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Aida Ximena Merchan Otalora

Drugs in Oral Fluid — An evaluation of the release of cocaine and cocaine derivatives
from oral drug depots into oral fluid

ABSTRACT

Oral fluid (OF) drug testing has been implemented in several countries including the
UK for the screening and confirmatory analysis of drugs of abuse (Wille et al. 2009, Chu
et al. 2012, Vindenes et al. 2012, UK Goverment 2014). OF testing offers advantages of
being non-invasive, less infectious, less likely of being adulterated and simplified
collection of samples compared to other matrices such as blood. However, there are still
some concerns about the interpretation of the results from OF drug testing related to
variation in the concentration of drugs and/or metabolites in OF in comparison with
blood. The considerably higher concentrations of some drugs in OF than their respective
concentrations in blood could be explained by the release of drugs from oral drug depots
into OF (Huestis and Cone 2004).

The work described in this thesis aimed at enhancing the existing knowledge on the
release of cocaine and cocaine related compounds from oral drug depots into OF and
evaluating alternative techniques for the detection of drugs in OF and biological tissues.
To accomplish this, the kinetics of release of cocaine and cocaine derivatives were
investigated using an in-vivo and an in-vitro model. The in-vivo study evaluated the
release of cocaine and derivatives from drug depots into OF by measuring the
concentration of these analytes in collected OF samples from human participants that
ingested or swirled a cup of coca tea. The in-vitro model evaluated the release using an
adapted test system for studying the transport of drugs across biological membranes,
Franz diffusion cells, applied on porcine oral tissue and synthetic oral fluid. Classical and
alternative techniques such as liquid chromatography and Raman spectroscopy were
evaluated for the analysis of cocaine and cocaine derivatives in OF and porcine oral
tissue.

The research offered new insights into the present knowledge on the release of cocaine
and derivatives from drug depots into OF and presented an alternative non-invasive
technique for analysing cocaine in OF and tissues. The findings of the research have also
contributed to the interpretation of results from OF drug testing. The in-vivo release of
drugs from drug depots showed differences in release profiles and windows of detection
for cocaine, BZE, EME and AEME following the consumption of coca tea. Windows of
detection varied between analytes and indicated that the concentration of drugs in OF was
the contribution of the release of drugs from drug depots and the systemic circulation.
The in-vitro release of drugs indicated that analytes were released into OF at different
rates depending on the physicochemical characteristics of the molecules. Alternative
techniques for analysing cocaine in biological matrices included the use of Raman
microscopy which could detect cocaine at nanogram levels. The present research is
beneficial to regulatory agencies in regard to the analysis of cocaine, the windows of
detection, the false positives obtained following ingestion of coca tea and alternative
techniques for on-side OF drug testing.
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Chapter 1

GENERAL INTRODUCTION



1.1 INTRODUCTION

Oral fluid (OF) drug testing has been applied to workplace drug-testing programs,
driving under the influence of drugs (DUID), drug-treatment settings and the prison
service to detect drugs of abuse (Drummer 2006, Chiappin et al. 2007, Bosker and Huestis
2009, Osselton 2012, Vindenes et al. 2012). Drugs in OF have similar detection times to
those found in blood, for instance, drug detection in OF could indicate recent use and the

effect that the drug might have on the donor at the time the OF sample was collected.

OF offers a convenient and practical matrix for the screening and confirmatory
analysis of drugs of abuse (Mali et al. 2011). The preference in use of OF over traditional
matrices for drug testing (such as urine or blood) relies on its numerous advantages, which
include: (1) Simplified collection of samples, as OF can be collected by non-trained
personnel including the donor. (2) It is a non-invasive procedure and acquisition of
samples is painless. (3) Oral secretion is considered to be less infectious than blood
samples, e.g. in the case of HIV-positive samples, where manipulation of OF samples is
considerably safer. (4) OF samples are less likely to be adulterated or substituted. (5)
Transport and storage conditions of OF samples are less strict compared with blood
samples (preservatives, temperature and time of storage). (6) There is a decrease in the
cost of transport, storage and trained personnel required to supervise and collect the
samples when OF is used in comparison with other matrices such as blood and urine.
(Kato et al. 1993, Moore and Lewis 2003, Toennes et al. 2005, Drummer 2006, Bosker

and Huestis 2009).

Although OF offers a number of advantages over other matrices, OF drug testing has

its limitations with regard to the high concentration of drugs that can be found in collected



samples, which are reflected in large variations of OF to blood ratios (also described as
saliva to plasma ratios S/P). This variation makes it difficult to interpret the results from
OF testing and currently impossible to assess impairment from this matrix (Wolff et al.
2017). Considerably higher concentrations of drugs in OF than their respective
concentrations in the circulating blood have been reported by various authors (Osselton
2002, Huestis and Cone 2004, Bosker and Huestis 2009, Gjerde et al. 2010, Vindenes et
al. 2012). Originally excretion of drugs into OF was supported by the hypothesis of drugs
passing from the blood to the OF based on the drug’s pKa as stated by Henderson-
Hasselbalch equation (Haeckel and Hénecke 1996, Kidwell et al. 1998, Spiehler 2011).
However, the increased drug concentrations found in OF samples are not entirely

explained by this hypothesis.

Huestis and Cone (2004) suggested that drugs can be classified into those that enter
OF by passive diffusion from the systemic circulation and those that enter OF from depots
formed in mouth tissues. Drugs absorbed in the oral cavity should be predominately
hydrophobic, but they also need to have some hydrophilicity in order to be excreted into
the systemic circulation or into the OF. If the drug is exceptionally hydrophobic, there
would be a tendency for the drug to be retained in the hydrophobic components of the
mucosal tissue (cell membranes) and not reach the OF or systemic circulation (Pather et
al. 2008). Drugs that are found at higher concentrations than expected from their S/P ratio
(theoretical value based on the Henderson-Hasselbach equation) would generally be
excreted into OF from depots in the oral tissues (Spiehler and Cooper 2008). Furthermore,
drugs that are orally abused through smoking (crack cocaine), sublingual absorption
(fentanyl or buprenorphine), consumed as liquid preparation (methadone, morphine or

coca tea) or nasal insufflation (cocaine) could create substantial oral tissue depots and



therefore have elevated S/P ratios following administration (Huestis and Cone 2004,

Spiehler and Cooper 2008).

Studies on the kinetics of drugs in oral tissue and OF could contribute to the
understanding of the release of drug from drug depots into OF and its potential effect on
OF drug testing (Huestis and Cone 2004, Drummer 2006, Spiehler and Cooper 2008,
Reichardt 2014). The experiments undertaken in this PhD thesis were conducted to

increase our understanding of the release of drugs from oral drug depots into OF.

As previously mention, a drug needs to have specific physicochemical characteristics
in order to diffuse and cross the buccal mucosa (Madhav et al. 2009, Steffansen et al.
2010, Bartlett and van der Voort Maarschalk 2012). Drugs that have predominant
lipophilicity such as cocaine have been detected in OF at considerably higher
concentrations than their respective concentrations in the circulating blood. These
lipophilic drugs are more likely to form drug depots in the oral cavity (Pather et al. 2008,
Reichardt 2014), which could consequently increase their concentration in OF (Spiehler
and Cooper 2008). Cocaine is one of the most abused drugs worldwide (Cognard et al.
2006, UNODC 2017) and the second most widely used drug of abuse in the UK and
Europe (EMCDDA 2017). Thus, cocaine was selected as the principal compound for the

study of the release of drugs from drug depots into OF for this research.

1.2 COCAINE

Cocaine also named benzoyl-methyl-ecgonine and coca base are consumed as
recreational drug and are natural products extracted from the coca plant (Penny et al.

2009, Biondich and Joslin 2015). The coca plant is a South American plant from the



family Erythroxylaceae original of the Andes area. This plant genus has approximately
260 species, from which predominant species are the Erythroxylum coca and

Erythroxylum novogratense (Plowman 1979, Biondich and Joslin 2015).

Studies on the coca plant have demonstrated that coca leaves from Bolivia, Colombia
and Peru contain higher amounts of cocaine compared with other coca leaves from
different countries (Moore et al. 1994, Jenkins et al. 1996, Casale et al. 2014). Cocaine
concentrations by weight of coca leaf has been reported at 0.5-1.5% (Jenkins et al. 1996,
Penny et al. 2009). In order to extract some of the active principles and obtain certain
effects, the coca leaves are chewed, drunk as an infusion/tea or chemically extracted to
obtain cocaine. Coca leaves are traditionally consumed in the Andes, to alleviate hunger,

thirst, tiredness and to lessen the symptomatic relief of acute mountain sickness (AMS).

On the street, cocaine can be found as a coca paste, hydrochloride salt (cocaine
hydrochloride) or as a base (cocaine base or crack-cocaine). Coca paste is the raw product
resulting from the first process of extraction of the cocaine from the coca leaves. It is
obtained from the maceration of coca leaves with sulfuric acid and other chemical
products, e.g. alkaline organic solvents and ammonia. The result of this extraction
contains approximately 40-85% of cocaine sulphate and is subsequently used in the
elaboration of cocaine hydrochloride. The cocaine hydrochloride is the free base of
cocaine and is commonly administered via nasal insufflation or intravenously. The
cocaine base (crack-cocaine) is the product of mixing cocaine hydrochloride with a basic
solution such as ammonia. When crack-cocaine is dissolved in ether, it can be volatised
and subsequently inhaled by heating the solution at high temperatures (80 °C) using

propane lighters. Crack-cocaine is commonly presented as solid blocks (crystals) of 125-



300 mg with colour varying from yellow to pale rose or white and is administered via

smoke (Egred and Davis 2005).

1.2.1 Cocaine Chemical Properties and Mechanism of Action

Cocaine (Figure 1.1) is a white crystalline compound with a bitter taste. It is soluble
in water and reacts with acids to form salts, e.g. cocaine hydrochloride. Cocaine forms
part of the tropane alkaloid group, having tropane as a fundamental core. Albert Niemann
was the first person that reported the extraction of cocaine from coca leaves in 1859.
Although cocaine can also be synthesised from the reaction of Ecgonine (ECG) and
benzoic acid, as ECG forms esters when reacting with alcohols and acids through its OH
group (Figure 1.1). The cyclic structure of ECG allows COC to generate isomers, from
which L-cocaine is the most important alkaloid of coca leaf. Cocaine (molecular weight
of 303.35 g/mol) is a weak base (pKa = 8.6), highly protein bond (approximately 90%)

with a melting point of 98°C (Moffat et al. 2011).

HaC Ha
\N o o] OH
A\
OH CH;
o ot
Ecgonine Benzoic acid Cocaine

Figure 1.1 Synthesis of cocaine from ecgonine and benzoic acid.

Cocaine is a highly addictive stimulant with high toxicity (Gjerde et al. 2014). Cocaine
passes through the blood-brain barrier (BBB) to reach the central nervous system (CNS),
where it acts as a sympathomimetic agent, inhibiting specifically the monoamine

transporters of the presynaptic membrane. In this way, the reuptake (type I) of certain



neurotransmitters such as dopamine, noradrenaline, serotonin and norepinephrine is
inhibited, facilitating their accumulation in the synaptic cleft. The increased
bioavailability of dopamine (the result of the inhibition of the reuptake type 1) produces
the feeling of euphoria and dependency when cocaine is consumed. The excess of
noradrenaline generated by the consumption of cocaine is responsible for the majority of
pharmacological effects and the acute complications (increased blood pressure, pupil
dilatation, sudation and tremor). The inhibition of the reuptake of serotonin produces
changes in its bioavailability, which is reflected in the decrease of 3-methoxy-4-
hydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA) metabolites.
These processes affect the catecholaminergic and serotonergic neurotransmission, which
are the basis of the mechanism of action of dependency. Norepinephrine, on the other
hand, is the responsible for the changes in the vascular system: vasoconstriction and flow
rate decrease. Furthermore, cocaine consumption leads to the increase in the
concentration of excitatory amino acids (glutamate), which is responsible for
hyperthermia and convulsions (Lizasoain et al. 2002, Ministerio de Sanidad y Consumo

2007).

1.2.2 Oral Administration of Cocaine

Cocaine from the coca leaves can be orally administered by chewing coca leaves or
drinking the infusion of coca leaves (Biondich and Joslin 2015). Cocaine (cocaine
hydrochloride), coca base and coca paste can be administered by different routes
including drinking, snorting or smoked (Caballero and Alarcon 2000). Cone (2012)
reported that the principal rout of exposure of cocaine is via smoke (63%) followed by

nasal insufflation (32%) and intravenous injection (3%). Coca base (crack-cocaine) or



coca paste can also be administered by smoking or mixing the coca paste or coca base

with other substances such as tobacco or cannabis.

Although the oral cavity is principally exposed to cocaine when is orally administered,
nasal insufflation of cocaine hydrochloride or inhalation of the vapours produced by the
burning of “crack” can also contaminate the oral cavity (Spiehler and Cooper 2008). The
particles of cocaine present in the vapours or gases can pass through the nasal turbinate
in the nasal cavity with help of the cilia (hair-like structures), which line the mucous
membrane of the nasal cavity. The cilia move the particles trapped in the mucous and

drain them into the oral cavity (Beule 2010).

1.2.3 Pharmacokinetics of Cocaine

1.2.3.1 Absorption

The absorption of cocaine following the insufflation of cocaine hydrochloride and the
smoking of cocaine base was reported to be rapid, as mean plasma concentrations were
obtained immediately after administration (Cone et al. 1994). Jenkins et al. (2002)
confirmed the rapid absorption of cocaine by reporting mean peak plasma concentrations
two minutes after smoking 40 mg of cocaine base. Zhang et al. (2012) reported that
cocaine is well absorbed following nasal insufflation and that its absorption could be very
rapid as psychostimulatory CNS effects are rapidly produced. Similarly, pharmacokinetic
studies have demonstrated that oral cocaine is well absorbed from the gastrointestinal
tract as cocaine is detected in plasma within 30 minutes of oral administration (Wilkinson

et al. 1980).



Comparable results were reported by Coe et al (2018), who reported that after oral
administration cocaine was rapidly absorbed and detected in plasma within 30 minutes.
Coe also reported the oral bioavailability of cocaine (fraction of oral cocaine that reaches
the systemic circulation) at 0.32 (100 mg oral dose) and 0.45 (200 mg oral dose) with
range 0.15-0.93. These values were similar to those reported by other authors (0.2-0.6)
that retrospectively calculated the bioavailability of cocaine from data across different
groups of participants who received acute doses following oral or intravenous

administration (Mayersohn and Perrier 1978, Wilkinson et al. 1980).

1.2.3.2 Distribution of cocaine in tissue

Several reports have demonstrated that cocaine accumulates in the body and transports
across biological tissues (e.g. liver and muscle from human or pig) (Chow et al. 1985,
Spiehler and Reed 1985, Poklis et al. 1987, Jeffcoat et al. 1989, Laizure et al. 2003,
Othman et al. 2007, Moffat et al. 2011, Rees 2011). The volume of distribution (Vq) for
cocaine were reported to range between 1 and 3 L/Kg (Moffat et al. 2011). However, little
has been reported concerning the accumulation and permeability of cocaine into tissues
with non-keratinised epithelia such as nasal/buccal mucosa or epithelial cell models (Bhat
etal. 2001, Zhang et al. 2012, Clemons et al. 2014). Zhang et al. (2012) reported that the
transport across nasal mucosa (ranged 0.2-1.0 pg/min/cm?) was similar to the olfactory
mucosa (range 0.2-0.9 pg/min/cm?) for concentrations ranging 1-5 mM and that

permeability across these tissues was dose-dependent.

Similar studies using epithelial cells (colonic T-84 monolayers) showed that cocaine
transport increased linearly across these cells with the increase in cocaine concentration
(100-800 ng) and that this relation did not change when the time of exposure increased

from 30 to 60 minutes (Bhat et al. 2001). The rate of transport (apparent permeability
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Papp) of cocaine across an artificial membrane of poly(vinylidene-fluoride) PVDF coated
with a lipid solution (method used to mimic biological membranes such as BBB or oral

mucosa) was reported at 3.66x10-* cm/s (Clemons et al. 2014).

Different concentrations of cocaine were reported to accumulate in body tissues after
administration of lethal dosages of cocaine suggesting that the transport of cocaine across
tissues 1s more rapid in tissues with high blood flow, e.g. heart, liver and brain than in
tissues with less blood supply (Poklis et al. 1987, Furnari et al. 2002, Rees 2011,
Brajkovi¢ et al. 2016). Poklis et al. 1987 reported high concentrations of cocaine from
five related fatalities (five individuals) in kidney, brain, skeletal muscle and spleen
(kidney: 39.4 ng/mL, brain: 35.3 ng/mL, skeletal muscle: 28.0 ng/mL, spleen: 26.0
ng/mL) than in adipose tissue, heart and liver (2.4 ng/mL, 5.7 ng/mL and 10.0 ng/mL
respectively). Furnari et al. (2002) reported higher concentration of cocaine (based on the
analysis of one individual) in bile than, brain, cardiac muscle and thigh muscle, with
higher concentration of cocaine in the bile than in the cardiac muscle and thigh muscle
(Furnari et al. 2002). Brajkovi¢ et al. (2016) reported high concentrations of cocaine
(based on one participant) in kidney and liver (21.2-24.9 ug/mL) in comparison with brain

(18.9 mg/Kg), heart (9.2 pg/mL), intestine (6.1 pg/mL) and stomach (4.6 pg/mL).

1.2.3.3 Metabolism

The metabolism of cocaine is shown in Figure 1.2. Cocaine is metabolised through
four pathways: (1) the enzymatic hydrolysis into ecgonine methyl ester (EME) and
benzoylecgonine (BZE), which are pharmacologically inactive. BZE is formed from
spontaneous hydrolysis by the hepatic carboxylesterase. The carboxylesterase hCE-1
causes the hydrolysis of cocaine to BZE by demethylation (Fleming et al. 1990, Pindel et
al. 1997). (2) the hydrolysis of the benzoyl group by the action of hepatic and plasmatic

10



esterases (carboxylesterase hCE-2) to form EME (Pindel et al. 1997). (3) the production
of EME via serum butyrylcholineterase (BchE) and (iv) the demethylation of cocaine to
form norcocaine (NC) by the action of cytochrome (CYP) 450. NC is further metabolised
by the CYP-450 enzyme to form N-hydroxynorcocaine. Further oxidative metabolism
produce minor metabolites: m-hydroxycocaine, p-ydroxycocaine n-benzoylecgonine, m-

hydroxybenzoylecgonine and p-hydroxybenzoylecgonine (Coe et al. 2018).

Cocaine can spontaneously hydrolyse into BZE and EME in-vitro and in-vivo at
physiological temperature and pH at a rate of 4.8% (in vitro) of total cocaine per hour

(Baselt et al. 1993, Warner and Norman 2000).

Other cocaine derivatives such as anhydroecgonine methyl ester (AEME) and
cocaethylene (CE) are formed after administration of cocaine or crack cocaine. AEME is
formed after crack cocaine consumption and is product of the thermal degradation of
cocaine (Kintz et al. 1997). AEME is further metabolised (enzymatic hydrolysis) into
anhydroecgonine. In the presence of alcohol, carboxylesterase (hCE1) reacts with cocaine
to form CE via in vivo transesterification, where the methyl ester group is replaced with
an ethyl group (Lewis et al. 2004). CE is pharmacologically active, and its activity is
similar to that of cocaine (Laizure et al. 2003). It has been reported that concentrations of
CE are considerably higher when alcohol has previously been consumed, thus increasing

the risk of overdoses. (Laizure et al. 2003, Ministerio de Sanidad y Consumo 2007).
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1.2.3.4 Excretion

Cocaine is excreted from the body by different routes such as urine, sweat and OF
(Jufer et al. 2000, 2006, Allen 2011). Cone et al. (1998) reported that 39% (intravenous),
30% (insufflation) and 16% (smoking) of a dose of cocaine was excreted in the urine
within 24 hours. Cocaine and BZE were detected in sweat after two to four hours and up
to 24 hours following intravenous administration of 2.1 mg/Kg cocaine hydrochloride
(Kacinko et al. 2005). Cocaine and its major metabolite (BZE) were detected in OF above
a concentration of 8 ng/mL (cut-off level) for up to four to eight hours after consumption
of 25 mg (intravenous), 32 mg (intranasal) or 42 mg (smoked) of cocaine (Anizan and
Huestis 2014). The cut-off concentration refers to the minimum concentration at which a
drug (or its metabolites) must be present in a sample for the result to be considered
positive (Allen 2011, EWDTS 2015, Alere Toxicology 2018). In OF the elimination half-
life (t1/2) of cocaine was reported as 30 minutes following intravenous administration of

15 and 40 mg cocaine (Anizan and Huestis 2014).

A different study reported that after increasing the dose from 75 mg to 150 mg cocaine
(subcutaneous administration) the time of last detection of cocaine and BZE increased
from 11.5 to 32 hours for cocaine and from 17 to 47 hours for BZE respectively (cut-off
levels of 2.5 ng/mL for cocaine and BZE) (Scheidweiler et al. 2010). These results
indicated that the time at which a drug can be detected above its cut-off level (i.e.
detection window) changes with the dosage and route of administration. The increase on
detection window of cocaine in OF was also reported by different authors after giving a
maximum cumulative dose of 2 g (5 doses of 25 mg per day over a period of 16 days) to
human volunteers. The detection times in this study increased up to 21 and 50 hours for

cocaine and BZE respectively (8 ng/mL cut-off) (Strano-Rossi et al. 2010). Jufer et al.
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(2006) reported mean detection times of 85 and 93 hours for cocaine and BZE

respectively, following chronic cocaine administration.

1.3 ORAL FLUID

The term OF is used to describe the fluid from the oral cavity that can be sampled,
which contains a mixture of saliva and other constituents present in the mouth including
(1) microbial organisms, e.g. oral bacteria, viruses, fungi; (2) cells from the oral mucosa;
(3) blood and blood derivatives; (4) extrinsic substances derived from food; (5) other
fluids, e.g. bronchial and nasal secretions (Table 1.1) (Kaufman and Lamster 2002,

Spiehler and Cooper 2008).

Table 1.1 Components of oral fluid (Osselton 2012).

Salivary Extrinsic

Glands Microbes Cells substances Blood Other fluids
Water Bacteria Epithelial Food Mlcrp ) Gingival fluid
bleeding
. . Bronchial
Proteins Viruses From food Toothpaste Serum
mucus
Electrolytes Fungi Tobacco Cells Nasal mucus

Other organics - - - - -

The secretion of saliva is primarily controlled by three pairs of salivary glands that are
located in mouth and throat: The parotid gland (glandular parotis), sublingual gland
(glandular sublingualis) and submandibular gland (glandular submandibularis) (Hand

and Frank 2014). An illustration of the major salivary glands is shown in Figure 1.3.
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The Salivary Glands

Parotid duct

Parotid gland
Parotid gland

Sublingual ducts

V-
- Sublingual gland ——
\Submandibular duct //
Submandibular gland

Figure 1.3 Major salivary glands with ducts that produce saliva and excrete it in the oral cavity
(Biology dictionary 2019).

Saliva is also secreted by many minor salivary glands present in the oral cavity, e.g.
hard and soft palates, labia and tongue. Approximately 450 — 1000 minor salivary glands
are present in the oral cavity and are considered to have an exocrine function (Guzzo et
al. 2010). Minor salivary glands contribute to less than 10% of total saliva, whereas major
salivary glands are responsible for more than 90% of total saliva (Eliasson et al. 1996,
Yoshizawa et al. 2013). The parotid gland is the largest of the major salivary glands and
produces approximately 65% of the total saliva (Eliasson et al. 1996, Ferguson 1999,

Hand et al. 1999, Yoshizawa et al. 2013).

Human saliva is a hypotonic biological fluid with clear, heterogeneous and slightly
acidic characteristics (pH 6.0 — 7.0). It is comprised of water (99%), proteins (0.3%) and
inorganic substances such as electrolytes (0.2%) (Yoshizawa et al. 2013). Electrolytes
and proteins can be found at different concentrations in the saliva depending on the

velocity at which the saliva passes through the ducts (Figure 1.3). Thus, higher flow rates
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result in a reduced exchange of electrolytes. Changes in the content of analytes
(electrolytes and proteins) and volume of saliva can be influenced by the nervous system
and external factors such as (1) time of day, (2) gustatory and olfactory stimulus, (3)
mechanical stimulus, (4) pain, (5) pregnancy, (6) hormone changes such as the
menopause, (7) medications and (8) stress (Forde et al. 2006, Chiappin et al. 2007). Some
proteins have an essential role as antibacterial and antifungal agents (e.g. lysozyme,
lactoferrin, mucins), and some are important in the digestive process, e.g. a-amylase,

lipase, DNase and RNase (Aps and Martens 2005).

Functions of the saliva include aiding the processes of digestion, ingestion, tasting and
lubrication of oral tissues. Saliva also acts as a protective barrier against pathogenic
agents. On average, individual salivation can vary from 0.3 to 0.7 mL of saliva per minute
(Lenander-Lumikari et al. 1998, Ferguson 1999, Wu et al. 2008), thus producing
approximately 1.0 - 1.5 L per day (Yoshizawa et al. 2013). Buffering properties of saliva
rise with the high concentrations of bicarbonate in stimulated saliva. Under these
conditions, the parotid gland decreases the production of saliva significantly (sublingual
and submandibular glands are responsible for the production of saliva) resulting in a small
volume of saliva, which is more viscous, protein-rich and can stabilise the pH of the
surrounding saliva (Kaufman and Lamster 2002, Almstdhl and Wikstrom 2003).
Buffering capacity in unstimulated saliva is important for the lubrication of tissue within

the oral cavity (Aps and Martens 2005, Forde et al. 2006, Chiappin et al. 2007).
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Salivary glands are highly permeable and are enveloped by capillaries (Figure 1.4).
These capillaries allow free transport of substances such as electrolytes and proteins into
the secretory cells also called acinus cells (Guzzo et al. 2010). The primary function of
the acinus cells is the excretion of fluids including the saliva into the oral cavity through
the intercalated, striated and excretory ducts (Gémez de Ferraris and Campos 2002, Aps

and Martens 2005).

Saliva

Figure 1.4 Mechanism of transport of electrolytes and proteins from the blood into salivary
gland ducts. (a) Ultrafiltration, (b) active transport or passive diffusion, (c¢) simple filtration, (d)
transepithelial movement of water along NaCl gradient via chanel proteins, (e) creation of
hypotonic salivary solution via ductal Na® reabsorption, (f) acinal cell membrane, (g) cell
membrane pore, (h) intercellular space, (i) acinar cell (Forde et al. 2006, p.45). © Quintessence
Publishing Company Inc, Chicago.
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1.4 HISTOLOGY OF THE ORAL MUCOSA

OF testing is conducted by the collection of OF from the oral cavity (Wolff et al. 2013).
The lining of the oral cavity is the oral mucosa, the area of which (197 - 241 cm?) accounts
for approximately 80% of the total mouth cavity area, which includes the cheek and the
tongue as depicted in Figure 1.5 (Naumova et al. 2013). The remaining 20% of the oral
cavity correspond to the teeth. The primary role of the oral mucosa is to protect the
underlying tissue from mechanical damage and to allow or prevent the absorption and

excretion of exogenous substances such are drugs (Squier and Kremer 2001).
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Dorsum of the tongue A I\ Floor of mouth
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Figure 1.5 Mucosal regions in the oral cavity (Head and Neck Cancer Guide 2018). © Jill
Gregory, Head & Neck Cancer Guide.

The structure of the oral mucosa, which includes the cheek and tongue is composed of
a stratified epithelium which is separated from the underlying connective tissue (lamina
propria) by a basement membrane (~1-2 um thickness) (Nicolazzo and Finnin 2008). The
epithelium comprises tightly packed epithelial cells whereas the lamina propria consists
of fibroblasts, connective tissue, small blood vessels (capillaries), inflammatory cells
(macrophages) and extracellular matrix (ECM) that aids in the fast transportation and

clearance of absorbed molecules (Sonis 2004). In many regions (e.g. cheeks) a layer of
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connective tissue (containing the major blood vessels and nerves) separates the oral

mucosa from underlying bone or muscle as illustrated on the left side of Figure 1.6.
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Figure 1.6 Left: Components and layers of the oral mucosa. The stratified epithelium is
separated from the underlying connective tissue (lamina propria) by a basement membrane. The
lamina propria and submucosa contain small blood vessels, macrophages and extracellular matrix
(ECM) that aids in the transportation and clearance of absorbed molecules (Bhusnure et al. 2017,
p-120). Right: The epithelium can be keratinised or non-keratinised depending on the region of
the oral cavity (Vibhooti and Preeti 2018, p.2).

The epithelium of oral mucosa varies within regions in the oral cavity as shown in the
right side of Figure 1.6: (1) A non-keratinised epithelium in the lining mucosa, e.g. cheek
(comprising 60%). (2) A keratinised epithelium is found in the masticatory mucosa
(comprising 25% of the oral mucosa). (3) Both keratinised and non-keratinised regions
(specialised mucosa) are found in the dorsum of the tongue (comprising 15%) as shown
in Figure 1.5 (Squier 1991, Sohi et al. 2010). Keratinized epithelium refers to an outer
layer of skin which contains multiple layers of dead cells at the surface. In contrast, the

non-keratinized cells are nucleated and alive.

In the cheek and under the surface of the tongue, the non-keratinized human buccal

epithelium has 20-40 cell layers with thickness of 450-600 um (Nielsen 2002). The
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distinct layers of the non-keratinized human epithelium are (1) Mucus layer formed of
salivary layer of approximately 70 — 100 um. (2) Superficial layer: well defined flat cells
that comprises 20 — 30% of the epithelium. (3) Intermediate cell layer: flattened cells,
with thick plasma membrane and lipophilic intercellular substance excreted from the
membrane coating granules (MCG). (4) Prickle cell layer: large cells with occurrence of
MCG. (5) Basal cell layer: columnar cells anchored to the mechanical supportive basal
lamina by hemidesmosomes. (6) Basal lamina: which is approximately 1 pum thick and

separates the epithelium from the connective tissue (lamina propria) (Nicolazzo and

Finnin 2008).

In the dorsum of the tongue the keratinized epithelium is composed of distinct layers:
(1) stratum corneum: is the surface layer, formed of 10-25 rows of dead keratinocytes
embedded in a lipid matrix and has a thickness of 10 — 50 um. (2) stratum granulosum
formed of flattened cells containing keratohyalin granules. (3) Stratum spinosum
composed of several rows of larger spherical prickle cells. (4) The basal layer or stratum
basale formed of a layer of cuboidal cells adjacent to the basal lamina. Both basal and
stratum spinosum constitute 50 — 75 % of the thickness of the epithelium (Nicolazzo and

Finnin 2008).

1.5 TRANSPORT OF DRUGS ACROSS THE ORAL MUCOSA

Oral mucosal membranes act as an efficient semi-permeable barrier system allowing
diffusion of drugs, water, small molecules (electrolytes) from the systemic circulation or
muscle tissue into the OF and vice-versa. Factors such as the amount of drug, degree of
the drug's ionisation (pK.), pH, size of the drug molecule, relative lipid solubility,

mucosal contact time and vascularisation of the mucosal tissues controls the amount of
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drug absorbed into and transported across the oral mucosa into the systemic circulation

or OF (Madhav et al. 2009).

The different layers of the oral mucosa (hydrophilic mucus, keratinised layers if
applicable, densely packed epithelial cell layers, basement membrane and hydrophilic
connective tissue) place a barrier in the transport of drugs. It was observed that the top
epithelial layer of thickness 200 um is a major rate-limiting factor in transport kinetics of
drugs (Kulkarni et al. 2010, Sohi et al. 2010). The impact of the mucus and basement
layer in the transport of drugs across the oral mucosa is not well understood and may be
minor compared to the inherent barrier of the epithelium (Nicolazzo and Finnin 2008).
The transport of drugs within regions of the oral cavity varies significantly and is
inversely proportional to keratinisation and thickness of tissue, e.g. molecules are most
permeable in the buccal than the palate surfaces or the dorsum of the tongue (Figure 1.5).
The higher permeability in the buccal mucosa (cheek) has been attributed to the absence
of organised lipid lamellae in the intercellular spaces and the polar nature of its lipids
composition (such as polar phospholipids and cholesterol esters) compared with

keratinised epithelia (Nicolazzo and Finnin 2008).

The primary mechanism involved across the buccal mucosa is the paracellular route
(through the spaces between the cells) by passive diffusion (Fickian diffusion) in
accordance with the pH partition hypothesis (Zhang et al. 2002). Although, other
transcellular mechanisms can be involved by carrier-mediated diffusion, active transport
or others like endocytosis (Nicolazzo and Finnin 2008). For example, drugs such as
penicillin, hormones and steroids are actively excreted through the acinus cells and ducts
into the saliva (Spiehler and Cooper 2008). The passive diffusion is dependent on the
physicochemical properties of the molecule (diffusion coefficient and partition

coefficient). Hence, drugs require being: (1) lipophilic, (2) neutral and (3) protein free
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binding in order to pass through cellular membranes. Thus, only the non-binding fraction

of non-ionised drugs from the plasma is detected in OF (Sohi et al. 2010, Jones 2015).

1.6 TRANSFER OF DRUGS BETWEEN PLASMA AND ORAL FLUID

Drugs that are absorbed through the oral mucosa membranes have direct access to the
systemic circulation and the OF. The relationship between the concentration of drugs in
saliva and plasma was described by Rasmussen as per Equation 1. This equation was
derived from the Henderson-Hasselbach equation (Equation 2) (Haeckel and Hénecke
1996). Equation 1 demonstrates that at equilibrium, the saliva to plasma ratio (S/P) is
dependent on: (1) The concentration of drug in saliva (S). (2) The concentration of drug
in plasma (P). (3) The dissociation constant for basic drugs (pKy) or acidic drugs (pK.).
(4) The pH of the saliva (pH;). (5) The pH of the plasma (pH,) and (6) the fraction of

drug bounded to saliva (f;) and plasma proteins (/).

Equation 1. Rasmussen Equation for the saliva to plasma ratio.

5 [1+10®PHs-PKa)| £,

s fo s _ [1+10PKa-PHs)) f
P [1+10(PHP=PKS)] f -

Basic drugs: 5 [+10PKa-PHp)] 7,

Acidic drugs:

S/P: Saliva to plasma ratio; S: Concentration of drug in saliva; P: Concentration of drug in plasma; pKb:
basic drugs; pKa: Dissociation constant for acidic drugs; pHs: The pH of the saliva. pH,: pH of the plasma;
fs: Fraction of bounded drug to saliva; f,: Fraction of bounded drug to plasma proteins.

The Henderson-Hasselbach equation (Equation 2 - left) describes the pH as a measure
of acidity in a chemical system using pK,, where the pH is dependent on the pK, and their
concentration of acid [HA] and conjugate base [A]. An alternative form of this equation
using the pK, is given by the Heylman-Lardinois equation (Equation 2 - right), where [B]

and [BH'] are the concentration of the base and its conjugate acid respectively.
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Equation 2. Henderson-Hasselbach and Heylman-Lardinois equations.

. _ A7] . _ [BH*]
Acid: pH = pKa + log HA] Basic: pOH = pKb + log BTN

pKa: Dissociation constant for acidic drugs; [HA] Concentration of acid [A']: Concentration of conjugate
base; [B]: Concentration of base; [BH']: Concentration of conjugate acid.

1.7 ELEVATED ORAL FLUID TO BLOOD DRUG RATIOS

In general, the concentration of drugs in OF are higher than corresponding
concentrations in plasma (Forde et al. 2006). Elevated S/P ratios (>100 fold) have been
reported for cocaine after smoking 40 mg cocaine base, with concentrations of cocaine
ranging 15,852-50,480 ng/mL in saliva and 46-291 ng/mL in plasma after smoking
(Jenkins et al. 1995). Fiorentin et al. (2017) reported mean cocaine concentration in OF
(39 £ 70 ng/mL) five times higher than in plasma (8.2 = 18 ng/mL) from 124
cocaine/crack users. Similarly, Scheidweiler et al. (2010) reported median values of
cocaine maximum concentration in OF (1092; 406-3006 ng/mL) four times higher than

in plasma (305; 109-434 ng/mL).

Furthermore, cocaine has been reported at high concentrations (ranging 1.3-3.1
ng/mL) in OF following oral administration after doses of 25-150 mg (Kato et al. 1993,
Kidwell et al. 1998, Bosker and Huestis 2009). Concentrations in the range of 0.4-2490
ng/mL cocaine and 0.4-12100 ng/mL BZE in OF were reported after chronic
administration of cocaine (Cone 2012). Data from the Forensic Science Service showed
mean cocaine concentrations of 1191 ng/mL (33-3537 ng/mL) in OF (Osselton et al.
2001). These concentrations were significantly higher than the concentration that can be
found in blood following cocaine drug overdose (1.1-98.1 pg/mL) (Karch et al. 1998,

Fineschi et al. 2002).
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At the lower pH of normal saliva (pH = 6.7), which is slightly acidic, many of the
illicit drugs including cocaine will be ionised and leading to ion trapping in the OF (Allen
2011). This ion trapping occurs because of the decreased diffusion into blood resulting
from ionisation of the molecule (DePriest et al. 2015). Since saliva presents a pH lower
than the plasma, the S/P ratio for acidic drugs (pKa < 5.5) or highly bound molecules is
generally inferior to one. Neutral molecules (pKa 5.5-8.5) have a S/P ratio near to 1.0 that
does not vary with the salivary flow rate. Basic drugs and drugs that do not bind highly
to proteins are ionised at saliva pH and are ion trapped in the OF producing S/P ratios

greater than 1.0 (Spiehler and Cooper 2008).

For drugs with pKa between 5.5 and 8, the S/P ratio may vary depending on the flow
rate of saliva and therefore its pH (Schramm et al. 1992). The pH of saliva has been
proved to be inversely proportional to the saliva flow (Dawes and Jenkins 1964). When
the flow is low, sodium is less absorbed by the salivary ducts and so an accumulation of
sodium produces an increase in the salivary pH. Hence, unstimulated saliva has higher
pH, reaching values of up to pH 8. An example of the variation of S/P ratio with the
salivary flow was reported for cocaine, with S/P ratios ranging between 3.0-9.0 when the
salivary pH varied between 5.0-7.8 following intravenous (IV) dosages of 25 mg (Kato
et al. 1993). The S/P ratio might also be influenced by the route of consumption, for
example, snorting or smoking of drugs such as cocaine would lead to buccal

contamination and therefore much higher S/P ratios (Allen 2011).

1.8 DRUG DEPOTS

Huestis and Cone (2004) initially suggested that drugs that are found at higher
concentration in OF are excreted into the OF from drug depots in the oral tissues. This

hypotesis was then supported by other authors (Drummer 2006, Spiehler and Cooper
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2008). In 2014, Reichardt proved this hypothesis by showing (immunohistochemical
staining) that drugs such as cocaine and heroin could accumulate into porcine tongue
tissue following exposure to the drug in solution or simulated smoking, thus, confirming

the formation of drug depots in oral tissues.

Reichardt’s study showed that the staining in the porcine tongue tissue increased with
the increase in drug exposure (Figure 1.7). The amount of cocaine/heroine deposited in
the tissue that is proportional to the strength of the staining was subsequently confirmed
by quantitative analysis of the tongue tissue using liquid chromatography coupled to mass
spectrometry (LC-MS). The results of the quantitative analysis showed that cocaine
concentration increased from 6-25 ng/mL (100 ng/mL dose) to 55-274 ng/mL (10,000
ng/mL dose), confirming the relation between the dose exposed and the amount of drug
depot formed in the porcine tongue tissue. Comparison between the staining obtained
following cocaine and heroin, showed that staining following heroin exposure was more
intense than cocaine exposure. Therefore, indicating that there was a higher amount of
heroin deposited into the tongue tissue than cocaine, which could be explained by the

higher lipophilicity of heroin in relation to cocaine.
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Chapter 1 — General Introduction

Cocaine Heroin
Concentration Quantitative Quantitative
Immunohistochemical analysis of Immunohistochemical analysis of
(dose) . : . .
staning cocaine by staning morphine
LC-MS by LC-MS
Control
- - o o
14-42
o - o .
25-78
o - o .
14-102
500 ng/mL 6-44 ng/mL ng/mL
32-71 82-401
1000 ng/mL ng/mL ng/mL
55-274 61-397
- - - -

Increase in drug depot concentration

Figure 1.7 Immunohistochemical staining for cocaine and heroin in porcine tongue tissue
following exposure of 100-10000 ng/mL of the drug. Images at magnification x65 (Reichardt
2014, p 183-188).

The results reported by Reichardt also included a study on the release of drugs from
tongue tissue, where tongues were exposed to either 100 ng/mL or 1000 ng/mL of cocaine
or heroin and then washed for 1 hour, 6 hours, 24 hours or 48 hours in artificial saliva

with continuous mechanical stirring. The outcome of this study showed that cocaine was
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detected for up to 24 hours post-exposure whereas morphine was detected for up to 48
hours post exposure. These results indicated that cocaine and heroin were being released
from drug depots into OF over time (Figure 1.8) and could interfere with the interpretation

of drug concentrations in OF when investigating S/P ratios (Reichardt 2014).
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Figure 1.8 Cumulative amount of cocaine and morphine in OF following the interaction to
porcine tongue tissue exposed to 1000 ng cocaine or heroin. The graph was plotted based on data
reported by Reichardt (2014).

1.9 MODELS EMPLOYED TO ASSESS DRUG DIFFUSION

Study on the diffusion of drugs through biological membranes is commonly conducted
by the use of in vivo and/or in vitro models, although mathematical models are also used
(Bolger et al. 2002). While in vivo models are more appropriate for assessing the
bioavailability of a drug, in vitro models are more commonly used for preclinical
compound screening, elucidation of the mechanism of transport across the oral mucosa

and assessment of compound permeability (Nicolazzo and Finnin 2008).

1.9.1 [In vivo models to assess diffusion of drugs

One of the in vivo methods used to evaluate the absorption of drugs in the buccal
mucosa is the test of Beckett and Triggs (Beckett and Triggs 1967). In this test, a known

volume of a drug solution is introduced into the oral cavity, swirled around for a specific
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period of time and then expel it. The expelled solution is finally analysed to determine
how much drug was absorbed in the mucosa. The advantages of this test are the time of

the study and the use of single participants, although kinetic profiles cannot be obtained.

Beckett and Triggs test was then m