, t) is applied onto the skin surface, through the under-

lying physics described by differential equations. Assuming a differen-

tial operator L stands for the operations of the differential equations,

the relationship between dynamic skin deformation and the force field

can be described as L(D(u, v, t)) = F(u, v, t), whose concrete form will

be presented in Section 6.4. Above differential equation involves three

variables u, v and t. Simultaneously solving the three variables is dif-

ficult. However, if u are fixed, i. e., u = ui, so can transform it into

L(D(ui, v, t)) = F(ui, v, t). The remaining problem is how to efficiently

solve this reduced differential equation. Fourier series developed by the

French mathematician Joseph Fourier provides a powerful tool for devel-
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Figure 6.2: The pipeline of the proposed method consists of two parts:
Fourier series conversion, and physics-based skin deformation.

oping an analytical solution to this differential equation.

Inspired by the above analysis, this proposed approach consists of two

parts: the first part, Fourier series conversion (Section 6.3), mainly

including identification of vertices on isoparametric curves and Fourier

series representation. The second part, physics-based skin deforma-

tion (Section 6.4), mainly including mathematical model of physics-based

skin deformation and analytical solver, which derives a closed form an-

alytical solution to physics-based skin deformation. The pipeline of the

proposed approach is illustrated in Figure 6.2 as below

In the Fourier series conversion part, first, two example meshes

S̄0(u, v) in Figure 6.2(a) and S1(u, v) in Figure 6.2(b) are inputted to

the proposed system, which quickly identifies the vertices at the isopara-

metric curves u = ui and transforms S̄0(u, v) and S1(u, v) into a series

of isoparametric curves S̄0(ui, v) in Figure 6.2(c) and S1(ui, v) in Fig-

ure 6.2(f). After that, the LBS is introduced to change S̄0(ui, v) into

a new shape S0(ui, v) as shown in Figure 6.2(d), which together with

S1(ui, v) are transformed into continuous Fourier series representations

indicated in Figure 6.2(e) and Figure 6.2(g), and are inputted into a

deformation calculator to obtain the physical deformation shown in Fig-

ure 6.2(h). In the Physics-based skin deformation part, as shown

in Figure 6.2(i), a physics-based mathematical model is first developed
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for both dynamic and static skin deformations. Then, the force field

causing skin deformation is represented with Fourier series. After that,

the mathematical model is solved analytically and a closed form analyt-

ical solution is obtained. Finally, the obtained analytic solution is used

to create skin deformations at any poses Figure 6.2(j)-(l) between the

starting pose and the ending pose.

6.3 Fourier Series Conversion

The integration of geometric, example-based, and physics-based skin de-

formations includes the following steps: skeleton extraction, weights cal-

culation, and physics-based deformation, maybe leading to manual inter-

ventions and non-negligible amount of preprocessing time. The first part

of the proposed method, Fourier series conversion, is designed and tai-

lored to avoid unnecessary manual operations, reduce the preprocessing

time, and fast obtain the Fourier series representations that are needed

for follow-up physics-based deformation determination.

6.3.1 Identification of Isoparametric Curves

The identification of isoparametric curves includes: i) automatic seg-

mentation of skin surface models (decomposing a mesh into parts such

as limbs and torso), ii) determination of the intersecting curves of the

starting pose, and iii) extracting the isoparametric curves {u = ui} ac-

cording to intersecting curves on the starting pose, further be used to

determine their counterparts on the ending pose.

Automatic segmentation . Many existing algorithms can be used

to automatically segment 3D mesh models. A comprehensive literature

review on mesh segmentation algorithms can be found in Shamir [2008].

Quantitative evaluation of mesh segmentation algorithms was also re-

ported in Chen et al. [2009]. Due to the reported efficiency of the random

walks method Lai et al. [2008], it is employed to automatically segment

3D models (specifically, 3D character models in this work). The inter-
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secting curves between two adjacent segmented parts are called seam-

curves. After segmenting a 3D model into parts, including segmentation

with one seam-curve (highlighted in green in Figure 6.3(b)), two seam-

curves (illustrated in Figure 6.3(c), (d)), or more than two seam-curves

(illustrated in Figure 6.3(e)).

Determination of intersecting curves . The determination of

intersecting curves on one part model can be divided into cases with one

seam-curve, two seam-curves, and more than two seam-curves.

For the case of one seam-curve on a part model (illustrated in Fig-

ure 6.3(b)), the centroid P (blue) of the seam-curve are firstly calculated.

From the centroid and the normal of the plane closest to the seam-curve,

a step size are specifiedto determine another point. Then, a new inter-

secting plane is created that passes through the point and is perpendic-

ular to the normal, use it to intersect the part model, and obtain an

intersecting curve. A new centroid is determined from the intersecting

curve. The direction determined by the two adjacent centroids is taken

to be the direction of the next step. This process repeats until arriving

at the farthest end of the part model.

For the case of two seam-curves on a part model (Figure 6.3(c)), a

dichotomy algorithm is used to obtain intersecting curves. For the first

dichotomy, shown as the left arm of Figure 6.3(c), the centroid P and P ′

of the two green seam-curves is determined, and find the middle point

P1 of the line segment PP ′. From the red middle point P1, an inter-

secting plane T1 perpendicular to the line PP ′ is created to intersect

the part model, which leads to an intersecting curve (blue). Then, the

black centroid P ′1 of the intersecting curve are calculated. For the second

dichotomy, the black centroid P ′1 with P and P ′ are connected, calcu-

late the red middle points P2 of the line segments P ′1P and P ′1P
′, create

two planes T2 to intersect the model, and obtain two intersecting curves

(blue) and calculate two corresponding centroid P ′2 of the blue curves.

As shown in the second arm of Figure 6.3(c), for the third dichotomy, the

three black centroids and the centers of green seam-curves PP ′2, P
′
2P
′
1,

P ′1P
′
2, and P ′2P

′ are continuously connected to obtain four line segments,
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create four intersecting planes T3 from the middle red points P3 of the

four line segments to intersect the part model, and obtain four blue inter-

secting curves and four black centroids P ′3. For the i-th dichotomy, 2(i−1)

centroid (black) can be obtained. Repeat the iteration until reaching a

specified number of iterations or the threshold of the Euclidean distances

between red center points and the black centroid. At last, all the black

centroids after the i-th dichotomy are connected to generate a new curve

skeleton shown as the last image of Figure 6.3(c), use it to create new in-

tersecting planes (green), which is more sensitive with character surface

shape, then obtain new intersecting curves. Figure 6.3(d) demonstrates

application of the above dichotomy algorithm in a more irregular model

segmentation.

In the situation of more than two seam-curves on a part model as in-

dicated in Figure 6.3(e), each centroid of green seam-curves is calculated,

and separate them into two clusters using K-means clustering method.

Among each cluster, the average value of these seam-curve centers are

computed, named as P6 and P7. After this treatment, this case can be

transfered into two seam-curves problem (based on P6 and P7), and use

the above dichotomy algorithm to obtain intersecting curves.

With the above three algorithms of determining intersecting curves,

the number of intersecting curves can be easily controlled by taking dif-

ferent step sizes and effectively deal with irregular meshes with high

frequency details and/or noise.
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Figure 6.3: Determination of intersecting curves: (a) segmentation of
character models into parts, (b) determination of intersecting curves for
parts with one seam-curve, (c) determination of intersecting curves for
parts with two seam-curves, (d) determination of intersecting curves for
irregular parts with two seam-curves, (e) determination of intersecting
curves for irregular parts with more than two seam-curves. Ti means the
intersecting plans when i − th dichotomy, the red points means centers
of lines, and the black points means centroid of intersecting curves.

Extraction of isoparametric curves. The blue intersecting curve

in Figure 6.4(a) is obtained by the aforementioned Determination of in-
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(a) (b) (c) (d)

Figure 6.4: Illustration of Extracting isoparametric curves: (a) shows
one mesh intersected with one plane and get the intersected curve (blue).
Green points in (b) are the intersected points, and the red vertex on each
mesh edge is the edge end having smaller distance with green intersected
points. Connecting these red ends of edges, isoparametric curve (purple)
is extracted shown as (c). Improve the isoparametric curve by employing
distance threshold, if distance between intersected point and ends (or-
ange) are larger than threshold, keep the intersected point (green), more
regular isoparametric curve (purple) can be obtained shown as (d).

tersecting curves, consists of the green points in Figure 6.4(b) which are

intersecting points generated by the intersecting plane and the edges of

triangle facets. For each edge which is intersected by the intersecting

plane, the distances from the intersecting point to the two end points

of the edge are calculated, and take the end point with a smaller dis-

tance as an extracted vertex. Repeating this operation, the red vertices

in Figure 6.4(b) are extracted and connect them together to get a pur-

ple isoparametric curve depicted in Figure 6.4(c). As can be seen from

Figure 6.4(c), the extracted purple isoparametric curve is irregular when

meshes are not regular. In order to obtain regular isoparametric curves,

a threshold is introduced to discard some extracted vertices but keep

green intersecting points as follows.

The distances from each of the extracted vertices to the intersecting

curve are firstly calculated. If the distance is larger than the threshold,

the extracted vertex is discarded. The intersecting point(s) on the inter-

secting curve (green) are kept to generate the new isoparametric curve

(purple), shown as Figure 6.4(d).
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Figure 6.5: Segmentation results of representative models in the Prince-
ton Segmentation Benchmark Chen et al. [2009]. The segmentations
could be addressed by the proposed approach according to three types,
blue portions denote segmentations with one seam-curve, the yellow de-
notes segmentations with two seam-curves, and the green denotes seg-
mentations with more than two seam-curves. It can be observed that the
proposed approach could be employed for general models.

Figure 6.6: Determine the isoparametric curves of the starting pose,
and use the ratio to determine the position of the intersecting point on
the ending example.

The proposed method can be applied to various models, illustrated in

Figure 6.5. Only need to determine the isoparametric curves of the start-

ing pose, shown in Figure 6.6. Afterward, the corresponding isopara-

metric curves on other meshes can be automatically determined by the

corresponding vertices with the same indexes. For any intersecting point

P , find two vertices V1 and V2 which are on the same edge as the point P

on the starting pose, shown as Figure 6.6(a). Then calculate the ratio of

PV1/PV2, and use the ratio to determine the position of the intersecting

point P on the ending example, shown as Figure 6.6(b).

132



(a)

(b) (c)

Figure 6.7: The isoparametric curve identification algorithm trans-
forms a mesh into discrete points on isoparametric curves S̄0(ui, v)(i =
0, 1, 2, ...I) and the discrete points on the i-th isoparametric curve are
numbered as S̄0(ui, vj)(i = 0, 1, 2, ...I)(J = 0, 1, 2, ...J) in an arm model
(a), a horse model (b), amd a cat model (c).

Figure 6.7 shows the identified isoparametric curves of a human arm

(a), a horse (b) and a cat (c). The computational times for identifying

isoparametric curves are given in Table 6.3.

The method proposed in Bærentzen et al. [2014] can be used to extract

isoparametric curves from a triangular mesh. However, this method:

1) requires users to manually specify the extreme points of a harmonic

function to guide the conversion, 2) its computational efficiency is less

optimal. For example, it requires 6.21 seconds to process a mesh with

6,966 triangles into its polar-annular mesh representation using 100 slices

on an off-the-shelf computer Bærentzen et al. [2014]. Therefore, above

approach is proposed to better serve this specific aim for Fourier Series

Representation.

6.3.2 Geometric Transformation

As discussed in the follow-up section, this physics-based skinning model

does not include affine transformation such as rotation and translation,

these transformations must be excluded firstly. Although various skin-
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Figure 6.8: Removal of transformations between two example poses.
With the LBS model, transform the starting pose (b) to obtain the trans-
formed mesh in (c). The purely geometric transformations are excluded
by calculating the difference between the mesh of the ending pose (a) and
the transformed mesh (c), as shown in (d).

ning methods such as LBS, PSD (Pose Space Deformation), and dual

quaternion can be used to achieve this goal, LBS is chosen to exclude

these affine transformations due to its efficiency. The identified vertices

S̄0(ui, vj) at the starting pose are transformed to new positions S0(ui, vj)

at the ending pose through a linear combination of bone transformation

matrices Tm as follows.

S0(ui, vj) = (
M∑
m=1

wij,mTm)S̄0(ui, vj) (6.1)

where wij,m are the blending weights, and its subscript indicates the

j-th vertex on the isoparametric curve at ui.

Since two example poses are given, the transformation matrices Tm are

straightforwardly fitted by transforming the animation skeleton at the

starting pose to fit the animation skeleton at the ending pose. Assum-

ing the skeletons have been given and among various weights calculation

methods, Euclidean distance weights usually serve as initial guess for fur-

ther weights refinement; Bounded Biharmonic Weights (BBW) Jacobson

et al. [2011] are smooth, localized and shape-aware but slower and need

a volume discretization; the extra scalar weight in Jacobson & Sorkine
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[2011] provides a way to determine points how much they could stretch

and twist while need to paint weights manually or compute automati-

cally using methods in Jacobson et al. [2011]; Baran & Popović [2007].

In comparison, the method Yang & Zhang [2006] is much simpler and

more efficient, maximizing high computational efficiency of the analytical

solution of physics-based skin deformation; thus, use it to calculate wij,m

of above Eq. 6.1, and illustrate this computing process in Figure 6.8.

6.3.3 Fourier Series Representation

In order to obtain an analytical solution to physics-based skin defor-

mations, this method convert example character meshes consisting of

discrete vertices Sk(ui, vj)(k=0,1) into continuous Fourier series repre-

sentations CF
k (ui, v)(k=0,1) as below.

CF
k (ui, v) = ck0(ui) +

N∑
n=1

[
ck2n−1(ui) cos 2nπv +ck2n(ui) sin 2nπv

]
(k = 0, 1) (6.2)

where CF
k (ui, v)(k = 0, 1) are continuous Fourier series representations

of example models, k = 0 denotes the starting pose, k = 1 denotes the

ending pose, the superscript F indicates Fourier series, ui denotes the

i-th isoparametric curve in each pose, v is a parametric variable in the

range of [0, 1], ckn(ui)(k = 0, 1;n = 0, 1, ..., N) are Fourier coefficients,

and the subscript n denotes the n-th term of the Fourier series.

In order to determine the unknown Fourier coefficients ckn(ui), first

discuss how to relate the parametric variable v in Eq. 6.2 to the points

on isoparametric curves. Assuming that the length of the isoparametric

curves Sk(ui, vj) (k=0, 1) from the point j = 0 to the points j = 1, 2, ..., J

is Lkij, and the total length of the isoparametric curves from the point

j = 0 to the point j = J is LkiJ where the subscript J indicates the

last point on the isoparametric curves, the value vkij of the parametric

variable v at the points Sk(ui, vj)(k=0, 1) is determined by the ratio
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between the length Lkij and the total length LkiJ , i. e.,

vki0 = 0 vkij = Lkij/L
k
iJ(j = 1, 2, 3, ..., J), (6.3)

where

Lkim =
m∑
l=1

d(Sk(ui, vl),Sk(ui, vl−1)),

(k = 0, 1; i = 0, 1, 2, ..., I;m = i, J ; j = 1, 2, ..., J) (6.4)

where d is the Euclidean distance.

After relating the parametric variable v in Eq. 6.2 to the points on

the isoparametric curves, the points CF
k (ui, vj) given by the Fourier series

representations corresponds to the points Sk(ui, vj) on the isoparametric

curves are known. The error caused by the Fourier series representations

can be quantified by the squared sum of all the Euclidean distances

between the pointsCF
k (ui, vj) and the points Sk(ui, vj) with the following

equation:

Ek =
J−1∑
j=0

[d(CF
k (ui, vj),Sk(ui, vj)]

2 (6.5)

Here, Ek denotes the errors which need to be minimized by least

square method to obtain the CF
k (ui, vj), the errors given in Eq. 6.5

can be minimized by differentiating the above equations with respect

to ckn(ui)(k = 0, 1;n = 0, 1, 2, 3, ..., 2n), respectively, and zeroing the

derivatives, i. e., and where

CF
k (ui, vj) = ck0(ui) +

N∑
n=1

[
ck2n−1(ui) cos 2nπvj +ck2n(ui) sin 2nπvj

]
(6.6)

136



Figure 6.9: Comparison between original isoparametric curves (blue)
and Fourier series curves (red) (a), when different Fourier series terms
are employed, such as N = 3, 5, 9, the Fourier series representation (red)
from Eq.2 are increasingly approach to the isoparametric curves (blue)
of one scanned arm. Even N is set as 9, Fourier series representation
approximate isoparametric curves as the same.

Thus, minimize Eq. 6.5 over the Fourier coefficients to determine the

unknown Fourier coefficients ckn(ui),

The above Fourier series conversion algorithm is applicable to both

closed and open isoparametric curves. For closed isoparametric curves,

Sk(ui, vJ) = Sk(ui, v0) and Eq. 6.5 can be used directly. For open

isoparametric curves, can use CF
k (ui, v0) = Sk(ui, v0) and CF

k (ui, vJ) =

Sk(ui, vJ) to achieve the positional continuity at the two end points and

determine two vector-valued unknown Fourier coefficients in Eq. 6.2. If

tangential or higher continuities at the two end points are required, the

continuity conditions of the first or higher derivatives are introduced to

determine more unknown constants in Eq. 6.2, then change j in Eq. 6.5

starting from 0 into J−1 to determine the remaining unknown constants.

The proposed Fourier series representations effectively describe lo-

cal details well, shown in Figure 6.9, a comparison between the origi-

nal isoparametric curves (blue) of a human arm and the corresponding

Fourier series curves (red) with different terms N. It is evident that even

if a small number of terms such as N=3 is taken, the Fourier series re-

construction approaches the original isoparametric curves very closely.
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6.3.4 Deformation Calculation

The deformations from the starting pose to the ending pose after ex-

cluding purely geometric transformations are the difference between the

transformed starting pose CF
0 (ui, v) and the ending pose CF

1 (ui, v), de-

scribed below.

D̃(ui, v) = CF
1 (ui, v)−CF

0 (ui, v) (6.7)

Substituting Eq. 6.2 into Eq. 6.7 and putting the same coefficients

together, the skin deformations D̃(ui, v) can be rewritten as the following

Fourier series:

D̃(ui, v) = d0(ui) +
N∑
n=1

[d2n−1(ui) cos 2nπv +d2n(ui) sin 2nπv] (6.8)

dn(ui) = c1
n(ui)− c0

n(ui)(n = 0, 1, 2, 3, · · · , 2N) (6.9)

where unknown constants c0
n(ui) and c1

n(ui) are obtained in Section

6.3.3.

6.4 Physics-based Skin deformation

Physics-based skin deformation determines how skin shapes change with

external forces (or displacements). In order to tackle both dynamic

and static skin deformations, the physics-based skin deformation model

should include the contributions of acceleration, velocity, and static skin

deformation. In this section, a physics-based skin deformation model to

describe how skin surfaces change their shapes under the action of a time-

dependent force field will be proposed. Since the deformation between

the ending pose and starting pose has been represented in the Fourier

space through Eq. 6.8, and also represent the force field in the same
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Fourier space. Finally, an analytical solution of the model is developed

to create realistic skin deformation efficiently.

6.4.1 Mathematical Model of Physics-based Skin

Deformation

Similar to the treatment proposed by James & Pai [2002], the velocity

and acceleration have an effect on the shape change of skin surfaces. This

effect is formulated by using the vector-valued motion equation below.

(ρ∂2/∂t2 + η∂/∂t+ <)D(u, v, t) = F(u, v, t) (6.10)

where ρ and η are the density and damping coefficient of skin sur-

faces, and the corresponding terms describe the effects of acceleration

and velocity on the shape variations of skin surfaces, < is an internal de-

formation force which is the function of skin deformations D(u, v, t), and

F(ui, v, t) is a time-dependent force field driving the skin deformations.

Skin deformations are similar to the elastic bending of thin plates.

Accordingly, the internal force for skin bending deformations is similar

to the internal force of the elastic bending of thin plates, and it can be

mathematically described by

<D(u, v, t) = (χ∂4/∂u4 + γ∂4/∂u2∂v2 + ξ∂4/∂v4)D(u, v, t) (6.11)

Here, χ, γ, ξ are called shape control parameters which control the

shape change of skin surfaces. Apart from the internal force for bending

deformations, another force which resists tensile or compressive deforma-

tions should also be considered. This force can be regarded as a restoring

force. Like the deformation of a spring, the restoring force is proportional

to the tensile or compressive deformations, which can be approximated

as ςD(u, v, t). From the above discussion, the internal deformation force

< should be the sum of the internal force for bending and the restor-
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ing force for tensile or compressive deformations. Using them to replace

< in the linear elastodynamic equation Eq. 6.10 and introducing the

differential operator L defined below.

ρ∂2/∂t2 + η∂/∂t+ χ∂4/∂u4 + γ∂4/∂u2∂v2 + ξ∂4/∂v4 + ς = L (6.12)

The linear elastodynamic Eq. 6.10 is transformed into a vector-valued

fourth order dynamic ordinary differential equation (ODE):

LD(u, v, t) = F(u, v, t) (6.13)

As show in Figure 6.10, the forced vibrations include a transient part

and a steady-state part. The transient part has an exponentially decreas-

ing amplitude indicated by the blue curve in Figure 6.10. After sufficient

time, the transient part is damped out, leaving the motion described by

the steady-state part only indicated by the purple curve whose vibration

frequency is totally determined by the frequency of the external forces

Housner & Hudson [1980].

Since the transient part only occurs in a short time when the character

motion is starting or stopping and the analytical solution to the transient

part is more difficult to obtain, this work focus on the analytical solution

to the steady-state part of the physics-based skin deformation model. In

the future work, the proposed method will be extended to deal with the

transient part. Besides, solving fourth order ODEs is very complicated to

develop analytic solutions, numerical methods such as the finite element

method and finite difference method have been used. These numerical

methods are in general computationally costly. In order to reduce the

computational complexity, this method propose to lower the fourth order

dynamic ODE to the second order by using the following differential
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operator:

L = ρ∂2/∂t2 + η∂/∂t+ χ∂2/∂u2 + γ∂2/∂u∂v + ξ∂2/∂v2 + ς (6.14)

When considering the shape changes on the iso-parametric curve ui,

the parametric variable u becomes a constant. Accordingly, the defor-

mation function D(u, v, t) and the force functions F(u, v, t) in Eq. 6.13

become D(ui, v, t) and F(ui, v, t), the partial derivatives of D(u, v, t) with

respect to the parametric variable u drop, and the differential Eq. 6.13

becomes

LD(ui, v, t) = F(ui, v, t), (6.15)

where

L = ρ∂2/∂t2 + η∂/∂t+ ξ∂2/∂v2 + ς (6.16)

It should be noted that lowering the dynamic ODE from the fourth

order to the second order may reduce the prediction accuracy of skin

deformations. However, this can be well compensated by introducing

example skin shapes.

When two example meshes are known, the deformations D(ui, v, t)

can be set to zero at t = 0 and D̃(ui, v) at t = 1. If a mesh is motionless

at t = 0, the deformation rate ∂D(ui, v, t)/∂t is zero. If a mesh is in

motion at t = 0, the deformation rate ∂D(ui, v, t)/∂t should take the

value of the deformation rate at the instant. If Ḋ0 is used to indicate the

deformation rate at t = 0, these constraint conditions can be formulated

as

t = 0 D(ui, v, t) = 0, ∂D(ui, v, t)/∂t = Ḋ0

t = 1 D(ui, v, t) = D̃(ui, v) (6.17)
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Figure 6.10: Effects of damping and force on vibration Housner &
Hudson [1980]

After defining boundary conditions, the mathematical model is ob-

tained by combining Eq. 6.15 with Eq. 6.17, which can be analytically

solved and generate smooth deformation between two adjacent sequences

as described below.

6.4.2 Fourier Series Force

The time-dependent force field F in LD = F can be determined from

the given example skin shapes. At the starting pose t = 0, there is no

skin deformations. The external force at the starting pose should be

zero: F(ui, v, 0) = 0. At the ending pose t = 1, the skin deformations is

D̃(ui, v) determined by Eq. 6.8, which are represented with Fourier series

of the parametric variable v. Naturally, the same Fourier series can be

used to represent the external force at the ending pose, i. e.,

F̃(ui, v) = e0(ui) +
N∑
n=1

(e2n−1(ui) cos 2nπv + e2n(ui) sin 2nπv) (6.18)
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Here, the e0(ui), e2n−1(ui), e2n(ui) are unknown constants to be ob-

tained by Analytic Solver in Section 6.4.3. From the known external

forces at the starting and ending poses, the following linear variation of

the force field can be obtained with respect to the time variable t.

F(ui, v, t) = tF̃(ui, v) = te0(ui) +
N∑
n=1

(te2n−1(ui) cos 2nπv

+te2n(ui) sin 2nπv) (6.19)

6.4.3 Analytic Solver

The mathematical model Eq. 6.15 can be used to deal with dynamic skin

deformations including skin vibrations. The time-dependent force field

represented by Eq. 6.19 involves three types of terms: t, t cos 2nπv, and

t sin 2nπv. If it is introduced into Eq. 6.15, D(ui, v, t) should also contain

the three types of terms. If D1(ui, t), D2n(ui, v, t) = D2(t cos 2nπv) and

D3n(ui, v, t) = D3(t sin 2nπv) are used to indicate the three types of

terms, respectively, the deformation function D(ui, v, t) can be rewritten

as

D(ui, v, t) = D1(ui, t) +
N∑
n=1

[D2n(ui, v, t) + D3n(ui, v, t)] (6.20)

Substituting Eq. 6.20 into Eq. 6.15, the following equation can be

obtained.

L1D1(ui, t) +
N∑
n=1

L2[D2n(ui, v, t) + D3n(ui, v, t)] = F(ui, v, t), (6.21)
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where L1 and L2 are determined by

L1 = ρ∂2/∂t2 + η∂/∂t+ ς L2 = L1 + ξ∂2/∂v2 (6.22)

Introducing Eq. (6.19) into Eq. (6.21) and comparing both sides of

the equation, the following equations are obtained

L1D1(ui, t) = te0(ui)

L2D2n(ui, v, t) = te2n−1(ui)cos2nπ

L2D3n(ui, v, t) = te2n(ui)sin2nπ

(n = 1, 2, 3, ..., N)

(6.23)

The remaining details of analytically solving the homogenous general

solutions and the particular solutions to Eq. 6.21 are given as following:

The homogenous general solution to each equation of Eq.(6.23) can

be taken as D̃1(ui, t) = ert,D̃2(ui, v, t) = eqt cos 2nπv and D̃3(ui, v, t) =

est sin 2nπv.

Substituting them into each of Eq.(6.23), and meet the constraints:

at starting pose t = 0, the deformations determined by Eq. 6.20 should

be zero; at the ending pose t = 1, the deformations determined by Eq.

6.20 should be the same as Eq. 6.9; and at the starting pose t = 0, the

rate of deformation is ∂D/∂t = 0(t = 0). In order to solve the above

constraints to get the homogenous general solution for D1, D2n and D3n,

the situations 4ρξ − η2 > 0 and 4(ξ − 4ζn2π2) − η2 > 0 should be met,

and setting

αr = −η/(2ρ) βr = αr
√

4ρζ/η2 − 1

hn = ζ − 4n2π2ξ βn = αr
√

4hn/η2 − 1

(6.24)
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to obtain r1,2 = αr + iβr, qn1,2 = sn1,2 = αr + iβn

and the homogenous general solutions below

D̃1(ui, t) = C1(ui)f(t) + C2(ui)f̄(t)

D̃2n(ui, v, t) = [C3n(ui)gn(t) + C4n(ui)ḡn(t)] cos 2nπv

D̃3n(ui, v, t) = [C5n(ui)gn(t) + C6n(ui)ḡn(t)] sin 2nπv

(6.25)

where

f(t) = eαrt cos βrt f̄(t) = eαrt sin βrt

gn(t) = eαrt cos βnt ḡn(t) = eαrt sin βnt

(6.26)

Then, the particular solutions to Eq.(6.23) can be taken to be D̄1(ui, t) =

a1(ui)+a2(ui)t, D̄2n(ui, v, t) = [a3(ui)+a4(ui)t] cos 2nπv and D̄3n(ui, v, t) =

[a5(ui) + a6(ui)t] cos 2nπv. Also substituting them into Eq.(6.23), to ob-

tain

D̄1(ui, t) = (ζt− η)e0(ui)/ζ
2

D̄2n(ui, v, t) = (hnt− η)e2n−1(ui) cos 2nπv/h2n

D̄3n(ui, v, t) = (hnt− η)e2n(ui) sin 2nπv/h2n

(6.27)

Introducing Eq.(6.25) and Eq.(6.27) into Eq.(6.20), to obtain the func-

tion D(ui, v, t) which involves the unknown constants e0(ui), e2n−1(ui),

e2n(ui) and C1(ui), C2(ui) and Ckn(ui)(k = 3, 4, 5, 6). Using the bound-

ary conditions Eq.(6.17), these unknown constants can be determined.
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Then, substituting the obtained unknown constants back into D(ui, v, t),

and introducing

δ0 = eαr [−ηβr cos βr + ζ(1 + ηαr/ζ) sin βr]− ζβr(1− η/ζ)

δn = eαr [−ηβn cos βn + (1 + ηαr) sin βn]− βn(1− η/hn)

(6.28)

and

γ0(t) = [−ηβrf(t) + ζ(1 + ηαr/ζ)f̄(t)− ζβr(t− η/ζ)]/δ0

γn(t) = [−ηβngn(t) + (1 + ηαr)ḡn(t)− βn(t− η/hn)]/δn

(6.29)

Eq.(6.30) is obtained.

To the end, the obtained analytical solution is as follows:

D(ui, v, t) = γ0(t)d0(ui) +
N∑
n=1

γn(t)[d2n−1(ui)cos2nπv

+d2n(ui)sin2nπv]

(6.30)

The above Eq. 6.30 indicates that once the skin deformations dn(ui)(n =

0, 1, 2, ..., 2N), determined from the skin shapes at the starting pose

c0
n(ui) and the ending pose c1

n(ui), are known, the skin deformation at

any in-between poses can be analytically determined by Eq. 6.30.
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Figure 6.11: In the approach, skin deformations are similar to the elas-
tic bending of thin plates and the bending deformations are connected to
Young’s modulus E, Poisson ratio µ, and the material parameters, den-
sity ρ and damping coefficient η. (a) All of them have an influence on
skin shapes. (b) density ρ, dynamic vibration enhances, when ρ increas-
ing and when ρ reach 0, it achieves static deformation; (c) shows how
damping coefficients η influence results when it increasing; (d) shows
when Young’s modulus E increasing, amplitude of object decrease; (e)
shows how Poisson ratio µ affects the result.

6.5 Experimental results and Comparisons

This approach is tested on some 3D models for experiments. In Subsec-

tion 6.1, first discuss some basic behaviors of the proposed physics-based

skin deformations. In order to demonstrate this approach can produce

realistic skin deformations efficiently, I compared the proposed approach

with geometric skin deformation methods in Subsection 6.5.2, and with

the example-based skin deformation method, i. e., pose space deforma-

tion (PSD) method in Subsection 6.5.3, and with physics-based dynamic

skin deformation methods in Subsections 6.5.4 and 6.5.5 where Sub-

section 6.5.4 uses curve-defined skin models and Subsection 6.5.5 uses

polygon skin models.

6.5.1 Basic Behaviors

Basic behaviors to be tested include the effects of material and mechan-

ical parameters, differences between dynamic and static skin deforma-
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(b) Dynamic skin deformation

(c) Comparison

(a) Static skin deformation

Figure 6.12: In the proposed physics-based skin deformation model, set-
ting the density ρ = 0 and the damping coefficient η = 0, the obtained
analytical solution can be used to create static skin deformations. (a) in-
dicates static skin deformations generated by this approach, (b) indicates
dynamic skin deformations generated by this approach, and (c) demon-
strates substantial differences between the generated static and dynamic
skin deformations.

tions, and the reversibility of the proposed approach.

As aforementioned, skin deformations are similar to the elastic bend-

ing of thin plates and the bending deformations are described by Eq. 6.11,

where the coefficient ξ is similar to the flexural rigidity of elastic plate

bending, which is connected to Young’s modulus E, Poisson ratio µ, and

skin thickness h through the equation ξ = Eh3/[12(1 − µ2)]. Young’s

modulus, Poisson ratio and the tensile stiffness ς are mechanical param-

eters of the skin. The density ρ and damping coefficient η are material

parameters. All of them have influence on skin shapes and first investi-

gate what are their effects.

Considering a skin strip with a rectangle cross-section of height h and

unit width shown in Figure 6.11(a) where the left end of the skin strip

is fixed and the right end is under the action of a force F . According

to Amar [2010]; Elert [1998], these mechanical and material parameters

for the skin strip can be taken to be: E = 1.5e2, µ = 0.3, ρ = 1.05e3,
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and η = 0.619. With these material and mechanical parameters, the

straight skin strip in grey is deformed into a new shape in green shown

in Figure 6.11(a). Then investigate how each parameter of E, µ, ρ and

η affect skin deformations, shown in Figure 6.11(b)-(e).

In the proposed physics-based skin deformation model, setting the

density ρ = 0 and the damping coefficient η = 0, the obtained analytical

solution can be used to create static skin deformations. The differences

between static and dynamic skin deformations are shown in Figure 6.12

where Figure 6.12(a) indicates static skin deformations, Figure 6.12(b)

indicates dynamic skin deformations, and Figure 6.12(c) shows the dif-

ferences between static and dynamic skin deformations. The images in

Figure 6.12 demonstrate substantial differences between static and dy-

namic skin deformations.

The proposed analytical solution to physics-based skin deformations

is reversible. I illustrate this in Figure 6.13. The upper red images show

the deformations from the starting pose in Figure 6.13(a) to the end pose

in Figure 6.13(f), the bottom blue images show the deformations from

the end pose to the starting pose, and the middle thin curves are skin

deformations in the upper local region which are taken from the upper

and bottom images. These middle curves show the same deformations

whether from the starting pose to the ending pose or from the ending

pose to the starting pose. This shows the reversibility of the proposed

analytical solution.

6.5.2 Comparison with Geometric Skin Deforma-

tion Methods

In this subsection, I compared the deformed shapes created by this ap-

proach with 3D scanned groundtruth and those from baseline methods

including the classical LBS and the Dual Quaternion blending skinning

Kavan et al. [2008] which are included in standard character animation

pipelines. Since LBS and DQBS have been included in Maya, I use

Maya’s LBS and DQBS to determine skin deformations.
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Figure 6.13: Reversibility illustration. The red images in first row show
the deformations from the starting pose (a) to the end pose (f), the blue
images in bottom row show the deformations from the end pose (f) to the
starting pose (a), and the overlapped red and blue thin curves in middle
row are the skin deformations which are taken and magnified from the
top local region of first row and bottom images. These middle curves
show the deformations are the same, whether from the starting pose to
the ending pose or from the ending pose to the starting pose. It indicates
reversibility of this proposed analytical solution.

Figure 6.14(a) - (e) show the skin deformation result of a male model

obtained by the proposed approach. The comparison with those obtained

by the two baseline methods is indicated in Figure 6.14(f) - (g). The

proposed approach gives more realistic skin deformations at the arm and

the leg joints.

In order to quantify the errors of various methods, I calculated the

vertex errors between the 3D scanned groundtruth and those obtained

by the proposed approach and the two baseline methods, and depicted

the vertex errors with different colours in Figure 6.15. As shown in the

figure, the skin deformation by the proposed approach is the closest to
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Figure 6.14: Skin deformation result of a running male model by this
proposed approach. (a) and (e) are the input example poses. (b)-(d)
are generated intermediate shapes by this approach. (f) and (g) shows
this approach gives more realistic skin deformations at leg joints and
arm joints. LBS denotes the standard linear blending skinning model,
and DQBS denotes the Dual Quaternion Blending Skinning model Kavan
et al. [2008].

the ground-truth among all the methods in this comparison. The visual

perception of the difference between the ground-truth and the proposed

approach is negligible at most.

In contrast, the meshes created by the classic LBS and dual quater-

nion blend skinning are noticeably different from the ground-truth. Here,

Maximum Vertex Error r = dif/len (calculated by the ratio r of Euler’s

difference dif between the deformed mesh and ground-truth mesh di-

vided by the largest length of ground-truth mesh’s bounding box len), is

used for evaluation.The Maximum Vertex Error (MVE) by the proposed

method is 0.026, while other methods have much larger MVEs: LBS
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Groundtruth Proposed method LBS Dual Quaternion Method in [You et al.2008]

(a) (b) (c) (d) (e)

Figure 6.15: Comparisons between the proposed method and the base-
line skinning methods for an arm model. The leftmost column shows the
ground-truth arm model reconstructed from laser scanning data. Three
rows (from top to bottom) corresponding to poses at t=0.25, t=0.5, and
t=0.75, respectively. The columns from left to right are: ground-truth,
the proposed approach, the classical LBS, dual quaternion skinning Ka-
van et al. [2008], curve-based method You et al. [2008]. The color images
at top-right corner are the visualization of the vertex errors, compared to
the ground-truth.

(0.385), the dual quaternion blend skinning (0.278) and the method of

You et al. [2008](0.169).

6.5.3 Comparison with Example-based Skin Defor-

mation Methods

As discussed in the Introduction Section, example-based skin deforma-

tion methods are often used together with geometric skinning, and real-

istic skin deformations require sufficient examples. Since the Pose Space

Deformation (PSD) method Lewis et al. [2000] is a widely-used example-

based skin deformation method, I compare this approach with PSD in

this subsection and demonstrate the proposed physics-based approach

can be used to improve the realism of example-based skin deformations.

Two arm skin shapes at the starting pose t = 0 and the ending pose

t = 1 respectively shown in Figure 6.16(a) are used for the comparison.

The obtained skin shapes at t = 0.25, t = 0.5 and t = 0.75 are depicted
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PSD on LBSOur method

t=0.25

t=0.75

t=0.5

t=0

t=1

PSD on DQBS

Input examples

(b)(a) (c) (d)

Figure 6.16: Comparison with PSD, (a) shows the input data, two
scan arm models: one at the starting pose and the other at the ending
pose, (b) shows the models generated by this proposed method, without
collapsing-joint, bulging-joint and distorted normal. (c) shows the models
create by PSD (Pose Space Deformation) based on LBS. The left overlap
parts show the differences between results of LBS (red) and PSD on LBS
(blue). (d) shows the models generated by PSD based on DQBS. The left
overlap parts also show the differences between results of DQBS (red) and
PSD on DQBS(blue).

in Figure 6.16(b)-(d). In the figure, (b) is from the proposed approach,

and (c) and (d) are from the PSD tool added to Maya 2016 Extension 2

where (c) is the PSD on the linear blending skinning (LBS), and (d) is

the PSD on the DQBS.

Comparing the images shown in the figure, it can be found that both

PSD on LBS and PSD on DQBS improve the skin deformation results

purely on LBS and DQBS, but still can not avoid the collapsing-joint,

bulging-joint and distorted normal effects, whereas the proposed ap-

proach creates more realistic skin deformations without these artifacts.
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6.5.4 Comparison with Physics-based Skin Defor-

mation Methods Using Curve Defined Mod-

els

Although several previous curve-based skin deformation methods You

et al. [2008]; Chaudhry et al. [2015] have been proposed, they have the

following limitations. 1) The curves defining skin surfaces are manually

extracted, leading to heavy and time-consuming human involvements.

2) The animation skeleton is manually created, resulting in non-trivial

human efforts and preprocessing time. 3) A large linear system must be

solved to obtain skin deformations at finite difference nodes Chaudhry

et al. [2015] or unknown constants involved in analytical mathematical

expressions of skin deformations You et al. [2008]. 4) The animation

is not smooth at the connecting poses (that is, the ending pose of the

current animation segment is also the starting pose of next animation

segment).

The above limitations 1) to 3) make previous curve-based skin defor-

mation methods less suitable for those applications requiring high ani-

mation frame rates, and the above limitation 4) would seriously affects

the quality of resulting animations.

The proposed approach overcomes all the four limitations. Since both

deformation continuity and deformation rate continuity are introduced

into Eq. 6.17, the proposed method can be used only requiring at least

two example meshes to produce smooth and physically realistic anima-

tions as demonstrated by the horse model in Figure 6.17. In contrast,

the previous approaches such as You et al. [2008] would fail to produce

smooth animations if multiple example poses are given, as demonstrated

by the animation result in the accompanying video.

Among various existing curve-based skin deformation approaches, the

work of You et al. [2008] is the most efficient. I compare the computing

time of the proposed approach with You et al. [2008] through four differ-

ent models: scanned arm, cat, horse, and human, presented in Table 6.1

shows that the proposed approach is about 12-18 times faster than You
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 6.17: Skin deformation result of a horse model. (a), (e), and (i)
are three input example poses, (b) - (d) are in-between poses generated
by the proposed method based on (a) and (e). (f) - (h) are in-between
poses generated by the proposed approach based on (e) and (i). During
these two adjacent sequences, the shapes show a smooth transition form
the first sequence (a)-(e) to the second sequence (e)-(i).

Table 6.1: Runtime efficiency comparisons between the proposed method
and You et al. [2008]

Data Verts The proposed method(fps) You et al. [2008](fps)
Arm 3840 531 23
Cat 7207 273 17
Horse 10128 205 14
Runner 32185 86 4

et al. [2008], and the calculations are carried out by C++(11), Visual Stu-

dio 2013, on a 3.2GHz Intel(R) Xeon(R) CPU E5-1650 Hewlett-Packard

HP Z240 Workstation with 32 GB of memory.

6.5.5 Comparison with Physics-based Skin Defor-

mation Methods Using Polygon Models

As discussed before, physics-based skin deformation methods produce

high-quality and realistic results, but require heavy numerical calcula-

tions. The proposed method significantly reduces the computing cost,

manual operations and realize high animation efficiency. This mainly

depends on: (1) automatic isoparametric curve extraction, (2) Fourier

series representation with much fewer variables, (3) fast analytical solu-

tion for the explicit determination of physics-based skin deformations.

As Eq. 6.30 shows, once two example meshes are given, physically real-
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Verts: 258Verts: 112

MaxError: 0.091
AveError:  0.032 

MaxError: 0.457
AveError:  0.368 

 Fourier Coefficient: 20

(b) (a)

(g)(f)

(d) (e) (c)

Figure 6.18: The high-resolution curve(a) in polygon mesh reduced to
(b) with large accuracy lose in (d), (f). But Fourier series representation
(c) keep high realism with sharply decreasing data-size

istic intermediate skin deformations could be obtained directly. In this

subsection, I will compare the proposed approach with existing physics-

based skin deformation methods using polygon models.

I first demonstrate the proposed Fourier series representation can

greatly reduce design variables compared with polygon models but still

keep high-realism, shown as Figure 6.18. Next, I make a comparison be-

tween the proposed proposed approach and the work described in Xu &

Barbič [2016] since it is most closely relevant to ours. Finally, I compare

the proposed approach to some other physics-based skin deformation

methods which are less relevant to ours.

Table 6.2 gives a comparison of design variables. For polygon mod-

els, the total design variables are the total vertices. After representing

polygon models with Fourier series, the total design variables become

the total vector-valued Fourier coefficients.

The second row in Table 6.2 shows the total vertices of arm, cat, horse,

dancer, and runner models. The third, fourth, and fourth rows show the

total vector-valued Fourier coefficients when Fourier series terms used to
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Table 6.2: Comparison of design variables

Arm Cat Horse Dancer Runner

Verts 3840 7207 10128 13201 32185

FC N=3 448 1681 2363 3080 5632

FC N=5 704 2642 3713 4840 8850

FC N=9 1216 4563 6414 8360 15287
FC:Fourier Coefficients Terms

Table 6.3: Runtime breakdown of the proposed approach when it was
used to create the animations of different models.

Runtime (ms)
Model Verts FC IIL GT FSR+DC AS+SD Total
Arm 3840 1216 0.35 0.215 1.19 0.13 1.885
Cat 7207 2642 0.72 0.258 2.47 0.21 3.658

Horse 10128 3713 0.99 0.450 3.15 0.27 4.860
Runner 32185 15287 1.83 0.656 8.25 0.79 11.526
Note: FC:Fourier Coefficients, variables number of Fourier series representations

used in these experiments.
IIL: Identification of isoparametric curves. GT: Geometric Transform. FSC: Fourier

Series Representation.
DC: Deformation Calculation. AS: Analytic Solver. SD:Skin Deformer.

describe the models are set to be 3, 5, and 9, respectively. The data

in this table illustrate the design variables of polygon models are 4.3-

8.6, 2.7-5.5, and 1.6-3.2 times of the design variables of Fourier series

representations for the same models when Fourier series terms N=3, 5,

and 9, respectively. This demonstrates by using Fourier series repre-

sentations, I reduce design variables sharply, and the specific value of

Fourier coefficients used in these experiments are shown in Table 6.3

and all the calculations are carried out by C++(11), Visual Studio 2013,

on a 3.2GHz Intel(R) Xeon(R) CPU E5-1650 Hewlett-Packard HP Z240

Workstation with 32 GB of memory.

Among various physics-based skin deformation approaches, the ap-

proach proposed in Xu & Barbič [2016] incorporate physically based sim-

ulation into rigging/skinning to automatically produce secondary skin

motion and use model reduction to accelerate numerical calculations,

which sacrificed the accuracy to a certain extent.

It should be noted that, since the proposed method focuses on in-
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tegrating examples to physics-based model to create high-realistic skin

deformation in steady-state part under extra vibration forces; in con-

trast, the main goal of Xu & Barbič [2016] is to achieve the balance

between high-realism and forced vibration part. Therefore, I cannot do

a fair comparison between the proposed method and Xu & Barbič [2016].

To accommodate large deformations around each pose, Xu & Barbič

[2016] augments the linear model basis with modal derivatives proposed

in Barbič & James [2005].

In Barbič & James [2005], after frame 1000, the vertical displacement

of the spoon simulation vertex between full simulation and modal deriva-

tives could reach the length of spoon. In order to obtain inertial forces,

Xu & Barbič [2016] needs several samples for training, which brings in

less than 3% relative training error. Although the pose-dependent model

reduction Xu & Barbič [2016] divides a polar bear model of 6,876 ver-

tices into 8 local regions and uses 8 threads with OpenMP, it still takes

1.43 ms to animate skin deformations of the polar bear model. With-

out any multithreading, the proposed approach only takes 1.627 ms to

animate skin deformations of a horse model with 10,128 vertices. It indi-

cates that the proposed approach is comparable with the pose-dependent

model reduction, if not faster.

Other physics-based skin deformation approaches are substantially

slower than the pose-dependent model reduction. The method in Kavan

& Sorkine [2012] generates higher quality deformations than both linear

and dual quaternion skinning through skinning weights optimization, but

requires at least a few minutes to precompute the deformation weights.

The method in McAdams et al. [2011] still needs at least several seconds

for torso and arms simulation per frame on GPU, it is still not fast

enough for interactive posing.

Through a quantitative comparison with ground-truth skin deforma-

tions shown in Figure 6.15, the high realism of the proposed approach

has been clearly demonstrated. I also compare the proposed approach

with the finite element simulation of steady-state skin vibrations in Fig-

ure 6.19, which further shows good realism achieved by the proposed
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(b)(a) (c)

Figure 6.19: Simulating skin vibration with steady-state dynam-
ics:(a)(b)(c) are comparisons of three model poses created by ABAQUS
steady-state dynamic simulation (gold) and by the steady-state dynamic
simulation (silver).

approach.

6.6 Discussion and Conclusion

In this chapter, an analytical approach is developed to efficiently cre-

ate physically-realistic skin deformations. It includes several key steps:

vertex identification on isoparametric curves, Fourier series conversion,

and design of an analytic solution to the formulated physics-based skin

deformation model. I have conducted many experiments to validate the

proposed approach, discussed the effects of various factors, made direct

comparisons with various skin deformation approaches including geomet-

ric skin deformation methods, example-based skin deformation methods,

and physics-based skin deformation methods using curve defined mod-

els and model reduction. These results demonstrate the proposed ap-

proach avoids unnecessary manual operations and time-consuming nu-

merical calculation that require specialized knowledge and skills, pro-

duces physically-realistic models and reaches high animation frame rates

for real-time applications.

Several improvements can be made in the future. First, I will extend
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this work to develop an analytical solution to fourth order differential

equations to tackle linear elastic dynamic skin deformations including

both transient and steady-state skin vibrations. Second, the current an-

alytic solution to physics-based skin deformation is derived from linearly

varying forces. It can be extended to nonlinearly varying forces. I will

examine which force variation can generate more realistic skin deforma-

tions in the future work. Thirdly, an more adaptive value of step size

during determination of intersecting curves will improve the realism of

skin deformation. Lastly, the proposed approach can be extended to gen-

erate detailed clothing deformations. This can be achieved by combining

the proposed analytic physics-based skinning with clothing examples ob-

tained from the SOR scheme Xu et al. [2014].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In the area of character animation, skin surface modelling, rigging and

skin deforamtion are three essential aspects. Due to the different com-

plexity of the characters, the time cost on creating corresponding skin

surface model, animation skeleton to achieve diverse skin deformations

fluctuates from several hours to several weeks. More importantly, the

data size of skin deformations could sharply influence the efficiency of

generating animation. Smaller data size also can speed up character

animation and transmission over computer networks.

This thesis has reviewed the existing work on above-mentioned as-

pects. Although some recent research efforts have pursued the direction

of integrating geometric, example-based, and physics-based skin defor-

mation approaches, I have not found any approaches that are capable of

describing physics-based skin deformation (static or dynamic) with ana-

lytical solutions, to the best of our knowledge. This research developed

one skin deformation approach with analytical solution, which is capable

of producing physically-realistic deformations with high efficiency (e.g.,

much faster than the numerical approaches employed by conventional

physics-based skin deformations without model reduction), without re-

quiring specialized knowledge, skills, and heavy manual involvements.
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In order to address the issues of high-realism, efficiency and small

data size in creating skin deformations for character animation, this the-

sis has developed techniques based on Ordinary Differentical Equations

(ODE) to automatically generate skeleton, efficiently create C2 contin-

uous skin surfaces and achieve physically realistic skin deformations for

human body animation by integrating geometric and data-driven meth-

ods. Meanwhile, effectively reduce the data size by iso-parametric curves

and Fourier Series representation. ODE model is built and accurate and

efficient solutions are developed to calculate physical skin deformations

through interpolating and traning of input realistic reconstructed 3D

models. The proposed techniques will greatly reduce data size, improve

realism, and raise efficiency of producing character animation.

7.2 Future Work

The current research work has some limitations which can be the focus

of future work:

The work on an automatic rigging algorithm in this research could be

improved in several directions. The proposed iso-parametric curve identi-

fication is applicable to quad meshes with regular topology. Future work

will investigate triangule meshes and arbitrary topologies. The proposed

automatic rigging requires a template skeleton. In order to make the

proposed automatic rigging applicable to various character models, dif-

ferent character models will be classified into different categories and a

small template skeleton database with one skeleton in the database for

one category of character models will be created.

In this research, the analytical approach is developed to efficiently cre-

ate physically-realistic skin deformations, avoiding unnecessary manual

operations and time-consuming numerical calculation that require spe-

cialized knowledge and skills, produces physically-realistic models and

reaches high animation frame rates for real-time applications. Several

improvements can be made in the future. First, I will extend the cur-

rent method to develop an analytical solution to fourth order differential
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equations to tackle linear elastic dynamic skin deformations including

both transient and steady-state skin vibrations. Second, current ana-

lytic solution to physics-based skin deformation is derived from linearly

varying forces. It can be extended to nonlinearly varying forces. I will

examine which force variation can generate more realistic skin deforma-

tions in the future work. Thirdly, an more adaptive value of step size

during determination of intersecting curves will improve the realism of

skin deformation. Lastly, the proposed approach can be extended to gen-

erate detailed clothing deformations. This can be achieved by combining

the proposed analytic physics-based skinning with clothing examples ob-

tained from the SOR scheme Xu et al. [2014].
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M. Bartoň, et al. (2014). ‘Detection and reconstruction of freeform

sweeps’. In Computer Graphics Forum, vol. 33, pp. 23–32. Wiley On-

line Library.
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