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Abstract 

The disquiet about global warming has triggered the formulation and introduction of new generation 

of refrigerants. Hydrofluoroethers (HFEs) are within the family of newly developed environmentally 

friendly refrigerants with a wide range of application areas. Hydrofluoroethers reportedly have better 

heat transfer and thermodynamic properties. In addition to an understanding and knowledge of the 

thermodynamic properties of refrigerants, it is essential to understand the tribological properties of 

refrigerants within the context of sustainable development. Tribo-performance of refrigerants applied 

in refrigeration, air-conditioning and energy systems directly influences the durability, reliability and 

cost effectiveness of the system. HFE-7000 has considerable potential for engineering applications in 

green energy and low carbon technologies. In this research, a detailed investigation has been 

performed to assess friction and wear performance of HFE-7000 (HFE-347mcc3). HFE-7000 has 

been employed as lubricants. Experimental results indicate the formation of tribo-films on the topmost 

surfaces. Energy-Dispersive X-ray Spectroscopic (EDS) and X-ray Photoelectron Spectroscopic 

(XPS) analyses on the tested samples revealed significant presence of oxygenated and fluorinated 

anti-wear tribo-films. These oxygen and fluorine containing tribo-layers prevent metal to metal 

contact and contribute to the reduction of friction and wear. 

Keywords: Environment-friendly refrigerants, tribo-films, sliding contact, low carbon technology, 

EDS, XPS. 

1. Introduction 

Anthropogenic global climate change, rise in worldwide economic development and the increase in 

global population has substantially increased the use of air-conditioning and refrigeration systems 

worldwide. Previous generation of artificially formulated refrigerants have high environmental 

implications and these refrigerants contribute towards global warming and ozone depletion [1, 2]. 

Although the ozone depleting refrigerants have almost been phased out, the artificially formulated 

refrigerants which are one of the main contributors towards global warming are still largely in use [3]. 

The types of refrigerants employed in cooling, refrigeration and air-conditioning systems have 

evolved over the years. 

Naturally occurring compounds which have good heat transfer and thermodynamic properties such as 

Ammonia, Hydrocarbons, Sulfur Dioxide, Methyl Formate and Methyl Chloride were being used in 

refrigeration systems before 1930s. Almost all of these compounds are toxic, flammable or both. As a 

result of their use accidents were common [4]. Sulfur Dioxide, Methyl Formate and Methyl Chloride 

were being commonly used in domestic refrigerators which are highly toxic and highly flammable. 
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Several fatal accidents occurred due to methyl chloride leakage from refrigerators in 1920s [3]. This 

led to a collaborative research in 1928 to find alternative replacement refrigerants that would be 

nontoxic and non-flammable which resulted in the development of Chlorofluorocarbons and 

Hydrochlorofluorocarbons.  

Chlorofluorocarbons (CFCs) and Hydrochlorofluorocarbons (HCFCs) were extensively used as 

refrigerants till the mid-1990s. CFCs are chemicals containing atoms of chlorine, carbon and fluorine. 

HCFCs have an additional hydrogen atom and their molecular structure resembles closely to CFCs. 

CFCs and HCFCs are non-toxic and non-flammable refrigerants possessing excellent thermodynamic 

properties. This led to the extensive use of CFCs and HCFCs in various applications including uses in 

residential refrigerators, domestic air-conditioning systems, commercial applications, small scale 

industrial and in automotive air-conditioning units.  Besides having excellent thermodynamic 

qualities, CFCs and HCFCs also possess exceptional tribological properties [5-14]. CFCs and HCFCs 

were reported to form protective surface films under normal compressor operating conditions which 

enhanced the friction and wear of interacting parts. The discovery of the depletion of the ozone layer 

and publication of the destructive effects of CFCs on the stratospheric ozone layer in 1974 [15] led to 

the realisation that CFCs have an extremely high ozone depletion potential and are leading to the 

destruction of the ozone. Vienna Convention for the Protection of the Ozone layer which was 

followed by the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987 put a ban on 

CFCs [16].  Montreal Protocol was enforced in 1989 worldwide which banned the use of CFCs by the 

start of year 1996 in developed countries. HCFCs have lower ODP (Ozone Depletion Potential) 

values as compared to CFCs, which has allowed their use for a longer period of time. HCFCs are 

planned to be phased out by the end of year 2020.  

Refrigerators and air-conditioners had become common household items, bans and restrictions on 

CFCs and HCFCs meant that alternative refrigerants had to be introduced, however this led to the 

need for assessing tribo-implications of these refrigerants in turn their implications on the durability. 

This paved the way to the development and introduction of Hydrofluorocarbons (HFCs). HFCs are 

synthetically produced refrigerants which contains hydrogen atoms, fluorine and carbon with zero 

ODP. HFCs had thermodynamic properties matching CFCs [17-21], which resulted in their extensive 

use as substitute refrigerants. CFCs and HCFCs were compatible with mineral oils, HFCs however 

were incompatible and immiscible with mineral oils. This meant that new lubricants with various 

additives had to be developed for the use of HFC refrigerants in compressors. After the introduction 

and acceptance of HFC refrigerants various researcher around the world started investigating the 

tribological performance of these refrigerants. A number of tribological studies including [5, 6, 22-33] 

were conducted to evaluate the performance of HFC refrigerants by using a range of lubricants and 

additives. Numerous studies [5-11, 13, 14, 23, 34-40] were also conducted which compared the 

friction, wear and lubricity performance of HFCs to HCFCs and CFCs. Most of the investigations that 

directly compared the tribological properties of HFCs to HCFCs and CFCs concluded that CFCs and 

HCFCs have superior tribological performance as compared to HFCs. Fluorine in HFCs did not 

decompose under normal compressor operating conditions and did not form protective surface films. 

Having zero ODP, HFCs were deployed worldwide and their harmful global warming implications 

were not considered at the time of their commercialisation, however high global warming 

implications of HFCs were realised later. The Kyoto Protocol in 1997 to the United Nations 

Framework Convention of Climate Change placed limits on CO2 and other greenhouse gases. HFCs 

were identified to be amongst the main contributors to global warming [41] and they will be banned in 

any hermetically sealed system from the year 2022. 



As a response to Environmental Impact Legislations naturally occurring hydrocarbons became of 

interest after Kyoto Protocol. Amongst hydrocarbons, HC-600a gained particular attention as it can 

replace HFC-134a. Various different investigations were conducted to examine the tribological 

performance of HC-R600a under different testing conditions [42-49]. The study [42] showed that 

environmental burden is greater by using HFC-134a based systems in comparison to systems based on 

HC-600a. Hydrocarbon refrigerants are also considered to be up to 50% more efficient thermal 

conductors than fluorocarbon refrigerants [3]. However due to the inherited high flammability 

concerns associated with hydrocarbons their applications are limited and thus new refrigerants have to 

be introduced. 

This has now forced the introduction of new artificially formulated alternative refrigerants. The 

refrigerant industry has introduced new refrigerants namely Hydrofluoroolefins (HFOs) and 

Hydrofluoroethers (HFEs). HFOs and HFEs have zero ODP and lower global warming potential 

(GWP). HFO-1234yf has thermodynamic properties matching HFC-134a and is considered a direct 

replacement of HFC-134a [50]. This means that HFO-1234yf can be easily introduced into HFC-134a 

based refrigeration cycles. Tribological evaluation of HFOs is underway and various studies [51-57] 

have shown that HFOs possess very good tribological properties because the fluorine in HFOs 

chemically reacts with the lubricants and the interacting metals to form protective tribological films 

on the surface. Some of these studies have also compared HFO-1234yf directly with HFC-134a under 

identical operating conditions and have concluded that HFO-1234yf has superior tribological 

properties compared to HFC-134a [51-54]. HFOs however are mildly flammable and their 

flammability restricts their application areas and places of use.  

In recent years focus has also shifted towards refrigerants that are naturally occurring such as 

hydrocarbons and carbon dioxide, however the high flammability of hydrocarbons restricts their 

application range. CO2 based refrigeration systems require extremely high pressures to operate which 

results in higher design, material and operation costs.    

HFEs are non-flammable refrigerants having low GWP and zero ODP. HFEs are odourless, 

colourless, low toxic, low viscous refrigerants which are normally liquid at room temperature and 

look identical to water. HFEs have a number of applications for example they can be used in cascaded 

refrigeration systems, in freeze drying units, in fuels cells, in chemical reactors, in high voltage 

transformers, as cleaning and rinsing agents, as lubricant carriers, in vapour degreasing applications 

and in renewable solar thermal systems [58]. Various studies like [59, 60] have demonstrated that 

hydrofluoroethers possess good thermodynamics properties especially in low carbon technology and 

energy applications [61]. HFEs are also potential replacements of HFCs, HCFCs and PFCs [62]. 

There is however very limited work that has been reported on the tribological performance of newly 

developed HFEs. The only reported works are [63, 64]. The study [63] examined the properties of 

polyester in HFE-245mc atmosphere which was published back in 2002 while only the wear 

performance analysis of HFE-347mcc3 was performed with no comment on friction in [64].   

At the time of writing this paper, no work has been published that looks into the wear as well as 

friction performance of 1-methoxyheptafluoropropane (HFE-7000). The study of tribo performance of 

this refrigerant is the novelty in this research. This is a promising new refrigerant with significant 

potential for industrial applications including low carbon technologies, clean energy, automotive and 

aerospace industries.   

This study has been undertaken to experimentally evaluate the friction, wear and lubricity 

performance of HFE-7000 in a modified micro-friction machine. The chamber pressure and 



temperature were continuously monitored and controlled to keep the refrigerant in liquid state during 

the testing to sustain saturated contacts. The tribological effects of load, temperature and surface 

roughness were studied by using Hydrofluororther-7000 as lubrication medium without using any 

external lubricant. A number of studies have been performed and reported in the past to investigate 

the tribological performance of numerous refrigerants without using any lubricants [11, 39, 43, 45, 47, 

48, 53, 65-70]. Un-lubricated conditions are used to better understand the lubricity of the refrigerants 

by decoupling refrigerant- lubricant effects. Some of the characteristics of HFE-7000 are listed in the 

table 1 along with HFC-134a and HFO-1234yf. HFC-134a has a GWP value of about three times to 

that of HFE-7000. HFO-1234yf has a much lower GWP but is “flammable”. 

Table 1. Various different properties of HFE-7000, HFC-134a and HFO-1234yf [50, 53, 58, 64, 71]. 

Refrigerant HFE-7000 HFC-134a HFO-1234yf 

Structure C3F7OCH3 Ch2FCF3 CF3CF=CH2 

Molecular Weight (g/mol) 200 102 114 

Freeze Point (°C) -122.5 -103.3 -150 

Boiling Point @ 1 atmosphere (°C) 34 -26 -29 

Critical Temperature (°C) 165 101 95 

Liquid Density (kg/m
3
) 1400 1206 1094 

Critical Pressure (MPa) 2.48 4.06 3.38 

Flash Point (°C) None 250 Not applicable 

Appearance Clear, colourless Colourless gas Colourless gas 

Flammability Non-flammable Non-flammable Mildly-Flammable  

Ozone Depletion Potential (ODP) Zero Zero Zero 

Global Warming Potential (GWP) 530* 1430* 4* 

*GWP 100-year integrated time horizon (ITH). IPCC 2013 [72]. 

As HFE-7000 is not considered a direct replacement of HFC-134a and it has wide range of 

applications areas where it can be used besides being used in compressors, this study is focusing on 

how the refrigerant will perform at low loads and low temperatures. Some of the studies have shown 

[8, 11] that refrigerants that do not form protective surface films under normal compressor operating 

conditions have the possibility to decompose and form surface films under severe and extremely harsh 

operating conditions. A refrigerant usually exists in heated vapour state in a refrigeration cycle and 

also undergoes a phase change; transitioning from a liquid to vapour state and when saturation 

temperature-pressure conditions are changed, a reversal of phase change occurs. Most of the studies 

involving the tribological investigation of refrigerants are concerned with the refrigerant/lubricant 

mixture with the refrigerant in vapour state applied in high load conditions. This study however looks 

into the tribological performance of one of the future generation refrigerants by experimentally 

assessing its performance under relatively low loads and low temperatures in liquid state without the 

influence of any conventional lubricant. If HFE-7000 chemically reacts with the interacting surfaces 

and forms protective tribo-films, it can be deduced that it demonstrates good tribological performance 

within the context of various operating loads and temperatures. 

2. Experimental setup 

Experimental configuration for conducting this research is based on an existing reciprocating micro-

friction machine, Phoenix Tribology TE-57 Pressurized Lubricity Tester. The machine was modified 

to enable the tribological testing of the future generation of refrigerants. A modified bespoke test rig 

design is schematically shown in figure 1. The testing chamber houses the components under 

investigation. The design of the chamber allows it to be fully sealed and maintain pressures in the 

range of               O-rings and steel bellows seal the interacting components within the test 



chamber to form an integral part of test chamber. All O-ring seals are static and all the relative 

movement is accommodated by the bellows. The setup can be used to test various contact 

configurations which include line contact, point contact and area contact. A ball-on-flat i.e. point 

contact geometry has been used for experimentation in this investigation. 

The bench testing setup comprises of a variable speed PID (Proportional-Integral-Derivative) 

controlled DC motor. A scotch yoke mechanism is used to transmit the power from the motor to slide 

a lower flat plate against a fixed upper specimen in a reciprocating motion. The stroke length can be 

varied continuously between       , the frequency of oscillation can be adjusted between 

         . Normal load can be applied in the range of       . With the material samples used in 

this study the load range of        with a ball-on-flat contact configuration translates into a 

Hertzian Contact Stress range of              .  A heater block comprising of electric heating 

elements is located at the bottom of the chamber which is used to heat up the refrigerant. Two K-type 

thermocouples are used to monitor and control the temperature of the refrigerant inside the test 

chamber. One of the thermocouples is directly embedded in the heater block and gives its 

temperature. The heater block can be heated up to 200°C. The second thermocouple is a wire type 

thermocouple which is secured in the specimen holding cup and is used to measure the temperature of 

the refrigerant under investigation. Temperature readings from the wire type thermocouple are used as 

feedback in a PID control algorithm to maintain the temperature of the refrigerant during the course of 

a test. The chamber pressure is controlled in the test chamber to keep the refrigerant in liquid state at 

all times during the course of a test. The test chamber is fitted with a pressure transducer and a manual 

pressure gauge to record, monitor and control the chamber pressure. A friction force transducer is 

installed to a yoke, the yoke is connected to a force feedback rod upon which a housing is mounted 

that holds the fixed sample. The values of the friction force and the applied normal load are used to 

calculate the coefficient of friction. All the parameters being controlled, monitored and recorded are 

displayed in real-time in the software GUI (Graphical User Interface). 

All the inputs and outputs are fed through a purpose built data acquisition system which serially 

transmits the data to a microprocessor. The computer has a specialised software that is used to 

monitor, control and record the operating parameters. 

 

Figure 1: Test rig schematic. 

 



3. Testing Procedure 

The steel flat circular specimen is placed in the cup which is then secured on the oscillating rod with 

the help of screws. Then the wire type thermocouple is fastened into position. Steel ball is fixed on the 

ball-holder with the help of grub screws and ball holder is connected to the ball holder shaft. The shaft 

provides a means to secure the ball-holder in position and also functions as a means to apply the 

vertical normal load. After this the chamber is closed and sealed. The chamber is then vacuumed so as 

to minimise the effects of oxygen and ambient air during testing. 

After the chamber has been vacuumed, HFE-7000 is introduced in the system by using the shut-off 

and flow valves. Sufficient amount of refrigerant is charged so that the cup overflows and the bottom 

flat specimen is fully immersed in the fluid which ensures fully lubricated conditions at all times. The 

extra overflown refrigerant gets collected at the bottom of the chamber where the heating block is 

located. This overflown refrigerant assists heat transfer from the heater block and helps maintain the 

refrigerant temperature in the specimen cup.  The vacuum inside the test chamber and gravitational 

force helps the refrigerant to flow from the cylinder into the cup. The chamber lid has a transparent 

glass top which allows the operator to physically observe chamber conditions at all times. Next the 

desired load is manually applied. After this the control algorithm is run and the refrigerant inside the 

cup in the testing chamber is heated to the required temperature. The refrigerant temperature is 

controlled by using values from the wire type thermocouple and feedback PID control. Once the 

temperature reaches its specific value, the temperature of the refrigerant is stabilised and maintained 

for one hour before starting a test. After the temperature has been stabilised and has been maintained 

to the desired value for one hour, a test is run for two hours.  

The oscillating frequency is controlled by using feedback controlled driver motor. The motor, the 

heater and all the transducers are connected to a microprocessor based central data acquisition and 

control system. The values of the friction force, the chamber pressure values, the temperature readings 

from the heater block, temperature of the refrigerant and the motor speed are continuously recorded in 

a spreadsheet. 

Flat circular plate specimens of three different values of average surface roughness, 

                         made of EN1A steel were used. The balls were made of AISI 52100 steel 

having an average surface value of         . The flat specimens are circular in shape having 

thickness of 2.75 mm and 30 mm diameter. The steel balls are 10 mm in diameter. Three different 

loads                    were applied. Three different temperatures                 were 

used in this study. All tests were performed at a constant reciprocating of      having a stroke length 

of     . Each flat disc sample was mechanically grinded and then polished to the desired surface 

roughness after which each sample was ultrasonically treated with acetone for five minutes and then 

dried with warm air using a specimen drier before each experiment. The grinding and polishing 

process followed by the ultrasonic treatment with acetone of the specimens assured the removal of 

any unwanted/oxide surface films pre-experimentation. Each experiment lasted two hours and 

repeatability was ensured by conducting each experiment at least twice.    

4. Results and discussion 

4.1. Friction 

Results of friction have been discussed in terms of real-time coefficient of friction values, average 

coefficient of friction and average frictional force. Kinematic viscosity of HFE-7000 at 20°C is 



0.32 cSt, at 30°C is 0.29 cSt and at 40°C is 0.27 cSt [58]. A detailed discussion on results of 

friction obtained in this study is provided in sections 4.1.1, 4.1.2 and 4.1.3 respectively.  

4.1.1.  Coefficient of Friction 

Fully lubricated conditions were established since the start of the experiment and were maintained 

throughout the test. The results of the variation of the coefficient of friction with changing normal 

load, refrigerant temperature and average surface roughness are presented in figures 2, 3 and 4 

respectively.  

For Ra of         the values of the friction coefficient decreased with an increase in load at HEF-

7000 temperature of    . An increase in normal load from              resulted in fewer overall 

variations in the coefficient of friction and more stable values. For normal load of      and fluid 

temperature of     the coefficient of friction increased almost linearly to a maximum value after 

which it started to decrease. With some fluctuations, the coefficient of friction decreased after 

increasing initially and reached a stable value at the end of the experiment. The decrease in the 

coefficient of friction is probably because of the development of protective tribo-films after which the 

coefficient of friction decreases and once the tribo-films have been formed on the entire wear track 

the friction coefficient reaches a stable value. 
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Figure 2: Coefficient of friction graphs for           , refrigerant temperature: (a)     (b)     (c)    . 

For      load and     fluid temperature, the overall coefficient of friction and the rate of increase of 

the coefficient of friction was lower as compared to      and    . This was probably due to the 

quicker formation of protective surface films. 

For a load of      at fluid temperature of    , the friction coefficient was very stable and 

demonstrated a much lower coefficient of friction for over one hour of experimentation. The 

coefficient of friction however increased towards the end of the experiment which was due to the 

flattening of the ball resulting in an increase in contact area. 

In comparison to          the values of          were lower. There was also no steep gradient at 

the start of the experiment. The friction coefficient showed similar fluctuations as         . The 

increase in coefficient of friction after some time is associated with the flattening of the ball and 
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increase in the contact area. Friction coefficient values for          decreased at the end of the 

experiment reaching to values which were similar to those that were at the start of the experiment.  

The values for the friction coefficient for          were similar to the values of         . The 

values for the coefficient of friction remained fairly stable for the first hour of testing after which an 

increase in these values was observed. The increase in these values is associated with the flattening of 

the ball. The flattening of the ball increased the friction coefficient but these values reduced with the 

development of protective tribo-films on the freshly exposed surfaces. This stabilised the friction 

coefficient, however a further increase is seen at the end of the experiment indicating that the ball 

contact is still being flattened. 

The results of the coefficient of friction for          as compared to          were also similar. 

The results of          followed the same pattern and had similar values as          for the first 

hour of testing. For the second half of the testing, a rise and fall in the friction coefficient can be 

observed. The rise in the values of the coefficient of friction is associated with the flattening of the 

ball resulting in an increase in contact area. The decrease in the friction coefficient values is due to the 

development of protective surface films on the freshly exposed metallic surfaces. The friction 

coefficient is seen to reach a low, stable and steady value at the end of the experiment.   

In comparison to          and          the values of the coefficient of friction for 

         were lower. The values fluctuated with the passage of time but the results did not show a 

sharp increase in the values in the first 30 mins of testing. The values reached a stable value after the 

very initial increase in the coefficient of friction. The values however increased and decreased twice 

in the testing period resulting in the formation of two peaks. The second peek was higher than the first 

peak. The first peak is an indication of the initiation of the flattening of the ball and formation of 

protective surface films. The second peak shows a further change of the ball contact area. The value 

of the friction coefficient decreases and reaches a stable value at the end of the experiment 

demonstrating the formation of surface films on the changed contact geometries.    

The overall coefficient of friction of          was similar to          and         . The values 

of friction coefficient showed some fluctuations but there were no major peaks and sharp gradients. 

The overall coefficient of friction of          was also similar to          and          as 

well. The values of friction coefficient showed very minor fluctuations and presented the most stable 

friction coefficient from all the tests which were performed at Ra        . 
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  Figure 3: Coefficient of friction graphs for          , refrigerant temperature: (a)     (b)     (c)    . 

For Ra of        the coefficient of friction displayed similar results to those obtained by using 

samples having Ra of        . For a normal load of     , HFE-7000 temperature of     and Ra of 

       the variations in the coefficient of friction and the overall values of the friction coefficient 

were very similar to those obtained by using Ra        , normal load      and fluid temperature 

   . The friction coefficient showed a similar initial rise, fluctuations and then stabilisation.    

For Ra of       , load      and temperature     the initial results of the coefficient of friction are 

very similar to those obtained at Ra of        , load      and temperature    . The results obtained 

at Ra of        presented a stable friction coefficient for a longer time period. The friction coefficient 

increased after more than one hour of testing. This increase in friction coefficient was due to the 

flattening of the ball. A reduction in the friction coefficient can be seen at the end of the test 

indicating development of protective tribo-films on the freshly exposed surfaces.  
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For Ra of       , load      and temperature     the range of values of the coefficient of friction are 

very similar to those obtained at Ra of        , load      and temperature    . The results obtained 

at Ra of        however show two peaks indicating the flattening of the ball contact geometry. The 

results show that with an increase in surface roughness for the same testing conditions there were 

more asperity interactions resulting in quicker flattening of the ball contact. At the same time however 

these harsher conditions resulted in the fast formation of the protective tribo-films. 

Ra of       , HFE-7000 temperature of     and normal loads of               showed similar 

results to Ra of        , HFE-7000 temperature of     and normal loads of      and     . At Ra 

      , normal load      and HFE-7000 temperature     the overall coefficient of friction was 

lower as compared to Ra of         with the same load and refrigerant temperature. This shows an 

increase in surface roughness at higher loads is more favourable in the formation of tribo-films in turn 

reducing friction.  

With an increase in temperature to    , Ra       , and normal load of     , the friction coefficient 

reduced and became more stable as compared to Ra       , normal load      and refrigerant 

temperatures of            . In comparison to Ra        , load      and HFE-7000 temperature 

    the friction coefficient, in this case, was also more stable and had a lower overall value. 

For Ra       , refrigerant temperature of     and normal loads of      the friction coefficient was 

lower than Ra       , normal load      and temperatures            . The values in this case 

were also lower than Ra        , load      and temperature    . This indicated that increasing the 

temperature for the same applied load from            had a positive effect on the friction 

coefficient. This also indicates that doubling of the surface roughness at     and      results in a 

faster formation of tribo-films and lowering of the friction coefficient.  

The values for the friction coefficient at Ra of       , load      and temperature     were lower 

than Ra of        , load      and temperature    . However in comparison to             for 

Ra of        and normal load of     , the values were mostly similar.   
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Figure 4: Coefficient of friction graphs for           , refrigerant temperature: (a)     (b)     (c)    . 

 

A 10 times increase in average surface roughness from                  resulted in very similar 

behaviour and overall values of friction coefficient in all testing conditions. The fluctuations in the 

friction coefficient are believed to have been caused by the generated wear debris and three body 

abrasive wear phenomenon. The initial fluctuations after the start of an experiment especially at lower 

surface roughness can also be caused by the uneven formation of the surface films, these films are 

believed to have been uniformly adhered after a certain amount of time which is also evident from the 

coefficient of friction graphs which tend to stabilise with time. The fluctuating friction coefficient is 

also associated with adhesive wear. The soft EN1A steel is adhered to the surface of the hard 52100 

steel ball and the continuation of the reciprocating motion with adhered particles on the ball also gives 

rise to variations and fluctuations in the coefficient of friction. 

4.1.2.  Average Coefficient of Friction 

The results of the average coefficient of friction for all testing conditions are presented in figure 5. 

The data revealed a similar pattern for all investigated surface roughness values. With an increase in 
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load at a constant temperature the friction coefficient was reduced. Increase in load results in harsher 

operating environment which facilitates chemical reactions between HFE-7000 and the interacting 

metals. Unlike HFCs that have carbon-carbon bonds, HFEs have a carbon-oxygen bond as well which 

has been reported to be weaker than carbo-carbon bond [63]. The breakage of the carbon-oxygen 

bond and the chemical reaction between the refrigerant and freshly exposed metal produces protective 

tribological films on the top surfaces which reduces the friction coefficient. With an increase in 

temperature at the same load the coefficient of friction was also reduced. Increase in temperature at 

any given load reduces the viscosity of the refrigerant resulting in the reduction of separation between 

the rubbing components which should increase the friction coefficient due to higher asperity 

interactions. However the friction coefficient reduced with increase in temperature. This indicates that 

at higher temperatures the reactivity of HFE-7000 is increased which accelerates the formation of 

protective surface films. Increasing both the temperature and the load, thus results in lowering of the 

friction coefficient. 
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Figure 5: Average coefficient of friction plots: (a)            (b)           (c)          . 

4.1.3.  Average Friction Force 

The results of the average friction force for all the testing conditions are presented in figure 6. The 

frictional force increased with an increase in load at a constant temperature for all the surface 

roughness values that were tested. A reduction in frictional force was observed as the refrigerant 

temperature was increased from            for all loads. A higher reduction in frictional force was 

observed with increasing temperatures for all surface roughness values at low normal load of     . 

For loads of               the change in frictional force with an increase in refrigerant temperature 

from            did not have a substantial effect on the frictional force. A further increase in 

refrigerant temperature from            did have a positive effect on the frictional force values for 

     normal loads. For     , an increase in temperature from            resulted in a slight 
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reduction in the frictional force for Ra          and Ra       . For Ra        the frictional force 

stayed almost constant with an increase in temperature from            with      normal load.  

The minimum values of friction force were observed at     and Ra of        for all the applied 

loads in comparison to Ra         and Ra       . This shows that there exists an optimum value of 

surface roughness at which the best frictional force values are obtained when operating at higher 

temperatures.  
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Figure 6: Average friction force plots: (a)            (b)           (c)          . 

5. Wear  

A combination of abrasive and adhesive wear was witnessed on the flat and ball specimens. Adhesive 

wear mostly occurred at the ends of the wear track. Abrasive wear was more prominent in the middle 

section of the wear track. The soft EN1A steel was ploughed by the hard 52100 steel. Material pileup 

was witnessed at the edges of the wear scar. SEM (Scanning Electron Microscope) images of the flat 

circular specimens of average surface roughness         are shown in figure 7. Interestingly it was 

also noted that for      loads for all the temperatures of the refrigerant there was less adhesive wear 

and more abrasive wear. Magnified images of the steel ball tested against EN1A steel having average 

surface roughness         at refrigerant temperature of     and normal applied load of      are 

presented in figure 8. The high magnification SEM images show adhered EN1A steel on the surface 

of the hard 52100 steel ball. Adhesive wear is believed to have been more dominant during the start of 

a test when the entire contact load is carried only by very small area of asperity contacts producing 

very high real contact pressure values, which results in detachment of fragments from EN1A steel 

surface and attachment to the hard steel ball under relative motion. With the flat EN1A steel sliding 

against the stationary hard steel ball under the influence of normal load, the adhesive junction breaks. 

As sliding continues fresh junctions form and rupture. When the contact geometries became more 

favourable after running-in of the components is achieved and after the initiation of the formation of 

tribo-films the wear mechanism shifts towards abrasive wear. Generated wear debris result in three 

body abrasive wear phenomenon as they are trapped inside the flat specimen and refrigerant holding 

cup. The reciprocating motion causes material pileup on the sides and ploughing of EN1A steel by the 

hard steel ball. Similar results were seen by observing the other surface roughness values tested under 

Scanning Electron Microscope as well.      
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Figure 7: (a)          (b)          (c)          (d)          (e)          (f)          (g)          (h)          (i) 

         

     

Figure 8:  (a) Magnified images of the ball sample tested at         . 

5.1. Wear Volume 

Flat disc samples were also analysed under a white light interferometer to generate 3D plots. 3D plots 

obtained by using the interferometer were used to compute the wear volume for each sample tested. 

3D oblique plots for all the tests that were conducted during this research on         are shown in 

figure in 9. 

For HEF-7000 temperature    , an increase in load generates a deeper and wider wear track 

resulting in increased wear volume. This pattern is also observed at     fluid temperature, increasing 

load produces more wear. It can also be observed from the plots that increasing temperature from 

           at any given load reduces the depth and width of the wear track thus lowering wear. 



HFE temperature          load generated the shallowest wear tracks. Compared to            , 

wear tracks are less deep at     at any given load.  

  

  

  



  

 

 Figure 9: (a)          (b)          (c)          (d)          (e)          (f)          (g)          (h)          (i) 

         

Wear volume for all the flat samples tested was measured and the corresponding results are presented 

in figure 10. For a given surface roughness, a rise in temperature has a positive effect on decreasing 

the wear volume for the same applied load. This means that an increase in temperature increases the 

reactivity of the HFE-7000 with the interacting surfaces in turn resulting in a faster development of 

protective surface films which help decrease wear. For all the tested surface roughness values the 

amount of wear increases with an increase in load for temperatures of 20  and 30 . At 40  the 

wear volume at 20 N is less than the wear volume at 10 N, at 30 N the wear volume has the highest 

value for all surface roughness values. This shows that there exists an optimum combination of load 

and temperature which results in lesser wear.  

 



 

(a) 

 

(b) 

 

0.06280 0.05825 
0.04400 

0.11835 

0.07200 

0.04000 

0.16950 

0.10040 

0.06870 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

20 °C 30°C 40°C

W
ea

r 
V

o
lu

m
e,

 m
m

³ 
Ra 0.05 m 

10 N 20 N 30 N

0.06870 
0.06240 0.05760 

0.09180 

0.07600 

0.04205 

0.15033 

0.10420 

0.07020 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

20 °C 30°C 40°C

W
ea

r 
V

o
lu

m
e,

 m
m

³ 

Ra 0.1 m 

10 N 20 N 30 N



 

(c) 

Figure 10: Wear volume plots: (a)           (b)          (c)         . 

At a load of      for all the tested temperatures an increase in average surface roughness from 

                  generates more wear. Further increasing the surface roughness from 

                 showed a reduction in wear volume for normal load of      at each temperature. 

Minimum wear for      load was observed at the least rough surface. These results indicate that 

increasing the surface roughness at lower loads increases wear due to increase in asperity interactions. 

Further increasing the surface roughness results in harsher operating conditions creating more asperity 

interactions, these conditions however proved to be more favourable for the chemical breakdown and 

reaction of HFE-7000 with the metallic surfaces producing protective surface films decreasing wear. 

An increase in load from              at     showed almost the same values of wear volume for 

                      , however at          wear volume showed the least values for 

            . This shows that for              there exists an optimum value of surface 

roughness which will result in lower wear. For      load     conditions the wear volume increases 

with an increase in surface roughness. For      and     the wear volume increased with an increase 

in surface roughness from                  , however at          least values of wear volume was 

noted. This indicates that although hasher conditions promote the production of surface tribo-films, 

the temperature has to increase as well to accelerate the formation of these films.          testing 

condition for each surface roughness produced the least amount of wear. The wear volume was lower 

than      loads. This indicates that an optimum combination of load and temperature exists which 

produces least wear irrespective of the surface roughness. Testing conditions of         , HFE-7000 

temperature     and normal load of      produced least overall wear showing the best operating 

conditions. 

For     load at     an increase in surface roughness resulted in a decrease in wear volume. At 

             load an increase in surface roughness did not have any noticeable effect on the wear 

volume. Increasing surface roughness at          resulted in almost the same wear. At         , 

an increase in surface roughness from                   increased wear, but increasing surface 

roughness to        reduced wear and resulted in the least wear volume for these testing conditions.  
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6. Tribochemistry Discussion  

Post experimental Energy-Dispersive X-ray Spectroscopic (EDS) analyses were carried out in a 

vacuumed chamber on all the specimens tested. A strong presence of F and O was detected on all of 

the flat circular specimens as well as on all of the steel balls. EDS analysis was also conducted for a 

selection of the specimens before experimentation. As each sample was grinded, polished and 

ultrasonically conditioned with acetone pre-experimentation, no oxygen or fluorine was detected on 

the samples pre-experimentation. X-ray Photoelectron Spectroscopy (XPS) analysis was carried out 

on a number of sample pairs to study the surface composition post experimentation. EDS results of 

one of the specimen pairs tested are shown in figure 11 and figure 12 respectively.  
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(c) 

Figure 11: Magnified images of the wear scar indicating the analysis region along with the EDS analysis. 

Figure 11 shows the magnified image of a wear scar on the EN1A steel flat circular specimen along 

with the chemical characterization results obtained by analysing different regions on the wear track. 

Similar results were obtained for the other flat specimens as well. Different regions on the wear track 

were examined which revealed the presence of both oxygen and fluorine on the wear track indicating 

the development of tribo-films on the wear scar. 

Figure 12 shows the elemental analysis of the 52100 steel ball. The analysis on the ball was also 

performed at various different regions within the contact zone. The analysis also revealed the presence 

of both oxygen and fluorine demonstrating that the protective surface tribological films were not only 

formed on the flat specimen were also formed on the ball specimen as well.  
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(b) 

  

(c) 

Figure 12: Magnified images of a ball specimen indicating the analysis region along with the EDS results. 

The experimentation chamber was vacuumed to minimise the effect of ambient air before introducing 

the refrigerant in the system and establishing fully lubricated conditions after which the test chamber 

was sealed, which means that the origin of post experimentation detected oxygen and fluorine is the 

refrigerant. The samples were stored in a desiccator after experimentation. Even if aerial oxidation is 

taken into consideration while handling and transporting the sample post-experimentation still will not 

explain the detection of high percentage of fluorine and oxygen on the surfaces of the tested samples.    

X-ray Photoelectron Spectroscopy (XPS) was performed in ultra-high vacuum using a Kratos Axis 

Ultra photoelectron spectrometer (Kratos, Manchester, UK). A monochromated aluminium X-ray 

source was operated at 15 kV, 10 mA emission illuminating at 60º to the sample surface normal. Each 

analysis performed had an approximate area of              . The analysis conditions used 

were: 160 eV pass energy, 1 eV steps and 0.2 s dwell per step. Survey spectra in the range of 1350 to -

10 eV binding energy were taken at 0° emission angle to the surface normal of the sample. The XPS 

survey spectra results of one of the sample pairs tested are shown in figure 13. Besides iron, carbon, 

silicon, manganese, sulphur, phosphorus and chromium which are typically present in EN1A steel and 

52100 steel, trace elements such as sodium, zinc, calcium, magnesium, fluorine and nitrogen were 

also detected. The source of sodium, zinc and calcium is believed to be the nitrile and latex laboratory 

rubber gloves which were used for sample handling. Numerous components within a glove material 

and manufacturing residues left on the surfaces of gloves have been reported to be easily transferred 

to other materials with zinc, sodium and calcium being a common contamination caused by laboratory 

gloves [73].  
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(a) 

 

(b) 

Figure 13: XPS survey spectra: (a) Disc (b) Ball 



 

Nitrogen is often associated with carbon contamination from the atmosphere and this is consistent 

with the inelastic background of the C 1s peak which indicates that it is mainly a contaminant 

overlayer. Elements of interest i.e. the constituents present in the refrigerant and steel samples were 

further investigated and are presented in figure 14.   

Figure 14 shows the XPS high resolution core level spectrum results for iron, carbon, oxygen and 

fluorine. Figure 14 (a) shows the Fe 2p high resolution core level spectra for the ball and flat circular 

disc. The binding energy peaks of Fe    
 ⁄
  at 710.7 eV for the ball as well as the flat sample are 

present in the results which we assign to the formation of Fe2O3 [74]. A small    
 ⁄
peak at ~ 706.7 

eV is also present in the spectra which indicates Fe metal [74].  Compared to the metal, iron oxide 

peaks are significantly shifted to a higher binding energy [74].  

Figures 14 (b) and 14 (c) illustrate the C 1s high resolution core level spectra of the flat circular disc 

and the ball specimens respectively. The results of the C 1s spectra for the flat disc sample can be 

fitted using four different peaks with respect to the results shown in figure 14 (b). With reference to 

figure 14 (c), the C 1s XPS spectrum obtained for the ball specimen is very similar to the flat sample 

expect for the fact that the ball spectrum can be fitted using three different peaks instead of four. This 

implies that similar carbon constituents are present on both the samples, with an additional carbon 

compound present on the flat disc. The peaks with binding energies between 285.0-285.3 eV are 

present on both the samples. Of the total percentage of C 1s intensity detected from the analysed area 

on the disc, 80.1% of it is present within these peaks. For the ball sample, 84.5% of the C 1s intensity 

lies within these peaks in the area analysed. For adventitious carbon contamination C-C typically has 

binding energy of 284.8 eV [74]. The analysis process has an inherited error of at least ± 0.1 eV to ± 

0.2 eV [75]. It is convenient, for electrically insulating systems to use the C-H, C-C signal as a 

binding energy reference and set it to 285.0 eV [75]. Further high binding energy components can be 

identified above this main peak. +1.6 eV above the C-H, C-C peak is consistent with carbon singly 

bonded to oxygen, C-OH and C-O-C [74, 75]. The peak at+2.8 eV above the C-H, C-C peak is typical 

of C=O [75], this third peak is found in the fit of the data from the flat sample and not on the ball. The 

fourth peaks which are in the range of 288.7-288.9 eV is typical of O-C=O [74, 75]. The binding 

energies in the range of 288-290 could indicate the presence of metal carbonates [75]. The detection 

of peaks in the C 1s spectra on the worn regions within these (288-290 eV) binding energies could 

possibly also mean the formation of iron carbonates. The results of the C 1s spectra for the flat as well 

as the ball sample indicate the presence of multiple carbon based compounds showing that not only 

the bonds of the refrigerant have broken but also new bonds have been formed.  

The O1s spectrum obtained by analysing the flat disc and ball specimen are shown in figures 14 (d) 

and 14 (e) respectively. Similar to the C1s spectrum, O1s spectrum for the ball and the flat samples 

show similar peaks. Multiple peaks are generated at binding energies 529.8 eV to 529.9 eV and 531.5 

eV to 531.8 eV for the disc as well as the ball specimens. This indicates that similar oxygen 

constituents are present on both the tested samples. For the area analysed on the disc, 68% of oxygen 

contributes to a peak at 531.5-531.8 eV and 32% of the O 1s intensity is in a peak centred at 529.8-

529.9 eV. For the ball sample, 64.2% of the O 1s intensity is in a peak at 531.5-531.8 eV and 35.8% is 

in in a peak at 529.8-529.9 eV. Besides metal oxides, the O 1s binding energy of various species and 

compounds lies within a very narrow range [74]. Interpretation of the O 1s spectra is not 

straightforward as O 1s peaks are broader with multiple overlapping components [74]. Binding 

energies in the range of 529-530 eV are typical of metal oxides, in this case and consistently with the 



Fe 2p binding energies, most probably Fe2O3 [70, 74]. Fe2O3 is the mostly likely metal oxide to have 

formed as Iron (III) Oxide was directly detected in the Fe2p spectra. The binding energies in the range 

of 531.5-532 eV imply the presence of C-O [74], C-O was also detected in the C 1s spectra. For the O 

1s spectrum, binding energies in the range of 531.5~531.9 could also indicate the formation of 

carbonates and/or bicarbonates [70, 76]. The possible formation of metal carbonates was also detected 

in the C 1s spectrum. Oxygen bonded to organic components can range in binding energy from as low 

as 530.9 eV to as high as 533.8 eV and metal hydroxides are reported to have a binding energy of 

531.3 eV with a standard deviation of 0.3 eV [75]. The most likely metal hydroxides, if present, could 

be Fe(OH)2 and Fe(OH)3. The results show that a higher percentage, more than 60% of the oxygen 

detected is bonded to organic components or possibly in the form of metal hydroxides. The rest of the 

oxygen is in the form of metal oxides with Fe2O3 being the mostly probable metal oxide formed on the 

surface.      

The F 1s spectrum for the disc and ball specimens is presented in figure 14 (f) and figure 14 (g). 

Unlike the previous XPS results, the F1s spectra for the ball and the disc are different. 81.7% of the 

fluorine detected on the disc sample is at 684.4 eV binding energy while 18.3% of fluorine was 

identified at 688.2 eV binding energy. For the ball specimen, a peak was only detected at ~684.5 eV. 

For fluorine F1s spectra the binding energies from 684 eV to 685.5 eV indicate the presence of metal 

fluorides [74] and from 688 eV to 689 eV is more typical of organic fluorides. A peak was detected in 

the range of 684 eV to 685.5 eV while no peaks were detected for the ball sample in the range of 688-

689 eV, which means that only metal fluorides are present on the ball sample on the area analysed and 

fluorine is not present in organic state. For the disc sample a very high percentage (81.7%) of fluorine 

is present as metal fluorides, while a smaller percentage (18.3%) is present as organic fluorine. The 

presence of metal fluorides and organic fluorine also suggests that the bonds in the refrigerant have 

been broken and new bonds have been formed on the surfaces of the rubbing metals. These results are 

in contrast to the results of oxygen. Oxygen is present in a higher percentage in organic form while a 

smaller percentage of oxygen is present as metal oxides as discussed in the O1s spectrum results. In 

addition metal fluorides are present on both the samples while organic fluorine is present only on the 

disc sample. This indicates that fluorine in HFE-7000 has a higher tendency to form metal fluorides in 

comparison to oxygen in HFE-7000 to from metal oxides. The metal fluorides are most probably FeF2 

and/or FeF3 [53, 54, 63] or mixed iron oxyfluorides. 

The detection of inorganic compounds such as iron (III) oxide and metal fluorides originate from the 

tribochemical reaction between the steel ball/disc and the fragmented species coming from the HFE-

7000 refrigerant breakdown. The organic species have been reported to act as the third body ensuring 

sustainability of the interface in terms of wear and friction, whereas the metallic components 

(fragmented refrigerant reacted with steel) on the other hand provide better adhesion on the surfaces 

of the rubbing metals [54].  
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Figure 14: XPS high resolution core level spectrum: (a) Fe2p disc and ball (b) C1s disc (c) C1s ball (d) O1s disc (e) O1s ball (f) F1s disc (g) 

F1s ball. 

The formation of an oxygenated layer in the presence of carbon dioxide [70, 77, 78] and the formation 

of fluorine-containing tribo-layers by various different refrigerants [8, 11, 51, 53-55, 64] have been 

reported to be beneficial in improving the tribological performance of rubbing surfaces. The applied 

normal load, mechanical motion, heat and frictional force facilitate the chemical breakdown of the 

refrigerant (C3F7OCH3). C-F, Carbon-Fluorine single bonds are highly polar bonds (       ) and 

C-F bond is shorter than the C-H bond which makes C-H easier to break in comparison to C-F bond 

[53, 79]. It has also been reported that the oxygen-carbon bond is weaker than the carbon-carbon bond 

[63, 80]. It is highly possible that the carbon-oxygen bond in HFE-7000 is the first bond to break 

which frees OCH3 from the rest of the molecule. During the course of an experiment; material 

removal from the surface of EN1A steel by hard 52100 steel ball leads to the exposure of fresh 

surface which contains immobilised free radicals or dangling bonds. Unlike free radicals, immobilised 

free radicals are kinetically more stable because of their limited mobility in a solid medium. However, 



similar to free radicals, immobilised free radicals are also extremely reactive. The breakdown of 

refrigerant and the exposure of fresh highly reactive bonds on the surface of the EN1A steel specimen 

leads to a chemical reaction between the refrigerant and EN1A steel. This leads to the adsorption of 

HFE-7000 on to the surfaces therefore forming oxygenated and fluorinated tribo-films which results 

in reduction in friction and wear. Besides the adhered softer material on the ball, scratch marks are 

also clearly visible on the surface of the ball in the contact region, which leads to a similar chemical 

reaction between the ball the refrigerant as well. These tribo-layers are well adhered to the rubbing 

surface as the presence of fluorine  and oxygen was not only detected throughout the wear scar on the 

disc specimen but was also detected on different contact regions on the ball specimen.  

7. Conclusions 

A micro friction machine has been successfully modified and commissioned for bench testing the 

future generation of refrigerants within tribological context. A series of testes have been conducted to 

assess the tribological performance of the environmentally friendly refrigerant HFE-7000 by varying 

the tribo-operating conditions. Variable operating environments have been simulated during this 

study. Tests have been performed by changing the applied normal load, by using samples of various 

surface finish and by heating the refrigerant to various temperatures. HFE-7000 has a wide ranging 

application areas and the tribological performance of the refrigerant has been investigated at low loads 

and low temperatures starting from room temperature. The results have shown that a mechanical 

system based on HFE-7000 will show good friction and wear performance at higher operating 

temperatures and loads, in addition HFE 7000 exhibits good tribological performance at lower 

temperatures and low loads as well.  An increase in load even at     results in a significant reduction 

in the friction coefficient and the increase in temperature at a low load of even      reduces wear.  

Overall the results indicate that increasing the operating temperature at a constant load reduces both 

friction coefficient and wear. Increasing the load at a constant temperature increases wear but results 

in a reduction in friction coefficient. The reduction in the friction coefficient with increasing load and 

decrease in wear along with a decrease in coefficient of friction with increasing temperature is 

believed to be associated with the development of protective tribo-films on the interacting surfaces. 

The formation of these films is accelerated by an elevation in the refrigerant temperature and increase 

in the applied load. Increasing the applied load and operating temperature increases the reactivity of 

the refrigerant HFE-7000 with the rubbing metals. EDS analyses on the samples in the contact region 

and wear track have shown a significant presence of oxygen, fluorine and carbon on the rubbing 

surfaces. The detailed high resolution XPS analysis reveal the formation of new bonds/compounds on 

the surfaces of the interacting metals and indicate breaking up of the bonds of the refrigerant. Analysis 

on different regions within the contact zone of the rubbing metals post-experimentation has 

demonstrated that oxygenated and fluorinated layers are well adhered on the disc wear track and ball. 

It is also observed from the results obtained that the surface roughness does not have a very 

significant effect on the coefficient of friction and on wear.  This shows that metallic parts of a range 

of surface finish and even parts with rough surface finish can be used in HFE-7000 run interacting 

systems. 

The results of this study show that HFE-7000 which is a promising future generation refrigerant from 

a thermodynamics point of view has demonstrated good tribological performance. It can be inferred 

with confidence evidenced by the results presented here, that HFE-7000 based interacting systems 

will show better friction and wear performance as compared to their predecessors HFCs. 
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