
GoalD: A Goal-Driven Deployment Framework
for Dynamic and Heterogeneous Computing

Environments

Gabriel S. Rodrigues1, Felipe P. Guimarães2, Genaína N. Rodrigues1?,
Alessia Knauss3, João Paulo C. de Araújo1, Hugo Andrade3, and

Raian Ali4

1 University of Brasilia, Brasilia, Brazil,
gabrielsr@aluno.unb.br, genaina@unb.br, jpaulo.caraujo@gmail.com

2 Brazilian Space Agency, Brasilia, Brazil,
felipe.guimaraes@aeb.gov.br

3 Chalmers | University of Gothenburg, Gothenburg, Sweden,
alessia.knauss@chalmers.se, sica@chalmers.se

4 Bournemouth University, Bournemouth, United Kingdom,
rali@bournemouth.ac.uk

Abstract. Context: Emerging paradigms like Internet of Things and
Smart Cities utilize advanced sensing and communication infrastruc-
tures, where heterogeneity is an inherited feature. Applications targeting
such environments require adaptability and context-sensitivity to uncer-
tain availability and failures in resources and their ad-hoc networks. Such
heterogeneity is often hard to predict, making the deployment process a
challenging task.
Objective: This paper proposes GoalD as a goal-driven framework to
support autonomous deployment of heterogeneous computational resources
to fulfill requirements, seen as goals, and their correlated components on
one hand, and the variability space of the hosting computing and sensing
environment on the other hand.
Method: GoalD comprises an offline and an online stage to fulfill au-
tonomous deployment by leveraging the use of goals. Deployment config-
uration strategies arise from the variability structure of the Contextual
Goal Model as an underlying structure to guide autonomous planning
by selecting available as well as suitable resources at runtime.
Results: We evaluate GoalD on an existing exemplar from the self-
adaptive systems community – the Tele Assistance Service provided by
Weyns and Calinescu [1]. Furthermore, we evaluate the scalability of
GoalD on a repository consisting of 430,500 artifacts. The evaluation
results demonstrate the usefulness and scalability of GoalD in planning
the deployment of a system with thousands of components in a few mil-
liseconds.

? Corresponding author - Postal Address: Dept. de Ciência da Computação - Campus
Darcy Ribeiro, Edifício CIC/EST, Asa Norte, Brasília - DF - Brasil, Postal Code:
70910-900.

Conclusions: GoalD is a framework to systematically tackle autonomous
deployment in highly heterogeneous computing environments, partially
unknown at design-time following a goal-oriented approach to achieve the
user goals in a target environment. GoalD has demonstrated itself able
to scale for deployment planning dealing with thousands of components
in a few milliseconds.

Keywords: Autonomous deployment, contextual goal modelling, heterogeneous
computational resources, deployment planning.

1 Introduction

Ubiquitous computing advances in sensing and information infrastructure made
it possible to have ad-hoc networks and pervasive computing where solutions
are composed on the fly according to the needs and context of a system. Smart
phones, watches, TVs, and cars are examples of daily objects empowered by
computing and networking capabilities. Such diversity of resources represents a
highly heterogeneous computing environment, one formed by different types of
devices, with different resources profiles and which are, at best, partially known
at design-time. Ubiquitous Computing [2], Internet of Things (IoT) [3], Assisted
Living [4] and Opportunistic Computing [5] are examples of computing architec-
tures that have to be typically designed for such highly heterogeneous computing
environments. Software deployment is the process of getting a software ready for
use in its operational environment [6]. It includes selecting suitable artifacts to
deploy, moving them to the target environment, configuring the environment,
and starting the execution.

In highly heterogeneous computing environments, Deployment planning is
especially challenging [7], given the variability and uncertainty of the host envi-
ronment. Manual configuration would not scale as they require the deployment
to be executed by a person with knowledge about the application internals and
the environment dynamics [8]. The use of scripts is commonly used in cloud en-
vironments for an automated software deployment [9]. The scripts are designed
at design-time and strive to cater for different environmental conditions. Soft-
ware store is another alternative approach where developers upload metafiles to
the store for software configurations, target devices and their fitness. The de-
ployment would require end-users to access the store interface, searching for the
application, and initiating the installation of the application which may require
also some further information and permissions from the users about their de-
vices. Both approaches do not cater for highly heterogeneous environments as
variability is limitedly handled through the preparation of scripts and metafiles
to deal with a set of common environmental and devices profiles, known a priori.

We argue that the challenges related to deployment in highly heterogeneous
computing environments are threefold: (i) heterogeneity: the system is meant
to run in a broad range of configurations of computing environments;(ii) uncer-
tainty at design-time: the system architect/developer cannot precisely ascertain

the configuration of the end user computing environment; (iii) autonomous de-
ployment: the need for autonomy in the system to cater for the ad-hoc environ-
ment settings. To provide a systematic engineering approach and autonomous
support to assist deployment, such rationale shall be captured and followed.

In fact, solutions for such autonomous deployment have been already pro-
posed in the realm of business process orientation [10,11]. Nevertheless, such ap-
proaches may render too heavyweight for being deployed on resource-constrained
devices [7]. Moreover, business process based solutions will be able to either or-
chestrate or choreograph once the components are already deployed, since it will
only be able to manage the executable methods, services and events to the cor-
responding workflow engines for execution [12] once the required and suitable
component infrastructure is deployed. There are also proposals to address au-
tonomous deployment in the realm of dynamic software product lines [13,14,15]
where the focus is on devising adaptation strategies based on feature configura-
tions for deployment. Nevertheless, configuration and behavior are related and
it is not always possible to change one without changing the other:

The need for both capabilities of independent yet coordinated adaptation
of behavior and configuration requires an extensible architectural frame-
work that makes explicit how different kinds of adaptation occur [16].

More recently, goal-oriented engineering has paved the way for solutions able
to leverage seamless configurations, behavior, and strategies in self-adaptive sys-
tems [17,18,19,20]. As Weyns points out as the fourth wave on engineering self-
adaptive systems:“...(goal-driven adaptation) puts the focus on key elements for
the concrete realization of self-adaptive systems” [20]. In particular, goal mod-
elling captures what stakeholders intend to achieve in terms of goals and al-
ternative strategies they may adopt. Such strategies can be expressed through
AND/OR refinements, rendered as alternative sets of executable tasks [21,22,23].
Context Goal Models (CGMs) extend goal models [24] by adding contextual
conditions on the need for goals and suitability of such alternatives. GORE has
been also used to guide and architecture design [25,26,27,28,29]. The variability
in goal modelling provided a basis for the engineering of self-adaptive systems
[18,30,31]. CGM would be a suitable baseline model for our highly heterogeneous
environments, both for their accommodation of the variability in the context and
strategies and also for their ability to capture experts’ rationale as a decision
tree.

In this paper, we propose GoalD as a framework that follows a goal-oriented
approach for deployment in highly heterogeneous computing environments. Our
work is intended to investigate the capability of contextual goal modeling to help
manage variability at deployment in a scalable fashion. The GoalD framework
comprises an offline and also an online phase. In the offline phase, GoalD relies
on an abstract model, which can be seen as a domain model, which presents (i)
what the system is required to achieve (i.e., the goals), (ii) how it can achieve
the goals (i.e., its alternative strategies) and the corresponding tasks and their
software components and (iii) the restrictions to the strategies (i.e., the resources
and contexts needed). In the online stage, GoalD uses automated reasoning to

encompass (i) the deployment planning to decide on suitable bundles for the tar-
get computing environment and (ii) the architecture deployment configuration
by fetching and binding artifacts from their repositories. In addition to that, one
of the main points of novelty of our approach is the linkage between the config-
uration process and the strategic interests and requirements of the system. This
helps rationalising the selection process and validating it against the system’s
main mission and strategies to meet it, modelled as pathways to reach goals. The
algorithms and the reasoning of GoalD and its knowledge base are built for that
level of presentation and this would also make their interpretation easier. GoalD
facilitates taking a decision at the early stages of development and eliminating
strategies which can become cumbersome or redundant and will also detect situ-
ations where additional equipment is needed. We harness these benefits of Goal
Oriented Modelling approaches for this problem.

As a potentially relevant application sector for GoalD can be health care
and well-being solutions, we evaluate GoalD on a TeleAssistance System (TAS)
case study, which was originally introduced in [32] and further implemented
as an exemplar by Weyns and Calinescu in [1] to be used for evaluations of
self-adaptive solutions. Our results demonstrate the usefulness and scalability of
GoalD in planning the deployment of a system with thousands of components
in a few milliseconds.

The paper is structured as follows: Section 2 introduces the background and
illustrative scenario. Section 3 presents our proposed GoalD approach. Section 4
reports on our evaluation results of GoalD. Section 5 depicts related work and
Section 6 concludes the paper and outlines future work.

2 Goal Model and Contexts

Goal-oriented analysis is a powerful technique to capture and represent the sys-
tems and software requirements at the intentional level, the goal level, and the
strategies that can be adopted to achieve them. The variability representation
in such Goal Oriented Requirements Engineering (GORE) makes it suitable for
developing adaptive systems [33]. Tropos [21] is one of the methodologies that
utilizes goal modeling for depicting requirements at design time. The goals in
Tropos are associated with actors (social or system actors) and may be hier-
archically refined via AND/OR decompositions into other goals or tasks/plans
which ultimately achieve them by means of executable processes. Contextual
Goal Models (CGM), proposed in [24], also capture the relation between the
environment surrounding the system, e.g., the computing resources or weather
status, and its goal achievement strategies. Context is a concrete description of
the environment presented in a manageable, decidable, and formalized form. In
CGM, contextual conditions are associated with variation points in the goal anal-
ysis hierarchy that enable decisions on which alternative strategie(s) to adopt.
Similar to goal analysis, context analysis allows to refine a high level environment
description into a formula of verifiable pieces of information (facts).

Tele
Assistant G0:Provide Health Support

P4: Get Sensed
Data

P5: Local
Analysis

 C4

G1: Provide self-diagnosed
emergencies Support

G2: Provide Automated
Life Support

or

C1: Internet Connection
C2: Battery is Low
C3: Doctor Is Present
C4: Drug Is Available
C5: Patient is OK

P1: Push
Button

and
and

P3: Alarm
Service

P2: Send
SMS

 C1

G4: Notify Emergency
 Medical Services

G5: Monitor
Patient

P10: Alarm
Service

P9: Send
SMS

 C1

G10: Notify Emergency
Medical Services

G9: Administer
Medicine

 ! C5

orand

G8:Analyze Data

P6: Remote
Analysis

 C1

G6: Enact
Treatment

 ! C2

G3: Allow Push
Button

G7: Get Vital Params

P8: Change
Dose

Goal PlanMeans-endAgent Refinement

P9: provided quality
precision: 5
response_time: 3

P10: provided quality
precision: 10
response_time: 5

objective function:
f ← (2*precision
+ 1 * response_time)

G11: Change
Drug

P7: Change
Drug

 C3
G12: Change

Dose

or

Fig. 1: CGM of the Tele Assistance System (based on [1,32])

2.1 Tele Assistance System

To illustrate our approach throughout the paper, we will use the Tele Assistance
System (TAS) [32] based on the reference implementation of the exemplar pro-
vided by Weyns and Calinescu [1]. TAS is a technology service that provides
care to elderly and chronically sick people, enabling them to continue to live in
their own homes. We have chosen this particular example to make it easy to
point out variability in environments and resources.

In an assisted-living scenario, with wearable technologies, it is clear that the
environment surrounding the user may vary. While designed to be used at home,
TAS probably would be usable outside, in a mall or in a friend’s house. Addi-
tionally, the combination of embedded sensors may vary due to power shortages
or mere lack of necessity in some cases or situations. These “situations” are what
we understand as the CGM’s contexts: "user is asleep", "night time", or "user is
at home". A resource availability may similarly be understood as a context (e.g.,
"user’s cardiac rate is measurable").

The CGM presented in Figure 1 depicts a CGM that may represent TAS
behavior and intents. In this example the goals or tasks P1, P3, G7, G8, P7, P8
and P10 emulate the TAS behavior as described in [32]. For the sake of argu-
mentation and to proper exemplify the features introduced by GoalD, we have
further decomposed some of those goals into different alternatives. This allows
GoalD to adjust TAS’s expected behavior under different contexts. It should be
noted that, under the context [C1, C3, C4], the original behavior is still valid
according to this CGM. In our model, the root goal G0: Provide Health Support

is AND-decomposed into two sub-goals: G1: provide self-diagnosed emergencies
support and G2: Provide automated Life Support. Each of these is then further
refined into more fine-grained goals or tasks. For AND-decompositions like the
one from G0 every sub-goal must be achieved whereas in OR-decompositions
like G3 any applicable alternative is suitable.

Every OR-refinement in the model introduces variability to the system, al-
lowing it to achieve the root goal in different ways. Each of these different alter-
natives may provide different quality of service (QoS) levels. Examples of QoS
levels can be seen illustrated in tasks P9 and P10 of Fig. 1. The tasks P9 and
P10 of our example provide different precision and response times. Additionally,
the model designer defines a utility function for the goal model to define what
it understands as a better alternative. GoalD then combines the expected QoS
levels and the applicable configurations to choose the one which is expected to
provide the higher QoS levels for the user under the current context.

The CGM also presents some context annotations on some edges, like the one
linking goals G2: Provide Automated Life Support and G6: Enact Treatment.
These annotations represent the context(s) in which an alternative is applicable.
For instance, Enact Treatment (goal G6) is only available when the patient is
not ok (!C5). The context conditions of the goals propagate to their AND-OR re-
finements. During the time that the patient is well, Change Drug (goal G11) and
Change Dose (goal G12) are not applicable. Similarly, on OR-decompositions,
every context restriction also introduces variability to the model although such
variations are not within the system’s control and may improve or impair the
system without prior notice. This is why we believe that handling such changes
effectively is paramount to a system in a highly heterogeneous computing envi-
ronment.

3 The GoalD Approach

Our approach for goal-driven automated deployment (GoalD) is divided into
two separate stages: offline and online activities. This differentiation is in line
with the established concepts on software development processes for variability
configuration and adaptive systems (e.g., [34]), in which variability and self-
adaptation capabilities are designed and implemented in the offline stage. It
includes the preparation of software bundles which will be used during the online
stage activities: dynamic planning and automated deployment. This enables us
to tackle heterogeneity and constant changes that are quite intrinsic to modern
computing environments, such as IoT, cloud or wearables. Furthermore, it allows
us to handle a large spectrum of available alternatives to provide better QoS
levels to the users and deal with the context-dependent applicability of such
decisions and to foresee the impact of the adaptation on the overall QoS.

The main objective of GoalD is to provide an adaptable deployment frame-
work to harness the decision making complexity to provide a higher levels of
quality to the users, even in the face of contextual variations and unavailability

of resources. Figure 2 provides an overview of GoalD’s two stages (online and
offline).

ComponentsGoals Bundles Deployed
Architecture

2 3 4

Offline: Preparation for deployment Online: Deployment adaptation

CG5 CP4

CP5 CP6

GoalD
Manager

1
E

 M

A

K

P

G5
and

P4

G8

P5 P6
or

CG5

CP4 CP6

G7

Fig. 2: Overview of the steps in GoalD

At design time, the offline stage encompasses most of the creative work,
usually carried out by software engineers devising the goal model and apply-
ing patterns to concretize the conceptual model into components which will be
used during the online phase. Starting out from the system’s contextual goal
model, in activity (1) the specialists map the requirements to their contextual
dependencies and to the QoS levels they are expected to provide via model anno-
tations (see Section 3.1). Activity (2) comprises the application of the mapping
proposed in Section 3.2 effectively extracting composable software components
from the contextual goal model. Finally, during activity (3) these components
are packaged, described by metadata, and published in a repository (see Section
3.2).

Since GoalD does not make any assumptions on the underlying application,
the definition of a quality measure is deliberately wide, leaving the semantics to
the analyst defining it. These QoS levels may then be expressed in both goals
and tasks in order to select the dependencies delivering the highest expected
QoS levels through the utility function defined for the model. An example of
the application of the utility function could be on the means-end selection for
Goal G10. This goal may be implemented through tasks P9 or P10. Assuming
that context C1 is active and the defined utility function ti be (precision ∗ 2 +
response_time∗1) then task P10 would be selected with an expected QoS level
of 25 (10 ∗ 2 + 1 ∗ 5) instead of the task P9, which would give a QoS level of 13
(10 ∗ 2 + 1 ∗ 3).

In activity (4), following Figure 2, the online stage of GoalD concerns itself
with the proper selection of applicable components for the system’s environment
at runtime. GoalD utilizes automated reasoning and scalable algorithms to sup-
port this activity. Figure 2 represents the autonomous deployment by the GoalD
manager, which autonomously builds deployment strategies at runtime following
the MAPE-K loop to decide on the suitable bundles to be deployed, e.g., capable
of providing the highest QoS level for the root goal under the current computing
environment; and handling deployment adaptation reactively and proactively to
respond to context changes by finding redeployment alternatives to newly avail-
able contexts. Section 3.3 gives further details for the online stage of GoalD.

3.1 Goal Modeling in GoalD

GoalD starts from a generic CGM and specializes it with a richer resource no-
tion. It maps goal hierarchies to software components and environmental and
resource dependencies to contextual restrictions, hampering the applicability of
a goal decomposition alternative. This allows us to plan and deploy software
onto variable and dynamic computing resources under dynamic external envi-
ronments. In this sense, from now on we assume that a CGM context may either
represent a reification of the system’s surroundings or the availability of a given
resource in the computing environment. As such, the target computing devices
and their corresponding available resources can be associated with a fully quali-
fied context. Therefore, we may consider a set of resources/contextual conditions
relating to the available resource set as a context in the environment.

We illustrate this based on the TAS example (Figure 1). The context con-
ditions are either computational resources (C1: Internet connection) or environ-
mental restrictions (C5 - Patient is OK). The contextual conditions are repre-
sented as labels on the goal decomposition edges and represent that the associ-
ated computing capability must be available in the environment to consider this
decomposition viable.

Let us consider the sub-tree beneath G9: Administer Medicine and a world
situation in which internet connection is currently available (C1), a doctor has
just arrived (C3) and no drug is being administered (!C4). In this scenario,
changing the dosage of a medicine is not viable since there is no previous
dosage to be changed but all the remaining alternatives are applicable. There-
fore the enactment of a plan under these circumstances would necessarily in-
volve G9: Administer Medicine or G10: Notify emergency services. Task
P7: Change drug is currently available and may be used in an enactment plan
it depends on a context (C3 - Doctor is present) which is currently active.
On the other hand, plans involving P8: Change dose are automatically deemed
unfeasible due to the nonexistence of the necessary context (C4).

Do note however that since context C2 is active, goal G9 is achievable through
tasks P7 and P8 independently. The availability of multiple decomposition alter-
natives like this case, any of which could achieve the desired results, enables
GoalD to choose the one offering the higher QoS alternative. The GoalD frame-
work includes the capability of estimating these QoS levels and choosing the
alternative with the highest quality. This selection method is described in Sec-
tion 3.3.

To enable this feature the software engineers must: (1) define the provided
QoS levels of each available task and (2) include at the goal a utility function for
composing all of the QoS levels of each child tasks/goals into a single and com-
parable metric. To do so, each task (leaf node) is annotated with a set of tuples
〈qualityidentifier, value〉 where qualityidentifier is a string that uniquely iden-
tifies the metric and value is a positive numerical representation, where higher
values signify higher qualities. Goals on the other hand are annotated with an-
other set of tuples: 〈qualityidentifier, weight〉 where qualityidentifier is the

string identifying the metric and weight is a numerical value that will be used
as a multiplier for such metric when instantiating the goal’s utility function.

Given that the available context of a plan can only be known at deployment
time, the model encompasses them all and uses the available contexts as a filter
on the goal’s alternatives upon deployment. A context condition is said to be
satisfied if its associated resources are present in the current state of the en-
vironment or if its world condition is active. In Figure 1, goal G9: Administer
Medicine has two alternatives to be achieved: by executing task P7: Change
Drug or P8: Change Dose. The enactment of a plan involving task P7 is feasi-
ble if, and only if, the context condition C3 (Doctor is present) is satisfied. In
summary, our CGM’s context conditions act as restrictions on the applicability
of a plan.

3.2 From Goals to Components

Components are units of composition with contractually specified interfaces and
explicit context dependencies [35]. Components and interfaces can be described
using architecture description languages (ADLs). Yu et al. [31] adapt the Darwin
ADL [36] with elements borrowed from one of its extensions, namely Koala [37].
They also provide a method for relating goals with components, but without
taking into account context conditions.

In GoalD we build on Yu et al. proposal [31] ACL to define patterns to
map CGM elements into architectural elements. Since these patterns are able
to convert both OR- and AND-decompositions, their application result in a
specification for the implementation architecture of the system. In particular, it
allows the identification of components in need of implementation from the goal
hierarchy pathways of the CGM.

The system architectural elements are components and interfaces. An
interface element represents a contract between different components. There-
fore a component must declare the interface(s) it adheres to and provides func-
tionality for. It may also declare the interface(s) it requires functionality from.
These metadata elements (interfaces, provides and requires) and the ar-
chitecture specification may be algorithmically derived from the original CGM,
based on the following derivation patterns for AND- and OR-refinements. Fi-
nally, the outputted components and interfaces should be included with concrete
implementations by the system’s developers.

For each AND-refined goal, the conversion pattern will produce:

1. An interface specification for the goal;
2. An interface specification for each of its refinements;
3. A component specification that provides the interface defined in 1, requires

the interfaces defined in 2 possibly having a conditional statement describing
the context in which it is necessary.

To illustrate the application of this pattern, let us consider goal G2 - Provide
Automated Life Support. This goal is decomposed into G5 - Monitor Patient

and G6 - Enact Treatment through an AND-refinement. This allows the pre-
sented pattern to be used. The application of step 1 will result in the definition
of an interface for the goal itself interface ProvideAutomatedLifeSupport{},
step 2 will result in two other interfaces, one for each refinement (interface
MonitorPatient{} and interface EnactTreatment{}). Finally, step 3 will re-
quire a component ProvideAutomatedLifeSupportImpl, which provides inter-
face ProvideAutomatedLifeSupport. This component will always require inter-
face MonitorPatient and, conditioned to context patientIsOK being false, also
require EnactTreatment. The resulting ADL is depicted in Figure 3.

G2: Provide Automated
Life Support

C5: Patient is OK

and

G5: Monitor
Patient

 ! C5

G6: Enact
Treatment

interface ProvideAutomatedLifeSupport
{}

interface MonitorPatient {}
interface EnactTreatment {}

component
ProvideAutomatedLifeSupportImpl {

provides ProvideAutomatedLifeSupport
;

requires [
MonitorPatient ,
condition (! patientIsOk ,

EnactTreatment)];
}

Fig. 3: Model excerpt of an AND-refined goal and corresponding definitions

G10: Notify Emergency
Medical Services

G9: Administer
Medicine

G6: Enact
Treatment

or

interface EnactTreatment {}
interface AdministerMedicine {}
interface NotifyEmergencyMedicalServices

{}

component EnactTreatmentImpl {
provides EnactTreatment ;

requiresAny [
AdministerMedicine ,
EnactTreatment

];
}

Fig. 4: Model excerpt of an OR-refined goal and corresponding definitions

In a similar fashion, OR-refinements will result in a component, but in this
case, there is no need to deploy all of them, therefore replacing the requires
with the requiresAny. Whereas in an AND-refinement, an unachievable sub-
goal incurs that the root goal is also unachievable, in an OR-refinements it
merely means that it should not be deployed. This goal will only be deemed
unachievable if all of its sub-goals are also unachievable.

This pattern can be repeated indiscriminately since both AND- and OR-
refinements will always result in the generation of components. This cycle will
only be broken when we consider means-end refinements. A Means-end refine-
ment depicts all the different strategies or manners in which a goal may be
implemented. From such refinements will derive one interface specification and
multiple components specifications that provide the implementation of such an
interface. Thus, the pattern for the means-end refinement of a goal is as follows:

1. An interface specification for the goal itself and;
2. A component specification for each of its refinements which may depend on

a context;

For illustrating this pattern we may focus on goal G4 - Notify Emergency
Medical Services. This goal is an means-end refinement achievable by either
P2 - Send SMS or P3 - Alarm Service. If we apply the conversion pattern to
goal G4, it would produce interface NotifyEmergencyService (step 1) and
components SendSms and AlarmService (step 2).

It is noteworthy that, differently from AND- and OR-refined goals, the com-
ponents derived from a means-end refinement provide, i.e., implement, their
parent node’s interface. This means that either component may be used to
achieve the decomposed goal. This is also one of the main sources of the de-
ployment variability scope, since AND-refinements do not pose a choice at all
and OR-refinements will always attempt to deploy as many as possible. From an
architectural level perspective, this variability also characterizes the decoupling
of components, in accordance to the goal model.

C1: Internet Connection

P3: Alarm
Service

P2: Send
SMS

 C1

G4: Notify Emergency
 Medical Services interface NotifyEmergencyServices {}

component AlarmService {
provides NotifyEmergencyServices ;
condition InternetConnection ;

}

component SendSms {
provides NotifyEmergencyServices ;

}

Fig. 5: Model excerpt of a Means-End refinement and corresponding definitions

Whenever a refinement edge has an associated context restriction, such re-
striction is mapped to a condition element on the component, as exemplified by
AlarmService component’s condition InternetConnection. In this case, the
plans are associated with the context C1 - Internet Connection. Particularly,
contextual restrictions associated with OR-decompositions may limit the appli-
cability of a given alternative under certain computing environment contexts.

By associating AND/OR-decompositions and context conditions in the com-
ponent analysis, we may map the CGM’s variability and its conditions to the sys-
tem’s architecture itself. For example, components AlarmService and SendSms
both provide the same interface (NotifyEmergencyServices) but with different
context conditions. This means the same goal may be achieved by deploying
either component as long as its required contextual condition is in effect.

By using the proposed patterns, the variability presented in the goal model
is catered for usage on the system’s architecture. Such architectural variabil-
ity enables deployment adaptation in response to heterogeneity in the target
computing devices and to the system’s surrounding environment.

Once the component/interface is mapped by using GoalD patterns, includ-
ing those interface details should be a simple matter of further specifying the
component/interface with its proper signatures.

Packaging Components As previously described in Section 3.2, at the ar-
chitectural level goals are contractually specified as interfaces which, in turn,
are implemented by components. From a deployment point of view, components
and interfaces represent deployment units and should be packaged as files for
distribution, usually referred to as bundles. GoalD bundle packages encompass
components, interfaces and their associated metadata in order to allow auto-
mated deployment.

Bundles metadata describe the bundle’s contents: its goals, dependencies,
and context conditions. They are characterized by the following information: (i)
name, (ii) conditions, (iii) defines, (iv) implements and (v) depends. Firstly,
name metadata uniquely identifies a bundle. Secondly, conditions metadata
describes the context conditions needed to deploy a bundle onto any given en-
vironment. Lastly, defines, implements, and depends metadata specify the
bundles inter-dependencies and are used to analyze contractual responsibilities
between bundles. The attribute defines declares that this bundle defines the
contract for a set of goals; implements declares that this bundle provides a pos-
sible implementation for a set of tasks/goals; depends declares that this bundle
has a dependency relationship towards other bundles that define and implement
a goal/task.

All components packaged together in a bundle will be delivered together. In
order to favor low coupling in the GoalD approach, components and interfaces
should be packaged into separated bundles, so they can be delivered only to
environments where they are required and further used. In order to maximize
the flexibility of systems following the GoalD deployment approach, we package

interfaces and components in two bundle types: definition and implementation,
respectively.

A definition bundle packages interfaces – In a definition bundle, the meta-
data defines contains the list of goals it provides definition for. For exam-
ple, the interface definition for goal G0 of the Tele Assistance System, namely
Provide Health Support, is packaged into a definition bundle along with the
following metadata:
name: ProvideHealthSupport .def
defines : ProvideHealthSupport

Implementation bundles package components – In such bundles, the implements
metadata contains the list of goals provided by its packaged components; the
depends metadata contains the list of interfaces that packaged components de-
pend on and; the optional quality metadata defines a mapping between arbi-
trary labels and their related values. As an example, the components for goal
G2 presented in Figure 3, namely Provide Automated Emergency Support, is
packaged in an implementation bundle along with the following metadata:
name: ProvideAutomatedLifeSupport .impl
implements : ProvideAutomatedLifeSupport
depends : MonitorPatient , conditional (! patientIsOk ,

EnactTreatment);
quality : [

response_time : 18
]

Note that ProvideAutomatedLifeSupport.impl depends on the interface
definition and actual implementation of MonitorPatient and occasionally EnactTreatment.
Therefore, at deployment time, components that defines and implements in-
terface MonitorPatient and EnactTreatment should be included in order to
successfully deploy ProvideAutomatedLifeSupport.impl bundle.

Finally, the condition metadata of implementation bundle reflects the con-
text conditions of packaged components. For example, in the Tele Assistance
Service, the components AlarmService and SendSms are packaged into separate
bundles with the following metadata:
name: AlarmService .impl
implements : NotifyEmergencyServices
conditions : InternetConnection
quality : [

precision : 10
response_time : 5

]

name: SendSms .impl
implements : NotifyEmergencyServices
quality : [

precision : 5
response_time : 3

]

AlarmService and SendSems are bundles that implement the same goal
NotifyEmergencyServices. However, SendSms is always applicable while bun-
dle AlarmService depends on context InternetConnection being active. This
architectural scheme keeps the variability introduced by the CGM as well as the
components’ decoupling at deployment level. Do note also that both bundles
advertise their expected quality level. These bundles do advertise their expected
precisions. These quality levels may have any label and any positive value. The
semantics for the value is that the higher the value, the better QoS is provided.
The lack of precise definition of the labels and the simplistic interpretation of
its attributed value are due to the fact that thoroughly defining a QoS level
and its comparison is beyond the scope of this paper. It serves mostly as a way
to indicate such levels and enable the algorithm to choose between those avail-
able options. Such quality levels should be introduced by the bundle’s software
designers during packaging.

After components and their corresponding metadata information (quality
levels, goals and contexts dependencies) are properly packaged into bundles,
they are registered to a repository so that they can be distributed to the target
devices. During the registration process, a bundle is uploaded to the repository
and its metadata is processed and stored in the repository database. This way
such information may later be queried for the next step of GoalD: deployment
planning.

3.3 The Autonomous Deployment in GoalD

During the online phase, the focus shifts from the system’s definitions to the
autonomous deployment and adaptation of the packaged bundles in response to
context changes. In this stage, GoalD (1) monitors the currently active contexts,
(2) takes such context set alongside the currently available computing devices
into account to pinpoint applicable alternatives, (3) estimates the delivered QoS
of each alternative, (4) picks the one expected to deliver the highest QoS levels
and list the bundles needed by it, (5) deploys those bundles onto the computing
devices available, and (6) restart the cycle by monitoring contextual changes.
This new monitoring phase enables GoalD to identify and respond to newly
available contexts by adapting the current deployment. This adaptation may
either reactively handle a bundle that is not applicable anymore or proactively
increase the provided QoS levels by choosing alternatives that became applicable,
without disrupting the system’s proper execution.

The starting point for the deployment process is the explicit definition of the
root goals the stakeholders want to achieve/deploy and the target computing
environment via a deployment request. From this set of goals and their CGM
sub-trees, GoalD creates a DVM (Deployment Variability Model) relating its
goals, contexts, available bundles, and provided qualities. A DVM is a tree-like
structure composed of Variability Elements (VE) that describe the alternative
implementation options for each goal, ordering them by the expected delivered
quality level. DVM follows the principles of a model at runtime [38]. Through
the analysis of the alternatives at each node of the DVM tree, GoalD is able

to reason about the deployment and choose, for the current context, the alter-
natives set providing the best QoS and devise a deployment plan to enact it.
Such deployment plan consists of a set of deployable bundles that allow for the
achievement of all selected root goals on the available computing environment
upon deployment and execution. The deployment itself is executed by fetching
the selected bundles from the repositories and binding them to the available
resources. At runtime, GoalD stores the DVM in order to respond to eventual
context changes through re-planning the deployed components and adapt the
deployment accordingly.

After executing the deployment according to the goal model, the managed
system is considered available, which means that it is able to fulfill its defined
goals as long as the required resources are available. In an event of a context
change, the availability of the system could be threatened if the required re-
sources render unavailable. In case a resource becomes unavailable, GoalD can
recover from the system availability by adapting the deployment if there is an
applicable alternative. Then, the system will be unavailable until an adaptation
occurs by deploying bundles of the applicable alternatives. As such, the unavail-
ability time encompasses the time to identify the context change, analyse it,
come up with an adaptation plan, and execute that plan.

For example, in TAS, in an event of loss of the internet connection, the system
would render unavailable if the Alarm Service was deployed at the moment of the
connection loss and no Send SMS task is deployed. TAS would become available
again by deploying Send SMS as it is an applicable alternative to fulfill goal G4:
Notify Emergency Medical Services, following Figure 1.

However, in an event of a change that allows for an increase of the provided
QoS, there is no unavailable period as the system continues to operate with the
current deployment setup while the adaptation cycle is executed simultaneously.

In this section we present the GoalD framework in detail: (1) the runtime
framework, (2) its knowledge metamodel and (3) the algorithms to synthesize
and update the DVM as well as to create a deployment plan that best suits the
system goals.

GoalD Manager and Runtime Framework Figure 6 illustrates the perspec-
tive of the self-adaptation control loop of our GoalD Manager, realized through
a MAPE-K feedback loop [39]. A MAPE-K loop consists of five elements, the
Monitor, Analyze, Plan, Execute, and Knowledge Base. The Knowledge Base
stores all necessary information (also those produced by the MAPE elements).
For example, it keeps a model of the system goals (the DVM), the system’s cur-
rent deployment, and also a data structure to correlate each context to the VEs
that depend on it (Context-VE Mapping).

The Monitor subsystem is responsible for identifying the system’s current
operating context and notify the Analyze subsystem whenever a context change
occurs.The Analyze subsystem updates the DVM identifying parts rendered in-
applicable under the new context and/or evaluate newly available alternatives
for the possibility of delivering higher quality levels than those currently be-

Monitor

Identify context changes

Execute

Realize planned
deployment operations

Sensors Effectors

 Analyze
Update DVM

 Knowledge Base

- DVM
- ContextVE Map

Check computing environment Fetch bundles, deploy/undeploy

Plan
Create a deployment
adaptation plan

Fig. 6: MAPE-K Perspective of GoalD

ing delivered. The Plan subsystem is then triggered to (1) parse the updated
DVM; (2) envision a new system deployment applicable under the changed envi-
ronment context and; (3) engineer a deployment plan for adapting the previous
deployment into the new one. Finally, the Execute subsystem performs the adap-
tation through the removal of components that have become unnecessary and
the installation of the newly required ones.

Whenever the Monitor subsystem identifies a context change, the Analyze
subsystem is immediately triggered to evaluate the need of locally adapting the
model. Adapting locally decreases the analyzing cost and, consequently, the re-
covery time. However, should a context change incur no effect on the deployment,
the Analyze subsystem will proactively act by attempting to identify newly vi-
able alternatives to adapt into a deployment setup to deliver a higher QoS than
the current deployment. If such an opportunity is found, the Plan subsystem will
update the DVM and ultimately construct a deployment plan. This plan is for-
warded to the Execute subsystem for deployment. Upon receipt of a deployment
plan, the Execute subsystem will carry out the planned deployment operations.
These operations involve the fetching of the bundles in the deployment plan from
the repository, the subsequent install or uninstall of bundles and the wiring of
software components. The Execute subsystem is also responsible for updating
the Knowledge Base with the current deployment state.

Knowledge Metamodel To properly handle context changes, GoalD makes
use of a Knowledge Base. GoalD’s Knowledge base consists of the system’s DVM
and a Context-VE mapping derived from the components’ metadata. The DVM
is a model depicting the available alternatives and it is constructed from infor-
mation extracted from the bundles available at the Repository. The Context-VE
mapping consists of a correlation between each context and the set of VEs re-
quiring it. This mapping is used to assert whether a context change render the
current deployment unapplicable.

Bundle

- identification
- metadata

Repository

+ query()

KnowledgeBase

- contextVEMap
- qualityWeights

Dependency

knowRepository

VE

- isAchievable

Alternative

- isResolved
- qualityProperties

definition

currentDeployment

implementation

alternatives

listDepVE

rootVE

currentContext

parent

chosenAlternatives

requiredContextSet

Context

- identification

0..*

0..*

0..*

0..*

0..*

0..*

0..* satisfy

- modifier

0..*

modifiers

0..*

- deploymentUnits

Fig. 7: GoalD-runtime metamodel

The deployment metamodel of GoalD is the underlying data structure that
defines major conceptual elements of the framework’s autonomous deployment.
The metamodel of GoalD consists of seven major elements: (1)Variability Ele-
ment (VE), (2)Context, (3)Bundle, (4)KnowledgeBase, (5)Repository, (6)Depen-
dency and (7)Alternative. These elements are used to reason about the system
goals, context and deployment at runtime. Figure 7 presents the GoalD meta-
model.

A VE reifies a goal and contains a Bundle that defines such goal and a set
of alternatives. In particular, rootVE represents the most important, significa-
tive and abstract goal to be achieved by the system. For TAS, this goal is G0:
Provide Health Support. Each Bundle, as previously described in Section 3.2,
has a unique identifier, the deployment units and some metadata describing
the goals/tasks they defines, implements and/or depends on. It is through such
metadata that the relationships between bundles are represented: a bundle with
dependencies relies on other bundles to provides their definition and implemen-
tation. An Alternative represents a possible strategy for resolving a VE.An
Alternative aggregates a set of Dependencies that, whenever deployed alto-
gether, are able to achieve the VE ’s goal. It also advertises the expected QoS
level it is expected to deliver (qualityProperties) and the contexts in which

it is will or will not be applicable. A Context in GoalD represents either a re-
source’s availability or a world predicate at any given moment. A Dependency
has a modifier that represent whether it is compulsory (AND-decompositions),
optional (OR-Decompositions) or conditional (Context dependencies).

Repository stores the DVM and may be queried via the query method. This
method receives a set of dependencies as an argument and returns all the VE
objects that implement such dependencies. It is this intricate dependency rela-
tionship between different goals via depends and implements annotations that
defines the complete DVM model. Another important constituent part of the
runtime metamodel of GoalD is the KnowledgeBase. The KnowledgeBase gath-
ers the runtime models for a given computing environment. It stores the DVM,
represented by the rootVE, the DVM’s root node and a Context to VE mapping
(ContextVEMap). This map is used to pinpoint the goals affected by a given
context change. It enables GoalD to efficiently evaluate a change and optimize
the adaptation process.

Figure 8 illustrates the DVM correspondent to TAS CGM’s (see Figure 1)
sub-tree rooted at goal G6. This Figure depicts the VEs for goals G6, G9 and
G10 as well as tasks P7 and P8. At each VE there is a set of possible component
alternatives (CG9, CP10, . . .). G6 has only one alternative given that it is an AND-
decomposition that necessarily needs both G9 and G10. A similar logic applies to
G9. On the other hand, since G10 has two means-end alternatives, it is left free
to choose component CP9 and/or CP10.

G9 CG9

G6 CG6

DependencyAlternativeProvidesVE

VE:G10 (NotifyEmergency)

+ def.:NotifyEmergency...-def
+ chosenAlt: CP11
+ isAchievable: true
+ parentAlt: CG5
+ alternatives: [CP9, CP10]
- Alternative: CP9
+ impl: SendSMS-impl
+ conditions: none
+ dependencies: none
+ qualityProperties:
 - respose-time: 2
- Alternative: CP10
+ impl.: AlertService-impl
+ conditions: C1
+ dependencies: none
+ qualityProperties:
 - respose-time: 10

P7 CP7 P8 CP8

G10 CP9 CP10

Fig. 8: DVM: Deployment Variability Model

An alternative is deemed resolved if its context restrictions are satisfiable and
it either (1) has no dependencies (like CP7, CP8 CP9 and CP10) or (2) all of its
dependencies have already been resolved. In turn, a VE is considered achievable
if it is possible to find at least one resolvable alternative. Should there be multiple

deployable alternatives, the choice of any given alternative is conditioned to its
applicability in the current environment and the level of quality it advertises.
The chosen alternative (chosenAlternative) will be the one providing the highest
QoS levels. Each Alternative is associated with an implementation bundle. An
Alternative also has its own set of dependencies, reflecting the dependencies of
its associated bundle. Such process is performed by GoalD following the elements
defined by the MAPE-K loop.

Monitor As previously stated, the Monitor subsystem is responsible for identi-
fying the system current operating context. The implementation of such moni-
toring is very dependent on the context(s) it is supposed to monitor. Therefore,
the context monitoring module is out of scope of this paper. However, the role it
plays is paramount for the adaptation mechanism, in the sense that the Monitor
subsystem is the trigger of the whole adaptation process.

Analyze The Analysis subsystem is used to update the DVM of the system
according to its goals and current context. Analyze is called during the system
start up and in the event of a context change. However, handling an initial
deployment is slightly different from handling a context change. During the first
deployment managed by GoalD has no DVM to guide itself. On the other hand,
while handing a context change the system already has an instantiated DVM
and can take advance of it in order to optimize the analysis.

In order to create an initial deployment, GoalD queries the repository for
the root goal which results in the root VE. Algorithm 1 is then used to create a
DVM.

A context change may have (1) a negative effect, (2) a positive effect or (3) no
impact in deployment. A context change with a negative effect on the deployed
system will render some of its components unusable, i.e., the context conditions
upon which the component depended on are not satisfied anymore. A context
change with a positive effect will render applicable components that previously
were not thus allowing their usage to improve the QoS levels of the system and
will not disrupt the current deployment. Finally, the contexts change has no
impact in deployment if it do not render some of its components unusable nor
render applicable components with better QoS then the current components.

After a context change is reported by the monitoring stage, the analysis stage
starts by verifying each and every node that depends on such context in order
to define whether for that particular node the current deployment is not viable
or may be improved therefore triggering its adaptation planning.

Whenever a negative impact context change occurs, it is possible to recover
the failed deployment as long as it is possible to find other components or other
alternatives to fulfill the deployment goals. As such, even a context change with
negative impacts can, by making new components deployable, offer new op-
portunities and new alternatives to recover the achievability of the root goal.
Moreover, a context change can also provide us with opportunities to improve

the delivered system’s quality of services by making deployable components with
higher quality of services than those currently deployed.

Algorithm 1: resolveVE
1 Function resolveVariabilityElement (ve)
2 ve.chosenAlternative ← NULL;
3 if !isApplicable(ve) then
4 ve.isAchievable ← True;
5 ve.chosenAlternative ← NULL;
6 updateContextMap(ve.satisfy.modifier, ve) return ve;
7 end
8 foreach ve.alternatives as alt do
9 updateContextVEMap(alt.requiredContextSet, ve) ;

10 if not checkCtx(alt) then
11 alt.isResolved ← FALSE ;
12 end
13 else
14 var isResolved ← TRUE ;
15 if not alt.listDepGoals.isEmpty() then
16 alt.listDepVe ← queryRepo(alt.listDepGoals) ;
17 foreach alt.listDepVe as depVE do
18 var result ← resolveVariabilityElement(depVE);
19 if not dependencyIsSatisfiable(result) then
20 isResolved ← FALSE ;
21 break ;
22 end
23 end
24 end
25 alt.isResolved ← isResolved AND

hasAtLeastOneAltForEveryAnyDep(alt);
26 ve.chosenAlternative =

selectBetterAlternativeSet(ve.chosenAlternative, alt);
27 end
28 end
29 ve.isAchievable ← checkAltValidity(ve.chosenAlternative) ;
30 return ve;

Plan The process of creating and updating a DVM under a given context,
loosely based on Guimarães planning algorithm [40], is presented in Algorithm 1.
This algorithm works as follows: first, it decides on the applicability of the VE
itself (line 3). Whenever the contextual conditions for dependency application
are inactive, the alternative is deemed achieved and returns the VE without
introducing any new alternatives to the deployment plan. It also updates the
ContextVEMap with a mapping from every context described in the dependency

modifier to the current VE. On the other hand, should the goal be applicable,
the algorithm proceeds by iterating over the VE alternative list (line 8). For
each alternative, the contextVE map of the KnowledgeBase is updated with the
alternative context and the associated VE (line 9).

Then the context conditions of the associated implementation bundle are
checked against the current context via checkCtx function (line 10). If checkCtx
returns FALSE, it means that at least one context condition of the alternative
does not hold. In that case, the alternative is marked as not resolved (line 11).
Otherwise, the checkCtx returns TRUE then the alternative dependencies are
checked (lines 14-27).

Whenever an alternative has no dependencies, no further check is needed
and the algorithms immediately marks such alternative as resolved and returns
it after the selectBetterAlternative function chooses it over a NULL plan.
Otherwise, if the list of dependencies is not empty, the planning stage begins
by checking each dependency as such: the repository is queried for the alt de-
pendencies and returns a list of VEs which are then assigned to the listDepVE
attribute (line 18). For each VE in listDepVE, resolveVariabilityElement
function is recursively called (line 18). The method dependencyIsSatisfiable then
evaluates the dependency modifier to decide on its satisfiability. For an AND
alternative, where all of the dependencies must be deployed, if any VE of its
listDepVE cannot be resolved then the alternative as a whole is considered un-
resolved (line 20) and the resolve process halts. In contrast, for an ANY (OR
alternative), the method will return true even if such dependency was not re-
solved so that the algorithm may keep on trying the remaining options. Should
any be deemed resolved, the VE is also considered resolved and the alternative
set is returned. If none of the alternatives is applicable, then the VE is considered
unresolved. Should isResolved retain TRUE value after resolving all the depen-
dencies and at least one alternative has been chosen for each dependency then
the alternative as a whole is considered resolved (line 25). This alternative is
finally compared with the (possibly NULL) VE’s currently chosenAlternative
to decide on the alternative expected to deliver the highest QoS level. Such
comparison is performed firstly by selecting any resolvable alternative over an
unresolved one and, should both be resolved, secondly by applying the model’s
utility function, expressed through the KnowledgeBase’s qualityWeight, to the
qualityProperties advertised by each alternative. The applicable alternative able
to deliver the highest QoS level is then selected and returned by the selectBet-
terAlternativeSet method. Then the process moves on to resolving the next VE
alternative and repeats itself.

The last step, after iterating over all alternatives, is setting the VE’s isAchievable
attribute to TRUE, when an alternative has been chosen or FALSE, otherwise (line
29) and returning the VE itself (line 30).

The output of the resolveVariabilityElement algorithm is a VE tree root el-
ement that contains the best available alternative in its chosenAlternative
attribute. Its listDepVE attribute will have another VE for each dependency,

each one with its own chosenAlternative already assigned, recursively decom-
posing into smaller sub trees, up to alternatives without dependencies.

Algorithm 2: Handle Context Change
Input: ContextChange contextChange
Result: Bool isAchievable;

1 Function handleChange(contextChange)
2 updateCtx(contextChange) ;
3 var affectedElements ← getAffectedVariabilityElements(contextChange) ;
4 for affectedElements as ve do
5 var tempVE = resolveVariabilityElement(ve) ;
6 while not tempVE.isAchievable AND tempVE.parentAlt != NULL do
7 tempVE = tempVE.parentAlt.parentVE ;
8 tempVE ← resolveVariabilityElement(tempVE) ;
9 end

10 if not tempVE.isAchievable then
11 return FALSE ;
12 end
13 end
14 return TRUE

Algorithm 2 is used to locally update the DVM in an event of a context
change. Firstly, the KnowledgeBase is updated with the changes in context (line
2) and the currently deployed VEs which will be affected are listed, with the
assistance of the Context-VE Mapping from the KnowledgeBase (line 3). At this
point, GoalD attempts to locally patch the DVM at the affected VEs in order
to minimize the re-deployment effort. For each affectedVE Algorithm 1 is called
(line 6). If the resulting VE’s isAchievable attribute is TRUE, the DVM has been
successfully patched for this VE and no further processing is needed. Otherwise,
if the VE cannot be achieved in the new context, than the current alternative
is inapplicable and the analysis process is restarted at the VE’s parent node so
that other alternatives may be considered (lines 6-9). This process is repeated
until an achievable plan is found or until the VE has no parent, i.e., until the
planning is performed at the rootVE.

If an achievable plan was found, then the condition at line 10 will not be
triggered and the algorithm moves on to the next affectedElement. If the
planning was attempted at the rootVE, then all the possible alternatives have
been attempted and no deployment plan is possible. In this case, the condition at
line 11 will be triggered and the algorithm will halt returning a value of FALSE.

If all affected VEs are successfully patched and the algorithm has not halted
yet, then the adaptation has been successful and the algorithm returns TRUE.
This indicates that the DVM has been updated and that the deployment plan
can be executed.

As previously mentioned, in order to provide a deployment plan, a set of
operations must be defined. Based on the DVM structure, the Plan subsystem
engineers a list of commands to deploy the specified bundles at runtime by
traversing the DVM collecting bundles associated to chosen alternatives, which
constitutes the target deployment bundle set; (3) compare the target deployment
with the current deployment, creating a plan consisting of (a) commands to in-
stall bundles present onto the target deployment and not currently deployed and
(b) commands to uninstall current bundles not needed in the target deployment.

Algorithm 3: Create Deployment Plan
Input: VE ve
Result: List bundles

1 Function createDeploymentPlan(ve, currentDeployment)
2 var targetDeployment ← new Set ;
3 targetDeployment.include(ve.definition) ;
4 targetDeployment.include(ve.chosenAlternative.implementation) ;
5 for ve.chosenAlternative.depVEList as depVE do
6 var depBundles ← collectChosenBundles(depVE) ;
7 targetDeployment.includeAll(depBundles) ;
8 end
9 var deploymentPlan ← new DeploymentPlan;

10 deploymentPlan.toBeIncluded ←
currentDeployment.diffSet(targetDeployment);

11 deploymentPlan.toBeRemoved ←
targetDeployment.diffSet(currentDeployment);

12 return deploymentPlan

After updating the DVM, the next step is to obtain the target deployment,
which can be carried out by traversing the DVM and collecting the bundles as-
sociated with the chosen alternatives. Algorithm 3 initially comes up with the
target deployment (lines 2-8), which can be described as follows. Firstly, it ini-
tiates variable bundles with an empty set (line 2). Then it includes ve.definition
and the ve.chosenAlternative.implementation bundle to the set (line 3-4). Then
for each dependency of the chosen alternatives it recursively includes the bundles
set to the target deployment(line 5-7).

Execute Having the target deployment set, the algorithm moves on to compar-
ing it to the current deployed bundles set. The deploymentPlan object has its
two attributes set on lines 10 and 11. On line 10, the targetDeployment is com-
pared to the currentDeployment to identify the bundles that are in the target
deployment and are not yet available. These bundles are then included in the
deployment plan toBeIncluded attribute and will be deployed upon the plan’s
enactment. Analogously, the currentDeployment is compared to the target to
identify bundles that are deployed, not needed anymore and therefore should be

removed during the plan’s enactment (line 11). At last, the plan itself is returned
and the algorithm is complete (line 12). The same concepts of deployment plan-
ning are used in a slightly different way in order to create the initial deployment
and to handle context changes. As the system initially has an empty deployment,
the initial deployment plan will consist of INSTALL commands for all bundles
in the target deployment and an empty toBeRemoved command set.

Once a deployment plan is devised, executing the plan is a matter of executing
each command in the plan. The change mechanism for the deployment is a
platform agnostic concept of GoalD. Under a Java platform, such as the one
used for our implementation and evaluations, the OSGi[41] framework is an
alternative that may be used to fetch and bind the components.

4 Evaluation

Goal 1: Evaluate GoalD capability to deploy and execute a system.
Question Metric

1.1 How similar is the system behavior when
deployed using GoalD in comparison to a
reference implementation of TAS?

Failure rate

Goal 2: Evaluate GoalD capability to adapt to a changing environment.
Question Metric

2.1 Does GoalD correctly identify context
changes that will impact the system’s
availability?

Precision of adapta-
tion decision.

2.2 What is the impact of a context change that
renders the current deployment infeasible?

Mean time to repair

2.3 What is the impact of a context change that
allows the deployment to deliver higher QoS
levels?

Mean time to failure

Goal 3: Evaluate GoalD scalability
Question Metric

3.1 How does the planning scale over an
increasing number of bundles?

Time elapsed to
come up with an
initial deployment
plan.

3.2 In the presence of context change, how does
the planning scale over an increasing number of
bundles?

Time elapsed to
come up with a de-
ployment adaptation
plan.

Table 1: GQM devised plan

In the evaluation of GoalD, we use the Goal-Question-Metric (GQM) evalu-
ation methodology [42]. To evaluate the achievement of this goal, we define the
questions and metrics presented in Table 1.

Our first evaluation goal, G1, is to investigate the feasibility of the approach
by evaluating whether the implementation of the proposed framework is capable
to autonomously plan the initial deployment and adapt it as needed and as
expected. In order to make an actual evaluation, we implemented the TAS in
GoalD following the exemplar, as an actual self-adaptive system implementation,
provided by Weyns and Calinescu [1].

Our second goal, G2, aims at evaluating GoalD planning capability to adapt
to a changing environment. More concretely, we evaluate three perspectives of
the adaptation: (1) its accuracy on identifying a context change that impacts
its availability, (2) the time required by GoalD to provide a new deployment
planning in face of failure, (3) the effect on the deployment QoS when a context
with more reliable resources becomes available for deployment.

Our third goal, G3, aims at providing a more comprehensible scalability
evaluation of GoalD. To handle heterogeneity, GoalD enables the provisioning
of various artifacts in the repository that can achieve the same goal and fitting
different context conditions. We name the number of artifacts present in the
repository that provide the same goal as variability level. A high level of vari-
ability is beneficial to cater for diverse context but, at the same time, can affect
the scalability of the planning because of the exponential nature of the decision
tree in goal model, which can be computing intensive.

We implemented GoalD in Java version 1.8 structured as a Maven project5.
The code for the execution of the evaluation, the data obtained and scripts
used to analyze it are available on a public repository 6. The experiments were
conducted using Apple MacBook Pro (Mid 2015) with a 2.2 GHz Intel Core i7,
16GB DDR3 1600MHz memory, with macOS (10.13.5). JDK(10.0.1 64bits) was
used to build and run the project.

Goal 1: Evaluate GoalD capability to deploy and execute a system
In order to answer Q1.1, an implementation of the Tele Assistance Service was
developed by using the GoalD methodology. This was achieved by making use
of the OSGi Technology [41] as a runtime environment for the packaging of the
components in bundles and for the execution of the TAS workflow. The goal
model specified in Figure 1 was mapped into 30 diferent bundles (15 of type
definition, 15 of type implementation).

For a fair comparison between the two implementations, we also implemented
two execution strategies using GoalD: the Retry strategy, in which two attempts
are made in order to obtain a service upon failure, and the Reliable strategy,
which selects an equivalent service with the lowest failure rate, or lowest cost if
a tie, when facing a service failure. Then we compared our results to theirs, which
is presented in Table 2, by running the experiment in ten series of a hundred
5 GoalD’s source code https://github.com/lesunb/goald/
6 https://github.com/lesunb/goald-evaluation/

executions. Although the standard deviation is not reported in the original work
of TAS [1], we consider a usual 10% standard deviation for the values reported
by Weyns & Calinescu. As such, we can notice that the values for strategies No
Adaptation and Retry fall very closely to the same range.

Nevertheless, the values obtained for the Selected Replication are quite dif-
ferent from each other. We validated our results with the two TAS authors, who
confirmed there might have been some typo in their original. They reckon our
results are legitimate. We also note that the adaptation policy in GoalD does not
consider the possibility of choosing the less costly option (in case of a reliability
tie), but only the selection of most reliable in case of a failure. In order clarify
whether GoalD is actually performing the adaptation strategy as expected, we
further evaluate such feature in the forthcoming goal G2 of our GQM.

The implementation code, along with the log of the executions of this specific
goal can be found at https://github.com/jcosta9/OSGi/

Approach No Adaptation Retry Select Reliable
GoalD (21.5± 1.2)% (0.7± 0.2)% (0.6± 0.2)%
Weyns & Calinescu 18 % 0.5 % 0.09 %
Table 2: Failure rate comparison between TAS implementation in GoalD and
Weyns & Calinescu.

Goal 2: Evaluate GoalD capability to adapt to a changing environment
To verify that GoalD achieves its second goal - i.e., able to adapt a deployment
to respond to changes in the system’s environment - we simulated environmental
context changes. Every context change is reflected in an entry in the experiments’
log file which may be represented as a timeline. An excerpt of the timeline is
illustrated in

Figure 9 illustrates the contexts (lines 1-5), the components (lines 6-19),
and the resulting system availability (line 20) as horizontal bars over time (t).
Throughout the timeline, the system availability under the ever-changing envi-
ronment is an outcome of the described context scenarios (as depicted in Figure
9). As previously mentioned in Section 3.3, the unavailability in the GoalD ap-
proach will take place when context change incurs on the required resources
unavailable (e.g., due to an outage). The dotted vertical lines represent those
moments of sudden unavailability.

The excerpt in Figure 9 depicts the first 20 hours of execution. Initially, con-
texts C1, C2 and C5 were active. In this environment, GoalD deployed compo-
nents ProvideSelfDiagnosedEmergenciesSupport, PushButton and AlarmService.
The option to choose the Provide Self Diagnosed Emergencies Support strategy
(G1 in Figure 1) over G2 as well as the Alarm Service (P3) over Send SMS
(P2) was the expected choice as G2 was not applicable (battery was low) and

system_available

ChangeDose

ChangeDrug

AdministerMedicine

EnactTreatment

LocalAnalysis

SendSMS

ProvideAutomatedLifeSupport

RemoteAnalysis

MonitorPatient

GetSensedData

AlarmService

ProvideHalthSupport

ProvideSelfDiagnosedE.Support

PushButton

drug−is−available

doctor−is−present

internet−connection

patient−is−ok

battery−is−low

0 3 6 9 12 15 18
Time (hours)

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fig. 9: Component Activation in GoalD

P3 delivers a better quality level. This initial configuration was deployed and
the system became available in 11ms. This deployment supported the system up
until the moment t=2h when context battery is low was inactivated. At this
point, GoalD adapts the system deploying goal G2 alongside G1.

At nearly t=3h30m, the internet connection is lost (!C1), therefore rendering
the deployed components RemoteAnalysis and AlarmService unusable as both
depend on context C1 to provide their functionality. This disruptive change is
identified by GoalD and, in response, components LocalAnalyisis and SendSms
are deployed, successfully restoring the system’s availability. Such configuration
is kept until 4h, when the connection with the Internet was restored. The avail-
ability of an internet connection does not affect any of the deployed components;
however the QoS levels provided by AlarmService and RemoteAnalysis are
greater than those offered by their counterparts, so GoalD proactively deploys
those to increase the system’s overall QoS levels.

At t=6h, an issue with the patient is detected (context C5 is deactivated) and
again GoalD responds to this change by including components EnactTreatment,
AdministerMedicine. In time t=7h a doctor arrives (context C3) and allows for
drugs to be prescribed, moment in which GoalD deploys component ChangeDrug.
Finally, in t=9h, the prescribed drug is made available (context C4) and changes
in its dose may occur therefore deploying the corresponding component ChangeDose.

Analogous analysis follows for time at nearly 13h, 15h, 16h, and 17h, where a
dotted vertical red line shows a context change followed by a sudden unavailabilty
in the order to 34 to 66ms. Therefore, the unavailable moments are in the order

of 270 milliseconds, and the overall availability of our implementation of TAS in
OSGi following GoalD is ≈ five 9’s.

In the following paragraphs we will address the GQM plan’s G2 questions.
Q2.1: Does GoalD correctly identify context changes that will

impact the system’s availability?
GoalD supports context changes that lead to deployed components’ unavail-

ability or that lead to the availability of previously unusable components capable
of providing higher QoS levels. For example, in the test case depicted in Figure 9,
the context changed a few times. Five of the changes (instants t=3h30m, t=13h,
t=15h, t=16h, t=17h) incurred in system unavailability and the deployment had
to be repaired. For other context changes, the deployment was not negatively
affected but was changed to provide a better QoS (e.g., instants t=2h and t=7h).

To evaluate the correctness of the GoalD analysis and planning, we created
a list of assertions that evaluate whether the proposed changes are valid under
varying contexts. The assertions followed the template (premise -> conclusion)
where the premise was composed of a set of propositions related to contexts
while the conclusion was composed of a set of propositions related to a tar-
get deployment. An example of such propositions is: (!internet-connection) ->
(!AlarmService-impl and !RemoteAnalysis-impl), which means that in a con-
text where the system has no internet connection the AlarmService-impl and
RemoteAnalysis-impl should not be deployed. From the TAS goal model 1 we
elaborated 10 propositions that describe the expected deployment configuration.
Then we evaluated all possible context changes that could occur in the TAS case
study: a total of 160 possible context changes. (25 possible initial contexts with
5 possible changes for each one).

Evaluating each proposition with each possible adaptation we found 96 true
positives, 64 true negatives, 0 false positives and 0 false negatives. The results
are summarised in Table 3.

Precision Recall F-measure

1.0 1.0 1.0
Table 3: Analysis of the accuracy of context changes detected in GoalD Manager

The results show that the precision of GoalD in correctly identifying the need
for context changes (precision) as well as identifying the relevant ones (recall)
are both quite high as the computed f-measure is 1.0

Q2.2: What is the impact of a context change that renders the
current deployment infeasible?

We analyse Q2.2 by measuring the Mean time to repair in the TAS in those
scenarios where the system became unavailable, followed by a deployment repair
provided by the GoalD manager.

A context change renders the current deployment infeasible if it renders at
least one deployed component unavailable (e.g a lost in the Internet connection
renders Remote Analysis unavailable). The system is unavailable from the mo-
ment of the environment change until the deployment is repaired. In Figure 9
we have two examples of that: around 2h, when the context c1 is deactivated
and around 11s when the context battery-is-low is deactivated. In that case, the
needed time to repair the deployment encompass: (i) the time needed to identify
a context change in the monitored environment, (ii) the time to analyze the
change impact (updating the DVM), (iii) devise a deployment adaptation plan
and (iv) conclude the execution of the adaptation.

In order to measure the Mean time to repair we used the TAS case study
and evaluated in all possible context changes that could render the deployment
infeasible. In our experiments the obtained Mean time to repair was (21.6±1.1)
ms. This means that the time for TAS to devise a deployment strategy in GoalD
while facing component unavailability due to context change would be quite
negligible. This analysis indicates that GoalD might perform reasonably well for
systems that can afford a minimum downtime of 30ms.

Q2.3: What is the impact of a context change that allows the
deployment to deliver higher QoS levels?

To answer this question we analyzed context changes that present oppor-
tunity to provide a deployment with higher QoS levels. In other words, when
the context changes so that two conditions are satisfied: (i) at least one of its
components provides a QoS higher than a currently deployed one and (ii) such
context triggers an adaptation to improve the deployed availability.

We should note that, in the observed scenarios we had no impact on the
system availability while adapting to increase in quality as all the adaptation
process is executed while the systems is still in a valid configuration. In summary,
we observed that a GoalD managed system will not render unavailable while
GoalD manager deploys the (new) components with higher QoS.

Goal 3: Evaluate GoalD scalability To answer the question 3 we imple-
mented one last test which randomly generate large deployment scenarios. Since
TAS has a relatively small-medium size, we further cloned it and artificially pro-
liferated the components so that we can evaluate scalability to come up with a
deployment plan on a large-scale model.

A repository as big as 430,500 bundles was randomly generated. The bundles
generated had different dependency levels. To evaluate the impact of the various
hierarchical levels on the deployment planning time, we have performed 1000
batches of 10 deployment requests, where each request contains from 1 to 10
goals. The generated plans encompassed up to 5,642 bundles.

In order to answer question 3.1 as for how the algorithm scales over the num-
ber of bundles in the deployment plan, is depicted in Figure 10 and the observed
time vs plan size is shown as boxplots. Despite the presence of outliers (< 10%),
the experiment shows that less than 15 milliseconds were necessary to come
up with an initial deployment plan of more than 5,000 bundles. Additionally, a

polynomial time trend can be inferred from the experiment. While adapting to
changes, the experimental results shows that all adaptations plans but one were
devised in less than 2 milliseconds.

●

●●●

●

●
●
●●●●●
●

●●●●●
●●
●●
●
●●●●

●

●

●

●

●
●●●●●●
●●●●●●

●

●
●●

●

●●

●

●

●●

●

●●●

●

●
●
●●●

●

●

●
●●●●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●
●

●
●
●

●
●
●●

●●

●

●●
●
●
●
●●

●

●

●

●
●●
●

●
●

●

●●●●●●●●●

●

●●

●

●

●
●
●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●
●●●
●

●

●

●

●●●

●

●

●

●

●

62 682 1302 1922 2542 3162 3782 4402 5022 5642

0
5

10
15

20

Size (bundles in the deployment)

T
im

e(
m

s)

Fig. 10: Scalability over increasing number of bundles in the initial deployment

Finally, to answer question 3.2, adaptations were triggered by inserting ran-
dom changes in contexts that affect the deployment. Each context change re-
sulted in an adaptation plan comprising from 0 to 276 commands. A command
could be INSTALL a new bundle or UNINSTALL a current deployed bundle.
Since there is a one-to-one relationship between commands and bundles that
were either installed or uninstalled, the number of commands executed also rep-
resents how many bundles were affected by the adaptation triggered by the
context change. The scalability of the adaptation is depicted in Figure 11a and
11b. Figure 11a shows the time elapsed to come up with an adaptation plan
(analysis and planning) as a function of the number of deployed bundles prior
the context change. Figure 11b is a bloxplot of the same dataset plotted as a
function of the number of commands present (and therefore the number of af-
fected bundles) in the deployment plan. Results show that GoalD planning in the
presence of context change has performed under 6ms in the worst case scenarios,
disregarding the outliers, which are analysed in the sequel.

We hypothesised that the outliers depicted in Figures 10 and 11 were caused
by spurious factors that could be related to the computing platform where the

●

●●

●

●
●●●●●
●
●●●
●
●●●

●
●●●
●
●●●●
●●●●●●●
●
●

●

●●●●●●●

●

●●●●
●●
●
●
●
●●●●●●●●●●
●●●●●●●
●●●●●●

●

●
●●
●
●

●

●●●

●●
●●●
●

●
●

●

●
●
●●●●●●●

●

●

●●
●
●●●●

●
●
●●

●

●●

●

●

●

●

●

●●
●
●●
●●
●
●

●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●●●●
●●●●

●

●

●

●

●●
●
●
●

●
●
●

●

●
●●

●

●

●

●●
●

●

●
●●●●●
●●●●●●●●●
●

●

●

●

●●

●

●●
●
●

●
●
●●●●

●

●

●

●

●

●
●
●●●●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●●

62 682 1302 1922 2542 3162 3782 4402 5022 5642

0
2

4
6

8

Size (deployed bundles in the original deployment)

T
im

e(
m

s)

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●●●●●

●
●
●●●
●●●●●●●●●●●●

●
●
●●
●
●

●
●
●
●
●●●●●●●

●●
●

●

●

●

●
●●
●
●●●●●

●
●●●●●
●
●●
●
●●●●●●●●
●
●

●

●

●●●

●
●

●

●
●●

●
●●●
●

●

●

●

●
●

●

●●

●
●●
●
●
●
●●

●●
●
●
●
●●●

●

●●●●
●●

●

●●

●

●

●
●

●

●●

●

●
●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●
●●

●●●
●●

●●
●

●
●●

●
●
●
●

●

●

●

●

●

●

●
●

●

●●●●

●●

●●●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●
●●

●

●

●

●

●

●

●

●

●●●

0 18 36 52 68 84 102 122 142 164 184 204 224 254

0
2

4
6

8

Size of the adaptation plan

T
im

e(
m

s)
(b)

Fig. 11: Adaptation scalability over increasing (a) deployed bundles and (b) num-
ber of commands in the adaptation plan

experiments are conducted (e.g non-deterministic execution of the Java Garbage
Collector, process preemption, frequency of cache misses). We validated that
hypothesis by re-executing the outliers 10 times each. Results in Table 4 show
that the outliers when re-executed fall indeed within the range of the boxplot
quartiles of the original executions.

4.1 Threats to Validity

Construct validity – The major threats here are the correctness of the imple-
mentation of the TAS and of the proposed approach. To overcome the threat
of TAS implementation, it has been thoroughly tested following the specifica-
tion and implementation of TAS exemplar. At least two authors of this paper
reviewed the implementation in OSGi and checked the plausibility of the evalua-
tion results based on the experience they acquired through the TAS specification
provided. Results in Table 2 has shown that results for TAS in GoalD are in the
same range of the results of original TAS implementation, except for the Select
Reliable option, which were validated by at least two authors of the original
TAS exemplar. Those authors acknowledged the correctness of our results and
that there could be a typo in the TAS exemplar paper. In addition, our CGM
for TAS could also represent a threat to the construct validity. Despite the fact
that we creatively devised scenarios by means of context variations for TAS, the
deployment adaptation by GoalD activated the same components that would be
expected to be activated in the orginal TAS scenarios, where applicable.

Deployment Size Initial Deployment (ms) Outliers re-execution (ms)
62 (0.0695± 0.0215) (0.0671± 0.0126)
682 (1.01± 0.189) (0.963± 0.155)
1302 (2.18± 0.439) (2.17± 0.426)
1922 (3.31± 0.576) (3.51± 0.893)
2542 (4.66± 0.744) (4.76± 0.613)
3162 (6.20± 0.799) (6.31± 0.703)
3782 (7.88± 0.871) (8.55± 1.74)
4402 (8.70± 0.808) (8.83± 0.932)
5022 (11.6± 2.35) (11.0± 1.52)
5642 (12.2± 2.26) (11.5± 0.891)
Deployment Size Adaptation (ms) Outliers re-execution (ms)
62 (0.0301± 0.0192) (0.0189± 0.0126)
682 (0.257± 0.0734) (0.234± 0.155)
1302 (0.540± 0.105) (0.497± 0.426)
1922 (0.798± 0.133) (0.813± 0.893)
2542 (1.05± 0.285) (1.11± 0.613)
3162 (1.52± 0.257) (1.57± 0.703)
3782 (2.00± 0.288) (2.01± 1.74)
4402 (2.10± 0.402) (2.20± 0.932)
5022 (2.54± 0.465) (2.90± 1.52)
5642 (2.87± 0.504) (2.74± 0.891)
Table 4: Comparision between original execution and re-execution of the outliers
in Figures 10 (top) and 11 (bottom)

Internal validity – Our approach showed itself quite trustworthy for evaluation
purposes of the correct adaptations, as presented in Table 3. GoalD identified the
correct context changes followed by the provision of the correct deployment plan-
ning, whenever needed. Nevertheless, unveiling all combinations of deployment
conditions involved in a system’s operation is inherently non-deterministic, which
could represent a threat to any adaptation process. Moreover, in this experiment,
we dealt with a considerable small number of context conditions. Also, the com-
ponents configuration and artifacts deployment were manually implemented. All
these issues might represent a threat in complex scenarios with a great number
of contexts. For future work, we plan to revise our evaluation framework and
adopt the most suitable evaluation approaches described in [43] to overcome
such a threat. In particular, the SOLAR tool could be a potential alternative as
it implements the metrics proposed by [44], which could be used to evaluate the
adaptability of the systems implemented using the GoalD approach.
External validity – Although our approach is platform independent, and the
required time for deployment planning and adaption has shown itself negligible
(cf. Figure 10), we do reckon the limitation of the evaluation as TAS is a proto-
type only of a health care system in the Ambient Assisted Living domain, while
other domains could be considered instead (e.g., robotics, autonomous driving,

etc). Further evaluation must be performed to generalize the correctness and
scalability of the results. Despite all efforts to implement TAS with new features
to enrich the deployment adaptation experimentation in GoalD, further study
must be done to verify the applicability in real-world scenarios.
Reliability – The experiments we conducted include certain randomness in the
contexts sets of the TAS application setup, which reflects the inherent uncertain-
ties of self-adaptive systems. For this reason, there is a threat that the results
may not be the same if the study would be conducted again. To overcome this
threat, we ran the experiments over a period of time that represent a large
number of adaptation loops. In addition, the ability to reproduce our evalua-
tion results has been facilitated by means of publicly available GitHub projects
containing the source code of GoalD framework as well as the conducted and
reported experiments. Also, to avoid cumbersome configuration effort, we have
used and provided Maven configuration files so that GoalD framework and its
experiments can be automatically built and replicated by any interested reader
or contributor.

5 Related Work

In this section we discuss most related work whether they are goal oriented, han-
dle heterogeneity, and support autonomous deployment. We should note that by
goal-oriented we mean those work where the goal model is key to the deployment
management strategy. Thus, we compare to those work able to (i) promote the
seamless integration between system requirements, deployment strategies and its
configurations as well as (ii) make the goal model as key architectural element of
offline and online stages to make feasible the autonomous deployment process.

Angelopoulos et al. [30] present an approach to handle variability at three
different dimensions: goals, behavior, and architecture. Variability can occur at
the goal level as an OR-refinement or context selection; at the behavior level as
different plans flows; and at the architecture level addressing the variability of
components and their implementations. GoalD can augment this approach by
handling variability as a deployment problem and explicitly captures and caters
for the different settings of the hosting environment. Pradhan et al. [45] propose
a goal-based solution to achieve resilience in mobile cyber-physical systems via
self-configuration and autonomous deployment. Although such approach does
benefit from a goal-based solution as well, there is no seamless integration be-
tween requirements, strategies and configurations/context conditions. Therefore,
considering what we mean by goal-oriented approach, Pradhan et al. do not fall
into such category. Instead, a colored petri net model is used to capture the be-
havior and to analyse the system properties at design time. At runtime, queries
to a database need to take place in order to statically store deployment actions.

Ali et al.[46] explore the optimization of the deployment for a given context
variability space. Contextual Goal Models (CGM) are used to represent aspects
of the environment elicited because of their relation to the solutions presented
in the goal model. GoalD puts a primary focus on the context related to the

computing environment and enriches the notion of resources and the mapping
between goal achievement alternatives and software artifacts.

The Dynamic Software Product Line (DSPL) paradigm is motivated by a
rapid production of software from a set of reusable assets to fit variability in
users requirements and system environments. Bencomo et al. [47] use an SPL
approach to adaptation by associating an architecture variability model with
an environment variability model.Mizouni et al. [48] use a feature model associ-
ated with context requirements. Casquina et al. propose the Cosmapek [15], an
adaptive deployment infrastructure that relying on a reflective architecture and
implementing MAPE-K main stages as a means to achieve dynamic deployment
of DSPL. However, they perform the MAPE-K activities based on static models
using runtime binding as pointed out by Eleuterio and Rubira [49]. They repre-
sent the variability in a feature model, representing static and dynamic features
in a single model with its own notation, that is translated to XML for runtime
use. Additionally, they use UML component diagram to statically build the ar-
chitectural model. Overall, the use of DSPL and its associated approaches is
mainly focused on runtime adaptation where software systems switch amongst
already implemented and deployed artifacts/features configurations. Although
the approaches do contemplate configuration variability as well as behavior con-
trol, they do not follow a coordinated and seamless integration as GoalD does by
having system state, system goals and environment assumptions/constraints in-
tegrated into the CGM where offline and online stages fully rely on. In addition,
GoalD is able to handle the step preceding that, i.e., the deployment stage and
its decision making based on the contextual conditions, as supported by [16,18].

Leite et al. [14] propose an approach for autonomous deployment on inter-
cloud environments, based on DSPL as well. It relies on abstract and concrete
features models and constraint satisfaction problem solver to create a computing
environment using resources distributed across various clouds. The approach
heavily depends on design-time created deployment scripts and requires prior
creation of model knowledgeable about the environment. GoalD caters for the
uncertainty about the environment and enables a more open approach to its
heterogeneity.

Autonomous deployment solutions have been already proposed by means of
business process orientation as pointed out the survey of Chang et al. [11]. Ap-
proaches such as [10,12] focus mostly on the (deployment of) the execution work-
flow that the already deployed components must follow or are following based on
a BPMN events representation. Therefore, business process based solutions will
be able to either orchestrate or choreograph once the components are already
deployed, since it will only be able to manage the executable methods, services
and events to the corresponding workflow engines for execution [12] once the re-
quired and suitable component infrastructure is deployed. In addition, such ap-
proaches may render too heavyweight for being deployed on resource-constrained
devices [7]. However, we envision that future versions of GoalD could potentially
benefit from an integration with such business-oriented solutions where GoalD

could follow reconfiguration strategies based on the services that require target
constraints.

Rainbow is a framework for architecture based self-adaptation [50]. It keeps
a model of the architecture of the system and can be extended with rules to
analyse the system behavior at runtime, find adaptation strategies and perform
changes. It separates the functional code (internal mechanisms) from adapta-
tion code (external mechanism) in a schema called external control, influenced
by control theory[51]. As such, Rainbow focuses on changing component in-
stances and bindings and also tune in behavior through operational parameters.
Nevertheless, the framework does not explicitly account for building strategies
that control the functional behavior of the system components.

MUSIC project provides a component-based middleware for adaptation and
proposes to separate the self-adaptation from business logic and delegates adap-
tation logic to generic middleware. Aligned with GoalD, it adapts by evaluating
at runtime the utility of alternatives, to choose a feasible one (e.g., the one
evaluated as with highest utility)[52].

Differently from Rainbow, MUSIC and Rondo, GoalD tackles the problem
of autonomous deployment by leveraging the use of goals through the CGM as
a means to devise adaptation strategies, while preserving traceability between
requirements, behavior and configuration. Consequently, GoalD enables a seam-
less integration with the perspective of the current foundations of self-adaptative
systems [20,53]. The deployment configuration strategies of GoalD arise from the
CGM and it autonomously adapts according to the available resources at runtime
following our algorithms for handling context change and the variability struc-
ture of the CGM. As a result, GoalD is a resourceful framework at runtime,
which frees the system designer from manually specifying adaptation policies
at design-time, which could be limited for anticipated scenarios and could be
cumbersome to configure for a great number of computational resources.

GoalD has been greatly inspired by MORPH, a reference architecture for
configuration and behavior of self-adaptation [18], particularly on their recon-
figuration strategy manager. MORPH promotes the alignment between config-
uration and behavior for self-adaptation by means of a GORE approach. The
goal model is a key data architectural element in the MORPH repository in
order to combine assumptions on the environment and requirements to achieve
the software objectives. GoalD does share the same purpose of the MORPH’s
reconfiguration strategy manager where it not only enacts current strategies,
but also “capitalises on opportunities afforded by a change in the environment.”
Likewise, “should a new component become available, or statistics on its per-
formance improve, this would be reflected in the knowledge repository and a
preferred alternative strategy may be deployed” in GoalD. While MORPH is a
reference architecture, GoalD paves the way to a concrete means to achieve the
principles of MORPH focusing in detail on autonomous deployment for highly
heterogeneous and dynamic environments.

Gunalp et al. [54] present Rondo, which is an approach for continuous de-
ployment for dynamic and service-orientd applications. In RONDO, a specialist

has to specify deployment a priori in terms of resources and their desired tar-
get states. They use an operational model to drive the adaptation: implemented
strategies to move monitored resources to the target states. In addition, the eval-
uation that is closest to ours is Gunalp et al. [54] in Rondo. Their results for
an experiment run on 2 different service platforms (Wisdom and iCasa) shows
that their deployment method runs within the range of 90-110ms and variability
adaptation around 236ms. A comparison to GoalD shows that GoalD has a ma-
jor advantage given that Gunalp et al. deployed at most 107 bundles, while ours
shows an even greater number (from 62 to 5642 bundles) but runs in under 15ms
in all situations depicted in our Figures 10 and 11. Nevertheless, their setup con-
figurations and the experiments conducted were quite different from ours and
this would render a misleading impression that GoalD is superior, unless an-
other case study was conducted with Wisdom and iCasa in GoalD approach.
For this reason, as we point out in the external threat to validity section, we do
recognise the limitations of our experiments and that further evaluation must
be performed to generalize the correctness and scalability of the results.

Table 5 summarizes the comparison between GoalD and most related, based
on (i) goal-oriented management strategy, (ii) ability to handle heterogeneous
computational resources, and (iii) autonomous deployment.

Work by Goal Oriented Handle Heterogeneity Autonomous Deployment

Ali et al.[46] Yes No No
Angelopoulos et al. [30] Yes No No
Casquina et al. [15] No Yes No
Bencomo et al. [47] No Yes No
Mizouni et al. [48] No Yes Yes
Pradhan et al. [45] No Yes Yes
Gunalp et al.[54] No Yes Yes
GoalD Yes Yes Yes

Table 5: Comparison between GoalD and most related approaches

6 Conclusion and Future Work

In this paper, we presented GoalD, an approach to systematically tackle au-
tonomous deployment in highly heterogeneous and dynamic computing environ-
ments. GoalD supports the design of a system with a variability space, providing
a foundation to handle heterogeneity. GoalD bridges between the strategic level
of requirements modelled as goals, and the architecture understood as inter-
related components and interfaces. Moreover, GoalD supports variability at de-
ployment time by finding the correct set of artifacts that allows the system to
achieve the system and stakeholder goals in each hosting computing environment.

Also, GoalD supports dynamicity of resources by adapting the deployment in
response to changes in the computing environment.

Our evaluation of the approach shows that GoalD is capable of determining
a plan for a reasonably large scenario in just a few milliseconds. The results
obtained are promising, and we plan to enrich GoalD in the near future by ex-
tending the framework to distributed systems so that one instance of GoalD
may choose between deploying locally or delegating to another known instance
in the network. As for the next steps, we plan to extend the decision making
process of GoalD for adaptation policies including more fine-grained quality cri-
teria, like dynamically calculating the goals’ QoS levels based on their selected
decompositions or contextually-dependent quality levels for tasks. The usage of
machine learning is also under consideration for this purpose. Furthermore, we
plan to conduct an extensive evaluation of GoalD integrating into devices with
heterogeneous hardware using different kinds of SBCs (Single Board Comput-
ers), like the Raspberry Pi boards, with different hardware extensions attached.
We also plan to evaluate systems implemented with GoalD using self-adaptive
evaluation methods, such as the ones mapped in [43].

GoalD extends the literature of self-adaptive systems and service-oriented
computing by tackling variability and uncertainty of the hosting computing en-
vironment using autonomous deployment. We view deployment as a continuous
and adaptive process to cater for resources’ dynamic availability and failure in
a way that takes the achievement of requirements, seen as goals, as a guiding
factor. When new requirements are added or new resources are available, the de-
ployment needs to be adjusted. By doing this, our work provides an additional
layer and criteria to the deployment decision making process and contributes to
making it more holistic.

Acknowledgements

Gabriel Rodrigues was partially funded by CAPES/CNPq (2014-2015) while
affiliated with University of Brasilia. Genaína thanks CNPq for partial support
under grant number 306017/2018-0.

References

1. Weyns, D., Calinescu, R.: Tele assistance: a self-adaptive service-based system
exemplar. In: Proceedings of the 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems. pp. 88–92. IEEE Press (2015)

2. Bell, G., Dourish, P.: Yesterday’s Tomorrows: Notes on Ubiquitous Computing’s
Dominant Vision. Personal Ubiquitous Comput. 11(2), 133–143 (Jan 2007), http:
//dx.doi.org/10.1007/s00779-006-0071-x

3. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A Survey. Computer
Networks 54(15), 2787–2805 (Oct 2010), http://dx.doi.org/10.1016/j.comnet.
2010.05.010

4. Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient Intel-
ligence in Assisted Living: Enable Elderly People to Handle Future Interfaces.
In: Proc. of the 4th International Conference on Universal Access in Human-
computer Interaction: Ambient Interaction. pp. 103–112. Springer (2007), http:
//dl.acm.org/citation.cfm?id=1763296.1763308

5. Smaldone, S.D.: Improving the Performance, Availability, and Security of Data
Access for Opportunistic Mobile Computing. Ph.D. thesis, Rutgers University, New
Brunswick, NJ, USA (2011), aAI3474990

6. Carzaniga, A., Fuggetta, A., Hall, R.S., Heimbigner, D., Hoek, A.v.d., Wolf, A.L.:
A Characterization Framework for Software Deployment Technologies. Tech. rep.
(1998)

7. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: Vi-
sion, applications and research challenges. Ad Hoc Networks 10(7), 1497–1516 (Sep
2012), http://linkinghub.elsevier.com/retrieve/pii/S1570870512000674

8. Andersson, Jesper: A deployment system for pervasive computing. In: International
Conference on Software Maintenance. pp. 262–270 (2000)

9. Spinellis, D.: Don’t Install Software by Hand. IEEE Software 29(4), 86–87 (Jul
2012)

10. Dar, K., Taherkordi, A., Baraki, H., Eliassen, F., Geihs, K.: A resource oriented
integration architecture for the internet of things. Pervasive Mob. Comput. 20(C),
145–159 (Jul 2015), https://doi.org/10.1016/j.pmcj.2014.11.005

11. Chang, C., Srirama, S.N., Buyya, R.: Mobile cloud business process management
system for the internet of things: A survey. ACM Comput. Surv. 49(4), 70:1–70:42
(Dec 2016), http://doi.acm.org/10.1145/3012000

12. Yousfi, A., Bauer, C., Saidi, R., Dey, A.K.: ubpmn: A bpmn extension for
modeling ubiquitous business processes. Information and Software Technol-
ogy 74, 55 – 68 (2016), http://www.sciencedirect.com/science/article/pii/
S0950584916300209

13. Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U., Hutchison, D., Kanade,
T., Kittler, J., Kleinberg, J.M., Kobsa, A., Mattern, F., Mitchell, J.C., Naor, M.,
Nierstrasz, O., Pandu Rangan, C., Steffen, B., Terzopoulos, D., Tygar, D., Weikum,
G. (eds.): Models@run.time, LNCS, vol. 8378. Springer International Publishing,
Cham (2014), http://link.springer.com/10.1007/978-3-319-08915-7

14. Leite, A.F., Alves, V., Rodrigues, G.N., Tadonki, C., Eisenbeis, C., Melo,
A.C.M.A.d.: Automating Resource Selection and Configuration in Inter-clouds
through a Software Product Line Method. In: 8th IEEE International Conference
on Cloud Computing, CLOUD 2015, New York City, NY, USA, June 27 - July 2,
2015. pp. 726–733 (2015)

15. Casquina, J.C., Eleuterio, J.D.A.S., Rubira, C.M.F.: Adaptive deployment infras-
tructure for android applications. In: 2016 12th European Dependable Computing
Conference (EDCC). pp. 218–228 (Sept 2016)

16. Braberman, V., D'Ippolito, N., Kramer, J., Sykes, D., Uchitel, S.: Morph:
A reference architecture for configuration and behaviour self-adaptation. In: Pro-
ceedings of the 1st International Workshop on Control Theory for Software En-
gineering. pp. 9–16. CTSE 2015, ACM, New York, NY, USA (2015), http:
//doi.acm.org/10.1145/2804337.2804339

17. Mendonça, D.F., Rodrigues, G.N., Ali, R., Alves, V., Baresi, L.: GODA: A goal-
oriented requirements engineering framework for runtime dependability analy-
sis. Information and Software Technology 80, 245 – 264 (2016), http://www.
sciencedirect.com/science/article/pii/S0950584916301471

18. Braberman, V., D’Ippolito, N., Kramer, J., Sykes, D., Uchitel, S.: An extended
description of morph: A reference architecture for configuration and behaviour
self-adaptation. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Soft-
ware Engineering for Self-Adaptive Systems III. Assurances. pp. 377–408. Springer
International Publishing, Cham (2017)

19. Guimarães, F.P., Rodrigues, G.N., Ali, R., Batista, D.M.: Planning runtime soft-
ware adaptation through pragmatic goal model. Data & Knowledge Engineering
109, 25 – 40 (2017), special issue on conceptual modeling — 34th International
Conference on Conceptual Modeling

20. Weyns, D.: Software engineering of self-adaptive systems: An organised tour and
future challenges. In: Kang, K.K.C., Cha, S. (eds.) Handbook of Software Engi-
neering. Springer (2017)

21. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems 8(3), 203–236 (May 2004), http://dx.doi.org/10.1023/B:
AGNT.0000018806.20944.ef

22. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements ac-
quisition. Science of Computer Programming 20(1–2), 3–50 (Apr 1993), http:
//www.sciencedirect.com/science/article/pii/016764239390021G

23. Yu, E.S.K.: Modelling Strategic Relationships for Process Reengineering. Ph.D.
thesis, University of Toronto, Toronto, Ont., Canada, Canada (1996), uMI Order
No. GAXNN-02887 (Canadian dissertation)

24. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual re-
quirements modeling and analysis. RE Journal 15(4), 439–458 (Jul 2010), http:
//link.springer.com/article/10.1007/s00766-010-0110-z

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Fu-
ture of Software Engineering, 2007. FOSE’07. pp. 259–268. IEEE (2007), http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221625

26. Morandini, M., Penserini, L., Perini, A.: Towards Goal-oriented Development of
Self-adaptive Systems. In: Proceedings of the 2008 International Workshop on
Software Engineering for Adaptive and Self-managing Systems. pp. 9–16. SEAMS
’08, ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1370018.
1370021

27. Penserini, L., Perini, A., Susi, A., Morandini, M., Mylopoulos, J.: A Design
Framework for Generating BDI-agents from Goal Models. In: Proceedings of the
6th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems. pp. 149:1–149:3. AAMAS ’07, ACM, New York, NY, USA (2007), http:
//doi.acm.org/10.1145/1329125.1329307

28. Pimentel, J., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.: Deriv-
ing software architectural models from requirements models for adaptive sys-
tems: the STREAM-A approach. RE Journal 17(4), 259–281 (Nov 2012), http:
//link.springer.com/10.1007/s00766-011-0126-z

29. Van Lamsweerde, A.: From system goals to software architecture. In: Formal
Methods for Software Architectures, pp. 25–43. Springer (2003), http://link.
springer.com/chapter/10.1007/978-3-540-39800-4_2

30. Angelopoulos, K., Souza, V.E.S., Mylopoulos, J.: Capturing Variability in Adap-
tation Spaces: A Three-Peaks Approach. In: ER. LNCS, vol. 9381, pp. 384–398.
Springer (2015)

31. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.: From
goals to high-variability software design. In: Foundations of Intelligent Sys-

tems, pp. 1–16. Springer (2008), http://link.springer.com/chapter/10.1007/
978-3-540-68123-6_1

32. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web
service compositions. IET software 1(6), 219–232 (2007)

33. Morandini, M., Migeon, F., Gleizes, M.P., Maurel, C., Penserini, L., Perini, A.:
A Goal-Oriented Approach for Modelling Self-organising MAS. In: ESAW. LNCS,
vol. 5881, pp. 33–48. Springer (2009)

34. Andersson, J., Baresi, L., Bencomo, N., Lemos, R.d., Gorla, A., Inverardi, P., Vogel,
T.: Software Engineering Processes for Self-Adaptive Systems. In: Lemos, R.d.,
Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive
Systems II, pp. 51–75. No. 7475 in LNCS, Springer Berlin Heidelberg (2013), http:
//link.springer.com/chapter/10.1007/978-3-642-35813-5_3

35. Crnkovic, I., Larsson, M.: Component-based software engineering-new paradigm
of software development. Invited talk and report, MIPRO pp. 523–524 (2001)

36. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: ACM
SIGSOFT Software Engineering Notes. vol. 21, pp. 3–14. ACM (1996), http:
//dl.acm.org/citation.cfm?id=239104

37. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Com-
ponent Model for Consumer Electronics Software. Computer 33(3), 78–85 (Mar
2000), http://dx.doi.org/10.1109/2.825699

38. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10), 22–27
(Oct 2009)

39. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An Architec-
tural Approach to Autonomic Computing. Autonomic Computing, International
Conference on 0, 2–9 (2004)

40. Pontes Guimaraes, F., Nunes Rodrigues, G., Macedo Batista, D., Ali, R.: Prag-
matic Requirements for Adaptive Systems: A Goal-Driven Modeling and Analy-
sis Approach. pp. 50–64. Springer International Publishing, Cham (2015), http:
//dx.doi.org/10.1007/978-3-319-25264-3_4

41. The OSGi Alliance: OSGi Service Platform Core Specification, Release 4.1 (2007),
http://www.osgi.org/Specifications

42. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach.
In: Encyclopedia of Software Engineering. Wiley (1994)

43. Raibulet, C., Fontana, F.A.: Evaluation of self-adaptive systems: a women per-
spective. In: ECSA (Companion). pp. 23–30. ACM (2017)

44. Perez-Palacin, D., Mirandola, R., Merseguer, J.: On the relationships between qos
and software adaptability at the architectural level. J. Syst. Softw. 87, 1–17 (Jan
2014), http://dx.doi.org/10.1016/j.jss.2013.07.053

45. Pradhan, S., Dubey, A., Levendovszky, T., Kumar, P.S., Emfinger, W.A., Bala-
subramanian, D., Otte, W., Karsai, G.: Achieving resilience in distributed soft-
ware systems via self-reconfiguration. J. Syst. Softw. 122(C), 344–363 (Dec 2016),
https://doi.org/10.1016/j.jss.2016.05.038

46. Ali, R., Dalpiaz, F., Giorgini, P.: Requirements-driven Deployment. In: Software
and Systems Modeling. vol. 13, pp. 433–456 (Feb 2014), http://dx.doi.org/10.
1007/s10270-012-0255-y

47. Bencomo, N., Sawyer, P., Blair, G.S., Grace, P.: Dynamically Adaptive Systems
are Product Lines too: Using Model-Driven Techniques to Capture Dynamic Vari-
ability of Adaptive Systems. In: SPLC. pp. 23–32 (2008), http://staffwww.dcs.
shef.ac.uk/people/A.Simons/remodel/papers/BencomoDynAdapt.pdf

48. Mizouni, R., Matar, M.A., Mahmoud, Z.A., Alzahmi, S., Salah, A.: A framework
for context-aware self-adaptive mobile applications SPL. Expert Systems with
Applications 41(16), 7549–7564 (Nov 2014), http://linkinghub.elsevier.com/
retrieve/pii/S0957417414003364

49. Eleuterio, J.D.A.S., Rubira, C.M.F.: A comparative study of dynamic software
product line solutions for building self-adaptive systems (2017)

50. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (Oct 2004)

51. Garlan, D., Schmerl, B., Cheng, S.W.: Software Architecture-Based Self-
Adaptation. In: Zhang, Y., Yang, L.T., Denko, M.K. (eds.) Autonomic Comput-
ing and Networking, pp. 31–55. Springer US (2009), http://link.springer.com/
chapter/10.1007/978-0-387-89828-5_2

52. Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J.,
Mamelli, A., Scholz, U.: MUSIC: Middleware Support for Self-Adaptation in Ubiq-
uitous and Service-Oriented Environments. pp. 164–182. Springer-Verlag, Berlin,
Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-02161-9_9

53. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I.,
Hempel, A.B., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F.,
Misailovic, S., Papadopoulos, A.V., Ray, S., Sharifloo, A.M., Shevtsov, S., Ujma,
M., Vogel, T.: Software engineering meets control theory. In: Proceedings of the
10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. pp. 71–82. SEAMS ’15, IEEE Press, Piscataway, NJ, USA
(2015)

54. Gunalp, O., Escoffier, C., Lalanda, P.: Rondo A Tool Suite for Continuous Deploy-
ment in Dynamic Environments. In: International Conference on Services Com-
puting. pp. 720–727. IEEE (Jun 2015), http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7207420

