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Abstract

Augmented Reality (AR) is an emerging technology that makes seamless

connections between virtual space and the real world by superimposing

computer-generated information onto the real-world environment. AR

can provide additional information in a more intuitive and natural way

than any other information-delivery method that a human has ever in-

vented. Camera tracking is the enabling technology for AR and has been

well studied for the last few decades. Apart from the tracking problems,

sensing and perception of the surrounding environment are also very im-

portant and challenging problems. Although there are existing hardware

solutions such as Microsoft Kinect and HoloLens that can sense and build

the environmental structure, they are either too bulky or too expensive

for AR.

In this thesis, the challenging real-time dense 3D surface reconstruction

technologies are studied and reformulated for the reinvention of basic

position-aware AR towards geometry-aware and the outlook of context-

aware AR. We initially propose to reconstruct the dense environmental

surface using the sparse point from Simultaneous Localisation and Map-

ping (SLAM), but this approach is prone to fail in challenging Minimally

Invasive Surgery (MIS) scenes such as the presence of deformation and

surgical smoke. We subsequently adopt stereo vision with SLAM for

more accurate and robust results. With the success of deep learning

technology in recent years, we present learning based single image re-

construction and achieve the state-of-the-art results. Moreover, we pro-

posed context-aware AR, one step further from purely geometry-aware



AR towards the high-level conceptual interaction modelling in complex

AR environment for enhanced user experience. Finally, a learning-based

smoke removal method is proposed to ensure an accurate and robust re-

construction under extreme conditions such as the presence of surgical

smoke.

4



Contents

1 Introduction 6

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research Aims and Contributions . . . . . . . . . . . . . . . . . . . . 9

1.4 Structure of the Following Chapters . . . . . . . . . . . . . . . . . . . 10

1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Research Topic Classification, Trend Analysis and Technology Re-

view 15

2.1 Automatic Classification of AR using Data-Mining . . . . . . . . . . 15

2.1.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Topic Generation . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 AR Trend Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Applications Trends . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Technologies Trends . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Review of Enabling Technologies for AR . . . . . . . . . . . . . . . . 23

2.3.1 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1.1 Gesture-based Interfaces . . . . . . . . . . . . . . . . 24

2.3.1.2 Haptic Devices . . . . . . . . . . . . . . . . . . . . . 25

2.3.1.3 Other Hand Held Controllers . . . . . . . . . . . . . 27

2.3.1.4 Brain-Computer Interfaces . . . . . . . . . . . . . . . 28

i



2.3.2 Display Applications . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2.1 Head Mounted Displays . . . . . . . . . . . . . . . . 28

2.3.2.2 Mobile Displays . . . . . . . . . . . . . . . . . . . . . 31

2.3.2.3 Spatial Augmented Reality . . . . . . . . . . . . . . 32

2.3.3 Mobile AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3.1 Hand-Held Displays . . . . . . . . . . . . . . . . . . 37

2.3.3.2 Smartphone and Tablet Applications . . . . . . . . . 38

2.3.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.4.1 Marker-based Tracking . . . . . . . . . . . . . . . . . 40

2.3.4.2 Markerless Tracking . . . . . . . . . . . . . . . . . . 43

2.3.5 Registration Techniques . . . . . . . . . . . . . . . . . . . . . 46

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Problem Statement & Literature Review 52

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Research Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Camera Tracking for AR . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Feature-based 2D Tracking . . . . . . . . . . . . . . . . . . . . 54

3.3.2 SLAM-based 3D Tracking . . . . . . . . . . . . . . . . . . . . 55

3.4 3D Dense Surface Reconstruction . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Stereo Depth Estimation . . . . . . . . . . . . . . . . . . . . . 57

3.4.2 Monocular Depth Estimation . . . . . . . . . . . . . . . . . . 58

3.4.3 DCNNs based Monocular Depth Learning . . . . . . . . . . . 58

3.4.4 Unsupervised Monocular Depth Learning . . . . . . . . . . . . 59

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Monocular-based Online Dense Surface Reconstruction for GA-AR 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Introducing of the Surface Coordinate . . . . . . . . . . . . . 67

4.2.2 Monocular Endoscopic Camera Tracking and Mapping . . . . 68

ii



4.2.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2.2 Training of Data Sets . . . . . . . . . . . . . . . . . 69

4.2.2.3 Parameter Tuning and Increasing Surface Points . . 71

4.2.3 Intra-operative 3D Surface Reconstruction . . . . . . . . . . . 71

4.2.3.1 Pointcloud Pre-processing . . . . . . . . . . . . . . . 73

4.2.3.2 Moving Least Square Point Smoothing . . . . . . . . 73

4.2.3.3 Poisson Surface Reconstruction . . . . . . . . . . . . 74

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Ground Truth Study using Simulation Data . . . . . . . . . . 75

4.3.2.1 Camera Trajectory Evaluation . . . . . . . . . . . . 77

4.3.2.2 3D Surface Reconstruction Evaluation . . . . . . . . 79

4.3.3 Real Endoscopic Video Evaluation . . . . . . . . . . . . . . . 80

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Stereo-based Online Global Surface Reconstruction for GA-AR 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Landmark Point Detection and Triangulation . . . . . . . . . 89

5.2.2 Frame by Frame Camera Pose Estimation . . . . . . . . . . . 90

5.2.3 Keyframe-based Bundle Adjustment . . . . . . . . . . . . . . 91

5.2.4 ZNCC Dense Stereo Matching . . . . . . . . . . . . . . . . . . 92

5.2.5 Incremental Building of Geometric Mesh . . . . . . . . . . . . 93

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Ground Truth Study using Simulation Data . . . . . . . . . . 95

5.3.3 Real Endoscopic Video Evaluation . . . . . . . . . . . . . . . 97

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iii



6 Learning-based Monocular Image Depth Estimation and 3D Re-

construction 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Novelty Compared to Previous Work . . . . . . . . . . . . . . . . . . 102

6.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.2 Depth Synthesis Network . . . . . . . . . . . . . . . . . . . . . 104

6.3.3 Warping-based Stereo View Reconstruction . . . . . . . . . . . 106

6.3.4 Disparity-guided Patch Sampling . . . . . . . . . . . . . . . . 106

6.3.5 Loss Function Construction . . . . . . . . . . . . . . . . . . . 107

6.3.5.1 Patch Matching Loss . . . . . . . . . . . . . . . . . . 108

6.3.5.2 View Reconstruction Loss . . . . . . . . . . . . . . . 110

6.3.5.3 Disparity Smoothness Loss . . . . . . . . . . . . . . 110

6.3.5.4 Disparity Consistency Loss . . . . . . . . . . . . . . 110

6.3.6 Confidence Estimation Network . . . . . . . . . . . . . . . . . 111

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 112

6.4.2 KITTI dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.3.1 Quantitative Evaluation . . . . . . . . . . . . . . . . 114

6.4.3.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . 115

6.4.3.3 Confidence Map Evaluation . . . . . . . . . . . . . . 116

6.4.3.4 Reconstruction Results . . . . . . . . . . . . . . . . . 116

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 From Geometry-Aware AR to Context-Aware AR 119

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 Geometry-based MR Interaction . . . . . . . . . . . . . . . . . 123

7.2.2 Deep Semantic Understanding . . . . . . . . . . . . . . . . . . 124

iv



7.2.3 Context and Semantic awareness in XR environment . . . . . 125

7.3 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Input Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Camera Tracking & Reconstruction Stream . . . . . . . . . . . 126

7.3.3 Context Detection & Fusion Stream . . . . . . . . . . . . . . . 127

7.3.4 Interactive MR Interface . . . . . . . . . . . . . . . . . . . . . 127

7.4 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4.1 Camera Tracking and Model Reconstruction . . . . . . . . . . 128

7.4.2 Deep Learning for Material Recognition . . . . . . . . . . . . 129

7.4.3 Bayesian Fusion for 3D Semantic Label Fusion . . . . . . . . . 130

7.4.4 3D Structural CRF Label Refinement . . . . . . . . . . . . . . 132

7.4.5 Interaction Interface . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.6.1 Accuracy Study . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.6.2 User Experience Evaluation . . . . . . . . . . . . . . . . . . . 138

7.6.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 139

7.6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.6.3 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Increase Tracking and Reconstruction Robustness – Learning-based

Image Smoke Removal 143

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2.1 Atmospheric Scattering Model . . . . . . . . . . . . . . . . . . 145

8.2.2 Dark Channel Prior based de-smoking . . . . . . . . . . . . . 146

8.2.3 Optimization-based De-smoking . . . . . . . . . . . . . . . . . 146

8.2.4 Learning based De-smoking . . . . . . . . . . . . . . . . . . . 147

8.2.5 Novelity to previous work . . . . . . . . . . . . . . . . . . . . 148

v



8.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3.1 Smoke Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3.2 Smoke Detection . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3.3 Smoke Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.3.4 Detection after Generator (DaG) Supervision . . . . . . . . . 153

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . 154

8.4.2 Comparison Methods . . . . . . . . . . . . . . . . . . . . . . . 155

8.4.3 Evaluation on Testing Dataset . . . . . . . . . . . . . . . . . . 156

8.4.4 Smoke Removal Limit Test . . . . . . . . . . . . . . . . . . . . 159

8.4.5 Evaluation on in-vivo data . . . . . . . . . . . . . . . . . . . . 161

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.5.1 Prevent Overfitting . . . . . . . . . . . . . . . . . . . . . . . . 163

8.5.2 Safety Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.5.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9 Conclusions and Future Work 168

9.1 Achievements of This Thesis . . . . . . . . . . . . . . . . . . . . . . . 168

9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.3 Discussions and Future Perspectives . . . . . . . . . . . . . . . . . . . 170

References 173

vi



List of Figures

1.1 The “Big Picture” of this thesis. . . . . . . . . . . . . . . . . . . . . . 10

2.1 Many different technologies and applications fall within the medical

AR domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Hierarchical taxonomy of Medical AR generated by the LDA model. . 19

2.3 Trend analysis: (a) Publication Trends. (b) Application Trends. (c)

Technology Trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 The tacttile and force feedback haptics interfaces used by PalpSim

(Coles et al. 2011b): a visual-haptic simulator for femoral palpation

and needle insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Optical HMD to be used to navigate medical screws insertion (Wang

et al. 2015a). Image courtesy of Huixiang Wang, Fang Wang, An-

thony Peng Yew Leong, Lu Xu, Xiaojun Chen and Qiugen Wang . . . 30

2.6 The Integral Videography stereo half-silvered mirror based SAR sys-

tem for MRI-guided surgery. Image courtesy of Hongen Liao, Takashi

Inomata, Ichiro Sakuma and Takeyoshi Dohi (Liao et al. 2010). . . . 34

2.7 A projector based SAR anatomy learning system. Image courtesy of

Adrian S. Johnson and Yu Sun (Johnson and Sun 2013). . . . . . . . 35

2.8 Mobile AR for 3D visualization and interactive surgery planning. Im-

age courtesy of Jeronimo G. Grandi, Anderson Maciel, Henrique G.

Debarba and Dinamar J. Zanchet (Grandi et al. 2014). . . . . . . . . 37

vii



2.9 Brain Visulization on an AR Smartphone application using Metaio
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Chapter 1

Introduction

1.1 Background

Augmented Reality (AR) technology makes the use of computer-generated virtual

information within the real world to enhance the human perception of the world.

Azuma (Azuma 1997) defines AR as a combination of the virtual world and the real

world, real-time interactions and three-dimensional registration. AR will soon be

ubiquitous in many application areas ranging from personal information systems, in-

dustrial and military simulations, office use, digital games, to education and training

(Van Krevelen and Poelman 2010).

Since AR was first introduced in mid-1990’s (Milgram and Kishino 1994), AR

technology in medicine was among the six established potential areas of AR appli-

cations (Azuma 1997). However, due to the lack of enabling technologies such as

real-time tracking and display, the use of AR was still hypothetical in that time. The

potential impact of such technology on professional practices has been envisaged,

from using AR to support not only medical education and training, but also to help

in surgical planning and to guide complex procedures. One prominent example is

the possibility of using AR to visualize data from medical imaging scanners (e.g.,

MRI and CT) during Minimally Invasive Surgery (MIS) (Fuchs et al. 1998). By

directly linking patient data such as 3D anatomical models with complex surgical

scenes, AR can fuse real scenes with virtual anatomical models, thereby offering a
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rich source of information to guide intrinsic movements for surgeons.

Given the technology advances in the recent years, the potential of AR has not

yet been unleashed, due partly to technology limitations and costs, but also to the

lack of systematic approach and understandings of this cross-cutting and inherently

multidisciplinary field. Since 2016, portable high-performance augmented reality

head-mounted display platforms became available to consumers such as Microsoft’s

HoloLens and Magic Leap’s display. At the same time, new tracking algorithms

with improved performance, new calibration methods and real-time interactions in

AR have also emerged. Despite continued hardware and software development has

stimulated a surge in mixed and augmented reality research projects (Zhou et al.

2008) (Van Krevelen and Poelman 2010), many challenging problems must be over-

come before the use of AR can be a commonplace in everyday life. A revolutionary

impact of AR, however, is yet to be achieved.

1.2 Main Challenges

Real-time performance and minimum latency are pre-requisites in most medical

applications. A typical AR system consists of multiple modules working together

(image capture module, image detection and tracking module, content rendering

module, image fusion module, display module, etc.) each of which has its own com-

putational demands and each component can contribute to latency. Especially in

medical related applications, the use of high-fidelity patient specific data (such as

the offline models reconstructed from pre-operative CT/MRI and the online mod-

els from intra-operative MRI/X-rays) is time-consuming in reconstruction, storing

and retrieving, and displaying processes. Although improvements to hardware and

software continue to address these technology problems. New generation hardware

devices such as the Hololens, Magic Leap, and Meta Glasses will soon enable the

real-time AR in medical practices. New algorithms and software based on graphics

processing unit (GPU) will further shorten the system latencies while keeping high

precision. According to (Lambert et al. 2016), the frame rate of the video should be
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as high as 100 FPS at least to enable the doctor to detect minor changes. Whereas,

the AR system based on advanced tracking technologies such as Simultaneous Lo-

calisation and Mapping (SLAM) system currently can only reach quasi real-time

performance around 20 FPS (Mur-Artal et al. 2015).

High precision is another challenge must be stressed in medical applications.

Many clinical procedures could benefit greatly from AR if patient specific data

(such as anatomic structures, vessels and tumour locations etc.) can be accurately

delivered to the clinician to help guide the procedure. In such a system, however, if

the augmented content were superimposed in the wrong position then the clinician

could be misled and cause a serious medical accident. Many researchers are obtaining

accuracy to within a few millimetres and this may be sufficient for some procedures

and applications (an anatomy education tool, for example). Other procedures will

need sub-millimetre accuracy. Automatic setup and calibration then become more

critical. It remains challenging to find a balance between speed and accuracy as

they are both very important in medical applications of AR.

Apart from the tracking problems above, sensing and perception of the surround-

ing environment are also great challenges that limit the future development of AR.

Without the understanding of the environment such as the structural information,

depth and material, it is like a blind person entering into an unknown room and does

not know what to sit on. For example, when using the very basic AR application –

virtual object placement, the system wouldn’t know where to place the objects in

the virtual world, as the location might be occupied by a real world object. This

might lead to an awkward situation where the virtual objects are placed in the wall

and ruin the AR user experience. Therefore, it is essential for the AR system to

have a knowledge of the surrounding environment and enable geometry-aware AR.

Aside from real-world AR scenarios, in medicine, sensing and perception of the

surrounding environment are also very important. Offline high-fidelity image capture

and 3D reconstruction from medical imaging devices such as CT, MR can provide

some of the patient specific data needed for AR surgical guidance, but real-time

high-fidelity online model reconstruction is also needed, for example, to handle tissue
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deformation. There is an urgent need for more research into real time high-fidelity

3D model reconstruction using online modalities such as video from endoscopic

cameras. This will reduce the disparity between offline and real-time reconstruction

performance capture.

1.3 Research Aims and Contributions

This research aims to investigate real-time 3D surface reconstruction technologies

using different modalities of camera (mono/stereo) for geometry-aware AR, specif-

ically for both surgical guidance and real-world games. During the development of

this PhD project, deep learning based methods have been deployed to solve single-

image reconstruction, semantic reconstruction and also smoke removal to improve

the robustness of surface reconstruction.

More specifically, the main contributions of this work are:

• Hierarchical classifying and reviewing the latest trend and future development

of Augmented Reality using an automatical data-mining approach (Chapter

2).

• Revisiting and exploiting the SLAM system to be used for tracking and dense

reconstruction for monocular camera geometry-aware AR (Chapter 4).

• Integrating and fusing the information provided by a stereo camera for more

accurate on-the-fly global surface dense reconstruction (Chapter 5).

• Exploring and employing the latest deep learning based method for single

image depth estimation and 3D reconstruction (Chapter 6).

• Initiating a higher level Context-Aware AR system beyond the current Geometry-

Aware AR for advanced virtual-real interaction (Chapter 7).

• Enhancing the tracking and reconstruction robustness by a novel learning-

based smoke removal framework (Chapter 8).
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Figure 1.1: The “Big Picture” of this thesis.

In Figure 1.1, the big picture of this thesis is summarized. From a high-level

perspective, Chapter 4, 5, 7, 8 covers the knowledge of SLAM tracking and image

learning-based image pre-processing for the stage of Location based AR. In Chapter

4, 5 and 6, the proposed three different surface reconstruction methods are combined

with SLAM tracking for the goal of Geometry-Aware AR. In Chapter 7, we adopt

learning-based semantic reconstruction for the conception of high-level Context-

Aware AR.

1.4 Structure of the Following Chapters

• Chapter 2 - Research Topic Classification, Trend Analysis and Tech-

nology Review: In this chapter, a classification of AR has been obtained by

applying an unbiased text mining method to a database of 1,403 relevant re-

search papers published over the last two decades. The classification results

reveal a taxonomy for the development of AR research during this period as

well as suggesting future trends. Then the classification results are used to

analyse the technology and applications developed in the last five years. The

objective of this chapter is to aid researchers to focus on the areas where tech-
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nology advancements in AR are most needed, as well as providing medical

practitioners with a useful source of reference. This chapter is presented and

published in the proceedings of the 16th IEEE International Symposium on

Mixed and Augmented Reality (ISMAR) 2017 (Chen et al. 2017a).

• Chapter 3 - Problem Statement & Literature Review: In this chap-

ter, the research problem is identified and the research hypothesis is given.

Based on the research problem and hypothesis, a detailed literature review is

given on the topic of the latest AR camera tracking and surface reconstruction

literature.

• Chapter 4 - Monocular-based Online Dense Surface Reconstruction

for GA-AR: In this chapter, the concept of Geometry-Aware AR (GA-AR)

is first introduced. A novel intra-operative dense surface reconstruction frame-

work is then proposed that is capable of providing geometry information from

monocular Minimally Invasive Surgery videos for GA-AR applications such

as surgical guidance, intra-operative measurements and providing mesh-based

depth cues. This chapter is published in the journal of Computer Methods

and Programs in Biomedicine, Volume 158, May 2018, Pages 135-146 (Chen

et al. 2018b).

• Chapter 5 - Stereo-based Online Global Surface Reconstruction for

GA-AR: In this chapter, a novel stereo-based real-time AR framework is pro-

posed that provides 3D geometric information for accurate AR content regis-

tration and overlay in MIS. We propose a new approach to achieving robust

3D tracking through a feature-based SLAM for real-time performance and ac-

curacy required for endoscopy camera tracking. To obtain accurate geometric

information, we incrementally build a dense 3D point cloud by using Zero-

Mean Normalized Cross Correlation (ZNCC) stereo matching. Therefore, our

framework handles the challenging situations of rapid endoscopy movements

with robust real-time tracking, while providing an interactive geometry-aware

AR environment. This chapter is presented in the 11th MICCAI workshop on
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Augmented Environments for Computer-Assisted Interventions (AECAI) and

published in the journal of Healthcare Technology Letters, Volume 4, Issue 5,

Oct 2017, Pages 163–167 (Chen et al. 2017c).

• Chapter 6 - Learning-based Monocular Image Depth Estimation and

3D Reconstruction: In this chapter, a novel framework for depth estima-

tion and reconstruction from monocular images is presented with the bonus

of estimating corresponding confidence in a self-supervised manner. A fully

differential patch-based cost function is proposed by using the Zero-Mean Nor-

malized Cross Correlation (ZNCC) that takes multi-scale patches as a match-

ing strategy. This approach greatly increases the accuracy and robustness of

the depth learning. In addition, the proposed patch-based cost function can

provide a 0 to 1 confidence, which is then used to supervise the training of a

parallel network for confidence map learning and estimation. Evaluation on

public dataset shows that our method outperforms the state-of-the-art results.

The content of this chapter is currently under review by the Neurocomputing

journal.

• Chapter 7 - From Geometry-Aware AR to Context-Aware AR: This

chapter is an initiative beyond the current Geometry-Aware AR approach to-

wards the higher level Context-Aware AR. An interactive MR framework is

proposed based on the latest SLAM technology and deep learning based ma-

terial recognition for providing a whole new AR experience with context-wise

interaction. Quantitative and qualitative evaluations were carried out and

described in this Chapter. The results show that the framework delivers accu-

rate and fast semantic information in interactive AR environment, providing

effective context level interactions. The content of this chapter is presented

in the 16th IEEE International Symposium on Mixed and Augmented Reality

(ISMAR) 2017 (Chen et al. 2017b) and is being reviewed by the Computer

Graphics Forum journal.

• Chapter 8 - Increase Tracking and Reconstruction Robustness –
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Learning-based Image Smoke Removal: This chapter includes an ad-

ditional work to the main topic of this thesis – increasing tracking and re-

construction robustness under extreme conditions e.g. under heavy surgical

smoke. A new unsupervised learning framework for high quality pixel-wise

smoke detection and removal is presented in this chapter. A novel generative-

collaborative learning scheme is proposed that decomposes the de-smoke task

into two separate tasks: smoke detection and smoke removal. While using

the detection network as prior knowledge, it is also used as a loss function to

maximize its support for the removal of network training. The quantitative

and qualitative study shows that our training framework outperforms the lat-

est GAN framework (such as PIX2PIX) and the state-of-the-art de-smoking

approaches. The content of this chapter is presented in 2018 Hamlyn Sympo-

sium on Medical Robotics (Chen et al. 2018a) and under review by the journal

of IEEE Transactions on Medical Imaging.

1.5 List of Publications

The following publications are a direct result of the research carried out in this

thesis:

Conference Papers

Chen, L. and Tang, W., 2016. MathRun: an adaptive mental arithmetic game

usinga quantitative performance model. 30th International BCS Human Computer

Interaction Conference (HCI 2016).

Chen, L., Day, T. W., Tang, W. and John, N. W., 2017a. Recent developments

and future challenges in medical mixed reality. 2017 IEEE International Symposiu-

mon Mixed and Augmented Reality (ISMAR), IEEE.

Chen, L., Francis, K. and Tang, W., 2017b. Semantic augmented reality envi-

ronment with material-aware physical interactions. 2017 IEEE International Sym-

posiumon Mixed and Augmented Reality (ISMAR-Adjunct), IEEE

Chen, L., Tang, W. and John, N. W., 2017c. Real-time geometry-aware aug-
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mented reality in minimally invasive surgery. 2017 MICCAI workshop on Augmented

Environments for Computer-Assisted Interventions (AECAI).

Chen, L., Tang, W. and John, N. W., 2018. Unsupervised Learning of Surgical

Smoke Removal from Simulation. 2018 Hamlyn Symposium on Medical Robotics

(HSMR).

Gao, Q. H., Wan, T. R., Tang, W. and Chen, L., 2017a. A stable and accu-

rate marker-less augmented reality registration method. 2017 International Confer-

enceon Cyberworlds (CW), IEEE.

Gao, Q. H., Wan, T. R., Tang, W., Chen, L. and Zhang, K. B., 2017b. An

improved augmented reality registration method based on visual SLAM. E-Learning

and Games, Springer International Publishing, 11–19.

Journal Papers

Chen, L., Tang, W. and John, N. W., 2017c. Real-time geometry-aware aug-

mented reality in minimally invasive surgery. Healthcare Technology Letters, 4 (5),

163–167.

Chen, L., Tang, W., John, N. W., Wan, T. R. and Zhang, J. J., 2018. SLAM-

based dense surface reconstruction in monocular minimally invasive surgery and its

application to augmented reality. Computer Methods and Programs in Biomedicine,
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Papers Currently Under Review

Chen, L., Tang, W., John, N. W., Wan, T. R. and Zhang, J. J. Context-Aware

Mixed Reality: A Learning-based Framework for Semantic-level Interaction.

Chen, L., Tang, W., John, N. W., Wan, T. R. and Zhang, J. J. De-smokeGCN:

Generative Cooperative Networks for Joint Surgical Smoke Detection and Removal.

Chen, L., Tang, W., John, N. W., Wan, T. R. Self-Supervised Monocular Image
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Chapter 2

Research Topic Classification,

Trend Analysis and Technology

Review

In this Chapter, we perform a through classification and review of AR technologies

in medicine. Medical AR is an very broad topic that can be viewed as a multidi-

mensional domain (see Fig. 2.1) with a crossover of many technologies (e.g. camera

tracking, visual displays, computer graphics, robotic vision, and computer vision

etc.) and applications (e.g. medical training, rehabilitation, intra-operative naviga-

tion, guided surgery). In this research, we discard the traditional literature review

method and present a novel classification method and by combining text mining,

topic generation/clustering, and taxonomic review for a better understanding of

development trends, current issues and future directions.

2.1 Automatic Classification of AR using Data-

Mining

Bibliometric methods are the most common approaches used in identifying research

trends by analysing scientific publications(Li et al. 2009) (Hung and Zhang 2012)
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Figure 2.1: Many different technologies and applications fall within the medical AR
domain.

(Vanga et al. 2015) (Dey et al. 2016). These methods typically make predictions by

measuring certain indicators such as geographical distributions of research institutes

and the annual growth of publications, as well as citation counts(Gireesh et al. 2008).

Usually a manual classification process is carried out (Dey et al. 2016), which is

inefficient and also can be affected by personal experience. Especially in a large

domain such as Medical AR, it is challenging to identify the classification and review

the trend. Our approach is to analyse the relevant related papers retrieved from

different periods, whilst introducing a novel method to automatically decompose

the overarching topic (medical mixed reality) into relevant sub-topics that can be

analysed separately. We make use of a generative probabilistic model for text mining

– Latent Dirichlet Allocation (LDA) (Blei et al. 2003) to automatically classify and
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generate the categories, achieving an unbiased review process.

2.1.1 Data Source

The source database used in this analysis is Scopus, which contains the largest

abstract and citation database of peer-reviewed literature obtained from more than

5,000 international publishers(Elsevier 2018). Scopus contains articles published

after 1995 (Reuters 2016), therefore, encompassing the main period of growth in

AR, and helps both in keyword searching and citation analysis.

2.1.2 Selection Criteria

The regular expression “(mixed OR augmented) reality medic*” is used to retrieve

all articles related to augmented reality and mixed reality in medicine, capturing

“augmented reality medicine”, “augmented reality medical”, and “mixed reality

medicine”, “mixed reality medical”. A total of 1,425 articles were retrieved within

the 21 year period from 1995 to 2015, of which 1,403 abstracts were accessed. We

initially categorised these articles into seven chronological periods, one for every

three years. Abstracts of these articles are then used to generate topics and for trend

analysis, as they provide more comprehensive information about an article than its

title and keywords alone. The whole selection process is carried out automatically

with no manual intervention.

2.1.3 Text Mining

To identify the key topics discussed in a large number of articles, we employ the La-

tent Dirichlet Allocation (LDA)(Blei et al. 2003) method to automatically interpret

and cluster words and documents into different topics. This text mining method

has been widely used in recommendation systems such as web search engines and

advertising applications. LDA is a generative probabilistic model of a corpus. It

regards documents (d) as random mixtures over latent topics (t), p(t|d), where every

topic is characterized by a distribution over words (w), p(w|t). The method uses
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Table 2.1: Topic Clustering Results from the LDA Model
Topic1 Topic 2 Topic 3 Topic 4 Topic 5

“Treatment” “Education” “Rehabilitation” “Surgery” “Training”

term weight term weight term weight term weight term weight

treatment 0.007494 learning 0.01602 physical 0.01383 surgical 0.05450 training 0.03044

clinical 0.007309 development 0.00877 rehabilitation 0.01147 surgery 0.02764 performance 0.01361

primary 0.004333 education 0.00854 environment 0.01112 surgeon 0.01176 laparoscopic 0.01332

qualitative 0.003793 potential 0.00812 game 0.00837 invasive 0.01167 skills 0.01208

focus 0.004165 different 0.00793 therapy 0.00729 minimally 0.01148 simulator 0.01198

Topic6 Topic 7 Topic 8 Topic 9 Topic 10

“Interaction” “Mobile” “Display” “Registration” “Tracking”

term weight term weight term weight term weight term weight

human 0.019901 software 0.01684 visualization 0.03260 registration 0.01417 tracking 0.02418

interaction 0.014849 mobile 0.01556 data 0.03177 segmentation 0.00942 accuracy 0.01584

haptic 0.01439 support 0.00905 display 0.00984 accurate 0.00765 camera 0.01454

feedback 0.013308 online 0.00874 navigation 0.01278 deformation 0.00762 target 0.01347

interface 0.009382 social 0.00835 planning 0.01225 motion 0.00754 registration 0.01186

the following formula:

p(w|d) = p(w|t) ∗ p(t|d) (2.1)

where p(w|d) represents the probability of a certain word in a certain document un-

der a certain topic. Word-topic distribution p(w|t) and topic-document distribution

p(t|d) are randomly selected and then LDA iteratively updates and estimates prob-

abilities until the system convergences. As a result, we identify the relationships

amongst documents, topics and words. We input all of the downloaded abstracts

into the LDA model and tested a range of parameters to use with it. We empirically

derived the value of ten topics as optimal for the best encapsulation of the field.

2.1.4 Topic Generation

Table 2.1 summarizes the output showing the ten topics identified with the associ-

ated term and weight distributions after convergence. We manually assign one word

(shown in quotation marks) that was the best representation of each topic. The

general methodology uses the weighting as the primary selection parameter but also

takes into account the descriptive keyword for that topic. Topics 1, 5, 9 and 10 just

use the keyword with the highest weighting. For Topic 2, although “education” did
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not have the highest weighting, we consider it to be a more representative term. For

Topic 3, “physical” is a sub category of “rehabilitation” and so we use the latter as

the more generic term. In Topic 4, “surgical” and “surgery” are fundamentally the

same. For Topic 6, “interaction” is the most representative keyword, and the same

principle applies to Topics 7 and 8.

M
ed

ic
al

 M
R

 (
1

4
0

3
) 

Applications               
(667)

T1: Treatment (125)

T2: Education (134)

T3: Rehabilitation (137)

T4: Surgery (167)

T5: Training (104)

Technologies 
(736)

T6: Interaction (161)

T7: Mobile (67)

T8: Displays (148)

T9: Registration (184) 

0.35

Technology Trend

0

0.05

0.1

0.15

0.2

0.25

1995-1997 1998-2000 2001-2003 2004-2006 2007-2009

Application Trend

treatment education rehabilitation surgery

T10: Tracking (176)

Figure 2.2: Hierarchical taxonomy of Medical AR generated by the LDA model.

Figure 2.2 represents a hierarchical taxonomy of the results. The overarch-

ing “Medical AR“ topic with 1,403 articles has been divided into two main sub-

categories: applications and technologies, with 667 and 736 articles respectively.

Within applications, the surgical topic has the largest number of articles (167), fol-

lowed by rehabilitation (137), education (134), treatment (125) and training (104).

Within technologies, registration is the most discussed topic (184 articles), followed

by tracking (176), interaction (161), displays (148) and mobile technologies (67).
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2.2 AR Trend Analysis

Each of the ten topics of interest identified by the LDA model has a list of articles

associated with them. An article matrix was constructed based on the topic and the

attributes for the seven chronological periods being analysed. Figure 2.3 summarizes

the trends identified subdivided into three year periods (1995-97, 1998-2000, 2001-

03, 2004-06, 2007-09, 2010-12, and 2013-15). Figure 2.3(a) plots the total number

of publications over the seven periods. The number of publications related to AR in

medicine has increased more than 100 times from only 41 publications in 1995-1997

to 440 publications in 2013-2015. In the early 21st century (periods 2001-2003 and

2004-2006), the number of publications of AR in medicine more than doubled from

93 to 191, coinciding with the rapid development of many enabling technologies such

as marker-based tracking techniques(Kato and Billinghurst 1999) and advances in

Head Mounted Display (HMD) technology (Rolland and Fuchs 2000) and mobile

AR devices (Olsson and Salo 2011).

Based on the observed growth pattern between 1995 and 2015, a trend line has

been produced using a quadratic polynomial with a high coefficient of determination

(R2 = 0.9935). Extrapolating the trend line forecasts that in the three year periods

(2016 to 2018, and 2019 to 2021), the number of scientific papers on the topic of

AR in medicine will be accelerated, reaching around 550 and 700, respectively. The

following section looks in more detail at the topic trends and then we analyse the

research trends in each area.

2.2.1 Applications Trends

There are a growing number of medical application areas exploring the use of AR.

Fig. 2.3(b) plots the percentage of articles published for the five most popular appli-

cation categories: patient treatment, medical and patient education, rehabilitation,

surgery, and procedures training :

• Patient treatment was the most targeted application of AR in the earlier period

with almost 20% of published articles. It remains a constant topic of interest
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Figure 2.3: Trend analysis: (a) Publication Trends. (b) Application Trends. (c)
Technology Trends.
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with around 10% of articles continuing to investigate this topic. The fall in

percentage is mostly due to the parallel rise in interest in the other medical

AR categories. Education and rehabilitation topics have both fluctuated but

remain close to 10% of articles published.

• A surge of interest in surgical applications can be observed between 2004 and

2009 when 16% of all articles published on medical AR addressed this topic.

However, the comparative dominance of surgical applications has dropped off

as activity within other categories has increased.

• Training applications in medical AR first emerged between 1998-2000. Interest

in this topic has grown steadily and is also now at a similar level of interest as

the other topics. Together with education, continuation of the current trends

suggest that these two topics will be the most popular in the next few years.

These are areas where there is no direct involvement with patients and so

ethical approval may be easier to gain.

2.2.2 Technologies Trends

Within the ten topics generated by the LDA model, five key technologies have been

identified: interaction, mobile, display, registration and tracking (the percentage of

articles that refer to these technologies is plotted in Fig. 2.3(c)):

• Real time interaction is a crucial component of any AR application in medicine

especially when interactions with patients are involved. The percentage of

articles that discuss interaction in the context of medical AR increased steadily

from 5% in 1995-1997 to 10% in 2013-2015.

• The use of mobile technologies is an emerging trend, which has been increased

from 0% to 7% of articles across the seven periods. The main surge so far

was from 2004-2006, when the advances of micro-electronics technology first

enabled mobile devices to run fast enough to support AR applications. The

use of mobile technologies has been more or less constant from that point
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onwards. Smartphones and tablets can significantly increase the mobility and

user experience as you are not tethered to a computer, or even in one fixed

place as was the case with Sutherland’s (Sutherland 1968) first AR prototype

in the 1960s.

• Innovations in the use of display technologies was the most discussed AR

topic in the early part of the time-line. However, there has been a subsequent

dramatic drop in such articles, falling from 33% of articles to only 5%. This

may indicate the maturity of the display technologies currently in use. The

Microsoft Hololens and other new devices are expected to disrupt this trend,

however.

• Tracking and registration are important enabling components for AR. They

directly impact on the usability and performance of the system. These areas

continue to be explored and are yet to be mature enough for complex scenarios,

as reflected by the steady percentage (around 10%) of articles on tracking and

registration technology from 1995 to 2015.

In the next section we summarise the latest research in medical AR using the

classification scheme identified above. We restrict our analysis to publications in

the last five years, citing recent survey papers wherever possible.

2.3 Review of Enabling Technologies for AR

Having identified five technology areas as listed in table 1: Interaction (topic 6),

Mobile (topic 7), Display (topic 8), Registration (topic 9), and Tracking (topic 10).

In this section, we provide a detailed overview of each topic area with medical

applications, including developments in hardware and software algorithms.

2.3.1 Interaction

Interaction within augmented reality needs to be a natural seamless integration of

the real and augmented environments. AR interactions are supported through a
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variety of interaction devices (including the use of haptics), gesture based interfaces

and other novel approaches that have been used in a medical AR context.

2.3.1.1 Gesture-based Interfaces

Perhaps the most natural interaction is to use our own hands to interact with vir-

tual objects in the augmented environment. Gesture-based interactions requires the

tracking of hand movement including finger movements to manipulate virtual ob-

jects. There are a number of approaches to achieve such tracking via AR markers,

gloves, hand held devices, or direct optical tracking of the user’s hands. For example:

• Boonbrahm and Kaewrat (Boonbrahm and Kaewrat 2014) modified AR mark-

ers to fit on fingertips and assigned the corresponding virtual fingers with

physical properties such as friction, density, surface, volume and collision de-

tection. In this way, users could interact with a virtual object with their own

hands such as grasping and lifting.

• FIGI (floating interface for gesture-based interaction) (De Marsico et al. 2014)

uses a wireless instrumented glove (5DT Data Glove 14 ultra) to capture finger

movement and identify gestures to perform zoom and rotation tasks, select 3D

medical images, and even typing on a floating virtual keyboard in mixed reality

environment.

• Hochreiter et al (Hochreiter et al. 2015) used infra red (IR) light to detect

touch events on a shell of a human head onto which a facial animation is

projected from a pico projector. This physical-virtual head has been used for

hands-on healthcare training, employing touch gestures such as pulling the

lips apart to inspect the gums.

• A recent commercial device that uses optical tracking of the hands without

the need for the user to wear gloves or markers is the Leap Motion - and

several medical related applications have been reported, e.g. (Sousa Silva and

Formico Rodrigues 2015).
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• The Nintendo Wiimote is one example of a hand held device that has been used

in medical visualization to capture gestures to interact with virtual objects

(Lin et al. 2012), which the authors claim provides a more realistic interaction

experience than traditional controllers such as mouse and keyboard.

2.3.1.2 Haptic Devices

The sense of touch provides important cues in most medical procedures. In AR, the

physical world is still available and can be touched but any virtual object may need

to make use of a haptics device to provide tactile or force feedback. A comprehensive

review of the state-of-the-art haptic devices in medical training simulators before

2010 has been presented in (Coles et al. 2011a). However, there are only a few

examples of these haptic devices been used in AR to date.

Figure 2.4: The tacttile and force feedback haptics interfaces used by PalpSim (Coles
et al. 2011b): a visual-haptic simulator for femoral palpation and needle insertion.

One example is PalpSim (Coles et al. 2011b), an AR visio-haptic medical training

system for femoral palpation and needle insertion. A custom tactile interface has
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been fabricated for providing a pulse sensation in the artery of the virtual patient -

see left image in Fig. 2.4. It consists of a silicon tray with a plastic tube embedded

in it through which water is pumped with a pulsalate flow. The tray is mounted

onto two modified NOVINT Falcons that enable the user to press down on the skin

of the patient and feel an appropriate force response. A modified PHANTOM Omni

(now called the GeoMagic Touch) force feedback device is also used to mount a real

needle and impart accurate forces as the needle punctures the skin of the virtual

patient into the artery - right image in Fig. 2.4.

Sutherland (Sutherland et al. 2013) developed an augmented reality haptic train-

ing simulator for spinal needle procedures using a PHANTOM Omni (now called

the GeoMagic Touch) and patient specific computed tomography (CT) volume data.

The novel aspect of this work is the simulation of Ultrasound images from CT vol-

ume using a deformed finite element model (FEM) to simulate the ultrasound-guided

spinal needle procedures.

A particular problem when using a haptics device in AR is the superimposition

of computer graphics (such as surgical instruments) to the haptics stylus to provide

a realistic user experience. The PalpSim system used a chroma-key approach to

mask out the physical haptics devices. Eck et al (Eck et al. 2014) proposed a

calibration procedure for the precise co-location of visuo-haptics augmented reality

by combining optical tracking with the information available on the angles of haptic

stylus joints.

Saga and Deguchi (Saga and Deguchi 2012) reported the phenomenon that people

tend to experience tactile perception if they receive force feedback in/against the

direction of a moving/rotating 2D surface. Based on this phenomenon, Kim et

al (Kim et al. 2014) proposed a robotic touch screen that could provide relative

geometric information in the form of rotational force feedback which could be used

in augmented reality applications. However, the speed and accuracy of this method

needs to be improved to simulate realistic tactile feedback.

Spillmann (Spillmann et al. 2013) converted tactile feedback problem into an

adaptive space warping problem by warping different organ geometries onto one
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physical anatomical model to be used in a mixed-reality surgical training simulator.

The virtual structures are deformed to adapt the physical model. Therefore users

could feel the tactile feedback from the physical model while observing the mixed

reality object. This method works to some extent, but modifying the tissue is only

approximate, and the distortion sometimes could be unrealistic.

One of the latest technology approaches being explored for tactile devices is to

use focused ultrasound. Hung et al (Hung et al. 2014) built an AR environment for

locating a weak pulse or heart murmur sensation in a virtual patient. They used a

hexagonal array of 271 ultrasound transducers focused on a particular location in

space so that a hand can detect a tactile sensation at that location.

Haptic Augmented Reality (HAR) is also a term that has been used for aug-

menting haptics onto real objects. Jeon and Choi(Jeon and Choi 2010) proposed

a framework that enables users to perceive augmented stiffness inside a real object

supporting arbitrary exploration patterns such as tapping, stroking, and contour

following. This technique was later extended into rendering a tumour in a silicone

model(Jeon et al. 2012) to simulate the breast cancer palpation (Jeon et al. 2010a)

(Jeon et al. 2010b).

2.3.1.3 Other Hand Held Controllers

BodyExplorerAR (Samosky et al. 2012) is a mannequin medical simulator based on

projective AR. An IR pen is used to interact with the simulator to open, resize and

move viewports providing windows into the body that can display dynamic anatomy.

Nataka et al (Nakata et al. 2012) use a smartphone as an AR remote control

for a radiology review application. The phone is placed inside a hard case with a

printed fiducial marker on its back for optical tracking. The phone’s touch screen

is then used for image manipulation with the AR environment being presented on

a connected PC. The authors report greatly improved collaborative discussion and

education.
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2.3.1.4 Brain-Computer Interfaces

Recent advances in Brain-Computer Interfaces (BCI) are opening up new poten-

tial for use in medical AR. Lotte et al (Lotte et al. 2012) presented an overview

of research activities to combine BCI and VR and concludes that BCI promises a

more direct and intuitive way of interaction within a virtual environment. This

is expected to also apply to AR. For example, “Superman-like X-ray vision” is a

concept proposed by Blum et al (Blum et al. 2012b) for surgeons to see augmented

pre-operative images onto the patient with display devices such as a head-mounted

display (HMD). A BCI device would be used to switch on and off the augmented

anatomy; and a gaze tracker would control the position of the focus window. How-

ever, this project is only in an early stage. Currently only electro-oculographic

signals triggered by eye movements are used to control the display of the augmented

view.

2.3.2 Display Applications

AR can be presented on a variety of display platforms with differing degrees of

fidelity. The most popular display categories currently used in medical AR are

summarised below.

2.3.2.1 Head Mounted Displays

There are currently two types of Head Mounted Displays (HMDs) for AR: video

see-through and optical (Meng et al. 2015). A video see-through (video mix) HMD

(Kato and Billinghurst 1999) captures video via a mono- or stereo-camera, and then

overlays computer-generated content onto the real world video. The processed video

is displayed on the screen of the HMD. However, this type of HMD isolates the user

view from the real-world environment and is prone to high system latency due to

the accumulation of video acquisition, image processing and rendering. The other

type of HMD is the optical see-through (transparent) HMD, which allows users to

directly see the real world while virtual objects are displayed through a transparent

28



T
ab

le
2.

2:
H

M
D

-b
as

ed
m

ed
ic

al
A

R
ap

p
li
ca

ti
on

s
S
u
m

m
ar

y

A
rt

ic
le

P
u

rp
o
se

H
M

D
T

y
p

e
H

M
D

D
e
v
ic

e
T

ra
ck

in
g

(H
a
n

n
a

e
t

a
l.

2
0
1
8
)

A
n

at
om

ic
P

at
h
ol

og
y

O
p

ti
ca

l
M

ic
ro

so
ft

H
o
lo

L
en

s
M

a
n
u

a
ll

y
A

li
g
n

ed

(S
o
n

g
e
t

a
l.

2
0
1
8
)

E
n

d
o
d

on
ti

cs
O

p
ti

ca
l

M
ic

ro
so

ft
H

o
lo

L
en

s
M

a
rk

er

(T
u

ri
n

i
e
t

a
l.

2
0
1
8
)

H
ip

A
rt

h
ro

p
la

st
y

T
ra

in
in

g
O

p
ti

ca
l

M
ic

ro
so

ft
H

o
lo

L
en

s
M

a
rk

er

(C
o
se

n
ti

n
o

e
t

a
l.

2
0
1
7
)

R
ad

io
th

er
ap

y
O

p
ti

ca
l

M
ic

ro
so

ft
H

o
lo

L
en

s
M

a
rk

er

(K
u

h
le

m
a
n

n
e
t

a
l.

2
0
1
7
)

E
n

d
ov

as
cu

la
r

In
te

rv
en

ti
on

s
O

p
ti

ca
l

M
ic

ro
so

ft
H

o
lo

L
en

s
M

a
g
n

et
ic

T
ra

ck
er

(M
e
n

g
e
t

a
l.

2
0
1
5
)

V
ei

n
s

L
o
ca

li
za

ti
on

O
p

ti
ca

l
V

u
zi

x
S

T
A

R
1
2
0
0
X

L
M

a
n
u

a
ll

y
A

li
g
n

ed

(C
h

a
n

g
e
t

a
l.

2
0
1
5
)

R
em

ot
e

S
u

rg
ic

al
A

ss
is

ta
n

ce
V

id
eo

V
U

N
IX

iW
ea

r
V

R
9
2
0

O
p

ti
ca

l
T

ra
ck

er
+

K
L
T

*

(H
si

e
h

a
n

d
L

e
e

2
0
1
5
)

H
ea

d
C

T
V

is
u

li
za

ti
on

V
id

eo
V

u
zi

x
W

ra
p

1
2
0
0
D

X
A

R
K

L
T

+
IC

P
*
*

(W
a
n

g
e
t

a
l.

2
0
1
5
a
)

S
cr

ew
P

la
ce

m
en

t
N

av
ig

at
io

n
O

p
ti

ca
l

N
V

IS
n

V
is

o
r

S
T

6
0

O
p

ti
ca

l
T

ra
ck

er

(V
ig

h
e
t

a
l.

2
0
1
4
)

O
ra

l
Im

p
la

n
to

lo
gy

V
id

eo
N

V
IS

n
V

is
o
r

S
X

6
0

O
p

ti
ca

l
T

ra
ck

er

(H
u

e
t

a
l.

2
0
1
3
)

S
u

rg
er

y
G

u
id

an
ce

V
id

eo
eM

a
g
in

Z
8
0
0

3
D

V
is

o
r

M
a
rk

er

(A
b

e
e
t

a
l.

2
0
1
3
)

P
er

cu
ta

n
eo

u
s

V
er

te
b

ro
p

la
st

y
V

id
eo

H
M

D
b
y

E
p

so
n

M
a
rk

er

(A
z
im

i
e
t

a
l.

2
0
1
2
)

N
av

ig
at

io
n

in
N

eu
ro

su
rg

er
y

O
p

ti
ca

l
G

o
g
g
le

s
b
y

J
u

x
to

p
ia

M
a
rk

er

(B
lu

m
e
t

a
l.

2
0
1
2
b

)
A

n
at

om
y

V
is

u
li
za

ti
on

V
id

eo
N

o
t

M
en

ti
o
n

ed
G

a
ze

-t
ra

ck
er

(T
a
n

a
k
a

2
0
1
0
)

C
og

n
it

iv
e

D
is

or
d

er
R

eh
ab

il
it

at
io

n
V

id
eo

C
a
n
o
n

G
T

2
7
0

N
o

T
ra

ck
in

g

(W
ie

c
z
o
re

k
e
t

a
l.

2
0
1
0
)

M
IS

G
u

id
an

ce
V

id
eo

N
o
t

M
en

ti
o
n

ed
O

p
ti

ca
l

M
a
rk

er

(B
re

tó
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Figure 2.5: Optical HMD to be used to navigate medical screws insertion (Wang
et al. 2015a). Image courtesy of Huixiang Wang, Fang Wang, Anthony Peng Yew
Leong, Lu Xu, Xiaojun Chen and Qiugen Wang

lens. Users will receive light from both the real world and the transparent lens and

form a composite view of real and virtual object. The optical see-through HMD was

first developed in the 1960s by Sutherland (Sutherland 1968). Half-silvered mirrors

were used to enable users to see both the images from miniature CRTs and the real

world simultaneously. With advances in display technologies, there appeared many

other solutions for displaying images onto transparent lenses such as the reflective

waveguide technique (Sarayeddine and Mirza 2013) (used by the Google Glass, and

Epson MoverioTM Series) and diffractive waveguide(Sarayeddine and Mirza 2013)

(used by the Microsoft Hololens(Hempel 2015)). Another example is given in Figure

2.5 where the surgeon is wearing an optical HMD to assist with screw insertion

(Wang et al. 2015a). Table. 2.2 provides a summary of the HMD-based medical

AR applications that we have identified. Most of these medical applications use

a video see-through HMD with marker-based tracking for simplification. The new

generation of HMDs - Microsoft Hololens are becoming the mainstream for medical

applications.

Rolland and Fuchs (Rolland and Fuchs 2000) comprehensively compared optical

and video see-through approaches in the context of AR 3D medical visualization.
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Their comparison focused on many aspects such as latency, resolution, distortion,

field of view (FOV), viewpoint matching, cost, human-factors and perceptual issues.

They conclude that hybrid solutions that use optical see-through technology for

display and video technology for object tracking would play a key role in future

developments.

Related to HMDs is the Virtual Retinal Display (VRD) (Furness III and Kollin

1995), a new technology that can scan low power laser light directly onto the human

retina, creating bright, wide field-of-view, high contrast and high-resolution visual

image (Stredney and Weghorst 1998). Together with the advantage of low power

consumption, micro size, and no blockage of the visual field, VRD is well-suited for

the next generation AR HMD solution such as the Magic Leap.

2.3.2.2 Mobile Displays

Other wearable AR devices are emerging that do not need to be attached to a PC

and so improve the mobility of AR applications. Announced in 2012, Google Glass

(Google 2018) was the first mobile head-mounted display designed in the shape of

a pair of eyeglasses. Google stopped producing the Google Glass prototype in 2015

but this device demonstrated many potential uses in medical AR including pedi-

atric surgery (Muensterer et al. 2014), tele-mentoring (Assad-Kottner et al. 2014),

clinical education (Tully et al. 2015), forensic autopsy (Albrecht et al. 2013), remote

electrocardiogram (ECG) interpretation (Jeroudi et al. 2015) and medical image

retrieval (Widmer et al. 2014). However, the display screen of Google Glass is very

small as it is designed for “providing” information not “superimposing” information

onto the corresponding physical position. These applications can therefore only as-

sist medical students, doctors or surgeons to a limited extent, such as taking first

perspective photos or providing access to textual guidance information or medical

images.

Microsoft HoloLens (Microsoft 2018) is a headset that consists of a pair of trans-

parent combiner lenses that images can be projected onto, a depth camera to provide

depth information, a video camera, and an inertial measurement unit (IMU) includ-
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ing an accelerometer, gyroscope, and a magnetometer to provide speed, pose and di-

rection information (Holmdahl 2015). With an integrated high-end CPU and GPU,

HoloLens is actually a wearable computer running Windows 10, and is regarded

as a revolutionary product in AR. Medical AR applications using the Hololens are

expected to emerge quickly following the expected launch of this device in late 2016.

Microsoft has demonstrated a possible medical application at the 2015 Microsoft

Build Developer Conference (Holmdahl 2015).

Another product in this category about to be launched is the Meta 2 glasses

(Meta Co. Redwood, CA). The Meta 2 will offer a high resolution screen with built

in tracking of hand gestures. One of the early test uses of the Meta 2 glasses has

been in the context of the Glass Brain project, a brain visualization implemented

in Unity3D that displays source activity and connectivity, inferred in real-time from

high-density EEG.

2.3.2.3 Spatial Augmented Reality

Spatial Augmented Reality (SAR) solutions make use of projectors, half-silvered

mirrors, or screens to display augmented information directly onto a physical space

without the need to carry or wear any additional display devices(Raskar et al. 1998).

By augmenting information in an open space, SAR enables sharing and collaboration

easier than with a single user HMD. There are currently three types of SAR solutions

based on the display methods used: video see-through SAR, optical see-through

SAR, and direct augmentation SAR (Carmigniani et al. 2011).

Video see-through SAR is a cost efficient screen-based solution that only requires

a camera, computer and display screen. But has the disadvantage of high latency,

bad image quality and the loss of 3D vision. Whereas for optical see-through SAR,

these problems are tackled by using semi-transparent display to overlaying compute-

generated objects onto real world. However, it is more expensive, need calibration

and has low brightness/resolution for overlaid objects. Direct augmentation SAR do

not use screen but directly projecting virtual information onto real-world objects.

It is more natural, but has low accuracy.
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In medical applications, Video see-through SAR is often used for minimally in-

vasive surgery guidance where a ready-to-use video output is available to be aug-

mented. Kang et al (Kang et al. 2014) proposed a video see-through SAR sys-

tem for laparoscopic surgery. The live stereoscopic laparoscopic video was merged

with real-time ultrasound images to create an ultrasound-augmented stereoscopic

video stream, which could provide surgeons with the 3D spatial relationship be-

tween anatomical structures and the visual cues of important internal structures

such as tumors, bile ducts, and blood vessels. Bernhardt et al (Bernhardt et al.

2016) presented an automatic endoscope localization algorithm for AR guidance in

laparoscopic surgery. By estimating the position and direction of the endoscope

tip in the volume data, the corresponding view from an intra-operative CT volume

can be superimposed onto the endoscopic view to guide surgeons. Pico Lantern

(Edgcumbe et al. 2015) is also aimed at laparoscopic surgery. It is a miniature

projector developed for structured light surface reconstruction that can be inserted

into a patients abdomen along with the laparoscopic camera probe. A known coded

pattern is then projected onto the surface of organs to facilitate 3D surface recon-

struction and further guidance information. The author reported the absolute error

of 1.4 mm, 1.5 mm and 1.5 mm for plane, cylinder and kidney respectively by a

mono laparoscope and a tracked Pico Lantern, which confirmed the accuracy of

surface reconstruction.

Optical see-through SAR makes use of half-silvered (semi-transparent) mirrors,

beam splitters or transparent screens to allow the user to simultaneously see the

physical world and virtual objects in the same spatial position. Liao et al (Liao

et al. 2010) proposed a 3D AR system for MRI-guided surgery based on a modified

half-silvered mirror that could provide geometrically accurate 3D spatial images and

reproduce motion parallax without using any supplementary eyeglasses or tracking

devices - see Fig. 2.6. The auto-stereoscopic images were created by employing

integral videography (IV) (Liao et al. 2004) technology, which could reproduce 3D

images using a micro-convex lens array and a high-resolution high-pixel-density flat

display. By this 3D optical see-through SAR system, surgeons can easily perceive
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Figure 2.6: The Integral Videography stereo half-silvered mirror based SAR system
for MRI-guided surgery. Image courtesy of Hongen Liao, Takashi Inomata, Ichiro
Sakuma and Takeyoshi Dohi (Liao et al. 2010).

the depth of the IV image. Also based on a stereo half-silvered mirror system,

Wang et al (Wang et al. 2014) presented an augmented reality navigation system

for dental surgery using automatic marker-free image registration based on 3-D

contour matching of teeth. Fritz et al (Fritz et al. 2012) evaluated the accuracy

of a semi-transparent mirror based AR image overlay system in MRI-guided spinal

injection procedures. The assessment results showed entry error of 1.6 ± 0.8 mm,

angle error of 1.6◦ ± 1.0◦, depth error of 0.7 ± 0.5 mm, and target error of 1.9 ± 0.9

mm, which could facilitate accurate MRI guidance for successful spinal procedures.

Shi et al (Shi et al. 2012) remodeled a surgical microscope by inserting a beam

splitter to allow users to see the microscope view with an augmented image from a

pico-projector. Using this AR microscope, surgeons can observe virtual cues that

track the movement of the tip of micro-surgical instrument, showing the desired

position, and indicate the position error, which helps to maintain high performance

and avoids the instrument drifting out of the workspace.

Direct augmentation SAR usually employs a projector or laser transmitter to
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Figure 2.7: A projector based SAR anatomy learning system. Image courtesy of
Adrian S. Johnson and Yu Sun (Johnson and Sun 2013).

project images directly onto the physical objects’ surface. SARP (Spatial Aug-

mented Reality on Person) (Johnson and Sun 2013) is a system that can project

anatomical structures directly on user’s dynamically moving body - see Fig. 2.7.

Users can turn around and change pose to view the anatomy from different angles.

A gesture-based interaction system was provided for users to select organs or switch

between a muscular system or a skeletal system. Hochreiter et al (Hochreiter et al.

2015) used a P300 pico projector (AAXA Technologies, Tustin, USA) to project a

head model onto a plastic human head shell. IR cameras were used to detect touch

events on the head shell (see section 2.3.1.2). As the head shell is not a plain sur-

face, the mapping relationships cannot be described in a parametric function. The

author used a lookup table that contains correspondences amongst all coordinates

to directly link the 3D graphics space, 2D projector space, 2D camera space and 3D

touch space. ARCASS (Augmented Reality Computer Assisted Spine Surgery) (Wu

et al. 2014) system is a projection-based AR system for spinal surgery assistance.

The pre-operative 3D models constructed from CT images were superimposed onto

patients with the help of markers, enabling the surgeon to see the patients’ anatomy

during spinal surgery. Experiments showed that the ARCASS system performed
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well on phantoms and animal cadaver experiments, and also in clinical trials of

orthopedic surgery.

SAR can also use a magic mirror technique where the user is presented with

a mirror image of themselves on a screen. That image can then be augmented

as desired. For example, Mirracle (Blum et al. 2012a) (Meng et al. 2013b) is an

augmented reality magic mirror system for anatomy education. Ma et al (Ma et al.

2015) extended the magic mirror and enable a personalized anatomy model to be

superimposed onto user’s body in the mirror by detecting the user’s height, body

size, gender, and age. The evaluation study demonstrated that the average precision

of the augmented reality overlay on the user body was 0.96 cm, also clinicians and

students gave positive feedback towards the educational value.

Mirror-based AR systems have also been used in medical training (Stefan et al.

2014), education (Anderson et al. 2013) and rehabilitation (Erazo et al. 2014) ap-

plications. Finally, Mind-Mirror (Mercier-Ganady et al. 2014) is a virtual mirror

that superimposes a virtual brain with a user’s brain activity onto their own head.

The brain activity is computed by EEG signals that are acquired in real-time and

displayed using a mirror-based AR system.

2.3.3 Mobile AR

Traditional AR systems employ powerful computers to solve the heavy computation

of camera pose estimation, target recognition, tracking and virtual object rendering;

also, the bulky HMD is power-costly and must always be plugged into an electric

socket. These factors greatly restrict the usage range of AR and limit its application.

Recently, with the rapid development of micro-electronic technology, new mobile and

wearable AR devices are becoming feasible (Höllerer and Feiner 2004), providing

people with a more flexible and natural AR experience. They can also provide a low

cost and portable solution which is expected to play a major role in medical/patient

education and rehabilitation applications where accuracy of tracking is not critical.
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2.3.3.1 Hand-Held Displays

Portable hand-held devices with integrated cameras (such as smartphones, tablets

and PDAs) can provide a video see-through ”window” that can overlay computer-

generated graphics onto the captured real-time video (Wagner and Schmalstieg 2006)

(Grandi et al. 2014). With the help of internal sensors such as accelerometers, gyro-

scopes, and magnetometers, three degrees-of-freedom of orientation can be acquired

as shown in Fig. 2.8. Position information can be estimated by tracking markers

or more advanced markerless tracking and Simultaneous Localization And Mapping

(SLAM) techniques (see section 2.3.4).

Figure 2.8: Mobile AR for 3D visualization and interactive surgery planning. Im-
age courtesy of Jeronimo G. Grandi, Anderson Maciel, Henrique G. Debarba and
Dinamar J. Zanchet (Grandi et al. 2014).

Hand-held displays typically have small screen sizes, which can be a limitation

with a restricted field-of-view and very limited depth perception, which may hide

many details that are crucial in medical training and diagnosis. In addition, most

mobile AR applications use marker-based tracking that rely on the position and

focus of markers and will not work in poor lighting conditions. The display of

patient specific data and 3D anatomical models will also be restricted on very small

displays. Tablets are less prone to this disadvantage and can be used to create the
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impression of a transparent display where the augmented real world is viewed as if

looking through a window (Andersen et al. 2016). A depth camera and head tracker,

however, should also be used to enable adjustments to be made to the rendered view

through the transparent display so that it fits seamlessly with the real environment.

2.3.3.2 Smartphone and Tablet Applications

Table 2.3: Mobile Medical AR Applications
Article Purpose SDK Device

(Andersen et al. 2016) Surgical Telementoring OpenCV Project Tango

(Rantakari et al. 2015) Personal Health Poster Vuforia Samsung Galaxy S5

(Kilgus et al. 2015) Forensic Pathological Autospy MITK* Apple iPad 2

(Soeiro et al. 2015) Brain Visulization Metaio Samsung Galaxy S4

(Juanes et al. 2014) Human Anatomy Education Vuforia Apple iPad

(Kramers et al. 2014) Neurosurgical Guidance Vuforia HTC Smartphone

(Noll et al. 2014) Dermatology Education Not Mentioned Apple iPhone 4

(Garcia and Navarro 2014)Ankle Sprain Rehabilitation Vuforia Apple iPad

(Virag et al. 2014) Medical Image Visulization JSARToolKit Any device with browser

(Grandi et al. 2014) Surgery Planning Vuforia Apple iPad 3

(Debarba et al. 2012) Hepatectomy Planning ARToolkit Apple iPod Touch

(Choi 2011) Stroke Rehabilitation Not Mentioned Android Smartphone

* Medical Imaging Interaction Toolkit

The popularity of smartphone and tablet devices are significantly increasing the

accessibility of AR applications - many AR examples can be downloaded from both

the App stores of Android and iOS platforms. In this section, three popular mobile

AR Software Development Kits (SDKs) are introduced and medical AR applications

are summarized in Table 2.3.

ARToolKit (DAQRI 2016) is a widely used open-source tracking library originally

developed in 1999 and released by the University of Washington HIT Lab (Kato and

Billinghurst 1999). After several iterations, ARToolKit has become one of the first

AR SDKs for mobile devices running on Symbian, iOS and Andriod. The version

5.2 of ARToolKit has included some features that were previously only available in

the professional licensed version. In particular, natural feature tracking was made

availabl, which could be regarded as markerless tracking.

Vuforia (PTC 2018) is a commercial SDK for AR focused on mobile devices with

over 175,000 registered developers. It has been used in apps for advertising, educa-
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tion, games and tourism, etc., with more than 200 million app installed worldwide.

Vuforia provides an API in C++, Java, Objective-C, and the .Net languages. It is

also available as an extension to the Unity 3D games engine, which allows Vuforia-

based applications to support iOS and Android. Like most of the AR SDKs, Vuforia

uses computer vision technology to recognize and track planar images (marker and

markerless images), but also supports text markers and simple 3D objects, such

as boxes and cylinders in real-time. As a commercial SDK, Vuforia has some fea-

tures that other AR SDKs do not have, such as Vuforia Cloud Recognition Service,

which allows Vuforia-enabled applications to recognize image targets through a cloud

database, giving developers the ability to update targets dynamically. The free ver-

sion of the Vuforia software has a watermark on the camera view that cannot be

removed and only 1,000 cloud-based recognitions can be performed.

Figure 2.9: Brain Visulization on an AR Smartphone application using Metaio SDK.
Image courtesy of José Soeiro, Ana Paula Cláudio, Maria Beatriz Carmo and Hugo
Alexandre Ferreira (Soeiro et al. 2015).

Metaio (Apple 2018) produced a successful commercial SDK for AR applica-

tions. The Metaio SDK had a large community of developers with more than 1,000

customers and 150,000 users worldwide in 30 countries. Sale of the SDK ceased in

May 2015 following the purchase of the company by Apple, Inc. (Cupertino, CA)
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(Wakabayashi 2015). The Metaio SDK included a powerful 3D rendering engine in

addition to plug-ins for Unity 3D. Metaio supported markerless 2D and 3D Tracking.

Users could also create a complete AR scenario without specialized programming

knowledge through a drag and drop interface called Metaio Creator. Fig. 2.9 is

from one example of a medical AR application built using the Metaio SDK (Soeiro

et al. 2015).

ARKit (Apple 2017) and ARCore (Google 2017) are the newly released mobile

AR SDKs by Apple and Google. They are well calibrated with the sensors on their

phones (e.g. camera and IMU) that provide best AR experience on mobile phones.

The plane detections is also supported to delivery MR interactions.

As can be seen from Table 2.3, Vuforia is currently the most popular SDK for de-

veloping AR medical mobile applications. There is no particular bias towards either

Android or iOS platforms. A recent study (Egui Zhu 2014) focused on the mobile

AR in medical education has reported that AR with mobile technology could pro-

vide compelling, contextual, and situated learning experiences to medical students.

Although some mobile AR applications are used in surgical planning and guidance,

these are currently only prototypes built to demonstrate feasibility of using AR, and

yet to gain regulatory approval.

2.3.4 Tracking

The tracking of real objects in a scene is an essential component of AR. This may

involve detection and tracking of specific markers placed in the real world, which

mark the location for the augmented content, or to use computer vision techniques

to continuously track an object or person. The following summary is relevant to all

applications of AR, not just medical.

2.3.4.1 Marker-based Tracking

Marker-based AR methods use distinctive specially designed markers that can be

calibrated and tracked. During the early stages of AR development, marker-based
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tracking was the most commonly used method to place a virtual object in real

world. It is straightforward to implement and reliable for pose estimation. Several

modalities of markers have been used, including optical trackers, magnetic trackers,

and planar markers.

There are two types of optical tracking approaches: active and passive. An

active marker is typically composed of infrared light-emitting diodes (ILED) that

use near infrared light (approx. 850nm). Although this wavelength is invisible to

human eyes, most camera sensors can detect it (Maletsky et al. 2007). Alternatively,

passive markers are retro-reflective spheres that can be triangulated by identifying

their position on a series of cameras mounted at different locations. Wiles et al

(Wiles et al. 2004) compared the accuracy of active and passive optical tracking and

reported that passive markers given slightly worse results than the active markers,

but not significantly. Typical optical trackers usually can achieve an accuracy of

0.35mm (Wiles et al. 2004). Recently, smaller afocal optical markers (Chae et al.

2015) appeared to be extremely accurate (a position error of 219µm was reported)

compared to conventional optical trackers. Optical trackers are commonly used

in image-guided surgery (Ieiri et al. 2012) (Daly et al. 2010) (Zhang et al. 2013)

(De Paolis and Aloisio 2010) (Wieczorek et al. 2010) due to the high accuracy that

is needed. Some optical markers are specially made with iodine and gadolinium

elements so that they can display high intensity in both X-ray/CT images and

MR images (Maurer Jr et al. 1997). They can be attached to patient’s skin or

screwed into the bone of the skull to be visible both in CT/MR scanners and to

an optical camera. This makes the registration between CT/MR images and video

images easier in AR medical applications (Khan et al. 2006) (Nicolau et al. 2005).

However, an optical tracking system also requires a free line-of-sight between the

optical marker and the camera. Robotic methods have been attempted to overcome

this restriction by using an optimization based control method to re-configure the

optical tracker when the occlusion problem occurs (Wang et al. 2015b). Optical

tracking is impossible, however, during laparoscopic surgery, when the camera is

inside patient’s body.
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Magnetic tracking systems (Raab et al. 1979) offer an alternative approach with-

out the direct view of tracking sensors. They use a magnetic-dipole source to gener-

ate a three-axis low-frequency quasi-static magnetic field. As sensors interact within

the field, positional and orientation information relative to the source is generated.

Kwartowitz et al (Kwartowitz et al. 2010) designed a phantom system to analyze

the accuracy of two magnetic tracking systems used in image-guided surgery. The

result shown that the average accuracy for all systems was greater than 3mm and

gradually decays with distance from the field. The main working principles, error

sources, tracking accuracy and robustness of the electromagnetic tracking technol-

ogy in medicine were discussed in (Franz et al. 2014). Magnetic tracking in medical

applications also lack robustness due to interference caused by diagnostic diagnostic

devices or other ferromagnetic objects. An averaged accuracy of 1.0 mm, however,

can be achieved by magnetic trackers in good environments (Franz et al. 2014).

Figure 2.10: A marker-based AR 3D guidance system for percutaneous vertebro-
plasty; the augmented red line and yellow-green line indicate the ideal insertion point
and needle trajectory. Image courtesy of Yuichiro Abe, Shigenobu Sato, Koji Kato,
Takahiko Hyakumachi, Yasushi Yanagibashi, Manabu Ito and Kuniyoshi Abumi
(Abe et al. 2013).

The use of planar markers, such as the example shown in Fig. 2.10, is one of

the popular approaches for medical AR applications (Abe et al. 2013) (Loukas et al.

2013) (Lee et al. 2013) (HOSTETTLER et al. 2011) (Hu et al. 2013) (Azimi et al.

2012). Planar markers can be in many forms, such as concentric circles (Gatrell

et al. 1992) (Calvet et al. 2012), square-shaped markers (Kato and Billinghurst
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1999) (Fiala 2005) and barcode-based tags (Naimark and Foxlin 2002) (Rekimoto

and Ayatsuka 2000). ARToolKit (DAQRI 2016) is a popular open source platform

for rapid development of AR applications (see also section 2.3.3.2). ARToolKit

markers consist of a black square border with a user defined image in the interior.

The outside border is used to restore perspective distortion and estimate pose to

match the interior pattern with templates. The usability, efficiency, accuracy, and

reliability of marker based AR system, including ARToolKit, have been reported in

(Zhang et al. 2002). The results showed that marker detection and decoding are

fast and stable in ARToolKit, achieved the best scores in several aspects. Although

being very useful for many applications, planar markers are prone to occlusion with

a limited detection range and orientation. In addition, AR for minimally-invasive

surgery is not possible to use these markers.

2.3.4.2 Markerless Tracking

In contrast to the marker based tracking system, markerless AR utilizes the real-

world scenes and employs computer vision algorithms to extract image features as

markers. The quality of markerless tracking, therefore, highly depends on light-

ing conditions, view angle and image distortion, as well as the robustness of the

computer vision algorithm used. Markerless AR, however, enables a more natural

AR experience with a wider range of applications, especially for medical applica-

tions such as the minimally-invasive surgery (Haouchine et al. 2015) (Elhawary and

Popovic 2011).

The fundamental principles behind markerless AR are computer vision algo-

rithms for feature detection and tracking, a process that usually contains three

steps: detection of natural feature points; identification of discriminative descrip-

tions (e.g. descriptors) of each feature point, as well as matching of feature points

in image sequences. Feature points and descriptors are carefully selected and built

to be invariant to affine transformation, light conditions, occlusion and noise to

guarantee the robustness of the tracking performance in AR.

Scale Invariant Feature Transform (SIFT) (Lowe 2004) is one of the most widely
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used and cited feature point detection and description algorithms. SIFT employs

Histograms of Gradients (HoG) of neighbourhoods of feature points to construct

128-length descriptors as features. However, such a long descriptor does restrict

its direct use in real-time AR applications. Later work (Ke and Sukthankar 2004)

has shortened the feature matching time by applying Principle Component Analysis

(PCA) to the descriptor and reduced the length of the descriptor to 36 for fast fea-

ture matching. However, features detected by this method are less distinctive than

those by SIFT, and applying PCA can also slow down the computation. Similar

to SIFT, Speed-up Robust Feature (SURF) algorithm (Bay et al. 2006) constructs

a descriptor by summing Haar wavelet responses in the neighborhood of the fea-

ture points, resulting in faster performance than SIFT. Fig. 2.11 is taken from an

example application that combines markerless SURF with an optical flow feature

tracking (Plantefève et al. 2016). Further work using binary descriptors like Binary

Robust Independent Elementary Features (BRIEF) (Calonder et al. 2010), Oriented

FAST and Rotated BRIEF (ORB) (Rublee et al. 2011), Binary Robust Invariant

Scalable Keypoints (BRISK) (Leutenegger et al. 2011) and Fast Retina Key- point

(FREAK) (Alahi et al. 2012) can be much faster than HoG-based descriptors be-

cause comparing a binary string can be implemented by comparing the Hamming

distance between them, which is equivalent to the sum of the XOR operation.

Mountney et al (Mountney et al. 2007) evaluated the performance of feature

descriptors in computer vision to be used for tracking deformable soft tissue during

MIS and concluded that best performing descriptors are Spin (Johnson 1999), SIFT,

SURF, DIH (Ling and Jacobs 2005) and GLOH (Mikolajczyk and Schmid 2005). A

novel probabilistic framework was proposed to combine multiply descriptors, which

could reliably match significantly more features than by using individual descriptors.

Experimental results showed that such fusion of descriptors could match a greater

number of features even in the presence of large tissue deformation.

If images are acquired in a set of time steps, it is also possible to use optical flow

(Horn and Schunck 1981) to compute the camera motion and track feature points

(Mirota et al. 2011). Optical flow is defined as a distribution of apparent velocities
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Figure 2.11: The markerless SURF feature on a liver rendered in the endoscopic
video. Image courtesy of Rosalie Planteféve, Igor Peterlik, Nazim Haouchine,
Stéphane Cotin (Plantefève et al. 2016).

of brightness patterns in an image (Horn and Schunck 1981), which can be used

to track the movement of each pixel based on changes of brightness/light, which

could be 10 times faster than SIFT feature construction (Lee and Hollerer 2008).

Much of the literature in medical AR applications (Haouchine et al. 2015) (Haouch-

ine et al. 2014) (Stoyanov et al. 2005b) (Stoyanov 2012) combines computationally

expensive feature tracking with a light-weight optical flow tracking to overcome the

performance issue of AR tracking. This approach only detects features periodically

or only for initialization, while using optical flow to track feature points during the

rest of the process (Lee and Hollerer 2008).

Particular challenges for medical AR are due to occlusions (from instruments,

smoke, blood), organ deformations (respiration, heartbeat) (Puerto-Souza and Mar-

iottini 2013) and the lack of texture (smooth regions and reflection of tissues). These

factors mean that prior feature point detection and description methods designed

for computer vision have limited capabilities in providing stable, consistent and

real-time tracking for tissue surfaces(Yip et al. 2012). A custom framework for ac-
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curately tracking tissues in surgery has therefore been investigated. in which, a

STAR detector (derived from CenSurE (Agrawal et al. 2008)) was combined with

a binary feature descriptor (BRIEF) to acquire robust salient features that can be

tracked persistently on tissue surfaces in real-time. Evaluation results shown that

the proposed framework outperforms other popular feature tracking algorithms with

In vitro tissue experiments on kidney, heart and liver reported registration errors of

only 1.3 to 3.3 mm. The hierarchical multi-affine (HMA) (Puerto-Souza and Mari-

ottini 2013) feature-matching method was another approach specially designed for

endoscopic images, which was proven (Puerto and Mariottini 2012) to be superior

to the popular feature-matching methods frequently used in computer vision such

as the nearest neighbor distance ratio (Lowe 2004) used in the original SIFT al-

gorithm. HMA utilizes multiple affine transformations to pair features accurately

between the two images. Tested in a large database with more than 100 pairs of

MIS images obtained from real interventions, the HMA method outperformed the

existing state-of-the-art methods in terms of speed, detection rate, and accuracy

(Puerto-Souza and Mariottini 2013).

With the development of surgical instruments, stereo vision in MIS can be used

to generate more robust and precise tracking. Chang et al (Chang et al. 2014a)

presented a real-time visual odometry system for stereo endoscopy by dense quadri-

focal tracking as shown in Fig. 2.12. By optimising the photometric energy function

with respect to a camera pose constrained by the quadrifocal geometry, the move-

ment of the endoscope can be estimated. The non-convex Tukey M-estimator is also

used to rejects outliers for a robust tracking. Evaluation results were promising for

synthetic, phantom and clinical data sequences.

2.3.5 Registration Techniques

Once the location for the augmented content has been determined, then this content

(often computer-generated graphics) is overlayed or registered into the real word

scene. Registration techniques usually involve an optimization step to minimize the

difference (energy function) between virtual objects and real objects. For example,
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Figure 2.12: AR overlay onto laparoscopic images using a dense visual odometry
method. Image courtesy of Ping-Lin Chang, Ankur Handa, Andrew J. Davison,
Danail Stoyanov, Philip “Eddie” Edwards (Chang et al. 2014a).

using the 3D to 3D Iterative Closest Point (ICP) (Best and McKay 1992) technique,

or other 2D to 3D algorithms (Markelj et al. 2012).

Wang et al (Wang et al. 2014) used an automatic marker-free image registration

method in AR navigation of dental surgery. Patient image registration was achieved

by matching a 3D teeth contour to a preoperative model derived from CT data.

After the initial registration, the ICP algorithm was utilized to track the contours.

The author reported that the overall mean error of the 3D image overlay was 0.71

mm, which was clinically satisfactory.

An improved ICP algorithm employed a weighting and perturbing strategy to

increase robustness and noise resistance (Lee et al. 2012). The algorithm was tested

to perform markerless registration between facial surfaces from preoperative CT

images and stereo cameras, which allowed user to see the superimposed CT image

on the corresponding position in the real word.

A biomechanical-based registration method was presented for pre- and intra-
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operative 3D image fusion for laparoscopic surgery (Oktay et al. 2013). In this

work, a gas insufflation model was built with pre-operative images using finite ele-

ment model (FEM) to perform constrained registration with intra-operative images.

Gradient ascent approach was then used to maximize the similarity measure by

updating parameters of the FEM model. The validation on synthetic human CT

and in vivo pig CT scans reported a mean registration error of 0.88mm to 1.75mm,

which showed the applicability of the method in laparoscopic surgeries.

Registration of 2D to 3D (Markelj et al. 2012) (Chen et al. 2013) (Weese et al.

1997) is also effective for preoperative 3D data such as CT and MR images with

intra-operative 2D data such as ultrasound (US), projective X-ray (fluoroscopy),

CT-fluoroscopy, as well as optical images. These methods usually involve marker-

based (external fiducial markers), feature-based (internal anatomical landmarks)

or intensity-based methods that find a geometric transformation that brings the

projection of a 3D image into the best possible spatial correspondence with the 2D

images by optimizing a registration criterion (Markelj et al. 2012).

Registration of virtual anatomical structures within minimally-invasive surgery

(MIS) video (Lamata et al. 2010) (Marescaux and Diana 2015) (Mirota et al. 2011)

(Nicolau et al. 2011) (De Paolis and Aloisio 2010) is a much discussed topic. AR

in MIS can significantly improve the quality outcomes of MIS. However, due to

the problems of limited FOV, organ deformation, occlusion and no marker-based

tracking possible, registration in MIS is still an unsolved problem.

A 3D to 3D ICP registration using image-based tracking to superimpose a 3D

model onto laparoscopic images for partial kidney resection has been reported in (Su

et al. 2009).The registration of 3D to 3D is performed assuming a rigid environment

disregarding elastic deformations of kidney during surgery, which could be quite

different from the pre-operative CT images.

Therefore, there are three big challenges when performing registrations in MIS,

such as in laparoscopic liver surgery (Haouchine et al. 2015) (Plantefève et al. 2016):

1. Limited FOV of endoscope can only capture 30% – 40% of the whole liver

surface.
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Figure 2.13: Registration of a physically-based liver model during minimally invasive
liver surgery (Haouchine et al. 2013) (Haouchine et al. 2015). Top: Computer-
generated heterogeneous liver model with the vascular network and the liver after
deformation. Bottom: The superimposition of the real-time bio-mechanical model
onto the human liver during surgery. Image courtesy of Nazim Haouchine, Jérémie
Dequidt, Igor Peterlik, Erwan Kerrien, Marie-Odile Berger and Stéphane Cotin

2. Laparoscopic surgery requires inflation of abdomen with CO2, which makes

the shape of liver different from the pre-operative CT scan.

3. Liver is continuously moving due to both breathing and cardiac motions.

Referring to Fig. 2.13, a patient specific model was built from the pre-operative

data and converted into a FEM model (with internal structures preserved such as

tumours and vessels). A multi-step registration process was then used to align the

FEM model with the real liver. The corresponding anatomical features were firstly

manually labeled and ICP was used for the initial alignment. Temporal registra-

tion was then achieved by minimising an energy function between the internal force

(generated by the displacement of points in FEM model) and the external force

(the distance between the corresponding anatomical feature points). Feature points

extracted by SURF and optical flow algorithms were used to track corresponding

feature points for continuous elastic tracking. Although there were some failed reg-

istration cases at some positions, the in vivo test reported that the mean Hausdorff
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distance between the FEM model mesh and the point cloud on the real liver was

below 1.1 mm.

Simultaneous Localisation And Mapping (SLAM) (Dissanayake et al. 2001) was

originally developed for the purpose of autonomous robot navigation in an unknown

space. It has subsequently been applied to solve the problem of camera pose esti-

mation in AR. In fact, AR has a very similar challenge as with robot navigation i.e.

both need to get a map of the surrounding environment and locate current position

and pose of cameras(Castle et al. 2008). However, applying SLAM on single hand-

held cameras (such as endoscopy cameras) is more complicated than with robot

navigation as a robot is usually equipped with odometry tools and will move more

steadily and slowly than a portable camera (Klein and Murray 2007). Non-linear

SLAM was typically implemented as an Extended Kalman Filter (EKF) (Smith and

Cheeseman 1986), where system noise was assumed Gaussian and non-linear models

were linearized to suit the Kalman filter algorithm to solve the probabilistic SLAM

problem (Bailey et al. 2006).

A monocular SLAM 3D model that combines an EKF with JCBB (Joint Com-

patibility Branch and Bound) (Neira and Tardós 2001) data association algorithm

was proposed for endoscope image sequences (Grasa et al. 2009). A sparse abdom-

inal cavity 3D map was created, and the motion of the endoscope was computed

in real-time. This work was later improved (Grasa et al. 2011) by combining EKF

monocular SLAM with 1-point RANSAC (Random Sample Consensus) (Civera et al.

2010) (Grasa et al. 2014) to deal with high outlier rate that occurs in real time and

also to reduce computational complexity as shown in Fig. 2.14.

A Motion Compensated SLAM (MC-SLAM) framework for image guided MIS

was presented (Mountney and Yang 2010a) , which predicted not only camera mo-

tions, but also employed an algorithm to learn a high-level model for compensating

periodic organ motion, enabling estimation and compensation of tissue motion even

when it is outside the camera’s FOV. This framework was tested on both ex vivo

and in vivo experiments; the augmented virtual tumor was consistently attached

to the organ at the presence of both laparoscope and tissue motions. Based on
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Figure 2.14: The monocular SLAM system used in MIS (Grasa et al. 2014). Left:
Camera trajectory, 3D map and ellipses in 3D; Right: SLAM AR measurement,
Map and ellipses over a sequence frame. Image courtesy of Óscar G. Grasa, Ernesto
Bernal, Santiago Casado, Ismael Gil and J. M. M. Montiel.

this work, an AR framework for soft tissue surgery was proposed (Mountney et al.

2014). This approach utilized intra-operative cone beam CT and fluoroscopy as

bridging modalities to register pre-operative CT images to stereo laparoscopic im-

ages through non-rigid biomechanically driven registration. In this way, manual

alignment or fiducial marker were not required and also tissue deformation caused

by insufflation and respiration during MIS was compensated while allowing AR

overlays to be superimposed on laparoscope images.

2.4 Conclusion

In this Chapter, a data-mining based method is proposed for topic classification

and trend analysis, along with a systematic technology review that covers recent

AR technologies and applications. During the paper review process, I found the

perception of the environment using camera is extremely important and useful for

AR and can enable many advanced applications. Therefore, the research problem

for this PhD project was identified as: vision-based dense surface reconstruction for

geometry-aware AR. In next Chapter, the research problem and hypothesis will be

presented following with a more focused literature review.
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Chapter 3

Problem Statement & Literature

Review

3.1 Problem Statement

In Minimally Invasive Surgery (MIS) such as laparoscopy procedures, an endoscope

is inserted into the patients’ body to reach internal organs through very small inci-

sions. By performing MIS, patients can benefit from small incisions, less pain, low

risk of infection and quick recovery time. However, while MIS offers considerable

advantages to the patient, they are also imposing several additional difficulties on

the surgeons. Different from open surgery, where the organs are exposed to the

surgeon, in MIS, complex operations were carried out through the 2D visual display

of video streams from the endoscopic camera. The limited FOV, the lack of depth

perception and unnatural interaction will limit the performances of surgeons.

There were 8061 device malfunctions, 1391 injuries and 144 deaths recorded

among a total of 1.7 million MIS procedures carried out between 2000 to 2013

(Alemzadeh et al. 2016). The numbers are still rising as MIS procedures become

common. During MIS, surgeons have to find the target and perform complex op-

erations under a small FOV endoscopic video stream. Errors are mainly due to

disorientation, hand-eye disalignment and the difficulty of identifying surgical sites

through mentally matching the laparoscopic view with pre-operative images (Kim
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et al. 2012). Therefore, automatically overlaying surgical target locations on laparo-

scopic images is a highly important research topic in order to assist surgeons during

MIS. Not only the solution will benefit surgeons, but also for patients due to reduce

the likelihood of surgical errors and complications.

Recent advances in computer hardware and software technologies have enabled

the use of computer vision techniques for MIS scene guidance and information aug-

mentation, for example, using AR guidance systems to visualized pre-operative CT

images (Kim et al. 2012) (Su et al. 2009), AR-based tumour visualization in laparo-

scopic surgery (Bourdel et al. 2017), and AR mapping for anatomy structures in

liver MIS surgery (Haouchine et al. 2013) (Haouchine et al. 2015). In MIS, however,

the luminance changes dramatically and also the movement of endoscope can also

change rapidly during the insertion and the extrusion, which impose some particu-

lar challenges. The traditional tracking method for AR used in MIS scene usually

involves the method of feature points tracking, such as the Scale-Invariant Feature

Transform (SIFT) (Kim et al. 2012), Speeded Up Robust Features (SURF) (Kumar

et al. 2014), Optical Flow tracking (Planteféve et al. 2016) and other approaches

specifically designed to work with soft tissues to account for scale, rotation and

brightness (Mountney and Yang 2008). However, these invariant descriptors are

aimed at 2D tracking, and the depth perception issue remains unsolved (i.e. infor-

mation regarding the depth of elements within a scene has not been recovered). In

these algorithms, the selected feature points extracted from vision algorithms must

be within the field of view. With these drawbacks, traditional feature tracking meth-

ods can severely affect the precision of virtual guidance, especially in the surgical

scenes where accuracy is paramount.

A stereo endoscope will improve the depth perception problem, and such sys-

tems are now integrated into robotic systems (e.g. the da Vinci system from Intuitive

Surgical, Inc.) or with the use of proprietary stereo cameras. 3D depth informa-

tion can be recovered using the disparity map from rectified stereo images during

a laparoscopic surgery (Stoyanov et al. 2004) (Stoyanov et al. 2005a), so that a

3D reconstruction using dense point clouds captured in the laparoscopic scene can
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be achieved by a propagation method (Stoyanov et al. 2010) and/or a cost-volume

algorithm (Chang et al. 2013). Stereo vision based reconstructions, however, can

only recover the structure within localised frames without a global overview of the

entire scene, which is very sensitive to noise and luminance changes (as mentioned

above). When using robotic surgical systems, surgeons need to wear 3D glasses or

view through a binocular interface. In addition, compared with monocular endo-

scopes, stereo endoscopic surgery is still too expensive to be widely used in practice.

Therefore, there is an urgent need for the technology of on-the-fly building global

surface using monocular camera (e.g. during monocular MIS or games with monoc-

ular camera). Providing this global structural information will not only improve

the perception of depth in monocular surgical procedures, but also have promising

applications when combined with AR technology for providing geometry-aware AR

guidance.

3.2 Research Hypothesis

Here, the research hypothesis of this thesis is given:

It is hypothesized that, the dense 3D surface of objects such as internal or-

gans can be reconstructed from a live video feed using a novel vision-based approach,

enabling more Augmented Reality applications in MIS and other fields, and so im-

proving the user experience.

3.3 Camera Tracking for AR

3.3.1 Feature-based 2D Tracking

Recent advances in computer hardware and software technologies have facilitated

the use of computer vision techniques for MIS scene guidance and information aug-

mentation. For example, AR guidance systems have been used to visualize pre-

operative CT images (Kim et al. 2012) (Su et al. 2009), for tumour AR visualization

in laparoscopic surgery (Bourdel et al. 2017) and anatomy structures AR mapping
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in liver MIS surgery (Haouchine et al. 2013) (Haouchine et al. 2015). There are,

however, some particular challenges faced with AR in MIS. The luminance changes

dramatically and an endoscope can move rapidly during insertion and extrusion.

The traditional MIS AR approaches usually employ feature points tracking meth-

ods for information overlay. Feature based 2D tracking methods such as Kanade-

Lucas Tomasi (KLT) features (Du et al. 2015) (Planteféve et al. 2016), Scale-

Invariant Feature Transform (SIFT) (Kim et al. 2012), Speeded Up Robust Features

(SURF) (Kumar et al. 2014), Optical Flow tracking (Planteféve et al. 2016) or even

those methods specifically designed to cater for the scale, rotation and brightness

of soft tissue (Mountney and Yang 2008) have several major drawbacks for AR. As

these invariant descriptors are designed for 2D tracking, the information regarding

the depth within a scene has not been recovered and the selected feature points

extracted from vision algorithms must be within the field of view. This result in the

lack of global information in AR augmentations and the difficulty of acquiring these

features pre-operatively. Also, traditional feature tracking methods can severely

affect the precision of procedure guidance, especially in surgical scenes where the

accuracy is paramount.

3.3.2 SLAM-based 3D Tracking

Recently, the maturity of the method of simultaneous localization and mapping

(SLAM) designed for robot navigation in unknown 3D environments has opened up

new opportunities for developing novel endoscopic camera tracking approaches in

MIS. SLAM-enabled systems make it possible to estimate the 3D structure of the

MIS scene from a moving endoscope camera and simultaneously track the pose of

the camera. The scenario of the camera tracking and scene reconstruction in endo-

scopic surgeries is similar to that of a typical SLAM application in robotic vision,

albeit with additional challenges. SLAM-enabled AR systems not only improve the

usability of AR in MIS due to no optical or magnetic tracking devices to obstruct

the surgeons’ view, but they also offer greater accuracy and robustness compared

with traditional feature-based AR systems. Based on the tracking methods, there
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are two types of SLAM systems: Direct-based SLAM and Feature-based SLAM.

Direct-based SLAM algorithms compare pixels (Engel et al. 2014) or recon-

structed models (Chang et al. 2014b) (Turan et al. 2017) of two images to estimate

camera poses and reconstruct a dense 3D map by minimising the photometric er-

rors. However, direct methods are more likely to fail when dealing with deformable

scenes or when the illumination of the scene is inconsistent. Feature-based SLAM

systems (Klein and Murray 2007) (Mur-Artal et al. 2015) only compare a set of

sparse feature points that are extracted from images. These methods estimate cam-

era poses by minimising the re-projection error of the feature points. Therefore,

feature-based SLAM methods are more suitable for MIS scenes due to it’s tolerance

to illumination changes and small deformations.

Feature-based SLAM such as EKF-SLAM has been used with laparoscopic image

sequences (Mountney et al. 2006) (Mountney and Yang 2009) (Grasa et al. 2014) and

a further motion compensation model (Mountney and Yang 2010a) and stereo semi-

dense reconstruction method (Totz et al. 2011) were integrated into the EKF-SLAM

framework to deal with periodic deformation. However, the accuracy of EKF-SLAM

tracking is not guaranteed and prone to inconsistent estimation and drifting due to

the linearization of motion model and sensor models approximated by a first-order

Taylor series expansion. The first keyframe-based SLAM – PTAM (Parallel Tracking

and Mapping) (Klein and Murray 2007) was a breakthrough in visual SLAM and

has been used in MIS for stereoscope tracking (Lin et al. 2013). The extension of

PTAM – ORBSLAM (Mur-Artal et al. 2015) has also been tested on endoscope

videos with map point densifying modifications (Mahmoud et al. 2016), but the loss

of accuracy still exists. Furthermore, since feature-based SLAM systems can only

reconstruct maps based on sparse landmark-points that barely describe the detailed

3D structure of the environment, the augmented AR content has to be mapped onto

a plan through planar detection algorithms such as Random Sample Consensus

(RANSAC) (Lin et al. 2013). Although feature-based SLAM is computationally

efficient, different to real-life environments, in MIS scenes, flat surfaces are rare

and organs and tissues do have smooth and curved surfaces, hence, resulting in
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inaccurate AR content registration. One example is the inaccurate labelling and

measurement of tumour size without accurate surface fit for information overlay,

which can be dangerous and misleading during MIS.

3.4 3D Dense Surface Reconstruction

Another problem for feature-based based SLAM method is the lack of dense map.

The saved feature points are usually very sparse for fast computation, which makes

the map unexplainable and useless for further surface based applications. With

external devices apart from camera, there are several practical solutions for 3D

structure reconstructions, such as Constraint-based factorization methods (CBFM)

(Wu et al. 2007), but external tracking devices are needed to provide the surgical

instruments position. Lin et al (Lin et al. 2017) combined structured lighting with

structure from motion for monocular endoscopic image reconstruction. Although

special optical probe is needed, better reconstruction density and robustness are

achieved with the extra benefit of super spectral resolution. The use of external

device makes the reconstruction more accurate and reliable, but can also reduce its

usability in practice. With the development of computer vision algorithms, there

are several approaches to achieve purely image-based reconstruction.

3.4.1 Stereo Depth Estimation

The problem of stereo images depth estimation has been well studied for a long

time (Barnard and Fischler 1982) (Scharstein et al. 2001). With the theory of

epipolar constraint, accessing depth from stereo images can be regarded as a well-

posed problem when ignoring the occlusions and depth discontinuities. Many stereo

vision algorithms managed to achieve comparable results to ground truth depth ac-

quired from depth sensors (Hirschmuller 2008) (Kendall et al. 2017). In laparoscopic

surgery, 3D depth information can then be recovered using the disparity map from

rectified stereo images (Stoyanov et al. 2004) (Stoyanov et al. 2005a) (Chen et al.

2017c), so that a 3D reconstruction using a dense point cloud of the laparoscopic
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scene can be achieved by a propagation method (Stoyanov et al. 2010) and/or a

cost-volume algorithm (Chang et al. 2013).

3.4.2 Monocular Depth Estimation

In contrast, estimating depth from monocular images is an ill-posed problem that

is inherently ambiguous (Eigen et al. 2014), and many research efforts have been

devoted to the problem of monocular image depth estimation. One of the classic

methods is Shape from Shading (SFS) (Zhang et al. 1999), which is based on the

gradual variation of shading as a cue to estimate the shape and depth. The SFS

is also used for inferring the depth from monocular endoscopic images (Visentini-

Scarzanella et al. 2012). However, SFS has a strict prior assumption of Lambertian

reflectance, uniform color and texture, and fixed light source direction, which are not

applicable to most of the images in the real world. Especially in MIS environment,

the diffuse and specular reflection do exist due to the complex surface conditions

of different tissues which will severely affect the accuracy of shape from shading.

Saxena et al (Saxena et al. 2006)(Saxena et al. 2007)(Saxena et al. 2008)(Saxena

et al. 2009) used Markov Random Field (MRF) incorporated with multiscale image

features to learn monocular cues in a supervised manner. However, the hand-craft

local features used in these approaches limit the expressive power of supervised learn-

ing, and lack a global contextual understanding of the scene for learning consistent

depth.

3.4.3 DCNNs based Monocular Depth Learning

More recently, DCNNs (Eigen et al. 2014) (Eigen and Fergus 2015) are introduced

to solve the challenge of monocular depth estimation problem, and has pushed the

state-of-the-art forward in this area. Building on the success of this approach,

several improvements have been made by incorporating probabilistic models such as

Conditional Random Fields (CRFs)(Li et al. 2015) (Liu et al. 2014) (Hua and Tian

2016) (Liu et al. 2016) (Xu et al. 2017), advanced network structures such as Resnet
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(Laina et al. 2016), two-streamed networks (Li et al. 2017b), multi-task joint training

(Ladický et al. 2014) (Eigen and Fergus 2015) (Wang et al. 2015c) (Mousavian

et al. 2016) (Yan et al. 2018) and novel loss functions such as sparse supervision

(Kuznietsov et al. 2017), relative depth (Zoran et al. 2015)(Chen et al. 2016) and

depth as classification (Cao et al. 2017). Impressive as these works are, ground-truth

depth data are still needed for the supervision of training these DCNNs. However,

it is still very difficult to build a large dataset with groundtruth for surgical scenes.

3.4.4 Unsupervised Monocular Depth Learning

Driven by DCNNs, view synthesis technology (Fitzgibbon et al. 2003) has proven to

be effective on synthesizing new views by sampling pixels from existing views (Zhou

et al. 2016) (Flynn et al. 2016), which enables novel frameworks of unsupervised

learning of monocular depth from stereo pairs, e.g., Deep3D (Xie et al. 2016), Garg

et al (Garg et al. 2016). The works by Godard et al (Godard et al. 2017) and Zhou et

al (Zhou et al. 2017) advanced the networks by incorporating left-right consistency

and pose estimations. However, a common weakness of these approaches is the use

of pixel-wised photometric loss (L1-norm) to construct loss functions to guide the

back-propagation process. Gradients are derived from the pixel intensity difference

(Zhou et al. 2017), which will lead to ambiguous gradients in texture-less areas and

also in the regions that contain the mixture of thin structures and texture-less areas.

Although multi-scale and smoothness loss functions are used to prevent such issue

(Garg et al. 2016) (Godard et al. 2017) (Zhou et al. 2017), the result is still not

desirable and gradients are still likely to converge to local minimums due to the

ambiguous pixel-wise loss.

3.5 Summary

In summary, the camera tracking and surface reconstruction technologies are both

well developed in recent years. Camera tracking is the main enabling technology for

AR, and there are many existing methods that are suitable for persistent and large-
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scale camera tracking for AR. Whereas surface reconstruction technology is seldom

applied in the scope of AR, and there lack a systematic framework for on-the-fly

incrementally building global surfaces during AR. This technology is essential for

geometry-aware AR and the more advanced context-level AR.

60



Chapter 4

Monocular-based Online Dense

Surface Reconstruction for

GA-AR

4.1 Introduction

In Minimally Invasive Surgery (MIS), medical procedures are technically demand-

ing, and the difficulty is exacerbated by well-known issues and restrictions associated

with MIS, such as the limited field of view (FOV), lack of hand-eye alignment and

orientation, and the lack of stereoscopic depth perception in monocular endoscopy.

Augmented Reality (AR) technology can help overcome these limitations by overlay-

ing additional information onto the real scene such as annotations at target surgical

locations (Kim et al. 2012), labels (Su et al. 2009), measurements of tumour sites

(Bourdel et al. 2017) or even overlay a 3D reconstruction of anatomy (Haouchine

et al. 2013) (Haouchine et al. 2015).

Despite recent advances in powerful miniaturized AR hardware devices and im-

provements on vision based software algorithms, many issues in medical AR remain

unsolved. In particular, the dramatic changes in tissue surface illumination and

tissue deformation as well as the rapid movements of the endoscope during insertion
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and extrusion, all give rise to a set of unique challenges that call for innovative ap-

proaches. As with any other technological assisted medical procedure, the accuracy

of AR in MIS is paramount.

The miniaturized devices in MIS mean that the Field of View (FOV) captured

by a monocular endoscopic camera is usually very small, for example, only 30%

to 40% of the whole liver surface is visible in one frame at one time (Planteféve

et al. 2016). Traditional AR approaches (i.e. marker-less AR) for MIS are mainly

based on feature tracking methods that require those selected feature points to

be within the field of view (Haouchine et al. 2013). Given the restricted FOV, the

algorithmic limitations of traditional methods can severely affect the precision of AR

for procedure guidance. Our proposed geometry-aware AR framework addresses the

issue by providing global 3D geometric information of the entire surgical scene so

that the information overlay does not depend on the frame by frame local feature

extractions, hence, greatly improving the reliability of AR augmentations.

Studies have shown that a typical human uses 14 visual cues to perceive depth,

and 11 of the 14 cues do not require binocular vision (Dunkin and Flowers 2015).

For example, depth information can be inferred in monocular vision through occlu-

sions, motion parallax, shadows and texture gradient, and relative size and familiar

size etc. The cognitive process of monocular vision enables surgeons to perform la-

paroscopic under a 2D environment (Mistry et al. 2013). However, monocular depth

cues can only roughly estimate the general depth between objects, the accurate dis-

tance between objects cannot be perceived (Saunders and Backus 2006). Although

examples of stereoscopic endoscopes do exist, they are not commonly accessible

in medical practice (Velayutham et al. 2016) (Wagner et al. 2012). We address

the aforementioned challenges by providing accurate geometric measurements and

artificially generating depth cues through AR technology, which are important im-

provements in monocular endoscope environment for surgeons to carry out complex

procedures. In our AR framework, the distance between objects can be deciphered

by relative sizes of AR labels and annotations.

A stereo endoscope can provide stereoscopic vision and such systems are currently
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available and often integrated into robotic systems (e.g. the da Vinci system from

Intuitive Surgical, Inc.). 3D depth information can then be recovered using the

disparity map from rectified stereo images during a laparoscopic surgery (Stoyanov

et al. 2004) (Stoyanov et al. 2005a) (Chen et al. 2017c), so that a 3D reconstruction

using a dense point cloud of the laparoscopic scene can be achieved by a propagation

method (Stoyanov et al. 2010) and/or a cost-volume algorithm (Chang et al. 2013).

Stereo vision based reconstructions, however, can only recover the structure of a

local frame without a global overview of the scene, and are very sensitive to noise

and luminance changes. Surgeons have to wear 3D glasses or use a binocular viewer

on the robotic surgical system. In addition, stereo endoscopic surgery is still too

expensive and yet to be widely used in practice. Hence, providing depth cues in

monocular endoscope operations will have a significant impact on the accuracy of

surgical procedures.

While Minimally Invasive Surgery (MIS) offers considerable benefits to patients,

it also imposes big challenges on a surgeon’s performance due to well-known issues

and restrictions associated with the field of view (FOV), hand-eye misalignment

and disorientation, as well as the lack of stereoscopic depth perception in monocular

endoscopy. Augmented Reality (AR) technology can help to overcome these limita-

tions by augmenting the real scene with annotations, labels, tumour measurements

or even a 3D reconstruction of anatomy structures at the target surgical locations.

However, previous research attempts of using AR technology in monocular MIS sur-

gical scenes have been mainly focused on the information overlay without addressing

correct spatial calibrations, which could lead to incorrect localization of annotations

and labels, and inaccurate depth cues and tumour measurements. In this chap-

ter, we present a novel intra-operative dense surface reconstruction framework that

is capable of providing geometry information from only monocular MIS videos for

geometry-aware AR applications such as site measurements and depth cues. We

address a number of compelling issues in augmenting a scene for a monocular MIS

environment, such as drifting and inaccurate planar mapping.

In this chapter, we present a novel method and a computational framework to
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achieve accurate geometry-aware AR through: (i) extracting 3D depth information

from camera motions and 3D surface reconstructions; and (ii) using AR technology

to fuse rich 3D structural information with a monocular endoscope video stream,

such that accurate spatial information in the scene can be derived from the scene

geometry, and artificial depth cues can be provided based on the collaboration of

the 3D spatial scene with the real-time video streams (i.e real-virtual overlay and

simultaneous mapping). To this end, we explore the potential of the state-of-the-art

SLAM framework by modifying and fine-tuning the algorithm for endoscopic camera

tracking and mapping, so that the balance between point cloud density and compu-

tational performance can be achieved. A 3D surface reconstruction method based on

the Moving Least Squares (MLS) smoothing and the Poisson surface reconstruction

algorithms are proposed to recover a smooth surface from the unstructured sparse

map points extracted from the MIS scene. Simulated laparoscopic sequences gener-

ated in a 3D modelling package have been used to evaluate the performance of the

proposed framework in terms of robustness of the camera tracking and the accuracy

of the surface mesh reconstruction.

The obtained global geometric information can be seamlessly integrated into our

proposed AR framework, which is capable of achieving AR augmentations at the

correct depth and detailed accurate surface measurements. Our method provides

new possibilities for novel geometrically informed AR augmentations in monocu-

lar endoscopic MIS, including accurate annotations, labels, tumour measurement

and artificial depth cues at correct depth locations that are demonstrated with two

example applications: i.e. generations of artificial depth cues and the surface mea-

surements of target sites in MIS.

We demonstrate the clinical relevance of our proposed system through two ex-

amples: a) measurement of the surface; b) depth cues in monocular endoscopy. The

performance and accuracy evaluations of the proposed framework consist of two

steps. First, we have created a computer-generated endoscopy simulation video to

quantify the accuracy of the camera tracking by comparing the results of the video

camera tracking with the recorded ground-truth camera trajectories. The accuracy
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of the surface reconstruction is assessed by evaluating the Root Mean Square Dis-

tance (RMSD) of surface vertices of the reconstructed mesh with that of the ground

truth 3D models. An error of 1.24mm for the camera trajectories has been obtained

and the RMSD for surface reconstruction is 2.54mm, which compare favourably with

previous approaches. Second, in vivo laparoscopic videos are used to examine the

quality of accurate AR object placement, and the creation of depth cues. These

results show the potential promise of our geometry-aware AR technology to be used

in MIS surgical scenes.

The results show that the new framework is robust and accurate in dealing with

challenging situations such as the rapid endoscopy camera movements in monocular

MIS scenes. Both camera tracking and surface reconstruction based on a sparse point

cloud are effective and operated in real-time. This demonstrates the potential of our

algorithm for accurate AR localization and depth augmentation with geometric cues

and correct surface measurements in MIS with monocular endoscopes.

4.2 Methodology

The flowchart in Figure 4.1 demonstrates our intra-operative MIS AR framework. As

can be seen from Figure 4.1 (a), the endoscope is inserted into the patient abdominal

cavity, which is inflated with carbon dioxide gas to create the pneumoperitoneum.

Image sequences captured by the moving endoscopic camera are the input to our AR

framework as shown in Figure 4.1 (b). The SLAM algorithm recovers the camera

pose and generates an unorganized sparse point cloud. 3D geometric information is

then built based on the point cloud by our proposed surface reconstruction frame-

work. The dense surface mesh is then aligned with the input image sequences via a

camera space transformation. Finally, the virtual object can be displayed onto the

reconstructed surface to provide both depth cues and any virtual augmentation at

the correct depth.
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Figure 4.1: (a). A moving monocular endoscopic camera can capture a series of
image sequences which can be used to build a 3D sparse point cloud by using a
SLAM system. (b) The flowchart of our proposed AR framework.
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4.2.1 Introducing of the Surface Coordinate

The difference between our approach and the feature based tracking method used

in the previous AR work in MIS (Kim et al. 2012) (Haouchine et al. 2015) is shown

in Figure 4.2, illustrating the use of different coordinate systems. The endoscope

is represented as a probe in the camera coordinate system and pc is a 2D point in

the camera’s view and the virtual object (the face) to be displayed. Figure 4.2 (a)

shows the feature tracking based AR environment. When the feature is detected and

tracked, the virtual object will be placed in the feature coordinate system. Assuming

Pf is a 3D point in the MIS scene, then the 3D point can be transformed to the 2D

point in the endoscopic camera’s view by the following equation:

pc = K ∗ Tcf ∗ Pf (4.1)

where Tcf is the transformation from camera space to feature space (as shown in

Figure 4.2 (a)) and can be computed by solving the Perspective-n-Point (PnP)

problem, and K is the camera intrinsic parameters. For our proposed AR framework,

as can be seen from Figure 4.2 (b), we add a surface local space S as an agent, which

serves as the intermediary and is incrementally built from the point cloud sensed in

the environment, which allows us to achieve great robustness. A 3D point in the

model space Pm can be transformed to the 2D camera space pc by:

pc = K ∗ Tsc′ ∗ Tsm ∗ Pm (4.2)

where Tsc is the transformation from surface space to camera space (as shown in

Figure 4.2 (b)) and can be estimated by the SLAM. Here, the inverse of Tsc is used.

And Tsm is a user-defined matrix that transform the space from surface to model.

By using the local surface space as an agent, we solved two important issues for AR

in MIS: (i) no pre-captured or manually selected features are needed, which saves

time and enables 360 degree tracking; (ii) AR objects can be placed anywhere on

the surface at the correct depth.
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Figure 4.2: The comparison of the marker-less tracking (a) and our proposed AR
framework (b).

4.2.2 Monocular Endoscopic Camera Tracking and Map-

ping

We use ORB–SLAM (Mur-Artal et al. 2015), which outperforms many SLAM sys-

tems such as Mono-SLAM (Davison et al. 2007), PTAM (Klein and Murray 2007)

and LSD-SLAM (Engel et al. 2014), for the task of monocular endoscopic cam-

era tracking and mapping. ORB–SLAM combines many state-of-the-art techniques

into one SLAM system, such as using an ORB descriptor (Rublee et al. 2011) for

tracking, local keyframe for mapping, graph-based optimization, the Bag of Words

algorithm for re-localization, and an essential graph for loop closure.

ORB (Oriented FAST and Rotated BRIEF) descriptor (Rublee et al. 2011) is a

binary feature point descriptor that calculate the intensity weighted patch located at

keypoints and encode them into a 256-bit vector. It is an order of magnitude faster

than SURF (Bay et al. 2006) and more than two orders faster than SIFT (Lowe 2004)

with better accuracy. In addition, ORB features are invariant to rotation, illumi-

nation and scale, which means that it is capable of dealing with some of the main

challenges in MIS scenes including rapid movements of endoscope cameras (rotation

and zooming) and the change of brightness. ORB-SLAM has a keyframe selection

mechanism that only keep non-redundant keyframes to reduce the computation of
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bundle adjustment, followed by a graph optimization algorithm that optimize the

all the poses of stored keyframe. ORB-SLAM has also embedded a bags of words

place recognition module that performs loop detection to close possible loop and

relocalize when the tracking is lost.

These features can enable real-time endoscopic camera tracking and sparse point

mapping in an abdominal cavity as shown in Figure 4.1. Real-time performance is

crucial in time-demanding medical interventions. Since ORB (Rublee et al. 2011) is

a binary feature point descriptor, it is an order of magnitude faster than SURF (Bay

et al. 2006) and more than two orders faster than SIFT (Lowe 2004) with better

accuracy. In addition, ORB features are invariant to rotation, illumination and

scale, which means that it is capable of dealing with some of the main challenges in

MIS scenes including rapid movements of endoscope cameras (rotation and zooming)

and the change of brightness.

4.2.2.1 Initialization

A common problem for monocular scene analysis using SLAM is the initialization,

a step required for generating an initial map, because the depth cannot be recov-

ered from a single image frame. An automatic approach is used in ORB–SLAM to

calculate homography for planar scenes and a fundamental matrix for non-planar

scenes dynamically. This approach can greatly increase the success rate of initial-

ization and reduce the time required for the initialisation step. It also facilitates

the initialization on an organ surface or to compute a fundamental matrix when the

endoscopic camera is pointing at complex structures.

4.2.2.2 Training of Data Sets

One of the huge challenges that is unique to AR in MIS is the rapid movement of

endoscopes due to constant extraction and insertion of the device. The tracking

algorithm must be robust to accommodate the loss of image sequences after an ex-

traction, and recover the tracking during a re-insertion. The Bags of Words (BoW)

algorithm solves this re-localization problem during the tracking. In the BoW al-
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Table 4.1: Comparison of the original and our trained BoW database

Item Original BoW Database Database Trained for MIS

Training Source: Images with Different Genres Endoscopy Videos

Database Size: 145.3 MB 41.8 MB

Number of Words: 971815 259677

BoW Query Time1: 4.85ms 4.42ms

gorithm, the vocabulary is created offline with a large number of ORB descriptors

extracted from very large data sets of images that cover almost all of the patch

patterns that may be encountered. The vocabulary serves as a classifier or a dictio-

nary to assign each descriptor an index. When a new image appears in the system,

each descriptor of features in this image is looked up, and a unique vector will be

built based on the index of descriptors. In doing so, the rough similarity of two

images can be acquired by simply comparing the two unique vectors, therefore, it

can greatly increase the speed of re-localization.

The default BoW database in ORB–SLAM contains a very large image data set

with different genres captured from the real world scenes. Such a universal database

would be too sparse and general for specific MIS tasks. When processing endoscopic

videos, images are generally captured inside of human bodies for different organs,

tissues and vessels. These MIS scenes are more homogeneous and specific than the

real word scenes. Therefore, we trained our vocabulary list specifically for its use

in MIS based on 877 images sampled from ten in vivo sequences obtained from

the Hamlyn Centre Endoscopic Video database (London 2016) (Ye et al. 2016). By

training a specific MIS BoW database, the specific features existing in the minimally

invasive surgery scenes are collected and saved. The length of the unique vectors

for similarity measurements will be decreased, hence, reducing not only the loading

time of the AR framework, but also the time of BoW query as shown in Table 4.1.

This approach generalizes well to different MIS scenes since the training based on

the Hamlyn Centre Endoscopic Video Database covers a range of medical scenarios

from gastrointestinal examinations, diaphragm dissection, lung lobectomy, coronary

1Based on the average time of 1000 times’ BoW query experiment
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artery bypass, to cardiac examination.

4.2.2.3 Parameter Tuning and Increasing Surface Points

We fine-tuned some of the parameters that were used by default in the ORB–SLAM

by increasing the limit of the number of features extracted per image by a factor

of two, which allows a maximum of 2000 feature points to be detected. The max-

imum threshold that is allowed between keypoints and reprojected map points for

triangulation is reduced by a factor of ten to constrain the range of the points to

be selected so that strictly robust 3D points are chosen and feature points moved

by tissue deformation are rejected. This approach can greatly improve the tracking

accuracy. Finally, the Hamming distance threshold for the ORB descriptor compar-

isons is decreased by 0.8 for more strict applications of the pair point rule. After

tuning the default parameters, around 50% more map points can be detected for

the reliable surface reconstruction pipeline. Furthermore, the system has the ability

to filter small drifts caused by tissue deformations with strict map point selection

criteria.

4.2.3 Intra-operative 3D Surface Reconstruction

One of the main advantages of our proposed AR system is its ability to use a sparse

3D point cloud extracted from a moving monocular endoscopic camera to construct

a dense and smooth surface through our novel surface reconstruction framework.

Our framework processes the unstructured sparse point clouds using a combination

of outlier removal filters, the Moving Least Square algorithm to smooth noise data

and a Poisson surface reconstruction method to generate the smooth surface from an

unstructured sparse point cloud. This pipeline is illustrated in Figure 4.3. Details

of each processing step are presented in the following sections.
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Figure 4.3: The proposed intra-operative 3D surface reconstruction framework.
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4.2.3.1 Pointcloud Pre-processing

The point cloud P given by ORB–SLAM represents salient points that are visible

at different camera keyframes, giving a sparse representation of the intra-operative

scene. MIS scenes are very complex due to issues associated with camera calibrations

and movements and reflections of tissues. Hence, the result is a noisy point cloud

mixed with many outliers that can affect the final surface reconstruction. Our

approach to solve this problem is to apply two outlier removal filters to remove the

noisy points located amongst the raw data points before feeding the point cloud into

the reconstruction pipeline.

Firstly, a radius filter is used to process points in a cloud based on the number of

neighbour points. Points with very few neighbours are labelled as outliers or isolated

points that should not contribute to the overall structure of the 3D scene. Since

some texture-abundant areas gain many more points than other areas, a voxel-grid

filter is then used to re-sample the point cloud into a more evenly distributed point

cloud. After the filtering process, the point cloud becomes ’clean’ and ready for

MLS (Moving Least Square) smoothing and 3D surface reconstruction.

4.2.3.2 Moving Least Square Point Smoothing

The Moving Least Squares (MLS) algorithm (Levin 2004) reconstructs surfaces lo-

cally by solving an optimization problem to find a local reference plane and fit a

polynomial to the surface. Let a point set pi ∈ R3, i ∈ {1, ..., K} be the point cloud

produced from the ORB–SLAM system. the continuous and smooth MLS surface S

can be computed by a two-step procedure: (i) a local reference plane is defined as

H = {x ∈ R3|x · n−D = 0}, which can be computed by minimizing the weighted

sum of squared distances:

min
<N,D>

K∑
i=1

(pi · n−D)2Φ(‖pi − q‖) (4.3)
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where q is the projection of p onto H, and Φ is the MLS kernel, usually a Gaussian;

(ii) after the points are projected onto the initial local reference plane, a second least

squares optimization is used to find a bi–variate polynomial function g(u, v) (where

u, v is the local coordinate of q in H) that approximates to the local surface. The

projection of p onto S can then be defined by the polynomial value at the origin,

i.e. q + g(0, 0) · n.

4.2.3.3 Poisson Surface Reconstruction

We represent the points after the MLS filter stage by a vector field
−→
V , which is

derived from N in previous section. Poisson surface reconstruction (Michael et al.

2006) approaches the surface reconstruction problem through a framework of implicit

functions that compute a 3D indicator function χ (which is equal to 1 inside the

model and 0 at the outside points). Therefore, the problem becomes that of finding

the χ whose gradient is the best approximation of the vector filed
−→
V :

minχ

∥∥∥5χ −
−→
V
∥∥∥ (4.4)

Applying the divergence operator, we can transform this into a Poisson problem:

5× (5χ) = 5×
−→
V ⇔4χ = 5×

−→
V (4.5)

After solving the Poisson problem and obtaining the 3D indicator function χ, the 3D

surface can be directly obtained by extracting an isosurface (Kazhdan and Hoppe

2013). The Poisson reconstruction process acts as a global solution that treats

all of the data points simultaneously without relying on a heuristic partitioning or

blending, so that it can robustly approximate noisy data and create very smooth

surfaces.
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4.3 Results

We designed a two-part quantitative and qualitative evaluation process: (i) using

a realistic simulation of a MIS scene video for the ground truth study to assess

the performance of the SLAM tracking error and the accuracy of the proposed

surface reconstruction framework; (ii) using a real in vivo video acquired from the

Hamlyn Centre Laparoscopic/Endoscopic Video Datasets (London 2016) (Mountney

and Yang 2010b) to assess the quality of our proposed framework.

4.3.1 System Setup

Our system is implemented in an Ubuntu 14.04 environment using C/C++ (without

any GPU acceleration). All experiments are conducted on a workstation equipped

with Intel Xeon(R) 2.8 GHz quad core CPU, 32G Memory, and one NVIDIA GeForce

GTX 970 graphics card. The size of the simulation image sequences is 1024 X 768

pixels and the size of in vivo endoscope video is 840 X 640 pixels. ORB–SLAM with

our proposed AR framework runs in real-time at 40 FPS at max and the 3D surface

reconstruction process takes around 600ms to traverse the whole pipeline (which is

only trigger once, and not calculated for every frame).

4.3.2 Ground Truth Study using Simulation Data

For the evaluation of the accuracy of tracking performance, all camera trajectories

estimated by ORB–SLAM were aligned with trajectories of the ground truth cam-

era used to render the MIS scene video. Similarly, the accuracy of our proposed

3D surface reconstruction framework is evaluated by comparing the reconstructed

surface with the 3D model used to render the simulation video.

To quantitatively evaluate the performance of ORB–SLAM, we used Blender

(Blender 2016) – an open source 3D creation software to render realistic image se-

quences of a simulated abdominal cavity scene using pre-defined endoscopic camera

movements. The digestive system contains 3D models with textures to make the

scene as realistic as possible. The model was scaled to be the real life size according
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(a)

(b)

(c)

Figure 4.4: Simulated MIS scenes with a realistic human digestive system model.
(a) The size of the model is scaled to the real world size of an adult liver. (b) The
only light is attached to the camera and the camera trajectory is designed to hover
around the 3D model. (c) The frame that ORB–SLAM succeeded in initializing.
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to an average measured liver diameter of 14.0 cm (Kratzer et al. 2003) as shown in

Figure 4.4(a), the material property was set with a strong specular component to

simulate the smooth and reflective liver surface tissue. The luminance is intention-

ally set high with a spot light attached to the main camera to simulate an endoscope

camera as shown in Figure 4.4(a) to render a realistic endoscopic lighting condition.

We designed a camera trajectory that hovers around the 3D model (Figure 4.4(b)) to

capture as much of the area as possible so as to build a point cloud that could cover

the whole front surface of the models. Nine hundred frames of image sequences were

captured at a frame-rate of 30 fps, which is equivalent to a 30 second video. In or-

der to investigate the robustness of our framework, we intentionally add white noise

with different standard deviation (SD) to the synthetic video. We now have three

version of the synthetic videos (with no white noise, white noise SD=1, and white

noise SD=3, respectively), which will together be used for the further evaluation.

4.3.2.1 Camera Trajectory Evaluation

Figure 4.4(c) shows one of the rendered images from the sequences used as the

input to ORB–SLAM. The camera trajectory started with a close shot location of

the liver surface. ORB–SLAM was successfully initialized around frame 200 to 300

when the camera was in a place and where many feature points were identified.

After the initialization step, the SLAM system ran stably and the camera trajectory

was estimated with the origin of the coordinate system at the initialized position.

The estimated camera trajectory was then extracted and normalized into the same

coordinate system as that of the simulated ground truth model to assess the SLAM

tracking performance.

Figure 4.5 shows the performance evaluation results; Figure 4.5(a) displays the

camera trajectories in 3D space, in which green, dark blue and light blue dots rep-

resent the camera trajectory estimated by ORB–SLAM under no white noise, white

noise SD=1 and white noise SD=3. Red dots are the trajectory of the simulated

ground truth. Figs. 4.5(b), (c), and (d) shows the camera trajectories in X-axis,

Y-axis, and Z-axis views, respectively. As can be seen, the SLAM camera trajectory
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Figure 4.5: The camera trajectory comparison of the ground truth (red dots) with
the estimated results under different white noise levels: no white noise (green dots),
white noise SD=1 (dark blue dots), and white noise SD=3(light blue dots) in four
different views, (a) 3D view, (b) view of X-axis, (c) view of Y-axis, (d) view of Z-axis

78



starts at frame 212, 254 and 316 for the video with no white noise, white noise

SD=1 and white noise SD=3, respectively, as there is no estimated data before ini-

tialization. Once the camera tracking is initialized, the trajectory of the camera

matches closely with the ground truth camera trajectory represented by red dots.

RMSE between the two camera trajectory data sets was also calculated with results

of 1.24mm, 2.33mm and 4.39mm.

4.3.2.2 3D Surface Reconstruction Evaluation

When the ORB–SLAM system gained enough feature points, we build a 3D surface

based on the sparse point cloud. The whole reconstruction pipeline takes only 600

ms to generate the surface, which was then exported into the 3D model space to be

compared with the ground truth surface data set. A simple iterative closest point

(ICP) algorithm was used to align the reconstructed surface with the 3D model

that was used to render the video. Root Mean Square Distance (RMSD) is used to

evaluate the overall distance between the two surfaces. They are aligned in the real

world coordinate system and we apply a grid sample to get a series of x,y coordinate

points based on the surface area, and then compare the distance of the z value of

the two surfaces.

RMSD =

√√√√ 1

mn

m∑
x=1

n∑
y=1

(Zx,y − zx,y)2

The RMSD to the ground truth surface is 2.54mm, 2.81mm and 3.66mm for the

surface reconstructed by our proposed framework with different white noise levels.

As shown in Table. 4.2, our proposed method is much more accurate than the Shape-

from-Shading (SFS) (Prados and Faugeras 2005)(Visentini-Scarzanella et al. 2012)

method as SFS was based on the strong assumption of a single point illumination

source and can be affected by different tissue colours. Also, the reconstruction error

of our method is better than that of the sparse cloud points reported as 4.10mm

(Mahmoud et al. 2016)(Mur-Artal et al. 2015). Also, our method can reconstruct

a dense surface compared to that of the less clinical applicable sparse method. To

further evaluate our reconstruction result, we have also rendered our video in stereo
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Table 4.2: Surface reconstruction results
Type Method RMSD(wn=0)RMSD(wn=1)RMSD(wn=3)

Mono/Dense SFS(Visentini-Scarzanella et al. 2012) 7.21mm 8.38mm 11.60mm

Mono/Dense Proposed 2.54mm 2.81mm 3.66mm

Stereo/Dense BM (Chen et al. 2001) 2.04mm 2.09mm 2.17mm

Stereo/Dense Chang et al(Chang et al. 2013) 2.57mm 2.21mm 2.28mm

mode and tested it with popular stereo reconstruction approaches such as Block

Matching (BM) and the state-of-the-art cost volume stereo reconstruction method

by Chang et al. Our method is slightly better than the cost volume when there is

no white noise, but overall is less accurate than stereo reconstruction, as the depth

can be directly calculated from the disparities of stereo image pairs.

Figure 4.6 (a) shows that the reconstructed 3D surface aligns with the 3D model

closely; Figure 4.6 (b) shows the top down view of the alignment. Figure 4.6 (c)

shows the measured points between the reconstructed surface with the 3D ground

truth model to illustrate the position of the measured points, where warm colours

show penetrations between the two surfaces, the green colour represents a perfect

match between the two surfaces, and the blue colour shows the largest distance

between the two surfaces.

4.3.3 Real Endoscopic Video Evaluation

To qualitatively evaluate the performance of our proposed surface reconstruction

framework, we applied the proposed approach with the real in vivo videos from

the Hamlyn Centre Laparoscopic / Endoscopic Video Datasets. Figure 4.7 (a) (e)

and (f) shows the reconstruction results from our 3D reconstruction framework.

Figure 4.7 (b) shows the depth augmentation by fusing the camera pose from the

SLAM system and the 3D surface reconstructed from our proposed framework. The

real-time alignment of the 3D transparent mesh and the video are a good match

that the mesh is closely matched with the 3D model, suggesting that our method

can provide the correct depth information intra-operatively and so help improve

surgical performance by displaying 3D mesh structures when performing monocular

endoscope procedures. However, when large deformation occurs or the surgical
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Figure 4.6: (a) and (b): the surface nicely represents the model surface. (c) Surface
reconstruction error map.
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instruments occupy the large proportion of the view, our framework may fail as

shown in Figure 4.7 (f).

With our new 3D surface reconstruction approach, we have developed a geometry-

aware AR framework for depth correct AR argumentation within the intra-operative

endoscope scene in real-time. Our AR framework is an important step towards high

quality AR in MIS, since incorrect depth placement will cause virtual objects to

appear to drift away when the viewing angle changes. Furthermore, accurate global

geometric information plays a crucial role in augmenting the real surgical scenes

with annotations, labels, tumour measurements, inguinal measurements to estimate

optimal mesh size for inguinal herniorrhaph (Knook et al. 2001) or even a 3D re-

construction of anatomy structures at the target surgical location. We demonstrate

two example applications to show the clinical relevance.

In Figure4.7 (a), AR augmentations of 3D arrows labels are placed onto the

video frames to generate artificial depth cues and Figure4.7 (b) shows that virtual

3D arrows exist at different depths within this geometry-aware environment. In the

second example, we recover the scale to the real-world size (Nützi et al. 2011) to

enable accurate intra-operative measurement as demonstrated in Figure4.7 (c) and

(d). Note that measurement (the red line) follows the surface curvature closely,

providing accurate results with correct depth information. More details can be

appreciated in our demonstration video (Chen 2016).

4.4 Discussion

Intra-operative MIS scene reconstruction is a challenging task especially for monoc-

ular MIS scene that the only input source is the monocular video stream. Acquiring

the depth and geometric information in MIS is crucial for not only AR tasks such

as intra-operative measurement, but also enables the potential applications of skill

evaluation (Jiang et al. 2017), autonomous tasks such as autonomous ultrasound

scanning (Zhang et al. 2017), debridement and cutting (Murali et al. 2015). We

are able to achieve a promising reconstruction result by our proposed SLAM-based
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(c) (d)

(e) (f)

Figure 4.7: The surface reconstruction results applied to an in vivo video sequence.
(a) Interactively adding arrows as annotations intra-operatively.(b) The view of
mesh to show the annotations are in different depth.(c) Intra-operative measurement
example. (d)The side-view of the intra-operative measurement example. Note that
the measurement line follows the surface curvature closely. (e) The augmented mesh
on a liver. (f) Our framework may fail when large deformation occurs or the surgical
instruments occupy large proportion of the view
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monocular reconstruction approach (RMSD = 2.54mm), which is much accurate

than other monocular MIS scene reconstruction method (RMSD = 7.21mm) and

even comparable to the state-of-the-art stereo reconstruction method (RMSD =

2.04/2.57mm) that the depth can be directly derived from the disparity of stereo

vision.

Using simulation for quantitative evaluation is a novel part of this Chapter,

including the details of how to render realistic video and scale the model for accessing

real-world size of accuracy. In this way, the accuracy can be obtained at no cost and

without the need of real experiment (which is very expensive especially for medical

surgery). However, although for tracking and reconstruction tasks, the realistic

texture doesn’t affect much, the evaluation on simulation sometimes still cannot

represent the accuracy in real-world. As in real world scenario, there are tissue

motion, movement of instrument and blood, smoke that will affect the tracking and

reconstruction results, which is usually hard to simulate.

The limitation of our proposed method is that the SLAM theory is developed

based on static world assumption; the deformations of objects (such as tissues and

organs) directly challenge this basic condition for SLAM to estimate camera poses for

3D reconstruction. Therefore, soft tissue deformation is a great challenge to support

in the SLAM based reconstruction framework as proposed here. Particularly with

monocular endoscopic videos, it is extremely hard to recovery the soft deformation

correctly while simultaneously estimating the camera poses. For small deformations

like those in the in-vivo video that we use, however, the RANSAC algorithm in

SLAM system will filter the outliers and recover the correct movement. For large

deformation in very small FOVs, it is still unclear how to solve the tissue deformation

issue without using extra external sensors within the monocular scene.

Using stereoscopic views is a possibility and we will investigate this in future

work. One possible solution to accurately simulate and track the deformation is to

to use real-time deformation model(Zou and Liu 2017) and feature-based tracking

(Kumar et al. 2014) to recovery the movement of tissue. Although the accuracy and

speed of our framework are acceptable, we will continue developing a dense SLAM
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system to be used in MIS reconstruction and extend the current reconstruction

framework. This will enable us to develop a prototype system that can be tested

in the operating theatre with our clinical collaborators, further investigating the

benefit and efficacy of our approach and providing evidence for our hypothesis that

visual SLAM can enhance the tools available to surgeons performing monocular

endoscopic procedures.

4.5 Conclusions

In this chapter, we presented an efficient and effective 3D surface reconstruction

framework for an intra-operative monocular laparoscopic scene based on SLAM.

This new approach has shown promising results when tested on both simulated la-

paroscopic scene image sequences and clinical data. The proposed framework also

reveals several potential clinical applications such as additional depth cues augmen-

tation and geometry-aware augmented reality in MIS.
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Chapter 5

Stereo-based Online Global

Surface Reconstruction for

GA-AR

5.1 Introduction

Laparoscopic surgery is a Minimally Invasive Surgical (MIS) procedure using endo-

scopes with small incisions to carry out internal operations on patients. While MIS

offers considerable advantages over open surgeries, it also imposes big challenges on

surgeons’ performance due to the well known MIS issues associated with the field of

view (FOV), hand-eye dis-alignment and disorientation. Augmented Reality(AR)

technology can help overcome the limitations by overlaying additional information

with the real scene through augmentation of target surgical locations, annotations

(Kim et al. 2012), labels (Su et al. 2009), tumour measurement (Bourdel et al. 2017)

or even 3D reconstruction of anatomic structures (Haouchine et al. 2013) (Haouchine

et al. 2015).

The potential of Augmented Reality (AR) technology to assist minimally inva-

sive surgeries (MIS) lies in its computational performance and accuracy in dealing

with challenging MIS scenes. Even with the latest hardware and software technolo-
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gies, achieving both real-time and accurate augmented information overlay in MIS is

still a formidable task. Despite recent advances in powerful miniaturised AR hard-

ware devices and improvements on vision based software algorithms, many issues

in medical AR remain unsolved. Especially, the dramatic changes in tissue surface

illumination and tissue deformation as well as the rapid movements of the endoscope

during the insertion and the extrusion all give rise to a set of unique challenges that

call for innovative approaches.

As with in any technological assisted medical procedures, accuracy of AR in MIS

is paramount. With the use of traditional 2D feature based tracking algorithms

such as those used in (Du et al. 2015) ,(Planteféve et al. 2016), (Kim et al. 2012)

and (Mountney and Yang 2008), the rapid endoscope movement can easily cause

feature points extracted from the vision algorithms to fall out of the field of view,

resulting in poor quality visual guidance. The latest visual SLAM (Simultaneous

Location and Mapping) based approaches have the potential to overcome this issue

by building an entire 3D map of the internal cavity of the MIS environment, but

SLAM algorithms are often not robust enough when dealing with tissue deformations

and scene illuminations (Turan et al. 2017) (Klein and Murray 2007) (Klein and

Murray 2007) (Mur-Artal et al. 2015) (Mahmoud et al. 2016). Furthermore, in

order to meet the demand of high computational performance, sparse landmark

points are often used in MIS AR, and augmented information are mapped using

planar detection algorithms such as Random Sample Consensus (RANSAC) (Lin

et al. 2013) (Grasa et al. 2014). As a result, AR content is mapped onto planes

rather than curved organ surfaces.

In this chapter, we present a novel real-time AR framework for MIS that achieves

interactive geometric aware augmented reality in endoscopic surgery with stereo

views. Our framework tracks the movement of the endoscopic camera and simul-

taneously reconstructs a dense geometric mesh of the MIS scene. The movement

of the camera is predicted by minimising the re-projection error to achieve a fast

tracking performance, while the 3D mesh is incrementally built by a dense zero

mean normalised cross correlation (ZNCC) stereo matching method to improve the
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Figure 5.1: By using a stereo endoscope, the 3D position of any point in the view
can be directly estimated by using stereo triangulation.

accuracy of the surface reconstruction. Our proposed system does not require any

prior template or pre-operative scan and can infer the geometric information intra-

operatively in real-time. With the geometric information available, our proposed

AR framework is able to interactively add annotations, localisation of tumours and

vessels, and measurement labelling with greater precision and accuracy compared

with the state of the art approaches.

5.2 Methods

As can be seen from the flowchart in Figure 5.2, our proposed framework starts with

a SLAM system that can track and estimate the camera pose frame by frame. The

following stereo matching algorithm based on ZNCC is used to reconstruct dense

surface at each keyframe, which is then transformed and stitched to a global surface
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based on the inverse transformation of the camera pose. Finally, the global surface

is re-projected to 2D based on the camera pose and overlaid on the image frame,

serving as an interactive geometric layer. The geometric layer enables the interactive

AR applications such as online measurement as shown later in Figure 5.4.

5.2.1 Landmark Point Detection and Triangulation

In medical interventions, real-time performance and accuracy are both critical. We

adopt Oriented FAST and Rotated BRIEF (ORB) (Rublee et al. 2011) feature de-

scriptors for feature points extraction, encoding and comparison to match landmark

points in left and right stereo images. ORB is a binary feature point descriptor

that is an order of magnitude faster than SURF (Bay et al. 2006), more than two

orders faster than SIFT (Lowe 2004) and also offers better accuracy than SURF

and SIFT (Rublee et al. 2011). In addition, ORB features are invariant to rotation,

illumination and scale, hence, capable of dealing with challenge endoscope camera

scenes (rapid rotating, zooming and changing of brightness).

We apply the ORB detector and find the matched keypoints on left and right

images. Let xlP and xrP be the x coordinates on the left and right images, respectively.

Assuming the left image and the right image are already rectified, the focal length

of both cameras f and the baseline B are known fixed values, by similar triangles,

the depth or the perpendicular distance Z between the points and the endoscope

can be found according to similar triangles (see Figure 5.1).

B −
(
xlP − xrP

)
Z − f

=
B

Z
⇒ Z =

f ·B
dP

(5.1)

Where xlP −xrP is the disparity dP of the two corresponding keypoints in the left

and the right images detected by the ORB feature.

We then perform a specular reflection detection by removing the keypoints that

have intensities above a threshold for efficiency. This could effectively remove the

influence of specular reflections from the next stage of computation.

89



Figure 5.2: Flowchart describing the whole framework

5.2.2 Frame by Frame Camera Pose Estimation

Any AR application requires the real-time frame by frame tracking to continuously

update the overlay positions. To meet the real-time requirement, after initialization,

we employ the constant velocity motion model used by MonoSLAM (Davison et al.

2007) to roughly estimate the position rt+1 and quaternion rotation qt+1 of the

camera position based on the current linear velocity vt and angular velocity wt in a

small period ∆t:

rt+1 = rt + vt ·∆t

qt+1 = qt × q (ωt ·∆t)

vt = vt−1 + at−1 ·∆t

ωt = ωt−1 + αt−1 ·∆t


(5.2)

Based on the predicted camera pose (rt+1, qt+1), the potential regions where the

feature points may appear on the image are estimate by re-projection of 3D points,

hence reducing searching areas and computational cost.

A RANSAC procedure is then performed to obtain the rotation and translation

estimations from the set of all the inlier points. During each RANSAC iteration,

3 pairs of corresponding 3D points from current point set pit and point set in next

period pit+1 are selected randomly to calculate the rotation matrix R and the trans-
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lation t, which minimizes the following objective function:

min
<R,T>

n∑
i=1

∥∥pit − (R ∗ pit+1 + T
)∥∥ (5.3)

From the set with smallest re-projection error, the set of outlier points is rejected

and all the inliers are used for a refinement of the final rotation and translation

estimations.

During the inlier/outlier identification scheme by RANSAC (Fischler and Bolles

1981a) (an iterative method to estimate parameters of a mathematical model from

a set of observed data that contains outliers), false matched ORB feature points,

moving specular reflection points and deforming points are effectively rejected. This

is a very important step for a MIS scene where the tissue deformation caused by

respiration and heartbeat, as well as blood, smoke and surgical instruments can have

impact on the tracking stability. Therefore, at this stage, we use the strategy to filter

out any influence caused by occlusion and deformation to recover the camera pose.

Indeed, the deformable surface is an unsolved challenge in MIS AR, we address this

issue by reconstructing a dense 3D map through a more efficient stereo matching

method (see Section 5.2.4).

5.2.3 Keyframe-based Bundle Adjustment

As our camera pose estimation is only based on the last state, the accumulation

of error over time would cause system drifting. However, we cannot perform a

global optimization for every frame as this will slow down the system over time. We

follow the successful approach of PTAM (Klein and Murray 2007) and ORBSLAM

(Mur-Artal et al. 2015) in correcting system drafting, which use the keyframe-based

SLAM framework to save “snapshots” of some frames as keyframes to enhance the

robustness of the tracking whilst not increasing computational load on the system.

Each keyframe is selected based on the criteria that the common keypoints of the

two keyframes are less than 80% keypoints but the total number exceeds 50.

Once a keyframe is assigned, bundle adjustment (BA) is applied to refine the 3D
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positions of each stored keyframe KFi and the landmark points Pj by minimising the

total Huber robust cost function ρh – the re-projection error between 2D matched

keypoints pi,j and camera perspective projections of the 3D positions of keyframes

KFi and the landmark points Pj:

arg min
KFi,Pj

∑
i,j

ρh (‖pi,j − CamProj (KFi, Pj)‖) (5.4)

5.2.4 ZNCC Dense Stereo Matching

We create a feature-based visual odometry system for the endoscopic camera track-

ing and landmark points mapping, which takes into account of illumination changes,

specular reflections and tissue deformations in MIS scenes, as they usually appear

as outliers, which can be effectively removed by the RANSAC algorithm. However,

as the sparse landmark points can barely describe the challenging environment of

MIS scenes, we perform a dense stereo matching upon the landmark points to create

a dense reconstruction result.

The dissimilarity measure used during the stereo matching is a patch-based

ZNCC method. The cost value C(p, d) for a pixel p at disparity d is derived by

measuring the ZNCC of the pixel in the left image and the corresponding the pixel

p− d in the right image:

C (p, d) =
∑
q∈Np(IL(q)−ĪL(p))·(IR(q−d)−ĪR(p−d))√∑

q∈Np(IL(q)−ĪL(p))
2
·
∑
q∈Np(IR(q−d)−ĪR(p−d))

2
(5.5)

where Ī (p) = 1
Np

∑
q∈Np I (q) is the mean intensity of the patch Np centered at p.

ZNCC is proven to be less sensitive to illumination changes and can be paral-

lelised efficiently on a GPU (Stoyanov et al. 2010). A WTA (Winner-Takes-All)

strategy is applied to choose the best disparity value for each pixel p, followed by a

convex optimization to solve the cost volume constructed by Huber-L1 variational

energy function (Chang et al. 2013) for a smooth disparity map. We used the GPU
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implement of ZNCC and convex optimization for the efficient disparity map estima-

tion and filtering in real-time.

5.2.5 Incremental Building of Geometric Mesh

The 3D dense points estimated by stereo matching are transformed to the world

coordinate system by the transformation matrix from frame space to the world space

Tf2w that was estimated by our feature-based SLAM system. A fast triangulation

method (Marton et al. 2009) is then used to incrementally reconstruct the dense

points into a surface mesh. Fig. 5.3 demonstrates the incrementally building process

from Frame 1 to 900. The first and third rows are the reconstructed geometric mesh

while the second and fourth rows are the current video frames. The geometric mesh

can be built incrementally to form a global mesh that can then be re-projected back

to the camera’s view using the estimated camera pose for the augmented view (see

(a) and (c) in Fig. 5.4).

5.3 Results and Discussion

We have designed a two-parts assessment process to evaluate our AR framework:

(i) using a realistic 3D simulated MIS scene as the ground truth study to measure

the reconstruction error by measuring the difference between the ground truth val-

ues and the reconstructed values; (ii) using a real in vivo video acquired from the

Hamlyn Centre Laparoscopic/Endoscopic Video Datasets (London 2016) (Mount-

ney and Yang 2010b) to assess the quality of applications of our proposed framework

i.e. measurements, adding AR labels and areas highlighting.

5.3.1 System setup

Our system is implemented in an Ubuntu 14.04 environment using C/C++. All

experiments are conducted on a workstation equipped with Intel Xeon(R) 2.8 GHz

quad core CPU, 32G Memory, and one NVIDIA GeForce GTX 970 graphics card.
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Figure 5.3: Incrementally building the geometric mesh. Rectangular boxes are the
estimated camera pose; Green points are detected landmark points.
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(a) (b)

(c) (d)

Figure 5.4: Measurement application of our proposed geometry-aware AR frame-
work. Note that the measuring lines (green lines) accurately follow along the curve
surface.

The size of the simulation image sequences and in vivo endoscope videos is 840

X 640 pixels. The AR framework and 3D surface reconstruction run in different

threads. The 3D surface reconstruction process takes about 200ms to traverse the

entire pipeline for each frame. Our proposed AR framework can run in real-time at

26 FPS when the reconstruction only performs at keyframes.

5.3.2 Ground Truth Study using Simulation Data

The performance of our proposed framework is measured in terms of reconstruction

accuracy by comparing the reconstructed surface with the 3D model used to render

the simulation video.
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Figure 5.5: Reconstruction error map.
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To quantitatively evaluate the performance of the progressive reconstruction re-

sult, we used Blender (Blender 2016) – an open source 3D software to render realistic

image sequences of a simulated abdominal cavity scene using a set of pre-defined

endoscopic camera movements. The simulated scene contains models scaled to real

life size according to an average measured liver diameter of 14.0 cm (Kratzer et al.

2003), and the digestive system is rendered with appropriate textures to make the

scene as realistic as possible. The material property is set with a strong specularity

component to simulate the smooth and reflective liver surface tissue. The luminance

is intentionally set high to simulate an endoscope camera as shown in Fig. 5.4 with

a realistic endoscopic lighting condition by using a spot light attached to the main

camera. We have designed a camera trajectory that hovers around the 3D models.

There are a total of 900 frames of image sequences at a frame-rate of 30 fps being

rendered, which is equivalent to a 30 seconds video.

Root Mean Square Distance (RMSD) is used to evaluate the overall distance

between the simulated and the reconstructed surfaces. By aligning the surfaces to

the real world coordinate system, we apply a grid sample to get a series of x,y

coordinate points based on the surface area, and then compared the distance of the

z value of the two surfaces.

The RMSD measurement for the two surface alignments has shown a good surface

reconstruction results from our proposed methods, compared to the ground truth

surface, the RMSD is 0.237 cm. The reconstruction error map can be viewed in Fig.

5.5.

5.3.3 Real Endoscopic Video Evaluation

To qualitatively evaluate the performance of our proposed surface reconstruction

framework, we applied the proposed approach on in vivo videos that we acquired

from Hamlyn Centre Laparoscopic / Endoscopic Video Datasets (London 2016)

(Mountney and Yang 2010b), which contains 37 in-vivo Laparoscopic / Endoscopic

videos which camera intrinsics. Fig. 5.6 (a) shows the reconstruction result from our

3D reconstruction framework with the augmented view of in vivo video sequences.
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(a) (b)

(c) (d)

Figure 5.6: Applications of our proposed geometry-aware AR framework: (a) Adding
AR labels according to the norm of the geometric surface. (b) The side-view of labels
in mesh view. (c) Area highlight and measurement. (b) The side-view of highlighted
area in mesh view.

By clicking the mesh, augmented objects (colored planes) can be superimposed at

corresponding positions with correct poses based on the normals of the points at

the click locations. Fig. 5.6 (b) shows the side-view of the mesh; note that the

colored planes (which could be labels) are sticking onto the mesh correctly to create

a realistic augmented environment. Fig. 5.6 (c) shows the area highlighting function

of our proposed AR framework. And Fig. 5.6 (d) is the corresponding mesh view.

The area highlighting function can be extended to an area measurement and line

measurement (such as shown in Fig. 5.4) application once the extrinsic parameters

of the camera are known.
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5.4 Conclusions

In this chapter, we presented a novel AR framework for MIS. Our framework han-

dles the two intertwined issues of tracking the rapid endoscope camera movements

and providing accurate information overlay onto the curved surfaces of organs and

tissues. By adapting the latest SLAM algorithms, we take a set of innovative ap-

proaches at the each stage of the AR process to improve the computational perfor-

mances and AR registration accuracy. As a result, an interactive real-time geometric

aware AR system has been developed. The system is capable of dealing with small

soft tissue deformations, rapid endoscope movement and illumination change, which

are common challenges in MIS AR. Our proposed system does not require any prior

template or pre-operative scan. The system can overlay accurate augmented infor-

mation such as annotations, labelling, and measurements of a tumour over curved

surfaces, greatly improving the quality of AR technology in MIS.

In future work we will carry out a clinical pilot study. A case scenario will be

investigated in collaboration with a practicing surgeon, and comparisons will be

made as to the effectiveness of our system with the current procedural approach

used.
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Chapter 6

Learning-based Monocular Image

Depth Estimation and 3D

Reconstruction

6.1 Introduction

The human vision system is amazingly complex and extremely delicate. It can

perceive depth through stereopsis, which relies on the displacement of the same

object between the images received by the left and right retinas (Dunkin and Flowers

2015). With extensive visual experience and through trial and error, humans develop

the ability to use contextual depth cues to achieve good and reliable perception of

depth and better understanding of spatial structure. Among these depth cues, some

of them do not rely on stereopsis, such as object occlusion, perspective, familiar

and relative size, depth from motion, lighting and shading. Therefore, if blind in

one eye or if performing a monocular task such as endoscopic surgery, we can still

judge distance from these many different intuitive depth cues. In contrast, when

using machine vision it is hard to infer the non-stereopsis depth cues. With the

recent development of Deep Convolutional Neural Networks (DCNNs), machines

can solve many computer vision problems when provided with very large human
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annotated datasets such as ImageNet (Krizhevsky et al. 2012), which is known as

supervised learning. Acquisition of labelled datasets is one of the biggest challenges

for supervised learning, however, which is an expensive, time-consuming and labour-

intensive task. In this chapter, we propose a novel self-supervised computational

framework that mimics the process of how a human learns varies of contextual

depth cues from stereopsis. We train a DCNN for synthesizing depth from one view

of the stereo image pair, then reconstruct the other view by the synthesized depth,

and finally using the stereo vision epipolar constraint (Zhang 1998) to minimize the

error of the depth synthesis.

Our approach does not require the ground truth depth for supervised training.

Instead, we derive the implicit function of estimating depth from monocular images

by the epipolar constraint of the stereo image pair. Therefore, the method can be

regarded as self-supervised learning. Compared with previous work (Garg et al.

2016) (Godard et al. 2017) (Zhou et al. 2017) addressing the same problem, we

incorporate a patch-based image evaluation strategy, inspired by the classic patch

matching algorithms for finding the best-matched patches between the left and right

images. We use the Zero-Mean Normalized Cross Correlation (ZNCC) to measure

the normalized similarities between these patches. A fully-differential patch-based

ZNCC cost function is implemented to guide the depth synthesis process for more

accurate results. Visual assessment shows that our approach can produce more ac-

curate and robust depth estimations in both texture-rich and texture-less areas due

to the enlargement of matching field from a pixel to a patch (see Figure 6.5). Em-

pirical evaluations on KITTI dataset demonstrate the effectiveness of our approach

Encoder Decoder

Encoder Decoder

DepthNet

ConfidenceNet

𝑰𝒍

𝑷𝒅

𝒅

Figure 6.1: Our proposed framework can simultaneously estimate depth and the
confidence of estimated depth.
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and produce a state-of-the-art performance in monocular depth estimation task.

Our second contribution is that we train a parallel DCNN to evaluate the per-

formance of the monocular depth estimation and output a 0 to 1 confidence map.

The parallel DCNN is also trained in a self-supervised manner thanks to our ZNCC

similarity measurement function. As ZNCC is a normalized measure of similarity,

which can be approximated as the confidence of the depth estimation, we take the

ZNCC loss to self-supervise the parallel DCNN (ConfidenceNet) during training so

that we can estimate the confidence of the depth estimated from the first DCNN

(DepthNet) during testing mode as shown in Figure 6.1. A confidence map is ex-

tremely useful for the monocular depth estimation task trained in an unsupervised

manner, as the learned epipolar constraint only works well when there are clear cor-

responding pixels between the image pairs; it will fail and produce uncertain depth

when occlusion and specularity exist in images. Our confidence map can give a

basic assessment of the reliability of the predicted depth, which can then be further

integrated into many applications such as monocular dense reconstruction, SLAM-

based depth fusion (Tateno et al. 2017), and many tasks need crucial accurate and

confidence such as monocular endoscopic surgery.

6.2 Novelty Compared to Previous Work

We propose a novel multi-scale patch-based cost function that adopts the ZNCC as a

similarity function to explicitly enlarge the matching field and increase the matching

robustness. From another point of view, our proposed patch-based cost function

implicitly integrate the classic Patch Matching (PM) algorithm as a minimization

problem in our loss function. Although Garg et al (Garg et al. 2016) have discussed

a straightforward idea of using the stereo matching algorithm as a pre-processing

method to generate “quasi ground-truth” depth for training, their result is not

desirable due to the poor quality of “quasi ground-truth”. Recently, Luo et al (Luo

et al. 2018) also proposed a similar framework that firstly use a DCNN to synthesize

stereo pairs from single images, and then use stereo matching to get depth. In
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contrast to these two works, we treat the stereo matching as a minimization problem

and implement a fully differential PM algorithm as a cost function that is seamlessly

integrated into our neural network. As the loss of the PM cost function can be passed

through the whole network during a backward propagation, our network can produce

more robust and consistent depth by large-scale self-supervised training, which will

not be limited by the performance of off-the-shelf stereo matching algorithms.

Another novelty of our work is the confidence map. As monocular depth esti-

mation itself is an ill-posed problem, although learning-based approaches achieve

comparable results to stereo depth estimation, there are still many unavoidable mis-

takes in the predicted depth map. For the first time, our method is able to provide

a pixel-wise confidence of the predicted depth by using a parallel DCNN to capture

and learn the confidence during training. The confidence map will greatly improve

the usability of deploying monocular depth estimation into many practical tasks.

6.3 Method

6.3.1 Framework Overview

Figure 6.2 illustrates the entire framework for our self-supervised monocular depth

learning and confidence estimation networks. Since the ground-truth depth Dgt is

absent for supervised training, we treat the monocular depth estimation as a problem

of image synthesis error minimization during training. Specifically, during training,

we use the left images Il of the stereo pairs to synthesize per-pixel depth D using an

encoder-decoder network D = Fdepth(Il, θ), which is converted into disparities maps

d by the Equation 6.2 in the next section. The disparities map d is then used to

guide the stereo view reconstruction Îr = Fwarp(Il, d) and the sampling of patches

Nx−d,y = Fsample(Ir, d). After that, the loss function Ltotal is calculated based on

Patch Matching Loss LPM , View Reconstruction Loss LV R, Disparity Smoothness

Loss LDS, and Disparity Consistency Loss LDC . As these processes are differentiable,

back propagation can be used to update the parameters θ of our depth learning
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network to minimize the total loss Ltotal.

𝑰𝒍

෪𝑷𝒅
Confidence 

Estimation Loss

ConfidenceNet
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Testing

𝒅
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Depth Estimation
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𝑳𝑷𝑴

DepthNet

𝑰𝒓

𝑳𝑽𝑹

𝑳𝑫𝑺

𝑳𝑫𝑪

𝑵𝒙+𝒅,𝒚

View Warping

Patch Sampling

Figure 6.2: Framework for proposed self-supervised monocular depth learning and
confidence estimating networks.

∂Ltotal
∂θ

=
∂LPM + ∂LV R + ∂LDS + ∂LDC
∂Fwarp(Il, d) + ∂Fsample(Ir, d)

× ∂Fwarp(Il, d) + ∂Fsample(Ir, d)

∂d
(6.1)

× ∂d

∂D
× ∂D

∂θ

Since our patch-based ZNCC loss map LPM(x, y) represents the normalized in-

verted similarity between each pixel of the Il and Ir, it can be approximated as

the inverted confidence of the depth estimation result. We use the LPM(x, y) to

self-supervise the training of a second encoder-decoder network – ConfidenceNet to

generate the confidence P̂d of the per-pixel depth estimation of our DepthNet.

6.3.2 Depth Synthesis Network

The core part of our framework is the depth synthesis and generation. Our goal is

to learn an implicit function Fdepth that estimates a per-pixel depth from a single

input image. Inspired by the architectures of FlowNet (Dosovitskiy et al. 2017),

DispNet (Mayer et al. 2016) and the network of Godard et al (Godard et al. 2017)

and Zhou et al (Zhou et al. 2017), we employ a VGG-like fully convolutional neural

network architecture (Shelhamer et al. 2017) in order to generate per-pixel depth
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Figure 6.3: Depth synthesis network structure. ”k” is the kernel size, ”s” for the
stride, ”c” for the channel number. For simplicity, we do not draw the conv layers
after each conv and deconv layer, which have the same kernel and channel size as
previous layers but with stride 1.
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Figure 6.4: The difference between forward mapping and backward mapping.

from a single image. Our encoder-decoder model is illustrated in Figure 6.3. The

input image is encoded by 7 conv layers with stride 2 each followed by a conv layer

with stride 1, which efficiently compress the input image into a feature tensor with

1/27 original size and 512 channels. Then, the feature tensor is up-sampled by

7 deConv layers with stride 2 each followed by a conv layer with stride 1, which

decode the feature tensor into a full original size depth. Following the method in

(Dosovitskiy et al. 2017), 6 skip connections are implemented for preserving high-

level information to ensure the high quality per-pixel prediction after up-sampling.

Multi-scale depth images are outputted and used for further steps to constraint the

network for a coarse-to-fine up-sampling.
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6.3.3 Warping-based Stereo View Reconstruction

View warping is an enabling technology for self-supervised learning framework (Garg

et al. 2016) (Godard et al. 2017) (Zhou et al. 2017). Given the per-pixel disparity

map estimated from a single image in the previous step (calculated by Equation 6.2),

the target view of the stereo pairs can be reconstructed by the epipolar relationship

in stereo vision. According to the epipolar constraint: the projection of a pixel xl

on the right camera plane xr must be contained in the epipolar line. For calibrated

stereo pairs discussed in this chapter, xl and xr must be in the same row y, and the

disparity d describes the horizontal displacement of the corresponding pixels xl and

xr . Through the stereo triangulation, we can get that

Dxy =
bf

d
⇒ d = xl − xr =

bf

Dxy

(6.2)

where Dxy is the depth estimated in the pixel at (x, y), b and f are the camera

baseline and focal distance. By the relationship discussed in the above equation,

the target view in a stereo pair can be reconstructed given the source view and the

corresponding depth (estimated through our depth synthesis network).

However, the direct mapping from one known view to the other view (forward

mapping) will result in holes in the target image that are not differentiable (see

Figure 6.4 (a)). Therefore, we use the inverse mapping (Figure 6.4 (b)): for each

pixel in the target view, by picking points from the source to reconstruct the target

view guided by the d. Thus, a relatively more complete and differentiable target view

can be generated than the foward mapping. Then the bilinear sampling (Jaderberg

et al. 2015) is used to get the interpolated pixel value from the source view.

6.3.4 Disparity-guided Patch Sampling

Inspired by the stereo view reconstruction described above, we propose a novel

patch sampling process guided by the estimated disparity from our DepthNet. Nx,y

is defined as a patch with window size n, centered at the coordinate (x, y). We

sample patches on each pixel in the left image {x, y ∈ Il|Il(Nx,y)}, and the cor-
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responding patches shifted by disparity values d of each pixel in the right image,

{x, y ∈ Ir|Ir(Nx−d,y)}. According to Equation 6.2, if d is correct, then we have

Il(Nx,y) = Ir(Nx−d,y). And this relationship will be used to construct the patch

matching loss. These sampled patches are computed and stored vectorized so that

can be deployed parallelly on GPU for accelerated computation.

The patch sampling size is very important and can affect the final performance

of similarity measurement. However, there is no optimal patch size and the perfor-

mance varies greatly across different images and local details. When small patch

size is used, little information will be captured, and the similarity comparison ro-

bustness will be decreased. If we use a large patch size, computational complexity

will be greatly increased and also cannot recover accurate depth at stereo occlusion

and depth discontinuous. Therefore, we use a multi-scale patch sampling scheme

and sample a combination of 4 different patch sizes in an image to fully exploit the

effects of different patch sizes. We will discuss the choice of patch sizes in Section

6.4.1.

6.3.5 Loss Function Construction

We define a loss function Ltotal with multiple strategies to effectively train our net-

works for accurate, smooth and realistic depth.

Ltotal = ωpLPM + ωvLV R + ωdLDS + ωcLDC (6.3)

where from left to right is: Patch Matching Loss, View Reconstruction Loss, Dis-

parity Smoothness Loss and Disparity Consistency Loss. ωp, ωv, ωd, ωc are the corre-

sponding weights for the Patch Matching Loss, View Reconstruction Loss, Disparity

Smoothness Loss and Disparity Consistency Loss, to balance the effects of gradients

back propagation. Each loss function will be explained in details below:
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6.3.5.1 Patch Matching Loss

Inspired by patch matching algorithm that by finding the best-matched patches in

the left and right image to get correct disparities. We propose a patch matching loss

that can be used to maximize the similarities (minimize the differences) of patches

in left image Il(Nx,y) and the shifted patches in right image Ir(Nx−d,y) to get correct

disparities. Here, the ZNCC measure of similarity is used to compute a normalized

similarity between the patches Il(Nx,y) and Ir(Nx−d,y):

CZNCC (Il(Nx,y), Ir(Nx−d,y)) =
∑
i,j∈Nx,y(Il(i,j)−Īl(Nx,y))·(Ir(i−d,j)−Īr(Nx−d,y))√∑

i,j∈Nx,y(Il(i,j)−Īl(Nx,y))
2
·
∑
i,j∈Nx,y(Ir(i−d,j)−Īr(Nx−d,y))

2
(6.4)

where Ī (Nx,y) = 1
n

∑
x,y∈Nx,y I (x, y) is the mean intensity of the patch Nx,y centered

at the coordinate (x, y).

The ZNCC returns a similarity ranging from [−1, 1]. We first normalize it into

[0, 1] then invert it to get the patch matching loss:

LPM =
∑
x,y

1− 1 + CZNCC (Il(Nx,y), Ir(Nx−d,y))

2
(6.5)

Our patch matching loss is computed at all 4 patch sizes to cover both small

structures and large areas. There are several advantages of using our patch-based

ZNCC loss to regularize the depth synthesis:

(1) Our patch matching loss uses patches for measurement that involve larger

regions than the direct pixel-wise photometric loss used in previous work, which is

more robust and can achieve sub-pixel accuracy. Figure 6.5 demonstrates the effect

of our patch-based ZNCC loss. We charted the values of our patch-based ZNCC

loss and the photometric loss against the disparity value of a pixel located at the

center of the image patch ”6”. It is obvious that by using our proposed patch-based

ZNCC loss, the loss is more smooth and likely to converge to the global minimum.

Whereas the direct pixel-wise photometric loss will lead to many local minimums

shown in the right curve chart.
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Figure 6.5: Comparison of our proposed patch-based ZNCC loss with the photo-
metric loss used in previous works.

(2) Compared to other similarity measures such as absolute intensity difference

(AD), Census, and Normalized Cross Correlation (NCC), ZNCC is especially robust

against Gaussian noise and variation between the compared patches, which can help

to recover more accurate depth in our self-supervised framework.

(3) As a zero-mean normalized similarity measurement function, our patch-based

ZNCC loss can provide a similar value ranging from [−1, 1]. After normalized to

[0, 1] as shown in Equation 6.5, it can be regarded as the confidence of the generated

depth at each pixel, which can be further used to self-supervise the training of our

confidence network.

109



6.3.5.2 View Reconstruction Loss

We use the view reconstruction loss as a second supervision on the depth synthesis.

Guided by the synthesized depth, the right views can be reconstructed by collecting

pixels from left images. The view reconstruction loss is defined as the L1 loss between

the reconstructed view Îr and the original view Ir:

LV R =
∑
xy

∣∣∣Ir(x, y)− Îr(x, y)
∣∣∣ (6.6)

Compared to the patch matching loss, the view reconstruction L1 loss is more sen-

sitive to small structures and depth discontinuities and can provide more detailed

depth information.

6.3.5.3 Disparity Smoothness Loss

We use a disparity smoothness term to regularize our network to produce more

smooth depth. Similar to (Garg et al. 2016) (Godard et al. 2017) (Zhou et al.

2017), we use the sum of the L1 norm of the disparity gradients along the x and

y directions as a smoothness factor. The edge-aware terms are used to reduce the

penalty on edges where depth discontinuities usually happen, which can prevent

over-smoothing.

LDS =
1

XY

∑
x,y

∣∣∣∣∂d(x, y)

∂x

∣∣∣∣ e−‖ ∂I(x,y)∂x ‖ +

∣∣∣∣∂d(x, y)

∂y

∣∣∣∣ e−‖ ∂I(x,y)∂y ‖ (6.7)

6.3.5.4 Disparity Consistency Loss

The left-right disparity consistency loss proposed in (Godard et al. 2017) has achieved

a great improvement for monocular depth generation. Here, we adopt this loss func-

tion into our framework. The left and right image disparities are both generated,

and the difference of left disparity map and the reconstructed left disparity map

from right disparity is computed and minimized. This loss will ensure the left and
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right disparities coherence.

LDC =
1

XY

∑
x,y

|dl(x, y)− dr(x− dl(x, y), y)| (6.8)

6.3.6 Confidence Estimation Network

One of the advantages of our proposed patch matching loss is that a normalize

similarity measurement can be generated for each pixel at the training time. With

the well-known epipolar constraint, the per-pixel confidence of the estimated depth

can be approximated as the normalized similarity measurement of the left patches

and the corresponding patches in the right image.

Pd(x, y) ≈ CNormalized(Il(Nx,y), Ir(Nx−d,y)) = (1− LPM(x, y)) (6.9)

Here, we propose to use another encoder-decoder network to learn the confidence

map generated by our depth estimation network during training, so that the con-

fidence map can be preserved and generated during the testing time. We tried to

train the confidence and depth in one network like (Ladický et al. 2014) (Eigen and

Fergus 2015) (Wang et al. 2015c) (Mousavian et al. 2016), but the multi-task train-

ing would reduce the depth estimation performance. Therefore, we use a parallel

encoder-decoder network to learn the confidence supervised by the per-pixel ZNCC

loss of our depth estimation network. The loss of our ConfidencNet is shown below:

LConfidenceNet =
∑
x,y

∣∣∣(1− LPM(x, y))− P̂d(x, y)
∣∣∣ (6.10)

where P̂d(x, y) is the generated confidence map, LPM(x, y) is the patch matching

loss from our depth estimation network described in above sections. The static

copy is used here to prevent the gradients propagating back to the depth estimation

network. The 1− LPM(x, y) operation inverts the loss to confidence, and L1 loss is

used to access the confidence estimation error.

Instead of using the same encoder-decoder network structure as our DepthNet,

111



we employ a simpler structure by only using first 5 conv-layer and last 5 deconv-layer

without skip layers as described in Figure 6.3 for two reasons:

(1) To reduce memory usage and training time, as training two neural networks

at the same time is very computationally expensive. The second network can be

replaced by a deeper and more complex encoder-decoder network to produce sharper

and more accurate confidence, but the main purpose of our work is to prove that

our self-supervised monocular depth learning and confidence estimation framework

is feasible and helpful for depth prediction, hence we choose to use a simple network

structure as the proof of concept.

(2) We intend to use a simpler network with fewer weights to prevent over-fitting

to noises and to learn more generic confidence – high confidence in texture-rich areas,

low confidence in texture-less, blurry and occluded areas, which is what we design

this confidence net for.

6.4 Experiments

In this section, we evaluate our framework and compare the results with prior ap-

proaches both quantitatively and qualitatively on KITTI dataset. We use the rec-

tified stereo image pairs for training our networks. For testing time, we use the left

image to generate depth, and the corresponding sparse LIDAR data is served as the

ground truth for benchmarking.

6.4.1 Implementation Details

Our networks are implemented in Tensorflow and trained on a workstation with a

single Nvidia Titan X GPU (12G Memory). Our models take around 60 hours to

train for 50 epochs. When in testing mode, our networks can output depth and con-

fidence map at around 20 frames per second. We open-sourced our implementation

which can be downloaded from here 1.

1https://github.com/melights/Monodepth_with_Confidence
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Hyper Parameters. All input images are scaled to 512x256 with a batch size

of 4. Adam Optimizer is used with β1 = 0.9, β1 = 0.999, and initial learning rate

λ = 0.0001 that decays after half of the training process. The weights to construct

our total loss function for depth estimation network are wp = 0.5,wv = 1,wd =

0.1,wc = 1.

Data Augmentation. The same data augmentation approach in (Godard et al.

2017) is used to randomly flip the image and change the gamma, brightness, and

color shifts to increase the network robustness and prevent over-fitting.

Multi-scale Implementation. We employ a multi-scale strategy to ensure

a coarse-to-fine up-sampling. As can be seen from Figure 6.3, 4 depth scales are

outputted with 1/8, 1/4, 1/2 and a full resolution. All of our loss functions are

computed for each of these 4 scales, and for each of left and right images/disparities.

We take the means of these loss functions as the final loss.

Patch Size. By applying different patch sizes on different image scales, we can

get very large equivalent patch sizes with less computation. For patch size choices,

based on our empirical test, we use n = 5, 5, 7, 9 pixels for our patch-based ZNCC

loss on 4 different scales, which is equivalent n = 5, 10, 28, 72 pixels’ windows on full

resolution images.

6.4.2 KITTI dataset

To be able to compare with the state-of-the-art monocular depth learning ap-

proaches, we trained and evaluated our networks using two different train/test splits:

Godard and Eigen.

Godard Split. We use the same train/test sets that Godard et al (Godard et al.

2017) proposed in their work. 200 high quality disparity images in 28 scenes provided

by the official KITTI training set are served as the ground truth for benchmarking.

For the rest of 33 scenes with a total of 30,159 images, 29,000 images are picked for

training and the remaining 1,159 images for testing.

Eigen Split. For fair comparison with more previous works, we also use the

test split proposed by Eigen et al (Eigen et al. 2014) that has been widely evaluated
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Table 6.1: Comparison with state-of-the-art methods on KITTI dataset.

Method
Super-

vision
Split Cap

Error (Lower better) Accuracy (Higher better)

AbsRel SqRel RMSE RMSElog D1-all δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al (Eigen et al. 2014) Yes E 80 0.203 1.548 6.307 0.282 - 0.702 0.890 0.958

Liu et al (Liu et al. 2016) Yes E 80 0.201 1.584 6.471 0.273 - 0.680 0.898 0.967

Zhou et al (Zhou et al. 2017) No E 80 0.208 1.768 6.856 0.283 - 0.678 0.885 0.957

Godard et al (Godard et al. 2017) No E 80 0.148 1.344 5.927 0.247 - 0.803 0.922 0.964

Ours No E 80 0.145 1.267 5.786 0.244 - 0.811 0.925 0.965

Garg et al (Garg et al. 2016) No E 50 0.169 1.080 5.104 0.273 - 0.740 0.904 0.962

Zhou et al (Zhou et al. 2017) No E 50 0.201 1.391 5.181 0.264 - 0.696 0.900 0.966

Godard et al (Godard et al. 2017) No E 50 0.140 0.976 4.471 0.232 - 0.818 0.931 0.969

Ours No E 50 0.138 0.937 4.399 0.231 - 0.825 0.933 0.969

Godard et al (Godard et al. 2017) No G 80 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975

Ours No G 80 0.117 1.202 5.953 0.210 29.612 0.845 0.938 0.976

by the works of Garg et al (Garg et al. 2016), Liu et al (Liu et al. 2016), Zhou et al

(Zhou et al. 2017) and Godard et al (Godard et al. 2017). This test split contains

697 images of 29 scenes. The rest of 32 scenes contain 23,488 images, in which

22,600 are used for training and the remaining for testing, similar to (Garg et al.

2016) and (Godard et al. 2017).

6.4.3 Results

6.4.3.1 Quantitative Evaluation

The evaluation results on the KITTI dataset are reported in Table 6.1. We use

different combinations of train/test splits (E for Eigen, G for Godard) and cap

distances (80m and 50m) to compare with different works. For Eigen et al (Eigen

et al. 2014), Liu et al (Liu et al. 2016), Zhou et al (Zhou et al. 2017) and Godard et

al (Godard et al. 2017) , the Eigen split with 80m cap distance are used. For Garg

et al (Garg et al. 2016), Zhou et al (Zhou et al. 2017) and Godard et al (Godard

et al. 2017), the Eigen split with 50m cap distance are used. We also report our

result on Godard split with 80m cap. The results show that our method outperforms

all compared methods and produce the state-of-the-art results for monocular depth

estimation problem on KITTI dataset in terms of error and accuracy metrics.
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Input Ground-truth (Garg et al. 2016) (Zhou et al. 2017) (Godard et al. 2017) Ours

Godard et al [3] OursInput Image Details

Figure 6.6: Upper part: comparison of monocular depth estimation on KITTI
dataset between Garg et al(Garg et al. 2016), Zhou et al(Zhou et al. 2017), Go-
dard et al(Godard et al. 2017), and ours. Lower part: comparison of details with
Godard et al(Godard et al. 2017). All of the results are generated using authors’
provided pre-trainned model. The ground-truth depth map is interpolated from
sparse point map only for visualization.

6.4.3.2 Qualitative Evaluation

The qualitative comparison to some of the related methods on KITTI dataset is

shown in Figure 6.6. While our network structure is similar to that of Godard et

al(Godard et al. 2017), both generate clear and accurate depth than other works.

We also provide a detailed comparison with the results of Godard et al(Godard

et al. 2017) in the lower part of Figure 6.6. Our network can generate more accurate

depth in complex regions with thin structures and texture-less areas such as the

pillars and traffic signs. This verified the theory we explained in Figure 6.5 that

our patch-based loss function is more robust and easier to converge to the global

minimum in complex regions.
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Figure 6.7: Confidence estimation results. A colorbar from red to yellow is used to
represent 0 to 1.

6.4.3.3 Confidence Map Evaluation

We show the confidence estimation results in Figure 6.7. A colorbar from red to

yellow is used to represent 0 to 1. We can see that the estimated confidence can

nicely represent the inverted ZNCC loss but less noisy due to the small network

we use to prevent over-fitting. The overlaid confidence on input image shows that

our ConfidenceNet has learned to generate confidence from contextual information.

For example, in texture-less areas (sky, building), dark areas (trees under shadow),

occluded areas (around thin structures) and reflective areas (car window), the esti-

mated confidence is usually very low, while the texture-rich areas and edges usually

have high confidence.

6.4.3.4 Reconstruction Results

As can be seen in Figure 6.8, we compared the reconstruction results based on the

depth map predicted using Stereo Matching (Chen et al. 2001), Godard et al(Godard

et al. 2017), and ours proposed method. Stereo Matching cannot estimate correct

depth for some pixel and left many holes which results in bad reconstruction result.

For the reconstruction results of Godard et al(Godard et al. 2017), as discussed

before, cannot recovery correct depth in the areas that contain small structures,

which results in noisy reconstruction result. Our method can generate correct and

smooth depth and reconstruction.
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Figure 6.8: Reconstruction result (right) based on the estimated depth (left) from
different approaches (from top to bottom: Stereo Matching (Chen et al. 2001),
Godard et al(Godard et al. 2017), and ours.)
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6.5 Discussion

In this chapter, we have presented a novel self-supervised framework for monocu-

lar depth learning and confidence estimation. We incorporate the patch matching

theory into a fully differential DCNN and achieve self-supervised training of both

depth and the confidence of depth. Our proposed loss function exploits the epipolar

constraint of stereo vision and also provides a normalized similarity that is further

used to supervise the confidence estimation. Our method not only outperforms the

state-of-the-art results on the KITTI benchmark evaluation, but also for the first

time, we are able to simultaneously generate depth from monocular images and

estimate the confidence of the generated depth. This is a step change for monocu-

lar depth estimation as it significantly increases the feasibility of using monocular

depth estimation into many practical applications such as autonomous driving and

monocular endoscopic surgery, where the accuracy of estimated depth is crucial.

Why Our ConfidenceNet Works? Since our ConfidenceNet is supervised by

the per-pixel ZNCC loss of our depth estimation network, it explicitly learns the

regions where our depth estimation network performs well and badly. But on a

deeper level, our ConfidenceNet actually implicitly learns the inherent defect of the

patch matching algorithm – it would fail on texture-less regions and performs badly

near stereo view occlusions, reflections and blurred areas. Therefore, after sufficient

training steps, our ConfidenceNet can give an estimation of the confidence of our

DepthNet, although they are two different networks.

In Future Work We will continue optimizing our model and explore the pos-

sibility of using adaptive window size for patch sampling to decrease the training

time and increase accuracy in small structures.
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Chapter 7

From Geometry-Aware AR to

Context-Aware AR

7.1 Introduction

Mixed Reality combines computer vision with information science, and computer

graphics as a cross-cutting technology. It makes seamless connections between vir-

tual space and the real world, by not only superimposing computer-generated in-

formation onto the real world environment, but also making progress on novel user

interaction for new experience. This interactive technology will soon become ubiq-

uitous in many applications, ranging from personal information systems, industrial

and military simulations, office use, digital games to education and training.

The latest research on Simultaneous Localisation and Mapping (SLAM) has

opened up a new world for MR development, greatly increased the camera tracking

accuracy and robustness. The sparse SLAM systems (Davison et al. 2007) (Klein

and Murray 2007) (Mur-Artal et al. 2015) are proven to be efficient 3D tracking

methods for monocular cameras, but structural information are absent from these

systems. In contrast, dense SLAMs (Newcombe et al. 2011b) (Newcombe et al.

2011a) (Newcombe et al. 2015) construct dense surfaces to generate geometric infor-

mation of the real scene, enabling geometric interactions in MR environment. The

collision effects between virtual and real-world objects in these geometry-aware MR
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systems do increase the immersion of the user experience (as can be seen in Figure

7.1 (a) and (b) for the Ball Pit MR game in Microsoft HoloLens). However, as

individual semantic properties of various different objects of the real world remain

undetected, geometry-aware MRs are unable to distinguish different object proper-

ties and may always generate uniform interactions between each other, which will

break the continuous user experience in MR (Grubert et al. 2017).

The natural first step moving away from purely geometric-based approaches

towards generating context-aware interactions is to understand the real environment

semantically in MR. Semantic segmentation (Garcia-Garcia et al. 2017) (Shelhamer

et al. 2017) (Zheng et al. 2015) (Chen et al. 2017c) (Badrinarayanan et al. 2017)

leading to semantic understanding is not new to computer vision. However, very

few prior works of utilizing semantic information in MR are reported. Semantic

understanding in MR presents additional challenges (1) associating semantics with

the structural information of the environment seamlessly on-the-go and (2) retrieving

the semantics then generating appropriate interactions.

Embedding semantic information extracted from a 2D image space into the 3D

structure of a MR environment is hard, because of the required high accuracy.

Careful considerations are needed when designing semantic-based MR interactions.

Realistic interactions in MR require not only geometric and structural infor-

mation, but also semantic understandings of the scene. While geometric structure

allows accurate information augmentation and placement, at the user experience

level, semantic knowledge will enable realistic interactions between the virtual and

real objects. For example realistic physical interactions (e.g. a virtual glass can be

shunted on a real concrete floor) in MR. More importantly, using semantic scene

descriptions, we can develop high-level tools for efficient design and constructions of

large and complex MR applications.

With the gap that this work addresses, we propose a novel context-aware seman-

tic MR framework and demonstrate its effectiveness through example interactive

applications. We show that how an end-to-end Deep Learning (DL) framework and

the dense Simultaneous Localisation and Mapping (SLAM) can be used for semantic
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(a) (b)

(c) (d)

Figure 7.1: (a): Microsoft HoloLens is capable of reconstructing the environment by
its built-in ”spatial mapping” function and provide a geometric mesh for geometry
based interaction. (b): The Ball Pit MR games based on geometry interaction for
Microsoft HoloLens. (c) Our proposed framework can provide semantic mesh for
more advanced context-aware interaction. (d) A shooting game developed based on
our proposed framework. Note that the bullet holes are different according to the
objects’ properties.

information integration in MR environment and how context-aware interactions can

be generated. We present the labelling of material properties of the real environment

in 3D space as a novel example application to deliver realistic physical interactions

between the virtual and real objects in MR. Our key insight is to build semantic

understanding in MR that not only can greatly enhance user experience through

object-specific behaviours, but also pave the way for solving complex interaction

design challenges. To the best of our knowledge, this is the first work to present a

context-aware MR (1) using deep learning based semantic scene understanding and

(2) generating semantic interactions at the object-specific level, one step further to-

wards the high-level conceptual interaction modelling in complex MR environment
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for enhanced user experience.

Dense SLAM KinectFusion (Newcombe et al. 2011a) is used for camera pose

recovery and 3D model reconstruction for creating a classic geometry-aware MR

environment first. We trained a Conditional Random Fields as Recurrent Neural

Networks (CRF-RNN) (Zheng et al. 2015) using a large-scale material database (Bell

et al. 2015) for detecting material properties of each object in the scene. The 3D

geometry/model of the scene is then labelled with the semantic information about

the materials made up of the scene, so that realistic physics can be applied during

interactions via real-time inference to generate corresponding physical interactions

based on the material property of the object that the user is interacting with, as

shown in a shooting game example for object-specific material-aware interactions,

Figures 7.1 (c) and (d).

The framework is both efficient and accurate in semantic labelling and infer-

ence for generating realistic context-aware interactions. Two tests are designed to

evaluate the effectiveness of the framework (1) an accuracy study with an end-

to-end system accuracy evaluation by comparing the dense semantic ray-casting

results with manually labelled ground truth from 25 keyframes of two different

scenes and (2) a user experiment with 68 participants to qualitatively evaluate

user experience using three different MR conditions. The results show that the

framework delivers more accuracy in 3D semantic mappings than directly using

the state-of-the-art 2D semantic segmentation. The proposed semantic based in-

teractive MR system (M = 8.427, SD = 1.995) has a significant improvement

(p < 0.001) on the realism and user experience than the existing MR system ap-

proaches that do not encode semantic descriptions and context-aware interaction

modelling (M = 5.935, SD = 1.458).

In the next section, we review related work on geometry-based MR Interac-

tions, and recent approaches to semantic segmentations using Convolutional Neural

Network. The following sections introduce our framework with SLAM dense recon-

structions of the scene and the 3D semantic fusion, and describe our implementation

and evaluation framework. Finally, we demonstrate our results compared with the
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state-of-the-art semantic segmentation algorithms.

7.2 Previous Work

Our approach draws on recent success of dense SLAM algorithms (Newcombe et al.

2011b) (Newcombe et al. 2011a) (Newcombe et al. 2015) and deep learning for

semantic segmentations (Garcia-Garcia et al. 2017) (Shelhamer et al. 2017) (Zheng

et al. 2015) (Chen et al. 2017c) (Badrinarayanan et al. 2017) that have been mostly

used in the field of robotics until now.

7.2.1 Geometry-based MR Interaction

Interaction modelling between virtual and real objects in MR are mostly geometry-

based through plane feature detections or full 3D reconstructions of the real-world.

Methods of using plane detections (Salas-Moreno et al. 2014) (Nuernberger et al.

2016) estimate planar surfaces in the real-world, onto which virtual objects are

placed and collided with. Random Sample Consensus (RANSAC) algorithm (Fis-

chler and Bolles 1981b) estimates planar surfaces based on sparse 3D feature points

extracted from a monocular camera. Plan detections require no depth cameras, are

computationally efficient and run on mobile phones. Mobile MR experience is shown

in the newly released Mobile AR systems (Apple 2017) (Google 2017). One obvi-

ous shortcoming of plane detections is the requirement for large planar surfaces to

delivery MR interactions. Collision meshes for non-planar surfaces are impossible,

hence, restricting user experience to the area and types of objects which users can

interact with.

Recent advances in depth sensors, display technologies and SLAM software (New-

combe et al. 2011b) (Newcombe et al. 2011a) (Whelan et al. 2013) (Newcombe et al.

2015) have opened up the potential of MR systems. Spatial structures of the real

environment can be generated at ease to provide accurate geometries for detecting

collisions between virtual and real objects. We saw examples of geometry-based

interactions e.g. a virtual car ’drives’ on an uneven real desk (Newcombe et al.
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2011b); the Super Mario game played on real building blocks (Kim et al. 2013); and

the Ball Pit game in HoloLens (Microsoft 2017). Figures 7.1 (a) and (b) illustrate

the concept. Impressive as they are, the state of the art systems are still limited to

the basic and uniform geometry-based virtual and real object interactions. Without

high-level semantic descriptions and scene understandings, continuous user experi-

ence in MR is compromised and easily broken, and the realism and immersion are

reduced. One example is in the Ball Pit game, material properties of the real objects

are not recognized, thus a ball falling onto a soft surface would still bounce back

unrealistically against the law of physics.

7.2.2 Deep Semantic Understanding

Semantic segmentation is an emerging technology in computer vision. The recent

success of Convolutional Neural Network(CNN) has achieved the semantic level

image recognition and classification with great accuracy (Krizhevsky et al. 2012),

enabling many novel applications. In last few years more complex neural networks

such as FCN (Shelhamer et al. 2017), CRF-RNN (Zheng et al. 2015), DeepLab

(Chen et al. 2017c) and SegNet (Badrinarayanan et al. 2017) have enabled image

understanding at the pixel level. Semantic information at every pixel of an image can

be predicted and labelled when using these neural networks trained on large-scale

databases.

Combined with SLAM systems, semantic segmentation can be achieved in 3D

environments (Rünz and Agapito 2017) (Tateno et al. 2017) (Zhao et al. 2017)

(McCormac et al. 2017), a promising future in robotic vision understanding and au-

tonomous driving. Unlike these existing methods that aimed at providing semantic

understanding of the scene for robots, we focus on human interactions. Our goal

is to provide users with realistic semantic level interactions in MR. In this chapter,

for the first time, we use MR as a bridge to connect AI and human for a better

understanding of the world via intelligent context-aware interaction.
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7.2.3 Context and Semantic awareness in XR environment

Prior approaches have studied context and semantic understandings in 3D virtual

environment, e.g. semantic inferring in interactive visual data exploration (North

et al. 2012); enhancing software quality for multi-modal Virtual Reality (VR) sys-

tems (Fischbach et al. 2017); visual text analytics (Endert et al. 2012); and interac-

tive urban visualization (Deng et al. 2016). Context awareness is also introduced in

computer-aided graphic design such as inbetweening of animation(Yang 2018); 3D

particle clouds selection(Yu et al. 2016); and illustrative volume rendering (Rautek

et al. 2007). Virtual object classifications are proposed in VR applications by using

semantic associations to describe virtual object behaviours (Chevaillier et al. 2012).

The notion of conceptual modelling for VR applications is pointed out by Troyer et

al., highlighting a large gap between the conceptual modelling and VR implemen-

tations. It is suggested to take a phased approach (i.e. conceptual specification,

mapping and generation phases) to bridge the gap (De Troyer et al. 2007).

Recently, the idea of extending Augmented Reality (AR) applications to become

context-aware has appeared in computer graphics (Grubert et al. 2017), which pro-

poses to classify context sources and context targets for continuous user experience.

A method is proposed for authentically simulating outdoor shadows to achieve seam-

less context-aware integration between virtual and real objects for mobile AR (Bar-

reira et al. 2018).

We address ubiquitous interactions in MR environment and see deep semantic

understanding of the environment as the first step towards the high-level interaction

design for MR. Real-time 3D semantic reconstruction is an active research topic in

robotics with many recent works being focused on object semantic labelling. We

now re-design and fine-tune the architecture for this MR framework.

7.3 Framework Overview

Figure 7.2 shows the proposed framework. Starting from an 1©Input Sensor ,

two main computation streams are constructed: 2©Tracking & Reconstruction
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Figure 7.2: Flowchart demonstrates the whole framework.

Stream and 3©Context Detection & Fusion Stream , which are finally merged

and output to the 4©Interactive MR Interface for generating context-aware

virtual-real interactions.

7.3.1 Input Sensor

An input sensor, a RGB-D camera such as Microsoft Kinect, ASUS Xtion series

or built-in sensors on Microsoft HoloLens, is used to acquire the depth information

directly for the 3D reconstruction of the environment. Monocular or stereo cameras

would also work if combined with dense SLAM systems (Newcombe et al. 2011b),

but the accuracy and real-time performance of Mono devices are not guaranteed.

7.3.2 Camera Tracking & Reconstruction Stream

The tracking & reconstruction stream shown in the upper path of Figure 7.2 pro-

cesses the video captured by the input sensor. A SLAM system continuously esti-

mates the camera pose while simultaneously reconstruct a 3D dense model. This is

a typical method used in latest MR systems such as Microsoft HoloLens for imple-

menting geometry-aware MR. A dense 3D model is served as the spatial collision

mesh and the inverse of the camera pose extracted from SLAM guides the movement

of the collision mesh to visually correspond to the real-world objects.
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7.3.3 Context Detection & Fusion Stream

The lower path of Figure 7.2 shows the Context Detection Stream. 2D image se-

quences from the input sensor are context sources to be processed by semantic

segmentation algorithms that can densely output the pixel-wise object attributes

and properties of the scene. Based on the semantic segmentation information, the

context information relevant for implementing context-aware experience is gener-

ated. Then the 2D semantic segmentation results are projected onto the scene and

fused with the 3D dense model (from tracking & reconstruction stream) to generate

a semantic 3D model based on the camera pose of the current frame.

7.3.4 Interactive MR Interface

The semantic 3D model are combined with the camera pose to provide a context-

aware MR environment. High-level interactions can be designed based on the se-

mantics. Furthermore, tools can be developed to facilitate design and automatic

constructions of complex MR interactions in different applications.

The advantages of the proposed framework are:

1) Accurate 3D Semantic Labeling: The Context Detection & Fusion Stream

can predict a pixel-wise segmentation of the current frame, which is further fused

onto the 3D dense model. The semantic 3D model is generated with each voxel con-

tains the knowledge of the context information of the environment. The voxel-based

context-aware model delivers the semantic information through ray-cast queries

about the object properties in order to generate different interactions. Object prop-

erties can be high-level descriptions, for example types of material and interaction

attributes.

2) Real-time Performance: In deep learning based approaches the semantic

segmentation is computationally expensive especially for processing frame by frame

in real-time applications. We achieve the real-time performance by storing the

semantic information into the 3D dense model after the initial segmentation process,

so that the semantic segmentation is not processed at every frame, but at certain
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frames.

3) Automatic Interaction Design: With the context information available,

virtual and real object interactions can be designed and computed by feeding the

object attributes of the real world to the target software module for processing e.g.

a physics module or an agent AI module. For example, realistic physical interactions

between virtual and real objects can be computed by feeding the material properties

of the real world to physics simulation algorithm (such as our throwing plates game

in the following section).

7.4 implementation

We present our novel MR framework in the context of object material-aware inter-

actions as an implementation example to demonstrate the concept of context-aware

MR. The material properties in the MR generates realistic physical interactions

based on the objects’ material property. This example implementation is also used

for accuracy study and user experiment.

7.4.1 Camera Tracking and Model Reconstruction

The accurate camera tracking and dense 3D model reconstructions of the environ-

ment are achieved by adopting a dense SLAM system (Newcombe et al. 2011a),

which estimates camera poses and reconstructs the 3D model in real-time. Depth

images from a Kinect sensor are projected into the 3D model. The camera pose and a

single global surface model can be simultaneously obtained through a coarse-to-fine

iterative closest point (ICP) algorithm. The tracking and reconstruction processes

consist four steps:

1) Each pixel acquired by the depth camera is firstly transformed into the 3D

space by the camera’s intrinsic parameters and the corresponding depth value is

acquired by the camera;

2) An ICP alignment algorithm is performed to estimate the camera poses be-

tween the current frame and the global reconstructed model;
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3) With the available camera poses, each consecutive depth frame can be fused

incrementally into one single 3D reconstruction by a volumetric truncated signed

distance function (TSDF);

4) Finally, a surface model is predicted via a ray-casting process.

A Microsoft Kinect V2 is used as the input sensor with OpenNI2 driver to capture

RGB images and calibrated depth images at the resolution of 960x540 at 30 frames

per second.

7.4.2 Deep Learning for Material Recognition

We trained a deep neural network for the 2D material recognition task. Our neural

network is implemented in caffe (Jia et al. 2014) based on the CRF-RNN architec-

ture (Zheng et al. 2015), which combines the FCN with Conditional Random Fields

(CRF) based on the probabilistic graphical modelling for contextual boundary re-

finement. We use the Materials in Context Database (MINC) (Bell et al. 2015)

as the training database that contains 3 million labelled point samples and 7061

labelled material segmentations in 23 different material categories.

The VGG-16 pre-trained model for ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) (Simonyan and Zisserman 2015) is used as the initial weights

of our neural network. Based on the MINC dataset, we then fine-tune the network

from 1000 different classes (ImageNet contains 1000 classes of labels) to 23 class

labels as the output. VGG-16 is a CNN model specifically designed for classification

tasks and only produces a single classification result for a single image. Therefore,

we manually cast the CNN into a Fully Convolutional Network (FCN) for pixel-wise

dense outputs (Shelhamer et al. 2017). By transforming the last three inner product

layers into convolutional layers, the network can learn to make dense predictions

efficiently at the pixel level for tasks like semantic segmentation. The fully-connected

CRF model is then integrated into FCN to improve the semantic labelling results.

Fully-connected CRF encodes pixel labels as random variables form a Markov

Random Field (MRF) (Kindermann and Snell 1980) conditioned on a global obser-

vation (the original image). By minimising the CRF energy function in the Gibbs
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distribution (Ladick’ et al. 2009), we obtain the most probable label assignment for

each pixel in an image. With this process, the CRF refines the predicted label using

the contextual information. It is also able to refine weak semantic label predictions

to produce sharp boundaries and better segmentation results (see Figure 7.8 for the

comparison of FCN and CRF-RNN). During the training process, CRF is imple-

mented by multiple iterations, each takes parameters estimated from the previous

iteration, which can be treated as a Recurrent Neural Network (RNN) structure

(Zheng et al. 2015).

As the error of CRF-RNN can be passed through the whole network during

a backward propagation, the FCN can generate better estimations for CRF-RNN

optimization process during the forward propagation. Meanwhile, CRF parameters,

such as weights of the label compatibility function and Gaussian kernels can be

learned from the end-to-end training process.

We use 80% of the 7061 densely labelled material segmentations in the MINC

dataset as the training dataset and the rest of 20% as testing sets. The training

dataset is trained using a single Nvidia Titan X GPU for 50 epochs, after which there

is no significant decrease of loss. For testing results, we obtain a mean accuracy of

78.3% for the trained neural network. The trained network runs at around 5 frames

per second for the 2D dense semantic segmentation at the resolution of 480x270 on a

Nvidia Titan X GPU. We input 1 frame into our neural network for every 12 frames

according to our test to achieve a trade-off between the speed and accuracy.

7.4.3 Bayesian Fusion for 3D Semantic Label Fusion

The trained neural network for material recognition only infers object material prop-

erties in the 2D space. As the camera pose for each image frame is known, we can

project the semantic labels onto the 3D model as textures. A direct mapping can

cause information overlapping, since accumulated weak predictions and noises can

lead a bad fusion result as shown in Figure 7.3 (a), where boundaries between dif-

ferent materials are blurred. We solve this issue by utilising the dense pixel-wise

semantic probability distribution produced by the neural network over every class.
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(a) (b)

Figure 7.3: (a) 3D semantic label fusion using direct mapping. (b) 3D Semantic
Label Fusion with Bayesian fusion.

Therefore, we are able to improve the fusion accuracy by projecting the labels with a

statistical approach using the Bayesian fusion (Armeni et al. 2016) (Hermans et al.

2014) (Zhao et al. 2017) (McCormac et al. 2017). Bayesian fusion enables us to

update the label prediction li on 2D images Ik within the common coordinate frame

of the 3D model.

P (x = li|I1,...,k) =
1

Z
P (x = li|I1,...,k−1)P (x = li|Ik) (7.1)

where Z is a constant for the distribution normalization. The label of each voxel

is updated with the corresponding maximum probability p (xmax = li|I1,...,k). The

Bayesian fusion guides the label fusion process and ensures an accurate mapping

result over the time to overcome the accumulated errors to some extent. Figure 7.3

(a) shows without the Bayesian fusion, the label fusion results are less clear due to

the overlapping of weak predictions. In contrast, 7.3 (b) with the Bayesian fusion,

the fusion results are much cleaner.

After semantic information fusion into the 3D model, we can get a 3D semantic

labelled model. Although the Bayesian fusion is used to guide the fusion process, due

to accumulation of the 2D segmentation error and the tracking error, in some area,

the semantic information still not perfectly matches the model structure (see Figure

7.4). Next we explain how to further improve the fusion accuracy by proposing a

new CRF label refinement process on 3D structures.
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Figure 7.4: 3D semantic label fusion and refinement.

7.4.4 3D Structural CRF Label Refinement

We further improve the accuracy of the 3D labelling with a final refinement step on

the semantic information using the structural and color information of the vertices

of the 3D semantic model. From the fully connected CRF model, the energy of a

label assignment x can be represented as the sum of unary potentials and pairwise

potentials over all i pixels:

E (x) =
∑
i

ψu (xi) +
∑
i

∑
j∈Ni

ψp (xi, xj) (7.2)

where the unary potential ψu (xi) is the cost (inverse likelihood) of the ith vertex

assigning with the label x. In our model implementation, we use the final probability

distribution from the previous Bayesian Fusion step as the unary potential for each

label of every vertex. The pairwise potential is the energy term of assigning the

label x to both ith and jth vertices. We follow the efficient pairwise edge potentials

in (Krähenbühl and Koltun 2011) by defining the pairwise energy term as a linear

combination of Gaussian kernels:

ψp (xi, xj) = µ (xi, xj)
M∑
m=1

w(m)k
(m)
G (fi, fj) (7.3)

where wm are the weights for different linear combinations, kGm are m different Gaus-
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sian kernels that fi and fj correspond to different feature vectors. Here, besides the

commonly used feature space in (Krähenbühl and Koltun 2011) (Zheng et al. 2015)

such as the color and the spatial location, the normal direction is also considered as

a feature vector to take the full advantage of our 3D reconstruction step:

kG (fi, fj) =w(1)exp

(
−|pi − pj|

2

2θ2
p

)

+w(2)exp

(
−|pi − pj|

2

2θ2
pI

− |Ii − Ij|
2

2θ2
I

)

+w(3)exp

(
−|pi − pj|

2

2θ2
pn

− |ni − nj|
2

2θ2
n

) (7.4)

where pi and pj are pairwise position vectors; Ii and Ij are pairwise RGB

color vectors; ni and nj are pairwise normal directional vectors. The first term

is the smoothness kernel assuming that the nearby vertices are more likely to be in

the same label, which can efficiently remove small isolated regions (Shotton et al.

2009)(Krähenbühl and Koltun 2011). The second term represents the appearance

kernel that takes into account of the color consistency, since the adjacent vertices

with similar color(s) are more likely to have the same label. The third term is the

surface kernel which utilizes the 3D surface normal as a feature that vertices with

similar normal directions are more likely to be the same label.

By minimizing Equation 7.2, semantic labels on our 3D model are further refined

according to the color and the geometric information, which can efficiently eliminates

the ”label leaking” problem caused by the 2D semantic segmentation errors and the

camera tracking errors (see Figure 7.4).

7.4.5 Interaction Interface

A user interface is developed with two layers. The top layer displays the current

video stream from a RGB-D camera, whilst the semantic 3D model serves as a hid-

den physical interaction layer to provide an interaction interface. In the interactive

MR application, a virtual camera is synchronized with predicted camera poses for
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Manual Segmentation

Figure 7.5: The evaluation framework

projecting the 3D semantic model onto the corresponding view of the video stream.

Figure 7.5 shows that the back layer of the interface displays the video stream feed

from the RGB-D camera; A semantic interaction 3D model is in front of the video

layer for handling interactions of different materials (Green: glass, Purple: painted,

Blue: fabric, Yellow: wood, Red: carpet). The virtual and real physical interactions

are performed on the interaction model. The context-aware interaction model is

invisible to allow users interact with the real-world objects to experience an immer-

sive MR environment. The interaction layer also computes real-time shadows to

make the MR experience even more realistic. An oct-tree data structure accelerates

the ray-casting queries for the material properties to improve the real-time perfor-

mance. Finally, corresponding physical interactions based on semantic information

e.g. different materials are achieved through physics simulations.

7.5 Example Applications

Based on our implementation, two FPS games are developed to demonstrate the

concept of the proposed material-aware interactive MR. Next, we describe the design

of the interactions and evaluations.

Games are interaction demanding applications driven by computational perfor-

mance and accurate interactions in virtual space. We designed two MR game that
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(a) (b)

(c) (d)

Figure 7.6: The screenshots of our MR shooting game. The interaction is different
when shooting (a)walls, (b)desks, (c)computer screen and (d)chair.

can directly interact with the real-world objects. A shooting game is designed to

show material-aware interactions between bullets and the real world objects. The

shoot scenario is chosen, because we want to test the accuracy of the semantic 3D

model using ray-cast queries. In this game, as shown in Figure 7.6, multiple interac-

tions for different materials have been implemented including different bullet holes,

flying chips and hitting sound when hitting different objects: (a)walls, (b)desks,

(c)computer screen and (d)chair. The interaction for different material context is as

real as possible.

Another way to show the capability of the context-aware framework is to match

the interaction results to the user’s anticipation of the interaction results using

everyday scenarios that familiar to users, i.e. testing the immersive experience of

the MR system from the user’s perspective. The second example is designed to

match the user expectations for material-specific physical interactions.

As shown in Figure 7.7, users throw virtual plates onto real world objects of the
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(a) (b)

(c) (d)

Figure 7.7: The screenshots of our MR throwing plates game. The interaction is dif-
ferent when throwing plates to (a)book, (b)desks, (c)computer screen and (d)chair.

MR environment, resulting material-aware physical interactions induced by various

material properties of the real objects. In Figures 7.7 (a) and (b), virtual plates are

broken when felling onto the desk, but bounced back when colliding with a book; in

(c) when colliding with a computer screen, the plate is broken with the flying glass

chips; in (d), the plate remain intact colliding with a soft chair.

7.6 Experimentation

7.6.1 Accuracy Study

Multiple factors affect the accuracy of the system: (1) the camera tracking, (2) the

3D model reconstruction, (3) the deep semantic material segmentation, (4) the 2D

to 3D semantic model fusion and (5) the implementation of ray-casting. Therefore,

it is extremely difficult to evaluate the accuracy of every single part of the system,

separately. We conducted an end-to-end accuracy study to directly evaluate the
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FCN CRF–RNN Ours–noCRF Ours Ground Truth Image

Figure 7.8: Semantic segmentation samples for each column from left to right: FCN,
CRF-RNN, Ours without CRF refinement, Ours with CRF refinement, Ground
Truth, Input image

accuracy of the dense ray-casting queries of the 3D semantic model, because it

directly determines the accuracy of interactions. A total of 25 key-frames from

two different scenes (office and bedroom) are selected, and at the same time, the

2D projections of the 3D semantic models are captured as the dense ray-casting

query results at the corresponding key-frames (see Figure 7.9). Ground truth for

the accuracy evaluation is obtained by manually labelling 25 RGB images with the

same material labels. The four common evaluation criteria (Shelhamer et al. 2017)

(Zheng et al. 2015) for semantic segmentation and scene parsing evaluations are

used to evaluate the variations of pixel accuracy and region intersection over union

(IU).

1. pixel accuracy
∑
i nii∑
i ti

2. mean accuracy 1
nc1

∑
i
nii
ti

3. mean IU 1
nc1

∑
i

nii
ti+

∑
j nji−nii
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4. frequency weighted IU 1∑
k tk

∑
i

tinii
ti+

∑
j nji−nii

where nij represents the the number of pixels of class i predicted to be class j; nc1

is the total number of classes; ti =
∑

j nij is the total number of pixels of class i.

As can be seen from Table 7.1, after 2D-3D fusion, 3D refinement and finally

3D-2D projections, our framework can provide more accurate semantic segmentation

results compared with the 2D methods such as FCN and CRF-RNN from the met-

rics of pixel accuracy and mean accuracy. Our method also produce less error labels

compared with other, which can be revealed from mean IU and frequency weight

IU. Figure 7.8 shows some semantic segmentation samples. Taking the advantages

of the 3D constraints and refinement in our proposed framework, our semantic seg-

mentation results are more uniform, sharp and accurate.

Table 7.1: Accuracy study results compared with other 2D semantic segmentation
algorithms

pixel

acc.

mean

acc.

mean

IU

f.w.

IU

FCN(Shelhamer et al. 2017) 81.61 63.69 49.54 76.16

CRFRNN(Zheng et al. 2015) 85.68 51.73 41.32 79.76

Ours noCRF 87.86 70.69 54.81 81.86

Ours 89.42 72.06 56.32 84.30

7.6.2 User Experience Evaluation

We conduct a user study to evaluate the effectiveness of the semantic-based MR

system. Using the throwing plate game, three test conditions are designed by setting

different collision responses:

1) No Collision Mesh: Virtual plates were thrown into the real world without

any collision being detected.

2) Uniform Collision Mesh: Virtual plates interact with the real world with the

uniform collision mesh being activated, but no object-specific interaction is gener-

ated.
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3) Semantic Collision Mesh: Physics responses of the virtual plates with the

real-world objects are dependent on the material properties of the objects in the

real world.

The objective of the user study is to assess the realism of the MR environment by

measuring how much the semantic-based interactions matches the user anticipations.

We investigate whether or not the semantic-based interactions can significantly im-

prove the realism of MR systems and delivers immersive user experience.

Firstly, we evaluate the realism of the physical interactions such as collision

responses in MR systems. We test to see if users are able to detect differences in

these three interaction conditions between virtual and real objects in short video

clips, and whether or not the realism in MR can be improved via context-aware

physical responses. Secondly, to ensure the quality of qualitative study, we test

if there is any risk that the user experience of the proposed MR system could be

affected by his or her previous engagement with computer games and MR or VR

technologies.

7.6.2.1 Participants

A questionnaire was designed and an online servery platform was used to conduct

the user study. Anonymous participants were recruited without restrictions on age

and gender. Each participant was firstly asked whether he/she had any previous

experience with FPS games and VR/AR games, and then asked to watch the three

video clips carefully. Each video clip can be viewed repeatedly, so that the partici-

pant can take time to digest and answer the questions. Each of the video clip was

rated by participants on the scale of 1 (very bad) to 10 (very good) based on the

quality of the MR interactions and realism.

The questionnaires are shared among students’ chatting group. A total of 68

questionnaires were received, in which 6 responses were removed for reasons either

participants did not confirm that they have watched the videos carefully or their

viewing time was too short (less than 10 seconds) indicating little interest from the

participants. Among the 62 valid questionnaires, 69.57% had experience with FPS
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Figure 7.9: The user experience evaluation results.

games, 65.22% had experience with VR/AR games.

7.6.2.2 Results

We used the score from 1 to 10 as the interval data so that we can use parametric

ANOVA to analysis the data. We have performed a repeated measure ANOVA test

to analyze scores obtained for the three conditions. Mauchly’s test indicated that

the assumption of sphericity had been violated (X2 = 42.029, p < 0.001, ε = 0.665

). Therefore, we used Greenhouse-Geisser to correct the degrees of freedom. Main

effects were found within the three conditions (F1.330,81.135 = 212.293, p < 0.001).

The following post hoc Bonferroni pairwise comparisons show that the Semantic

Collision Mesh (M = 8.427, SD = 1.995) is significantly better than the other

two MR conditions (p < 0.001), indicating that the proposed semantic interactions

through the inference of material properties can greatly improve the realism of the

MR system. We also found that the Uniform Collision Mesh (M = 5.935, SD =

1.458) offers much better MR experience (p < 0.001) than the No Collision Mesh

(M = 3.71, SD = 1.99) but less realistic compared with the semantic context-aware

MR. The mean scores of the three system conditions are shown in Figure 7.9.
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Furthermore, as a large number of our participants have either experienced FPS

games (69.57%) or VR/AR games (65.22%), we also conducted a between-subjects

repeated measure ANOVA test to reveal whether this experience has an influence

on the user when assessing the results due to prior exposure to VR, MR, and games

technologies. It has been shown that the final test results are not affected by either

the experience of FPS games (p = 0.793) or VR/AR games (p = 0.766).

7.6.3 User Feedback

Many participants were interested in the MR system and gave very positive com-

ments and feedback about their MR experience that the system provides. Comments

are such as ”This game (throwing plates) is amazing! I never experienced such MR

experience before.”; some people commented on the importance of material-specific

interactions even the low quality models, textures and animation being used in the

current prototype, ”Although the interaction sometimes is not very obvious, it really

makes a lot of difference.”; some people criticized the MR system without semantic

interaction: ”The next second when the plates break when hitting a soft chair (in-

dicating the MR system with Uniform Collision Mesh), I won’t play it again, as it

violates the basic physical law.”, while other people cannot wait to play our seman-

tic interaction MR game ”Your game creates a realistic interactive experience, nice

work! When will you release your game?”.

7.7 Conclusion and Discussion

We show how deep semantic scene understanding methodology combined with dense

3D scene reconstruction can build high-level context-aware highly interactive MR

environment. Recognizing this, we implement a material-aware physical interac-

tive MR environment to effectively demonstrate natural and realistic interactions

between the real and the virtual objects. Our work is the first step towards the

high-level interaction design in MR. This approach can lead to better system design

and evaluation methodologies in this increasingly important technology field.
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There are some immediate directions for future research and we mention two

such directions now. Although in this chapter we focus our discussions on material

understanding and its semantic fusion with virtual scene in MR environment, the

concept and the framework presented here are applicable to address many other

context-aware interactions in MR, AR and even VR. The framework can be extended

by replacing the training dataset with more general object detection databases for

constructing different interaction mechanisms and context. Realistic physically-

based sound propagation and physicall-based rendering using the proposed context-

aware framework for MR are promising directions to pursue. Integrated with multi-

modal interactions, immersive experience can be achieved. Our results have hinted

that the study of semantic constructions in MR as a high-level interaction design

tool is worth pursuing, as more comprehensive methodologies emerging, complex

rich MR applications will be developed in the near future.

We believe that AI is not only for autonomous tasks of machines and robots,

but also is for the improvement of human decision making when interacting with

the real world through virtual interactions.
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Chapter 8

Increase Tracking and

Reconstruction Robustness –

Learning-based Image Smoke

Removal

8.1 Introduction

Surgical smoke is the by-product of using energy-generating devices that raise intra-

cellular temperatures during surgery. Surgical smoke in intraoperative imaging and

image-guided surgery (Tsui et al. 2013) can severely deteriorate the image quality

(Weld et al. 2007) and pose hazards to surgeons (Planteféve et al. 2016). There-

fore, improving the quality of intraoperative images is highly desirable for many

clinical applications. Surgical smoke also poses significant issues (Ulmer 2008) in

future advanced medical imaging tasks such as robotic surgery, real-time surgical

reconstruction and Augmented Reality, where the effectiveness of computer vision

is pertinent.

Physical smoke evacuation devices are available for removing surgical smoke, but

such devices hardly usable for image-guided surgery. Recently research approaches
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based on more conventional image processing methods were proposed for filtering

out the smoke, then trying to recover images as sharply and clearly as possible

(Kotwal et al. 2016) (Baid et al. 2017) (Luo et al. 2017) (Tchaka et al. 2017) (Wang

et al. 2018).

But these methods will always over-enhance the image and suffer from fidelity

loss problem. More recently, end-to-end deep learning (DL) approaches (Cai et al.

2016) have been introduced to solve the de-hazing and de-smoking problems, which

achieve promising results. However, there are still several challenges need further

before it can be introduced to medical practice:

• It is extremely difficult to collect large amounts of data for the effective learning

of the implicit de-smoking function, especially for surgical scenes.

• Learning-based methods can be over-fitted to the limited amount and variation

of training data, leading to unstable performance when testing on real-world

data.

• Smoke can be also regarded as an important signal of the ablation process. Re-

moving the smoke sometimes can have the reverse effect if it is not quantifiable

and controllable.

In this chapter, we formulate the smoke detection and removal as jointly learning

processes and propose a novel computational framework for unsupervised collabora-

tive learning of smoke detection and removal from rendering smoke on laparoscopic

videos. The contribution of this work include:

• We innovatively integrate a render engine into our learning framework for

continuously outpouring unlimited training data without any manual labeling

needed.

• We decompose the smoke removal task into two loosely-coupled sub-module

tasks: pixel-level smoke detection and smoke removal based on the detection

results, which not only can prevent over-fitting to synthetic data but can also

make the surgeon aware of how much smoke is removed.
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• We propose a novel Generative Collaborative Networks (GCN) training frame-

work that maximally exploits the potential of our smoke detection and removal

networks.

• The quantitative and qualitative evaluation results prove that our proposed

method outperforms the GAN framework and the state-of-the-art smoke re-

moval approaches.

Compared to conventional image processing approaches, our proposed frame-

work is able to remove smoke with a global contextual understanding and recover

more realistic tissue colour. Although trained on synthetic images, the experimental

results show that our network is able to effectively remove smoke on laparoscopic

images with real surgical smoke.

8.2 Related Work

Image de-hazing and de-smoking are the tasks that have been researched for decades

in the image processing and computer vision communities for recovering clear out-

door scenes affected by bad weather. Typical methods for smoke removal are either

based on image processing or machine learning.

8.2.1 Atmospheric Scattering Model

One of the most classic model to describe the hazy or smoky image is the atmospheric

scattering model(McCartney and Hall 1977) (Narasimhan and Nayar 2003) (Nayar

and Narasimhan 1999)

I(x) = J(x)t(x) + A(1− t(x)) (8.1)

where I(x) is the observed hazy image, J(x) is the clear scene to be recovered,

A is the global atmospheric light, t(x) is the medium transmission, which can be

described by t(x) = e−βd(x), where β is the atmosphere scattering coefficient and
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d(x) is the distance. However, the atmospheric scattering model is based on the

strong assumption that the haze is homogeneous, and the light source is parallel

and even beams (such as sunlight). Unfortunately, for the surgical smoke in MIS,

smoke concentration can vary greatly, so t(x) is very hard to predict. The light

source is usually uneven due to the very close distance between light and tissues.

8.2.2 Dark Channel Prior based de-smoking

The dark-channel prior (DCP) proposed by He et al (He et al. 2011) is a simple

but effective approach for predicting transmission map based on the observation

of the natural property of haze-free images – pixels should have at least one color

channel with very low-intensity values. However, for real-world images, it will cause

chromatic change and fidelity loss. Also, for MIS scenes, the close-distance direct

light source will produce over-illuminated pixels such as reflection of tissues, light

color fat tissues, which will violate the DCP assumption and be falsely detected as

hazy.

Tchaka (Tchaka et al. 2017) adopted adaptive DCP with histogram equalization

to remove smoke for endoscopic images and improve the recovered image quality.

However, several parameters are chosen empirically, and due to the limitation of

DCP, although histogram equalization can enhance the color and contrast, the orig-

inal and real color will not be preserved.

8.2.3 Optimization-based De-smoking

Fattal et al (Fattal 2008) further refined the model in Equation 8.1, and take the

surface shading into account in addition to the scene transmission and use Gaussian

Markov Random Field (MRF) model to recover the haze-free image. Similarly,

Nishino (Nishino et al. 2011) modeled chromaticity and depth using factorial MRF

for more accurate scene radiance estimation. Tan et al (Tan 2008) proposed a

local contrast maximizing method based on the observation that hazy-free images

tend to have much higher contrast, which also relies on optimizing MRF models.
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Meng et al (Meng et al. 2013a) introduced an inherent boundary constraint on the

transmission function that can recover more image details and structures. Baid et

al (Baid et al. 2017) presented a unified Bayesian formulation for joint de-smoking,

specularity removal, and de-noising in laparoscopy images. They propose several

priors by probabilistic graphical models and sparse dictionaries to model the image

color and texture of the un-corrupted image. The variational Bayes Expectation

Maximization(VBEM) optimization is used to minimize the overall energy function

and infer the un-corrupted images from corrupted images.

However, although the above MRFs priors are well-designed, these hand-crafted

prior models have limited expressive power, and lack a global contextual under-

standing for an ill-posed problem like de-smoking. Another common weakness of

these methods is that they were all trying to minimize the prior features that tend

to be hazy, which usually lead to over-enhanced color and contrast and also suffer

from fidelity loss.

8.2.4 Learning based De-smoking

With the recent success of deep learning, many deep learning frameworks are in-

troduced to solve the de-hazing and de-smoking problems. DehazeNet (Cai et al.

2016) is an end-to-end learning system for single image haze removal by learning the

medium transmission map, which is subsequently used to recover a haze-free image

by the atmospheric scattering model. Similarly, AOD-Net (Li et al. 2017a) integrate

the numerical computation of atmospheric scattering model into the network struc-

ture and achieve all-in-one end-to-end training. However, these networks are still

based on the Atmospheric Scattering Model that is not suitable for MIS scenes, also

the network structures are very shallow and out-dated for learning and recovering

fine details.
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8.2.5 Novelity to previous work

Most of the above work rely on the Equation 8.1 to solve the de-hazing problem.

However, in MIS scenes, most of the smoke is non-uniform, light beam is unparallel

and uneven, making it an ill-posed problem. In this chapter, we reformulate the

Equation 8.1 as fully end-to-end learning processes, by estimating the smoke mask

first and use it as prior knowledge for another neural network to learn the ill-posed

smoke removal function. We not only achieve better smoke removal results, but

also reduce over-fitting and make the network more robust to real-world images. In

addition, the pixel-level smoke detection result can lead to many useful applications

such as smoke volume estimation and increase the awareness of surgical smoke for

surgeons.

8.3 Methods

G Loss

Original Image

D Loss

Detector

DaG Loss

Smoke Mask

Smoke Image Smoke Prediction Desmoked Output

Remain Smoke

DetectorGenerator

1. Smoke Synthesis 2. Smoke Detection 3. Smoke Removal 4. DaG Supervision

Figure 8.1: Overview of our framework for unsupervised learning of smoke removal

Our aim for removing smoke is very straightforward: We want to remove the

smoke while maximally keep the non-smoke area as original color. Inspired by

Equation 8.1, we decompose the smoke removal task into two sub-tasks: smoke

detection and removal. Two fully convolutional networks are used to learn the

smoke detection and removal separately but also cooperatively:

• Smoke detection network focus on detecting smoke and providing a pixel-level

smoke mask
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• Smoke removal network focus on remove smoke based on the smoke mask and

smoke image

• Smoke detection network serves as a supervision to exam the smoke removal

result and provides gradients for optimizing smoke removal network.

As can be seen from Figure 8.1, our training pipeline consists 4 main parts –

1. Smoke Synthesis, 2. Smoke Detection, 3. Smoke Removal, and 4. Detection-

after-generation (DaG) supervision. Each of the 4 components will be introduced

in details in the following subsections.

8.3.1 Smoke Synthesis

Random
Smoke

Smoke MaskComposite image

Figure 8.2: Left: the rendered images and smoke masks. Right: The 3D illustration
of the rendering process.

Collecting large datasets for training neural networks is extremely costly and

time-consuming, especially for medical datasets, which not only take up lots of

valuable medical resources, but also require critical accuracy and great quantity to

satisfy the standard to be used in medical practice. For the smoke detection and

removal tasks, it is even more difficult as we require the pairs of images with/without

the presence of smoke and also the smoke density mask, which are nearly impossible

to acquire by human’s manually labeling.
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To tackle this problem, we employ a modern render engine for continuously

render smoke on laparoscopic images to generate smoke images and smokes mask

for the training of pixel level smoke detection and removal tasks. We use Blender 1 –

an open source 3D creation software for the synthesis of smoke images for training.

The advantages of using a render engine instead of using physical haze formation

model (Cai et al. 2016) (Tang et al. 2014) or Perlin noise (Bolkar et al. 2018) are:

1) in laparoscopic scenes, the surgical smoke is generated locally and independent

of depth, so there is no meaning to use traditional haze model for rendering sur-

gical smoke; 2) render engine can produce more realistic smoke shape and density

variation based on the built-in realistic smoke rendering model.

The real laparoscopic images from Hamlyn Centre Laparoscopic / Endoscopic

Video Datasets 2 (Ye et al. 2017) and Cholec80 Dataset 3 (Twinanda et al. 2017) are

used as background images. The variance of the Laplacian (Bansal et al. 2016) are

first used for screening images, and a second round manually inspection ensures the

images are without the presence of surgical smoke to prevent confusing our networks.

Totally 23,005 images are sampled from 91 videos as the smoke-free source images.

Smoke is rendered on each of the images with random intensity Irand, density

Drand and position Prand on the background image Ismoke−free to simulate the image

with surgical smoke Ismoke.

Blender(Ismoke−free, Irand, Drand, Prand)


Imask

Ismoke

(8.2)

The variation of rendered smoke ensures that our network will not over-fitting

to certain smoke intensity, density and location. With the help of powerful render

engine, we are able to synthesize unlimited amount of realistic images with the

presence of simulated surgical smoke for training our network.

1https://www.blender.org/
2http://hamlyn.doc.ic.ac.uk/vision/
3http://camma.u-strasbg.fr/datasets
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8.3.2 Smoke Detection
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Figure 8.3: Network structures of smoke detection network (top) and smoke removal
network (bottom)

We proposed to firstly use a smoke detection network to generate pixel-wise

smoke density. The benefits of smoke detection are three-fold:

• Smoke detection provides a pixel-level smoke density for surgeon’s awareness

of the amount and position of the presence of surgical smoke.

• The detected smoke serves as a prior information inputted into the following

smoke removal network.

• Smoke detection network is further used as a supervision to help optimize the

smoke removal network. (see Section 8.3.4)

We employ a U-Net (Ronneberger et al. 2015) based fully convolutional encoder-

decoder network structure with parameters θd for pixel level smoke detection:

D(Ismoke)→
θd
Imask (8.3)
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As shown in Fig. 8.3, our smoke detection network consists of 4 convolutional

layers as an encoder to efficiently abstract the input image into a high-dimensional

feature tensor with 1/24 original size and 512 channels. For decoder, 4 symmetrical

de-convolutional layers are used to recover the feature tensor into a full original size

smoke mask. Each layer is with kernel size 4 and stride size 2, followed by leaky ReLU

layers and batch normalization. Skip layers are connected with the corresponding

layer pairs from encoder and decoder for preserving high-level information to ensure

the high quality per-pixel smoke detection after up-sampling.

We intend to use a shallow network with fewer layers for the reason of:

• Smoke detection is a simple task compare to smoke removal, so a shallow

network will be enough

• A shallow network will have fewer weights to prevent over-fitting to specific

smoke patterns

• A shallow network will accelerate training and inferring speed.

The loss function for our smoke detection network is:

LtotalD =
∑
x,y

(αd

∣∣∣Îmask(x, y)− Imask(x, y)
∣∣∣︸ ︷︷ ︸

L1 loss

+ βd

∣∣∣Îmask(x+ 1, y)− Îmask(x, y)
∣∣∣︸ ︷︷ ︸

x smooth term

+ βd

∣∣∣Îmask(x, y + 1)− Îmask(x, y)
∣∣∣︸ ︷︷ ︸

y smooth term

)

(8.4)

where Îmask(x, y) and I(x, y)mask are the estimated smoke mask and ground truth

smoke mask. We use a combination of an L1 loss and two smoothness terms for the

total network loss. We take the L1 norms of the predict smoke masks’ gradients

along x and y directions as smoothness terms. Based on the fact that smoke tend

to be smooth, applying penalty on the smoke masks’ discontinuities can ensure

accurate, smooth and realistic smoke mask prediction.
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8.3.3 Smoke Removal

The smoke mask Imask estimated by our smoke detection network is further used

as an prior knowledge for learning smoke removal. As can be seen from the second

network in Figure 8.3, the smoke mask Imask and smoke image Ismoke are concate-

nated into a 4 channel layer before inputted into our smoke removal network G with

parameters θg.

G(Imask ⊕ Ismoke)→
θg
Ismoke−free (8.5)

An encoder-decoder network similar to our smoke detection network is used for

generating smoke-free images. We used a deeper network with 8 convolutional layers

for the encoder to compress the input image into a 512 channel feature tensor and

8 de-convolutional layers to recover it into full-size smoke-free mask. To prevent the

loss of details, following the U-Net structure (Ronneberger et al. 2015), skip connec-

tions are implemented for directly transferring high-level information to the bottom

of the network. We used doubled number of layers for learning smoke removal as

smoke removal is an ill-posed problem that require the contextual understanding of

the image to recover the correct color of the regions covered by smoke.

The first part of the loss function of our smoke removal network is the L1 loss

between the estimated smoke-free image and the original smoke-free image without

simulated smoke:

LL1
G =

∑
x,y

∣∣∣Îsmoke−free(x, y)− Ismoke−free(x, y)
∣∣∣ (8.6)

8.3.4 Detection after Generator (DaG) Supervision

To fully take advantage of our smoke detection network, we propose to use the

smoke detection network as a second supervision to further guide the smoke removal

process. The estimated smoke-free image Îsmoke−free is inputted into our smoke

detection network after generated from our smoke removal network:

D(Îsmoke−free)→
θd

0 (8.7)
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We want to make sure the smoke removal network G works well and there is no

smoke left after, so our goal is to minimize the output of our detected smoke to

provide gradients for our smoke removal network G. Therefore, the second part of

the loss function is the L1 norm of the predicted smoke mask based on the predicted

smoke-free image, which can also be expressed as the L1 norm of the detector after

generator:

LDaGG =
∑
x,y

∣∣∣D(Îsmoke−free(x, y))
∣∣∣

=
∑
x,y

|D(G(Ismoke(x, y)))|
(8.8)

Therefore, the total loss of our smoke removal network is:

LtotalG = αgLL1
G + βgLDaGG

(8.9)

where αg and βg are the weights for L1 loss and DaG loss.

8.4 Experiments

In this section, we present our experiment setups and evaluation results of our pro-

posed smoke detection and removal networks. We provide quantitative and qualita-

tive comparisons of our results with 11 prior approaches.

8.4.1 Implementation details

Our networks are implemented in Tensorflow and trained on a workstation with a

NVIDIA Titan X GPU (12G Graphic Memory).

For training, we apply the gradient descent steps of D and G separately to avoid

interference between each other. Similar to the GAN training strategy, we firstly

train D for one step and then train G for one step. When training G, we freeze the

network parameters of D. Adam solver is used for training with hyperparameters

learning rate 0.0002, and momentum parameters β1 = 0.5, β2 = 0.999, batch size
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of 16. We empirically set the weights αd = βd = 1, αg = 1, βg = 100 based on

several tests. In our implementation, drop-out is used in the 5th layer for our smoke

detection network and 9th layer for our smoke removal network with the change of

50% to prevent overfitting.

The input images are re-sized to 256x256 pixel for efficient training and testing.

For the total 23,005 image pairs of smoke-free images and rendered smoke images,

21000 images are randomly picked for training, and the remaining 2005 images are

used for testing.

The training time is around 14 hours. When in testing mode, our networks can

estimate smoke masks and smoke-free images at 45 frames per second.

8.4.2 Comparison Methods

For quantitative evaluation, we report a series of evaluation criteria in terms of the

difference between the pair of smoke-free image and de-smoked results, including the

Mean Squared Error (MSE), the Peak Signal-to-Noise Ratio (PSNR in dB) and

the Structural Similarity Index (SSIM). The lower MSE and higher PSNR and

SSIM mean that the estimated smoke-free images are similar to the real smoke-free

images, which indicates a better de-smoking ability.

We compared our method with conventional de-smoking and de-haze methods

including Dark Channel Prior (DCP) (He et al. 2011), Boundary Constraint and

Contextual Regularization (BCCR) (Meng et al. 2013a), Fusion-based Variational

Image Dehazing (FVID) (Galdran et al. 2016), Automatic Recovery of the Atmo-

spheric Light (ATM) (Sulami et al. 2014), Color Attenuation Prior (CAP) (Zhu

et al. 2015), DEnsity of Fog Assessment based DEfogger (DEFADE) (Choi et al.

2015), Enhanced Variational Image Dehazing (EVID) (Galdran et al. 2015), Non-

local Image Dehazing (NLD) (Berman et al. 2017), Graphical Models and Bayesian

Inference (GMBI) (Baid et al. 2017), and deep learning based methods including

the All-in-One Dehazing Network (AOD-NET) (Li et al. 2017a), Image-to-Image

Translation with Conditional Adversarial Networks (PIX2PIX) (Isola et al. 2017).

All of the source codes are collected from authors’ and third-parties’ implemen-
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tations with the default parameters in their papers. It is worth noticing that for

DL-based methods (Li et al. 2017a) (Isola et al. 2017), we trained the networks with

the same datasets and number of epochs with our networks for a fair comparison

study.

8.4.3 Evaluation on Testing Dataset

We evaluated our trained model and compared with the previous approaches using

our the testing dataset containing 2005 images. As can be seen from the box plots in

Fig. 8.4 and Table 8.4.3, our method outperforms all of the previous de-hazing and

de-smoking method in terms of MSE, PSNR and SSIM, with very small standard

deviations, indicating the robustness of our system. We also report the averaged

computational time for all of the compared methods in the last row. We can find

that the DL-based methods take significantly less time to estimate smoke-free images

compared to conventional methods. As our framework is a series-connection of two

networks when testing, the computational time is doubled compared to the single

network, but still can be running at 45 frames per seconds (1.5X real-time).

Figure 8.4: Box plots of the 3 metrics MSE, PSNR and SSIM for our result and 11
previous approaches.

As can be seen from Fig. 8.5, we display 6 sets of the smoke-free images

Ismoke−free, smoke masks Imask, rendered smoke images Ismoke (the only input to

all methods), de-smoking results of 11 previous methods and the output of our
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Table 8.1: QUANTITATIVE RESULTS

Method DL? Platform

Lower is better Higher is better Higher is better

Time/frame
MSE PSNR SSIM

DCP No Matlab 0.0178 ± 0.0075 17.8531 ± 1.7416 0.7328 ± 0.0498 3.6125

BCCR No Matlab 0.0231 ± 0.0088 16.6477 ± 1.5776 0.7344 ± 0.0465 0.2745

FVID No C/Matlab 0.0168 ± 0.0109 18.5761 ± 2.7109 0.7639 ± 0.0724 5.3597

ATM No Matlab 0.0433 ± 0.0506 14.7037 ± 2.6501 0.6236 ± 0.0958 21.5084

CAP No Matlab 0.0273 ± 0.0136 16.1510 ± 2.1195 0.6744 ± 0.0843 0.1175

DEFADE No Matlab 0.0299 ± 0.0116 15.5467 ± 1.6394 0.6092 ± 0.0936 2.1233

EVID No C/Matlab 0.0181 ± 0.0099 17.9780 ± 2.1788 0.7557 ± 0.0609 5.8055

NLD No Matlab 0.0273 ± 0.0117 15.9656 ± 1.6565 0.6718 ± 0.0624 5.0158

GMBI No Matlab 0.0298 ± 0.0157 15.7614 ± 2.0796 0.6802 ± 0.0615 2.2103

AOD-NET Yes Caffe 0.0115 ± 0.0057 19.8744 ± 1.9964 0.7711 ± 0.0704 0.0173

PIX2PIX Yes Tensorflow 0.0029 ± 0.0015 25.8669 ± 2.1632 0.8685 ± 0.0488 0.0103

Ours Yes Tensorflow 0.0015 ± 0.0008 28.7602± 2.1338 0.9265 ± 0.0269 0.0219

method Îsmoke−free, as well as the estimated smoke mask Îmask. We found that most

of the previous approaches can effectively remove a certain level of smoke, in which

DCP seems to be the best one among the non-DL methods. But there are still many

problems for these non-DL methods:

• Not robust enough to smoke variations (position, density, texture) and pro-

duced unstable results (eg. ATM)

• Cannot recover correct color for smoke-covered areas

• Color shift for non-smoke areas

• Suffer from over-saturated (eg. DCP, BCCR, DEFADE) or under-saturated

(eg. ATM EVID, GMBI) problem

In contrast, our method can totally overcome these problems, which can not only fo-

cus on the smoke-covered areas and retain the smoke-free areas, but can also recover

correct tissue colors based on the contextual knowledge learned by the network.
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Figure 8.5: Qualitative results on synthetic testing dataset

AOD-NET’s result is just above the conventional image processing based method

as it uses a very shallow network structure. It is worth noticing that for GAN-based

method like PIX2PIX, due to the characteristic of GAN loss, the network will learn

to add some ”fake” features to make the image looks like smoke-free image. However,

these features are selected by the machine and totally uncontrollable. As can be seen

from Fig. 8.5, the PIX2PIX network learned to add fake scars and reflections to

the results, which is very harmful that can influence the surgeon’s judgment if used

during surgical interventions.
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8.4.4 Smoke Removal Limit Test

Smoke can not only block structural information, but also fade color information.

This loss of information is usually irreversible, depending on how thick the smoke is.

To further evaluate the ability to recover smoke-free images under different smoke

densities, we conduct a study of the de-smoking performance under 10 different

smoke densities. We randomly selected 100 images from our 2005 test datasets and

rendered 10 fixed-position smoke on each image with different smoke densities from

0 to 10, in which smoke level 0 means no rendered smoke, while smoke level 9 means

the maximum smoke density.

Smoke Level 0 1 2 3 4 5 6 7 8 9

Ismoke

DCP

BCCR

FVID

ATM

CAP

DEFADE

EVID

NLD

GMBI

AOD-NET

PIX2PIX

Ours

Figure 8.6: Qualitative result for our smoke removal density test.

As shown in Fig. 8.6, we present the rendered smoke images Ismoke in the first row

with 10 smoke levels, and the de-smoked results from 11 previous methods, as well

as our method. From the results, we found that most of the previous method cannot

recover the correct color of the dark-red tissue in the center of the images. Also, a

common problem of the previous method is that the estimated smoke-free images

become blurry with the increase of smoke level. In contrast, DL-based methods can
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Figure 8.7: The quantitative results of our smoke removal limit test. From left
to right: the MSE, PSNR and SSIM results for our method and 11 comparison
approaches under 10 different smoke levels

give better results as the network learned to recover correct color based on contextual

information. It is interesting to see that PIX2PIX produced similar results as ours,

but became un-controllable after smoke level 7 that started to add ”fake” reflections

on the results. Our method produced very clean results with only minor saturation

change, which is very hard to recover under very thick smoke.

For quantitative results in Fig. 8.7, we show the curves of the MSE, SSIM and

PSNR between the image pairs of de-smoked image and smoke-free image for our

result and 11 comparison methods under 10 different smoke levels. Our result yields

the lowest MSE as well as highest SSIM and PSNR for all the 10 smoke levels, which

significantly outperform all of the previous methods.

We also plotted the curves without any de-smoking process as a baseline. We

found that the results for most of the approaches are worse than the baseline from

the beginning even no smoke, but with the rise of the smoke level, the results

become better than the baseline. This is because these approaches often result in

the shift of color, increase in contrast and saturation, which would impact the error

measurement over the first few smoke level. In contrast, our method shows very

robust results to the rise of the smoke level, this is benefit from our novel learning

frameworks that can recover correct tissue color under the circumstances of zero

smoke and also very high smoke densities.
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8.4.5 Evaluation on in-vivo data

Real Images

DCP
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AOD-NET

PIX2PIX

Ours G only

Ours

Est. Smoke

Figure 8.8: The qualitative results on in-vivo dataset.

Although our networks are trained purely on synthetic smoke images, we also

evaluate our network on in-vivo data to test the ability to remove real surgical

smoke. 81 images with the presence of smoke are manually picked from Hamlyn

Centre Laparoscopic / Endoscopic Video Datasets and Cholec80 Dataset (Twinanda

et al. 2017) for evaluation.
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Fig. 8.8 shows the de-smoking visual results on in-vivo data. Again we found

that some of the previous approaches either suffer from over-enhancement problem

(such as DCP, BCCR, ATM, DEFADE) or cannot recover clear view (such as FVID,

EVID). For DL-based methods, the color seems to be well recovered without over-

enhacement. In details, we found that AOD-NET cannot recover clear view due to

the use of very shallow network. For PIX2PIX, there is also some smoke remaining

in the results. To fully understand the effectiveness of our GCN training framework,

we also report the results of the generator-only version of our method as an ablation

experiment. Our generator-only version gave similar results to PIX2PIX due to the

similar network structure. When it comes to our results, we can see that all of the

smoke is removed. The estimated smoke mask can correctly predict the real surgical

smoke for the most of the time, but sometimes can fail such as the third one. The

differences between our generator-only version and our final version prove that our

smoke removal network is based on the predicted smoke mask, and the combination

of smoke detection with smoke removal can narrow the gap between simulation and

reality, improving the overall de-smoking performance for in-vivo dataset.

As there is no ground-truth smoke-free image pair from in-vivo data for quanti-

tative evaluation, we adopt the Fog Aware Density Evaluator (FADE) (Choi et al.

2015) for the reference of perceptual smoke evaluation. FADE is a smoke prediction

model based on natural scene statistics (NSS) and fog aware statistical features.

The lower FADE score means the less perceptual fog and vice versa. The quantita-

tive evaluation results by FADE are reported in Table 8.2, and we can find that our

method didn’t receive the lowest FADE score. This is because FADE is based on the

statistics of the non-fog scene features, which will always take the image sharpness,

contrast and saturation into consideration. However, our learning based method is

trained and focused on recovering the natural and realistic smoke-free surgical im-

ages, but not emphasize the image visual quality metrics such as sharpness, contrast

and saturation. For GAN-based method, from the previous experiments, we already

know that it will create some fake features (such as scar) on the images to be looked

like without smoke, so that PIX2PIX scores higher than our method. Fig. 8.8 shows
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Table 8.2: FADE score on the in-vivo dataset from our method and 11 comparison
approaches

Method

FADE Score

Avg. Std.

DCP (He et al. 2011) 0.4315 0.1150

BCCR (Meng et al. 2013a) 0.3805 0.1147

FVAR (Galdran et al. 2016) 0.8722 0.2583

ATM (Sulami et al. 2014) 0.6582 1.7753

CAP (Zhu et al. 2015) 0.6082 0.2481

DEFADE (Choi et al. 2015) 0.6285 0.3993

EVAR (Galdran et al. 2015) 0.5383 0.1409

NLD (Berman et al. 2016)(Berman et al. 2017) 0.3693 0.1516

GMBI (Baid et al. 2017) 0.4259 0.0997

AOD-NET (Li et al. 2017a) 0.4871 0.1667

PIX2PIX (Isola et al. 2017) 0.4148 0.1044

Ours G Only 0.4647 0.1161

Ours 0.4465 0.1018

some example of de-smoking results on the in-vivo data

8.5 Discussion

8.5.1 Prevent Overfitting

One of the novelties of our work is that we do not require the ground truth data

(the smoke and smoke-free image pairs) and can achieve unsupervised training from

the view of data requirement. The in-vivo experiment proves that our networks

although trained on synthetic data, can detect and remove smoke on real surgical

data, which overcome the gap between simulation and reality. This is due to the

fact that we adopt a lot of techniques to prevent our network overfitting to the

synthetic data. For example, our training data is carefully selected and rendered:

the backgrounds are extracted from 91 different laparoscopic and endoscopic videos
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with different surgical procedures, different image color and tone, teh presence of

different surgical instruments; the smoke is rendered by cinematic render engine

with random intensities, densities, textures and positions. We believe that the

decomposition of the de-smoking task into smoke detection and removal also helps

to prevent overfitting. As we are not directly creating the mapping from smoke

image to smoke-free image, but rather, we first detect the area and intensity of

the smoke, then try to recover smoke-free image based on the smoke prior. We

also intended to use a shallow network and drop-out for smoke detection to prevent

overfitting. This solves the problem that deep learning need large amounts of hand-

labelled ground truth for training, especially for medical datasets that professional

knowledge is needed for labelling data.

8.5.2 Safety Issue

During the discussion with many medical practitioners, some concerns arose that

removing the smoke from image might confuse the surgeons, as smoke although can

block the view, but can also be a good signal for the on-going ablation process. These

concerns inspired us to add the smoke detection network that can solve this problem

by providing an extra pixel-level smoke detection before our smoke removal network

remove the smoke. The predicted smoke can directly be shown to the surgeon or

transferred to a different format for surgeons to receive it without distraction (see

the potential application in next section).

It is also worth noticing that, although GAN framework (such as PIX2PIX) is

a very good method for generating images, it can be very dangerous to be used for

medical applications due to its uncertainty. During our experiments, we found that

the GAN-based method can create fake ”scars” or ”reflections” to make the image

looks like smoke-free image, which is totally unacceptable and may cause serious

accidents if used during surgery.
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De-smoked Image

Predicted Smoke Signal Transformer

Figure 8.9: Potential application of our system: transforming smoke into sound

8.5.3 Application

Based on our smoke detection and removal framework, several advanced application

can be built. One of it is related to the safety issue that we mentioned earlier that

the surgical smoke is a good signal for the surgeon to know that the ablation is

happening. As illustrated in Figure 8.9, our proposed method has the potential of

transforming the predicted smoke into another format (such as sound) to alert the

surgeons for the awareness of on-going ablation process, while watching the real-time

de-smoked video stream.

Also, the smoke removal is not only for surgeons but also can be used as a pre-

processing step for many vision-based surgical assistance systems to improve the ro-

bustness to smoke such as tracking and reconstruction. As can be seen from Figure

8.10, we performed a standard SIFT (Scale Invariant Feature Transform) match-

ing for the images before desmoking and after desmoking. The SIFT descriptors

detected and matched are significantly increased after our desmoking framework.

SIFT matching is an essential step for both tracking and reconstruction, the re-

sults shows that when using our desmoking framework as a pre-processing step, the

tracking and reconstruction algorithms can be more robust and accurate.
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(a) Before desmoking – SIFT Detected: 57 / Matched: 35

(b) After desmoking – SIFT Detected: 391 / Matched: 93

(c) Before desmoking – SIFT Detected: 230 / Matched: 63

(d) After desmoking – SIFT Detected: 506 / Matched: 177

Figure 8.10: SIFT matching results. (a)(c) Before desmoking, (b)(d) after desmok-
ing.
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8.5.4 Future Work

In future work, we are going to combine CNNs with the recurrent neural networks

(RNN) for video sequence smoke removal. Since during surgical ablation, the smoke

density rise with time. RNN can help to memorize the features (such as tissue color)

when there is light smoke and have the potential to recover them even with very

high smoke density. It is also interesting to see whether training networks from

synthetic dataset can be extended to many other tasks such as laparoscopic camera

tracking, surgical instruments detection and tissue/organ segmentation, which will

overcome the shortage of medical ground-truth data and greatly benefit the deep

learning technology to be used in surgical scenes.

8.6 Conclusion

In this work, we present a novel deep learning framework for real-time surgical

smoke detection and removal during minimally invasive surgery. Our unsupervised

training framework only needs laparoscopic images as input, and 3D render engine is

used to randomly render smoke on these images to synthesize datasets for training.

The novelty of this work lies in our GCN training framework that used the smoke

detection network as prior knowledge and also a supervision for our smoke removal

network. With this initiative, We not only achieve pixel-level smoke detection, but

also help improve the smoke removal performance compared to the state-of-the-art

smoke removal methods. Our framework also yields extra benefit of preventing over-

fitting to synthetic datasets, and also have many potential applications for surgical

human-computer interactions.
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Chapter 9

Conclusions and Future Work

This thesis has presented three pieces of work on online surface reconstruction in

AR for the perception of the surrounding environment, as well as two pieces of work

for high-level contextual understanding and increasing robustness of the reconstruc-

tion. Our proposed work has several key clinical and real-world applications such as

surgical AR guidance, intra-body measurement, as well as AR games with realistic

virtual-real interactions when using our novel context-aware AR. Additionally, with

our proposed learning-based desmoking networks, our tracking and reconstruction

can work more robust under extremely surgical environment.

9.1 Achievements of This Thesis

The main achievements of this thesis are:

In Chapter 2, a novel literature classification method by combining text mining,

topic generation/clustering, and taxonomic review is presented for a better under-

standing of development trends, current issues and future directions. This provides

an efficient method for researchers when finding papers and identifying topics in a

new research area, providing an automatic classification and generation of potential

research topics. Based on the classification results, the trends of different research

topics can be easily accessed, which gives the researchers hints for current research

trends and future developments. Our classification led to SLAM, Reconstruction
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and Deep Learning for AR being the research focus for this thesis.

In Chapter 4, a SLAM-based monocular camera tracking and dense reconstruc-

tion method is proposed for geometry-aware AR in a challenging MIS environment.

A series of surface reconstruction technologies are employed to compile a global dense

surface from sparse landmark points. The evaluation experiments show promising

reconstruction results. However, this method relies on consecutive frames for recon-

struction, which is sensitive to deformation, blood, surgical smoke and the movement

of surgical instruments.

To solve these problems, in Chapter 5, a novel stereo-based on-the-fly reconstruc-

tion framework is proposed. With the theory of stereo-vision epipolar constraint, the

depth can be accurately estimated for a single frame pair. Followed by the back-end

SLAM system, the global reconstruction can be incrementally built. This method

is more robust to noise and deformation, but requires stereo endoscopic cameras,

which are not widely used.

With the recent success of Convolutional Neural Networks (CNNs), many ill-

posed problems, such as single image depth prediction are not impossible anymore.

In Chapter 6, we present a novel learning-based single image depth estimation with

confidence for accurate and reliable single image 3D reconstruction. Evaluation on

public datasets shows that our method outperforms the state-of-the-art results.

In Chapter 7, we are not content with the uniform geometry-aware AR and

introduce a contextual understanding of the environment with the help of deep

learning. An interactive context-aware AR framework is proposed based on the

latest SLAM technology and learning based material recognition for providing a

whole new AR experience. An accuracy experiment and user study show that our

method can accurately deliver context-based interaction and greatly increased the

AR experience compared with the geometry-aware AR.

In Chapter 8, a learning-based smoke removal approach is proposed for increasing

the tracking and reconstruction robustness in the challenging MIS environment with

the absence of surgical smoke. A novel generative-collaborative learning scheme

is presented that decomposes the de-smoke task into two separate tasks: smoke
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detection and smoke removal. While using the detection network as prior knowledge,

it is also used as a loss function to maximize its support for the removal of network

training. The quantitative and qualitative studies show that our training framework

outperforms the latest GAN framework (such as PIX2PIX) and the state-of-the-art

de-smoking approaches.

9.2 Conclusions

In this thesis, a series of methods are proposed to solve the challenging dense 3D

surface reconstruction problem. To conclude:

• Dense 3D surface can be reconstructed from monocular camera sequences using

the sparse point cloud from SLAM system. (Chapter 3)

• Global Dense 3D surface can be incrementally reconstructed using stereo

matching combined with SLAM system. (Chapter 4)

• Dense 3D surface can be reconstructed from single monocular image using

learning based depth prediction. (Chapter 5)

• Dense semantic 3D surface can be reconstructed using deep semantic scene

understanding methodology combined with dense 3D scene reconstruction,

which can build high-level context-aware highly interactive MR environment.

(Chapter 6)

• Under extreme conditions such as the presence of surgical smoke, our proposed

learning based smoke removal can recover a clear view for accurate and robust

3D surface reconstruction. (Chapter 7)

9.3 Discussions and Future Perspectives

Although our proposed tracking and reconstruction methods have been carefully

evaluated on both synthetic datasets and in-vivo datasets with promising results
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and applications, it is still far away for these technologies to be used in real-world

scenarios and medical practices, due to the following reasons:

• Accuracy is a critical property that directly determines whether or not an AR

system could be used in medical practice. If the AR content were superim-

posed in the wrong position, then the surgeon would be misled into making a

wrong decision, which could cause a serious medical accident. Real time perfor-

mance, and minimum latency are pre-requisites in most medical applications

and directly affect the usability of AR. Based on the research of (Lambert

et al. 2016), it should be as high as 100 FPS at least to enable the doctor to

detect minor changes in a surgical video. However, most of AR systems are

very complex and can only be running at 20FPS.

• Robustness is the entry criteria of AR to be widely used in medical and real-

world scenarios. Especially in surgical scenes that tissue movement, surgical

smoke, occlusion of instruments can make the tracking and reconstruction

in-accurate and even fail. This is because SLAM theory is developed based

on static world assumption; the deformations of objects (such as tissues and

organs) directly challenge this basic condition for SLAM to estimate camera

poses for 3D reconstruction. Therefore, soft tissue deformation is a great

challenge to support in the SLAM based reconstruction framework as proposed

here. Particularly with monocular endoscopic videos, it is extremely hard

to recover the soft deformation correctly while simultaneously estimating the

camera poses. For small deformations like those in the in-vivo video that we

use, however, the RANSAC algorithm in SLAM system will filter the outliers

and recover the correct movement. For large deformation in very small FOVs,

it is still unclear how to solve the tissue deformation issue without using extra

external sensors within the monocular scene.

Although the road is very tough, the future is promising. It is totally foreseeable

that in the near future, machine and AI will be a great assistance for making hu-

man’s life and work easier by either providing additional information (eg. surgical
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guidance) or autonomously take over some repetitive job (eg. self-driving car). It is

no doubt that AR will be an important bridge for connecting machine with human,

and become a very essential human-computer interface that replaces screens that

have a border. Therefore, sensing and perceiving the world’s geometry and context

are the very first and enabling technologies for AR’s promising future, which is the

meaning of this PhD project.

For the future development of AR, the hardware evolution is very important.

Current AR headsets such as HoloLens is very expensive, bulky, heavy, slow and

battery life is short, which limit the AR entering everyone’s life. Also, better hard-

ware can make the result more accurate and the algorithm faster, easier and more

robust. A good example learnt from this PhD project is that for imaging sensor,

monocular camera needs complex SLAM system or machine learning for reconstruc-

tion. But with stereo camera, more accurate results can be computed from easier

stereo matching algorithm; with depth camera such as Kinect, the reconstruction

results are much more accurate and reliable. However, in MIS, the most common

available sensor is still monocular camera, which to some extent limits the develop-

ment of AR in MIS.

As the next generation of human-machine interface, the intelligent interaction is

also a very interesting research topic. In Chapter 6, we initiatively integrate machine

learning into AR framework for context-aware applications. The results prove that

with the power of AI, AR can be more natural and immersive, leading to better

user experience. However, this work has addressed a specialised application and

only started to explore the use of a machine learning model. It can be predicted

that AI will be an important part of AR for more general, persistent and intelligent

applications.
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