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Abstract 

Given the ease with which the diverse array of environmental sounds can be 

understood, the difficulties encountered in using auditory alarm signals on medical devices 

are surprising.  In two experiments, with non-clinical participants, alarm sets which relied on 

similarities to environmental sounds (concrete alarms, such as a heartbeat sound to indicate 

‘check cardiovascular function’) were compared to alarms using abstract tones to represent 

functions on medical devices.  The extent to which alarms were acoustically diverse was 

also examined: alarm sets were either acoustically different or acoustically similar within 

each set.  In Experiment 1 concrete alarm sets, which were also acoustically different, were 

learned more quickly than abstract alarms which were acoustically similar.   Importantly, the 

abstract similar alarms were devised using guidelines from the current global medical device 

standard (IEC 60601-1-8, 2012).  Experiment 2 replicated these findings.  In addition, eye 

tracking data showed that participants were most likely to fixate first on the correct medical 

devices in an operating theatre scene when presented with concrete acoustically different 

alarms using real world sounds.  A new set of alarms which are related to environmental 

sounds and differ acoustically have therefore been proposed as a replacement for the 

current medical device standard.     

Key words: Auditory alarms, eye tracking, semantic networks, IEC 60601-1-8, alarm signals 
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Public significance statement:  Current guidance given in international standards suggests 

using ‘families’ of related tones to represent functions on medical devices.  However, the 

tones are hard to distinguish from one another and their meanings are unclear.  This 

research showed that alarm signals which were related to the real world (e.g. a heartbeat 

sound to indicate ‘check cardiovascular function’) rather than tones were much more easily 

learned especially when they could be easily discriminated from one another acoustically.  

Alarm signals like these direct attention more effectively to appropriate medical equipment 

and are set to replace the current international standard alarms in late  2019/early 2020. 
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The consequences of ineffective alarms have been well documented in a variety of 

contexts (e.g. Bliss & Acton, 2003; Drew et al., 2014; Sendelbach & Funk, 2013; Stanton & 

Edworthy, 1998).  Over the last few years particular concern has been expressed with 

respect to alarm systems on medical devices, with significant steps being taken in an 

attempt to reduce alarm-related problems.  For example, the number of deaths associated 

with alarm-related events led to a national summit in the United States in 2011 and the Joint 

Commission issued a ‘Sentinel Event Alert’ in 2013 with strategic recommendations for a 

‘frequent and persistent’ problem. Since then, a raft of work has addressed the problem of 

over-alarming in order to reduce ‘alarm fatigue’ (see Cvach, 2012; Welch, 2011; Whalen et 

al., 2014). 

Organizations concerned with medical device safety such as the Association for the 

Advancement of Medical Instrumentation (AAMI, US) have been centrally involved in 

addressing the issue of over-alarming by providing comprehensive guidance on how to 

reduce the number of false alarms, how to set clinical parameter limits appropriately for 

different groups of patients, and other measures which can be performed in the clinical work 

situation.  AAMI also provides databases on important practical issues such as clinical 

parameter settings for patients with different demographics.  The problems associated with 

alarm fatigue have distracted attention from a deeper consideration of the influence of the 

properties of the alarm signals themselves (Kristensen, Edworthy & Özcan, 2016), though 

there is little doubt that the actual alarm signals contribute to the problem and are 

incorporated into most definitions of alarm fatigue. 

Alarm signals tend to be either abstract, tonal sequences or more simple beeps and 

buzzes which do not lend themselves to easy learning and identifiability.  One of the reasons 

that the clinical soundscape is dominated by tonal alarm signals is a standard governing the 

safety of medical devices globally, IEC 60601-1-8.  This is a lengthy document covering 

topics such as the use of intelligent alarms, appropriate triggering of alarms, and the 

reduction of false alarms.  In an attempt to enhance safety, it also presents a set of alarm 

signals for eight specific clinical functions.  Within this standard, this set of sounds is known 
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as the ‘reserved’ alarm signals.  While medical device manufacturers are not mandatorily 

required to use these sounds, they are obliged to demonstrate that any alternative sounds 

are at least as effective as the reserved sounds.  The influence of this standard is such that, 

even when manufacturers choose not to use the reserved sounds, they tend to use similar 

tonal substitutes.  Given the capacity of the loudspeakers on many medical devices to 

produce much richer sounds, the adherence to such a narrow design remit seems 

unnecessarily restricting, and does not make the best use of a human auditory system that 

has evolved to understand the sonic world around us.   

Recognizing sounds in our environment, from a frog croaking to the reassuring whirr of 

our computer when we switch it on, occurs effortlessly (Marcell, Malatonos, Leahy & 

Comeaux, 2007; Marcell, Borrella, Green, Kerr & Rogers, 2000; Shafiro, 2008).  The sound 

landscape, or soundscape, created by groups of environmental sounds informs our 

understanding as events unfold.  For example, ‘night-time camping’ sounds might include 

frogs croaking, crickets chirping, a tent zip, yawning and a mosquito buzzing.  This sort of 

soundscape is much easier for listeners to parse than the typical soundscape of a clinical 

environment.  Whereas the sounds in a natural environment are acoustically varied and 

indicate the status of the objects and events making those sounds, the alarm signals in a 

clinical environment are neither.  Indeed, there is a considerable weight of evidence showing 

that concrete alarms, using real world metaphors, are better understood and recalled than 

abstract sounds (Belz, Robinson & Casali, 1999; Bonebright & Nees, 2007; Bussemakers & 

de Haan, 2000; Edworthy et al., 2017; Fagerlonn & Alm, 2010; Graham, 1999; Isherwood & 

McKeown, 2017; Leung, Smith, Parker & Martin, 1997; McKeown & Isherwood, 2007; 

McKeown, Isherwood & Conway, 2010; Stevens, Brennan, Petocz & Howell, 2009).  This is 

not least because the prior mental frameworks or schemas associated with known sounds 

can be used to facilitate understanding and learning of new material (e.g. Bartlett, 1932; 

Bransford & Johnson, 1972; Kumaran, Summerfield, Hassabis & Maguire, 2009; Mandler, 

1984; McClelland, McNaughton & O’Reilly, 1995; Moffat, Siakaluk, Sihu, Pexam, 2015; 

Schank & Abelson, 1977; Tse et al., 2007; Schwanenflugel, Harnishfeger & Stowe, 1988). 
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We would expect alarm signals which are both signs in a semiotic sense, and close auditory 

metaphors for an event, to be easier to learn than abstract tones where there is no link 

between the alarm signal and its meaning.  However, environmental sounds are on average 

more acoustically diverse than tonal sounds, which might be an additional factor influencing 

the ease with which environmental sounds can be learned.    

In a clinical setting, tonal alarm signals are likely to present two major sources of 

confusion for the listener.  The first is that they are abstract in nature, meaning that it takes 

time for learners to develop an association between the alarm signal and its function – a 

connection which is made much more quickly when concrete alarm signals are used 

because they capitalize on our existing knowledge of environmental sounds.  The second 

source of confusion is the degree of acoustic variation or variability in the alarm signal set.  

For example, all of the sounds in the current reserved IEC 60601-1-8 set have the same 

rhythmic pattern and lie in the same pitch range, significantly restricting the acoustic 

variability of the whole set of alarm signals making differentiation difficult.  Abstract tonal 

alarms by their very nature are likely less acoustically varied than more concrete everyday 

sounds, making the two factors of acoustic variability and degree of concreteness naturally 

confounded.  The interaction of these two naturally confounded factors has never been 

explored in the literature.     

In Experiment 1 participants were presented with one of four sets of alarms varying in 

their concreteness (concrete vs abstract) and their acoustic variability (different/similar) to be 

found within each sound set.  Concrete alarm signals used plausible metaphors for their 

intended meaning (e.g. the rattling of a small pill box to indicate drug administration rather 

than the sound of a dog barking).   Abstract alarms, by their very nature, employ arbitrary 

relationships between the signal sounds and their meanings and participants were therefore 

expected to be more confused about the possible meanings of the alarm signals (Familant & 

Detweiler, 1993; Isherwood & McKeown, 2017; Petocz, Keller & Stevens, 2008; Stephan, 

Smith, Martin, Parker & McAnally, 2006).  It was also expected that this confusion would be 

compounded when sounds within the set were harder to discriminate acoustically.   
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Conveniently, the current IEC reserved set of alarms represent one of the two extreme 

conditions in this 2 x 2 design.   

In Experiment 2 participants were presented with the same sets of alarm signals, and 

were also presented with an operating theatre scene and asked to map the alarm signals 

that they heard to the relevant medical devices sounding the alarm (see Figure 2).  This was 

done while their eye movements were tracked in the expectation that as participants learned 

the alarm-equipment mappings they would be able to locate the relevant medical devices 

more effectively (Bellenkes, Wickens & Kramer, 1997; Gegenfurtner, Lehtinen & Saljo, 2011; 

Sheridan, 1970; Schulz et al., 2014; Schriver, Morrow, Wickens & Talleur, 2008).   

Experiment 1: Alarm signal Distinguishability and Learning 

Difficulties with the reserved set of alarm signals in the current international medical 

standard are well documented, though they were well designed given what was known at the 

time (c.f. Block, 2008; Block, Rouse, Hakala & Thompson, 2000).  Studies with both non-

clinical (Sanderson, Wee & Lacherez, 2006; Williams & Beatty, 2005) and clinical 

participants (Lacherez, Seah & Sanderson, 2007) have shown that these alarm signals are 

difficult to learn even after repeated exposures.  While other research has shown that clinical 

staff with musical training learn faster than those without (Sanderson et al., 2006; Wee & 

Sanderson, 2008),  this only serves to confirm the difficulty associated with distinguishing 

between similar alarm signals, particularly since alarm signals need to be understood easily 

by staff with different roles and levels of experience.    

IEC 60601-1-8 specifies seven alarm risk categories and one general alarm category 

(Kerr, 1985; Kerr & Hayes, 1983; see Appendix 1d).  A key feature of the standard is that it 

specifies the acoustic and structural elements of the alarm signals that should sound when 

one of these eight categories of event occurs.  The high priority alarm signals specified for 

each of these categories were employed in this experiment, constituting the ‘abstract similar’ 

alarm set.  This set was compared to three other sets of eight alarm signals designed by the 

second author: concrete different, concrete similar, and abstract different alarm signal sets 

(see Appendix 1a-c respectively). On the basis of previous research, it was expected that 
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concrete alarms, consisting of relevant environmental sounds, would be learned more 

quickly since participants would be able to draw on their existing world knowledge in order to 

make inferences about their meaning (e.g. Isherwood & McKeown, 2017; Petocz et al., 

2008; Stephan et al., 2006).  In addition, when alarm signals within sets could be easily 

distinguished acoustically, it was expected that they would be more accurately identified than 

when they were more acoustically similar.   

Participants were presented with the alarm signals repeatedly over a series of 15 

blocks of experimental trials to mimic learning over a series of repeated exposures to the 

alarms.  Where participants were unable to correctly identify the function when first 

presented with each alarm signal, they were given an additional two attempts before being 

given feedback about the correct sound, again designed to resemble real-life learning.  

Participants’ learning of the alarm signal-meaning1 relationships was assessed after 

completion of 1, 8, and 15 blocks of trials when they were asked to rate the perceived 

relatedness of all possible alarm-function relationships.  This included incorrect as well as 

correct alarm-meaning pairs in the expectation that, when they had been learned, 

relatedness ratings for correct alarm-meaning pairs would be high while relatedness ratings 

for incorrect pairs would be low, i.e. the differentiation between correct and incorrect pairs 

was expected to increase showing that sound-function relationships were less confused with 

one another.   

Method 

Participants 

Sixty-four non-clinical participants (47 female) were recruited from Plymouth University 

(M(age)= 24; range= 18-55).  All participants reported normal or corrected-to-normal vision 

and that they had no hearing problems.  Given that previous research suggests that clinical 

practitioners and university students typically do not differ in their ability to learn clinical 

alarm signals (c.f. Lacherez et al., 2007, with Sanderson et al., 2006, and Williams & Beatty, 

2005), student participants were recruited on the assumption that if alarm-meaning 
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relationships can be learned by naïve undergraduates with no healthcare experience then 

they will also be accessible to healthcare professionals with varying roles and levels of 

experience.   This study was approved by the Ethics Panel of Plymouth University and all 

participants gave informed consent prior to taking part. 

The sample size in this experiment was comparable to those used in similar previous 

research.  A study carried out by Isherwood & McKeown (2017) is particularly pertinent.  

Effect sizes were reported using partial eta squared; effect sizes were deemed large if 

ηp2>.41, medium > .18, and small >.08 (Fritz, Morris & Richler, 2012).  Moderate effect sizes 

were reported for concrete vs abstract alarm signal comparisons, easy vs difficult sound-

meaning mappings, and learning across blocks of trials with a total sample size of 24, where 

concreteness and sound-meaning mappings were between-subjects effects (ηp2=0.25, 0.27, 

and 0.37 respectively; Isherwood & McKeown, 2017).  Relatedness ratings have been less 

commonly reported and the most relevant research did not report effect sizes.  Statistically 

significant findings have been reported for directly related, related, and unrelated sound-

meaning pairs and visual icon meaning pairs with total sample sizes of 60-63 participants, 

with 20 and 21 participants in each of three stimulus type groups (Stephan et al., 2006; 

McDougall, Curry & de Bruijn, 2001).  On this basis, it was expected that the sample size in 

Experiment 1 should have sufficient power to detect moderate effect sizes. 

Materials and Apparatus 

Four sets of eight alarm signals were developed, each designed to represent the eight 

high-priority alarms signals in the current IEC standard; two sets were concrete, using real 

world metaphors; two sets were abstract, using tones to represent meaning.  For each of 

these pairs of sets (one concrete set and one abstract set), one set of alarm signals had 

significant acoustic variability across the set of eight signals, while in the other set there was 

much less acoustic variability (the acoustically similar sets).  See Appendices 1a-d for details 

of the acoustic and temporal features of each set of alarm signals.  The degree of acoustic 

similarity and variability within the four alarm signal sets was examined by carrying out a 
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short pilot study with a small number of non-clinical participants.  This pilot confirmed that 

the ‘similar’ sets were more similar to one another as a whole than the ‘different’ sets for 

both the concrete and the abstract alarms. 

 As far as was possible, the alarm signals were the same loudness and length.  It was 

not possible to make the signals exactly the same length, particularly in relation to the 

concrete alarm signals, because the sounds used represented actual events and/or objects 

which meant that they were of different lengths.  Some were repeated (some repeated more 

than once, depending on their natural length) so each alarm signal was curtailed at a point 

where a cycle of the sound had been completed. The average length of a sound was 

approximately two seconds. Equality of loudness was also difficult to achieve because of 

way the energy was spread over the different concrete alarm signals. However, as far as 

possible the Root Mean Square loudness of each sound was equated across sounds.   

Because the alarm signals in the concrete different alarm set are broadly similar to 

those intended to be added to an update of IEC 60601-1-8, the General alarm signal used in 

this set was an abstract sound, as this is the sound likely to appear in the update of the 

standard.  The reason for this is that the general alarm has a special status: it has no 

specific meaning or referent, making the use of a sound metaphor difficult.  However, the 

tones used were typical of the general alarm sounds heard in both clinical and non-clinical 

settings on a day-to-day basis (e.g. a typical audible alarm on a medical device, a cellphone, 

or a computer).  

Participants were presented with alarm signals using a Viglen DQ67SW computer with 

a Realtek High Definition Audio 24-bit 48000 Hz sound card.  Participants listened to alarm 

signals via Behringer HPM 1000 headphones.   

Procedure 

Participants were randomly allocated to one of the four experimental groups; 17 

participants were presented with concrete different alarm signals, 14 with concrete similar, 

17 with abstract different and 16 with abstract similar sounds.  They were told that they 

would be presented with a series of alarm signals and that they would be asked what those 
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alarm signals meant.  Participants were presented with 15 blocks of trials, with eight trials in 

each, with each signal from the presentation set being presented once in random order.  In 

the first - practice - block of trials, participants had opportunity to familiarize themselves with 

the signals and the experimental procedure, thereafter they were presented with 15 blocks of 

experimental trials.   The following procedure applied for each experimental trial:- 

(i) A fixation cross appeared at the center of the computer screen for 1s. 

(ii) A blank screen was shown for 2s during which one alarm signal from the 

presentation set was played through the speakers. 

(iii) A screen appeared showing all of the possible eight functions, or meanings, that the 

alarm signal represented with a click-box beside each function.  The eight alarms and 

their meanings were displayed in two columns with a click-box beside each in the 

following fixed order: general alarm, oxygenation, temperature and power supply in 

the left hand column and drug administration, perfusion, ventilation and 

cardiovascular in right hand column.  Participants were asked to click as quickly as 

possible on the click-box of the meaning they thought matched the signal.  This 

screen showed until the mouse click or for a maximum of 10s.  A ‘Try again’ 

message appeared on the screen for 1.5s when participants selected the wrong 

meaning.  Participants were given two further attempts.  If unsuccessful on three 

occasions, the correct meaning was highlighted using a red box on the screen. It 

would have been possible to ask all participants simply to keep making attempts until 

they mouse-clicked on the correct meaning, however, for those in more difficult 

experimental conditions this was likely to be de-motivating.  Giving participants three 

attempts made it possible to assess how confused participants were while giving 

them the opportunity to learn signal-meaning associations. 

(iv) There was a 500ms inter-stimulus interval between trials during which a blank screen 

appeared.  

Participants were asked to rate the perceived relatedness of alarm signal-meaning 

pairs after completing 1, 8, and 15 experimental blocks of trials using a Likert scale 
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(1=completely unrelated; 10=very closely related).  All possible alarm signal-meaning pairs 

were presented for rating, a total of 64 in all on each of the three occasions.  As in the 

experimental trials, a cross appeared in the center of the screen for 1s, followed by a screen 

with one of the possible meanings of the sound, again at the center of the screen with the 

sound being presented simultaneously with the presentation.  Participants had up to 10s to 

press 1-10 on a standard keyboard.  There was a 1s inter-stimulus interval. 

Design  

The extent to which sounds were (a) concrete and (b) similar to one another was 

varied orthogonally in a 2 alarm concreteness (concrete vs abstract) x 2 alarm similarity 

(similar vs different) between-subjects design.  Dependent variables were as follows:- 

(i) No. of accurate responses. The number of correct meanings selected on participants’ 

first attempt for each block of eight experimental trials.  This provided an index of 

participants’ learning. 

(ii) Number of extra attempts. The number of incorrect second and third attempts made in 

each block of eight trials (maximum 16).  This provided an index of the extent to which 

participants were uncertain of the meaning of the alarm signals.   

(iii) Pairwise relatedness ratings.  Perceived relatedness ratings (1=completely unrelated; 

10=very closely related) of all pairwise alarm signal-meaning combinations after blocks 

1, 8, and 15.  This made it possible to examine the extent to which alarm signals were 

(a) perceived as being closely related to the correct (i.e. designated) meaning and (b) 

perceived as being distantly related to the incorrect meanings. 

Results and Discussion 

No. of Accurate Responses and No. of Extra Attempts 

Table 1 summarizes participants’ accuracy of responding.  The summed frequency 

with which participants were accurate in each of eight trials in each block was calculated as 

a ratio over the possible times a correct response could have been made, e.g. in the 

concrete similar condition in Block 1 58 correct out of a possible 112 (8 items x 14 

participants) was scored, and this is expressed as a percentage, 51.79%.   Those presented 
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with abstract similar alarm signals had the lowest number of accurate responses, those 

presented with concrete similar and abstract different sounds fared considerably better, and 

concrete different alarm signals had high response accuracy from the outset. 

The effects of alarm concreteness (concrete vs abstract), alarm similarity (similar vs 

different) over blocks of trials (1-15) on response accuracy was examined using Generalized 

Estimating Equation (GEE) analysis utilizing a negative binomial distribution with a log link 

function (i.e. the natural log of the dependent variable was modelled) and an autoregressive 

correlation matrix with the offset set to eight (the maximum number correct in each block of 

trials).  This type of analysis is appropriate for count data which may not be normally 

distributed (Garson, 2013; Hardin & Hilbe, 2012).   Furthermore, independence is not 

assumed between repeated measures obtained longitudinally (i.e. over 15 blocks of trials 

where performance in one block of trials is likely to affect the next; Liang & Zeger, 1986; 

McCullagh & Nelder, 1989).  For these analyses the Wald Chi-Square statistic provided a 

measure of the significance or otherwise of experimental effects.  Reference categories for 

the exponentiated coefficient were, concrete alarms, dissimilar alarms and the first block of 

trials, see (i)-(iii) respectively.  The GEE analysis showed that several of the expected effects 

were statistically significant: 

(i) Concrete alarms were more accurately identified than abstract alarms, χ2(1)=64.08, 

p<.001,  95% CI = 0.19 – 0.67,  Exp(B) = 1.46, 

(ii) Dissimilar alarms were more accurately identified than similar alarms, χ2(1)=40.89, 

p<.001, , 95% CI = 0.18 – 0.67, Exp(B) = 1.46,   

(iii) The number of accurate responses increased as participants learned alarm-meaning 

associations across blocks of trials, χ2(14)=159.70, p<.001 2.   

Alarm concreteness interacted significantly with blocks of trials, χ2(14)=74.77, p<.001, as did 

alarm similarity, χ2(14)=43.25, p<.001 and there was a 3-way interaction between these 

three factors, χ2(14)=29.49, p<.001.  As can be seen from Table 1, the 3-way interaction 
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Table 1.  Percentage of times the correct meaning was selected given an alarm signal in each block of 15 experimental trials given concrete 
different, concrete similar, abstract different and abstract similar alarms.  Percentages are derived from the frequency with which correct 
meanings were chosen given the number of trials in which each type of alarm signal was presented.  

 
Percentage of times the correct meaning was selected    

given an alarm signal(i.e. on first attempt) 

 Percentage of second and third attempts made where 

the correct meaning was selected given an alarm signal 

Blocks of 

Trials 

Concrete 

Different 

(n=17) 

Concrete 

Similar 

(n=14) 

Abstract 

Different 

(n=17) 

Abstract 

Similar 

(n=16) 

 Concrete 

Different 

(n=17) 

Concrete 

Similar 

(n=14) 

Abstract 

Different 

(n=17) 

Abstract 

Similar 

(n=16) 

1 95.14 51.79 49.31 26.47  2.21 38.84 41.91 63.67 

2 95.14 58.93 49.31 33.82  2.94 31.70 43.01 53.91 

3 93.06 66.07 48.61 35.29  1.84 30.36 40.81 53.91 

4 95.83 67.86 56.94 33.09  0.37 21.88 34.19 55.86 

5 99.31 74.11 65.97 43.38  0.74 19.64 29.41 47.66 

6 98.61 79.46 63.19 45.59  1.47 14.29 27.57 48.83 

7 97.22 76.79 71.53 44.12  1.10 17.41 23.90 46.09 

8 97.92 73.21 72.92 46.32  0.00 17.41 19.49 42.97 

9 97.92 82.14 74.31 40.44  1.10 15.18 22.43 46.88 

10 97.92 76.79 77.08 50.00  0.00 16.96 19.12 39.45 

11    100.00 79.46 72.22 53.68  0.37 8.93 25.37 39.06 

12 99.31 81.25 80.56 50.00  0.37 12.50 16.91 36.72 

13 99.31 79.46 79.86 56.62  1.10 12.50 16.18 32.03 

14 97.92 83.04 81.25 56.62  0.37 8.93 15.81 31.25 

15 99.31 83.93 83.33 54.41  0.00 8.93 15.44 33.20 

 * Responses on the first, second and third attempts do not sum to 100 because participants still made erroneous responses after three attempts. 



Learning and interpreting alarm signals 
 

15 
 

appears to be the result of differing rates of learning across trials between conditions.  

Accuracy for concrete different alarms is uniformly high: in all other conditions learning 

occurs over time but this appears to be greater in the concrete similar and abstract different 

conditions when compared to the abstract similar condition, where performance is poorest.   

Participants were able to make two additional attempts at a correct response in an 

experimental trial if their first attempt was unsuccessful; a maximum of 16 additional 

attempts was therefore possible across a block of eight experimental trials.  In practice, 

participants rarely used all 16 extra attempts and made a number of correct responses on 

their first additional attempt.  Table 1 shows the number of second and third attempts made 

for each type of alarm signal; this is highest for abstract similar sounds with lower numbers 

of extra attempts being made for concrete similar and abstract different alarm signals.  This 

data was subjected to the same GEE analysis as for the number of accurate responses with 

the offset set to 16 and with concrete alarms, dissimilar alarms and block 1 acting as the 

reference categories for the exponentiated coefficient.  Again, all the main effects were 

significant: 

(i) Alarm concreteness, χ2(1)=114.88, p<.001, 95% CI = -32.18 - -28.11,  Exp(B) = 8.09, 

with concrete alarm signals requiring fewer extra attempts than abstract signals 

(ii) Alarm similarity, χ2(1)=73.78, p<.00, 95% CI = .10 – 1.43, Exp(B) = 2.15, with 

dissimilar alarms requiring fewer extra attempts than similar alarms 

(iii) Blocks of trials, χ2(14)=216.400, p<.001, with extra attempts reducing as blocks of 

trials progressed.  

Alarm concreteness interacted significantly with blocks of trials, χ2(14)=49.14, p<.001, as did 

alarm similarity, χ2(14)=36.84, p=.001.  The interaction between concreteness and similarity 

was also significant, χ2(14)=35.49, p<.001 but the 3-way interaction between concreteness, 

similarity and blocks of trials did not reach significance, χ2(14)=18.75, p=.07.    

As noted at the bottom of Table 1, participants could, on any given trial, continue to 

select the wrong alarms even after 3 attempts and so responses for first, second and third 
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attempts do not sum to 100%.  The mean percentage persistently incorrect even after 3 

attempts for each condition was 1.47%, 7.35%, 5.47% and 10.58% for the concrete different, 

concrete similar, abstract different, abstract similar conditions respectively. 

Alarm-Equipment Relatedness Ratings  

Participants were asked to rate how closely they perceived the relatedness of possible 

alarm signal-meaning pairings using a 1-10 scale (1=not associated at all, 10=very closely 

associated) after completing 1, 8 and 15 blocks of trials (see Figure 1). 

A 4-way mixed analysis of variance with correctness (correct vs incorrect) and blocks 

of trials (1 vs 8 vs 15) as within-subjects factors and concreteness (concrete vs abstract) and 

alarm signal similarity (different vs similar) as between-subjects factors was carried out to 

examine relatedness ratings further.  Data were normally distributed in each condition (all 

ps>.05 using Shapiro-Wilks testing), however, Mauchly’s tests of sphericity were significant, 

χ2(2)=49.83, p<.001 and χ2(2)=51.64, p<.001 for the effect of blocks of trials and its 

interaction with correctness respectively so the Greenhouse-Geisser correction was used for 

these effects. 

Participants’ relatedness ratings were higher for correct than incorrect alarm-meaning 

pairs, M(correct) =4.43, SD = 1.19, M(incorrect) = 2.35, SD = 0.73, see Figure 1) and 

increased across blocks of trials, M(Block 1) = 3.22, SD = 0.76, M(Block 5) = 3.40, SD = 

0.70, M(Block 9) = 3.55, SD = 0.68.  Figure 1 shows that as expected ratings for correct and 

incorrect items diverged as participants learned, becoming higher for correct and lower for 

incorrect pairs producing a significant Correctness x Block interaction (see Table 2).  This 

divergence was more marked when alarms signals were concrete and differed within the set 

resulting in a significant 3-way Correctness x Concreteness x Similarity interaction.  The 4-

way interaction between all the fixed factors appears to arise because ratings in the concrete 

different condition (Figure 1(a)) do not diverge over blocks of trials but instead are well 

differentiated from outset). 
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                       (a) Concrete Different        (b) Concrete Similar 

 

  

    (c) Abstract Different                 (d) Abstract Similar (IEC) 

 

Figure 1. Relatedness ratings for correct and incorrect alarm signal-meaning combinations 

completed after learning trials in blocks 1, 8, and 15.  Error bars show the standard error of 

the mean. 
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Table 2.  Relatedness ratings of alarm signal-meaning pairs: Summary of significant main 

effects and interactions from 4-way analyses of variance examining the effects of 

correctness (correct vs incorrect alarm-meaning relationships), blocks of trials (1, 8, 15), 

alarm signal concreteness (concrete vs abstract), and alarm signal similarity (different vs 

similar). 

 

       Df F p η2 

Main effects*     

Correctness 1,63 163.84 <.001 .722 

Blocks of trials 1.29, 81.17 190.56 <.001 .752 

Interactions     

Correctness x Block 1,63 136.51 .001 .684 

Correctness x Concreteness 1,63     4.42   .04 .022 

Correctness  x Concreteness x Similarity 1.29, 81.17     7.35 .009 .105 

Correctness x Block x Concreteness x 

Similarity 

1.28, 80.50     6.93 .006 .099 

 

*Where effects are not significant they have not been included in this table. 
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Use of alarm-equipment relatedness ratings and confusions to determine alarm 

signal and set usability.  An identical 4-way analysis of variance was carried out on the 

relatedness ratings data by-items, rather than by-participants, and revealed a very similar 

pattern of findings (for the sake of brevity, it is not reported here).  Table 3 shows how the 

efficacy of the alarm signals in newly designed sets could be considered simply and 

effectively.  The assumption is that the meaning of the alarm signal is unclear when the 

difference between correct and incorrect relatedness ratings is small.  This lack of clarity is 

also manifest in performance inaccuracy, the percentage of occasions on which the meaning 

chosen given the alarm signal is incorrect.  The extent of the confusion is also apparent in 

the number of other meanings chosen by participants for a given item.  The number of 

meanings confused is lowest for concrete different and highest for abstract similar alarms.  

Table 3, although descriptive in nature, presents convergent data which makes it possible to 

target weak or strong alarms within a set, e.g. the perfusion alarm signal in the concrete 

different set appears to be most easily confused with other meanings, while the general 

alarm signal in the abstract similar set appears to be effective relative to others in the set 

because it is tonally distinct.  While this is not a focus in this paper, such an approach might 

be usefully developed for more general use in alarm signal design and development. 
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Table 3. Mean difference between relatedness ratings for correct and incorrect alarm signal-meaning pairs obtained after learning 

blocks 1, 8 and 15, percentage of times incorrect meanings were assigned given all possible attempts, and the number of other 

meanings selected for each alarm signal.   

 
  Block 1   Block 8   Block 15  

Alarm signal 

Difference 
correct/ 
incorrect 
ratings 

% 
Incorrect 

No. of other 
meanings 
selected 

Difference 
correct/ 
incorrect 
ratings 

% 
Incorrect 

No. of other 
meanings 
selected 

Difference 
correct/ 
incorrect 
ratings 

% 
Incorrect 

No. of other 
meanings 
selected 

Concrete Different 

General 3.37 15.00 3 3.70   0.00 0 4.83 0.00 0 
Cardiovascular 2.17   5.26 1 2.11   0.00 0 3.66 0.00 0 
Drug Admin 2.77 10.00 2 3.63   0.00 0 4.47 0.00 0 
Oxygenation 2.89 14.29 3 3.44   0.00 0 3.50 0.00 0 
Perfusion 4.16 26.09 5 4.79 10.00 2 5.09 0.00 0 
Power Supply 2.30 15.00 3 3.47   5.26 1 3.46 5.26 0 
Temperature 1.94   5.26 1 4.23   0.00 0 4.47 0.00 1 
Ventilation 2.86 14.29 2 2.76 10.00 2 3.56 0.00 0 
Alarm signal 
Set Mean 2.81   3.52   4.13   

Concrete Similar 

General 0.56 56.00 6 2.70 42.11 5 2.50 31.58 5 
Cardiovascular -0.14 20.00 3 1.16 27.78 5 2.14 18.75 3 
Drug Admin 1.14 47.83 5 2.40 27.78 4 3.63   0.00 0 
Oxygenation 0.61 62.50 5 1.63 18.75 3 2.57 18.75 3 
Perfusion 1.63 65.52 7 2.27 23.53 3 3.30   7.14 1 
Power Supply 0.10 78.13 6 1.37 52.38 5 1.24 33.33 4 
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Temperature 1.61 38.89 4 2.14 35.29 5 2.74 20.00 3 
Ventilation 2.24 23.53 2 2.13 27.78 3 3.60   0.00 0 
Alarm signal 
Set Mean 0.97   1.98  4.12   2.37 

Abstract Different 

General 0.76 31.82 5 2.03 31.82 4 3.04 16.67 3 
Cardiovascular 0.50 74.29 7 1.45 34.78 5 1.16 31.82 4 
Drug Admin 2.70 45.83 6 4.27 24.38 4 4.14 16.67 3 
Oxygenation 2.22 56.62 7 3.59 40.00 5 3.60 26.32 4 
Perfusion -0.49 77.78 7 2.22 51.72 7 2.58 45.83 5 
Power Supply -0.43 50.00 7 -0.71 41.67 6 1.31 37.50 4 
Temperature 0.71 59.26 6 2.68 25.00 3 3.07 25.00 4 
Ventilation 2.14 72.97 6 2.12 55.56 6 1.87 41.67 5 
Alarm signal 
Set Mean 1.01   2.21   2.60   

Abstract Similar 

General 4.78 43.00 7 6.74 0.00 0 5.62 0.00 0 
Cardiovascular -0.24 80.49 6 1.28 65.92 6 1.45 60.71 6 
Drug Admin -0.79 75.68 7 0.75 74.86 6 1.87 63.64 6 
Oxygenation 0.37 66.67 6 1.98 57.69 6 3.27 38.09 5 
Perfusion 0.63 75.68 7 3.59 52.00 7 3.86 54.17 7 
Power Supply -0.02 88.37 7 0.61 64.52 7 2.57 50.00 7 
Temperature 2.64 74.19 7 3.58 52.00 6 3.17 40.91 4 
Ventilation 0.91 82.05 6 1.47 62.50 5 2.38 52.00 4 
Alarm signal 
Set Mean 1.04   2.50   3.02   
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Experiment 2: Learning and distinguishing alarm signals in a visual environment 

In healthcare settings alarm signals are used to direct staff attention to clinically critical 

patient information on medical equipment.  However, few studies have examined the way in 

which alarm signals direct visual attention or examined the changes in eye movements as 

alarm signal-meaning associations are learned (but see Dehais et al., 2014; Kodappully, 

Srinivasan & Srinivasan, 2016; Stevenson, Schlesinger & Wallace, 2013).  Experiment 2 

sought to replicate and extend the findings of Experiment 1 using the same sets of alarm 

signals, while also examining the efficacy with which participants’ visual attention was 

directed to appropriate equipment.  Participants were shown a static operating theatre scene 

and the efficacy of their eye scan paths was tracked as they selected piece of medical 

equipment associated with the alarms they heard.  It was expected that the number of 

fixations participants required prior to fixating on the correct piece of equipment would 

reduce as participants learned alarm signal-equipment associations (e.g. Al-Moteri, 

Symmons, Plummer & Cooper, 2017; Bellenkes, Wickens & Kramer, 1997; Gegenchambers 

furtner et al., 2011; Schulz et al., 2014; Schriver, Morrow, Wickens & Talleur, 2008).  As in 

Experiment 1, the ease with which alarm signal-equipment relationships would be learned 

would depend on the concreteness and acoustic discriminability of the alarm signals. While 

the use of the static scene cannot be equated with a live operating theatre situation, it 

provides visual sense and context that would not be present in a list of options (as in 

Experiment 1) and gave participants the opportunity to search a visual scene so providing 

greater face validity.  

Method 

Participants 

Forty non-clinical participants (28 female) were recruited from Bournemouth University 

(M(age) = 25; range 18-60).  All reported no known hearing problems and had either normal 

or corrected-to-normal vision.  This study was approved by the Ethics Committee of 

Bournemouth University and all participants gave informed consent prior to taking part. 

Materials & Apparatus 
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The alarm signal sets used were identical to those in Experiment 1.  The experiment 

was conducted using an Eyelink 1000+ with 75cm distance between the computer screen 

and headrest linked to a Hewlett Packard Compaq Elite 8300 SFF computer with a 23-inch 

HP EliteDisplay E231 screen. The eye tracker sampled the position of the right eye with a 

frequency of 1 KHz.  Experimental trials were controlled using Experiment Builder software 

(SR Research Ltd., 2015): this software is a visual experiment creation tool designed for use 

with the Eyelink 1000+.   

Figure 2 shows the image of the operating theatre presented to participants with the 

pieces of equipment associated with each alarm signal, each representing a specific function 

related to the alarm signals.   On the image, relevant interest areas are superimposed, 

outlined in black, and the meaning of the associated alarm signals is shown.  The image 

used is from a hospital in the United Kingdom. The locations of the alarms were selected on 

the basis that they were both plausible (developed through discussions with relevant 

clinicians) and represented a good spread of alarm locations across the screen although in 

real clinical situations the locations of the specific alarms may be somewhat different.   The 

image was adjusted using Adobe Photoshop CS6 so that it was possible to visually identify 

one plausible piece of equipment for each alarm signal and ensure that there was enough 

separation in space between pieces of equipment to create distinct interest areas.  An 

infusion pump was added to the image in order to represent ‘check drug administration’.  

Importantly, the use of a static image meant that participants were able to use a headrest, 

increasing the accuracy and reliability of the calibration of the eye tracker. 

The fixation index is the number of fixations made from the beginning of the trial prior 

to fixating on the correct interest area (for reviews of potential eye tracking measures see Al-

Moteri et al., 2017; Asan & Yang, 2015).   It acted as a measure of the extent to which 

participants were confused, moving from one piece of equipment to the next, prior to 

localizing attention on the piece of equipment (i.e., the correct interest area).  Other 

measures of eye tracking such as number and length of fixations were not used since they 

were likely to be difficult to interpret: participants might fixate more frequently and for longer 
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as a result of learning alarm signal-equipment relationships but equally might fixate less on 

correct areas of interest (AOIs) once the appropriate visual cue had been viewed.  Similarly 

measures of transitions and movements back to previous AOIs might also be regarded as a 

candidate eye movement measure since participants having difficulty learning alarm signal-

equipment pairings might tend to move more frequently from one AOI to the next and back 

as they searched for an appropriate piece of equipment.  However, other researchers have 

noted that those with greater expertise may adopt different strategies, either focusing on 

many points quickly, or carrying out a limited search to specific points within a scene 

(Tiersma, Peters, Mooij & Fleuren, 2003), making these measures difficult to interpret. 

Procedure  

Participants were assigned to one of the four alarm signal groups in strict serial order.    

This method of allocation to groups ensured equal numbers in each participant group.  

Systematic bias in allocation to groups was extremely unlikely because the serial order 

allocation was strictly applied and participants indicated their interest in taking part via an 

electronic participation system where appointment times were allocated automatically.  

Participants were seated in front of the computer screen with their chin placed on a head 

rest. Nine-point calibration was used to ensure reliable measurement of eye movements. 

Participants were asked to imagine that they were in an operating theatre and that they 

would hear alarm signals coming from the in-theatre equipment.  In order to ensure ‘patient 

safety’, they would need to click with the mouse as quickly and as accurately as possible to 

indicate which piece of equipment should be checked given the alarm signal.   

Familiarization with alarm signals.  Prior to commencing experimental trials, participants 

were given the opportunity to familiarize themselves with the alarm signals.   Then each 

piece of equipment was highlighted, outlined in red, for 12s with the meaning of each alarm 

displayed in a label beneath the relevant area.  The relevant alarm signal was presented 

after 1s, 5s and 9s during the 12-second period.  Participants were instructed to listen 

carefully so that they could click on the appropriate equipment when they heard the alarm 

signals later in the experiment.   
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Figure 2.  Picture of operating theatre used in Experiment 2 showing eye tracker interest areas and alarm meanings associated with each piece 

of equipment 
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Experimental trials.  Each trial commenced with an alarm signal.  Participants then used 

the computer mouse to indicate the equipment they thought corresponded to the alarm 

signal they had heard.  If participants clicked on the correct piece of equipment, the 

equipment was outlined in white for 1s before moving on to the next trial.  If participants 

clicked on the wrong equipment the outline did not appear and the words ‘Try again’ 

appeared at the top of the screen for 1.5s.  After three attempts, the equipment was outlined 

in white for 1.5s before moving on to the next trial.  There was a 1s inter-stimulus interval 

between trials. 

Participants were presented with nine blocks of eight experimental trials in which each 

alarm signal was presented once in random order.   Nine blocks of trials were presented 

instead of 15 blocks because learning was observed in Experiment 1 after nine blocks of 

trials and because pilot testing indicated that those presented with the more difficult to learn 

alarm sets found 15 blocks of trials arduous.  As in Experiment 1, ratings were obtained of all 

possible alarm signal-referent pairings with the referents in Experiment 2 being the pieces of 

equipment depicted in the operating theatre scene.   Meaning pairings were obtained, this 

time after one, five, and nine blocks of trials. 

Design 

A 2 alarm concreteness (concrete vs abstract) x 2 alarm similarity (similar vs different) 

x 9 blocks of trials (1-9) with alarm concreteness and similarity as between-subjects factors 

and blocks of trials as a within-subjects factor.  Dependent variables were the same as for 

Experiment 1 with the addition of fixation data from eye tracking as follows:- 

(i) No. of accurate responses. Selection of the appropriate piece of operating theatre 

equipment given the alarm signal on participants’ first attempt. 

(ii) No. of extra attempts. The number of incorrect second and third attempts made in 

each block of 8 trials (maximum 16). 

(iii) Pairwise relatedness ratings.  A seven-button box was used to collect relatedness 

ratings so the Likert scale ranged from 1=very closely related to 7=completely 

unrelated rather than 1-10 as in Experiment 1. 



Learning and interpreting alarm signals 

27 
 

(iv)  The fixation index. The number of fixations made from the beginning of the trial prior 

to fixating on the correct interest area.  The fixation index was obtained for (a) 

participants’ first attempt and (b) participants second and third attempts.  

Results and Discussion 

No. of Accurate Responses and No. of Extra Attempts   

Table 4 summarizes the accuracy of participants’ responses.  Values in the table are 

the frequency with which correct meanings were selected, calculated as a percentage of the 

number of times the alarm signals were  presented (e.g. for concrete different alarms in 

block 1 this ratio was 66/80 and for abstract similar alarms 24/80, producing percentages of 

82.50 and 30.00 respectively).  Table 4 shows that the group presented with concrete 

different alarm signals identified alarm signal-equipment mappings more accurately from the 

outset, those in the concrete similar and abstract different groups reached similar levels of 

accuracy only after nine blocks of trials, while those in the abstract similar condition 

continued to make a large number of errors throughout.   

The GEE analysis used to examine the accuracy data was identical to Experiment 1 

except that there were nine levels in the blocks of trials within-subjects factor.  In this 

instance, abstract alarms, similar alarms and block 1 acted as reference categories for the 

exponentiated coefficient.  The GEE model revealed that all three fixed factors were 

significant:  

(i) Alarm concreteness, χ2(1) = 23.43, p < .001 with concrete alarms superior to abstract 

alarms, 95% CI = .-.37 - -.03, Exp(B) = 0.82 . 

(ii) Alarm similarity, χ2(1) = 18.05, p < .001 with different alarms superior to similar alarms, 

95% CI = -.32 – 0.01, Exp(B) = 0.86. 

(iii) Blocks of experimental trials, χ2(1) = 107.58, p < .001 1 with learning increasing across 

trials. 

There was also a significant 3-way interaction between the effects of alarm concreteness, 

alarm similarity, and blocks of trials, χ2(1) = 22.35, p = .004, resulting from higher response  



Learning and interpreting alarm signals 

28 
 

Table 4.  Percentage of times the correct alarm meaning was selected given an alarm signal in each block of nine experimental trials given concrete 

different, concrete similar, abstract different and abstract similar alarms.  Percentages are derived from the frequency with which correct equipment was 

chosen given the number of trials in which each type of alarm signal was presented. 

 
Percentage of times the correct meaning was selected    

given an alarm signal (i.e. on first attempt) 

 Percentage of second and third attempts made where 

the correct meaning was selected given an alarm signal 

Blocks of 

Trials 

Concrete 

Different 

(n=10) 

Concrete 

Similar 

(n=10) 

Abstract 

Different 

(n=10) 

Abstract 

Similar 

(n=10) 

 Concrete 

Different 

(n=10) 

Concrete 

Similar 

(n=10) 

Abstract 

Different 

(n=10) 

Abstract 

Similar 

(n=10) 

1 82.50 45.00 47.50 30.00  13.13 45.63 43.13  60.00* 

2 80.00 38.75 37.50 30.00  13.75 51.25 49.38 60.00 

3 88.75 53.75 47.50 51.25  7.50 40.00 40.00 37.50 

4 93.75 58.75 52.50 45.00  5.00 33.13 36.25 48.75 

5 93.75 68.75 65.00 46.25  4.38 26.88 28.13 46.25 

6 96.25 63.75 62.50 47.50  2.50 28.13 27.50 43.13 

7 90.00 67.50 75.00 45.00  5.63 21.88 20.00 40.00 

8 97.25 76.25 62.50 50.00  1.88 17.50 26.25 38.75 

9 96.25 82.50 78.75 45.63  3.13 12.50 17.50 32.50 

* Responses on the first, second and third attempts do not sum to 100 because participants were still making erroneous responses after three attempts.
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                   (a) Concrete different                        (b) Concrete similar 

 

 

                   (c) Abstract different                        (d) Abstract similar (IEC) 

Figure 3.  Relatedness ratings for correct and incorrect alarm signal-equipment combinations 

completed after learning trial blocks 1, 5, and 9. Error bars show the standard error of the 

mean. 
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accuracy for concrete different alarm signals  in comparison to other alarm signal types with 

these differences reducing over blocks of trials.  No other interactions were significant.   

An identical GEE analysis was used to examine the percentage of second and third 

attempts made by participants with the offset set to 16 since counts of extra attempts were 

out of a possible maximum of 16.  Abstract alarms, similar alarms and the first block of trials 

acted as the reference categories for the exponentiated coefficient.  As expected, the main 

effects were significant: 

(i) Alarm concreteness, χ2(1) = 14.58, p < .001, 95% CI = -.21 - 3.66, Exp(B) = 5.60, with 

more additional attempts made for abstract alarms; 

(ii) Alarm similarity, χ2(1) = 12.70, p < .001,  95% CI = -.68 – 3.45,  Exp(B) = 4.00, with 

more additional attempts for similar items; 

(iii) Blocks of experimental trials, χ2(1) = 26.27, p < .001, with attempts reducing over 

blocks. 

There was also a significant 3-way interaction between concreteness, similarity and blocks 

of trials, χ2(1) = 28.02, p < .001, mirroring the effects seen in response accuracy.  In this 

analysis two of the 2-way interactions were also significant; concreteness x similarity, χ2(1) = 

5.15, p = .023, and concreteness x block, χ2(1) = 19.29, p = .013.  

As noted at the bottom of Table 4, participants could select the wrong alarms even 

after 3 attempts and so responses for 1st, 2nd and 3rd attempts do not sum to 100%.  The 

mean percentage persistently incorrect after 3 attempts for each condition was 2.73%, 

7.57%, 9.23% and 11.39% for the concrete different, concrete similar, abstract different, 

abstract similar conditions respectively. 

Alarm Signal-Equipment Relatedness Ratings 

Figure 3 shows the mean relatedness ratings for correct and incorrect alarm signal-

equipment pairs obtained after learning blocks 1, 5 and 9.  A 4-way mixed analysis of 

variance with correctness (correct vs incorrect) and blocks of trials (1 vs 5 vs 9) as within-

subjects factors and concreteness (concrete vs abstract) and sound similarity (different vs 
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similar) as between-subjects factors was carried out to examine relatedness ratings further.  

Data were normally distributed in each condition (all ps > .05 using Shapiro-Wilks testing) 

and Mauchly’s tests of sphericity were not significant.   

Relatedness ratings for correct pairings were higher than for incorrect ratings, M(correct) 

=4.43, SD = 1.19, M(incorrect) = 2.35, SD = 0.73, ratings increased across blocks of trials, 

M(Block 1) = 3.22, SD = 0.76, M(Block 5) = 3.40, SD = 0.70, M(Block 9) = 3.55, SD = 0.68, 

and were higher for alarms in sets where they sounded different, M = 3.63, SD = 0.56, and 

lower when alarms sounded similar, M = 3.16, SD = 0.67 (see Table 5).  Figure 3 shows a 

similar pattern to Experiment 1.  Ratings for correct and incorrect items became increasingly 

different as participants learned across blocks of trials (see Correctness x Block interaction, 

Table 5).  Correct and incorrect ratings differed more when items where concrete than when 

they were abstract (see Correctness x Concreteness interaction; c.f. Figure 3(a) and (b) with 

(c) and (d)).  A 3-way Correctness x Concreteness x Similarity interaction resulted from the 

fact that while correct and incorrect ratings were more differentiated for concrete alarms, this 

was particularly true for those where alarms also sounded different from one another (c.f. 

Figure 3(a) and (b)).  The 4-way interaction was not significant.   

Table 6 reveals the extent to which participants understood, or were confused, about 

the piece of equipment associated with each alarm signal.  Participants presented with 

concrete different alarm signals were able to differentiate correct and incorrect alarm-

equipment relationships most effectively (see Difference correct/incorrect ratings), were less 

likely to be inaccurate (% Incorrect) and were less likely to select a variety of alternative 

meanings (No. of other meanings selected) in comparison to other alarm sets.  As in 

Experiment 1, this data makes it possible to identify weaker alarms within the set, such as 

the perfusion alarm signal in concrete different alarm signal set.  By the same token, it is 

evident that the general alarm signal in the abstract similar alarm signal set, is particularly 

effective because it is less similar than other items within the set by virtue of having a fixed, 

rather than a variable, pitch pattern (see Appendix 1). 
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Table 5.  Relatedness ratings of alarm-equipment pairs: Summary of significant main effects 

and interactions from 4-way analyses of variance examining the effects of correctness 

(correct vs incorrect alarm-meaning relationships), blocks of trials (1, 5, 9), alarm signal 

concreteness (concrete vs abstract), and alarm signal similarity (different vs similar). 

 

 Df F p η2 

Main effects*     

Correctness 1,36 106.50 <.001 .747 

Blocks of trials 1,72    8.09   .001 .184 

Similarity 1,36    5.62   .023 .135 

Interactions     

Correctness x Block 1,72 25.20 <.001 .412 

Correctness x Concreteness 1,36   8.83   .005 .197 

Correctness  x Concreteness x Similarity 1,72   4.16   .049 .103 
 

*Where effects are not significant they have not been included in this table. 
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Table 6. Mean difference between relatedness ratings for correct and incorrect alarm signal-meaning pairs obtained after learning 

blocks 1, 5 and 9, percentage of times incorrect meanings were assigned given all possible attempts, and the number of other 

meanings selected for each alarm signal.   

 
  Block 1   Block 5   Block 9  

Alarm Signal 

Difference 
correct/ 
incorrect 
ratings 

% 
Incorrect 

No. of other 
meanings 
selected 

Difference 
correct/ 
incorrect 
ratings 

% 
Incorrect 

No. of other 
meanings 
selected 

Difference 
correct/ 
incorrect 
ratings 

% 
Incorrect 

No. of other 
meanings 
selected 

Concrete Different 

General 3.37 0.00 0 3.70 0.00 0 4.83 0.00 0 
Cardiovascular 2.17 62.50 5 2.11 16.67 1 3.66 0.00 0 
Drug Admin 2.77 0.00 0 3.63 0.00 1 4.47 0.00 0 
Oxygenation 2.89 37.50 2 3.44 0.00 0 3.50 25.00 3 
Perfusion 4.16 9.09 1 4.79 0.00 0 5.09 0.00 0 
Power Supply 2.30 30.77 3 3.47 16.67 2 3.46 0.00 0 
Temperature 1.94 42.86 4 4.23 9.09 1 4.47 25.00 3 
Ventilation 2.86 30.77 3 2.76 16.67 2 3.56 9.09 1 
Alarm Signal 
Set Mean 2.81   3.52   4.13   

Concrete Similar 

General 6.10 61.11 6 2.70 35.71 4 2.50 40.00 5 
Cardiovascular 3.60 78.57 6 1.16 68.42 5 2.14 42.86 4 
Drug Admin 3.90 43.75 5 2.40 23.08 3 3.63 25.00 3 
Oxygenation 3.50 73.91 6 1.63 94.12 5 2.57 28.57 3 
Perfusion 4.20 50.00 5 2.27 43.75 4 3.30 9.09 1 
Power Supply 3.60 78.26 6 1.37 52.94 5 1.24 9.09 1 
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Temperature 3.70 68.42 7 2.14 9.09 1 32.74 70.00 3 
Ventilation 3.40 40.00 4 2.13 50.00 5 3.60 0.00 0 
Alarm Signal 
Set Mean 4.00   1.98   6.46   

Abstract Different 

General 0.46 57.14 6 2.83 43.75 5 3.17 35.71 5 
Cardiovascular 0.43 80.64 7 1.44 30.77 4 2.71 16.67 2 
Drug Admin 2.69 25.00 3 2.94 28.57 4 4.17 28.57 4 
Oxygenation 0.94 73.91 6 0.16 94.12 6 1.17 28.57 3 
Perfusion 1.74 37.50 4 2.27 30.77 4 3.44 0.00 0 
Power Supply 0.66 50.00 4 1.64 46.67 6 3.09 23.08 2 
Temperature 1.14 55.56 5 1.07 63.16 4 2.24 30.77 3 
Ventilation -0.40 72.73 7 0.90 52.04 5 2.29 55.56 6 
Alarm Signal 
Set Mean 0.96   1.66   2.79   

Abstract Similar 

General 3.93 46.67 5 5.17 0.00 0 4.90 9.09 1 
Cardiovascular 0.69 85.29 6 0.56 75.00 5 1.67 60.00 4 
Drug Admin 0.41 68.18 6 0.90 71.43 6 0.77 33.33 2 
Oxygenation 0.56 80.77 6 0.79 100.00 4 1.31 37.50 4 
Perfusion 1.36 55.56 5 2.54 50.00 5 2.34 9.09 1 
Power Supply 0.51 83.33 7 1.80 33.33 3 0.73 43.75 6 
Temperature 0.76 66.67 6 1.37 73.91 6 2.04 57.14 5 
Ventilation 0.27 61.90 7 0.56 68.18 6 0.13 59.09 6 
Alarm Signal 
Set Mean 1.06   4.37   1.74   
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Number of Fixations Prior to Fixating on Correct Interest Area (Fixation Index) 

The fixation index was obtained for (a) participants’ first attempt and (b) participants’ 

second and third attempts (see Figure 4).  Because participants rarely required second or 

third attempts when given different concrete alarm signals, the data available was insufficient 

for reliable analysis of the first fixation index (see Figure 4(a)).  This meant that it was not 

possible to consider concreteness and alarm signal similarity as factors in an omnibus 

analysis.  Instead, a Generalized Estimated Equation was used to conduct a 3-way analysis 

with alarm type (concrete similar vs abstract different vs abstract similar) as a between-

subjects factor and blocks of trials (1-9) and number of attempts (first vs second vs third 

attempts) as within-subjects factors.  A subsidiary GEE analysis was carried out to consider 

the effect of blocks of trials (1-9) on the fixation index when participants were making their 

first attempt in the concrete different condition.  This type of analysis was employed because 

of the nature of the data: fixation count data was obtained repeatedly over a series of time 

points (blocks of trials).  Prior to the analysis two extreme values were replaced using 

Winsorization with the 95th percentile value used for replacement (Chambers, Kokic, Smith & 

Cruddas, 2001; Winer, 1971).  The data were transformed using a square root 

transformation to remove positive skew (Winer, 1971): a linear distribution was assumed, 

combined with an autoregressive correlation matrix since scores in blocks of trials could not 

be assumed to be independent. 

While there was no overall difference in the number of fixations across conditions, 

χ2(2)=2.64, p=.267 as hypothesized the number of fixations was lower when participants 

identified the correct alarm signal-equipment mapping on their first attempt rather than on 

their second or third attempt, χ2(1)=134.50, p<.001, 95% CI = -1.25 – -0.37, Exp(B) = 0.47.   

The main effect of blocks of trials was also significant suggesting that participants were 

making fewer fixations as they learned alarm-equipment pairings over blocks of trials, 

χ2(8)=89.54, p<.001.  The reduction in the number of fixations was largely the result of fewer 

fixations being required on second and third attempts (see Figure 4) and this resulted in a 
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significant attempts by block interaction, χ2(8)=22.96, p<.001, and a 3-way attempts x alarm 

type x blocks interaction, χ2(16)=45.72, p<.001.  Comparison of the line graphs for each 

condition in Figure 4(b-d) suggests that participants presented with concrete similar alarms 

are still very uncertain in initial blocks of trials (1-4) making considerably more fixations prior 

to attending to the appropriate equipment; in later trials participants appear to become much 

more certain, making fewer fixation attempts.  If participants knew the correct piece of 

equipment to check when the alarm signaled, it took on average between 5-10 fixations to 

arrive at the correct interest area.  Where participants were still taking 2-3 attempts to do so, 

the number of fixations was greater.  In the concrete similar condition, the number of 

fixations reduced as they learned alarm signal-equipment pairings across experimental trials 

with the number of fixations being comparable for first and later attempts in later blocks of 

trials.  However, differences still remain even in later blocks of trials for the abstract different 

and abstract similar conditions. 

To summarize, the effects of alarm concreteness and similarity on participants’ 

learning of alarm signal-equipment mappings were comparable to those observed in 

Experiment 1.  The way in which alarms could direct, or misdirect, visual attention was also 

evident.  Where alarm signals were difficult to distinguish from one another and the 

equipment was also in close proximity in the operating theatre scene (oxygen, temperature, 

cardiovascular and ventilation checks), then most confusion resulted.  This was particularly 

evident in early learning trials for those using concrete similar alarms and across all learning 

trials for those using abstract similar alarms.  Where participants were uncertain about which 

medical device the alarm signal related to, the number of fixations made prior to fixating on 

the correct piece of equipment was significantly higher (see Figure 4). This suggests that 

their scan paths were significantly more complicated prior to alighting on the appropriate 

interest area.  Again, those using concrete different alarms appeared to have a particular 

advantage, while those using abstract similar alarms found learning most difficult. 
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     (a) Concrete Different                                (b) Concrete Similar 

 
      (c) Abstract Different                             (d) Abstract Similar 

 

Figure 4.  Number of fixations made prior to fixating on the correct interest area in each experimental condition.  The number of fixations 

required when participants were correct on their first attempt or correct on their second or third attempt is shown except in the Concrete 

Different condition because so few extra attempts were made.
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General Discussion 

The alarm signals specified in the current edition of an international medical device safety 

standard, IEC-60601-1-8, suffer from problems which are common to other clinical alarm signals 

currently in use.  The meaning of the alarm signals are difficult to learn and the alarm signals 

are easily confused (Lacherez et al., 2007; Sanderson et al., 2006; Williams & Beatty, 2005).  

The experiments reported in this paper compared the alarm signals from the current 

international standard with alternative alarm sets that differed in the extent to which the sounds 

used related to environmental sounds (e.g. the sound of a heartbeat to indicate ‘check 

cardiovascular function’) or were made up of a series of simple tones (concrete vs abstract 

alarms) and the extent to which they sounded similar to others in the alarm set (similar vs 

different alarm signals).  The aim was to examine the extent to which these factors determined 

participants’ ability to learn alarm signal-referent associations and to build an effective cognitive 

framework of the sounds in the alarm signal set allowing them to attend to medical devices 

appropriately.  

As hypothesized, in both experiments concrete alarm signals were learned more quickly 

than abstract alarm signals and similar-sounding alarms took longer to learn than those that 

were dissimilar and easily discriminable.  When alarms in a set were both concrete and 

dissimilar, this appeared to confer a particular advantage.  In this set, the meaning of many 

alarms were correctly ascertained from the outset (see Figures 1(a) and 3(a)) with few 

confusions and fewer fixations were required before fixating on the appropriate equipment (see 

Figure 4).  Conversely, those learning the alarm signals designed using the existing 

international standard (the abstract similar alarm signals) appeared to suffer a double setback in 

their learning.  With these, participants took longer to learn them and were very confused about 

their meaning.  It is possible to argue that these differences may gradually disappear as users 

gain expertise with the alarm set but differences remained after 16 blocks of learning trials (see 



Learning and interpreting alarm signals 

39 
 

Table 1 and Figure 1) and the evidence to date suggests that difficulties in identifying and 

interpreting the alarms remain (Sanderson et al., 2006; Williams & Beatty, 2005).   

Several studies have demonstrated considerable advantages for concrete sounds over 

abstract tones as alarm signals (Belz, Robinson & Casali, 1999; Bonebright & Nees, 2007; 

Bussemakers & de Haan, 2000; Edworthy et al., 2017; Fagerlonn & Alm, 2010; Graham, 1999; 

Isherwood & McKeown, 2017; Leung, Smith, Parker & Martin, 1997; McKeown & Isherwood, 

2007; McKeown, Isherwood & Conway, 2010; Stevens et al., 2009; note that concrete alarm 

signals are sometimes referred to as auditory icons in these studies).  However, it is clear from 

the studies presented here that the advantage of concrete sounds over abstract tones is not just 

a function of the easier mapping of signal-referent relationships found for concrete alarms, but 

also of the degree of acoustic variability within the set of sounds.  This is an important finding 

and one which has both experimental and practical application.  In experimentation, our finding 

suggests that in any future comparisons of the learnability of contrasting alarm signal sets, care 

should be taken to control for, or systematically manipulate, the amount of acoustic variability 

within sets so that the effects of this variability is either eliminated or known.  From a practical 

viewpoint, it is important to understand the cumulative nature of these effects when designing 

new alarm sets.  A set of concrete alarm signals which all sound fairly similar to one another will 

not perform better than a set of abstract signals with considerable acoustic variation.  By the 

same token, the learnability of a set of abstract alarms can be improved by increasing the 

acoustic variability of the set. 

Why are alarm concreteness and acoustic similarity so important in determining the 

interpretation and learning of alarm signal sets?  Obtaining ratings of the relatedness of all 

possible alarm signal-meaning pairs, both correct and incorrect, helps to explain these findings.  

When participants were able to use their prior knowledge of sounds they had encountered 

previously (because the sounds are real-world, everyday sounds) they were able to make 

effective semantic mappings between the alarm signal and its meaning (c.f. Figure 1(b) and 1(d) 
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and Figure 3(b) and (d); Frank, Rudy, Levy & O’Reilly, 2005; Greene, Spellman, Dusek, 

Eichenbaum & Levy, 2001; Smith & Squire, 2005; Kumaran, 2013). This mapping using prior 

knowledge in order to facilitate understanding is well known in the literature on recall and prose 

comprehension (Bransford & Johnson, 1972; Kumaran et al., 2009; Mandler, 1984; McClelland 

et al., 1995; Schank & Abelson, 1977; Tse et al., 2007) and there is also existing evidence that 

this is the case for auditory alarms and information sounds (Gaver, 1989; Isherwood & 

McKeown, 2017; Stephan et al., 2006).  This ability to draw on rich mental models of the real 

world in order to intuit possible meanings in new stimuli is one that has been utilized widely in 

designing visual icons for some considerable time (Smith, Irby, Kimball, Verplank & Harslem, 

1982) and relies not merely on naming recognizing objects visually or auditorily, but on drawing 

upon the rich real-world understanding, as well as the axioms and heuristics we naturally have 

relating to those things.  There is also growing evidence from the neuroscientific literature that 

environmental sounds are interpreted utilizing brain areas designed to solicit initial sound 

identification and interpretation in a way that is much less likely to be possible with the 

collections of tones used in abstract alarm signals (Griffiths & Warren, 2002; Lewis et al., 2004; 

Sharda & Singh, 2012; Tomasino et al., 2015).   

Efficacy of semantic mapping from alarm signal to referent was also aided when the alarm 

signals sounded different to one another in the set and could be easily distinguished (c.f. Figure 

1(a) and 1(c)).  Given the musicality, or musical training, needed to distinguish alarm signals in 

sets employing the current alarm standard (Sanderson et al., 2006; Wee & Sanderson, 2008), it 

is not surprising that if sounds cannot be distinguished from one another initially then they are 

unlikely to result in effective mapping between the sound and its meaning.  This is particularly 

likely to be compounded in everyday environments where the alarm signal is simply one of 

many others that must be interpreted.  What is remarkable is that so little attention has been 

given to date to considering the multiple mappings created across and between sounds in alarm 

signal sets to allow users to create more effective mental models.   
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Although research examining the contingency of eye movements visually in hospital 

theatres and other settings is growing rapidly (e.g., Kogkas, Darzi & Mylonas, 2017; Kodappully 

et al., 2016; Koh, Park, Wickens, Ong & Chia, 2011; Marquard et al.., 2011; Schulz-Stubner, 

Jungk, Kunitz & Rossaint, 2002), little attention has been given to the factors affecting how 

attention might best be directed to the equipment associated with alarm signals (but see 

Stevenson et al., 2013).  What little evidence there is suggests that participants’ mental 

framework of the alarm set combined with their mental model of the context in which the alarms 

are used guide eye tracking and predict performance when using alarms (Burtscher, Kolbe, 

Wacker & Manser, 2011).  In Experiment 2 the efficacy of participants’ scan paths was 

examined as they learned the acoustic-visual mappings between alarm signals and medical 

devices.   The way in which alarm signals could direct, or misdirect, visual attention was also 

evident.  When alarm signals were difficult to distinguish from one another and the equipment 

was also in close visual proximity in the operating theatre scene (oxygen, temperature, 

cardiovascular and ventilation checks), then most confusion of meaning resulted (see Tables 3 

and 6), and the number of fixation prior to fixating on the appropriate piece of equipment 

increased.  This suggests that mental frameworks, if effective, were driving participants’ 

scanning behavior. While a similar result might have been obtained for eye-movement data 

using the screen set-up in Experiment 1 (where we might have looked at the scanning patterns 

in relation to the words on the screen rather than the equipment used in Experiment 2) the 

finding that the data was conflated as a function of the physical proximity of the items of 

equipment provides an additional point of interest in our data. In Experiment 1 the words were 

evenly spaced across the screen so would not have been conducive to such a finding.  

One of the key findings in this study is that performance across the two studies was very 

similar, despite the somewhat different paradigms. Of particular note is that in Experiment 2 

participants were only given the names of the functions of the alarm signals at the beginning, 

and at the end of the fifth and ninth trial. This reduces the likelihood that the results of 
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Experiment 1 and other experiments in this program (e.g. Edworthy et al., 2017) are the result of 

purely semantic mapping between the auditory icons and the words which represent them (for 

example the cardiovascular alarm signal to the word ‘cardiovascular’).  It shows that alarm 

signals which are easier to learn and distinguish make it easier to locate objects in 2D space. 

The additional cues available in these richly harmonic sounds also mean that they are easier to 

locate in 3D space (Edworthy et al., 2017).   

Practical Application 

Previous studies have demonstrated that the alarm signals being developed for the 

update of IEC 60601-1-8 are easier to learn and to localize when compared with most other 

alarm signals (for learning) and less harmonically rich alarm signals (Edworthy et al, 2017; 

Edworthy, Reid, Peel, Lock, Newbury, Foster, & Farrington, 2018). The study extends and 

reinforces the superiority of these alarms in two ways:  

(i) By demonstrating that their efficacy is a consequence of both the concreteness of the 

individual alarm signals and the acoustic variability of the set as demonstrated by a 

factorial study, demonstrating that both factors are important and contribute to the known 

better performance of auditory icons under these circumstances. 

(ii) Eye-movement data correlate with ease of learning, showing that alarm signals which are 

easier to learn also direct eye movements more directly in 2D space. While the 

experiment did not include localizability in 3D space, we already know that the proposed 

update alarm signals are easier to localize in 3D space because they are harmonically 

rich. Combining these two findings implies that the auditory icons are easier to localize for 

two different, likely additive, reasons: the sounds themselves direct the ears more 

accurately, and the easy learnability of the sound makes it easier to locate the sound 

through prior knowledge of its meaning.  

Petocz et al. (2008), on the basis of their analysis of auditory warning and alarm-meaning 

relations, recommended a procedure for designing and developing auditory warning systems 
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(see Figure 2, p.175).  Briefly, they outline the need to specify the auditory and visual 

characteristics of the operating system environment, to identify all warning alarms/messages 

that are required and order them in terms of importance.  Once this has been done a series of 

potential alarms can be designed or selected for each message with the best being selected 

from each of these possibilities by gathering data from potential users of the system regarding 

the associations they make to the alarms select along with relatedness ratings of alarm-

meaning (signal-referent strength).  

Part of the process of developing and testing the proposed new alarms is to generate 

performance metrics on learnabiity, localizability, audibility and other metrics which might be 

useful for those charged with developing or testing their own audible alarm systems, both for 

understanding what might be achievable in terms of alarm signal design and also to make 

comparison possible between proprietary alarms and those developed as part of this project. 

These metrics are based on the findings of the series of studies and publications which have 

been part of this project (Edworthy et al 2017: Edworthy et al, 2018; McNeer, Bodzin Horn, 

Bennett, Edworthy & Dudaryk, 2018).  

In all likelihood, no alarm signal set will be fixed and unchanging, there will always be 

change and development and therefore scope for new confusions to arise between alarm 

signals.  We therefore recommend the following as a practical way of assessing the efficacy of 

individual alarms within a set and the extent and nature of confusions arising within a set.  Alarm 

signal designers should ensure that:- 

(a) Sounds are easily discriminable from one another.  Careful consideration should be 

given to how similarity and difference are achieved within a set.  There will be some 

situations which require alarm signals to sound similar, and others where they should 

sound different, and this will influence the learnability of the whole set. 

(b) Sounds utilize real world or other existing metaphors known to the users (i.e. are 

concrete) to allow the inference of meaning. 
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Once a potential set of alarms has been designed, they should be evaluated by: 

(c) Examining how accurately potential users can identify all the potential alarm signal-

meaning pairs within the set and asking users to rate their relatedness. 

(d) The data collected can be used to identify hard-to-identify alarm signals and the extent 

and nature of confusion between items in the set (see Tables 3 and 6).   

This procedure is not dissimilar to the comprehensibility testing used to establish international 

standards visual symbols and icons (see IEC 11581-10: 2010). 

Limitations and Future Directions 

Although it is clear that both clinical and non-clinical participants have difficulty learning  

alarms designed using the guidelines from the existing standard (c.f. Lacherez et al., 2007, with 

Sanderson et al., 2006, and Williams & Beatty, 2005), it would be useful to replicate our findings 

using clinical populations.  In a similar vein, Experiment 2 would ideally have been conducted in 

an operating theatre with both trainee and experienced anesthetists since they have primary 

responsibility for monitoring and dealing with alarms in theatre (along subsequent eye tracking 

of those with other theatre roles such as nurses and surgeons).  Such an experiment would 

include more careful consideration of the alarm signal-equipment mappings to ensure that they 

were accurate (rather than simply plausible as was the case here) as well as consideration of 

the likely timeline during which alarms might be most likely for different surgical procedures.  

Aside from the ethical issues of conducting such a study in the UK, the mobile eye tracking 

systems currently in use are only now gaining sufficiently reliable resolution to examine fixations 

on items which are in close proximity (i.e., for the alarm signals associated with checks on 

temperature, oxygen, cardiovascular function and ventilation in Figure 2).  This was important 

given that spatial proximity and well as acoustic similarity appeared to be important in 

determining confusability between alarms.  In addition, the interplay between spatial proximity 

and acoustic similarity is only suggested by our data and needs further investigation. 
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Our aim was not to examine alarm fatigue but there is clearly further work to be done in 

examining the use of novel and distinguishable alarm signals in context.  There is a need to 

create appropriate ‘sound landscapes’, or soundscapes, that fit well with their context of use and 

with users’ existing mental models.  We would argue that alarm signal sets may be best thought 

of as ‘sound events … sequences of closely grouped and temporally related environmental 

sounds that tell a story’ (Marcell et al., 2007, p.561).  Creating appropriate soundscapes using 

groups of, albeit, artificially created sounds will effectively inform users as events unfold.  As 

everyday users of language and environmental sound it should be possible to create sets of 

sounds which may be as superficially disparate as the sounds of frogs croaking, a tent zipping, 

and yawning associated with night-time camping but, by being relevant, the sounds will allow us 

to understand the nature of the whole sound event and act upon it ‘achieving the greatest 

possible cognitive effect for the smallest possible processing effort’ (Sperber & Wilson, 1986).    

Future work should consider theoretical development and testing which would bring 

together these cognitive and psycholinguistic approaches with others dealing with learning and 

attention allocation in human factors.   The SEEV model may be a good candidate to create 

effective cross-talk between these two domains (Wickens, Hollands, Banbury & Parasuraman, 

2016).  Although it is currently used primarily as a model of dynamic visual attention, it relies on 

probabilistic use of mental models in a way not dissimilar to that envisaged by Sperber & Wilson 

(1986).  In  the SEEV model user expectancy is seen as an “accurate mental model of the 

statistical properties of the environment, acquired through experience” (Koh, Park, Wickens, 

Ong & Chai, 2011, p.235) and mental models also drive the perceived value of an event in a 

given situation.  The present research suggests that effort involved in learning alarms of this 

nature is considerably less for concrete different alarm signals than for abstract similar alarm 

signals and that learning of appropriate semantic mappings builds rapidly as effective mental 

models are formed to enable interpretation of alarms.  Furthermore, participants’ fixation 

patterns in Experiment 2 appeared to be determined by the mental model they were able to 
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build; those learning concrete different alarm signals quickly developed more effective fixation 

patterns, allocating visual attention more effectively.  Research is needed to examine the way in 

which mental models may change dynamically in complex contexts with multiple competing 

demands and this is where the SEEV model may prove particularly useful as a theoretical 

framework for future research.   
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Footnote 

1. ‘Meaning’ is used here rather than ‘function’ to denote the importance of learning meaning in 

context rather than rote learning of alarm signal-function rote associations. 

2. For the sake of brevity, only the omnibus statistics for the factor are given and the contrasts 

between all blocks are not listed. 
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Appendix 1: Characteristics of alarm signals in each set 

  

 Nature of the Alarm Signals 

Alarm Functions2 Concrete Alarm Sets 

 (a) Concrete Different Alarms (b) Concrete Similar Alarms 

General Very fast version of the general sound indicated in 

Appendix 1(d), the current general IEC alarm. The 

temporal spacing between the third and the fourth 

pulse is proportionately longer 

Rushing water sound, similar to white noise 

Power down A fan slowing down from full action to off, dropping 

an octave in pitch 

Two pulses of a sink plunger 

Cardiovascular ‘Lub-dup’ effect generated by three two-pulse units 

of a fist knocking on a flexible, hard surface 

Two pulses of pounding on water, akin to an object hitting 

water 

Perfusion Two bursts of bubbling water Short bubbling sounds 

Drug Administration Rattling of a small pill box Continual water dripping in a cave 

Oxygenation Four pulses of an aerosol on-off action One single ocean wave, with a shaped onset and offset (so 

louder in the middle)  

Ventilation Single, slowed down breathing out action Wind blowing through a tunnel, increasing in intensity 
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Temperature Frying on a hob The sound of a fire burning 

 Abstract Alarm Sets 

 (c) Abstract Different Alarms (d) Abstract Similar Alarms 

General 7-pulse unit with a distinctive rhythm and pitch 

pattern. The middle three pulses played in quicker 

succession that the first two and last two. Rise in 

pitch in the middle of the burst 

A burst of three regularly spaced pulses (each pulse ranging 

between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern and all at the same 

pitch: c c c – c c 

Power down Five short pulses of a car horn sound, with a raised 

pitch on the fourth pulse 

A burst of three regularly spaced pulses (each pulse ranging 

between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern, with the first and fourth 

pulses an octave higher: C c c – C c 

Cardiovascular Frequency-modulated tone with pitch sweep (rising 

in pitch by a tone from start to end)  

A burst of three regularly spaced pulses (each pulse ranging 

between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern: c e g – g C 

Perfusion High pitched, very short pulse repeated twenty-

eight times 

A burst of three regularly spaced pulses (each pulse ranging 

between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern: c f# c – c f# 

Drug Administration Low-pitched buzzer A burst of three regularly spaced pulses (each pulse ranging 

between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern: C d g – C d 

Oxygenation Single-pitched continuous tone A burst of three regularly spaced pulses (each pulse ranging 

between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern: C b a – g f 

Ventilation Three bursts of a low-pitched double-pulse unit A burst of three regularly spaced pulses (each pulse ranging 
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between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern: c a f – a f 

Temperature Two pulses of a major triad chord A burst of three regularly spaced pulses (each pulse ranging 

between 100ms – 300ms), followed by a burst of two regularly 

spaced pulses in the following pattern: C d e – f g 
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