
Asynchronous Stochastic Variational Inference
Saad Mohamad1 Abdelhamid Bouchachia1 and Moamar Sayed-Mouchaweh2 ∗

1- Department of Computing - Bournemouth University
Poole, UK

2- Department of Informatics and Automatics - Ecole des Mines
Douai, France

Abstract. Stochastic variational inference (SVI) employs stochastic
optimization to scale up Bayesian computation to massive data. Since SVI
is at its core a stochastic gradient-based algorithm, horizontal parallelism
can be harnessed to allow larger scale inference. We propose a lock-free
parallel implementation for SVI which allows distributed computations
over multiple slaves in an asynchronous style. We show that our implemen-
tation leads to linear speed-up while guaranteeing an asymptotic ergodic
convergence rate O(1/

√
T) while the number of slaves is bounded by

√
T

(T is the total number of iterations). The implementation is done in a
high-performance computing environment using message passing interface
for python (MPI4py). The empirical evaluation shows that our parallel
SVI is lossless, performing comparably well to its counterpart serial SVI
with linear speed-up.

1 Introduction

Probabilistic models with latent variables have grown into a backbone in many
modern machine learning applications such as text analysis, computer vision,
time series analysis, network modelling, and others. The main challenge in
such models is to compute the posterior distribution over some hidden variables
encoding hidden structure in the observed data. Generally, computing the
posterior is intractable and approximation is required. Markov chain Monte Carlo
(MCMC) sampling has been the dominant paradigm for posterior computation. It
constructs a Markov chain on the hidden variables whose stationary distribution
is the desired posterior. Hence, the approximation is based on sampling for a
long time to (hopefully) collect samples from the posterior [1].

Recently, variational inference (VI) has emerged as a deterministic alternative
approach to Markov chain Monte Carlo (MCMC) sampling. In general, VI tends
to be faster than MCMC which makes it more suitable for problems with large
data sets. VI turns the inference problem to an optimization problem by positing
a simpler family of distributions and finding the member of the family that is
closest to the true posterior distribution [2]. Such optimization problem is a non-
convex one which requires sophisticated tools to tackle. Stochastic optimisation
has been applied to VI in order to cope with massive data [3]. While VI requires

∗A. Bouchachia was supported by the European Commission under the Horizon 2020 Grant
687691 related to the project: PROTEUS: Scalable Online Machine Learning for Predictive
Analytics and Real-Time Interactive Visualization

repeatedly iterating over the whole data set before updating the variational
parameters (parameters of the variational objective), stochastic VI (SVI) updates
the parameters every time a data example is processed. Therefore, by the end of
one pass through the dataset, the parameters will have been updated multiple
times. Hence, the parameters converge faster with less computational resources.
The idea of SVI is to move the variational parameters at each iteration in the
direction of a noisy estimate of the variational objective’s natural gradient based
on a couple of examples [3]. Following these gradients with certain conditions
on the (decreasing) learning rate schedule, SVI provably converges to a local
optimum [4].

Although stochastic optimization improves the performance of VI, its serial
employment prevents scaling up the inference. Since SVI is basically a stochastic
gradient-based optimisation algorithm, horizontal parallelism is straightforward.
That is, computing stochastic gradients of a batch of data samples can be done
locally in parallel (on multi-core machines) given that the parameters update is
synchronised. However, such synchronisation limits the scalability by since slaves
need to send their stochastic gradients to the master prior to each parameter
update. Hence, synchronous methods suffer from the curse of the last reducer;
that is, a single slow slave can dramatically slow down the whole performance.
Thus, asynchronous parallel optimization is an interesting alternative provided it
maintains comparable convergence rate to its synchronous counterpart. Indeed,
asynchronous parallel stochastic gradient-based optimisation algorithms have
recently received broad attention [5, 6, 7, 8, 9].

Authors in [6] show that for smooth stochastic convex problems the asyn-
chronisation effects are asymptotically negligible and order-optimal convergence
results can be achieved. Since the SVI objective function is non-convex, we are
interested in the asynchronous parallel stochastic gradient algorithm (ASYSG) for
smooth non-convex optimization [10]. A recent study [11] breaks the usual con-
vexity assumption taken by [6]. Nonetheless, theoretical guarantees (convergence
and speed-up) for many recent successes of ASYSG are reported. In this paper,
we use the ASYSG algorithm proposed in [6] to come up with an asynchronous
SVI (ASYSVI) algorithm for a wide family of Bayesian models. We also adapt
the theoretical studies of ASYSG for smooth non-convex optimization from [11]
to explain ASYSVIs’ convergence and speed-up properties. We also propose a
novel contribution to linearly speed up SVI by distributing its stochastic natural
gradient computations in an asynchronous way while guaranteeing an ergodic
convergence rate O(1/

√
T) under some assumptions. Latent Dirichlet allocation

is used as a case study to empirically evaluate ASYSVI.
The rest of the paper is structured as follows. We describe our ASYSVI

algorithm and its convergence analysis in Sec. 2. Latent Dirichlet allocation case
study is derived in Sec. 3. Empirical evaluation is presented in Sec. 4 and the
paper concludes with a discussion in Sec. 5. We also attached an appendix where
a background on variational and stochastic variational inference is provided in
Sec. A. Related work is discussed in Sec. B.

2

Algorithm 1 ASYSVI-Master
1: Input: number of iteration T and step-size {ρt}t=0,...,T−1
2: initialize: λ0 randomly and t to 0
3: while (t < T) do
4: Aggregate M stochastic natural gradients from the slaves:

∇̂L1(λ
t−τt,1), ..., ∇̂LM (λt−τt,M)

5: Average the M stochastic natural gradients. GtM =
∑
m ∇̂Lm(λt−τt,m)

6: Update the current estimate of the global variational parameter. λt+1 =
λt + ρtG

t
M

7: t = t+ 1
8: end while

Algorithm 2 ASYSVI-Slave
1: Input: data size D
2: while (True) do
3: Sample a data point xi uniformly from the data set
4: Pull a global variational parameter λ∗ from the master
5: Compute the local variational parameters φ∗i (λ∗) corresponding to the

data point xi and the global variational parameter λ∗, φ∗i (λ∗) =
argmaxφi

Li(λ∗,φi)
6: Compute the stochastic natural gradient with respect to the global param-

eter λ, gi(λ) = α+DEφi(λ)[t(xi, zi)]− λ
7: Push gi(λ∗) to the master
8: end while

2 Asynchronous Stochastic Variational Inference

ASYSVI is presented analogously to ASYSG in [11] but in the context of VI.
The architecture of the computer network on which ASYSVI is run is known
as the star-shaped network. In this network, a master machine maintains the
global variational parameter λ, whereas other machines serve as slaves which
independently and simultaneously compute the local variational parameters φ
and stochastic gradients of ELBO L(λ). The slaves only communicate with
the master to exchange information in which they access the state of the global
variational parameter and provide the master with the stochastic gradients. These
gradients are computed with respect to λ based on few data points acquired from
distributed sources. The master aggregates predefined amounts of stochastic
gradients from slaves nonchalantly about the sources of the collected stochastic
gradients. Then, it updates its current global variational parameter. The update
step is performed as an atomic operation where slaves cannot read the value of
the global variational parameter during this step. However, vertical parallelism
can be achieved by adopting the ASYSG algorithm proposed in [5]. Furthermore,
a hybrid horizontal-vertical parallelism could be achieved by combining the
mechanism used in [12] with ASYSVI (more details in Sec. 5).

3

The key difference between ASYSVI and the synchronous parallel SVI is that
ASYSVI does not lock the slaves until the master’s update step is done. That is,
the slaves might compute some stochastic gradients based on early value of the
global variational parameter. By allowing delayed and asynchronous updates,
one might expect slower convergence if any. In the next section, we apply the
study of [11] on SVI to show that the effect of stochastic gradients delay will
vanish asymptotically. The algorithms of ASYSVI-mater and ASYSVI-salve are
shown in Alg. 1 and Alg. 2. We denote by τt,m the delays between the current
iteration t and the one when the slave pulled the global variational parameter at
which it computed the stochastic gradient.

2.1 Convergence Analysis

Following [11, 6], we take the same assumptions, but replace the gradient with
the natural gradient:

• Unbiased gradient: the expectation of the stochastic natural gradient of
Eq. (16) is equivalent to the natural gradient of Eq. (13):

∇̂L(λ) = E[∇̂Li(λ)] (1)

where ∇̂ denotes natural gradient. This assumption already holds in SVI
problems for the family of models shown in Sec. A.

• Bounded variance: the variance of the stochastic natural gradient is bounded
for all λ ∈ G, E[||∇̂Li(λ) − ∇̂L(λ)||2] ≤ σ2. By applying SVI natural
gradient, we obtain:

E[||nEφi(λ)[t(xi, zi)]−
n∑
i=1

Eφi(λ)[t(xi, zi)]||2] ≤ σ2 (2)

• Lipschitz-continuous gradient: the natural gradient is L-Lipschitz-continuous
for all λ ∈ G an λ′ ∈ G, ||∇̂L(λ)−∇̂L(λ′)|| ≤ L||λ−λ′||. By applying SVI
natural gradient, we end up with the following formulation:

||
n∑
i=1

Eφi(λ)[t(xi, zi)]− λ−
n∑
i=1

Eφi(λ′)[t(xi, zi)] + λ′|| ≤ L||λ− λ′|| (3)

• Bounded delay: All delay variables τt,m are bounded:

max
t,m

τt,m ≤ B (4)

In addition to these assumptions, authors [11, 6] assume that each slave receives
a stream of independent data points. Although this assumption might not be
satisfied strictly in practice, we follow the same assumption for analysis purpose.
Thus, the same theoretical results obtained by [11] can be applied for ASYSVI,

4

namely, an ergodic convergence rate O(1/
√
MT) provided that T is greater than

O(B2). The results also show that, since the number of slaves is proportional
to B, the ergodic convergence rate is achieved as long as the number of salves
is bounded by O(

√
T/M). Note that O(1/

√
MT) is consistent with the serial

stochastic gradient (SG) and the stochastic variational inference (SVI). Thus,
ASYSG and ASYSVI allow for a linear speed-up if B ≤ O(

√
T/M).

3 Case Study: Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is an instance of the family of models described
in Sec A where the global, local, observed variables and their distributions are
set as follows:

• the global variables {β}Kk=1 are the topics in LDA. A topic is a distribution
over the vocabulary, where the probability of a word w in topic k is denoted
by βk,w. Hence, the prior distribution of β is a Dirichlet distribution
p(β) =

∏
kDir(βk;η)

• the local variables are the topic proportions {θd}Dd=1 and the topic as-
signments {{zd,w}Dd=1}Ww=1 which index the topic that generates the ob-
servations. Each document is associated with a topic proportion which
is a distribution over topics, p(θ) =

∏
dDir(θd;α). The assignments

{{zd,w}Dd=1}Ww=1 are indices, generated by θd, that couple topics with words,
p(zd|θ) =

∏
w θd,zd,w

• the observations xd are the words of the documents which are assumed to
be drawn from topics β selected by indices zd , p(xd|zd,β) =

∏
w βzd,w,xd,w

In LDA, documents are represented as random mixtures over latent topics, where
each topic is characterized by a distribution over words [13]. LDA assumes the
following generative process:

1 Draw topics βk ∼ Dir(η, ..., η) for k ∈ {1, ...,K}

2 Draw topic proportions θd ∼ Dir(α, ..., α) for d ∈ {1, ..., D}

2.1 Draw topic assignments zd,w ∼Mult(θd) for w ∈ {1, ...,W}
2.1.1 Draw word xd,w ∼Mult(βzd,w)

According to Sec. A, each variational distribution is assumed to come from the
same family of the true one. Hence, q(βk|λk) = Dir(λk), q(θd|γd) = Dir(γd)
and q(zd,w|φd,w) = Mult(φd,w). To compute the stochastic natural gradient
gi in Alg. 2 for LDA, we need to find the sufficient statistic t(.) presented in
Eq. (7). By writing the likelihood of LDA in the form of Eq. (7), we obtain
t(xd, zd) =

∑W
w=1 Izd,w,xd,w

, where Ii,j is equal to 1 for entry (i, j) and 0 for all
the rest. Hence, the stochastic natural gradient gi(λk) can be written as follows:

gi(λk) = η +D

W∑
w=1

φki,wIk,xi,w
− λk (5)

5

Table 1: Parameters settings
Data sets Enron emails NYTimes news articles Wikipedia articles
batch 16 64 256 1024 16 64 256 1024 16 64 256 1024
κ 0.7 0.7 0.5 0.5 0.7 0.7 0.5 0.5 0.7 0.7 0.5 0.5
τ0 1024 24 24 1 1024 24 24 1 1024 1024 1024 1024
perplexity 5919 5348 5264 4771 11989 10156 9015 5501 1446 1390 1355 1332

Details on how to compute the local variational parameters φ∗i (λ∗) in Alg. 2 can
be found in [3].

Having computed the elements needed to run ASYSVI’s algorithms 1 and 2,
we move to the convergence analysis. Since the data is assumed to be subsampled
uniformly, the unbiased gradient assumption holds for LDA. We can always find
a constant variable to bound the variance. At the worst case, the variance of the
stochastic natural gradient of LDA can be bounded by DW

(
maxi,w(φ

k
i,w)

2 −
mini′,w′(φki′,w′)2

)
, ∀k. Therefore, it can be bounded by O((DW)2). It is clear

that the Lipschitz-continuous gradient can be satisfied for any class of the family
models proposed in Sec. A and hence, for LDA. Finally, the bounded delay can
be guaranteed through the implementation. Therefore, ASYSVI of LDA can
converge since the aforementioned assumptions can be satisfied.

4 Experimental Results

(a) TSP (b) RSP

Fig. 1: Comparing ASYSVI LDA to online LDA on Enron dataset

In the following, we demonstrate the usefulness of distributing the computation
of SVI, mainly the speed-up advantages of ASYSVI. For this purpose, we compare
the speed-up of ASYSVI LDA against serial SVI LDA (online LDA [14]). The
two versions are evaluated on three datasets consisting of very large document
collections. We also evaluate ASYSVI LDA in the streaming setting where new
documents arrive in the form of stream. The implementation is available in
PROTEUS SOLMA Library 1. The evaluation is done using held-out perplexity
as a measure of model fit. Perplexity is defined as the geometric mean of the
inverse marginal probability of each word in the held-out set of documents [13].

1https://github.com/proteus-h2020/proteus-solma/tree/master/src/main/scala/eu/proteus/solma/asvi

6

(a) TSP on Enron dataset (b) RSP on Enron dataset

Fig. 2: TSP and RSP with respect to streamming samples on Enron dataset

(a) TSP on NYTimes dataset (b) RSP on NYTimes dataset

Fig. 3: TSP and RSP with respect to streamming samples on NYTimes dataset

(a) TSP on Wikipedia dataset (b) RSP on Wikipedia dataset

Fig. 4: TSP and RSP with respect to streaming samples on Wikipedia dataset

To validate the speed-up properties, following [11], we compute the running time
speed-up (TSP):

TSP =
running time of SVI-LDA

running time of DPSVI-LDA

The running time of both models is taken when they achieve the same final
held-out perplexity.

Datasets: we perform all comparisons and evaluations on three corpora of
documents. The first two corpora are available on [15]. The third corpus was

7

used in [14].
• Enron emails: contains 39, 861 email messages from about 150 users. Data
is pre-processed by removing all words not in a vocabulary dictionary of
28, 102 words.
• NYTimes news dataset: contains 300, 000 news articles from New York

Times. Data is pre-processed by removing stopwords (not in a dictionary
of 102, 660 words).

• Wikipedia articles: contains 1M documents downloaded from Wikipedia.
Data is proceeded before usage by removing all words not in a vocabulary
dictionary of 7, 700 words.

Settings the parameters: In all experiments, α and η are fixed at 0.01 and
the number of topics K = 50. We evaluated a range of settings of the learning
parameters, κ, τ0, and batch on all corpora. The parameters κ and τ0, defined
in [14], control the learning step-size ρt. We use 29, 861 emails from Enron data,
50, 000 news articles from NYTimes data and 300, 000 documents from Wikipedia
data as training sets. We also reserve 5, 000 documents as a validation set and
another 5, 000 documents as a testing set. The online LDA is run (one time per
corpus) on the training sets for κ ∈ {0.5, 0.7, 0.9}, τ0 ∈ {1, 24, 256, 1024}, and
batch ∈ {16, 64, 256, 1024}. Table 1 summarises the best settings of each batch
along with the resulting perplexity on the test set for each corpus.

Comparing Serial online LDA and asynchronous LDA: for each dataset,
we set the parameters setting that give the best performance (least perplexity).
ASYSVI LDA is then compared against serial SVI LDA using the same parameters
setting.

The empirical results shown in this paper are obtained from a python imple-
mentation on high-performance computing (HPC) environment using message
passing interface (MPI) for python (MPI4py). The cluster consists of 10 nodes,
excluding the head node, with each node is a four-core processor. We run AYSVI
LDA on Enron dataset for number of workers nW ∈ {2, 4, 6, 8, 9, 18, 27, 36}, B is
set to 5. The number of employed nodes is equal to nW as long as nW is less
than 9. As nW becomes higher than the available nodes, the processors’ cores
of nodes are employed as slaves until all the cores of all the nodes are used i.e.,
9 × 4 = 36. Since the batch size is fixed to 1024, each slave processes a batch
of data of size S = 1024/M per iteration, where M is fixed to 36. Thus, the
gradient computed by each slave will be multiplied by D/S. Hence, line number
6 of Alg. 2 becomes, gi(λ) = α+ (D/S)Eφi(λ)[t(xi, zi)]− λ.

Figure 1 summarises the total speed-up (i.e., TSP measured at the end of the
algorithm) as well as the ratio of serial LDA perplexity to parallel LDA (RSP)
on the test set for Enron dataset. It shows TSP and RSP results with respect
to the number of slaves. It is clear that as long as each node is assigned one
slave, the speed-up is linear which demonstrates the convergence analysis done
in Sec. 2. Linear speed-up slowly converts to sub-linear as solo machines host
more than one slave. The main reason of such behaviour is the communication
delay caused by the increase of the network traffic. Hence, TSP is affected by the

8

hardware. The communication cost starts affecting the speed-up when it becomes
comparable to the local computation. Hence, increasing the local computation
by increasing the batch size can be adopted to soften the communication effect.
However, this decreases the convergence rate and increase local memory load.
Hence, a balanced trade-off should be considered. RSP in Figure 1 shows that
although the speed of online LDA has been increased up to 15 times, performance
is not seriously affected. We also evaluate TSP and RSP on NYTimes and
Wikipedia for nW = 27. The processing speed of Online LDA on NYTimes
has been increased 19.29 times, TSP = 19.29, with slight loss of performance,
RSP = 0.97. For Wikipedia, TSP = 18.58 and RSP = 0.94.

Figures 2, 3 and 4 present TSP and RSP with respect to streaming samples
from Enron, NYTimes and Wikipedia datasets. These figures show the per-
formance of ASYSVI in a true online setting where the algorithm continually
collects samples from the hard driver for the case of Enron and NYTimes or by
downloading online in the case of Wikipedia. The perplexity is obtained online on
the coming batches before being used to update the model parameters. The plots
in the figures are slightly softened using a low-pass filter in order to make them
easy to read. These plots show that the speed-up becomes invariant as more
samples are processed. The poor speed-up in the beginning is normally caused
by initialization and loading process. It can be noticed that the performance
of ASYSVI LDA suffers at the beginning then it becomes comparable to online
LDA after certain number of iterations. This behaviour can be explained by the
convergence condition shown in Sec. 2 (T is greater than O(B2)). Thus, as the
number of iterations increases, the convergence of ASYSVI LDA is guaranteed
and its performance becomes comparable to that of online LDA. Hence, RSP
approaches 1.

5 Conclusion and Discussion

We have introduced ASYSVI, an asynchronous parallel implementations for SVI
on computer cluster. ASYSVI leads to linear speed-up, while guaranteeing an
asymptotic convergence rate given some assumptions involving the number of
the slaves and iterations. Empirical results using latent Dirichlet allocation topic
model as a case study have demonstrated the advantages of ASYSVI over SVI,
particularly with respect to the key issue of speeding-up the computation while
maintaining comparable performance to SVI.

In future work, vertical parallelism can be adopted along with the proposed
horizontal one leading to a hybrid horizontal-vertical parallelism. In such case,
multi-core processors will be used for the vertical parallelism, while horizontal
parallelism is achieved on a multi-node machine. Another avenue of interest is to
derive an algorithm for streaming, distributed, asynchronous inference where the
number of instances is not known. Moreover, it is interesting to apply ASYSVI
on very large scale problems and particularly on other models of the family
discussed in Sec. A and studying the effect of the statistical properties of those
models.

9

References
[1] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An

introduction to mcmc for machine learning. Machine learning, 50(1-2):5–43, 2003.

[2] Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends R© in Machine Learning, 1(1-2):1–305, 2008.

[3] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[4] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[5] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems, pages 693–701, 2011.

[6] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
Advances in Neural Information Processing Systems, pages 873–881, 2011.

[7] Ruiliang Zhang and James T Kwok. Asynchronous distributed admm for consensus
optimization. In ICML, pages 1701–1709, 2014.

[8] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous
mini-batch algorithm for regularized stochastic optimization. IEEE Transactions on
Automatic Control, 61(12):3740–3754, 2016.

[9] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ram-
chandran, and Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic
optimization. arXiv preprint arXiv:1507.06970, 2015.

[10] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numerical
methods, volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[11] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic
gradient for nonconvex optimization. In Advances in Neural Information Processing
Systems, pages 2737–2745, 2015.

[12] Parameswaran Raman, Jiong Zhang, Hsiang-Fu Yu, Shihao Ji, and SVN Vishwanathan.
Extreme stochastic variational inference: Distributed and asynchronous. arXiv preprint
arXiv:1605.09499, 2016.

[13] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[14] Matthew Hoffman, Francis R Bach, and David M Blei. Online learning for latent dirichlet
allocation. In advances in neural information processing systems, pages 856–864, 2010.

[15] M. Lichman. UCI machine learning repository, 2013.

[16] Antti Honkela and Harri Valpola. On-line variational bayesian learning. In 4th International
Symposium on Independent Component Analysis and Blind Signal Separation, pages 803–
808, 2003.

[17] Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan.
Streaming variational bayes. In Advances in Neural Information Processing Systems,
pages 1727–1735, 2013.

[18] Willie Neiswanger, Chong Wang, and Eric Xing. Embarrassingly parallel variational
inference in nonconjugate models. arXiv preprint arXiv:1510.04163, 2015.

10

A Background

We derive the model family studied in this paper and review SVI following the
same pattern as in [3].

Model family. Our family of models consists of three random variables:
observations x = x1:n, local hidden variables z = z1:n, global hidden variables β
and fixed parameters α. The model assumes that the distribution of the n pairs
of (xi, zi) is conditionally independent given β. Further, their distribution and
the prior distribution of β are in an exponential family:

p(β,x, z|α) = p(β|α)
n∏
i=1

p(zi,xi|β), (6)

p(zi,xi|β) = h(xi, zi) exp
(
βT t(xi, zi)− a(β)

)
, (7)

p(β|α) = h(β) exp
(
αT t(β)− a(α)

)
(8)

Here, we overload the notation for the base measures h(.), sufficient statistics t(.)
and log normalizer a(.). While the proposed approach is generic, we assume a
conjugacy relationship between (xi, zi) and β. That is, the distribution p(β|x, z)
is in the same family as the prior p(β|α).

Note that this innocent looking family of models includes (but is not limited to)
latent Dirichlet allocation [13], Bayesian Gaussian mixture, probabilistic matrix
factorization, hidden Markov models, hierarchical linear and probit regression,
and many Bayesian non-parametric models.

Mean-field variational inference. Variational inference (VI) approximates
intractable posterior p(β, z|x) by positing a family of simple distributions q(β, z)
and find the member of the family that is closest to the posterior (closeness is
measured with KL divergence). The resulting optimization problem is equivalent
maximizing the evidence lower bound (ELBO):

L(q) = Eq[log p(x, z,β)]− Eq[log p(zβ)] ≤ log p(x) (9)

Mean-field is the simplest family as it allows the distribution over hidden variables
to factorize:

q(β, z) = q(β|λ)
n∏
i=1

p(zi|φi) (10)

Each variational distribution is assumed to come from the same family of the
true one. Mean-field VI optimizes the new ELBO with respect to the local and
global variational parameters φ and λ:

L(λ,φ) = Eq

[
log

p(β)

q(β)

]
+

n∑
i=1

Eq

[
log

p(xi, zi|β)
q(zi)

]
(11)

It iteratively updates each variational parameter holding the others fixed. With
the assumptions taken so far, each update has a closed form solution. The local

11

parameters are a function of the global ones:

φ(λt) = argmax
φ
L(λt,φ) (12)

The global parameters summarise the dataset (clusters in Bayesian Gaussian
mixture, topics in LDA):

L(λ) = max
φ
L(λ,φ) (13)

To find optimal λ given fixed φ, we compute the natural gradient of L(λ) and
set it to zero by setting:

λ∗ = α+

n∑
i=1

Eφi(λt)[t(xi, zi)] (14)

Thus, the new optimal global parameters are λt+1 = λ∗. The algorithm works
by iterating between computing the optimal local parameters given the global
ones

(
Eq. (12)

)
and vice versa

(
Eq. (14)

)
.

Stochastic variational inference. Rather than analysing all the data to
compute λ∗ at each iteration, stochastic optimization can be used. Assuming
that the data is uniformity at random selected from the dataset, an unbiased
noisy estimator of L(λ,φ) can be developed based on a single data point:

Li(λ,φi) = Eq

[
log

p(β)

q(β)

]
+ nEq

[
log

p(xi, zi|β)
q(zi)

]
(15)

The unbiased stochastic approximation of the ELBO as a function of λ can be
written as follows:

Li(λ) = max
φi

Li(λ,φi) (16)

Following the same step in the previous section, we obtain a noisy unbiased
estimate of Eq. (14):

λ̂ = α+ nEφi(λt)[t(xi, zi)] (17)

Iteratively, we move the global parameters a step-size ρt in the direction of the
noisy natural gradient:

λt+1 = (1− ρt)λt + ρtλ̂ (18)

With certain conditions on ρt, the algorithm converges (
∑∞
t=1 ρt =∞,

∑∞
t=1 ρ

2
t <

∞)[4].

B Related Work

Few work has been proposed to scale VI to large datasets. We can distinguish two
major classes. The first class is based on the Bayesian filtering approach [16, 17].
That is, the sequential nature of Bayes theorem is exploited to recursively update
an approximation of the posterior. Particularly, VI is used between the updates
to approximate the posterior which becomes the prior of the next step. Author

12

in [16] uses forgetting factors to decay the contribution of old data in favour of
a new better one. The algorithm proposed in [17] considers a sequence of data
batches and iterates over the data in each batch until convergence. Relying on
a master-slave architecture, the computation of the batches posterior is done
in a distributed and asynchronous manner. That is, the algorithm applies VI
by performing asynchronous Bayesian updates to the posterior as data batches
arrive continuously.

The second class of work is based on optimization [3, 18, 12]. As we already
discussed, SVI proposed by [3] employs stochastic optimization to scale up
Bayesian computation to massive data. SVI is inherently serial and requires the
model parameters to fit in the memory of a single processor. Authors in [18]
present a VI based inference algorithm that runs in parallel on data divided
across several slaves. However at each iteration, the slaves are synchronized to
combine their obtained parameters. Such synchronisation limits the scalability
and decreases the speed of the update to that of the slowest slave. To avoid bulk
synchronization, authors in [12] propose an asynchronous and lock-free update. In
this update, vertical parallelism is adopted, where each processor asynchronously
updates a subset of the parameters based on a subset of attributes. In contrast,
we adopt horizontal parallelism update based on few (mini-batched or single) data
points acquired from distributed sources. The update steps are aggregated to
form the global update. Our proposed approach can make use of the mechanism
proposed by [12] to achieve a hybrid horizontal-vertical parallelism. On the
contrary to [12], our approach is not customised for LDA and can be applied to
any of the model family presented in Sec. A

13

	Introduction
	Asynchronous Stochastic Variational Inference
	Convergence Analysis

	Case Study: Latent Dirichlet Allocation
	Experimental Results
	Conclusion and Discussion
	Background
	Related Work

