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Key Message: 131 

Permanent Sampling Plots (PSPs) are a powerful and reliable methodology to help our 132 

understanding of the diversity and dynamics of tropical forests.  Based on the current inventory of 133 

PSPs in Indonesia, there is high potential to establish a long-term collaborative forest monitoring 134 

network. Whilst there are challenges to initiating such a network there are also innumerable 135 

benefits to help us understand and better conserve these exceptionally diverse ecosystems. 136 

Keywords: tropical forests, carbon, data-sharing, dynamics, monitoring 137 

List of abbreviations: NFI = (Indonesian) National Forest Inventory, PSP = permanent sampling 138 

plot, REDD+ = Reducing Emissions from Deforestation and forest Degradation 139 

 140 
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1. Why monitoring tropical forests is important 142 

Tropical forests are arguably the most important terrestrial ecosystems.  Whilst occupying 143 

around 15 % of the global land area, tropical forests store two-thirds of all the carbon in terrestrial 144 

vegetation (Pan et al. 2013) and are the most important above-ground terrestrial carbon sink (Beer et 145 

al. 2010; Pan et al. 2011; Soepadmo 1993).  They house half the world's biodiversity and provide a 146 

wide range of goods, including sources of new medicines, and ecosystem services including clean 147 

and sustained water supplies, climate regulation and pollinators for crops (Cámara-Leret et al. 2016; 148 

Ghazoul 2015; Peters et al. 1989; Ricketts et al. 2004).  If suitably managed, tropical forests can 149 

provide economic benefits through ecotourism, non-timber forest products, a sustainable source of 150 

timber, and through carbon financing mechanisms for developing tropical countries such as REDD+.  151 

Therefore, understanding where, how and why the world’s tropical forests are changing is a key 152 

question of global importance (Hansen et al. 2013; Pan et al. 2011). 153 

The periods over which trees establish, grow and die (tens to hundreds of years) do not make for 154 

rapid experimental tests of forest functioning.  Instead, direct measurements of stands of trees over 155 

long time periods are essential to truly understand forest processes and dynamics (Lutz 2015). 156 

Permanent sample plots (PSPs) in which all trees are marked, identified and repeatedly measured 157 

provide a series of direct observations on forest condition, dynamics and change over time.  As 158 

longitudinal data sets, PSPs offer an excellent opportunity to study forest dynamics, and to separate 159 

short-term environmental impacts, such as drought, from long-term trends (Condit 1998).  A forest 160 

monitoring network is a series of PSPs using a consistent protocol - such networks allow an 161 

assessment of numerous aspects of forest ecology, including biodiversity, biomass (analogous to 162 

carbon stocks), regeneration, dynamics (including succession) and ‘health’.  Furthermore, forest 163 

monitoring networks distributed along large geographical and environmental gradients allow 164 

testing for the generality of factors controlling ecosystem functioning with increased statistical 165 

power (Craine et al. 2007) and allow space-for-time analyses to project potential impacts of global 166 

changes on forests.   167 

Numerous high-impact studies based on PSPs as the fundamental measurement unit have greatly 168 

advanced our understanding of the function, biodiversity and evolution of tropical forests.  For 169 

example, PSPs have provided clear evidence that the tropical forest above-ground carbon stock has 170 

been increasing over time (Lewis et al. 2009; Pan et al. 2011; Qie et al. 2017) but that the sink strength 171 

into this stock appears to be declining, at least in Amazonia (Breinen et al. 2015).  The above studies 172 

were conducted in ‘undisturbed’, i.e. primary, forests but a major proportion of tropical forests have 173 

been disturbed by human activities.  Fewer PSP networks have been established to study forest 174 
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recovery from logging (Rutishauser et al. 2015; Sist et al. 2014) or from shifting cultivation (Chazdon 175 

et al. 2016) yet they are also providing valuable data.  Furthermore, PSPs contribute vital datasets to 176 

improve our still poor understanding of patterns in tropical tree species richness (Slik et al. 2015; ter 177 

Steege et al. 2013), biogeography (Slik et al. 2018) and evolution (Baker et al. 2014) at multiple scales.  178 

Field data collected on the ground from biogeographically well-replicated PSPs is also a prerequisite 179 

to calibrate remotely-sensed biomass mapping (e.g. Asner et al. 2010; Avitabile et al. 2016; 180 

Réjou-Méchain et al. 2014). 181 

Permanent Sample Plots are a standard method but can be supplemented by biodiversity observing 182 

networks such as the transect approach of the Asia-Pacific Biodiversity Observation Network 183 

(Yahara et al. 2012, 2014).  Larger PSPs (~50 ha), such as those established by the Centre for Tropical 184 

Forest Science (CTFS, now ForestGEO), play an important role in furthering our understanding of 185 

community ecological patterns as they monitor a larger number of smaller (≥1 cm dbh) trees over 186 

bigger areas.  In contrast, smaller PSPs (usually 1 ha), such as those established by the Amazon 187 

Forest Inventory Network (RAINFOR) and the Indonesian National Forest Inventory (see section 2) 188 

offer extensive coverage that is more appropriate for a regional-scale forest monitoring network. 189 

2. Opportunities from permanent sample plots in Indonesia 190 

Indonesia has the third largest area of tropical forest globally (following Brazil and D.R. Congo; 191 

FAO 2015) including some of the largest extents of carbon-dense peat swamp forests.  However, as 192 

with other regions of the world, Indonesia’s forests are undergoing rapid change and anthropogenic 193 

disturbance (Abood et al. 2014; Gaveau et al. 2014) and around half the country’s land area currently 194 

supports primary forest (Kementerian Lingkungan Hidup dan Kehutanan 2015b; Margono et al. 195 

2014).  The forests of western Indonesia are highly productive and the dominant trees, the 196 

dipterocarps (Brearley et al. 2016), have been favoured as commercial timber trees for many years 197 

leading to the majority of accessible forests being brought into timber production.  By contrast, the 198 

forests of eastern Indonesia (especially Papua) contain few dipterocarps and remain more intact 199 

owing to the rugged topography and isolation.  More recent challenges include droughts and fires 200 

associated with El Niño that have had marked impacts upon forest functioning (Page & Hooijer 201 

2016; Slik 2004) and increasing forest fragmentation (Qie et al. 2017), yet large-scale analyses that test 202 

for such impacts across Indonesian forests are largely absent.   203 

Numerous PSPs have been established across Indonesia over the last c. 60 years but not all have been 204 

maintained continuously.  The earliest PSPs were established during the late Dutch colonial era, but 205 

they were mostly in plantation forests to study tree growth and timber yield (Hart 1928; Von 206 
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Wulfing 1938).  Among the first PSPs established in primary forest was the 1-ha plot set-up by 207 

Willem Meijer (1959) to study the ecology of Gunung Gede’s montane forests.  Since then, PSPs 208 

have played an important role in silvicultural research such as the STREK (Silvicultural Techniques 209 

for the Regeneration of Logged-over Forest in East Kalimantan) project (Bertault & Kadir 1998).  210 

The Indonesian National Forest Inventory (NFI) is a national program initiated by the Indonesia 211 

Ministry of Forestry in 1989 (and implemented by the Directorate General of Forestry Planning) 212 

utilizing PSPs.  Through this program, PSPs were established systematically with a 20 x 20 km grid 213 

across forested areas in Indonesia (< 1000 m above sea level) with the primary objective to monitor 214 

the growth of timber stocks.  In total, 2735 1-ha PSPs were established, although not all have been 215 

monitored on more than one occasion (Kementerian Kehutanan 1996).  Depending on the location, 216 

the NFI plots were not necessarily located in logging concessions but all logging companies were 217 

required to establish PSPs for monitoring growth and yield.  In addition to monitoring timber 218 

growth and yield, data from these PSPs has provided a basis for estimating carbon stocks and 219 

changes associated with land-use change and forest management activities (Kementerian 220 

Lingkungan Hidup dan Kehutanan 2016; Krisnawati et al. 2014, 2015).   221 

Despite the large-scale coverage of Indonesia’s NFI, the limited scientific access NFI offers to its data 222 

and the few large-scale analyses that have resulted from the NFI’s dataset limit our understanding of 223 

the composition and functioning of Indonesia’s tropical forests.  Given the current threats to 224 

Indonesia’s forests, it is important that Indonesian and foreign scientists collaborate, with a 225 

consolidated scientist-led forest monitoring network having the flexibility to address ecological 226 

questions in a democratised and collaborative fashion, to jointly establish PSPs and analyse large 227 

datasets spanning Indonesia’s forests.  To date, at least 150 ha of PSPs (besides those in the NFI) 228 

have been established in primary forest, and are still maintained, in Indonesia (Table 1; Figures 1a & 229 

2).  Although these PSPs have different sizes, re-measurement intervals and measurement protocols 230 

making direct comparisons challenging, they offer a starting point for developing an Indonesian 231 

forest monitoring network with a standardised protocol.  The density of sampling across the whole 232 

of Indonesia is only about 3.4 ha of plots per 106 ha of primary forest and there are clear differences 233 

in sampling density between different geographical regions (Table 1).  The highest density (ratio of 234 

plot area to primary forest area) of PSPs, by an order of magnitude, is found in Java and Bali (Table 235 

1).  Although the total area of PSPs is modest, the area of primary forest remaining is particularly 236 

low on these islands leading to an overall very high sampling density.  Of the outer islands, 237 

Kalimantan has a high density of sampling – likely due to this being the centre of production forest 238 

logging activity coupled with interest in its exceptional biodiversity since the times of early colonial 239 

explorers.  Sumatra has a similar sampling density and has also been heavily exploited for timber in 240 
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the past.  Maluku also has a high sampling density but this is largely confined to Seram only.  241 

Sulawesi and Nusa Tenggara have sampling densities comparable to the mean for the whole of 242 

Indonesia (although note that there are only 2.5 ha of plots in Nusa Tenggara).  Sampling density 243 

for Papua is, by far, the lowest among the Indonesian islands; this is partly due to the large 244 

remaining area of forest combined with difficulties in establishing PSPs in areas with challenging 245 

access.  Of these PSPs, nearly half have been measured on more than one occasion, thereby 246 

markedly increasing their value for assessing forest functioning, with the median monitoring period 247 

for those measured more than once being 8 years and the longest being 50 years (Fig. 2b).  About 248 

half of the plots that have been measured on more than one occasion are in Kalimantan (e.g. Qie et 249 

al. 2017) so the total monitoring effort (plot area x monitoring length) at around 1300 ha years is an 250 

order of magnitude greater than Java + Bali, Maluku, Sulawesi or Sumatra; none of the PSPs in Nusa 251 

Tenggara or Papua have been re-measured (Fig. 2c).  In addition, there are over 100 ha of PSPs in 252 

disturbed forest (Fig. 1b); many of these are forests that have been logged; in this case, the 253 

geographical foci are Kalimantan and Sumatra that have historically been important for timber and, 254 

secondarily, in Papua where logging activities are currently expanding.   255 

From the brief analysis above, it is clear that key geographical gaps exist mainly in eastern Indonesia 256 

particularly for Maluku (excepting Seram), Nusa Tenggara and Papua.  In terms of climate, many 257 

areas of drier forest are under-represented (e.g. Timor), as is montane forest and forest over edaphic 258 

variants (such as kerangas or ultramafic geology).  There are some PSPs found in peat swamp forests 259 

but many have been burnt or otherwise disturbed in recent years.   260 

3. Challenges facing an Indonesian forest monitoring network 261 

3.1 Methods 262 

Our aim here is not to provide a protocol or critique of methods for PSPs as this has been done 263 

in previous work (Alder & Synott 1992; Burslem & Ledo 2015; Condit 1998; Ledo 2015; Phillips et al. 264 

2016; Sheil 1995) but to note concerns with particular relevance to the Indonesian situation.   265 

 266 

Plot size: Too many PSPs reported in the Indonesian literature are simply too small to provide a 267 

generalisation of the area they study.  Small plots (e.g. 0.04 ha) might be useful when installed in a 268 

series (e.g. 25) to provide data on forest biodiversity that does not require accurate scaling-up to 269 

larger areas.  However, for a more in-depth assessment of forest biodiversity, the larger the area 270 

sampled, the greater the number of species captured due to a large number of rare species (Plotkin et 271 

al. 2000).  Of the PSPs noted in our analysis, the median size is 0.25 ha whilst the most frequently 272 

sized plot is 1 ha (Figure 2a), which is comparable to forest monitoring networks on other continents 273 
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(Brienen et al. 2015; Lewis et al. 2009; Phillips et al. 2009, 2016).  Small plots cannot accurately 274 

predict forest biomass when scaled-up to a larger area due to a high edge:interior ratio that elevates 275 

the relative importance of marginal boundary decisions (Burslem & Ledo 2015), a high coefficient of 276 

variation between plots, and the likelihood they will not represent all forest stages (e.g. gap, building 277 

and mature, sensu Whitmore 1998).  Calibration of remote sensing data for large-scale forest 278 

biomass mapping is more accurate if the PSPs can be ground-truthed accurately, which also requires 279 

larger plots (Avitabile et al. 2016; Réjou-Méchain et al. 2015).  Finally, small plots are also prone to 280 

the ‘majestic effect’ where researchers may unconsciously select pristine forest with ‘majestic’ large 281 

trees and avoid disturbed areas (Sheil 1995). 282 

Frequency of measurement: Whilst the definition of a PSP is that trees will be re-measured at some 283 

point in time, re-measurement intervals are not always regular.  A typical re-measurement interval 284 

is five years as this allows increases in tree size to be seen more easily.  Whilst intervals of four to 285 

ten years are appropriate for most recording purposes of PSPs (Sheil 1995), an increasing census 286 

period leads to a greater likelihood of unobserved growth and therefore an underestimation of forest 287 

productivity (Talbot et al. 2014).  In cases of annual censuses, this will allow much better 288 

predictions of forest dynamics in relation to annual climate fluctuations (Clark et al. 2010).  289 

Dendrometer bands are a possible inexpensive alternative to increase measurement frequency 290 

(Anemaet & Middleton 2013), but require much greater time investment at installation; such bands 291 

can also avoid errors due to changes of the point of measurement.  Of course, regularity of 292 

re-measurement depends upon plot security and accessibility, and funding is a key determinant of 293 

frequency of fieldwork activities (see section 3.3). 294 

Parameters measured: Trunk diameter at breast height (usually 1.3 m) is the key parameter measured 295 

as this can be incorporated into allometric equations to estimate tree and stand biomass (Chave et al. 296 

2014); including tree height and crown size has been shown to increase accuracy of such equations 297 

(Goodman et al. 2014).  This is especially needed for dipterocarps that show different architectural 298 

patterns compared to other tropical trees (i.e. taller for a given diameter: Banin et al. 2012).  Forests 299 

in Indonesia cover not only a wide range of soil and climatic types both within and across islands, 300 

but also represent a great biogeographical range.  Due to variable architectures that require local 301 

height-diameter models for accurate biomass calculation, tree height data collected within plots are 302 

extremely useful to improve biomass estimates (Ledo et al. 2016; Sullivan et al. 2018). 303 

3.2 Taxonomy 304 

For assessment of species distributions and monitoring, accurate taxonomy, comparable among 305 

plots, is paramount.  Good taxonomy is clearly challenging as PSPs often contain a large proportion 306 
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of sterile individuals.  Indonesia is fortunate in having a large and well-maintained national 307 

herbarium (Herbarium Bogoriense; BO) and a number of regional herbaria but many PSP 308 

investigators do not routinely collect voucher specimens but rely on vernacular names instead.  309 

Taxonomy takes on extra importance in a forest monitoring network where the aim is to make 310 

comparisons among plots, but technological advances have a key role to play here (Baker et al. 2017; 311 

Webb et al. 2010).  While some Indonesian tree genera are reasonably well known, for example the 312 

commercially important dipterocarps (Ashton 2004) many large genera such as Syzygium 313 

(Myrtaceae) and Diospyros (Ebenaceae) have not been monographed.  Similarly, digitization of 314 

herbarium sheets at BO is ongoing but progress remains slow.   315 

Vouchers for morphotypes can be made available across sites permitting analysis of distribution of 316 

taxa without any formal species names, but obtaining the species name increases the value of the 317 

voucher. Challenges for the taxonomy of PSP trees must be taken seriously, and we recommend the 318 

following: i) make physical voucher collections of several specimens for each morphotype especially 319 

where variation appears to be high and collect silica gel-dried samples for subsequent DNA 320 

barcoding; ii) carry out routine visits to PSPs to collect fertile specimens as they become available; iii) 321 

take high-quality photographs of the fresh vouchers (Webb et al. 2010) and share images and 322 

metadata online; iv) cross-match vouchers and images across different sites to both validate formal 323 

species name and provide distribution information; v) avoid the use of vernacular names, except as 324 

an early step in the determination process yet value the experience of parataxonomists in the field 325 

and technicians in herbaria; and vi) publish details of how taxon names were acquired, and give a 326 

level of confidence in each formal name.  Overall, it is far more useful to publish voucher collection 327 

codes, images, morphotype codes and matches of morphotypes to images at other sites than to 328 

simply list a botanical name with no additional information.  Detailed primary data will also 329 

greatly assist taxonomic specialists in the future as they work on the large, complex genera of 330 

Indonesian trees. 331 

3.3 Funding 332 

Funding presents a perennial challenge for forest ecological work, particularly in developing 333 

countries.  Within Indonesia, PSP censuses are not considered as applied research, which receive 334 

priority for funding, although NFI plots have been allocated governmental funding.  Current 335 

funding opportunities through the development of the Indonesian Science Fund (DIPI) and via the 336 

UK Newton Fund are positive in this regard.  There is also the potential for knowledge-exchange 337 

partnerships with logging companies who may fund PSPs in their concessions although, as funders, 338 

they may consider themselves data owners (see section 3.4).  REDD+ programmes bring similar 339 
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opportunities for knowledge exchange and funding (Gibbs et al. 2007).  Longer-term collaborations 340 

between Indonesian researchers, companies and NGOs coupled with leading international expertise 341 

are needed.  Importantly, PSPs need to be locally owned, and international funding should be 342 

invested for pump-priming and capacity-building in order to stimulate long-term funding input 343 

from Indonesian sources into tropical forest monitoring. 344 

3.4 Data-sharing 345 

Developing an integrated picture on changes in forest functioning and biodiversity across a 346 

forest monitoring network requires the willingness to share data among researchers.  Nevertheless, 347 

data-sharing can present various challenges.  There are a number of data-sharing models in tropical 348 

ecology, ranging from the informal to the formal with rigid data-sharing arrangements such as 349 

ForestPlots (López-González et al. 2011).  What is shared can vary from whole plot data to only the 350 

numbers required for a particular analysis.  Issues over intellectual property are of considerable 351 

concern and unwillingness to share data is often linked to concerns about the loss of control over 352 

such data and the lack of professional recognition or reward (Enke et al. 2012; Fecher et al. 2015).  353 

Furthermore, clarifying who is the ‘owner’ of data is essential.  In some cases, the funder (often a 354 

logging company) may claim ownership, in others, such as the Indonesian NFI, public access to the 355 

data is limited.  Any forest monitoring network needs clear guidelines on the sharing, use and 356 

publication of shared data and an obvious reward system for sharing (i.e. co-authorship).   357 

Although in-country data owners will regularly be included as co-authors in large-scale data 358 

analyses, the lead authors have almost always been researchers from extra-tropical countries.  359 

Echoing the sentiments of Ruslandi et al. (2014), we note that simply ‘out-sourcing’ data analysis to 360 

extra-tropical researchers is still far from the goal of building local research capacity.  Lack of 361 

institutional support and incentive may deter tropical scientists from becoming leading authors, but 362 

this appears to be changing lately with Indonesian institutions increasingly rewarding staff 363 

publishing in international journals.  Investing in capacity-building and knowledge exchange to 364 

support Indonesian scientists to take leadership roles in agenda setting is also important in the 365 

medium term. 366 

3.5 Land tenure and community engagement 367 

Once a series of PSPs has been established it is important to maintain a commitment to re-measure 368 

plots and obtain funding to do so.  However, the location and accessibility of plots needs to be 369 

considered for long-term measurements.  Ideally, plot locations should not be too remote to make 370 

accessibility challenging and not too close to settlements put plots at risk from disturbances.  If new 371 
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PSPs are installed, there should be secure land tenure (Soraya 2011) to offer protection from land-use 372 

change and fire risk – particularly in peat swamp forests (Page & Hooijer 2016).  Of the PSPs noted 373 

(Table 1; Figures 1 & 2), less than half are within formally protected areas (e.g. National Parks or 374 

Nature Reserves); of those that are not, the presence of researchers may help in protecting them to 375 

some degree (Laurance 2013).  In areas where forest land-use classifications may jeopardise studies, 376 

it may be possible to re-designate land classifications (e.g. Kawasan Hutan Dengan Tujuan Khusus 377 

or ‘Special Use Forests’).  Local stakeholder engagement is key, and local communities should be 378 

considered as valuable collaborators who value the presence of PSPs and can be employed to collect 379 

good quality data (Theilade et al. 2015).  There are multiple opportunities for synergies between 380 

local communities, logging companies and scientists, with NGOs often in a strong position to act as 381 

facilitators.  Still, unless direct payments to forest owners are established for missed opportunities 382 

of economic development, communities may well continue to prefer the economic benefits offered 383 

by logging companies over those from researchers or conservationists (Novotny 2010).   384 

4. Translating results from PSPs to forest policy and conservation 385 

Quantification and assessment of carbon stocks in forests underpins international policies to 386 

mitigate carbon dioxide emissions such as the REDD+ program (Gibbs et al. 2007) and the 387 

recommendations of the Intergovernmental Panel on Climate Change (Watson et al. 2000).  For 388 

example, Indonesia’s forest reference emission level submitted to United Nations Framework 389 

Convention on Climate Change (Kementerian Lingkungan Hidup dan Kehutanan 2015a, refined in 390 

2016) utilized NFI data as the primary source to generate information on carbon stocks (and thus 391 

emissions from forest change).   392 

It is essential to understand not only carbon stocks in tropical forests through time but also the 393 

response of tropical forest to climate change and develop policies accordingly.  Information from 394 

PSPs will allow us to determine whether Indonesian forests are sinks or sources of carbon and have 395 

the potential to help us understand the factors driving carbon stock changes.  To derive national 396 

policies, information from PSPs needs to be combined with data on land use and land-use change, 397 

which is accessible through remote sensing data or national inventories.  398 

In addition, tropical forests are also key repositories of global biodiversity, genetic resources and 399 

important ecosystem services for local communities.  Reducing biodiversity loss is a target of the 400 

United Nations Convention on Biological Diversity (Pereira et al. 2013) which is not only relevant 401 

from an aesthetic point of view, but can also threaten ecosystem functioning (Duffy 2009).  402 

Permanent sample plot data will foster a better understanding of the autecology, distribution and 403 
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rarity of tree species and they also have the potential to obtain measures of biodiversity of various 404 

taxonomic groups at multiple scales and to link the abundances of each of these with one another.  405 

All of the above are needed to enhance Indonesia’s conservation planning efforts and manage forests 406 

in a way that allows biodiversity to flourish in this exceptionally biodiverse country. 407 
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Table 1. Areas of forested land and sampled by permanent sample plots (PSPs) in primary 590 

forest (excluding the National Forest Inventory) on major islands of Indonesia.  Data on land 591 

and forest area taken from Kementerian Lingkungan Hidup dan Kehutanan (2015b). 592 

Island(s) 
Land area 

(106 ha) 

Total forested 

area (106 ha) 

Primary 

forest area 

(106 ha) 

Total PSP 

area (ha) 

PSP/forest 

area ratio** 

Java (+ Bali) 13.95 3.37 0.08 9.0 113.0 

Sumatra 47.16 14.07 4.49 38.0 8.5 

Kalimantan 52.96 27.58 9.80 82.1 8.4 

Sulawesi 18.53 9.47 3.91 12.3 3.1 

Nusa Tenggara* 6.76 2.84 0.68 2.5 3.7 

Maluku 7.77 5.11 0.96 12.3 12.8 

Papua 40.79 34.06 26.15 2.0 0.1 

Total 187.92 96.50 46.07 158.1 3.4 

* Excluding Bali, which is included with Java due to their biogeographical affinity. 593 

** Area of permanent sampling plots (ha) per 106 ha of primary forest. 594 

 595 

 596 

  597 
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Figure 1. (a) Locations of primary forest and (b) primary and disturbed permanent sampling 598 

plots (PSPs) in Indonesia (excluding the National Forest Inventory). 599 

 600 

  601 
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Figure 2. (a) Plot areas, (b) total plot area under different lengths of monitoring and (c) total 602 

monitoring effort (i.e. sum of area multiplied by monitoring length for each plot) for permanent 603 

sample plots (PSPs) in primary forest (excluding the National Forest Inventory) on major 604 

islands of Indonesia.  Note that plots only measured once are given a monitoring length of one 605 

year and also note the logarithmic scale for panel (c). 606 
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