
Novella 2.0: A Hypertextual Architecture for Interactive
Narrative in Games

Daniel Green
Creative Technology

Bournemouth University, UK
dgreen@bournemouth.ac.uk

Charlie Hargood
Creative Technology

Bournemouth University, UK
chargood@bournemouth.ac.uk

Fred Charles
Creative Technology

Bournemouth University, UK
fcharles@bournemouth.ac.uk

ABSTRACT
The hypertext community has a history of research in Interactive
Digital Narrative (IDN), including experimental works [27] and
systems to support authoring [6]. Arguably the most prevalent
contemporary form of IDN is within the world of computer games
where a mixture of large-scale commercial works and smaller indie
experimental pieces continue to develop new forms of interactive
storytelling. We can explore these pieces through the lens of hyper-
textual theory and support them with hypertextual architectures,
but there are unique challenges within modern game-based sto-
rytelling that these frameworks sometimes struggle to capture on
a content level, leaving us in some cases with insufficient models
and vocabulary. In this paper, we build upon previous work [19]
by presenting a discussion on techniques of modeling video game
narrative. This is followed by thorough presentation and demonstra-
tion of our game-centric theoretical model of interactive narrative,
Novella 2.0, which builds upon our previous contributions. This
model is then positioned within a novel architecture for the au-
thoring, interchange, integration, and simulation of video game
narrative. We present alongside the architecture four key innova-
tions towards supporting game narrative. We include support for
Discoverable Narrative and other game narrative content alongside
structural features in a deference of responsibility to game engines
and our own approach to mixing calligraphic and sculptural hyper-
text structure.

CCS CONCEPTS
• Human-centered computing→ Hypertext / hypermedia.

KEYWORDS
interactive narrative, narrative modeling, video games

ACM Reference Format:
Daniel Green, Charlie Hargood, and Fred Charles. 2019. Novella 2.0: A
Hypertextual Architecture for Interactive Narrative in Games. In ACM
Hypertext ’19: 30th Conference on Hypertext and Social Media, September
17–20, 2019, Hof, Germany. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Hypertext ’19, September 17–20, 2019, Hof, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
IDN and hypertext are two fields of research and creativity that
share a history of common works (such as Joyce’s afternoon, a
story1, games like Myst2, and more recently the broad range of
work created in Twine3), experimental pieces [27], and technologi-
cal tools and systems [6, 22, 28]. Much contemporary interactive
narrative can be seen in the area of games, where the ideas of hyper-
text can be used as a lens to understand the structures and patterns
created therein, and provide systems to enable those stories. Works
from the hypertext community have identified that research pre-
senting new original hypertext systems has diminished in recent
years [3, 22] when much still may be learned about structured and
linked content from new implementations.

It is with this in mind that we presented our initial work towards
a new hypertext system for game narrative, Novella [19]. Our early
work showed how existing models and systems captured aspects
of game storytelling, and we proposed a new approach towards
supporting this major area of interactive narrative that utilized the
ideas of hypertext structure. However, this fell short in providing a
representation or vocabulary in some areas of game narrative con-
tent. This early work has now been refined beyond an observation
and proposition into a more mature model and system architecture
which we present here as Novella 2.0.

In this work, we present a hypertext systems paper that brings
together modern game-based IDN and hypertextural structure in a
new systems architecture. We begin with a discussion of existing
models of interactive narrative and hypertext fiction, and how
we have built on top of these towards a new platform for game
narrative. We then present the Novella 2.0 architecture and describe
how it supports game narrative, and demonstrate its capabilities.
We conclude by describing its specific innovations and how this
has built upon the state-of-the-art.

2 BACKGROUND
A range of existing approaches have explored support for interactive
narrative models and frameworks - we review here work from both
the hypertext and games research communities.

2.1 Hypertext Models
This community has its own long history of working with interac-
tive narrative, from classic works of hyperfiction such as Joyce’s
afternoon, a story to research on new mediums on which to deliver
them such as the seminal HyperCafe [27]. As part of this, hyper-
text research has also grappled with conceptual structural models
1afternoon, a story by Michael Joyce, published by Eastgate, 1990
2Myst, Cyan Worlds Inc., 1993
3http://www.twinery.org as of 22 Apr 2019

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Hypertext ’19, September 17–20, 2019, Hof, Germany Green, et al.

of interactive narrative. While game narrative used to be more
closely associated with hyperfiction (the early 90s game Myst was
originally developed in HyperCard [28], for example), we are still
able to consider contemporary game narrative through the lens of
hypertext as it stands today - as structured documents of content,
connected by links, that a player or reader navigates through with
their interactions.

Mark Bernstein has been one of the principle researchers of
models of interactive narrative in the domain of hypertext. His
seminal work on the patterns of hypertext [4] identified repeating
structures within this space and established a vocabulary for repre-
sentations of hyperfiction. Similarly, he, alongside Weal and Millard
(who developed their own system on top of the FOHM model in
Auld Leaky [30]), identified the key differences between the classi-
cal calligraphic structural approach (wherein pages are connected
by links) and the sculptural approach (wherein conditional guard
fields and state changing functions govern the way in which links
are prevented/sculpted away) [5, 7]. More recently, Bernstein has
combined the ideas of calligraphic and sculptural structures in his
latest version of StorySpace [6]. Beyond that, Hargood et al. have
explored how sculptural hypertext is ideally suited to support loca-
tive hyperfiction [22] and have built up Bernstein’s patterns with
their own work identifying high-level structures [25] and a new
vocabulary of patterns for sculptural hypertext [21].

While these models ably describe structure, and in our previous
work [19] we have explored applying some of them to a num-
ber of modern game narratives with success, they provide less in
terms of a vocabulary or representation of the content within that
structure. Modern game narrative is rich with varied mediums and
storytelling techniques from environmental storytelling [23] to
branching dialogue, mechanics-as-metaphor [20] to cut-scenes, and
to better support this medium from a technological perspective, we
may want to capture with our models the content as well as the
structure. For example, while structure might tell us that one scene
follows another, or may cause divergence based on player choice,
it is harder to use these models to accurately represent a variety
of different forms of interaction or play, let alone the subtleties of
Discoverable Narrative [17].

2.2 Game Modeling Approaches
In our previous work [19], we described an application of three
models to video games to determine their narrative representation
successes and downfalls. We have since expanded upon this and
examined two more broad approaches to game narrative modeling.

Adding Interactivity to Narratological Models
A common approach is to take existing theories that are not based
on games and attempt to add support for interactivity or otherwise
modify them to better suit games representation and analysis.

One such attempt was to inject interactivity into Campbell’s
Hero’s Journey [15]. The original theory by Campbell [13] specifies
17 phases and is ideal for mapping linear narratives that conform
to the progression outlined by the model. The authors highlight
the lack of support for interactivity due to having no way to handle
player choice and actions undertaken, which are fundamental to
most gaming experiences. The authors suggest firstly keeping the

player at the center of the action, and that resolutionmust be a result
of player choice. Second, that when a choice is given to a player
(begin journey, accept/refuse help, etc.) that each possible option
must be valid and allow for progression of the narrative. They also
note that a lot of games cause failure or backtracking by picking
the ‘wrong’ choice, and suggest instead sanctions to be placed on
players instead of halting. Third, that some optional phases must be
conditional based on player ability (i.e., the phases activate based on
the player’s prior ability to succeed). In their final model, a number
of additional phases are added particularly to choice and agency,
and phases can link to any neighboring phase, including repetition
of already passed phases. As the player encounters phases that could
have more than one outcome, the pathway taken is now dependent
upon the player’s choice. Sequences ahead of the player’s progress
can also dynamically adapt to the success and ability of the player.
In Road of Trials, for example, a setup could be made so that the
player can only exit the sequence once adequate performance was
reached, otherwise subjecting the player to repeated testing.

A similar approach was taken in the Narratification project [29],
which attempted to unite narrative and gameplay in an analytical
framework. The model upon which this work is based is Dixon’s
Goal, Motivation, and Conflict (GMC) model [16]. Dixon’s model
defines three categories for characters, each having internal (known
to themselves) and external (public knowledge) factors. Goal refers
to the objective the character would like to achieve, Motivation
defines why they want to achieve their objectives, and Conflict de-
termines what is stopping them from reaching their objectives. The
authors highlight that this model is ideal for developing meaningful
plots based on a character’s internal and external factors, but that it
does not capture any dimension of interaction from the player. They
then extended this model into what they call Interactive Goal, Moti-
vation, and Conflict (IGMC) by adding an additional column for the
player alongside the character’s column. The player and character
columns are interconnected via the game experience. The GMC
entries of the character must satisfy the entries of the player and
vice versa. The authors note that this presented solution is aimed
at designers being able to consciously plan out the relationship
between player and character GMCs.

Propp’s Morphology [26] has also been indirectly applied to
video game narrative. In Brusentsev’s work [12], Propp’s Morphol-
ogy is the basis of a game analysis framework in an effort to discover
how well the original form of the theory applies to video game nar-
rative. In this framework, a number of key sections (some of which
use Propp’s functions and character archetypes) are used to de-
construct the game. The Game Structure Overview provides a brief
description of the game, highlighting unique narrative techniques.
Character Archetypes lists all characters present in the game and
assigns them to one of Propp’s character archetypes. Overall Story
Arc assigns Proppian functions to the overall story to allow for a
high-level description of the structure. Level Narrative then breaks
down the story into acts (or similar) and maps the functions again.
Impact of Player Decisions assesses how player choice alters the nar-
rative. Dialogue looks at how the in-game player dialogue choices
move the narrative. Finally, Morality sees if ethical choices in the
game alter the narrative. These elements are all considered for any
given game. The authors conclude that by using Propp’s functions,
they can gain oversight of the structure of video game narrative, but

Novella 2.0 Hypertext ’19, September 17–20, 2019, Hof, Germany

receive no further insight into it. They also note that the functions,
in their original form is unable to handle any form of choice or
agency, particularly from the player. One solution that they suggest
without breaking Propp’s original rules is a ‘Decision Function’,
but this is purely speculative and was not further developed. This
concept was further tackled by Bostan [10]. This project took a
different approach by modifying and appending Propp’s functions
and their associated rule set to better suit games. Six of the origi-
nal functions were modified and 15 new game-specific functions
were added. In this framework, the story is broken down into any
format the author sees fit (such as acts, chapters, levels) and then
the extended list of Proppian functions are mapped in any order,
can repeat any number of times, and can have branching simply
by specifying connections between the functions. Although this
approach is less rigorous than Propp’s constraints, it does have the
advantage of letting us analyze repeating patterns within game
narrative. For instance, if there is a sequence of three functions
repeated at numerous points that indicate a climax and battle, we
could partly infer the pacing of the narrative from these repetitions,
as well as begin to balance out the pacing by adjusting the spacing
between the patterns.

Componentization & Factorization
Another approach is the use of Componentization and Factoriza-
tion. These phrases are derived from the computing terms meaning
to take a given system and reduce it into a number of logical con-
stituents that work together. By using these methods on video
games, we can develop a better understanding of their structure
and look at how each component contributes to narrative.

One approach is to develop a taxonomy of game elements which
can then be used for reference and analysis. An example of this
is the interaction-centric structural framework by Bj̈ork [9], fur-
ther refined in his later contributions [24]. This work represented
all objects as components and defined their involvement as one
of three types of actions: those instigated by the player, those of
components with prescribed agency, and those originating from
the game system itself. Another example is the Game Ontology
Project [31] which similarly relies on a set of entity manipulation
actions to declare events within the game. These high-level con-
cepts can be used to broadly represent connected events within
a narrative. For example, it’s possible to take logs of interactions
between these components to begin to build a picture of the ex-
perienced narrative after such events have taken place [14]. This
concept has also been used to determine the effect of these kinds
of components on the narrative [11] by surveying 80 games and
identifying the relationships that emerge between components and
various narrative forms.

A similar approach was taken by Bizzocchi [8], but with a partic-
ular focus on narrative rather than general structure. In this work,
he identifies a number of factors of narrative in video games and
how players interface with them. While this work defines its factors
at an observational level, it can serve as initial groundwork for fur-
ther structured analysis. A more component-oriented approach can
be seen in Aarseth’s framework [1]. In this framework, he breaks
up games into the game worlds, objects, agents, and events. The
world represents the physical structure of the game’s level layout
and differentiates between ludic and extra-ludic spaces in a way

reminiscent of Adams’ layout principles [2]. The objects are entities
within the game world, categorized by their malleability and in-
teractivity. Agents represent characters and are likewise classified
by malleability but can be further divided into Bots, Shallow char-
acters, or Deep characters. Events represent individual moments
of narrative within the game and are considered either Satellites,
which are supplementary events, or Kernels, which define particu-
lar stories. This is extended to say that all kinds of narrative can be
defined as weighting of combined Satellites and Kernels, and that
the type of narrative (linear, branching, etc.) can be determined
from the ratio.

3 THE NOVELLA 2.0 MODEL
In our previous work [19], we proposed an early model that targeted
video game narrative. This has since been refined into the system
presented in this paper. The evolution of this model is significant
as we subsequently felt that the previous model did not capture the
concept of Discoverable Narrative in a meaningful way and that
the model lacked any form of meaningful extensibility.

The concept behind this new model is a three-layered system of
Groups, Sequences, and Events, and how they structured hierarchi-
cally as well as their connectedness. The three layers are similar in
function but differ enough that when combined can create great
complexity whilst remaining easy to understand. This model is
designed with implementation and integration into engines, such
as Unity4 or Unreal5, and other runtimes in mind. It does so by
structuring itself to provide a specification of core functionality,
yet deferring element functionality to a particular implementation.
Figure 1 shows a high-level UML diagram of the model.

Story. The Story is a custodian of sorts, responsible for creation
andmanagement of all narrative elements. All Variables are globally
accessible and are also managed by the Story. There always exists
a single top-level Group in which all other content exists, which
is stored in the Story. At any point, the Story can execute a set of
Logic functions. This is of particular use when external runtimes
which to query or modify the state of the Story, such as triggering
an in-model element from an external source.

Variables. The state of the Story is controlled by a set of Vari-
ables. A Variable is a type-restricted piece of data, such as Boolean
or integer, which can store arbitrary information. All Variables are
mutable by default but can be declared constant. Variables have an
initial starting value that is restored when Story execution begins.
Since Variables are global, their identifying names must be unique.

Groups. Groups are the highest level container. Within a Story
there is only one main Group and every other Group within the
story is nested. Groups can be nested indefinitely for structural or
organizational purposes. Groups act as a scope for their contents;
elements inside are only able to act while their parent Group is
active. All Groups nested at the same depth (i.e., are siblings) run in
parallel during Story execution. However, Groups do not necessarily
execute immediately as they are guarded by a Condition which
determines when the Group will trigger. This means that while all
Groups are parallel to their siblings, their Conditions may result in
different execution timing. Groups therefore may execute instantly,

4Unity 3D, https://unity.com as of 22 Apr 2019
5Unreal Engine, https://unrealengine.com as of 22 Apr 2019

Hypertext ’19, September 17–20, 2019, Hof, Germany Green, et al.

-label : string
-topmost : Boolean
-precond : Condition
-entryfunc : Function
-exitfunc : Function
-entry : Sequence
-maxActivations : int
-keepAlive : Boolean
-attribs : [key:value]

Group
-label : string
-parallel : Boolean
-topmost : Boolean
-precond : Condition
-entryfunc : Function
-exitfunc : Function
-entry : Event
-maxActivations : int
-keepAlive : Boolean
-attribs : [key:value]

Sequence

-label : string
-parallel : Boolean
-topmost : Boolean
-precond : Condition
-entryfunc : Function
-dofunc : Function
-exitfunc : Function
-instigators : Selector
-targets : Selector
-maxActivations : int
-attribs : [key:value]

Event

-label : string
Entity

+evaluate() : Boolean
Condition

+evaluate()
Function

-origin : Any
-dest : Any
-precond : Condition
-func : Function

Link

-tangibility : Tangibility
-functionality : Functionality
-clarity : Clarity
-delivery : Delivery

Discoverable

-name : string
-constant : Boolean
-initial : Value

Variable

-mainGroup : Group
Story

+select() : Entity[0..*]
Selector

-label : string
Tag

0..*

0..*

0..*

0..* 0..*

0..*

0..*

0..*

Figure 1: High-level Novella model UML.

with delay, or not at all. Groups also contain a list of Sequences.
The connectedness of these sequences is determined by a list of
Links. Each Group has an entry point which is either empty or one
of the contained non-parallel Sequences. When a Group is entered
and exited, a Function is optionally run that can modify the Story
state. Groups can be marked as topmost which means that when
entered, everything in the model pauses execution until the Group
exits, at which point paused elements automatically resume.

Sequences. Sequences are individual segments of narrativemade
up of Events. Sequences are sequential as defined by their link struc-
ture in their owning Group, but can be optionally marked as parallel.
A parallel Sequence will attempt to trigger when its parent Group
is active (first at entry and then every tick), providing its Condition
is met. Within a Sequence is a list of contained Events as well as
a list of Links determining their connectedness. There is an entry
point which is either empty or one of the contained non-parallel
Events. As with Groups, when a Sequence is entered and exited,
a Function optionally runs. Sequences, like Groups, can also be
marked as topmost.

Discoverables. Discoverables are a specialization of Sequence
that partially implements Discoverable Narrative. It appends the
four matrix dimensions of Discoverable Narrative as enumerations
and is always parallel. Due to the hierarchical scoping of this model,
the parent Group determines when the Discoverable can be found.
The added enumerations act as labels and have no direct influ-
ence on its contents. Instead, contained elements can use Logic
to query the state of these enumerations and respond accordingly.
This means that Discoverables are essentially a parallel Sequence
with extra information that is triggered by a given Condition within
a given scope. Because of this, more abstract kinds of Discoverable
Narrative such as mechanics as metaphor are not easily represented.
This is intentional as to not overcomplicate the model; attempting
to wrangle every form of Discoverable Narrative into this model
would increase its complexity without substantial return.

Events. An Event is a representation of a single narrative event.
Where Groups and Sequences are containers, Events are leaves of
such a tree and cannot be divided further. Sibling connectedness
is defined by a set of Links of the parent Sequence. Similar to
previously, Events can also be declared as parallel and topmost.
Functions also fire on entry and exit as before, but Events are unique
in that they also have an additional do Function. This Function is
responsible for the actual behavior of the Event and is therefore
delegated to the particular implementation via Logic. This is the
primary manner in which the model defers Event specifics to a
runtime. Events also contain two Selectors. The first determines
the set of Entities that are instigating the Event, and the second
determines the set of Entities that are targets or otherwise involved
in the Event. The results of these Selectors can be queried and used
by the Event’s Functions.

Attributes. Groups, Sequences, and Events all have a dictionary
that maps a string-based key to a value of any type. Using this
Attribute system, it is possible to represent features such as the
location within which an element takes place. To illustrate, let’s
take the “Medical Pavilion” level of BioShock6, which is broken up
into 11 subsections. We can represent the larger level as a Group
and subsections as Sequences. Locations can then be represented
by an Attribute with the key “location” and value of the location
name. The Logic or runtime can then query this Attribute and
respond accordingly. Earlier we acknowledged that some forms of
Discoverable Narrative were not plausible in this model. However,
using Attributes we can emulate simplified forms of environmental
storytelling. An Attribute could be used, such as “environment”,
that stores a textual string written by designers instructing the
implementation on how elements should be laid out. An interchange
specification could be used for writers to adhere to (or a tool can
provide an interface for) which could then could be parsed by

6BioShock, Irrational Games, 2007

Novella 2.0 Hypertext ’19, September 17–20, 2019, Hof, Germany

an implementation. This is beyond the scope of this work but is
important to consider.

Simulation. Groups, Sequences, and Events have an integer de-
termining the number of times that they are allowed to (re)activate
during simulation. This integer can either provide a positive upper
bound to limit the executions, or be set to zero, meaning there is no
limit. This means that if an activation request would put an element
past its threshold, then the request should be declined. Additionally,
a single element can only run one instance at a time, i.e., an already
active element cannot be activated again until it terminates. By
default, all container-like elements only remain active while their
contents are currently active or have the potential to activate. Once
all contents that could possibly activate have done so, the parent el-
ement will automatically terminate. If this behavior is not desirable,
all elements contain a Keep Alive Boolean. When true, an element
will maintain its active state even when its contents has expired.
This could be useful, for example, to force an exit Function to not
trigger unless explicitly desired. This does not apply to Events as
they have no contents. Instead, their lifetime is determined by the
duration of the in-engine event that takes place in their do Function
and are “oneshot” by nature (i.e., activate, do, deactivate).

Links. Links tie together two elements of the same type. Se-
quences can only link to other non-parallel Sequences, and the
same applies for Events. Each Link has a static origin, a mutable
destination, a Condition determining if the Link can be traversed,
and a Function fired upon traversal. During execution, if a set of
Links are siblings (i.e., are outputs of the same element) then their
Conditions are evaluated to determine availability. If more than one
Link remains valid, then the implementation is required to resolve
the stalemate to proceed. The concept of choice here is deferred
to the implementation and does not necessarily result in explicit
questioning à la a dialogue wheel. It simply means that a particular
narrative chain cannot progress until one option is chosen.

Functions & Conditions. A Function is a set of logical state-
ments that are able to, at a minimum, read and modify the Story
state. Functions are used throughout the model at important struc-
tural points, commonly entries and exits. Conditions are a special-
ized Function in that they must result in a Boolean and are not able
to mutate the Story state. They are used as guards in the model.

Entities and Tags. Characters and other narrative objects are
enumerated as Entities. An individual Entity is a unique instance
of an object. Entities have zero or more Tags, where a Tag is a
unique identifier that partially declares the owner’s role within the
narrative. All Entities sharing a common Tag are equally viable to
fulfill that role. Tags can be used as wildcards to enforce restrictions
on Entity participation. For example, we may request all Entities
of Tag Enemy and Weaponized, which would select all Entities that
have these two tags (i.e., enemies alone wouldn’t suffice as they
must also be weaponized to be included).

Selectors. A Selector is a logical statement that returns an array
of Entities. It is not able to mutate Story state. Selectors are used
to determine which Entities are involved in an Event. As Selectors
use Logic, they are dynamic by nature and can resolve in runtime.

Logic. The Logic of this model is a set of functions for interacting
with the Story state. This collection is designed to provide minimal
mandatory functionality for an implementation to fulfill. Logic does
not detail itself with the particular language of implementation, as

Table 1: Mandatory Logic declarations.

Variables

setValue(var: Variable, value: Type) -> Void
Sets a Variable value. Present for all data types.

getValue(var: Variable) -> Type
Gets a Variable value. Present for all data types.

Entities

entity(named: String) -> Entity
Gets an Entity by name.

entities(withTags: [Tag]) -> [Entity]
Gets all Entities with the given Tags.

add(entity: Entity, tag: Tag) -> Void
Adds a Tag to an Entity.

del(entity: Entity, tag: Tag) -> Void
Removes a Tag from an Entity.

Components

trigger(type: Type, delay: Int) -> Void
Triggers a given Group/Sequence/Event with a delay in ms. Present for all three.

stop(type: Type, delay: Int) -> Void
Stops a given Group/Sequence/Event with a delay in ms. Present for all three.

pause(type: Type) -> Void
Pauses a given Group/Sequence/Event. Present for all three.

resume(type: Type) -> Void
Resumes a given paused Group/Sequence/Event. Present for all three.

tangibility(disc: Discoverable) -> Tangibility
Gets the Tangibility of a Discoverable Sequence.

functionality(disc: Discoverable) -> Functionality
Gets the Functionality of a Discoverable Sequence.

clarity(disc: Discoverable) -> Clarity
Gets the Clarity of a Discoverable Sequence.

delivery(disc: Discoverable) -> Delivery
Gets the Delivery of a Discoverable Sequence.

activations(type: Type) -> Int
Gets number of times the Group/Sequence/Event has activated. Present for all three.

long as the core functionality is met. A software implementation of
this model could use LUA, JavaScript, or anything else, as long as
the requirements are met. This area is also the primary method of
interaction between the model and runtime system. This is ideal
for implementing custom per-game functions that may or may
not concern themselves with the model. For example, an imple-
mentation could define a function to check if the player is near an
entity, isPlayerNearEntity(withTag: Tag, radius: Double)
-> Boolean , which when evaluated would return a Boolean iden-
tifying if an Entity with a given Tag was within a radius of the
player. This could be used in a Condition, for example, to trigger
an element within the model. A similar approach could be taken to
query and modify the actual game’s state. This Logic is a bidirec-
tional communication layer between the model and a runtime. The
mandatory functions can be found in Table 1.

3.1 Worked Example
In order to demonstrate the capability of this model, we will now
explore a worked example using a sequence from Life is Strange7. A
simplified overview is displayed in Figure 2. Following the opening
nightmare sequence, Max jolts awake during a photography lesson
(1). She then gathers her bearings while a lecture takes place (2).

7Life is Strange, Don’t Nod Entertainment SA, 2015

Hypertext ’19, September 17–20, 2019, Hof, Germany Green, et al.

Figure 2: High-level overview of the sequence. 1) Max wakes up in class. 2) A lecture is taking place. 3) Stella drops her pen. 4)
Taylor bulliesKate. 5) Victoria’s phone vibrates. 6)Max’s desk interactions. 7)Max’s camera usage prompt. 8)Max’s questioning
for disturbing class.

During this, Stella drops her pen (3), Taylor bullies Kate (4), and
Victoria’s phone rings (5). These three events happen in parallel to
the lecture and Max’s pondering. At this stage, Max can interact
with a photo on her desk, and after doing so, four more items
become available (6). Interacting with all objects but the camera
will not halt the lecture, but have Max narrate them in parallel. If
the camera is not selected in due time, the lecture begins to loop a
series of questions to the class.WhenMax interacts with her camera
(7), which disturbs the lesson, the narrative continues. Max is then
punished for her intervention with a question (8), after which the
bell rings to end class. This sequence was chosen as it demonstrates
typical narrative actions in video games, but also includes parallel
events, gating of progression, and player choice.

Entities.We must first decide and enumerate the involved Enti-
ties. Depending on the granularity desired, different objects may be
included. For instance, fine-grained approaches may consider the
paper ball Taylor throws at Kate as an Entity and model the indi-
vidual Event for throwing it, whereas a more coarse approach may
represent the short bullying scenario as a single Event including
two Entities. This is usually influenced by the particular use-case.
This concept of granularity applies to all of the model. For simplic-
ity, we will take a coarse approach. As such, as can enumerate our
character as Entities: Max, Jefferson, Stella, Kate, and Victoria.
Tags are not necessary as we can rely on direct referencing.

Groups & Sequences.We can assume that the classroom scene
is part of a single Group. Since there are a number of individual
happenings that run in parallel, and some that halt until given
conditions are met, we need to define Sequences to represent this
structure. Max talks to herself four times before being able to in-
teract with all five items on and around her table. This happens
while Jefferson’s lecture is ongoing and therefore we can put it in
a Sequence named Max. Jefferson’s lecture can be broken up into
two Sequences: Jefferson1 and Jefferson2. The former runs un-
til Max interacts with her camera, looping otherwise. The latter
involves querying Max and class ending, which is instigated by
Max interacting with her camera. We can also enumerate the Se-
quences Stella, Taylor, and Victoria for Stella dropping her pen,

Taylor bullying Kate, and Victoria’s phone vibrating. These short
Sequences happen in parallel to Jefferson1 and Max.

Max’s Inner Thoughts. During the Max Sequence, Max nar-
rates to herself four times. This can be thought of as dialogue with
oneself. However, since the speech is inner (i.e., thinking), it may
be advantageous to differentiate from regular dialogue. Let’s as-
sume our implementation has defined a thinking function that
requires an Entity and textual string. This can then be used within
an Event’s do Function, reading the instigating Entity and providing
the spoken string. For Max’s thoughts, these Events would simply
have Max as the instigator and call the implementation’s thinking
function, passing in the instigator and a text string for whatever
Max is thinking for the particular Event.

General Dialogue. More general dialogue could be handled
with a defined dialogue function, again provided by the imple-
mentation. This would largely mimic the thinking function but
differ in that it takes two sets of Entities read from the instigators
and targets. For example, in the Jefferson1 Sequence, Victoria
and Jefferson engage in conversation. These individual speech acts
could be represented by a sequential set of connected Events that
use the Dialogue function with appropriate Entities selected for
involvement. In the case where Jefferson addresses the whole class,
if we wanted to include all students as target Entities, then we could
use a Selector to directly reference them all, or if a Student Tag
had been assigned, select all Entities with that Tag instead.

Parallel Sequences. The Stella, Taylor, and Victoria Se-
quences all execute during Jefferson1 at fixed times. We could
handle this in a variety of ways. If specific timing is known, all
three Sequences could be started upon entry of Jefferson1 with
a delay using the trigger(seq: Sequence, delay: Int) Logic
function. They could also be triggered after a particular Event for
more fine-grained control with or without delay. Alternatively, the
Sequences could have a starting Condition that checks a truth value
of a Boolean Variable which could be set to true, triggering the Se-
quences. As mentioned earlier, Max’s four thoughts are parallel
to Jefferson’s lecture. This can be implemented by having the Max
Sequence as a sibling of Jefferson1, and ensuring that they both
execute at the same time.

Novella 2.0 Hypertext ’19, September 17–20, 2019, Hof, Germany

(a) Entering Chapter IV, Part 4 by interactingwith Bun-Lan Lin’s body.
Parts 1, 2, and 3 unavailable at this point.

(b) Entering Part 2 fromwithin Part 4 by locating and interactingwith
Patrick O’Hagen’s body.

Figure 3: Entering Part 4 and discovering Part 2.

Gating Progress. In the Max Sequence, there are five items on
and around Max’s table that can be interacted with: her camera,
pencil case, photograph, journal, and backpack. However, four re-
main inactive until the photograph is first picked up. This could
likewise be implemented multiple ways. An easy way is to have all
five elements as non-parallel Events within the Max Sequence. The
photograph Event would follow Max’s pondering Event chain. This
Event would then connect to all four other Events, as well as back
to itself. All other Events except the camera would likewise link
to all five Events. The result is that the player must first interact
with the photograph before being able to access the remaining
objects. Interaction with these objects can then be looped until the
camera is chosen because of their connectivity. Of course, using
the activations(type: Type)-> Int Logic function, we could
alter the narrative content for variance each time the Events are
visited by responding to the returned count.

If Max does not interact with her camera in time, Jefferson1
begins to loop a set of four dialogues from Jefferson to the class.
Once Max interacts with her camera at any point that it is available
during Jefferson1, the Sequence terminates and Jefferson2 ini-
tiates. This can be handled by setting the Function of the Event rep-
resenting the camera interaction to use the stop(Jefferson1,0)
and trigger(Jefferson2,0) Logic functions in order. This would
firstly terminate Jefferson1 regardless of its progress, and start
Jefferson2 immediately thereafter, which is how the game works.

Player Choice. Jefferson2 starts after Max interacts with her
camera. In this Sequence, Max is made to answer a question as
punishment for disturbing class. This presents two options to the
player, both of which reconcile to the same Event to give a per-
ception of agency over the narrative. We simply need to link the
preceding Event for dialogue to both potential answers, as multiple
outputs must be resolved before continuing. The way in which the
choice is presented is left up to the implementation. In the case of
this example, a dialogue wheel is presented to make a binary choice
which would in turn trigger the model to follow one pathway. Simi-
lar cases later in the game are more complex as they pause all other
elements during execution. This can be achieved by manually using
the pause and resume functions, or by marking the appropriate
element as topmost.

3.2 Discoverable Narrative via Structure
We will now look at how the model’s structure allows for some
forms of Discoverable Narrative. Return of the Obra Dinn8 is a
contemporary murder mystery game that makes extensive use of
Discoverable Narrative concepts. The game is presented in chapters
that are made up of a varying number of parts that form a sequential
narrative. The player does not necessarily access them in such a
way, often beginning in the latter half of a chapter and then working
backwards by finding the deceased within each part. For example,
if the player enters part 4, they will be able to find and enter at
least the previous part. Players must locate the deceased (or related
items) and interact with them, transporting them to a freeze-frame
at the moment of death, aiding them in solving the mysteries.

Figure 3a shows Bun-Lan Lin’s body on the main deck, which
when interacted with will transport the player to Chapter IV, Part
4. There is no way to access previous parts without firstly entering
here. Once the player enters this scene, they are able to locate and
interact with previously deceased characters which act as triggers
to backtrack throughout the rest of the chapter. Depending on the
scene, zero or more parts will be accessible. In this scene, the player
can interact with three of the deceased (parts 1, 2, and 3). This can
be seen in Figure 3b with Bun-Lan Lin on the right and Patrick
O’Hagen in the foreground. Locating and interacting the latter of
these two will teleport the player back to part 3.

We can model this using Groups, Sequences, and Logic. We can
declare a Group for the overall chapter, ChapterIV. Implementing
each part as a Sequence would be unwise as only Events can be
contained within. Instead, we can declare each part also as a Group
and nest them as siblings within ChapterIV. This form can be seen
in Figure 4 where Group Part4 is expanded. Within this expanded
Group is three Sequences, one for each of the preceding parts. We
can assume for this example that the contents of such a Group has
been implemented and that each of the previous part Groups have
this format replicated for their own preceding parts respectively.
Now we can define a Condition for each of the Sequences using
Logic decided by the implementation. In this case, we could per-
haps define a function for checking interaction with a given Entity,
or alternatively handle interaction in the runtime and manually

8Return of the Obra Dinn, Lucas Pope, 2018

Hypertext ’19, September 17–20, 2019, Hof, Germany Green, et al.

trigger these Sequences by name. We can then use the exit Func-
tion of the Sequences to handle the consequences of interacting
with the deceased characters. In this case, we could terminate the
current Group by using the stop(group: Group, delay: Int)
function, and start the new Group by using the trigger(group:
Group, delay: Int) function. If we want a given set of Events to
trigger before switching Group, then we can embed them within
the appropriate Sequence, but in this case, this is not necessary.
With this solution, we could have used Discoverable elements in-
stead of Sequences, which would provide us with a queryable set of
enumerations that could further enrich the possibilities both from
within and external to the Sequence. It could also be useful in that
an implementation may wish to differ between what is discoverable
and what is not regardless of functionality.

Part 1

Part 2

Part 3

Part 4

1 2 3

Figure 4: High-level possibility of Discoverable Sequences in
Return of the Obra Dinn Chapter IV - The Calling.

4 SYSTEM ARCHITECTURE
The Novella platform consists of an authoring tool and an API.
The architecture of this platform and the typical pipeline it fol-
lows is demonstrated in Figure 5. Novella is a general framework
for interactive narrative that respects that a game story might be
delivered in any one of a range of game engines. An author will
use the authoring tool to create a narrative plan by specifying con-
tent, structure, and connections to the game engine, which is then
exported as JSON ready for interpretation by the Novella API in
any given game engine. This is then integrated by the game devel-
oper using the API. This potentially allows for the same story to
be delivered in multiple engines, and for games to interpret and
incorporate the content in ways appropriate for each piece. The
Novella implementation is fully open-source9 and a screenshot of
the authoring tool can be seen in Figure 6.

Author

Authoring
Tool

Novella
API Engine Product

Developer Player

JSON
Export

Figure 5: Novella system architecture.

The authoring tool is an environment that implements the theo-
retical model for visual creation of the story structure and content.
9Available at https://github.com/KasumiL5x/novella as of 22 Apr 2019

Figure 6: Novella authoring tool prototype.

In our case, we have implemented a standalone authoring applica-
tion for macOS using Swift. The advantage of creating a standalone
tool is that the editor is no longer accustomed to a given engine
or product. An inherent limitation of this approach with regards
to integration is that the tool is unable to directly reference in-
game object instances and other engine assets without some form
of interop (such as a UUID), and even then may not be possible.
A custom authoring tool built directly into an engine would not
have such limitations, and is a feasible approach, but removes the
engine neutrality of our own approach. As our implemented tool is
standalone, the authors must export their story to an intermediate
JSON representation for interpretation by the API.

The Novella API is an implementation of the theoretical model
for direct use within an existing codebase, essentially as a plugin
for a game engine. A compliant API will be wholly usable by a
developer without use of the authoring tool. It is responsible for
the creation, management, and simulation of the story, whereas
the engine is responsible for implementation of external Logic
that connects the two. Typically, a developer loads the JSON file
exported from the authoring tool into the API, which in turn parses
and automatically configures the story accordingly. The developer
can then fine-tune the loaded story as they see fit, such as linking
variables to actual in-engine object instances or connecting story
Events with particular gameplay mechanics (for example, if a scene
calls for the player to become dazed, this is the point where the
story model will communicate this and the developer will connect
this to the appropriate part of the game engine to instantiate the
effect). The resulting simulation contributes to the final game (or
otherwise) that the player interacts with.

4.1 API Implementation
For this project we have implemented a Novella API for Unity as
a proof of concept - while only developed for this game engine
currently, similar APIs could be developed for other engines such
as Unreal. Targeting Unity meant our API was restricted to C# 4.x
and we were unable to use multithreading as a number of Unity
functions must be called from the main thread only.

Novella 2.0 Hypertext ’19, September 17–20, 2019, Hof, Germany

We chose to use LUA to fulfill the Logic component. The main
Story class maintains an instance of the LUA session. When the
session is configured, all C# data types that are to be used in LUA
(Groups, Sequences, Variables, and so on) are registered, and func-
tions written in C# fulfilling the mandatory Logic of the model
are also mapped to LUA identifiers so that they can be called from
scripts. A wrapper for the LUA session is exposed in the API and
provides the ability for developers to register custom types (such as
Unity types), custom variables, custom functions, and to at any time
run arbitrary LUA code for querying and instructing the model. The
contents of Functions, Conditions, and Selectors are automatically
wrapped in LUA function code. To avoid name clashes, a unique
function name is generated automatically for each function using
their UUID. Conditions and Selectors also contain failsafes in the
case where the script does not return the expected data.

A naive solution to executing all parallel elements would be
to run each in a separate thread, terminating only when its child
threads join. With complex stories, this could quickly reach sensible
threading limits. Since we were unable to use threading regardless,
we opted for a hierarchical stepped simulation where each step
forwards the simulation by one tick. In the case of Unity, this is
called in the Update function of an object present in the scene.
Stepping a single element will in turn step all of its children pro-
viding they are active. So, by stepping the main Group of the story,
we inherently step everything in the model, providing it is active.
Groups, Sequences, and Events all follow a three-stage life cycle
during simulation: Activation, Stepping, and Deactivation. Activa-
tion and deactivation are where construction and deconstruction
happen, such as handling entry points and running valid Functions.
When an element is stepped, it attempts to enable all of its inactive
children, steps its already active ones, and then handled its own
behavior. Events differ in that they simply run their do function
and then terminate. For Groups and Sequences, a sequential link
of child elements must be followed (if present) in addition to those
that are parallel. This is achieved by child elements, when deacti-
vating, notifying their parent. Then, the parent determines, where
applicable, the next available connected node(s) and either follows
it or requests that the engine resolves the stalemate in the case
where multiple exist.

5 INNOVATIONS
The Novella model takes a unique approach to modeling of game
narrative and contributes a number of innovations in its methods.

Extensibility and Deference of Responsibility
In our previous iteration of the model, we had a limited set of
individual events (such as Dialog) that contained predetermined
data. This was limiting, as it’s not really feasible to capture every
kind of event, nor to generalize them, and it is perhaps not our
place to determine what data each event consists of. In the model
iteration presented in this paper, we have taken a deferred approach
to solve this problem. We provide a basic Event, as described earlier,
that maintains a dictionary of arbitrary data to be used in the Event.
This way, an implementation can easily add any data it requires;
the data is deferred and is not predetermined. By doing this, we
are providing the functionality of an Event, but leaving the details

up to the implementation. This philosophy is followed elsewhere
throughout the model. Additionally, the Logic of this model serves
as a connection between the model and an engine. The specifics of
functionality, such as what Events actually do in-game, are likewise
deferred through the use and extension of Logic. The language used
to fulfill the requirements of Logic is arbitrary; in the case of our
example, we used LUA, but any other language could just as readily
be used in its place.

This approach presents a story model that can richly define
the structure and content of a game’s narrative without having to
accustom itself with the rules, systems, or mechanics within the
game. The Novella API will interpret the story structure, leaving
the engine free to connect and apply the detailed functionality.

Game Content Support
Through the use of Logic, Attributes, Tags, and Selectors, we are
able to build up a machine-readable language for the content of
our Groups, Events and Sequences. This moves beyond what has
been provided by some models of interactive narrative which sup-
ply rules and descriptions of structure but not the content itself
within the nodes. We can use this additional content model to in-
dicate and communicate the effect of the story on characters or
the environment, changes in rules and systems, or to communicate
how something is displayed or presented within the interface. For
example, making a specific choice might put a particular item into
a character’s inventory (use of two Entities), a scene may change if
there are hostile enemies nearby (use of Selectors, Logic, and Tags),
or a scene might occur that is not directly delivered to the player in
the foreground but occurs in the background of an area as a piece
of environmental storytelling (use of Attributes).

It is to be noted that the Novella authoring tool and model do
not directly handle this functionality - as previously stated, that is
deferred to the runtime. What it does provide is a vocabulary and
model for the author to express this story structure and content in
a machine-readable fashion. Applying this specific content within
a game is deferred to the runtime itself.

Support for Discoverable Narrative
Our approach incorporates features that aid it for modeling games
whilst still retaining a general enough system to be used for other
hypertext-based narrative modeling. We incorporate a limited set
of Discoverable Narrative elements by extending a standard Se-
quence to support the enumerations allowing for queries so that
its contents (or other) can react accordingly. This is an area we
wish to improve clarity and support for in future iterations of this
model. Additionally, while not particularly new, we acknowledge
the need for broad groupings of objects and dynamic selection of
those objects in games, which is fulfilled through the use of Tags
and Selectors respectively.

Calligraphic Structure in a Sculptural Context
Mixing calligraphic and sculptural hypertext for interactive nar-
rative is not new; Storyspace 3 does this with sculptural elements
existing within a broader calligraphic context [6]. However, we
have approached this in a slightly different way in that while indi-
vidual narrative sequences are essentially calligraphic, they exist

Hypertext ’19, September 17–20, 2019, Hof, Germany Green, et al.

within a broader sculptural framework whereby several parallel
Groups or Sequences may be active simultaneously listening for
relevant triggers and interactions. As such, the Events within these
Sequences, while linked calligraphically to their siblings, are implic-
itly linked in potential to the Events of other Sequences. A player
in an RPG, for example, may pursue the main storyline only to
trigger a sidequest half way through and divert their attention to
that. While structurally the main quest and side quest are made
up of calligraphically-ordered Sequences of narrative Events, the
potential to shift between the two is closer on a structural level
to sculptural hypertext. As such, as have created a calligraphic
structure for our individual elements and their constituents, but
they exist within a sculptural context to enable this form of flexible
storytelling that is common within games.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented our theoretical model of interactive
narrative, Novella 2.0, an iteration upon our previous work which
is better suited to supporting video game narrative. This model is
presented as part of the Novella platform, a systems architecture
composed of an authoring system, the model, and an example
implementation in the form of a C# API.

Our model, as part of the described system architecture, takes
novel approaches in its explicit deference of responsibility to other
systems (such as game engines) supporting narrative content and
structure, but recognizing that in a game this sits within other
structures and systems. Taking lessons from hypertext research we
support our own approach to mixing sculptural and calligraphic
structures but rather than sculptural structures within a calligraphic
structure (as in StorySpace 3 [6]) we inverse this as calligraphic
structures within a sculptural structure. Finally we also expand our
vocabulary to address specific aspects of game narrative content
beyond structure, particularly in improving upon our previous
model iteration by providing better and more explicit support for
Discoverable Narrative.

Our future work includes working towards unification of our
theoretical model with a sophisticated User Experience for authors.
This refers to the experience of the authoring process, and the
interface of our authoring tools is a large part of this. We have
previously made initial explorations into User Experience and in-
terface paradigms in authoring tools [18]. We intend to further
continue this work with experiments to discover hindering and
aiding practices within User Experience and interface design for
interactive narrative authoring tools. We also intend to continue
the refinement of the theoretical model to ensure that it is best
capable of capturing the nuances of video game narrative while
still maintaining an understandable and eloquent model design.

REFERENCES
[1] Espen Aarseth. 2012. A Narrative Theory of Games. In Proceedings of the Interna-

tional Conference on the Foundations of Digital Games (FDG ’12). ACM, New York,
NY, USA, 129–133.

[2] Ernest Adams. 2014. Fundamentals of Game Design (3rd ed.). New Riders Pub-
lishing, Thousand Oaks, CA, USA.

[3] Claus Atzenbeck, Thomas Schedel, Manolis Tzagarakis, Daniel Roßner, and Lucas
Mages. 2017. Revisiting Hypertext Infrastructure. In Proceedings of the 28th ACM
Conference on Hypertext and Social Media. ACM, 35–44.

[4] Mark Bernstein. 1998. Patterns of Hypertext. In Proceedings of the Ninth ACM
Conference on Hypertext and Hypermedia. ACM, New York, NY, USA, 21–29.

[5] Mark Bernstein. 2001. Card shark and thespis: exotic tools for hypertext narrative.
In Proceedings of the twelfth ACM conference on Hypertext and Hypermedia.

[6] Mark Bernstein. 2016. Storyspace 3. In Proceedings of the 27th ACM Conference
on Hypertext and Social Media. ACM, New York, NY, USA.

[7] Mark Bernstein, David E. Millard, and Mark J. Weal. 2002. On Writing Sculptural
Hypertext. In Proceedings of the Thirteenth ACM Conference on Hypertext and
Hypermedia (HYPERTEXT ’02). ACM, New York, NY, USA, 65–66.

[8] Jim Bizzochi. 2007. Games and Narrative: An Analytical Framework. Loading -
The Journal of the Canadian Games Studies Association 1, 1 (2007), 5–10.

[9] Staffan Björk and Jussi Holopainen. 2003. Describing Games - An Interaction-
Centric Structural Framework. In Proceedings of the 2003 DiGRA International
Conference: Level Up, Vol. 2. 4–6.

[10] Barbaros Bostan and Orcun Turan. 2017. Deconstructing Game Stories with
Propp’s Morphology (system), Vol. 17. Äřstanbul, TURKEY, 18.

[11] Jeffrey E. Brand and Scott J. Knight. 2005. The Narrative and Ludic Nexus in Com-
puter Games: Diverse Worlds II. In Proceedings of the 2005 DiGRA International
Conference: Changing Views: Worlds in Play, Vol. 3.

[12] Andrew Brusentsev, Michael Hitchens, and Deborah Richards. 2012. An Investi-
gation of Vladimir Propp’s 31 Functions and 8 Broad Character Types and How
They Apply to the Analysis of Video Games. In Proceedings of The 8th Australasian
Conference on Interactive Entertainment: Playing the System (IE ’12). ACM, New
York, NY, USA, 2:1–2:10.

[13] Joseph Campbell. 2008. The Hero with a Thousand Faces. New World Library.
[14] Yun-Gyung Cheong and R. Michael Young. 2006. A Framework for Summarizing

Game Experiences As Narratives. In Proceedings of the Second AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE’06). AAAI
Press, Marina del Rey, California, 106–108.

[15] Guylain Delmas, Ronan Champagnat, and Michel Augeraud. 2007. Bringing
Interactivity into Campbell’s Hero’s Journey. In Proceedings of the 4th Interna-
tional Conference on Virtual Storytelling: Using Virtual Reality Technologies for
Storytelling (ICVS’07). Springer-Verlag, Berlin, Heidelberg, 187–195.

[16] Debra Dixon. 2013. Goal, Motivation and Conflict: The Building Blocks of Good
Fiction. Bell Bridge Books.

[17] Daniel Green. 2019. Don’t Forget to Save! The Impact of User Experience Design on
Effectiveness of Authoring Video Game Narratives. Transfer Thesis. Bournemouth
University.

[18] Daniel Green, Charlie Hargood, and Fred Charles. 2018. Contemporary issues
in interactive storytelling authoring systems. In International Conference on
Interactive Digital Storytelling. Springer, 501–513.

[19] Daniel Green, Charlie Hargood, Fred Charles, and Alexander Jones. 2018. Novella:
A Proposition for Game-Based Storytelling. InNarrative and Hypertext 2018. ACM,
Baltimore, Maryland.

[20] Mads Haahr. 2018. Playing with Vision: Sight and Seeing as Narrative and Game
Mechanics in Survival Horror. In International Conference on Interactive Digital
Storytelling. Springer, 193–205.

[21] Charlie Hargood, Verity Hunt, Mark J. Weal, and David E. Millard. 2016. Patterns
of Sculptural Hypertext in Location Based Narratives. In Proceedings of the 27th
ACM Conference on Hypertext and Social Media. ACM, New York, NY, USA, 61–70.

[22] Charlie Hargood, Mark J. Weal, and David E. Millard. 2018. The StoryPlaces
Platform: Building a Web-Based Locative Hypertext System. In Proceedings of the
29th on Hypertext and Social Media (HT ’18). ACM, New York, NY, USA, 128–135.

[23] Henry Jenkins. 2004. Game Design as Narrative Architecture. First Person. New
Media as Story, Performance, and Game (eds.) Pat Harrigan and NoahWardrip-Fruin
44 (2004), 53.

[24] Petri Lankoski and Staffan Björk. 2015. Formal Analysis of Gameplay. In Game
Research Methods. ETC Press, Pittsburgh, PA, USA, 23–35.

[25] David E. Millard, Charlie Hargood, Michael O. Jewell, and Mark J. Weal. 2013.
Canyons, Deltas and Plains: Towards a Unified Sculptural Model of Location-
based Hypertext. In Proceedings of the 24th ACM Conference on Hypertext and
Social Media. ACM, New York, NY, USA, 109–118.

[26] V. Propp. 2010. Morphology of the Folktale: 2nd Edition. University of Texas Press.
[27] Nitin Sawhney, David Balcom, and Ian Smith. 1996. HyperCafe: Narrative and

Aesthetic Properties of Hypervideo. In Proceedings of the the Seventh ACM Con-
ference on Hypertext (HYPERTEXT ’96). ACM, New York, NY, USA, 1–10.

[28] Ted Smith and Steve Bernhardt. 1988. Expectations and experiences with Hyper-
Card: a pilot study. In Proceedings of the 6th annual international conference on
Systems documentation. ACM, 47–56.

[29] Nils Sørensen and Mette Pødenphant. 2013. Narratification: Unifying Narrative
and Gameplay. (2013).

[30] Mark J. Weal, David E. Millard, Danius T. Michaelides, and David C. De Roure.
2001. Building Narrative Structures Using Context Based Linking. In Hypertext
’01. Proceedings of the Twelfth ACM conference on Hypertext, Aarhus, Denmark.
37–38.

[31] José P. Zagal, Michael Mateas, Clara Fernández-Vara, Brian Hochhalter, and
Nolan Lichti. 2005. Towards an Ontological Language for Game Analysis. In
Proceedings of the 2005 DiGRA International Conference: Changing Views: Worlds
in Play, Vol. 3.

	Abstract
	1 Introduction
	2 Background
	2.1 Hypertext Models
	2.2 Game Modeling Approaches

	3 The Novella 2.0 Model
	3.1 Worked Example
	3.2 Discoverable Narrative via Structure

	4 System Architecture
	4.1 API Implementation

	5 Innovations
	6 Conclusion and Future Work
	References

