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Abstract 

Peripheral neuropathy is one of the serious complications of diabetes. Symptoms such as 
tingling and loss of touch sensation are commonly associated with the early stages of 
neuropathy causing numbness in the feet. Early detection of this condition is necessary in 
order to prevent the progression of the disease. Out of many detection techniques vibration 
perception is becoming the gold standard for neuropathy assessment. Devices like tuning fork, 
Biothesiometer and Neurothesiometer use this technology but require an operator to record 
and manually interpret the results. The results are user-dependent and are not consistent. To 
overcome these limitations, a platform-based device “VibraScan” was developed that can be 
self-operated and results displayed on a user interface. The development of the device is 
based on studying the effect of the vibration on the human subject by identifying the 
receptors responsible for sensation. The requirement of generating vibration was achieved by 
selecting a specific actuator that creates vibration perpendicular to the contact surface. The 
battery operated VibraScan is wirelessly controlled by software to generate vibration for 
determining the vibration perception threshold (VPT). Care has been taken while developing 
the user interface for human safety with the vibration intensity. The device can be operated 
without any assistance and results are automatically interpreted in terms of severity level 
indicated similar to the traffic-light classification. In order to provide consistent results with 
the existing devices a study was undertaken between Neurothesiometer and VibraScan with 
20 healthy subjects. The results were compared using Bland-Altman plot and a close 
agreement was found between the two measurements.  

VibraScan accurately measures VPT based on the perceived vibration threshold, however, it 

does not predict any risk associated with neuropathy. In order to supplement this device with 

the progression of neuropathy a risk assessment tool was developed for automated prediction 

of neuropathy based on the clinical history of patients. The smart tool is based on the research 

related to the risk factors of diabetic neuropathy which was studied and analysed using 

summarised patient data. Box-Cox regression was used with the response variable (VPT) and a 

set of clinical variables as potential predictors. Significant predictors were: age, height, weight, 

urine albumin to creatinine ratio (ACR), HbA1c, cholesterol and duration of diabetes. Ordinary 

Least Squares Regression was then used with logarithmic (VPT) and the significant predictor 

set (Box-Cox transformed) to obtain additional fit estimates. With the aim to improving the 

precision of VPT prediction, a simulated patient data set (n = 4158) was also generated using 

the mean and the covariance of the original patient variables, but with reduced standard 

errors. For clinical or patient use, providing direct knowledge of VPT was considered less 

helpful than providing a simple risk category corresponding to a range of VPT values. To 

achieve this, the continuous scale VPT was recoded into three categories based on the 

following clinical thresholds in volts (V): low risk (0 to 20.99 V), medium risk (21 to 30.99 V) 

and high risk (≥ 31 V). Ordinal Logistic Regression was then used with this categorical outcome 

variable to confirm the original predictor set. Having established the effectiveness of this 

“classical” baseline, attention turned to Neural Network modelling. This showed that a 

carefully tuned Neural Network based Proportional Odds Model (NNPOM) could achieve a 

classification success >70%, somewhat higher than that obtained with the classical modelling. 

A version of this model was implemented in the VibraScan risk assessment tool. Integrating 

VibraScan and the risk assessment software has created a comprehensive diagnostic tool for 

diabetic neuropathy.  
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Chapter 1 Background literature on diabetic neuropathy 

There are many chronic complications of the Diabetes Mellitus affecting eye, kidney and 

nerves. Microvascular complications with Diabetic retinopathy, nephropathy, and neuropathy 

are the commonest complications amongst them. Diabetic Neuropathy is one of the common 

long term diabetes complications which causes damage to about 50% of patients with diabetes 

(Mukesh et al. 2006). Early detection of neuropathy is necessary to avoid further complications 

that can lead to ulceration and foot amputation.  

Long term poor control of diabetes can cause damage to the nerves that transmit the signal to 

and from spinal cord, skin, muscle and organs. Reduction of touch sensation on the skin 

causing numbness in feet and hands, reduced ability to feel pain and temperature changes, 

tingling or burning sensation, shooting pain or cramps and muscle weakness are the early 

symptoms of the disease (Jayaprakash et al. 2011). This symptom starts at the big toe and as 

the disease progresses it ascend proximally. If the disease is untreated and undiagnosed it may 

lead to long-term complications such as foot ulceration and non-traumatic lower limb 

amputation. 

Despite much medical advancement, devices and methods available for diagnosis of diabetic 

neuropathy are very basic and the incidence of foot ulceration and lower extremity 

amputations are proportionately very high. There are many methods, treatments and medical 

devices available which are used to detect neuropathy, however, there is a need for an 

instrument which can accurately detect and assess the effects of neuropathy at an early stage. 

Thus, from early symptoms of the disease, it is possible to focus and develop residual 

measures which can arrest further progression and save from amputation. 

This project focuses on developing a device for early detection of neuropathy and correlation 

to patient’s clinical history. The device will focus on touch and vibration sensations on skin that 

can accurately provide data related to neuropathy. Based on the data generated from the 

device it would be possible to assess the level of neuropathy and how it progresses over time. 

This research will investigate on devices used to detect the neuropathy based on vibration, 

describing the way for conducting the test and will discuss the results of the test. After 

conducting a thorough literature survey and consulting with the clinicians we have put forward 

a plan for developing an intelligent, smart and user-friendly device. 
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1.1 Diabetes mellitus and its prevalence 

Diabetes Mellitus (DM) is the chronic metabolic disorder which usually occurs due to 

hyperglycemia or the body cannot produce more insulin or the body is unable to use the 

produced insulin. Thus, looking at both the financial as well as effects on the patient’s quality 

of life, control of the disease is important. Increasing sugar level or hyperglycemia is a common 

effect of uncontrolled diabetes. There are three major types of diabetes as type 1 diabetes, 

type 2 diabetes, and gestational Diabetes. 

Type 1, Diabetes mellitus (T1DM) and Diabetic Neuropathy  

Diabetes mellitus (T1DM) also called insulin-dependent diabetes as the body is unable to 

produce insulin. The pancreas is responsible for producing the hormone called insulin. When 

there is autoimmune destruction to the B-cells of the pancreas gland, the body is unable to 

produce insulin. Viral infection is one of the reasons to damage the pancreas, however, a 

common cause is body’s own immune system. Worldwide the prevalence of Type1 DM is 

increasing. In 2014, Out of total 3.5 million diabetes patient in the UK, it has been estimated 

that including all adults and children 10% population is having type 1 diabetes and 90% people 

are having type 2 diabetes (DiabetesUK 2016). Type 1 DM causes major complications that 

affect eye, kidney, and nerve. T1DM affecting the nerves in such a way that the function of the 

nerves deteriorates commonly termed as diabetic neuropathy. There are various symptoms of 

diabetic neuropathy, and as the disease progresses there is a risk of foot ulceration.   

 

Type 2, Diabetes Mellitus (T2DM) and Diabetic Neuropathy  

Diabetes mellitus (T2DM) is also called non-insulin dependent diabetes. Previously it was 

known as adult onset diabetes however as a result of obesity in children, more teenagers are 

now suffering from type 2 diabetes. Type 2 DM is not as serious as type 1 diabetes as there is a 

lack of production of insulin in the body or body cells are restricted to it. People who are obese 

are at the high risk of developing type 2 diabetes as the body cells are resistance to it and 

results in increasing sugar level. Insulin resistance primarily starts in liver and muscle cells. 

However, the long-term effect of type 2 diabetes can affect small blood vessels. Diabetes is 

not curable however type 2 diabetes can be controlled by proper dietary therapy, exercise and 

nutrition management (Kumar et al. 1998). As mentioned in type 1 diabetes, type 2 diabetes 

can also cause complications which affect the nerve known as diabetic neuropathy. The 

number of type 2 diabetes patients is more than type 1 diabetes it is important to know the 

number of neuropathy cases under each category as well as the prevalence of severe 

neuropathies based on ulceration. A report published by Clinical Audit and Registries 
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Management Service Health and Social Care Information Centre is shown in Table 1.1 

comparing type 1 and type 2 diabetes (Ince et al. 2008). 

 
Table 1.1: The audit recorded for ulcer severity in 2014 and 2015 for England and Wales. Patient ulcer severity  

Disease Total number of 
diabetes N=5215 

Type 1 diabetes 
N=610 

Type 2 diabetes 
N=4089 

Numb
er  

Percentage Number Percentage Number  Percentage 

Neuropathy 4309 82.6 534 87.5 3344 81.8 

SINBAD score ≥ 3 2411 46.2 313 51.3 1842 45.0 

 

SINBAD score refers to the Site, Ischemia, Neuropathy, Bacteria infection and Depth (SINBAD) 

which is useful in predicting ulcer outcome and comparison among them (Ince et al. 2008). 

Table 1.1 shows that ulcers occurrence due to the type 1 diabetes is higher than the ulcers 

occurrence due to type 2 diabetes; that is 51.3% compared to 45.0%. Looking at the above 

data, it can be concluded that rates of neuropathy due to type 1 is higher than type 2 diabetes.  

Gestational Diabetes: 

Gestational diabetes is the type of diabetes that occurs during pregnancy, as there is insulin 

resistance during pregnancy. This diabetes needs to be controlled once it is diagnosed. Usually, 

the disease is diagnosed at the later stage of the pregnancy. If the diabetes is not controlled 

then the high blood sugar levels in the mother can be circulated through the placenta to the 

baby which can hamper the growth and development of the baby.  After pregnancy, this type 

of diabetes usually resolves itself. There is a 10% chance that the mother is at the risk of type 2 

diabetes at the later stage of life. Type 2 diabetes usually occurs after few weeks or months or 

a year later. Due to gestational diabetes, there is a high risk to the unborn baby than that of 

the mother. Over gained weight before birth, breathing problem to the baby and diabetes at 

the later stage of life are the major risks to the baby. Due to an overly large baby, the mother 

has to go through the cesarean procedure and there could be risks of damaging heart, kidney, 

and eyes as well.  

 

Effects of Diabetes: 

DM has affected a large number of the population worldwide. According to World health 

organization, the number of people having diabetes have raised from 108 million to 422 

million from 1980 to 2014 (WHO November 2016). In 2016, there were approximately 3.6 
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million people in the UK diagnosed of diabetes (Diabetes UK November 2016) and this figure 

predicted to exceed 5 million by 2025.  

This growing rate of disease causes huge cost burden to the patient, NHS and the society as a 

whole. The Health and Social Care Information Centre recently published a report that the cost 

of primary treatment for diabetes is 2005-6 was £513.9 million and it has risen to £803.1 

million in 2013-14 (NHS Digital, 2014). The total cost attributed to treating type 1 and type 2 

diabetes in UK has been estimated to be 23.7 billion in 2010.  

1.2 Complications of diabetes   

 

Macrovascular complications of diabetes: 

Macrovascular complications due to diabetes are the major cause of death which occurs two 

to four times more likely in the individuals with diabetes than without the disease (Kannel and 

McGee 1979; Morrish et al. 2001; Mulnier 2012; Vamos et al. 2012). Coronary artery disease, 

peripheral arterial disease, and stroke usually refer to Macrovascular complications of 

diabetes. 

Microvascular complications of diabetes: 

Because of Diabetes, there is a high risk of damaging eye, kidney, and nerves of the body 

which can lead to various types of Diabetic retinopathy (DR), Diabetic Nephropathy (DNEP) 

and  Diabetic Neuropathy (DN). 

 

1.2.1 Diabetic neuropathy 

Diabetic neuropathy damages nerve which carries signal from brain, spinal cord, blood vessels, 

muscles, skin and organs. Controlling blood glucose level is the best way to prevent this nerve 

damage. There are about 3.6 million people diagnosed with diabetes in UK, out of which 50% 

of patients may get affected by neuropathies. Chronic painful neuropathy is the common type 

of neuropathy i.e. up to 26% of diabetic patients. It impairs quality of life, considerable 

mortality and increase morbidity (Alleman et al. 2015).  

The exact cause varies based on the type of Neuropathy. Mostly it is believed that 

uncontrolled diabetes damages nerve that reduces the ability of transmitting signal causes 

diabetic neuropathy. It also affects the small blood vessels and restricts the supply of oxygen in 

blood.  There are certain factors such as inflammation in the nerve due to autoimmune 

response, genetic factors and smoking. Smoking can also cause nerve damage as it narrows 

and hardens the arteries and reduces blood flow in limbs which will ultimately damages the 



5 

 

peripheral nerves. Usually the risk of developing diabetic neuropathy increases due to poor 

glycaemic control, diabetes history, overweight, and kidney disease because diabetes can 

damage the kidneys and due to toxins available in the blood can cause nerve damage. Diabetic 

neuropathy is classified into various types such as distal symmetric polyneuropathy, acute 

Sensory Neuropathy, diabetic amyotrophy, diabetic mononeuropathies and painful diabetic 

neuropathy. Diabetic neuropathy affects sensory, autonomous and motor neurons of nervous 

system. 

(a) Distal symmetric polyneuropathy 

DSPN occurs in both type 1 and type 2 diabetes mellitus. In this type of neuropathy, 

the patient may remain asymptomatic and could be unnoticeable for a longer period 

of time. On clinical examination, it is possible to diagnose neuropathy, usually 

symmetrical sensory loss in feet (Kasznicki 2014). The ankle reflexes are mostly small 

or absent. The abnormal muscles sensory function which causes imbalance also occurs 

in patients with DSPN (Van Deursen et al. 1998). 50% of patients with DSPN may suffer 

from these symptoms and pain. There is around 3% to 25% incidence of painful DSPN 

which mostly remains undiagnosed and untreated (Bril et al. 2011). In another study, it 

was found that painful DSPN occurs in 27% of diabetic patients (Harris et al. 1993). It 

was shown that the occurrence of painful DSPN mostly associated with the severity of 

DSPN rather than risk factors related to diabetes (Mondelli et al. 2012). The pain is 

usually symmetrical, distal and severe at night. The painful DSPN can be diagnosed 

through clinical ways or based on the pain as described by the patients. They mostly 

describe the pain as a deep ache, burning, sharp and prickling (Apfel et al. 2001). 

Diagnosis of DSPN should be performed using vibration perception (128-hertz tuning 

fork), 10 g monofilament test, ankle reflexes and pressure sensation (Boulton et al. 

2005b). 

 

(b) Acute Sensory Neuropathy  

Acute sensory neuropathy (ANS) is the form of DSPN (Apfel et al. 2001). Most of the 

symptoms of ASN are similar to DSPN, however, there are major differences in onset, 

signs, and prognosis of the disease. In males, symptoms like weight loss, depression 

and erectile dysfunction are seen commonly. The pain is usually as deep and burning 

as described by the patients. ASN occurs usually in patients with poor blood glucose 

control. As per the report, achieving stable glycemic control can be helpful in resolving 

the symptoms in several months (Boulton et al. 2004). 
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(c) Diabetic amyotrophy (Radiculoplexus neuropathy) 

Diabetic amyotrophy usually affects the nerves in the hips, thigh, buttocks or legs 

causing difficulty in standing, walking or climbing stairs.   It is also known as proximal 

neuropathy or femoral neuropathy. It is commonly seen in patients with type 2 

diabetes. It is characterised by progressive, acute, weakness and pain in the muscles of 

the proximal lower extremities (Pasnoor et al. 2013).  It causes acute disability with 

varying degree of recovery (Nagsayi et al. 2010). The symptoms are usually at one side 

of the body such as causing severe pain in hip, thigh or buttock, causing weak and 

shrinking thigh muscles, abdominal swelling and weight loss. The diagnosis of diabetic 

amyotrophy is possible through neurological examination and getting a clinical history 

of the patients. There are several other neurological examinations available such as 

nerve conduction studies, nerve biopsy, electromyography, and imaging technique 

may be used to confirm the disease. For diagnosing this complication, nerve biopsy is 

considered only when the screening of diabetic amyotrophy remains unclear using 

other techniques. The pain due to neuropathy may be difficult to control. The severe 

pain may be resolved after several months of onset; however residual pain may last 

for years. It has been noted that doses of corticosteroids may be helpful to a few 

patients with diabetic amyotrophic to reduce severe pain (Pasnoor et al. 2013). 

 

(d) Diabetic mononeuropathies 

Mononeuropathies appears greater in patients with diabetes than in general subjects. 

Mononeuropathy or focal neuropathy damages nerve in the face or middle of the 

body. Neuropathies can be developed at the different areas of the body like an elbow 

(ulnar neuropathy), wrist (median neuropathy) and fibular head (peroneal 

neuropathy). It has been noted that if the neuropathies developed in upper 

extremities refers to mononeuropathies or multiple mononeuropathies rather than 

polyneuropathies (Dyck and Harper 1998). Mononeuropathy also occurred when a 

nerve is compressed.  Carpel tunnel syndrome is the common type of neuropathy in 

the subject with diabetes which caused numbness in hand or fingers.  Symptoms 

depend on the particular nerve which is involved. The patient may have pain in the 

lower back, front of the thigh, foot, abdomen or chest. These symptoms may resolve 

without any treatment within a week or months.   
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(e) Painful diabetic neuropathy 

Painful diabetic neuropathy is the common phenotype of diabetic neuropathy. It is 

more significant in type 2 than type 1 diabetes (Hartemann et al. 2011). The pain is 

mostly bilateral which involves lower extremities especially foot and sometimes in 

upper extremities including palms and fingertips (Ziegler 2009). Pain is usually worse 

at night, during stress and fatigue (Davies et al. 2006). The pain described by patients 

are like hot, electric, jolts, sharp and pins and needle (Galer et al. 2000). Study shows 

that patients with painful diabetic neuropathy have a poorer quality of life than with 

patients with neuropathy without pain or with non-neuropathic pain (Davies et al. 

2006). Due to the severe pain, it causes a significant increase in anxiety, depression 

and sleep impairment. It causes disability in walking in one-third of the patients and 

requires cane, walker or wheelchair due to neuropathy (Galer et al. 2000). Various 

methods such as nerve conduction studies, 10 g monofilament test, superficial pain 

sensation test, vibration tests, and electromyography are used for its diagnosis. The 

pain related portion of the Michigan Neuropathy screening instrument could be used 

to get the knowledge of painful symptoms.  

 

(f) Sensory Neuropathy: 

Sensory Neuropathy is considered as one of the most devastating nerve dysfunction. 

Sensory deficit and symptoms are appearing first at the distal portion of the 

extremities and progress proximally in the stocking-glove distribution (Bowker and 

Pfeifer 2008). As the loss of this fibre types recur there is an effect of diminishing light 

touch and proprioception later resulting in ataxic gait and unsteadiness along with 

weakness of intrinsic muscles affecting the feet (and hands) (Bowker and Pfeifer 

2008). Ignoring these symptoms may lead to foot ulceration and lower limb 

amputation. As the disease progresses, chronically it will not directly cause ulceration 

and limb loss by itself, however, if the period of diagnosing the sensory neuropathy is 

shortened then it is possible to prevent these complications occurring in future. 

Various screening tools are used to check the loss of vibration perception and pressure 

perception which is the main area of interest for this research. 

 

(g) Autonomic Neuropathy: 

Diabetic autonomic neuropathy (DAN) is the most understood and least organized 

complications of diabetes (ERBAS 2001; Vinik et al. 2003). Autonomic neuropathy can 
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occur when nerves responsible for controlling involuntary functions are damaged. It 

affects the autonomic neurons of either or both the parasympathetic and sympathetic 

nervous system. Skin atrophic and sweating abnormalities of the feet at an early stage 

are the signs of autonomic neuropathy which is often connected to somatic 

polyneuropathy (Mayfield et al. 1998). A sensitive indicator of the skin may be called 

plantar callus (hyperkeratosis) (Murray et al. 1996; Pataky et al. 2002). Cracking of the 

skin, the formation of fissures and loss of sudomotor function are the indicators. One 

of the outcomes of autonomic neuropathy is auto sympathectomy which could lead to 

arteriovenous shunting, increase cutaneous blood flow, increased skin temperature 

and distension of the dorsal veins in the foot (Edmonds et al. 1982; Corbin et al. 1987). 

 

(h) Motor Neuropathy: 

Nerves which are responsible for controlling movements are affected due to motor 

neuropathy. This will lead to muscle weakness and wasting of nerves which receive the 

signals from the nerves being affected by an imbalance of flexor and extensor muscles 

causing foot deformities (clawing of the toes and prominence of the metatarsal 

heads). Abnormal plantar pressure occurs due to reduced subcutaneous tissue 

thickness at the metatarsal heads and anterior displacement of the sub-metatarsal fat 

pads (Pataky 2012). 

 

Diagnosis: 

For the diagnosis of diabetic neuropathy, test should include assessment of sensation of 

pinprick, examination of muscle power, vibration and touch sensation. Mostly for touch 

sensation monofilament test is recommended. Vibration test should be performed by 128 Hz 

tuning fork.  Sensory test should be done on hands and feet bilaterally. Quantitative sensory 

test are not recommended for routine clinical practice (Shy and Frohman 2003). Nerve biopsy 

may be useful to find or explore the other causes of neuropathy. For assessment of 

polyneuropathy confocal corneal microscopy is recommended. The autonomic function tests 

which are available are based on blood pressure, heart rate response is commonly used in 

subjects with diabetes mellitus. As DN can be asymptomatic in nature therefore it has to be 

diagnosed very carefully.  

According to San Antonio consensus statement held in 1988, for diagnosing diabetic 

neuropathy, consensus panel has recommended that at least one measure from each of the 

categories is needed like clinical symptoms, neurophysiology, clinical signs, autonomic function 
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test and quantitative sensory tests (Association and Neurology 1988). This may be needed for 

research protocol. However, in the clinical practice this is difficult to implement so two of five 

criteria have been recommended (Dyck 1988). 

 

Complications of diabetic neuropathy 

 The complications in the individual subject may vary, as it depends on the root cause and 

which nerves been damaged. The early symptoms of diabetic neuropathy cause sensation loss 

result in numbness, burning sensation, tingling and pins and needles. In some cases, it may 

improve with time with proper treatment while in some cases it may cause permanent 

damage or get worse with time. If it is not detected at the early stage or the cause is not 

treated, it may cause serious complications like foot ulcers, further these ulcers may become 

infected and lead to gangrene if remain untreated. In the advanced stage, the affected foot 

may have to undergo amputation. The peripheral neuropathy may affect the autonomic 

functions of heart, due to which there could be a need for increased blood pressure. 

 

(a) Diabetic foot ulcers 

The neuropathic foot remains warm with palpating pulses, without sweating and skin 

remains dry. Due to dryness in skin, it is prone to fissures, fungal and bacterial 

infections. The broken skin takes longer time to heal or may not properly repair itself 

because of nerve damage. The numbness or the sensation loss feelings in the feet can 

get easy cuts by treading on something sharp, tight shoes, blisters and bruises can 

result in diabetes foot ulcers. The common risk factors of diabetic foot ulcers are 

neuropathy, hyperglycemia, poor blood circulation and walking without shoes. 

The blood supply to the feet is restricted due to damage to the blood vessels or 

narrowed arteries. As the blood supply to the skin is less, it takes a longer time to heal 

and causes tissue damage leading to gangrene. 

 

(b) Gangrene 

Gangrene is developed by the poor blood circulation to a certain part of the body 

causing the tissue to die. There are two types of gangrene dry and wet gangrene. Dry 

gangrene is normally caused to the patients by having type 1 or type 2 diabetes. Due 

to hyperglycemia for a longer period of time, it damages blood vessels. The damaged 

blood vessels cannot carry oxygen and nutrition to the tissue and eventually the tissue 

will die causing dry gangrene.  
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The gangrene that is developed due to the infection causes wet gangrene. This type of 

gangrene is usually seen when foot ulcers or wound is badly infected. People with 

diabetes are less able to fight off the bacteria and other types of infections causing a 

risk of developing wet gangrene.  Once the gangrene is developed it can be removed 

by surgical procedure or in severe cases toe or the foot needs to be amputated. 

 Advantages of early detection of diabetic neuropathy 

It has shown that subjects with good glycaemic control can help in slow progressions of 

diabetic neuropathy in type 1 but less benefit in subject with type 2 diabetes.  With the 

increasing number of type 1, type 2 diabetic patients, the incidence of diabetic neuropathy 

causes a huge impact on the quality of life of patients as well as their families. To deal with 

devastating complications such as foot ulceration, limb amputation due to diabetic 

neuropathy, early diagnosis and effective treatment is necessary. This is because once the 

peripheral nerves function deteriorates, it is difficult to regenerate. It may possible to slow 

down the progression through treatment but not reverse the damage. In case of severe 

neuropathy, there is a need for physical therapy to avoid muscle spasms and cramping. There 

can be a significant drop in the amputation rate by early detection and managing risk factors of 

diabetic neuropathy. Therefore, diagnosis is critical to minimise pain and loss. 

For diagnosing neuropathy various tools and methods such as patient’s questionnaires, an 

examination of nerve conduction velocities, tools based on vibration perception thresholds are 

available which will be discussed in the next chapter. By Studying the limitations and 

advantages of the existing technology based on vibration perception detection, the aim is to 

develop a smart and operator in dependent device for early detection of neuropathy which 

automatically defects the severity level based on the measured vibration perception 

thresholds. 

1.3 Research questions 

To start with the research, first the research questions were identified as listed below: 

1. Considering the electromechanical device Neurothesiometer as the gold standard 

(Coppini et al. 2001), is it possible to develop an independent device which can 

generate the same nature of frequency and voltage with intelligent diagnosis 

features? 

2. Is it possible to provide the vibration with the constant stimulus pressure?    

3. Is it possible to predict the vibration perception threshold using the clinical history of 

the patients? 
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1.4 Aims and objectives of the project 

 In order to detect diabetic neuropathy, develop a smart, operator independent and user-

friendly device, which is capable of generating a vibration stimulus with a required 

frequency and varying amplitude. 

 To be able to robustly detect diabetic neuropathy, develop a vibration generating device 

which can effectively increase the vibration intensity in order to detect the vibration 

perception threshold of the subject. 

 To develop a more reliable device by maintaining a constant pressure while applying 

vibration stimuli to the patient. 

 To develop the risk assessment tool that is capable of utilising the clinical characteristics of 

a patient to predict the risk level of Diabetic neuropathy. 

1.5 Outline 

The research outlined in section 1.3 and 1.4 are given in the following chapters. 

 Chapter 2 discusses about the existing methods and devices available for early 

detection of diabetes and identified their limitations.  

 Chapter 3 discusses about the designing the device. The device development is based 

on the requirements and limitations as discussed in the Chapter 2. This chapter 

involves design description of the device, its electronic circuit development, software 

programming and development of graphic user interface.  It shows the way of 

conducting the test for diabetic neuropathy subjects.   

 Chapter 4 discusses the experimental study performed using VibraScan and 

Neurothesiometer.  

 Chapter 5 discusses the comparative study between VibraScan and Neurothesiometer 

using human subjects. 

 Chapter 6 explain the development of risk assessment tool of VibraScan based on the 

clinical characteristics of the subject. This tool is developed based on the analysis of 

the clinical data. For data analysis various methods such as ordinary least squares, 

ordinal logistic regression, artificial neural network and neural network based 

proportional odds model were implemented. It shows the results obtained from all 

these methods for comparison purpose and uses of best suited model for the tool 

development. 

 Chapter 7 concludes with the findings of this research and discusses the limitations 

along with future directions. 
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Chapter 2 Methods for diagnosing Diabetic neuropathy  

 

This Chapter focuses on the study and understanding of the existing methods available for 

diagnosing diabetic neuropathy. There are various methods available for screening purpose, 

however, the aim is to analyse the limitation of methods and come up with an idea of 

developing an innovative and smart device that can overcome the gaps in the existing devices. 

All the existing methods which are used for diagnosing diabetic neuropathy have been 

discussed along with their limitations. Another focus is also to investigate the feasibility for the 

patients to use the technology independently of performing the screening test. 

 All these methods will be analysed and the best suitable method for developing the prototype 

will be selected based on the criteria that it is non-invasive, easy to use and accurate. Devices 

that use vibration perception are generally considered as the gold standard for neuropathy 

assessment as they can efficiently predict the onset and progression of the complication 

(Coppini et al. 2001). Therefore, devices based on vibration perception were studied along 

with their limitations which will be discussed in this chapter.  

2.1 Methods used for diagnosing diabetic neuropathy 

There are various methods such as different clinical scores and devices available commercially 

to help diagnose DPN which include nerve conduction studies, DPN check, sudorimetry, 

SUDOSCAN, Neuropad, cardiac autonimic Function test, skin biopsy, corneal microscopy and 

Semmes-Weinstein monofilament test.  

(a) Clinical scores 

Clinical scores such as neuropathy disability score (NDS), Neuropathy symptoms score 

and Michigan Neuropathy screening instrument (MNSI) are commonly available for 

diagnosing purpose. 

Neuropathy disability score 

Neuropathy disability score (NDS) is the scoring system for diabetic neuropathy. NDS 

examines muscle weakness, cranial nerves, sensations and reflexes (Dyck et al. 1980b). 

It used to access 35 items on both sides to examine the sign of neuropathy. Some of 

the items in NDS do not check the abnormality of neuropathy. At present, the 

updated/modified version of NDS is used in practice which considers ankle reflex, 

pinprick, vibration, heat and cold sensation at both the side of the big toe with the 

score of 10. During the examination, if the score is 6 or more then it is considered to 

be an abnormal reaction (Moreira et al. 2005).  
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Neuropathy symptoms score 

Neuropathy symptoms score (NSS) consist of examination related to tingling or 

numbness, burning, fatigue, aching and cramping (Chawla et al. 2013).  It consists of 

17 items which are divided into symptoms of muscle weakness (8 items), autonomic 

symptoms (5 items) and sensory disturbances(4 items)  (Dyck et al. 1980a). If the 

answer is negative/absent then score is zero, if the answer is positive then score is 1 

which can maximum reach to 17.  If the score is greater than or equal to 1, it is 

considered to be abnormal. The limitation of NSS is, it is not used to show the 

progression of diabetic neuropathy (Dyck et al. 1997).  

Michigan Neuropathy screening instrument  

Michigan Neuropathy screening instruments are used to find the degree of 

neuropathy. It includes two types of assessments. One with 15 self-administered 

questionnaires and foot examination which includes assessment of vibratory sensation 

and ankle reflexes. This questionnaire includes questions related to positive and 

negative sensory symptoms (such as numbness, tingling and burning), muscles cramps, 

weakness, foot ulcers, and amputation.   The foot examination is mostly used with the 

maximum score of eight where both the foot are independently measured. If the MNSI 

score is greater than or equal to 2, it is considered as positive for diabetic neuropathy 

instrument (Feldman et al. 1994). It helps to classify the various form of diabetic 

neuropathy, to identify the other causes of neuropathy, and it also provides 

information which can be used to monitor the disease.  

There are few limitations of clinical scores as they are not much reliable and 

reproducible. Hence, it can be used to assess pain severity but not the pain scores to 

evaluate the progression of diabetic neuropathy. Again these scores are user 

dependent and the devices or tools used to obtain the measurements.  

 

(b) Nerve Conduction studies (NCS): 

Nerve conduction studies are used for diagnosis of diabetic peripheral neuropathy; 

since the eighteenth century, the response of the peripheral nervous system to 

electrical stimulation had been recognized (Isaacson 2003). The NCS usually means 

stimulating the nerve and recording the responses elsewhere from the nerve.  The 

modern clinical NCS usually stimulate the peripheral nerve and record the response 

from the skeletal muscle innervated by the nerve. Currently, most of the NCS are 

performed with the surface, stimulating and recording electrodes (Jones 2012). The 
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site of stimulation is very important as surface measurements may not precisely 

provide all the anatomical information and uncertainty of the selecting the proper 

sites of stimulation or recording may limit the value of the study. A large amount of 

current is required for stimulating the deeper nerve such as the lower trunk of brachial 

plexus. Due to this stimulation, there is a chance of stimulating nearby muscle which 

can introduce the recording of the response elsewhere on the limb. The degree of 

uncertainty increases when recording proximal muscles because of the surrounding 

muscles and is more challenging; therefore NCS of distal is easier as it is isolated from 

the limb and other muscles which can help the examiner to be more certain as what is 

being stimulated and what is being recorded.  

The bipolar probe consists of anode and cathode and is generally used as a nerve 

stimulator. To stimulate proximal spinal nerve needle electrode is used. The cathode is 

placed in the direction where action recording is intended to place or oriented distally. 

For the impedance matching the targeted site should be properly cleaned. The 

stimulus is provided at a constant current in the range of mill amperes. The selected 

site for applying the stimulus, all the elements of the nerve should be completely 

depolarized and could be achieved by applying the successive stimulus and start 

increasing the current to that extent when current has increased but the size of the 

recorded potential remains the same. This stimulus is known as the supramaximal 

stimulus. The current should be increased gradually by a constant increment of 10 mA 

until the response is detected. The position of stimulating electrode is carefully placed 

in such a way that optimal point of the nerve stimulation is isolated. Supramaximal 

stimulus is achieved by increasing the current. Usually, the duration of current is 0.1 

milliseconds but it could be increased to 1 millisecond if the supramaximal response is 

not achieved till 100mA of the current (Jones 2012).  

Recording electrodes consist of active and reference electrodes which are placed at 

some distance from the active electrode. This distance is important to generate the 

recorded potential obtained due to the difference in charges (Kincaid et al. 1993). For 

recording muscle or nerve activity, metal or self-adhesive electrodes are used. 

Electrodes placed very close to each other will produce a small response and placed 

very far apart will produce unwanted environmental artifacts. These environmental 

electrical artifacts can be minimized by placing the surface ground electrodes between 

stimulus and at the recording sites gel is applied to the skin to minimize the 



15 

 

impedance mostly for the small amplitude responses (response is in the range of 

millivolts to microvolts depending on structured electrodes). 

Although there is a wide application and use of NCS, NCS remains limited due to the 

time involved in performing the test, the cost involved, special arrangements and 

laboratories should be available and most importantly patient has to undergo 

difficulties of long wait and inconveniences due to NCS. Technically NCS is more 

helpful in detecting large fiber neuropathy but unhelpful in detecting small fiber 

neuropathy. Conduction block or demyelination that occurs proximally is quite difficult 

to detect (Jabre 1981; Weber 1998).  

 

(c) DPN check 

 

Figure 2.1: DPN check device (Hamasaki and Hamasaki 2017) 

NC-stat DPN check is a point of care device, manufactured by NeuroMetrix Inc. is 

placed on the skin on the sural nerve to measures sural nerve conduction velocity (CV) 

and sensory nerve action potential (SNAP) as shown in Figure 2.1. The measurement is 

displayed in terms of numbers and based on the thresholds level of the measured 

value the abnormality or the severity can be pre-defined, lower the SNAP and CV more 

associated with diabetic neuropathy (Abraham and Abraham 1987). This can help  

patients to detect the presence of diabetic neuropathy. NC- Stat has shown the 

specificity of 82% and sensitivity of 92% compared to nerve conduction studies 

(Perkins et al. 2006).  

The limitation of using DPN check is it is a bit difficult to locate the sural nerve for 

which trained operator is needed. There are small numbers of people in which sural 

nerve is not present and therefore NC-Stat DPN check is not possible to use for these 

patients.  
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(d) Neuropad 

Neuropad usually measures the irregularities in the peripheral nerves.  It consists of 

two tests per kit which can be used for each foot. For performing this experiment 

patient have to remove his/her shoes and socks and wait for a few minutes before 

starting the test (Malik 2008). The experiment has to perform under constant ambient 

temperature. The examiner places the Neuropad at the callus free area between the 

first and second metatarsals head to examine the colour change for 10 minutes 

(Ziegler et al. 2005; Papanas et al. 2013). It measures sweat production based on 

colour change. Cobalt 2 compound is used for the detection which changes the colour 

from blue to pink. The colour change occurs because of the chemical reaction between 

anhydrous cobalt 2 chloride present in the indicator and water from the sweat glands. 

If the sweat glands are functioning normally then water molecules are enough to 

change the colour within 10 minutes. It indicates that if the colour changes from blue 

(dry state) to pink (dermal foot perspiration), it indicates the normal function of 

sudomotor and if it remains blue or stays bit patchy at the time threshold or takes a 

longer period of time then considered as the reduced sudomotor function. The 

absolute time taken by the Neuropad to change the colour may suggest that this 

parameter can be used to determine the severity of diabetic neuropathy (Papanas et 

al. 2007). The advantage of using Neuropad is, it does not require subject cooperation 

as the test is based on the chemical reaction and may contribute to the early detection 

of diabetic neuropathy (Papanas et al. 2011). The limitations are that the time period 

is set to determine the severity level i.e. 10 minutes; however it has not achieved high 

applicability. Because of this reason, various different threshold level was set like 15 or 

20 minutes, however, these thresholds have not shown many significant changes 

(Papanas et al. 2011).  

 

(e) Sudorimetry 

Sweat glands dysfunction is also one of the early symptoms of the DPN. Autonomic 

nerve dysfunction is an important aspect which is always undiagnosed or overlooked 

(Papanas and Ziegler 2011). Sweat glands are affected at the early stage of the 

diabetes mellitus which are innervated by small myelinated cholinergic sympathetic 

fibres. Due to sweat glands dysfunction, the skin will remain dry that is more prone to 

a bacterial and fungal infection which can cause foot ulceration. To prevent this 

complication diagnosing sweat glands dysfunction could be a useful screening tool for 
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DPN (Sumner et al. 2003; Yajnik et al. 2012). Stewart et al (1992) found that autonomic 

nerves controlling heart rate are less likely to damage than that of the sympathetic 

sudomotor fibers which proved that sudorimetry is the useful tool for diagnosing DPN 

at the early stage. There are various methods used for the detection of sweat glands 

dysfunction such as qualitative sudomotor action reflex, silastic imprint method, 

electrochemical sweat conduction, and thermoregulatory sweat test. Small-fiber 

polyneuropathy can be detected with a sensitivity of 80% by qualitative sudomotor 

action reflex test (QSART) (Thaisetthawatkul et al. 2013). The sweat production is 

measured by infusing acetylcholine into the skin to stimulate the postganglionic nerve. 

The limitations of this test are, it is time-consuming and requires expensive equipment 

(Illigens and Gibbons 2009). Electrochemical sweat conductance (ESC) test is 

performed by a chemical reaction between electrodes and chloride of the sweat 

glands after applying low-level voltage stimulation. Studies showed that Lower ESC 

refers to increasing vibration perception threshold (VPT) after testing on 265 diabetic 

patients. Thus the study concludes that lower ESC refers to sweat gland dysfunction 

and can be the sign of the early stage of DPN (Yajnik et al. 2012). In a 

thermoregulatory sweat test, the sweat production is evaluated by increasing the 

temperature of the skin and after that, the dye is used to measure the sweat 

production. This test is non-quantitative and can be used either to test local area or for 

whole body sweat production (Illigens and Gibbons 2009). In Silastic imprint method 

the sweat is produced using acetylcholine and silastic material are placed on the skin 

to quantify the test (Stewart et al. 1994). The drawback of the test is, silastic material 

is prone to dirt and hair. 

 

(f) SUDOSCAN 

SUDOSCAN is the device which is non-invasive, easy to use sudomotor test for 

assessment of sweat gland function (Mayaudon et al. 2010). It consists of two sets of 

stainless steel electrodes for both hands and feet which are connected to the 

computer for recording and maintaining data of the subjects under test. These 

electrodes are alternately used as cathode or anode where the DC voltage of less than 

4V is applied to the anode. The examination is based on electrochemical reaction 

occur between the stainless steel plate electrodes and the chloride ions present in the 

sweat glands when hand and feet are placed (EH Schwarz et al. 2011). Low voltage of 

less than 4V is applied to the electrodes to attract the chloride ions from the sweat 
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glands. Due to the reverse iontophoresis process the voltage is developed at the 

cathode and current between anode and cathode is based on the chloride ion 

concentration.  Iontophoresis is the process where electric current is applied through 

electrodes to deliver a chemical substance to the skin based on electromotive forces 

(Zaid et al. 2018). This will measure the conductance of palms and soles from the 

derivative current of the applied voltage (Ayoub et al. 2010). The electrochemical skin 

conduction (ESC) is measured as the ratio between the generated current and DC low 

voltage applied to the electrode is expressed in micro siemens. ESC is helpful in 

determining sudomotor dysfunction in the subjects with diabetes. The severity of ESC 

is divided into four different categories based on the threshold value of ESC i.e. no 

dysfunction if >60 µS, moderate dysfunction if between 60 and 40 µS while severe 

dysfunction when <40 µS (Casellini et al. 2013). 

This tool is used for the measurement of small fibre neuropathy and peripheral 

autonomic dysfunction. Still, more studies are required which can clearly show that 

SUDOSCAN outcomes are predictive for diabetic neuropathy development and foot 

ulceration (Selvarajah et al. 2015). 

 

(g) Cardiac autonomic reflex tests 

Cardiac autonomic neuropathy (CAN) is one of the chronic and serious complications 

of diabetic neuropathy which occur in patients with long term type 2 diabetes mellitus. 

The report shows that it is found in one-quarter of type 1 and in one-third of type 2 

diabetic subjects which might predict the change of development of stroke. CAN 

patients may suffer from complications like tachycardia, exercise intolerance, postural 

hypotension, enhanced and myocardial infarction (Vinik et al. 2013). This type of 

cardiac dysfunction may affect the quality of life of diabetic patients and major risk of 

life-threatening outcomes. 

There are various methods available for diagnosing CAN such as evaluating symptoms 

and signs through clinical practice, cardiac autonomic reflex tests (CARTs) depending 

on heart rate and blood pressure and using blood pressure monitor (Spallone et al. 

2011).  CARTs examine the cardiac autonomic function by time domain HR response to 

breathing, Valsalva maneuver change, and the response of the heart rate and blood 

pressure changes. In autonomic testing, indirect autonomic measures are considered 

as the gold standard. The non-invasive, easy and safe technique of measuring heart 

rate variations during deep breathing, heart rate measured during lying and standing 



19 

 

and Valsalva maneuver refers to parasympathetic function (Vinik et al. 2013). 

Orthostatic hypotension, sustained isometric muscular strain and blood pressure 

response to a Valsalva maneuver refers to sympathetic function (Vinik et al. 

2013). CARTs are considered to be sensitive, specific, reproducible, safe and 

standardized. It has been suggested that CAN assessment should be performed with 

more than one heart rate tests.  These tests are relevant for diagnosis of CAN which is 

the complication of diabetic neuropathy. 

 

(h) Skin Biopsy 

Skin biopsy can be performed at the required site of the body using disposable punch 

with the diameter of around 3mm under local anesthesia using lidocaine. This 

techniques has not reported any side effect and can be performed without the need of 

suture. Healing process mainly complete within a week where scar may not last for 

more than 3 months. This is used to examine innervation of epidermis, dermis, and 

sweat glands . To investigate the only innervation of epidermis, an even less invasive 

technique names  “blistter technique” can be used (Lauria and Lombardi 2007) . Skin 

biopsy is usually considered to be safe, cheap and painless technique used for the 

evaluation of the small fiber neuropathy (include the symptoms of burning, deep and 

aching pains in the feet). Using bright field microscopy to measure the density of the 

fibers. It can also be repeated within nerve fiber territory to determine the effect of 

the treatment in which steroids and immunoglobulin also used to determine the 

progression of diabetic neuropathy. According to one of the study, the positive 

predictive value is estimated as 93% in the detection of small fibre neuropathy, with 

the specificity of 97% and sensitivity from 69% to 82% (Lauria et al. 2005). Skin biopsy 

is used to investigate the various function of the small fiber which is helpful in clinical 

practice. This technique is useful in pain neuropathy to detect the abnormality i.e. 

unmyelinated axon that carries pain sensation of the target nerve. Skin biopsy is also 

used for detection of demyelinating neuropathies (Pan et al. 2003). The limitations of 

skin biopsy are, it is an invasive technique,  It has to be performed in a limited number 

of specialised clinics and where the diagnosis of the abnormalities has to be preceded 

in the established laboratory (Lauria and Lombardi 2007). 

 

(i) Corneal confocal microscopy 

It has been reported that the evaluation of corneal nerve structure performed using 

corneal confocal microscopy (CCM) has been considered as a reliable measure of 
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diabetic neuropathy. CCM of human eye is one of the new screening modality which is 

used for early demonstration of nerve fibre damage. In this technique, CMM makes 

use of a light beam to pass through the aperture which is focused by the objective lens 

into the layer of cornea. Elimination of all the light is done by beam splitter and a 

photodetection device. Using this technique,  three methodologies such as tandem 

scanning CCM, split scanning CCM and laser scanning CCM has been developed 

(Papanas and Ziegler 2013). Split scanning CCM and laser scanning CCM are used to 

examine corneal nerve damage in patients with diabetes with or without diabetic 

neuropathy (Papanas and Ziegler 2013).  It is considered to be an effective non-

invasive, repeatable measurement technique for the detection of diabetic neuropathy.  

Considering the fact that corneal nerve fibre damage is more common and severe in 

subjects within DSPN, it is recommended to use CMM for its diagnosis. It was noted 

that in the recently diagnosed diabetic patients also, CMM is sensitive enough to 

determine corneal nerve fiber perturbations (Ziegler et al. 2014b). This technique is 

used for the early diagnosis of high-risk foot and nerve damage with moderate 

sensitivity and specificity (Papanas and Ziegler 2015). Finally, CMM is the non-invasive, 

fast, reproducible, measures small fiber nerves and quantitative technique. However, 

many more critical questions need to be addressed like whether CMM parameter is 

capable enough to predict patients oriented results such as the pain and disability. 

Hence, this technique can be useful in diabetic neuropathy assessment with the 

further implementation of more image processing/analysis techniques for improving 

its performance. 

 

(j) Semmes-Weinstein Monofilament examination – pressure perception examination 

Physicians use many quantitative methods for the detection of diabetic sensory 

peripheral neuropathy. This method is mostly used for the detection of the protective 

loss or for the pressure perception examination. The threshold of 5.07/10 gram 

monofilament was established in 1985 (Birke and Sims 1986). The different size of the 

monofilament 4.17, 5.07 and 6.28 were tested on 72 patient with leprosy and 28 

patients with diabetes mellitus. The test has concluded that 5.07 monofilament is the 

threshold for detecting DPN as no patient with foot ulceration was able to sense the 

5.07 monofilament. Another study was performed where 199 patients were tested 

and it was concluded that 5.07 is best for predicting foot ulceration in diabetes 

mellitus patients (Olmos et al. 1995). The main advantages of using Monofilament 
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examination are it is non-invasive, low cost, rapid, routinely self-assessment and easy 

to use the method. Different sites on the plantar surface of the foot have been chosen 

for the monofilament examination. However, it is not fixed which sites and how many 

times each site needs to be examined. Usually, three or five sites are used for the 

monofilament examination. International Working Group on Diabetic Foot has 

recommended using three sites that are planter surface of the distal hallux, first and 

fifth metatarsals head for the examination (Karl Guttormsen 2017). The cost of 

disposable monofilament is about $0.50 (Feng et al. 2009) and the sensitivity of the 

monofilament test is >87% and specificity is ranging from 68% to 100% (Boulton et al. 

2005a; Dros et al. 2009). Various methods used such as pinprick and a light touch, 

however, one of the most important limitations of these modalities is the application 

of stimulus which is inconsistent while the application of monofilament stimulus 

provides constant pressure (Smieja et al. 1999; Schaper et al. 2016). This test is widely 

used as a screening tool for DPN (Mayfield and Sugarman 2000) but not for the 

definite diagnosis of sensory neuropathy. The Procedure for using Monofilament test 

is as described below:       

 

                                                    

Figure 2.2: Vibration sites for application of monofilament test (Schaper et al. 2016) 

 The patient should feel relax and ready for the 10g Semmes-Weinstein Monofilament 

examination. The test should be performed in a quiet environment. 

 Apply the 10g Monofilament on the hands so that the patient is aware of the type of 

applied pressure. 

 Apply the monofilament on any of the test sites as shown in Figure 2.2. 

 Monofilament should be applied perpendicular to the sites for 1 second until it bends. 

 The total duration of applying the monofilament and removal should be around 2 

seconds. 

 Apply the pressure in all the three sites of both the foot and the patient is asked to 

respond whether they feel the pressure or not and where they feel the pressure. 

 The test needs to be repeated for 3 times at each site. Note the answers responded by 

the patient. 
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 Pressure perception/protective sensation is present if the patient’s two out of three 

answers are correct and there is a loss of protective sensation if two out of three 

answers are incorrect for that particular site (Schaper et al. 2016). 

 

(k) Ankle jerk 

The Ankle jerk is also known as an ankle/Achilles reflex test. This test is performed 

using a standard reflex /neurological hammer.  The shape of the hammer is a triangle 

and flat part of the hammer is used to find the reaction of the reflex on the Achilles 

tendon.  The clinician/practitioner holds the standard hammer using the handle with 

their thumb and forefinger where the flat part is towards the subject’s Achilles tendon 

area. Other than standard hammer there is an availability of advanced reflex hammer 

similar to pendulum hammer. 

 

Figure 2.3: Ankle jerk test (Tanenberg and D. Donofrio 2008) 

This test is simple and a part of lower limb examination. It can be used for diagnosing 

complications like peripheral neuropathy, hypothyroidism or Charcot Marie tooth disease by 

measuring the grade of Achilles tendon. In this test, the patient should be laying on the 

examination table with their Achilles tendon is exposed from superior calf to plantar aspect of 

the foot (Ziff and Stark 2017) shown in Figure 2.3. When the examiner strikes the Achilles 

tendon directly with the standard reflex hammer, it is considered as positive if the calf muscle 

contracts and foot plantar flexes. The degree of the positive results is graded based on the 

scale from 0 to 4+, where 0 is the no response, 1+ is considered to diminish, 2+ is considered 

average, 3+ is above average and 4+ is considered as hyperactive with clonus (Ziff and Stark 

2017).  

This test is used only for finding the Achilles reflex with rare complications of performing this 

test. There may be a possibility of post-test pain or soreness if performed poorly by the 

practitioner. 
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2.2 Devices based on vibration perception thresholds 

Vibration perception threshold (VPT) is also one of the widely used concepts for the diagnosis 

of sensory neuropathy. It is defined as the lowest voltage at which vibration is detected up to 

50% of the time tested (Michelle Branigan 2014). VPT is considered as quick and low risk for 

the detection of long-term complications of neuropathy based on the type of the instruments 

used as per the expert opinion (Garrow and Boulton 2006). Clinical tools such as 128-hertz 

tuning fork, a semi-quantitative electromechanical instrument as Biothesiometer and 

Neurothesiometer are commonly used for measuring VPT. 

(a) Tuning Fork 

There are mainly three types of tuning fork used for the assessment of VPT such as 

non-graduated tuning fork, graduated tuning fork and an electronic tuning fork. A 

simple non-graduated 128 Hertz tuning fork is just used to measure the absence and 

presence of vibration perception in the patient, because of this limitation it is 

psychophysical in nature and due to lack of standardization it cannot be used for 

clinical findings. There was a need for a more advanced instrument that can predict 

the amplitude at which vibration is perceptible led to the development of graduated 

tuning fork. The graduated tuning fork uses the vibration extinction threshold with the 

scale from 0 to 8. When the score is  (less than 4/8) then it is the alarm for high-risk 

complications of neuropathy (Garrow and Boulton 2006). There are several 

advantages of using a tuning fork it is easy to use, quick and portable where the 

patient does have to undergo for the long and complex procedure. The procedure for 

the test is fairly simple as shown in Figure 2.4.  

 

Figure 2.4: Procedure to conduct a tuning fork test (Schaper et al. 2016) 

The sensory exam should be carried out in a quiet and relaxed setting. First, vibrate 

the tuning fork and apply the tuning fork on the patient’s wrists (or elbow or clavicle) 

so that he or she knows what to expect. 
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• Tuning fork is applied on a bony part of the first toe on the dorsal side of the distal 

phalanx. The patient must not be able to see whether or where the examiner applies 

the tuning fork 

• Apply the tuning fork perpendicularly with constant pressure. 

• Repeat the procedure for two times and at least one ‘mock’ where tuning fork is not 

vibrating. 

• If the patients is giving correct answers i.e. vibration is provided and subject could be 

able to sense at least two out of three applications then considered as normal and if 

two out of three answers are incorrect then the patient is under the risk of ulceration. 

• If the patient is unable to sense the vibrations on the big toe, the test is repeated more 

proximally (malleolus, tibial tuberositas). 

• Encourage the patient during testing by giving positive feedback (Schaper et al. 2016). 

 

(b) Electronic tuning fork  

As discussed, 128 Hz tuning fork have used for the detection and progression of 

diabetic neuropathy. Although tuning fork is the sensitive tool, however there is a lack 

standardisation and qualification of neuropathy findings (O'Brien and Karem 2014b). 

For improving the standardisation of the testing there is an introduction of a novel  

128 Hz electronic tuning fork (ETF) (O'Brien and Karem 2014b). The ETF produces the 

vibration and the decay rate is the same as the standard tuning fork. In order to 

perform the timed vibration test more accurately the integrated timer is introduced 

electronically that facilitate reproducible timed vibration test (O'Brien and Karem 

2014a).  The time vibration test have shown improved method for detecting diabetic 

neuropathy (Botez et al. 2009).  

The method of using ETF is simple and straight forward. When the device is activated, 

it starts the vibration and integrated timer. When it is applied on the hallux, subject 

will be asked to verbally indicate ‘yes’ or ‘no’ after they perceive the vibration. If they 

indicate ‘no’ it needs to indicate as 0 sec elapsed time. If they say ‘yes’ then they need 

to ask when vibration has subsided after their perception of vibration by saying ‘now’ 

and at that moment vibration needs to be stop  to record the elapsed time. 

The limitation of ETF is there is no variation in applied vibration stimulation in terms of 

vibration amplitude with constant frequency. So if the vibration amplitude can vary 

then it may possible to measure precise vibration perception threshold of diabetic 

patients. 
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(c) Biothesiometer and Neurothesiometer 

Biothesiometer and Neurothesiometer are quick, portable and inexpensive 

instruments (Garrow and Boulton 2006). They are semiquantitative electromagnetic in 

nature. It is easy to categories the high risk and low risk of ulceration based on VPT 

scores. If VPT is more than 25 score, the patient is at high risk of ulceration and 

patients having less than 15 scores, the patient is at low risk of ulceration (Van 

Deursen et al. 2001). 

Biothesiometer is the electromechanical device which is used to produce vibration 

through vibration probe.  It is basically used to determine vibration perception 

threshold. Biothesiometer (BioMedical, Newbury, Ohio, USA) is widely used by 

clinicians (Figure 2.5), however, as Biothesiometer is operated on main electric supply 

has raised the concern for safety in United Kingdom that led to the development of 

battery-operated  Neurothesiometer (Arnold Hoi-well, London, UK)(Watts et al. 1986) 

as shown in Figure 2.6.  

 

          

 

Figure 2.5: Biothesiometer (BioMedical, 

Newbury, Ohio, USA) 

 

                

 

Figure 2.6: Neurothesiometer (Neurothesiometer 
2016) 

 

With the advancement of technology, the Analog Biothesiometer is replaced by Digital 

Biothesiometer. The Biothesiometer is the electronic tuning fork where the amplitude 

is completely adjustable in a particular range and based on this amplitude it is possible 

to record the human sensation of vibration which operates on electricity.  
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(d) Procedure to use Biothesiometer / Neurothesiometer 

 

 

Figure 2.7: Testing using Biothesiometer (Singh et al. 2012)  

Biothesiometer is very simple, convenient and easy to use. Normally pulp of the big 

toe,1st,3rd and 5th metatarsals are chosen as the vibration sites as shown in Figure 2.7 

(Singh et al. 2012). Vibration probe is placed perpendicular on the selected sites and 

allowed to vibrate at different intensities. The manual potentiometer is used to adjust 

the vibration intensity. The range of the dial is from 0 to 50 Volts in order to provide 

the vibration at different intensities. The operator has to hold the vibration probe on 

the site to be examined. The Vibration intensity is increased until the patient feels the 

vibration. The patient is asked to respond ‘Yes’ whenever vibration is felt. It records 

the exact voltage at which the patient feels the vibration. The degree of loss of 

sensation depends on the recorded voltage. Higher the recorded voltage, the patient 

has more susceptibility to the loss of sensation and greater risk of foot ulceration. 

According to this study (Singh et al. 2012), if the VPT score less than 15V then subject 

is having a low risk of DPN, between16 to 24V the risk is moderate and greater than 

24V is the high risk for DPN. 

To diagnose the sensation loss, the Biothesiometer uses the vibration to stimulate the 

human receptors so, frequency and amplitude of the vibration have to be taken into 

consideration. When measuring this, there are mainly four type receptors Meissner 

receptor, Pacinian corpuscles, Merkel disks and Ruffini endings situated at the dermis 

and epidermis layer of the skin Figure 2.8. In order to diagnose the sensation of the 

receptors, there are guidelines for receptor nature, its activation and measurements 

parameter.  
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Figure 2.8 : Epidermis of the skin (Rochester 2007) 

 
Meissner receptor 

This receptor is responsible for high sensing pressure and primarily related to touch and faster 

movements. In order to activate the Meissner receptor, the activation frequency should be 

(Rochester 2007) in the range of the 40 to 100 cycles per seconds (Goldberg and Lindblom 

1979). 

Pacinian corpuscles 

Pacinian corpuscle is concentrated at fingertips, palms, soles, toes, muscle, around the blood 

vessels, joint ligaments, nerve trunks and bony periosteum (Bolanowski and Zwislocki 1984; 

Temlett 2009). Displacement of subcutaneous tissue and periosteum which contains Pacinian 

corpuscle gets activated by the vibration from the energized tuning fork. If horizontal 

displacement or the stretch is applied then it may be less effective to activate Pacinian 

corpuscle (Mountcastle et al. 1967). It can be activated at frequencies as low as 0.4 Hz. 

 

Merkel disks are sensitive to pressure and slower movements: Although not targeted, these 

are insensitive to changes in frequency and consequently, yields a curve that is essentially flat 

(Verrillo and Bolanowski 2003). 

Ruffini ending are sensitive to pressure and slower movements and can be accessed by using 

an extremely small contractor surface driven at high intensities. 
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The utility of Biothesiometer and Neurothesiometer based on above perception signifies that 

receptors are responding to the frequency of vibrations. Biothesiometer utilizes 100 hertz 

which is the frequency between Pacinian corpuscles (around 250) and Meissner corpuscles 

(around 40) (Duke et al. 2007). However, other studies have found that vibration threshold at 

lower frequencies (for Biothesiometer at 50 or 60 Hz) there is an effect of temperature 

difference within the normal skin temperature (Halonen 1986). Looking at the Biothesiometer 

and Neurothesiometer vibration frequency, different manufacturer have utilized different 

frequencies that are either 50 - 60 Hertz or 100 hertz which ultimately comes under the 

frequency range to target Meissner and Pacinian corpuscles. Young et al (1993) have done the 

comparative study between Biothesiometer and Neurothesiometer. They concluded that 

Neurothesiometer instrument is developed to replace the Biothesiometer to measure the 

vibration perception threshold for the screening of diabetic neuropathy. In this study 85 

diabetic patients having an average duration of diabetes for 12 years and mean age of 61 are 

selected for measuring VPT using both Biothesiometer and Neurothesiometer. There was a 

close correlation between two devices (r = 0.93 p < 0.0001) when both VPTs are compared. 

Biothesiometer VPT was 29.9 ± 15.2V and Neurothesiometer VPT was 26.2 ± 13.4 V. 

Biothesiometer operated from the mains power vibrates at 50 Hz of frequency and 

Neurothesiometer which is battery operated vibrates at 56 Hz.  The patient coefficient of 

variance for Biothesiometer and Neurothesiometer was 8.6% and 8.1% respectively. Although 

Neurothesiometer is more expensive than Biothesiometer but it is self-contained, battery 

operated and well suited for screening for DPN. 

 

Limitations of Biothesiometer/Neurothesiometer: 

1. The VPT normally increases with age so that above the age of 70- a normal VPT score 

is already close to the maximum output of the Biothesiometer (Bloom et al. 1984). 

2. Many subjects with neuropathy appear to have scored at the limit of the 

Biothesiometer amplitude scale – close to or at 50 V indicative of a ceiling effect (Van 

Deursen et al. 2001). 

3. It is noted that the Biothesiometer probe does not vibrate in a single plane. There was 

a  large difference between two Biothesiometer in relation to the applied voltage and 

the actual stimulator movement (Goldberg and Lindblom 1979). 

4. Biothesiometer has not been taken into routine practice perhaps because of the 

confounding effect of limb temperature, psychological factors, the amount of pressure 
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applied by the vibratory probe and choice of the limb as well as tactile surface of the 

skin (Pourhamidi et al. 2014) 

5. Biothesiometer is not sensitive enough to detect the small fiber neuropathy but might 

be useful for the early detection of the neuropathy when used in the combination with 

the measure of small nerve fibres function such as skin biopsies (Pourhamidi et al. 

2014). 

6. Biothesiometer has the disadvantage of being larger and requiring attachment to an 

electrical point to drive an accelerometer to activate the probe although may apply 

vertical pressure more accurately and objectively. However, this limitation has been 

overcome by developing battery operated Neurothesiometer (Ohnishi et al. 1994). 

7. As the vibration probe is handled by the operator, the pressure of the applied stimuli 

may vary while testing vibration perception threshold. 

8. Neurothesiometer and Biothesiometer utilize fixed frequency to vibrate the probe, it 

cannot be changed once it is manufactured (Table 2.1). 

Table 2.1: List of companies’ manufacturer of Biomethiosmeter/Neurothesiometer with frequency specifications 

Serial Number  Company Device Fixed 
Frequency(Hertz) 

1 Diabetic foot care India 
Private limited 
(Biothesiometer 2017b) 

Digital 
Biothesiometer 

120 

2 Beijing beauty equipment 
company 
(Biothesiometer 2017a).  

Biothesiometer 50 

3 Algeo Ltd (UK) 
(Neurothesiometer 2017) 

Neurothesiometer 50 

4 Trimbio 
(Neurothesiometer 2016) 

Neurothesiometer 50 

 
 

Going through the above limitations of the devices used for the detection of DPN using 

vibration perception method there are several parameters which are really important to 

consider for developing a smart device. The limitations are vibration frequency dependent, 

vibration sites, the pressure of the probe on the skin and temperature are the other factors to 

consider. If all these parameters are considered properly then it will be easy to accurately 

detect neuropathy at an early stage based on receptor activation Figure 2.9 shows factors 

associated with accurate determination of DPN. 
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Figure 2.9: Activation of receptors to determine peripheral neuropathy 

 

As per the gathered information from the literature search, all the necessary parameters such 

as pressure, vibration sites, vibration amplitude, and temperature were considered as shown 

in Table 2.2. 

 
Table 2.2: Key design parameters identified through Literature survey 

Author Description 

Pressure 

Lowenthal et al 
(1987) 

By increasing the weight from 200 g to 400 g, that is increasing the 
pressure of the applied stimulus is increased, there is a considered 
reduction in the vibration sensory threshold (VST) however, this was not 
seen when weight is > 400. 
In peripheral neuropathy, VST decreases as the pressure of applied 
stimulus increases (Lowenthal et al. 1987). 
 

Vibration sites 

Williams et al 
(1988) 

Vibration perception threshold was measured at both big toes and both 
medial malleoli for screening of diabetic neuropathy using Biothesiometer 
(Williams et al. 1988). 
 

Van Deursen et al 
(2001) 

The Plantar surface of the feet was chosen because this area is routinely 
used in screening to characterize the risk of ulceration in diabetic 
neuropathy (Van Deursen et al. 2001). 
 

Loseth et al 
(2007) 

Great toe was chosen to be examined using 256 Hz and128 Hz tuning fork 
(Løseth et al. 2007). 
 

Singh et al (2012) Various points on the foot like the pulp of the big toe, first, third and fifth 
metatarsal head were used for examination using Biothesiometer (Singh 
et al. 2012). 
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Author Description 

                                                                     Vibration amplitude                                                  

Van Deursen et al 
(2001) 

The vibration of 1000 micrometer applied to the foot is quite severe and 
can travel through the limb so that it will be perceived at the ankle, the 
knee or even more proximally, despite the fact that they took measures to 
avoid this as much as possible (Van Deursen et al. 2001). 
 

                                                                      Temperature 

Verrillo et al 
(2003) 

The Pacinian channel at suprathreshold levels of vibratory stimulation is 
affected by the temperature at the surface of the skin as is the Ruffini 
channel. As temperature increases, the perceived intensity of vibration 
increases in an orderly manner. Temperature has an effect on the Pacinian 
channel above 100 Hz. 
 
The subjective magnitude of vibration is not appreciably influenced by skin 
temperature at frequencies that optimally activate the Meissner and 
Merkel channel (Verrillo and Bolanowski 2003) 

O’ Brien et al 
(2014) 
 

 An ambient temperature of 70F to 72 F(21 to 22-degree Celsius) was set 
constant during the VPT test using 128-hertz electronic tuning fork in the 
treatment room (O'Brien and Karem 2014a). 
 

If the examiner detected vibration for less than 20 sec in total hallux score 
(10 sec per hallux), the patient was considered to have normal sensation. 
A score greater than 40 Sec (20 sec per hallux) indicated neuropathy 
(O'Brien and Karem 2014a). 

 

In conclusion, most of the methods and test available for diagnosing diabetic neuropathy were 

studied in details. Devices such as tuning fork, Biothesiometer/Neurothesiometer are available 

to measure vibration perception threshold, however, these techniques are operator 

dependent and pressure measurement is not taken into consideration. To overcome 

limitations the aim of developing a standalone, portable, operator-independent device where 

the result can be automatically interpreted is taken into account for developing a device. The 

technique of diagnosing DN through vibration perception is considered for the development of 

the smart device. 
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Chapter 3  Development of Device 
 
This chapter focuses on the development of the neuropathy assessment device. As discussed 

in Chapter 2, various methods available for detection of diabetic neuropathy were carefully 

studied, the techniques based on the vibration perception threshold were considered for the 

development of the device. Device development involves various steps like requirement 

gathering phase (focuses on parameters like pressure, vibration sites, vibration characteristics, 

and vibration direction), design drawing, hardware designing, electronic circuit and software 

development which will be discussed in detail.  As the device is based on the vibration 

sensation, various available vibrator motors/actuators such as Eccentric Rotating Mass 

Vibration (ERM), linear resonance actuators and C2 HDLF tactor were experimented to identify 

their vibration characteristics (like amplitude, frequency and vibration direction). The analysis 

on selecting these motors were performed and to come out with specific.  C2 HDLF tactor 

which is capable of generating required nature of vibration. Pulse width modulation 

technique was used for controlling the motors in terms of amplitude and frequency. For real-

time monitoring of the pressure, Force sensitive resistors were used and its placement was 

critically analysed. The initial design was developed for one foot for the evaluation phase.  The 

evaluation phase involved hardware design, electronic circuit and software development for 

the initial version of device.  

Based on the evaluation results the design was upgraded for both feet. In the latest version of 

design, to avoid the vibration leakage, the vibration isolation technique was implemented 

using springs with its technical analysis. The step by step development of the device is 

explained in the chapter. Graphic user interface was made user-friendly, easy to understand 

with real time pressure monitoring option. The technique of conducting the test is also 

updated which reduces the overall time of conducting the test. The whole setup is wirelessly 

controlled using Bluetooth module which will be described in the electronic circuit section. 

Later on, the plan to perform comparative study with Neurothesiometer device for 

standardisation has been presented with experiments on the human subjects.  
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3.1 Requirements for Device development 

The following parameters were considered for the device development:  

 

 

 

 

 

 

 

 

Figure 3.1 : Requirements for activating human touch receptors 

(1) Pressure is considered while applying vibration to the human subject. 

Neurothesiometer is used for detection of neuropathy where the vibration stimulus is 

provided by holding the vibration probe against the body contact surface. During the 

contact, there is a possibility of applying vibration with varying pressure. Applying 

vibration with inconsistent pressure may affect the activation of the receptors. 

According to a study when the weight is increased from 200 grams to 400 grams the 

vibration perception threshold increases and that when the Neurothesiometer 

vibration probe at rest position it exerts the pressure of 320 grams (Lowenthal et al. 

1987).  In order to apply uniform and consistent pressure, innovative design has to be 

developed. In this project a weighing scale like platform is proposed where vibration 

motor can be fixed on the plate and subject is allowed to comfortably place their feet 

on the plate to receive vibration. The plate for placing the feet is kept inclined and 

Force sensitive resistors are used to monitor the pressure. They are used for the 

continuous monitoring of the pressure applied on the plantar surface of the foot. 

Pressure will be monitored during entire test so that it provides consistent result.  

 

(2) It is important to identify the correct vibration sites to apply the vibration, as this is 

the key point for the early detection of diabetic neuropathy. There is a loss of touch 

and vibration sensation at the early stage of the disease. Therefore those sites can be 

selected which are primarily affected and are more likely to experience the early 

consequences of the complication. Usually, for monofilament test as discussed in 

Chapter 2, according to International Working Group on the Diabetic Foot (2015) for 
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conducting the monofilament test, Big toe, third and fifth metatarsals are selected as 

vibration sites (Foot 2015). Vibration perception threshold examination using 

Biothesiometer were carried out on the big toe, first, third and fifth metatarsal as the 

vibration sites (Singh et al. 2012). An advice for conducting the tuning fork test by 

International Working Group on the Diabetic Foot (2015),  big toe is selected as the 

vibration site (Foot 2015). Based on these studies, Big toe is considered to be the 

most appropriate site for applying the vibration in the proposed study. 

 

(3)  Vibration characteristic is defined by two parameters, Frequency and Amplitude. The 

vibration amplitude is the peak point referred to as the maximum excursion of the 

wave from the zero or equilibrium point. And peak to peak amplitude refers to the 

distance from positive peak to negative peak in the vibration wave. Vibration 

amplitude is measured in three different units such as displacement (mm/microns), 

velocity (mm/s), and acceleration (mm/s2). The displacement is also related to 

voltage. Vibration amplitude is important to precisely identify the vibration 

perception threshold of the skin since the subject will feel the effect of the vibration. 

As the amplitude increases, the effect of sensing the vibration will become more 

prominent. To correlate this information with sensation, the specification of 

biothesiometer and neurothesiometer are studied. In biothesiometer (Beijing Beauty 

Equipment Company) the peak amplitude range of vibration probe is between 0μm -

25μm, maximum peak amplitude range of vibration probe is 25μm, the error range of 

± 10mm (Biothesiometer 2017a). For Neurothesiometer (by Algeos), the range may 

be switched to Normal = 0 to 50 volts/0-250 microns and Expanded = 0 to 25 volts/0-

62.5 microns (Neurothesiometer 2017). This shows that the maximum displacement 

of the vibration goes up to 250 microns which means the vibration amplitude by our 

proposed method should be equal to or more than the required range. This point is to 

be considered and range of the vibration for the proposed design is to be from 0 to 

350 microns (maximum peak amplitude) at 100 Hz. 

 

(4)  Vibration frequency plays a vital role in activating the receptors. As discussed in 

Chapter 2, there are four types of receptors and have different ranges of the 

frequency. Meissner receptors respond at around 40 hertz and Pacinian receptors 

respond at around 250 hertz. To activate these groups of receptors biothesiometer 

and neurothesiometer vibrates at a specific frequency. According to the specifications 

of these existing devices, as discussed in Chapter 2, both 50 Hz and 120 Hz vibration 
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frequencies are provided to the vibration probe and the frequency is generally fixed, 

the user cannot change it. In the proposed design a wide range of frequencies is 

possible to vibrate and can be fixed as well. So the range of the frequencies available 

in the proposed design is from 50 Hertz to 120 hertz. 

 

(5)  Other than vibration frequency and amplitude, activation of the receptor also 

depends on the vibration or displacement direction. Vibration could be on the 

horizontal or in the perpendicular direction of the skin. If horizontal displacement or 

stretch is applied then it may be less effective to activate Pacinian corpuscle 

(Mountcastle et al. 1967). So vibrator motor in the proposed design is selected that 

vibrates in perpendicular to the skin to activate the receptors. 

Considering all these parameters, development of platform based device was considered; here 

the method of conducting the test will be different from the Neurothesiometer/ 

biothesiometer. The detailed design of the device is discussed below. 

3.2 Designing the device 

For providing the vibration stimulus at the big toe, a platform based device was considered. So 

the question here is whether a subject should stand on the plate and start the test or should 

sit on chair while placing the feet on inclined plate. While standing on the platform, there 

could not be the possibility of changing the pressure and depending on the weight of the 

person the pressure may vary while conducting the vibration perception test. However, this is 

not a comfortable position, the idea of conducting the test by placing the feet on the platform 

after sitting on the chair seems more comfortable. In this way, the pressure exerting on the 

vibration motors can be monitored using sensors while vibration is applied. 

The design of the device is first modelled using computer aided software called Solidworks. At 

first it was designed for one foot (left). The intension was to create a portable and easy to use 

device. Keeping that in mind the design consists of three main parts. One is the base plate, test 

plate and the holder plate. It is designed such that there is a possibility of changing the 

inclination angle of the plates. 
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Figure 3.2 : Solid works design model of the device 

The design is shown in the Figure 3.2, the inclination angle can be adjusted according to the 

ankle joint of the subject. 

Design Description: 

 

               Figure 3.3 : Schematic diagram of the model 

The design with three plates is shown in Figure 3.3. The base plate is 60 cm long and used to 

support the whole assembly. The base plate consists of 16 V-girders to provide the inclination 

and also gives the support to other two plates.  The holder plate is 25.6 cm long, 21 cm wide 

and 0.5 cm thick used to change the inclination whose one part is on the V-girders to fix the 

inclination angle and another part is connected to the test plate with a hinge joint. The test 

plate is also 25.6 cm long, 21 cm wide and 0.5 cm thick which is connected to the second plate 

and connected to the base via a hinge joint. This test plate will be used by the subject to 

comfortably place their foot on it.  
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To make it light and portable, the whole design is made up of the high-quality acrylic plastic 

sheet due to its durability, easy to use, transparency and chemical resistance. It comes in 

different colors, thickness, and grades. For the current purpose, the clear acrylic sheet has 

been used with thickness of 0.5 cm. The overall weight of the device is not more than 3 

kilograms. The hardware device has two holes to mount the vibrations motor shown in Figure 

3.4. 

 

    Figure 3.4 : Placement of the vibration motors 

Four hinge joints are used, two between the holder and test plate and another two between 

the test and base plate. These joints are used for changing the inclination angle of the test 

plate for testing in a comfortable position. 

3.2.1 Vibration stimulation techniques 

In order to generate the vibration stimulation, there is a need for an external source to 

generate the vibration. One of the technologies which are widely accepted for detection of 

neuropathy is vibration through the electromagnetic coil. It has been implemented on devices 

like Neurothesiometer and Biothesiometer which are operated by alternating signal to 

generate the vibration. When current flows through the coil, the magnetic force is exerted by 

the coil which varies with applied voltage. For varying the voltage, potentiometer is used. For 

this project, different types of vibration motors were studied and experimented to understand 

the effect of vibration on the surface of the skin. Using tuning fork and neurothesiometer 

vibration probe, it was noticed that the vibration should be provided in the perpendicular 

direction to the skin surface to provide the effective stimulation. The technology used in 

Biothesiometer/ Neurothesiometer have several limitations: 

1. The vibration frequency in these devices is fixed. 

2. Electronic circuits were used. 
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3. The vibration parameter such as amplitude is manually controlled using 

potentiometer. 

Criteria for vibration motor selection: 

1. The vibration should be provided in the perpendicular direction to the skin to provide 

the required stimulation. 

2. The physical characteristic of the vibration such as frequency, vibration amplitude 

range should be adjustable i.e. the system should be capable enough to generate the 

vibration in the required range. 

- Frequency range – should cover at least 100 hertz as that of the 

Neurothesiometer. 

- Vibration amplitude should at least cover the Neurothesiometer range that is from 

0 to 250µm (Neurothesiometer 2017). 

3. The surface area of the motor contactor should be large enough to provide the 

required vibration. 

With the available information on vibration generation the challenge was to find a suitable 

vibration motor that could fit these requirements. The aim was to find a vibration motor 

which is capable enough to generate the vibration with required parameters (frequency 

and amplitude). Based on these criteria, various vibration motors such as eccentric mass 

vibration motor, linear resonance actuator and tactor (linear actuator) were examined. 

3.2.2 Eccentric mass vibration motor 

 

Figure 3.5 : Eccentric rotating mass vibration motor 

There are wide applications of this type of motors. Eccentric rotating mass (ERM) vibrator 

motors were mostly used in pagers and mobile phones or by cell phone industries, however, it 

is still being widely used in smartphones. Model 312-101 is a coin ERM DC motor and it is also 

known as shaft less or pancake motor. The benefits of using coin ERM motor, are it is easy to 

use and cheap. According to the specifications of the motor, it is having 12 millimeters of body 
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diameter, vibration speed is 12500 rpm that is 208 Hz of frequency and vibration direction is in 

X and Z directions but not in Y – direction which is required for this application as shown in 

Figure 3.5. 

 

Figure 3.6 : Performance characteristic of the ERM motor (ERM 2017) 

The performance graph of this motor is shown in Figure 3.6. When a voltage is increased from 

the 0 to 3.6 volts the frequency is increased from 60 to 260 Hz. With fixed frequency, the 

motor is unable to vary the amplitude. For example, it is possible to generate 120 Hz of 

frequency by applying a fixed 1.4 Volts. As per the requirement of the device, the frequency 

should remain constant with varying voltage (see Appendix D). 

Limitations of this motor:  

1. Frequency increases with increasing the voltage. 

2. The vibration is in both directions that is X and Z direction as shown in Figure 3.5, so 

when experimented with this motor by mounting on the inclined plate, the whole 

plate was vibrating  making it unsuitable to stimulate the required area of big toe. 

3.2.3 Linear Resonant Actuator  

This is also a coin type of the motor but it is different from ERM motors in terms of its working 

principle, and longevity. Although it has the long lasting life, driving the motor is bit complex. 

LRA motor drive is similar to the loudspeaker which means it requires an analog signal of the 

particular frequency to drive it. From the name itself, it is clear that resonance frequency is 

required to turn it ON. As per the available specifications, it has 10 millimeters of body 

diameter; 175 Hz of frequency and vibrates in Y directions as shown in Figure 3.7. 
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Figure 3.7 : Linear resonant Actuator with its vibrating direction 

 

Figure 3.8 : Input signal to drive Linear Resonant Actuator 

For the above model, 175 Hz of the alternating signal is required as shown in Figure 3.8 to 

vibrate it. In LRA motor is it possible to fix the frequency and change the amplitude from 0 to 2 

Volts maximum (datasheet available in Appendix D). 

Although it is satisfying the requirements of vibrating perpendicularly at fixed frequency and 

able to vary the voltage and unidirectional vibration, however, the range of frequency in which 

LRA motors are available is limited. LRA motor with a frequency less than 175 Hz is not 

available. The requirement of vibrating the motor at 100 Hz is not possible. 

3.2.4 High displacement and low frequency tactor 

High displacement and low frequency (HDLF) tactor (C2) is magnet linear actuator that has a 

frequency range of 60 – 160 Hz of mechanical resonance which provides high force and high 

displacement. It is designed in such a way that any of the frequency between 60 – 160 Hz is 

possible to set. Driving this motor is similar to that of LRA motor. When an electric signal is 

applied to the actuator, the contactor, as shown in Figure 3.9, oscillates perpendicular to the 

body. 
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Figure 3.9 : C2 HDLF vibration motor 

 

 

Figure 3.10 : Displacement Vs Frequency graph of vibration motor (C2HDLF 2017) 

The displacement versus frequency graph is shown in Figure 3.10. If the frequency of vibration 

is fixed at 100 Hz, it is possible to obtain the maximum peak to peak displacement of 0.7 mm. 

Varying frequency will vary the displacement (see Appendix D). 

C2HDLF benefits: 

1. By varying the electric drive parameters, it is possible to change the vibration. 

2. The frequency range provided by this tactor is from 60 – 160 Hz which is exactly 

matching the requirements and is possible to match with the neurothesiometer 

device. 

3. Unlike neurothesiometer which always vibrates at fixed frequency, using this motor it 

is possible to adjust any frequency between 60 to 160 Hz. 

4. The direction of vibration is perpendicular to accurately activate the required 

receptors. 

5. The body weight of the motor is only 30 grams with a body diameter of 1.2” and 

height of 0.50”, easy to mount on the required plate. 
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6. The main advantage of using this motor is that the applied vibration will be just 

focused on selected vibration site without affecting the mouting plate and the entire 

system. 

Thus, from this discussion and comparing all these motors it is clear that C2 – HDLF tactor is 

the vibrator motor which is most suitable for providing required vibration stimulus to the body 

and therefore selected for the proposed device. However, the motor does not run on its own, 

a special circuit needs to be designed to operate at the required frequency and amplitude. 

Using this tactor, it is possible to overcome the design constraints as shown in Table 3.1. 

Table 3.1 : Required parameters satisfied using C2 HDLF tactor 

Parameters Requirements Satisfy or don’t Satisfy 

Vibration Direction Perpendicular or in one 
direction 

Satisfy  

Vibration Frequency Should be 100 hertz Satisfy – Is even possible to 
set any frequency between 
60 – 160 Hz. 

Vibration amplitude( 
displacement) 

≥250µ Satisfy – at 100 Hz possible 
to achieve up to 350µ. 

Compatible to use on 
proposed  plate 

Should be easily placed on 
the plate to provide vibration 

Satisfy – Based on the body 
diameter, tactor is possible 
to fit on the plate. 

 

3.2.5 Pressure monitoring using Force Sensitive Resistors (FSR) 

For measuring the pressure, there are various technologies available which can be used for the 

device. The main objective of using pressure sensor is to monitor the pressure during the test. 

In Neurothesiometer, the vibration probe is applied on the skin surface without monitoring 

the pressure during the test. Because of this there is a possibility of human error. To overcome 

this limitation a pressure sensor (Force sensitive resistors) could be used on top of the 

vibrating motors. 

Force sensitive resistors: 

 

Figure 3.11 : Force sensitive resistors for pressure monitoring 
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The purpose of using the FSR in the device is to determine foot placement on the plate and to 

monitor the pressure during the test. FSRs are the special type of resistor consists of 

conductive polymer whose resistance changes by varying pressure on it. The active area of the 

sensor is ø14.68 mm and the thickness of the sensor is 0.46 mm shown in Figure 3.11. If the 

high pressure is applied, the resistance of the FSR decreases and when no pressure is applied 

the resistance remains the same. When these FSRs are connected to a microcontroller and 

pressure is applied, it shows FSR analog reading. The analog inputs of the microcontroller 

Arduino Uno are 10-bit which shows the analog readings between 0 to 1023 values. For 

example, if 100 grams of weight is applied on FSR then the FSR analog value is around 340. 

These values vary with varying pressure which has been calibrated using known weights set of 

0 – 800 grams. The inclination angle of the test plate is calculated by the formula α 

=cos−1 (
𝑏2+𝑐2−𝑎2

2𝑏𝑐
), where b is the base length of the plate which is 33.3 cm at the initial 

position and increases by 0.1 cm per inclination from position 1 to 16 shown in Figure 3.13, c is 

the inclination plate length to place the foot which is 29.5 cm and a is the supporting plate 

length to which is 25 cm. 

           
Figure 3.12 : Calculation of inclination angle 

 
Figure 3.13 : Inclination changes from 1 to 16  

When the constant weight of 100 grams is placed on the inclined plate then the weight on 

sensor can be calculated at each inclination as shown below: 

 

Figure 3.14 : Weight placed on an inclined plate 
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Where W is the constant weight of 100 grams, α is the inclination angle. Based on this the 

weight applied on the sensor is Wcosα and the graph of weight versus inclination angle is 

plotted as shown in the Figure 3.14.  

 

Figure 3.15 : Pressure change Vs inclinations 

The relationship between the weight and inclination angle in degree shows that when the 

inclination decreases the weight increases. The same will be applied when the foot is placed 

on the plate, this weight is measured by FSR. 

3.2.6 Electromyogram (EMG) to capture the muscle activity 

 
(a) 

 
(b) 

 

Figure 3.16 : (a) Myoware muscle sensor (Sensor 2017), (b) Myoware sensor on Extensor Hallucis Brevis muscle 

For the proposed design, the setup also includes a feature of measuring the muscle activity 

during vibration stimulation using electromyogram (EMG) sensor. This may help in monitoring 

muscle activity when vibration is applied. For measuring the muscle activity it is important to 

select the appropriate muscle. Here in Figure 3.16 (a) shows the EMG sensor Figure 3.16 (b) 

shows its placement to the Extensor Hallucis Brevis muscle of the foot to measure its activity. 
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The main purpose to use this sensor is to capture the muscle activity when vibration is applied 

to the big toe. This is the extra feature which could be added to the device circuit to monitor 

the muscle activity to ensure that the subject is affected by vibration. 

3.3 Integration of various components 

Various components were used to make the electronic circuit of the device as shown in Figure 

3.17. The components such as Arduino Uno, C2- HDLF tactor, FSR, Potentiometer, H- Bridge, 

Lipo Battery were used to design the device. 

 

Figure 3.17 : Electronics components 

 

Figure 3.18 : Circuit diagram of the initial device 
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Figure 3.19 : Pin configuration of the Arduino Uno 

Arduino Uno (Figure 3.19) is a microcontroller based on the ATmega328 operated on 5 voltage 

(Cheppali 2014). It has 14 digital input/output pins of which 6 are PWM output pins and 6 are 

analog inputs, a USB connection, 16 MHz crystal oscillator, an ICSP header, a power jack and a 

reset button are available. It can be connected to the computer using USB cable or wirelessly. 

Force sensitive resistors are connected is such a way that one end is connected to 5 volts and 

another to the pull-down resistor of 10 KΩ value. The point between the fixed pull-down 

resistor and FSR is connected to the analog input (A1) of the Arduino Uno board. When force is 

applied the resistance decreases from 100 kΩ to 10 kΩ and current increases. As the force 

increase from 0 to 100 N, the voltage across the resistor changes from 0 to 5 volts. All six 

analog input of Arduino Uno is 10 bits. So according to the formula of 2𝑛 where n is the slot 

that is 210is equal to 1024. The values changes from 0 to 1023 when pressure is applied. The 

values can be calibrated in terms of grams. 

 

Figure 3.20 : Pin diagram of driver circuit – H Bridge 

The Driver circuit is used as shown  in Figure 3.20 to drive the motors on the circuit, there is 

two standard H-bridge on the chip (TB6612FNG 2017). It is capable of driving two motors at 

the same time. In the circuit one motor (tactor) is connected. The driver circuit is connected to 

the Arduino board. The signal supplied to the vibrator tactor is controlled from the 

microcontroller. As the microcontroller is not capable of providing enough current, an external 

battery of 4.1 Volts and 350mAh current is used. PWMA pin is connected to pin 3 PWM of 

Arduino. AIN1 and AIN2 of the driver circuit are connected to Pins 8 and 9 respectively. STBY is 
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connected to Pin 6 of the Arduino board. A01 and A02 pins of the driver circuit are connected 

to the motor. The Potentiometer is connected between the external battery and VM pin of the 

driver circuit to provide power to the motor. 

 

Figure 3.21 : HC-05 Bluetooth module 

The Bluetooth Module: (HC-05) is designed for transparent wireless serial connection setup 

(Figure 3.21). It uses CSR Bluecore 04-External single chip Bluetooth system with CMOS 

technology and with AFH (Adaptive Frequency Hopping Feature). It has the footprint as small 

as 12.7mmx27mm. The range is approximately 10 meters. To make the system wireless, this 

Bluetooth is connected to the microcontroller board. Four pins of the Bluetooth module as TX 

is connected to RX and RX of Bluetooth module is connected to TX of the microcontroller. Rest 

of the 2 pins are connected to 3.3 volts and ground of microcontroller board as shown in Table 

3.2. 

Table 3.2 : Arduino pins connection with all the modules 

Arduino Uno 
Pins 

Pins of modules Module connected 

A1 FSR 1  Force sensitive resistors 

A2 FSR 2 

A3 EMG Myoware sensor (EMG) 

TXD RXD HC 05 – Bluetooth module 

RXD TXD 

3.3 volts VCC  

Pin 3 PWMA TB6612FNG 

Pin 6 STBY 

Pin 8 AIN1 

Pin 9 AIN2 

5 Volts VCC TB6612FNG,FSRs,Potentiometer,EMG 

GND GND is common of all the 
devices 

HC 05,TB6612FNG,Potentiometer,FSRs,EMG 
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3.3.1 Circuit diagram and working principle of the controller 

1. The Arduino board requires 5V to switch ON, which is provided by the external 

power source. It is providing power to the integrated circuits containing H-Bridge 

(TB6612FNG), Force sensitive resistors and the Bluetooth module.  

2. The microcontroller will read the sensor data at the baud rate of 9600 as per the 

installed program. 

3. The programming of the microcontroller is done in C/C++ functions of Arduino 

Uno. 

4. The Analog inputs of the microcontroller is 10 bit, it provides data in terms of 0 to 

1023, once the data from the sensor is read, the analog signal has to be converted 

into a digital signal using A/D converter. 

5. It could be possible to read multiple data from the FSR sensors. 

6. As soon as the data is obtained in the Arduino, it is then read by MATLAB to plot 

the real time graph based on the force sensed from at sensor wirelessly using 

Bluetooth module. If no pressure is applied the graph in MATLAB is at reference 0 

level when the pressure is varied, the graph shows pressure variations. 

7. As the motor driver circuit is connected to the Arduino, the PWM signal which is 

generated by the microcontroller will be provided to the driver circuit i.e. 

generating PWM signal of 100 Hz using a microcontroller and applying to the 

PWMA pin of the driver circuit. 

8. In this way, the same PWM signal is applied to the motor with signal strength of 

4.1 voltages and 350mAh of current using an external battery. As per 

specifications of the motor, it requires 250mAh RMS to be driven. 

9. Due to this a constant 4.1 volts is provided with the fixed frequency of 100 hertz 

and in order to vary the voltage from 0 to 4.1 manual potentiometer is used.  

10. The whole set up is controlled wirelessly using Bluetooth through Graphic User 

Interface (GUI) which is developed using MATLAB framework. 

3.3.2 Drawback of the circuit 

The major drawback of the above circuit is the use of a potentiometer to vary the voltage of 

the motor. The amplitude was changing as per the requirement but the system was incapable 

of getting the value of the potentiometer in order to measure the varying voltage between 0 

to 4.1 Volts. Because of this, it was not possible to capture the vibration perception threshold 

of the subject to interpret the results of the test. 
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To overcome this limitation the circuit was modified where the amplitude and frequency are 

handled through programming using PWM signals as shown in the circuit diagram in Figure 

3.22. 

 

Figure 3.22 : Electronic circuit diagram – for version 2 of the device 

The working of the modified circuit is mostly similar to the first one where the potentiometer 

is replaced and voltage is controlled by programming and the other advancement is the 

introduction of push button to make the system user friendly. The connection of the button is 

simple where one out of three pins is connected to ground, the second pin is connected to 5 

volts and the third pin is connected to A5 the analog pin of the microcontroller board. When 

the push button is pressed the value 1 is captured in the microcontroller else it remains 0. 

Potentiometer replaced by Pulse width modulation (PWM): 

The Pulse width modulation is the technique to generate the analog signal through digital 

control. It consists of two components one is duty cycle and another is frequency. The duty 

cycle described as the amount of time the cycle is on high (ON), state the percentage of the 

total time taken to complete the one full cycle. The frequency is described as the time taken by 

the PWM to complete one cycle which can be measured in cycles per second. The constant 

voltage can be obtained by cycling a digital signal on and off at a fast rate and with a certain 
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duty cycle. The aim is to drive the vibration motor at 100 Hz i.e. 100 cycles per second with the 

varying voltage. In the zero duty cycle the pulse width is almost zero (see Figure 3.23). 

 

 

Figure 3.23 : PWM input signal to the h bridge with 0% duty cycle 

 

Figure 3.24 : PWM input signal to the h bridge driver with 10% duty cycle 

As per the specification of the C2HDLF tactor ( vibration motor), it is recommended to provide 

maximum up to 10% of the average duty cycle. If the digital signal is cycled fast,  then the 

voltage seen at the output will appear as average voltage. The average voltage can be 

calculated by multiplying the digital high voltage with the duty cycle. That means 10% of the 

duty cycle can be calculated as 4.1×0.1 = 0.41 V. Similarly duty cycle of 5% will be 0.205 V. In 

order to varify the voltage change at every duty cycle the test has been performed where the 
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duty cycle is increased from 0 to 10% and the voltages are measured using multimeter shown 

in Figure 3.24.  

 

Figure 3.25 : Voltage versus Duty cycle 

 For creating the frequency of 100 cycles per seconds, the time period should be 10 

milliseconds (1/10ms = 100 Hertz). PWM of 0% duty cycle with 100 cycles per  seconds is 

created which is shown in Figure 3.23 and PWM with 10% duty cycle with 100 cycles per 

seconds created (Figure 3.24) in which 1 ms is the ON cycle and 9 ms is the OFF cycle creating 

the 10% of duty cycle gives the fixed frequency of 100 cycles per second ( 1/(1+9)). During the 

test, the vibration is provided from 0 V and is gradually increased up to 0.41V with the time 

interval of 500 milliseconds. 

3.4 Graphic User Interface (GUI) development 

 

 

Figure 3.26 : Front page for patient details 

The graphic user interface(GUI) is developed for running the device using MATLAB software. 

The first page of GUI, asks for patient details (Figure 3.26). Once the details are provided the 

next page starts the test for detection of diabetic neuropathy (Figure 3.27). 
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Figure 3.27 : Main page of the GUI 

This is the main page for detecting VPT. Here three real-time graph for displaying the values of 

FSRs at the Big toe, 1st metatarsals and EMG signal are shown (Figure 3.27). Once the subject 

places foot on the plate a real time graph is displayed on all three windows (Figure 3.28). The 

button named <Tactor> available on the GUI is used to start the vibration motor. The 

proposed system is designed to run the test for three times and an average of all test rounds is 

calculated to display the result, once the <result tab> is pressed. The switch button is pressed 

and  the vibration is applied to the foot, during each test round the subject is allowed to press 

the push button when they sense the vibration. Based on the current round the number will 

be displayed on <Round tab> and as per the level of vibration, the level will be displayed on 

the <level tab>. The duration of the whole test is displaced on the <time tab> in terms of 

seconds. When the switch is pressed by the subject, vibration will be stopped and the level is 

captured to display from the Round 1 tab, similarly, the levels will also be captured for Round 

2 and Round 3 to complete the test, Pressing the <Stop> button finishes the test. Press the 

<result tab> to obtain VPT. 
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Figure 3.28 : User friendly graphic user interface (GUI)  

The above figure shows the actual interface available to the user. The Force Sensitive Resistors 

are used to measure the real time pressure during the test. In the experiment two FSRs are 

used and placed on two points of the platform in such a way that when the subject places 

his/her foot on the plate, the force distributed at the planter surface of the foot at big toe and 

1st metatarsals will be recorded and displayed at the same time. 

3.4.1 Procedure to conduct the test  

First, the subject is asked to sit on a chair comfortably and once he/she is ready, the subject is 

asked to remove the shoes and socks for conducting the test. The subjects are asked to place 

their right foot on the platform with attached Electromyogram sensor as shown in Figure 3.28. 

The rest of the procedure is described as below: 

1. The command to start the test is provided through the GUI. 

2. Once the test is started, pressure distributed at the big toe and 1st metatarsals will be 

captured and displayed real-time on GUI in order to make sure that the pressure 

remains constant. 

3. Once the pressure is constant the vibration will be provided by pressing the tactor 

button on the GUI. 

4. The vibration will be provided where the vibration frequency will be constant and 

amplitude will increase from 0 to 0.41 Volts automatically and will be displayed as 

Level on GUI. 

5. The time interval between every vibration stimulus is kept fixed as 1000 milliseconds 

(this can be adjusted as per the requirement). 
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6.  The subject will be holding the switch and the subject will be asked to press the switch 

when the vibration is felt. 

7. Once the switch is pressed by the subject, the level of the vibration will be stored in 

round 1 and vibration will be stopped, to start the next round, tactor button should be 

pressed again.  

8. This procedure should be repeated three times and the average of the three rounds 

will be taken to determine the vibration perception threshold. In the above example, 

if the Level displayed on the rounds i.e. Round 1, Round 2, and Round 3 are 2, 3 and 3 

respectively so the average is 2.6. 

9. Once the test is finished, Download button displayed on the page will be enabled and 

the user is able to download the data of FSRs, EMG with respect to time in a spread 

sheet for further analysis 

10. Based on the average value of the captured level, presence of diabetic neuropathy 

could be determined. 

3.4.2 Testing flow Chart  

 

Start

Serial 
communication 
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Round = 1

Constant 
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Non Diabetic 
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No

End

 

Figure 3.29 : Test procedure and data capture 

The complete procedure in the software is shown in the flowchart (Figure 3.29). It shows the 

way the programming is done to operate the electronic circuit. Here based on the average 

value of the voltages level of diabetic neuropathy could be determined i.e. out of total 0.41 

Volts (V), if the threshold value is ≤ 0.25 V then subject is non diabetic neuropathy and if 

greater than 0.25 V then subject is neuropathic in the simplest form. 
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3.5 Device evaluation  

After developing the software as well as the hardware, it is very important to perform the 

evaluation of the device. For this purpose the current version of device is analysed on the 

following basis: 

1. Hardware evaluation: The hardware developed for the device, has several limitations: 

- It can be used only for left leg. 

- There is no need of changing the plate inclination for every test.  

- During the test, it was found that while applying vibration stimulation, significant 

amount of vibration was transmitted through the test plate due to which the 

whole assembly vibrated unevenly. 

- This leakage was examined using accelerometer (Metawear CPRO) by placing it on 

the top of the vibration motor. It was found that if the applied vibration amplitude 

is 50µm then plate vibrates with the amplitude of 18µm i.e. around 36% of 

leakage.   

 

2. Electronic circuit evaluation: There are several drawbacks which need to be upgraded: 

- The electronic circuit used for the device is capable of driving only one vibration 

motor. For driving two motors the circuit needs to be upgraded. 

- For EMG module, it was found that there is no evidence of muscle activity during 

the test; however this is an additional feature of the device which can be used for 

auto diagnosis from muscle activation.  

 

3. Software evaluation: There are several drawbacks in the software: 

- The software developed was capable of operating only one vibration motor at a 

time.  

- The time taken to perform the test was high because subject needed to wait until 

they sense the vibration stimulus which increases gradually from 0 to 0.41 V. 

- For every incremented vibration it takes 5 seconds and to cover the whole range, 

it requires 250 seconds. This needs to be repeated for 3 times to obtain the mean 

value of the VPT so it could take as much as 750 seconds which is almost 12 

minutes. 

- The output of the device varies from 0 to 0.41 Volts and due to this it is not 

possible to compare with any existing devices. This needs to be addressed by 

mapping to standard outcome ( either by calibrating the output in terms of 0 to 50 
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Volts same as the Neurothesiometer), so that it can be easily interpreted by  

clinicians. 

As in the device, FSRs were used for big toe and first Metatarsals, however in order to justify 

their significance, experiments were performed by placing these FSRs at various positions as 

shown below: 

Case 1:  

 

  
Figure 3.30 : FSR placed below the vibration motor 

 The FSR is placed below the motor on the plate as shown in the Figure 3.30, so when 

the foot is placed on the plate, the pressure exerted by the first Metatarsal is 

recorded. 

Using this position of FSR, their pressure remains constant as first Metatarsals will be at the 

same place throughout the test. It is not possible to identify the placement of big toe and 

monitor the pressure. 

Case 2: 

In this case, the placement of the FSRs is shown in the Figure 3.31 and the vibration stimulus is 

applied to the big toe. 

  
 
 

Figure 3.31 : FSRs placement at 1st Metatarsals and heel during the test 

 As shown in the above Figure 3.31, out of two FSRs, first FSR was placed just below the 

motor on the plate and second at the centre of the plate so that when the foot is 

FSR  

FSRs 
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placed on the plate, the pressure exerted by the first Metatarsal and heel of the foot 

can be recorded. 

 The pressure exerted by the heel was greater than that of the first Metatarsals. 

Similarly, as the size of the foot vary among the subjects, it could be difficult to maintain the 

distance of the FSRs. In this scenario too, when the vibration stimulus is applied to the big toe, 

it is not possible to identify the placement of big toe and monitor its pressure. 

Case 3: 

 
 

 
 

 

Figure 3.32 : FSRs placement on great toe and 1st metatarsals of foot during the test 

 Two FSRs were used to perform the experiments, in which the first FSR was placed on 

the top of the vibration motor and another was placed just below the motor as shown 

in the Figure 3.32. 

 The pressure exerted by the first Metatarsal is greater than the big toe. 

With this setting it is possible to track the position of the big toe and can monitor the pressure 

during the vibration application. However, there is no change in the pressure on the first 

Metatarsal which seems that use of the second FSR at first Metatarsal is not significant and 

can be ignored. 

Case 4: 

  

 

Figure 3.33 : FSR placed on the top of the vibration motor 

FSRs 

FSR 
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 With this setting it was possible to track the position of the big toe and can monitor 

the pressure during the vibration stimulus and hence this placement of FSR was 

considered as the best location for conducting the test. 

In order to address all these limitations in the device, there was a need for developing 

advanced version of device. This evaluation can help in developing a user-friendly, accessible 

to both feet, for a smart device. 

3.5.1 Redesigning of the device 

For addressing all the limitations of the previous version of the device, redesigning the device 

was considered for achieving the aim of developing the screening tool for diabetic neuropathy. 

 
(a) Front view 

 
 

 
(b) Left view 

 
(c) Top view 

 
(d) Isometric view 

Figure 3.34 : Design of the latest device 

The redesigning of the device is started by using software tool Solidworks through which 

device model was developed as shown in Figure 3.34.  The length of the device is kept to 35.6 

cm and width as 42 cm.  The inclination angle of the test plate is kept constant at 36 degrees. 

The test plates consist of two holes to place the vibration motors. The diameter of both the 

holes was Ø3.6 cm as the diameter of the vibration motor is Ø3.17 cm. If the vibration motors 

are connected directly to the test plate then the whole plate will vibrate similar to the previous 

version of the device. To overcome this limitation the vibration motor needs to be isolated 

from the test plate. For that, an additional design feature is added to the test plate. 

Space for placing vibration motors 

Test Plate 

42 cm 

35.5 cm 
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Figure 3.35 : Back view of the device 

The bottom view of the test plate consists of vibration motor holder for each motor. It consists 

of a holder, compression spring and a base with three screws. The weight of the brass holder is 

kept nearly 10 times higher than that of the vibration motor. The compression spring is used 

between the holder and the base and the aluminium base plate has three screw holes so that 

it can be easily attached to the test plate.  This design was finally used for developing the 

device. 

Materials: 

 

Figure 3.36 : Top and isometric view of the device 

The whole device box is made up of wooden plate and it is completely covered from all sides. 

The vibration motor holder is made similar to the design shown above. It consists of brass 

holder as the vibration motors are electromagnetic in nature; so that the holder does interfere 

with the motor. The compression spring is used with the stiffness of 4.837 N/mm which is 

made up of steel. The base plate is made up of aluminium plate. The whole assembly of the 

vibration motor holder is fixed with the test plate using three screws such that both the 
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vibration motors are placed inside (Figure 3.36).  Two FSRs are placed on the top of the motors 

to avoid direct contact with skin surface to the FSRs, it is covered by a thin natural latex sheet 

of 0.20mm. The test plate is fully covered by solid neoprene black colour rubber sheet of 1 mm 

thickness having fire - resistant benefits with good insulating property. It acts as an anti-slip for 

the feet placed on the plate. The LED (light emitting diode) strip is attached on the top of the 

plate which is covered by the white plastic cover for giving traffic light type of indication of 

neuropathy. On the back side of the box, there is a room for placing all the electronic circuits 

along with the battery which will be connected to the vibration motors, LED strip and FSRs. 

3.5.2 Vibration isolation design 

Vibration isolation is the technique of isolating the part of the equipment from the source of 

the vibration. Vibration propagate in the form of mechanical waves and due to some 

mechanical linkages, there is a possibility of vibration conduction. Passive isolation is 

commonly used where a certain type of materials are used to absorb or damp these extra 

mechanical waves. Sensors and actuators produce the interference to cancel the incoming 

vibration known as active vibration isolation.  Mainly mechanical spring or rubber pads are 

used for passive vibration isolation. 

 

Figure 3.37 : Holder for isolating the vibration 

In this case, the vibration motors can be taken as the source of the vibration. If the vibration 

motors are directly attached to the plate then vibration can propagates easily. To avoid this,  a 

proper isolation technique should be implemented i.e. either passive or active. Passive 

vibration isolation technique was implemented, so using the mechanical spring.  

The transmitted force from the vibration unit to the rest of the plate is given by: 

𝐹𝑇 = 𝐹𝑎 ∗ 
1

±[(
𝜔

𝜔𝑛
)

2
−1]

          (1)  

Where, 𝐹𝑇  is the transmitted force, 

𝐹𝑎  is the applied force, 

ω is the frequency of the applied force. 
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𝜔𝑛 is the natural frequency of the spring which can be given as √
𝑘

𝑀
 ,k is the stiffness and M is 

the mass placed over spring. 

After several iterations, a spring with the stiffness of 4.837 N/mm was found suitable which 

can nullify the transmitted force to the device body. 

Putting all the structural parameters the value of 
𝐹𝑇

𝐹𝑎
=

1

15
, showing the transmitted force 

significantly reduced compared to the applied force. 

 
Figure 3.38 : Applied force versus transmitted force 

Figure 3.38 shows the comparison between applied forces of the vibration to the transmitted 

force by using the holder design shown in Figure 3.37.  Using this design, the vibration stimulus 

can be applied directly to the skin surface with negligible vibration leakage to the contact 

surface. 

3.5.3 Electronic circuit design  

 
Figure 3.39 : Schematic diagram of the electronic circuit 

All the electronic components mentioned in the previous version of the device were used 

expect EMG module. Few modifications like one more vibration motor (C2HDLF) is added, 
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addition of LED strip and battery of 5 Volts is used instead of Lipo battery. The connection of 

all the components is shown in the schematic diagram (Figure 3.39).  

1. The circuit consists of 5 volts of battery with two output terminals. 

2. It consists of two circuits, one is the voltage regulator circuit and another is the motor 

and sensor circuit. 

3. Voltage regulator circuit consist of variable voltage regulator IC to vary the voltage 

from 0 to 5 Volts.  

4. One output terminal of the battery is provided to the circuit as an input signal, the 

output of the signal will provide a constant output voltage to drive the vibration 

motors via H bridge. The potentiometer is used to vary the voltage which is provided 

to the motor driver circuit. However, the voltage provided to the driver circuit should 

remain constant and is set to 4.1 Volts. 

5. The second output terminal of the battery which provides 5 Volts is connected directly 

to the Arduino. 

6. The motor and sensor circuit is operated by Arduino programming via graphic user 

interface developed in the MATLAB framework that enables H bridge, Bluetooth, force 

sensitive resistors sensors and LED strip as explained in section 3.4. 

3.5.4 Graphic User interface for the device 

 

 

 

 

 

Figure 3.40 : Upgraded GUI for the latest version of device 

FSR reading for the left foot FSR reading for the right foot Equivalent Neurothesiometer voltages 

Buttons to select the 

motor to vibrate 

Exact VPT values 

Selected 

VPT range 

Button to continue 

vibration stimulus 

based on selected VPT 

range. 
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The upgraded version of the GUI is shown in Figure 3.40. The main purpose of upgrading the 

GUI is to make it user friendly, easy and quicker to conduct the screening on both feet for 

determining diabetic neuropathy. 

1. It consists of two graphs to show the real-time pressure value of the FSRs placed on 

the top of the vibrator motors. 

2. The readings of the FSR placed on the left motor will be displayed on the left side 

graph and readings of the FSR on the right motor will be displaced on the right side 

graph. 

3. In the motor section, there are three switches to select the vibration motor. Once the 

<LEFT FOOT> button is pressed the left side motor should be enabled. Similarly, when 

<RIGHT FOOT> button is pressed right side motor should be enabled. And while 

selecting <BOTH FEET> button both the motors should be enabled. 

4. After selecting the motor, five buttons are available (10V to 50V) to select the 

vibration amplitude. 

5. The range will have the value of the selected VPT range. 

6. Press <Continue> button to start the motor from the selected vibration amplitude 

range as mentioned in step 5. 

7. The exact VPT based on the rounds and levels of the vibration amplitude is captured in 

the window shown in Figure 3.40. 

By enhancing this Graphic user interface, as there is a possibility of selecting the vibration 

amplitude of the motors, has become quicker in terms of the previous version of Graphic user 

interface. Once the range is selected, vibration should increase gradually for next 10 levels. 

Each level will take 5 seconds to move to the next level and whole process should be repeated 

for two times. The total time calculated will be just 20 seconds for one foot. So for both the 

feet it should take only 40 seconds to conduct the test.  

Discussion 

The development of the device is almost completed and it can be used for the both feet for 

measuring the VPTs of the subjects. There are important advancements in the latest version 

from the initial version of the device. The initial version of the device was capable of 

measuring VPT for only one foot and was also vibrating the whole platform resulting into 

noise. There was an option for selecting the inclination of the test platform which was 

removed in the later version because once the inclination of the test platform is fixed; there 
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was no need to change it. Initially, the force sensitive resistors were placed on the top of 

actuator and one on the first metatarsal but later realised that FSR on the first Metatarsal is 

not required. The major drawback about this initial version of device is it was taking longer to 

conduct the test approximately (12 minutes). Again the graphic user interface could only be 

able to determine whether a subject is neuropathic or non-neuropathic. Looking at all these 

drawbacks this version of device was updated where it was capable for measuring VPT of both 

feet. The placement of FSRs was also fixed which is placed on the top of the left and right 

actuators. The problem of vibration leakage was also solved by using passive vibration 

isolation technique. The updated GUI was capable of capturing real time pressure from both 

the feet along with the options of selecting the foot for VPT measurement. Here the idea of 

providing the vibration from 0V to 50V (as same as the Neurothesiometer voltage range) with 

5 divisions is interesting as it can save time, but at the same time the threshold levels of each 

voltage (i.e. 10V to 50V) should be precisely set. This limitation can be overcome by precisely 

measuring the displacement at each voltage of device and comparing with the 

Neurothesiometer displacement for the whole vibration amplitude range to set the exact 

threshold values. This comparative study needs to be performed which will be discussed in the 

next chapter. 
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Chapter 4 Experimental evaluation of the developed device 
 

In this chapter the first thing to understand is the vibration characteristic of Neurothesiometer 

device. Measurement of vibration characteristics includes measurement of frequency and 

amplitude. This is important to know in order to fix the same thresholds for the latest version 

of device. For this purpose, inductive sensor was used to measure the frequency of 

Neurothesiometer vibration probe by gradually increasing its vibration amplitude using 

manual rotating knob. For measuring the displacement of the vibration, a calibrated digital 

microscope was used. The measurement of vibration displacement was performed for whole 

range of vibration amplitude (i.e. 0V to 50V) which is discussed in the chapter.  

Once the frequency of the Neurothesiometer is known, the same frequency should be set for 

the vibration actuator of the device using PWM signal. Similarly the displacement of the 

vibration actuator was measured using the same digital microscope till it reaches the 

maximum vibration amplitude of Neurothesiometer vibration probe (i.e. at 50V) which is 

investigated in the chapter. In order to obtain the device voltage range, equivalent to 

Neurothesiometer voltage range, a curve fitting method is implemented. This will help in 

calibrating the device voltage in terms of equivalent Neurothesiometer voltage for comparison 

purpose. 

4.1 Comparison of the device with Neurothesiometer 

 

 

Figure 4.1 : Neurothesiometer 

The latest version of the device which is developed could be used as a screening tool for 

diabetic neuropathy once it is compared and evaluated with the established techniques. This 

can be achieved only when the vibration amplitude and the frequency of the device has the 

same vibration characteristic of the existing devices.  For comparison purpose, it is necessary 

to know the vibration characteristics of Neurothesiometer probe to compare and calibrate the 

device. 
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Vibration Frequency of Neurothesiometer: 

 

Figure 4.2 : Experiment setup for Neurothesiometer 

An inductive proximity sensor is used for the experiment as shown in Figure 4.2. They are used 

for non-contact detection of metallic objects. Their operating principle is based on a coil and 

oscillator that creates an electromagnetic field in the close proximity of the sensing surface. 

The vibration probe is placed very near to the tip of the sensor (less than 1mm distance). 

There are three outputs of the sensor where one of the output is connected to the power 

supply to provide the voltage of 6V and another is connected to ground and the third one is 

connected to the digital oscilloscope to obtain the readings for frequency on the computer. 

The manually controlled potentiometer is used to gradually increase the vibration. Based on 

the vibration intensity, the sensor will sense the intensity in terms of voltage. The vibration 

frequency at 0V, 10V, 20V, 30V, 40V and 50V are measured using the inductive proximity. 

After conducting this experiment, it was clear that the vibration frequency of the 

Neurothesiometer remains constant at 102 hertz at every voltage from 0 to 50V. 

Vibration amplitude measurement of Neurothesiometer: 

The vibration amplitude of the Neurothesiometer probe was measured using a digital 

microscope, however before using a digital microscope, it was important to calibrate it for 

measuring the accuracy of the results. Digital microscopes allow for the rapid acquisition of a 

high-quality image which can be precisely quantified or calibrated (Davis and Freeman 1998). 

The captured image can be analyzed for accuracy and stored for later use.  

Calibration of Digital Microscope: 

To ensure the accurate measurement and quantification of data using image analysis precise 

calibration is important.  Typically images are captured by using a specific zoom or objective 
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lens to determine the overall magnification. The magnification of the microscope is from 50X 

to 500X. The calibration is set at 50X. First, the image of a physical scale is captured as shown 

in Figure 4.3.   

 

Figure 4.3 : Image captured using a digital microscope 

It has been verified on the physical scale as seen in Figure 4.3. As the distance between each 

thread of the scale is 0.1 cm i.e. 1mm, the pixels for the selected distance is measured as 185 

pixels as shown in Figure 4.4. This means that 1mm distance is equal to 185 pixels for 50X 

magnification. Similarly, for all the zooming range for the digital microscope (50X to 500X), the 

distance can be calibrated using the same method. This calibration (1mm= 185 pixel) can be 

added to the software such that it can be used to precisely measure the displacement.  

  
Figure 4.4 : Distance measured in terms of millimetre and pixel 

The experiment has been performed to measure the vibration amplitude of the 

Neurothesimeter vibration probe. The vibration amplitude is increased manually from 0 to 50 

voltages using the potentiometer.         
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  Figure 4.5 : Experimental setup for measuring Neurothesiometer vibration amplitude 

As shown in Figure 4.5, the digital microscope was connected to the laptop in order to get the 

magnified image. The vibration probe of the Neurothesiometer was adjusted using the holder 

in such a way that it is presented on the front of the digital microscope. The distance of the 

digital microscope and the vibration probe was maintained throughout the experiment. Once 

the setup is ready, Neurothesiometer was switched ON and the voltage was kept at 0 Volts. 

Gradually the voltages of the Neurothesiometer probe was increased using the potentiometer 

(vibration knob) and the images were captured for almost every voltage. The Measured 

displacement was in mm as shown in Table 4.1 and graph Figure 4.6. 

Table 4.1 : Experimental results of amplitude measurement of Neurothesiometer 

Serial number  Voltage (V) Measured amplitude  (mm) 

1 0 0 

2 6 0.01 

3 9 0.015 

4 11 0.02 

5 13 0.025 

6 15 0.03 

7 17                            0.035 

8 19 0.04 

9 20 0.045 

10 22 0.054 

11 24                           0.068 

12 26 0.073 

13 28 0.084 

14 30 0.092 

15 32 0.1 

           16           34 0.108 

           17           36 0.119 

18 38 0.133 

19 40 0.143 

20 42 0.165 

21 44 0.175 

22 46 0.187 

23 48 0.208 

24 50 0.224 

 

Vibration probe 
Holder 

Magnified vibration probe 
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Figure 4.6 : Voltage and displacement relationship of Neurothesiometer 

Figure 4.6, shows the relationship between Neurothesiometer voltages and vibration 

displacement. The equation for the above graph can be given as F (𝐷1) = 𝑉1. 

𝑉1 = 3.9𝑒 + 3𝐷1
3 −  2𝑒 + 3𝐷2

1 + 4.6𝑒 + 2𝐷1 + 2    (2) 

Here, V1 is the Neurothesiometer voltages and D1 is the measured displacement of the 

vibration probe. 

Vibration amplitude measurement for device:  

 

       

                    

Figure 4.7 : Measuring displacement of the vibration motor 

Magnified vibration contactor 
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For measuring the vibration amplitude of the motor, the vibration motor needs to be enabled 

using GUI as discussed in section 3.6.4. The digital microscope was adjusted in such a way that 

the contactor of the motor should be in focus to get its magnified image as shown in Figure 

4.7. Similarly, the distance between the microscope and vibration motor is maintained 

constant throughout the experiment. The motor will vibrate from 0 volts i.e. 0 mm until it 

reaches the amplitude of 225 mm similar to that of the Neurothesiometer maximum voltage. 

As discussed before vibration frequency of the motor was kept constant at 100 hertz 

throughout the experiment. All the readings of the vibration displacement were measured in 

mm. The readings are displayed in Table 4.2.  

Table 4.2 : Vibration amplitude measure for vibration motor of the device 

Serial number Voltage Displacement(mm) 

1 0 0 

2 0.04 0.015 

3 0.08 0.025 

4 0.12 0.043 

5 0.16 0.053 

6 0.2 0.07 

7 0.24 0.08 

8 0.28 0.086 

9 0.32 0.107 

10 0.36 0.113 

11 0.4 0.129 

12 0.44 0.145 

13 0.48 0.151 

14 0.52 0.162 

15 0.56 0.172 

16 0.6 0.183 

17 0.64 0.194 

18 0.68 0.205 

19 0.72 0.218 

20 0.76 0.232 

21 0.8 0.237 

22 1.2 0.247 
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Figure 4.8 : Voltage versus displacement relationship of vibration motor of device 

Figure 4.8, shows the relationship between Vibration motor voltages and the vibration 

displacement. The equation for the above graph is given below, where F (𝑉2) = 𝐷2. 

The Quadratic equation has been derived from the above graph such as: 

D2 = −0.05V2
2 + 0.34V2 + 0.0014                                                             (3) 

Where, V2 is the device voltage, D2 is the measured displacement. 

As the vibration amplitude range is the same in both the devices i.e. D1 = D2, it is possible to 

replace the value of D1 in equation 2 by value of D2 of equation 3 to get the relationship 

between Neurothesiometer voltage V1 and out device voltage V2  such as V1 = F (V2). The 

relationship graph is plotted as shown in Figure 4.9. 
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Figure 4.9 : Device voltage V2 versus Neurothesiometer V1 

Thus, the relationship between the voltages of Neurothesiometer and the proposed device has 

been developed.  The vibration stimulus is applied to the subject based on the selected 

voltage. For example, the voltage applied to the subject using Neurothesiometer and the 

subject sense the vibration at 15 Volts of the Neurothesiometer then the VPT of the subject is 

determined as 15 Volts. The advantage of establishing the relationship between 

Neurothesiometer and device is, when vibration stimulus is applied by the device; the 

determined VPT can be expressed in terms of equivalent Neurothesiometer voltage.  

The derived equation is implemented in GUI to get results of VPT in terms of 

Neurothesiometer voltage range from 0 to 50 Volts. 

 

Figure 4.10 : Result expressed in GUI 

Selected range 

Device voltage 
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In Figure 4.10, the average level i.e. 3 shows the average VPT measured by selecting the range. 

The average level is used to determine the actual voltage of device which is calculated as 0.015 

V in the above case. The selected range is shown as 0 to 10 Volts which means that the subject 

has sensed the vibration stimulus within this range. The equation derived in the above section 

is used to obtain the Equivalent Neurothesiometer voltage showing 4.90 volts. The obtained 

VPT is used to determine the severity level of VPT and expressed the results as ‘Normal’ in the 

above case. 

4.2 Design summary  

In the latest model, the progression is finished in terms of device design as it is conceivable to 

test the vibration sensation on both feet. When the vibration stimulus is given to one foot the 

second foot can lay easily on the same platform and this provides for adjustment during the 

test. Due to vibration isolation technique, the vibration will be relatively isolated from rest of 

the device body and is possible to provide vibration stimulus to the skin surface only. 

With the upgradation in electronic circuit, it is now possible to operate any of the vibration 

motors or both the motors at the same time if required. It is capable of operating LED strip, 

switch, FSRs along with the wireless control using Bluetooth module. 

By upgrading the software programming, it can now control the vibration motors. It gives the 

provision of selecting the vibration motors as per the user’s need.  The Graphic user interface 

is much more fexible for users to perform the test. In a way it allows the user to independently 

operate the device where results could be autonomously interpreted.  With all these advanced 

features of device based on the vibration perception threshold, the device has been named as 

‘VibraScan’ (Dave et al. 2018) 
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4.2.1 Procedure for conducting test with VibraScan  

 

Figure 4.11 : Procedural screening tool of VibraScan 

The detailed procedure of using VibraScan is shown in Figure 4.11. It consists of VibraScan 

device, method of operating VibraScan and the entire flow of the information which will be 

displayed in the form of the results.  

1. For conducting the test, VibraScan should be first placed on the floor in front of the 

user chair.  

2. All the time, test should be performed in the same ambient temperature that could be 

25 degree centigrade. 

3. VibraScan needs to switch ON to establish the serial communication with the Arduino 

microcontroller.  

4. Once the connection is established, user needs to provide the credentials in the GUI 

and check for the FSRs data receiving on the GUI via Bluetooth. 

Switch 

Subject 

holding 

switch 
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5. The Pressure sensor data should be captured on the Left and right graph once 

everything is activated. 

6. Now the subject needs to sit on the chair comfortably and put his/her feet on the 

plate as shown in Figure 4.11. 

7. The great toe should be placed exactly on the top of the motor. 

8. The subject needs to hold the switch during the test as shown in Figure 4.11. 

9. After this setup, once the subject is ready for the test, the vibration motors should be 

selected from the GUI to provide the vibration stimulus. 

10. Select <Left foot> button from GUI to enable left side motor (similarly, selection of 

<right foot> button or <both foot> button from GUI will enable right side motor or 

both the motors respectively). 

11. For selecting the correct range of the vibration stimulus, press <10V> button to 

provide vibration amplitude equivalent to 10 Volts to the subject.  

12. If the subject does not sense the vibration, provide vibration stimulus of 20 Volts, 

likewise increase the voltage until subject sense the vibration. 

13. Subject is asked to press the switch at the point of vibration sensation. Once the 

switch is pressed, the vibration will stop automatically and range will be selected. 

14. For example, if the subject presses the switch at 20 Volts, then 10V to 20V range 

should be selected. 

15. After that  <continue> button should be pressed to proceed for providing the vibration 

sensation that starts from 10 Volts and gradually increases until it reached 20 Volts. 

16. The subject is asked again to press the switch to measure the exact VPT. 

17. The procedure should be repeated twice by following the step 15 and step 16 to 

calculate the mean VPT. 

18. Based on the mean VPT, the actual voltage of the VibraScan is captured to calculate 

the equivalent Neurothesiometer voltage shown in the result part in the Figure 4.11. 

19. At the time of showing the outcome, the severity of the condition will be displayed as 

Normal, Mild, Moderate and Severe depending on the level of VPT, at the same time 

colour of the LED also changes from Green, Amber, Dark orange to Red respectively.  

The procedure of conducting the test using VibraScan is straightforward and quick where 

results are interpreted automatically. VibraScan can be used as a screening tool for diabetic 

neuropathy and has the potential of replacing Neurothesiometer. 
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Discussion 

The vibration characteristics of the Neurothesiometer probe are successfully measured. By 

using inductive sensor and the frequency was estimated as 102 hertz for the whole range of 

vibration amplitude. Using calibrated digital microscope the displacement of the vibration 

probe is estimated as (0V to 50V ≈ 0.2 mm) where 25V is equivalent to 0.07 mm. Similarly in 

VibraScan device the similar range of displacement was set from 0 mm to around 0.2 mm for 

comparison purpose. Using the curve fitting technique, equation is developed which gives the 

relation between VibraScan and Neurothesiometer voltages.  

This shows how VibraScan has been evolved from concept to smart device. It is important to 

perform trial using VibraScan on human subjects to analyse its performance with respect to 

Neurothesiometer. For this purpose, both the tools (VibraScan and Neurothesiometer) should 

be applied on the human subjects to determine VPTs and perform the comparative study, this 

is discussed in the next chapter. 
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Chapter 5 Experimental study on Human subjects 
 

This chapter will demonstrate the experiments performed on human subjects using both the 

Neurothesiometer and VibraScan devices. The purpose of the comparative study is to examine 

how well VibraScan is working when applied on subjects. The study will also ensure whether 

the outcome of VibraScan is acceptable by comparing it with Neurothesiometer.  

To fulfil these requirements 20 healthy volunteers were invited to undergo the test using both 

the device after their prior consent. The procedure of conducting the test will be explained in 

the following sections. After conducting the test, a statistical analysis was performed. To 

assess the strength of the relationships of the measured VPTs  

(both right and left foot), correlation coefficient method was implemented. However, to 

check the level of agreement between both the devices Blend’s and Altman test method was 

used which will be discussed in this chapter. 

Ethical approval was given by Bournemouth University’s Research Ethics committee (as shown 

in Appendix A) for conducting this test.  

5.1 Criteria for selecting the subjects 

1. The subject should be non- diabetic. 

2. Should be more than 18 years old. 

3. Should not have any injury or ulcers on the sole of the foot. 

4. Should not have any problem with foot movement. 

5.2 Experimental methodology  

1. All 20 participants were tested using VibraScan and Neurothesiometer alternately. 

2. Calculate the mean VPT using VibraScan for each subject and maintain the pressure 

throughout the test. 

3. Calculate the mean VPT using Neurothesiometer for the same subjects. 

4. Measure VPT for both feet of each subject for comparison. 

5. Calculate the correlation coefficient between two measurements of left foot. 

6. Calculate the correlation coefficient between two measurements of right foot. 

7. Use the difference plots (i.e. Blends and Altman plot) for two measurement of each 

foot and examines the agreements between the two measurement techniques. 
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Procedure followed to conduct test using VibraScan 

 For conducting the test using VibraScan the following steps were used: 

  

Figure 5.1 : Screening test using VibraScan 

1. Subject needs to remove shoes and socks to perform the test. 

2. Subject was asked to sit on the chair and place their feet on the VibraScan test plate. 

3. Needs to hold the switch as shown in Figure 5.1. 

4. When subject places the feet on the platform, FSR readings for both feet were 

continuously captured and displayed on the screen (Figure 5.1). 

5. Any foot can be selected and vibration stimulus applied. 

6. The vibration amplitude was measured from minimum to maximum, where subject 

was asked to press the switch for selecting the range. 

7. Once the range of vibration was selected, vibration stimulus was provided again based 

on the selected range. 

8. In the above example, if the selected range was from 0 to 10 volts, then the vibration 

stimulus was started from 0 and gradually increased to 10 volts. 

9. The subject was asked again to press the switch when the vibration sensation was felt 

and was repeated to get the mean VPT. 

 

 

Figure 5.2 : Result displayed on VibraScan colour board 

 

Green colour indicating normal level 
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10. For the above example, the result was shown as ‘Normal’ and green LED light was 

displayed as shown in Figure 5.2. 

11. Similarly, vibration stimulus was provided to another foot and all the above steps were 

repeated after selecting the correct foot to obtain VPT. 

Procedure used to conduct test using Neurothesiometer: 

After conducting the test with VibraScan, the same subject was tested using 

Neurothesiometer to determine VPT. 

 

Figure 5.3 : Conducting test using Neurothesiometer 

1. Subject was tested on both the feet one by one. 

2. The subject was asked to keep their leg comfortably as shown in Figure 5.3.  

3. Vibration stimulus was applied to the subject by holding the vibration probe. 

4. The operator was allowed to control the amplitude of the vibration using vibration 

knob. 

5. The subject was asked to say ‘Yes’ when vibration was felt. 

6. The vibration amplitude ranges from 0 to 50 Volts, and the vibration started from 

0 Volts and progressively incremented until subject felt the sensation. 

7.  The time at which the vibration sensation was felt was noted and the voltage 

showed on the Neurothesiometer determines the VPT of the subject. These were 

repeated thrice and mean VPT was calculated. 

8. Similarly, VPT was obtained for another foot by following all the above steps. 

Results were obtained for all the twenty subjects following the above method. The mean VPT 

obtained using both methods were compared with each other. 

After conducting the test for all the twenty subjects, mean VPT for both feet were calculated 

using VibraScan and Neurothesiometer. For comparing both the methods correlation 

ceoefficient was calculated for each reading. 
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5.3 Correlation Analysis 

Correlation analysis is carried out to measure the strength of the relationship between the pair 

of variables. The correlation coefficient is a statistical method used to compute the strength 

between the relative points of the two variables. The correlation coefficient r varies between -

1 and +1.  For interpreting the value of r there are various ranges set as follow: 

r = 0 shows the absence of linear relationship. 

r = +1 shows as a perfect positive linear relationship in which there is a positive increase in one 

variable when there is an increase in another variable. 

 r = -1 shows there is a perfect negative linear relationship in which there is a positive increase 

in the one variable when there is a decrease in another variable.  

0 > r > 0.3 shows a weak positive (or negative) linear relationship. 

0.3 > r > 0.7 shows a moderate positive (or negative) linear relationship.  

0.7 > r > 1 shows a strong positive (or negative) linear relationship (Ratner 2009). 

If the value of r is between 0 and 1 then it reflects partial correlation which may be significant 

or may not be significant. For example, if the value of r is 0.70 that means 1 variable related to 

variable 2 is 70%. The only correlation that is significant at p < 0.05 or 0.01 needs to be 

considered. In order to have always positive value in some cases, squared value of r is 

calculated which is given as  𝑟2 is also called coefficient of determination and denoted by R2. R2 

indicates the percentage variation in one variable explained by another variable. Linear 

regression is like linear correlation where one variable depend on another independent 

variable. Linear equation 𝑌 = 𝐴𝑋 + 𝐵 is used to show the linear regression equation which is 

produced by using least difference between line point and the actual data point.  Here the 

Slope A is measured from the ratio of 𝑌1 − 𝑌0/ 𝑋1 − 𝑋0 of the line. The correlation coefficient 

is scaled to fit between 0 and 1.  

Calculated Correlation coefficient: 

If A and B are the two variables then correlation coefficient can be calculated after getting 

standardised values as cA and cB  of A and B respectively i.e. mean of cA and cB will be 0 and 

standard deviation ( SD) will be 1. This can be expressed as: 

𝑐𝐴𝑖 = 𝐴𝑖 − 𝑚𝑒𝑎𝑛(𝐴) 𝑆𝐷(𝐴)⁄                     (4) 

𝑐𝐵𝑖 = 𝐵𝑖 − 𝑚𝑒𝑎𝑛(𝐵) 𝑆𝐷(𝐵)⁄                                   (5) 
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The correlation coefficient can be given as the mean product of cAi and cBi shown as below: 

𝑟𝐴,𝐵 =  𝑠𝑢𝑚 𝑜𝑓 [𝑐𝐴𝑖  × 𝑐𝐵𝑖  ] (𝑛 − 1⁄ )       (6) 

Where n is the number of samples. 

Left foot VPT measurement analysis: 

Here the VPT of Left foot was measured using both the devices and shown in Table 5.1. 

Twenty subjects were tested. The central value of the data is expressed as the mean and the 

variation is expressed as the 95% confidence interval (CI). The CI shows the data distribution 

would differ significantly from each other based on the estimates. The lower bound of 95% CI 

is calculated by the equation 7: 

𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =  𝑚𝑒𝑎𝑛 −  1.96(𝑆𝐷 √𝑛)⁄                                             (7) 

The upper bound of 95% CI can be calculated as  𝑚𝑒𝑎𝑛 + 1.96 ((𝑆𝐷|√𝑛) where n is the 

number of measurements and the CIs provides reliability of the data i.e. any measurements 

outside this limit consider the data from other distribution. The mean with 95% CI was 

calculated for VibraScan (Left foot) as 4.76 ± 0.60 V and similarly, the mean VPT of 

Neurothesiometer (Left foot) was calculated as 4.53 ± 0.65 V. 

Table 5.1 : VibraScan and Neurothesiometer readings for Left foot 

Series Number VibraScan Left foot mean VPT 
(V) 

Neurothesiometer  Left foot 
mean VPT (V) 

1 4.9 5 

2 3.4 4.5 

3 3.4 3 

4 5.26 4 

5 4.9 6.16 

6 4.53 4.6 

7 4.9 4.8 

8 6.7 8.16 

9 3.4 3.16 

10 3.4 4 

11 5.63 5.16 

12 4.16 5.3 

13 3.4 5 

14 7.74 5.5 

15 4.53 5 

16 3.02 4.16 

17 5.63 6 

18 7.05 7.6 

19 5.99 4.8 

20 3.4 3.5 
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Here for the above measurements of the left foot, VibraScan score of VPT is compared with 

the Neurothesiometer VPT scores for all the twenty subjects as shown in Table 5.1. In order to 

get the relationship between the measurements, the correlation coefficient was calculated. 

Based on the value of the correlation coefficient strength of the linear relationship was 

obtained. 

 

Figure 5.4 : Correlation between Neurothesiometer and VibraScan (Left foot), r = 0.816 

Here correlation coefficient for both the individual measurements was calculated as r = 0.816 

significant at p < 0.001 showing the large positive relationship as per Figure 5.4. As the points 

fall close to the line it has a close correlation between the measurements and as one variable 

increases, another variables also increases showing a positive relationship. The equation of the 

line is given by: 

𝑌1 = 0.8922𝑋1 + 0.2779        (8) 

Where, 𝑌1 is the Neurothesiometer voltage, 

𝑋1  is the VibraScan Voltage  

0.8922 is the slope of the line. 

Right foot VPT measurements 

Table 5.2 : VibraScan and Neurothesiometer readings for Right foot 

Series 
Number 

VibraScan Right  foot mean VPT 
(V) 

Neurothesiometer  Right foot 
mean VPT (V) 

1 4.9 5 

2 3.4 4.5 

3 3.4 3 

4 3.4 4 

5 7.05 6.16 
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Series 
Number 

VibraScan Right  foot mean VPT 
(V) 

Neurothesiometer  Right foot 
mean VPT (V) 

6 4.9 4.6 

7 4.9 4.8 

8 8.9 8.16 

9 3.4 3.16 

10 4.16 4 

11 5.63 5.16 

12 4.53 5.3 

13 5.26 5 

14 5.99 5.5 

15 4.9 5 

16 5.63 4.16 

17 5.63 6 

18 8 7.6 

19 6.7 4.8 

20 3.78 3.5 

 

Here for the above measurements of VPT, the right foot VibraScan score of VPT is compared 

with the Neurothesiometer VPT scores for all twenty subjects as displayed in Table 5.2. In 

order to get the linear relationship between the measurements, the correlation coefficient 

was calculated. 

 

Figure 5.5 : Correlation between Neurothesiometer and VibraScan (Right foot), r = 0.893 

Here, the correlation coefficient for both the individual measurements was calculated as r = 

0.893 significant at p < 0.001 showing the large positive relationship as shown in Figure 5.5. In 

in this case also points fall close to the line so has a close correlation between the 

measurements and as one variable increases, another variable also increases showing a 

positive relationship. The equation of the line is given as: 

𝑌2 = 0.7543𝑋2 + 1.0303         (9) 
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Where, 𝑋2 is the Neurothesiometer voltage, 

𝑌2 is the VibraScan voltage, 

0.7543 is the slope of the line. 

5.4 Bland and Altman plot 

There is a close linear relationship between the test scores of both feet. Although the 

correlation which is calculated is considered a way of paring the two instruments, the 

measured VPTs may correlate but not agree. Strong correlation may lack the agreement 

between measured scores. In order to find it out whether both the instruments are agreeing 

with each other, Bland and Altman method was applied to verify this (Bland and Altman 1986). 

Bland and Altman's method was used to obtain the limit of agreement between the VPT 

scores. It is also known as the difference plot which is a graphical method to compare two 

measurement techniques. In this method the difference between the test scores (𝑋 − 𝑌) are 

plotted against their average value([𝑋 + 𝑌] 2)⁄ . Through this plot, it is easy to evaluate the 

scatter of the values, level of different and measurement error. It also shows how much data is 

different from the mean value. Secondly, it shows the relationship between size of mean value 

and random error. Thus, this method might be used to figure out the level of random error if 

VibraScan VPT measurement is still acceptable to be used as an alternative to the 

Neurothesiometer measurement.  

Results: 

 

Figure 5.6 : Bland and Altman plot (left foot VPT measurements) 
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Bland and Altman's method was used to plot the difference of VibraScan and 

Neurothesiometer VPT measurement of left foot against the mean of two measurements 

shown in Figure 5.6. The plot also has the benefit of showing the variations in the results. The 

limits of agreement are indicated by the black broken lines that are the interval of two 

standard deviations of the estimation differences on either side of the mean difference 

(0.236). This shows that the 95% of subjects will have a difference in VPTs between the limits 

of agreement on the Bland – Altman plot for the left foot. It is important to see whether the 

range of the limit of agreement is large or small with respect to the range of values. As limits of 

agreement are small, the two measurements methods could be interchangeable. 

 

Figure 5.7 : Bland and Altman plot (right foot VPT measurements) 

Bland and Altman's method was used to plot the difference of VibraScan and 

Neurothesiometer VPT measurement of right foot against the mean of two measurements 

shown in Figure 5.7. The limits of agreement are indicated by the dark broken lines that are 

the interval of two standard deviations of the estimation differences on either side of the 

mean difference (0.344). This shows that the 95% of subjects will have a difference in VPTs 

between the limits of agreement on the Bland – Altman plot for the right foot as well (Dave 

2018) 

Discussion 

After testing the subjects using VibraScan and Neurothesiometer, the measured level of 

agreement proves that both these methods are consistently measuring similar VPTs when 

vibration stimulus is alternately applied on both feet.  This shows that even the method of 

conducting the test is totally different, VibraScan behaves almost similar to Neurothesiometer 
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in terms of measuring VPT.  The technique of independently measuring VPT, automatically 

interpreting the severity level of complication, programmable and an additional feature of 

monitoring pressure during the test makes VibraScan, an advanced tool for measuring diabetic 

neuropathy. The limitation of this study is at present, the outcome is based on twenty healthy 

subjects covering the normal range of VPT, however this study can be further extended to 

apply on many diabetic neuropathy patients and cover the whole range of VPT from 0 to 50 

Volts for analysis purpose. 
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Chapter 6 Risk assessment Tool of VibraScan 
 

In this chapter, the development of the tool that allows automated assessment of neuropathy 

based on the clinical history of subjects has been discussed. The flow chart below provides the 

overview of this chapter. This chapter will start with an introduction that explains the reason 

for developing VibraScan risk assessment tool.  The risk factors associated with diabetic 

neuropathy were identified in this research study. The summarised patient data collection, it’s 

pre-processing are explained in the data collection and data preparation sections. This chapter 

also covers the need and implementation of Box-Cox transformation and ordinary least square 

method to get an idea of potential risk factors in the summarised patient data.  

The focus is mainly to find the best fitting methods and algorithms for solving the data analysis 

problem. Firstly, a standard artificial neural network (ANN) classifier was selected for the data 

analysis. The ANN classifier section starts with introduction, architecture and its 

implementation using complete set of attributes (attributes are the risk factors available in the 

data) and using only set of potential attributes for comparison purpose. Various classifiers 

such as ordinal logistic regression, discriminant functional classifier are implemented by using 

only potential attributes of the summarised patient data. The need for generating simulated 

patient data along with the implementation of the classifiers such as standard neural network 

classifier, discriminant functional analysis, ordinal logistic regression and neural network based 

proportional odds model (NNPOM) are also discussed. At last, the reason for selecting NNPOM 

method is explained for developing the risk assessment tool of the VibraScan by showing some 

examples. 

Structural overview of the chapter 

Risk assessment tool of VibraScan

Data  collection

Data  Preparation

Box Cox Transformation
OLS using Box Cox 

transformed variables

OLR using patient data 
with 7 best predictors

Neural network classifier 

Patient data With  13 
attributes

Patient data with 7 best 
attributes

Discriminant functional 
analysis

Simulated patient data 
with 7 attributes

Ordinal logistic regression NNPOM model

Neural network classifier 

Neural network classifier 
Discriminant functional 

analysis

Development of the risk 
assessment tool
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6.1 Introduction 

Diabetic neuropathy (DN) is the serious neurological manifestation in diabetes. If neuropathy 

is not treated at the early stage it may increase the risk of foot ulceration and amputation 

(Adler et al. 1997).  A novel VibraScan device was developed to assess DN based on vibration 

perception as discussed in the previous chapters. This entails that disease will be assessed only 

by vibration perception however, if one can consider the clinical characteristics of the subject, 

then DN can also be diagnosed based on clinical aspects of patients.  This has given us the 

motivation for developing an automated tool for predicting VPT which can help in determining 

DN. This tool will help in getting better understanding of the disease progression by analysing 

the clinical data. There are many research studies available which have identified the risk 

factors associated with diabetic neuropathy. It has been observed that age was directly related 

to painful symptoms of diabetic neuropathy in large UK diabetes populations (Abbott et al. 

2011b). There are several studies that shows there is a direct relationship between the 

duration of diabetes, increased age, obesity and diabetic neuropathy (Abbott et al. 2011b; 

Jambart et al. 2011) ; (Boulton 2008). Many studies have shown that there is no significant 

relation of gender in the diabetic neuropathy whereas in some studies it was shown that 

painful symptoms of diabetic neuropathy are more prevalent in females than in males (Abbott 

et al. 2011b). The study shows that age, insulin use, sex and duration of diabetes 

independently increased the risk factors of DN (Franklin et al. 1994). Likewise, not only 

demographic data but anthropometric and metabolic data could also play an important role in 

the prevalence of diabetic neuropathy. Existing devices like Biothesiometer/Neurothesiometer 

can perform screening test based sensation loss; however, risk factors of diabetic neuropathy 

were not taken into account. None of these existing tools considered both these possibilities 

(early symptoms and associated risk factors) to assess diabetic neuropathy. Taking this 

opportunity, the VibraScan risk assessment tool can be used as the independent tool for 

diagnosing DN from a set of risk factors for assessing diabetic neuropathy. 

6.2 Risk factors for diabetic neuropathy 

It will be interesting to know the common risk factors of diabetic neuropathy. Many research 

articles based on the onset diabetic neuropathy were studied. There are several independent 

risk factors that were significantly associated with diabetic neuropathy. The major risk factors 

of DN such as duration of diabetes, age, height, HbA1c, cholesterol, sex, weight and BMI are 

discussed in this section. 
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Duration of diabetes: Duration of diabetes is one of the major factors of diabetes (Young et al. 

1994). Based on the population selection and applying different methodology the exact 

prevalence of diabetic neuropathy differs, however the duration of diabetes association with 

DN was considered significant (Ziegler et al. 2014a). 

Age: Age is considered to be one of the risk factors of DN. Several groups have demonstrated 

an independent effect of age, leading to a significant increase in diabetic neuropathy 

prevalence (Young et al. 1994; Abbott et al. 2011a).  

Height: Height gives the measure of nerve fiber length, there are studies performed for both 

the types of diabetes where it was shown the association of height with diabetic neuropathy 

(Tesfaye et al. 1996b). According to one study (Papanas and Ziegler 2015), it was shown that 

there was 36% increase in the prevalence for every  5 cm increment in height in the population 

study in Mauritius. 

HbA1c: Glycosylated haemoglobin (HbA1c) level is the important factor which needs to be 

considered to get the assessment of glycemic control, however in addition to HbA1c, glycaemic 

variability could be considered as the independent risk factors of diabetes 

complication.  HbA1c variability had a significant association with diabetic neuropathy in type 2 

diabetes (Lin et al. 2013). 

Cholesterol: According to the study in 1996, it was found that there is a significant correlation 

between increasing level of cholesterol and diabetic neuropathy (Tesfaye et al. 1996a). 

Sex: In one of the research study  it was reported that the prevalence of diabetic neuropathy 

was more in males (30%) compared to females (18%) (Jaiswal et al. 2017), however, Abbot et 

al. have reported opposite that there was a higher prevalence in females (38%) compared to 

males (31%) (Abbott et al. 2011a). 

Weight: As per the study carried out with 452 participants to obtain the risk factors of diabetic 

neuropathy, by linear regression models, weight was considered as one of the factors 

associated with DN (odds ratio [OR] 1.20 [95% Confidence Interval of  1.10;1.31]) per 5 kg 

(Andersen et al. 2018).  

Body mass index (BMI): BMI is considered as an independent risk factor for diabetic 

neuropathy. According to the study (Xu et al. 2014), it was reported that BMI was the 

independent risk for the complication using multivariate regression analysis. This analysis is 
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mostly used to predict the value of one or more responses from the set of predictors where 

predictors can be continuous or categorical or a mixture of both. 

Therefore, in most of the studies, the above-mentioned risk factors are commonly identified 

which were strongly associated with diabetic neuropathy. In these studies, different numbers 

of patient data were collected for which diabetic neuropathy assessment either using 

Michigan Neuropathy Screening Instrument (discussed in Chapter 2), using Neurothesiometer/ 

Biothesiometer by measuring VPT, or by Nerve conduction studies to determine the diabetic 

neuropathy patients and to identify the risk factors associated with it.  

In order to determine the risk factors associated with diabetic neuropathy, there is a need to 

collect medical data where DN is assessed by vibration perception threshold. 

6.3 Medical data collection 

To perform this study, a summarised patient data was collected from the clinical database. In 

the summarised data, foot examination was assessed by Neurothesiometer, where vibration 

was provided at the great toe, the amplitude of the vibration was increased gradually and, 

subjects were asked to say ‘yes’ whenever they felt the vibration. Thus, the voltage at which 

the vibration was felt determines the vibration perception threshold (VPT). As per the VPT 

score, severity levels of diabetic neuropathy can be determined. The summarised patient data 

has patient’s average measurements for the last 28 years which contains around 5158 

subjects. In various studies almost same types measurements were followed to analyse 

independent risk factors for DN. These measurements can be used as the risk factors and need 

to analyse its effect for the prevalence of diabetic neuropathy. The main aim of using this data 

is to get a point estimate of VPT by giving the set of point measurements of some potential 

predictors.  To achieve this aim, first data needs to be processed and used by the classical 

statistical technique for identifying the potential predictors. 

6.3.1 Data preparation and statistical analysis 

These variables in the data were measured once a year or are average of a small number of 

measurements within a year which was continued for 28 years, this longitudinal data was 

measured as an outcome repeatedly over time for the same subjects. There could be a 

possibility of unintended missing data or loss to follow-up which commonly occurs in 

longitudinal trials.  The data can be analysed using multilevel modelling, however the output of 

these models may be less helpful so there is a need of baseline analysis, the output of which 

could be helpful for neural network modelling. For performing any statistical analysis of the 
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collected data, data needs to be further processed. First, the collected data were averaged 

over 28 years. The VPT measurements should be taken for both feet of each individual 

whereas in the collected data all the subjects did not have both the measurements for which 

statistical averaging technique was performed. These manipulations created a summary which 

conveniently eliminates missing measurements over time and over both feet as symmetrical 

neuropathy is the commonest among diabetic neuropathy (Bansal et al. 2006), thus 

maximising the number of patients with non-missing values for further analysis. Averaging is 

commonly used statistical technique which helps in identifying the trends and relationship 

within and between the datasets. After averaging the data, a summary of data count in each of 

the clinical measurements was calculated. 

Table 6.1 : Summary of patient data  

Variables Observations Mean  Std. dev. Min Max 
 
VPT 

 
5158 

 
17.815      

 
11.129        

 
1.500            

 
50 

HbA1c 5143 08.728     1.295 4.766      14.4 
High density lipoproteins (HDL) 4864 01.352      0.859 0.420    27.886 
Low density lipoproteins (LDL) 4815 02.636      0.880    0.450        10.8 
Urine albumin to creatinine ratio (ACR) 3886 7.152 18.355 0 293.830 
Random Blood Glucose (RBG) 5078 11.573 3.779         1 38.3 
Age 5158 57.733      18.450 7 98.0 
Weight 5156 83.422     19.676 32.766 192.2 
Height 5111 168.672      10.058 81 207.0 
BMI 5107 29.286       6.426        14.583 104.77 
Triglyceride 4928 02.072      1.292            0.3 22.6 
Cholesterol 4852 03.998      1.193       1.43 18.7 
Sex 5117 01.561      0.496             1 2 
Duration of diabetes 5158 10.632 6.750             1 28 
    

As shown in Table 6.1, it has been identified that out of 5158 data, 3691 subjects were having 

all the clinical measurements as required and rest of the missing data rows can be neglected 

for the analysis. Although a summary of patient data is achieved by averaging the data, 

however, to deal with longitudinal trends and skewness in the data there is still a need for 

statistical transformation to obtain information like relationship between the variables and to 

identify significant predictors. There are traditional types of transformation available such as 

logarithmic transformation, square root, inverting and reflecting that belong to power 

transformation, but for choosing the right type of power transformation which transforms the 

data in a way that its distribution better fits some target distribution, is a challenge. Therefore, 

an option of using transformation from Box-Cox family was taken into consideration, instead 

of just using a logarithmic transformation that makes the result normal and linearly related to 

covariates. Box-Cox transformation belongs to the power transformation family which can be 

used to identify the optimal normalising transformation for each variable (Box and Cox 1964).   
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6.3.2 Box-Cox transformation 

Box Cox transformation was performed on all the individual variable and purpose was to find 

the behaviour when set of variables were used collectively by Box Cox regression model. This 

was found using Stata statistical software. For transforming the data set, the same 

mathematical operation or a transformation parameter should be applied to each data point 

of the set. Box-Cox transformation is defined by yλ where y represents the data and λ is the 

power to which data is raised.  The original form of the transformation is given as: 

                                                                     𝑦(𝜆) =  
𝑦𝜆−1

𝜆
 , λ ≠ 0,                                             

                                                                                    (10)                 

𝑦(𝜆) = log (𝑦) , λ = 0. 

The value of λ is from -5 to 5, and to obtain the value of λ that best fit the data, transformation 

examines the values of it. Here, in the current data set the transformation was applied on both 

sides of the equation i.e. logarithmic transformation on the left-hand side and Box-Cox 

transformation on the right-hand side of the equation.  

Box-Cox Right-hand side model (RHS only) 

In the right-hand side model, all the independent variables were transformed using the 

parameter 𝜆, which can be given in the form of equation 11 as below: 

𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖𝑗
(𝜆)

+ 𝛽2𝑥2𝑗
(𝜆)

+ ⋯ + 𝛽𝑘𝑥𝑘𝑗
(𝜆)

+ 𝑦1𝑧𝑖𝑗 + 𝑦2𝑧2𝑗 + ⋯ + 𝑦𝑙𝑧𝑙𝑗+∈𝑗
                        (11) 

Where 𝑦 is the dependent variable,  𝑥1, 𝑥2, 𝑥3… 𝑥𝑘 are the independent Box Cox transform 

variables  with parameter λ and 𝑧1, 𝑧2,𝑧3… 𝑧𝑘  are the independent variables without any 

transformation. 

Hence the equation of the patient data can be expressed as natural logarithmic transform of 

dependent variable VPT as the function of independent transformed variables as age, height, 

weight, body max index (BMI), glycaemic control (HbA1c), High-density lipoprotein (HDL), Low-

density lipoprotein (LDL), Urine albumin to creatinine ratio (ACR), Random Blood Glucose 

(RBG), Triglyceride, Cholesterol and duration of diabetes except variable sex. 

After applying the analysis the results of the model is as presented in Table 6.2, 
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Table 6.2 : BoxCox right-hand side only model 

 
                Log Transformed VPT |                  Coefficient       Standard Error z P>|z|      [95% Conf. Interval] 

 
    
                                       /λ |                     1.106              .0667            16.54   <0.001     .975       1.237 

 Coefficient R test 
statistics 

p-values for LR tests The degree of 
freedom of 
LR test 

Without 
transformed 
variable 

    

Sex .003 .019 0.89 1 
Constant -1.40    

Box Cox 
Transformed 
variables 

 

Duration of diabetes .002 7.092 0.008 1 

Age .019 2908.180 <0.001 1 

Height .006 26.445 <0.001 1 

Weight .004 12.576 <0.001 1 

BMI -.004 1.874 0.171 1 

HbA1c .032 34.914 <0.001 1 

 HDL .007 1.086 0.297 1 

LDL .017 2.483 0.115 1 

ACR .002 35.889 <0.001 1 

RBG .002 1.088 0.297 1 

Triglyceride -.002 0.096 0.754 1 

Cholesterol .023 7.693 0.006 1 

λ   Constant 1.106372 

Sigma 
Constant 

.428 

N 3691 

 

The estimated value of λ is 1.106372 and is seen that the maximum likelihood estimate of the 

transformation parameter is positive and significant at 1%. Out of all the transformed 

variables, duration of diabetes, age, height, weight, glycaemic control (HbA1c), ACR and 

cholesterol are significant predictors.  

6.3.3 Ordinary least squares using Box Cox transformed variables 

The maximum likelihood method is useful as the convenient route to the transform. Running 

the more familiar linear regression using the transformed variables provides additional 

information about model fits, linear relationship and about important predictors in more 

familiar terms. To get the additional fit estimates ordinary least squares regression is 

implemented.  Basically ordinary least squares (OLS) regression method was used to detect the 

linear relationship between the natural logarithmic transformed dependent and Box-Cox 

transformed independent variables by using the formula as : 
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                                         𝐵𝑜𝑥𝐶𝑜𝑥𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = (𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)λ/𝜆                                                 (12) 

Where λ = 1.106372 

The calculated coefficient of determination (𝑅2) value of the whole test is 0.656 and the 

adjusted R square is 0.655 shows that all the independent variables shows 65% of the 

variability of the dependent variable as presented in  Table 6.3. As per the analysis results out 

of all the 13 variables, duration of diabetes, Age, Height, Weight, glycaemic control (HbA1c), 

ACR and cholesterol are statistically significant predictors as the p- value is less than 0.05. 

However, sex, BMI, LDL, RGB, Triglyceride variables are not statistically significant as the p- 

value is greater than 0.05.  

Table 6.3 : Ordinary least squares performed on all BoxCox transformed variables 

 Coefficients t- statistics 95% confidence limits 

Box Cox transformed 

variables except sex 

  Upper bound Lower bound 

     

Sex            0.002 (0.14)            -0.036 0.041 

Duration of diabetes 0.002** (2.72) 0.001 0.004 

Age   0.020*** (73.21) 0.019 0.021 

Height   0.006*** (5.57) 0.004 0.009 

Weight   0.004*** (3.55) 0.002 0.006 

BMI          -0.004 (-1.38) -0.011 0.002 

HbA1c 0.032*** (6.01) 0.022 0.043 

 HDL           0.006 (1.04) -0.006 0.019 

LDL           0.016 (1.58) -0.004 0.037 

ACR 0.002*** (6.17) 0.001 0.002 

RBG           0.002 (1.04) -0.002 0.005 

Triglyceride          -0.002 (-0.31) -0.016 0.011 

Cholesterol           0.023** (2.78) 0.007 0.039 

_cons          -1.398*** (-4.55) -2.001            -0.80 

Observations                                    3691   

R
2
                                                       0.656   

adj. R
2
                                                0.655   

     t statistics in parentheses 
           * p < 0.05, ** p < 0.01, *** p < 0.001 

 

In order to simplify this interpretation, OLS was performed again using only significant 

independent variables and dependent variable VPT. The analysis has been performed and 

results have been shown in Table 6.4. 
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Table 6.4 : Ordinary least squares performed on significant BoxCox transformed variables 

 Coefficients t-statistics 95% confidence limits 

Box-Cox transformed 
risk factors 

 Upper bound Lower bound 

Age 0.020*** (73.39) 0.019 0.020 

Height 0.007*** (15.54) 0.006 0.008 

Weight 0.002*** (9.24) 0.002 0.003 

HbA1c 0.033*** (7.03) 0.024 0.042 

Acr 0.002*** (6.01) 0.001 0.002 

Cholesterol 0.018*** (3.71) 0.009 0.028 

Duration of diabetes          0.002* (2.52) 0.001 0.004 

_cons         -1.524*** (-12.02)            -1.772            -1.275 

Observations 3788    
R

2
 0.646    

adj. R
2
 0.645    

      t statistics in parentheses 
         * p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 6.5 : Significant predictors 

 F - statistics p-values R
2
 Change in R

2
 

Age 5148.12 <0.001 0.576  
Height 447.99 <0.001 0.621 0.045 
Weight 133.04 <0.001 0.634 0.013 
HbA1c 68.74 <0.001 0.641 0.007 
 ACR 45.62 <0.001 0.645 0.004 
Cholesterol 11.53 <0.001 0.646 0.001 
Duration of diabetes 6.34   0.012 0.646 0.001 

 

As shown in Table 6.5, as expected all the variables are statistically significant as the p-value is 

less than 0.05 and can be considered as the risk factors for the development of diabetic 

neuropathy as per the analysis results. It shows age is the most significant predictor while 

duration of diabetes is the least significant predictor. 

The advantage of applying this classical statistical method on the collected data is to get the 

hint of significant predictors in the collected data for getting classical information and can be 

useful to compare with the neural network predication success later on. 

 The original patient data set was pre-processed and information was extracted using required 

transformation of the variables where VPT was measured continuously. Now, this can be used 

to get the point prediction of VPT or VPT can be predicted with the confidence interval. If the 

confidence interval of predicted VPT is too large then it is less helpful to the user. In order to 

simplify the interpretation of the outcome variable (VPT) for both clinicians and subject itself, 

it was decided to interpret the VPT prediction in terms of cumulative risk levels. For solving 

this problem in terms of classification, the first step is to divide the data into specific 

categories based on VPT thresholds. By considering clinician’s insight in the field of diabetic 

neuropathy it was decided to categories the dataset into three classes according to VPT 

measurement in voltages (V) as low risk (0 to 20.99 V), medium risk (21 to 30.99 V) and high 
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risk (≥ 31 V) diabetic neuropathy. To approach this dataset for further analysis where VPT was 

continuously measured, it is important to identify data’s behaviour and its significant 

predictors for the categorical data set. To achieve this information, categorical data were 

analysed using ordinal logistic regression. 

6.4 Ordinal Logistic Regression using summarised patient data  

Ordinal logistic regression (OLR) is the statistical analysis method performed using SPSS 

statistical  software to find the relationship between ordinal responsive (dependent) variable 

and independent explanatory variables (O'Connell 2006). The type of ordinal logistic 

regression implemented was the cumulative odds ordinal logistic regression with proportional 

odds that have cumulative categories. The ordinal variable is the categorical variable with the 

ordering of the category levels. As discussed before, the data is divided into three ordinal 

categories based on the VPT measurements along with the number of instances is presented 

as shown in Table 6.6. To analysis these categories after dividing the data, OLR was 

implemented. As per the case summary table, it shows a number of instances available in each 

level of the responsive variable. The total number of instances available in the data set is 2450, 

however, in two of these levels, there are fewer cases. SPSS does listwise deletion of cases if 

missing values are available in any of the variables. 

Table 6.6 : Case summary of real patient data 

 Categories of the dependent 
variables 

The range of VPT score in 
Volts (V) 

No. of instances 
(2450) 

Low risk 0 to 20.99 1696 

Medium risk 21 to 30.99 459 

High risk  31 onwards 295 

 

In the model fitting information as shown in Table 6.7, the degree of freedom (df) is 7 i.e. 7 

independent significant variables (age, height, weight, HbA1c, ACR, cholesterol and duration of 

diabetes) were used as determined from the previous analysis to OLR. Chi-Square is the 

difference between the two –2 log-likelihood values. The last row of the table presents the 

information that either all or some of the variables are statistically significant. In other words, 

added variables are statistically significantly improving the model compared to the intercept 

only (no added variables). As p < 0.001 means model predicts the dependent variable better 

than the intercept-only model.  

Table 6.7 : Model Fitting Information 

Model 
 
 

-2 Log  
Likelihood Chi-Square df  Sig. 

Intercept Only  4034.042     
Final  3223.445 810.597 7  < 0.001 
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As in Table 6.8, p < 0.05 (from the Sig. column) indicate model does not fit well with the data. 

Good models have large observed significance levels.  

The model estimates from ordinal logistic regression are maximum likelihood estimated 

through an iterative process. As they are not calculated to minimise the variance, to evaluate 

the goodness of fit of logistic models, several pseudo R squared is calculated as displayed in 

Table 6.9. These pseudo R squares are like R square in terms of scale (but cannot be 

interpreted as OLS R square) i.e. ranging from 0 to 1, higher the value better the model fit.  

                                  Table 6.8 : Goodness-of-Fit                                                                                   

 Chi-Square df Sig. 

 Pearson 5399.082 4891 < 0.001 

Deviance 3223.445 4891 1.000 

                           Table 6.9 : Pseudo R-Square 

Pseudo R-square 

Cox and Snell .282 

Nagelkerke .349 

McFadden .201 

There are coefficient, their standard errors, the Wad test and associated p- values (Sig.) and 

95% confidence interval of the coefficient as available in the estimated parameter Table 6.10. 

The dataset has three level of a variable called <cat> (coded 1, 2, and 3) that are outcome 

variables. It can be used to determine the number of statistical significant independent 

variables on the dependent variable (VPT). Out of seven predictors age, weight and height 

were significant predictors while HbA1c, ACR, Cholesterol and duration of diabetes were not. 

As per the results, one unit increase in age (from 0 to 1), there can be 0.1 increase in the 

logarithmic odds of being a higher level of cat, with all the other variables in the model being 

constant. For weight variable, one unit increase in weight (from 0 to 1), there can be 0.02 

increase in the logarithmic odds of being a higher level of cat, keeping other variables 

constant. For the height variable, one unit increase in height (from 0 to 1), there can be 0.05 

increase in the logarithmic odds of being a higher level of cat, with other variables as constant 

as shown in Table 6.10.  

This can be expressed in form of equation 13 as below: 

            𝑦∗ =  𝑥𝑇𝛽 + 𝜖                                                                              (13) 

Where 𝑦∗ is the unobserved dependent variable, xT is  the vector of the independent variable, 

β is the estimated coefficient and ϵ is the error term. 

And   𝑦 =  {

0           𝑖𝑓 𝑦∗ ≤  𝜇1,
1 𝑖𝑓  𝜇1 < 𝑦∗ ≤ 𝜇2,

2 𝑖𝑓𝜇2 < 𝑦∗ ≤ 𝜇3  
 

Where 𝑥𝑖 are the independent variables,  μi are the set thresholds of the categories and using 

parameter vector β, the ordered logit technique will use the observations on 𝑦 from y∗. 
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Table 6.10 : Parameter estimates 

 
Estimate Std. Error Wald df Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Threshold [cat = 1.00] 19.678 1.238 252.833 1 < 0.001 17.252 22.103 

[cat = 2.00] 21.202 1.251 287.450 1 < 0.001 18.751 23.653 

Location HbA1c .013 .043 .099 1 .753 -.070 .097 

ACR .004 .002 2.678 1 .102 -.001 .008 

Age .111 .005 412.044 1 < 0.001 .100 .122 

Weight .021 .003 54.160 1 < 0.001 .015 .027 

Height .056 .006 90.113 1 < 0.001 .044 .068 

Cholesterol .069 .042 2.668 1 .102 -.014 .152 

Duration of 

diabetes 

.000 .008 .003 1 .958 -.016 .015 

 

By comparing all the values of the responsive variable with the values of the predicted 

outcome, it is possible to calculate the classification success for each class. Using SPSS, the 

cross-tabulation (confusion matrix) was obtained as shown in Table 6.11 where data is 

presented for each of the classes in terms of true positive, true negative, false positive and 

false negative. It measures the percentage overall classification success estimated as 71.5%, in 

which low-risk category achieves classification success of 75.8%. This could be probably 

inflated by a large number of instances in category 1 i.e. 1629 is more probable by chance 

compared to the other classes. 

Table 6.11 : Predicted Response Category Cross-tabulation 

 
Predicted Response Category 

Total Low risk Medium risk High risk 

C 

A 

T 

E 

G 

O 

R 

I 

E 

S 

Low risk Count 1629 41 26 1696 

% within cat 96.0% 2.4% 1.5% 100.0% 

% within Predicted 
Response Category 

75.8% 30.4% 15.8% 69.2% 

Medium risk  Count 344 50 65 459 

% within cat 74.9% 10.9% 14.2% 100.0% 

% within Predicted 
Response Category 

16.0% 37.0% 39.4% 18.7% 

High risk Count 177 44 74 295 

% within cat 60.0% 14.9% 25.1% 100.0% 

% within Predicted 
Response Category 

8.2% 32.6% 44.8% 12.0% 

Total Count 2150 135 165 2450 

% within cat 87.8% 5.5% 6.7% 100.0% 

% within Predicted 
Response Category 

100.0% 100.0% 100.0% 100.0% 

Using this model, it gives an overview regarding significant predictors when the continuous 

data is categorised into three classes based on VPT measurement. These results were obtained 

from the conventional statistical methods; however, for developing a risk assessment tool, it 
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can be possible to use a classifier that can handle these data more precisely and accurately. 

Various research studies based on a clinical characteristic of the subjects were studied to get 

the idea for developing the tool. 

6.5 Methods for developing a risk assessment tool 

In one of the research study, assessment of DPN was performed using the Michigan 

Neuropathy Screening Instrument (MNSI) questionnaire examination. It was focused on the 

relationship between risk factors and the prevalence of diabetic neuropathy in youth with type 

1 diabetes and type 2 diabetes. Out of 1734 youth, the prevalence of DPN was 7% in youth 

with type 1 diabetes and 22% in youth with type 2 diabetes. Older age, longer diabetes 

duration, smoking, increased diastolic blood pressure, obesity, increased LDL cholesterol and 

triglycerides, and lower HDL cholesterol are the selected risk factor for type 1 diabetes and 

older age, male sex, longer diabetes duration, smoking, and lower HDL-c were the risk factors 

for type 2 diabetes. It was found that the effect of the glycaemic control was getting poor over 

time with DN in youth with type 1 diabetes than another type (Jaiswal et al. 2017). 

Another study was performed using 110 diabetic patients in which Michigan Neuropathic 

Diabetic Scoring (MNDS) was used to differentiate the cases among the normal and abnormal. 

In this study Nerve conduction study was used to assess diabetic neuropathy. It was found that 

age, duration of disease, gender, quality of diabetes control have a significant relationship with 

diabetic neuropathy and no correlation was found with risk factors like hyperlipidemia, high 

BP, cigarette smoking (Booya et al. 2005). 

A study was performed to identify the risk factors associated with the prevalence of diabetic 

neuropathy by comparing the prevalence of diabetic neuropathy with known diabetes mellitus 

and with newly detected diabetes mellitus. In this study monofilament test, pinprick and 

vibration perception threshold was used to categories diabetic neuropathy into normal, mild, 

moderate and severe neuropathy. A total of 586 patients was identified with developed DN. 

Regression analysis was used to identify the risk factors associated with DN. It was found that 

age, dyslipidemia, alcoholic status, macro and microvascular complication significant risk 

factors for diabetic neuropathy (Bansal et al. 2014). 

In most of the research studies, assessment of diabetic neuropathy was performed either by 

measuring vibration perception threshold or using various questionnaires to identify the risk 

factors of diabetic neuropathy. In most of the cases, data analysis was performed using 

conventional statistical methods to identify the significant risk factors of DN. To the best of 
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knowledge, there are no such tools available which make use of these risk factors for 

determining diabetic neuropathy of an individual which seems possible by analysing a large 

number of clinical data of DN. As discussed before, the focus is to develop the risk assessment 

tool to help the clinicians for analysing complex relationship between the risk factors and 

predicting the most likelihood level of DN. After getting the results from the classical statistical 

analysis and looking at the complexity and nonlinearity in the data, idea of using standard 

artificial neural network classifier was taken into consideration. The introduction of ANN 

showing capability of learning the data, structure, architecture, various methods, training the 

model and comparison with another classifier’s result are discussed in the following sections. 

6.5.1 Artificial neural networks  

Artificial neural networks (ANN) technique is extensively used for prediction, forecast or 

classification.  Capabilities of finding the pattern and recognising the relationship between the 

input variable is much faster than the other existing conventional methods for which ANN was 

widely used in  medical (Yao and Liu 1999), ecology, cost estimation (Londhe and Deo 2004), 

forecasting (Ho et al. 2001), computer science and in physical sciences. ANN uses the 

intelligent mechanism similar to the human brain to solve the complex problems. There are 

different types of neural networks available based on the type of processes to be performed. 

Some of the neural networks are relatively simple and some are complex. The artificial neural 

network is used in performing various tasks like prediction, forecasting, pattern classification 

and clustering (He and Xu 2010). In the current study, pattern classification was used in ANN. 

However, by using the neural network classifier, it is important to get an idea of how well the 

neural network is working based on true predicted class for which loss function or cost 

function is used i.e. it maps the value of the variable with the real number to represent the 

cost associated with the event. To understand the working of the classifier and the way it 

learns the pattern of the data to perform classification, need to get into the basic theory 

behind the neural network. So the concept of neural network, neural network classifier, 

hyperparameter available to tune the network and its implementation needs are also 

discussed. 
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Biological Neuron and Artificial neuron: 

Neural networks emulate the procedure used by the human brain to process the data that 

consists of learning the relationship between the data gathered and the data obtained. Here 

similarities in terms of structure and processing the signals are shown by comparing the 

Biological neuron and artificial neuron. 

 

Figure 6.1 : The biological Neuron 

For processing information in the human brain, it consists of a large number of neural cells. 

Each Biological neuron consists of three main components such as dendrites, axon and soma 

as shown in Figure 6.1 (Fausett 1994). The electric impulses as the input signal transmitted 

through the synaptic gap. The information is received by the dendrites which gather in the 

soma and deliver to the neuron’s axon to the dendrites at its end. The information pass again 

if the certain threshold is crossed else would not pass further. 

 

 

 

 

 

      

Figure 6.2 : The artificial Neuron 

Similarly, an artificial neuron is a simple processing unit consist of three components shown in 

Figure 6.2 where a fixed number of inputs having activation from other neuron is connected 

with the neuron by weighted link 𝑤𝑖 , neurons will sum up all the inputs and apply the 

activation function to get the output, this output will transmit the information to another 

neurons. 

dendrite 

Inputs 

𝑤𝑛 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑡ℎ𝑟𝑒𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 𝑇ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑋 𝑖𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑊 𝑎𝑛𝑑 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑏𝑖𝑎𝑠 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠. 

𝑦_𝑖

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (∑_𝑗▒〖𝑊_(𝑖, 𝑗) 𝑥_𝑗

+ 𝑏_𝑖 〗) 

𝑊ℎ𝑒𝑟𝑒 𝑦𝑖, 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠  

𝑤2 

𝑤3 

𝑥1 

∑ 𝑤𝑖𝑥𝑖𝑖  +b     𝑓     

f 

𝑥2 

𝑥3 

𝑥𝑛 

Activation function 

Output axon 

Cell body 

Axon from a neuron 
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6.5.2 Classification using neural network 

Depending on the number of class, neural network classification can be used. To start with first 

neural network binary classification is explained which is followed by multiclass classification. 

Neural network Binary classification: 

 

Figure 6.3 : A single layer perceptron 

In the binary classification, there is an artificial neuron in which an input neurons layer is feed-

forwarded to an output neurons layer as displayed in Figure 6.3. The inputs are directly 

connected to the output layer via a single layer of weights. Here the links are from each input 

to the output in one direction. 

The initial weights are assigned randomly in single layer perceptron. Single layer perceptron is 

activated when the threshold reaches its maximum value. The threshold value is either 1 or 0. 

It is given as below: 

Ʃ𝑤𝑖𝑥𝑖 > 𝜃   => Output is 1 

Ʃ𝑤𝑖𝑥𝑖 ≤ 𝜃    => Output is 0 

The input is provided to the input layer to obtain the predicted output; if the predicted output 

is not equal to the desired or expected output then the weights will be adjusted to reduce the 

error. The process of adjusting the weights to obtain the expected results is known as training 

the network. If the predicted output matches the expected output there will not be any 

changes in the weights. 

Single layer perceptron / binary classification networks can perform pattern classifications task 

to classify correctly into one or two classes. It is used to classify the objects according to their 

position in n-dimensional hyperspace (using n inputs) where the problem can be defined as a 

linear separable classification problem. It can be implemented on those patterns which are 
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only linearly separable patterns irrespective of non-linearity used. In the current scenario, 

there are three categories so more advanced neural network classifier should be used as 

described in the following section.  

Neural network structure model (binary to multiclass classification): 

Neural networks don’t depend on pre-prepared program or mathematical equations to 

estimate the results. This complex nonlinear task can be achieved by neural network structure.  

 

Figure 6.4 : Neural network structure for classification 

This is the structure of the neural network classifier using feedforward learning algorithm as 

illustrated in Figure 6.4. It is a three layer feed-forward neural network which consists of the 

input layer, hidden layers and output layers. These layers having thirteen nodes in the input 

layer, N number of nodes in the hidden layer and three nodes in the output layer.  Selecting a 

number of neurons in hidden units is a problem specific i.e. Number of hidden neurons may be 

appropriate for one model but may not work well for another dataset. The model might miss 

some of the minute details if selected neurons are less. If the neuron size is less or 

underestimated then it may lead to poor approximation and if excessive neurons are used 

then it may lead to a problem of overfitting. In the same way, hidden layers which consist of 

hidden units also need to be set. Increasing number of hidden layers also demands to specify 

the hidden units for each hidden layers.  A number of hidden layers should be selected based 

Bias- b 

Input Layer Hidden layers 

Layer 

Output layer 

Layer 



104 

 

on the complexity of the data set. Selecting the number of hidden layers and neurons are an 

iterative process which needs to be properly assessed in terms of accuracy. 

In the feed-forward architecture, the signal propagates from input to output and updating the 

whole cycle by obtaining the error value from calculated values and real values. This process is 

achieved when input values from the input layer propogates to the hidden layer node by 

multiplying the weight connecting the node. The entire training data set passes through a 

neural network is known as a number of epochs. The values of weights get updated in every 

epoch and associated error should get minimised with each epoch. If less number of epochs is 

set then there could be a problem of underfitting. Number of times the value of weight 

changes the graph can change from under fitting to optimal. A large number of epochs may 

result in overfitting of the curve. These weights and biases get updated in the direction 

depending on the types of training algorithms implemented in the network. To train the 

network various training algorithms are available, out of which resilient backpropagation 

algorithms and scaled conjugate gradient algorithm are fast and used for pattern classification 

of ANN (Mathworks 2018) (Sharma and Venugopalan 2014). Scaled conjugate algorithm 

(Trainscg) is fast because it does not require line search during each learning iteration step. 

Trainscg requires more iterations to converge than other algorithms, however number of 

computations decreases as it avoid each line of search (Hager and Zhang 2006). Resilience 

backpropagation (Trainrp) runs on the basis of eliminating the effects of the partial derivatives 

(Anastasiadis et al. 2005). Depending on the sign of the derivatives the direction of updating 

the weights will be decided; however there will not be any effect of magnitude of derivatives. 

After this, the hidden layer value is computed through the transfer function i.e. sigmoid 

function commonly used as the activation function provided in the following equation to get 

the output value.  

                  𝐹(𝑋) =  
1

1+𝑒𝑥                   (14) 

It produces “S” shaped graph when plotted. There are two types of sigmoid functions log 

sigmoid function and tan-sigmoid function. The range of log sigmoid function is from 0 to 1 

while the range of the tan-sigmoid function is -1 to 1. Preferably the tan-sigmoid function 

should be used due to its output range. The main advantage of this activation function is 

negative inputs will be strongly associated with negative output and zero inputs will be 

mapped near zero in the tan graph. Log and tan-sigmoid functions are commonly used in 

feedforward neural network. The neural network gets trained depending on selecting the 

value of the learning rate. Learning rate can be defined by adjusting the weights with respect 
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to loss gradient. Lower the value of the learning rate, it takes more time to learn. The 

advantage of using a low value of learning rate is, it will not miss any of the local minima but 

will take a longer time to converge. 

At the output node, the softmax activation function is used yields the probability values of the 

classification provided by the nodes. The softmax usually takes the un-normalised vector and 

normalises in terms of probability distribution over predicted output classes. Here X is the 

input, where inputs are values of all the 13 attributes =  (𝑥1, 𝑥2, 𝑥3, … , 𝑥13) . Y is the output: 

Output of the classifier is 1 of the 3 classes’ probabilities (1 to 3). 𝑌 = (𝑦1, 𝑦2, 𝑦3). Each 𝑦𝑖  

represents the input values belongs to class i. 

Softmax function is applied to output probabilities of multiple output class and can be given as 

the input X is multiplied by weights W and added to bias to generate activations. 

         𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (∑ 𝑊𝑖 .𝑗𝑥𝑗 + 𝑏𝑖𝑗 )      (15)                  

         𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
 

In, 3 – class classification problem with 3 output nodes, softmax normalise the 3-dimensional 

vector into the range of [1, 0] ϵ R. Here yi, is the predicted probability. The input and output of 

the softmax function are both vectors defined in the equation. In order to evaluate how well 

the classifier is working, the loss function is used. Loss function of the model plays an 

important role in measuring the inconsistency between the predicted output and actual 

output. The loss function is known as the performance goal. Here cross entropy loss function is 

used to get the classification success given by the equation as below: 

              𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑙𝑎𝑏𝑒𝑙, 𝑦) =  − ∑ 𝑙𝑎𝑏𝑒𝑙𝑖log (𝑦𝑖)𝑖      (16) 

This model will be used to train the neural network as per the numbers of provided attributes. 

6.5.3 Experimental methodology 

Experiments were carried out on a window operating system with an i5 processor with 8 GB 

RAM. All the neural network implementations were achieved using pattern classification 

feature of neural network toolbox in MATLAB platform.  

1. Pre-process the medical data to achieve the class balance before using a neural 

network for classification. 
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2. Follow the file format like (labels, attr1, attr2, attr3,… attrN) where labels should be 

encoded as [1,0,0], [0,1,0] and [0,0,1]. (where attr means attributes  ----> risk factors 

of the DN) 

3. Divide dataset into three sets as training (70%), testing 15% (unseen data) and 

validation sets (15%). 

4. Adjust the important hyperparameters such as hidden neurons ϵ (10, 15, 25, 50), 

hidden layers ϵ (1), learning rate ϵ (0.1), iterations ϵ (1000) and measure the epochs. 

5. Train the neural network using resilient backpropagation (Trainrp) and scaled 

conjugate gradient (Trainscg) algorithm.  

6. Train neural network with 13 attributes using training, test and validation set. Select 

the model that gives optimal result by changing the values of required 

hyperparameters. 

7. Confusion matrix is computed to assess the neural network performance. 

8. Based on the classification success of training, testing and validation set, calculate 

overall accuracy for comparison. 

9. Repeat steps 2 to 8 to train the neural network using 7 best predictors. 

10. Compare the accuracies of the dataset with a different number of attributes. 

Pre-processing of the medical dataset 

Before selecting any of the classification models it is important to understand the property of 

the medical data. For training any of the medical data, the issues and challenges that are 

related to those data need to be carefully handled.  As the medical data is collected directly 

from the medical database, possibly common issues can be identified as follow: 

1. A total number of variables: It is essential to have relevant information in the data for 

any medical diagnosis. To perform any machine learning technique the complexities 

associated with these data is not linear. As the number of variables increases the 

complexities also increases. Another limitation of collected data is that it may have a 

specific number of attributes that may vary according to the patient’s requirements. 

For research purpose, if the required number of attributes are more, this may not be 

fulfilled when the data is collected from the medical database. 

 

2. Missing data: Medical database system does not have all the required data that are 

useful for research. In the clinical practice, it happens that patients do no fill all the 

details asked in the report because  they feel it is not essential or in some cases, they 

are not in a position to record few of the attributes (Almeida et al. 2010). Because of 
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this reason, there are patients in the database who have missing data in some of the 

attributes. In the collected data total number of observations was around 5158. In this 

huge number of observations, there were missing values in few of the attributes. For 

neural network training, it requires full sets of input data. In this situation for getting 

full set of input data, those observations were discarded with the missing value in any 

of the attributes, due to that a set of 2450 observations were available having input 

values in all the attributes. 

 

3.  Noisy data: Data available in the medical database have noise which involves implicit 

errors introduced by the measurement tools or by the experts while gathering the 

data. Due to this there is a possibility of extreme values in some of the attributes, i.e. 

either very low value or very high values because of which the mean value of the 

attributes gets affected. 

 

4. Class Imbalance in medical data:  In most of the medical datasets, datasets are not 

balanced in terms of class labels. When the dataset is extremely imbalanced, 

classification method does not work well on the minority class. In the current medical 

dataset VPT scores of these observations were used to define class labels. The range of 

the VPT score is from 0 to 50 Volts. All the collected observations were associated with 

this VPT score. In this datasets, data were divided into three class labels such as Low 

risk, medium risk and high risk with the threshold value of 0 - 20 Volts, 21 - 30 Volts 

and 31 Volts onwards respectively. When the data is divided into these classes it was 

interesting to see the observations available in each class as shown in Table 6.12: 

Table 6.12 : Class imbalance 

Class labels Number of instances – 
(Total number of 

instances is  2450) 

Percentage distribution % 

Low risk – class 1 1696 69.2 

Medium risk – class 2 459 18.73 

High risk – class 3 295 12.0 

 

 This shows that the dataset is highly imbalanced as the number of instances available in class 

2 and 3 is very less.  The percentage of instances available in class 1 is 69.2% called the 

majority class. The number of instances available in class 2 and class 3 are 18.73% and 12.0% 

respectively of the whole dataset called minority classes. If the classification algorithm is 

applied then more correctly classified will belongs to majority class only. Data sampling 
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techniques can be used to solve the problems with distribution of the dataset. This can be 

achieved by under-sampling the majority class or oversampling the minority class. The data 

available in class 1 is 1696 and if undersampling of the majority class is implemented then 

overall data will be reduced and so oversampling of minority class technique had been chosen 

for class balance. In this technique, it will not add any new information to the dataset but will 

reuse the existing data sample (Song et al. 2010). In order to balance both class 2 and class 3, it 

should have 1696 instances. This data sampling technique is applied using MATLAB software 

where the original data file is loaded in the workspace and instances were added in class 2 and 

3 by replicating their sample data to balance the class. 

Due to class sampling technique, all the classes were having the same number of instances as 

shown in below Table 6.13: 

Table 6.13 : Class balance after data sampling 

Class labels Number of instances – 
(Total number of 

instances is  5088) 

Percentage distribution % 

Low risk – class 1 1696 33.3 

Medium risk – class 2 1696 33.3 

High risk – class 3 1696 33.3 

This shows that now all the three classes are having an equal number of instances. Before 

using these data for performing the experiments as the input data range are different from 

each other in order to reduce the calculation time and obtain better results, all the input data 

of each variable (attribute) were normalized prior to neural network training (Sola and Sevilla 

1997). 

6.5.4 Results of neural network classifier using 13 attributes 

An experiment was performed using 13 attributes and some of the basic hyper-parameters 

were kept fixed as shown below: 

1. Max_epoch = 1000 

2. Time = infinite 

3. Minimum gradient  = 1 

4. Maximum_validation_fail = 20  

5. Performance goal = 0 
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Table 6.14 : Neural network modelling using 13 attributes 

 Training 
Algorithm 

Hidden 
neurons 

Hidden 
Layer 

Epoch Learning 
rate 

Overall 
Classification 
% 

1 Trainscg 10 1 191 0.1 61.6 

2 Trainscg 15 1 248 0.1 63.7 

3 Trainscg 25 1 188 0.1 64.2 

4 Trainscg 50 1 226 0.1 66.9 

5 Trainrp 10 1 164 0.1 60 

6 Trainrp 15 1 261 0.1 62.2 

7 Trainrp 25 1 345 0.1 65.1 

8 Trainrp 50 1 129 0.1 67.9 

 

The confusion matrix of the overall data set (consists of testing, validation, training sets) is 

shown in Table 6.15. The confusion matrix is the summary of prediction results on 

classification problems and presents the accuracy of the classifier. It will give correct 

classification as ‘True positive’ or ‘true negative’ as mentioned in green coloured boxes 

(diagonal of the square) and incorrect classification is listed by ‘false positive’ and ‘false 

negative’ as mentioned in red coloured boxes.  

The row indicates how much each target class are classified into each output classes. 

1. 1696 samples from class 1, 1139 samples were correctly classified as class 1,  

2. 1696 samples from class 2, 1016 samples were correctly classified as class 2 and  

3. 1696 samples form class 3, 1264 samples were correctly classified as class 3. 

Each row of the matrix correlate to the predicted class and each column of the matrix 

correlate to an actual class. The accuracy has been calculated based on Equation 17 below: 

                                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
    (17) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 =
1139+1016+1264

5088
= 67.2% 

 

Table 6.15 : Confusion matrix with a dataset of 13 attributes (hidden unit 50 with resilient backpropagation) 

 

 
 
          

6.5.5 Results of neural network classifier using 7 best attributes 

Neural network was trained using 7 attributes as shown in Table 6.16.  
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Table 6.16 : Neural network modelling using 7 attributes 

 Training 
functions 

Hidden 
neurons 

Hidden 
layer 

Epoch Learning 
rate 

Overall 
Classification 
% 

1 Trainscg 10 1 134 0.1 58 

2 Trainscg 15 1 47 0.1 60 

3 Trainscg 25 1 172 0.1 60.3 

4 Trainscg 50 1 335 0.1 67.4 

5 Trainrp 10 1 90 0.1 57.7 

6 Trainrp 15 1 426 0.1 62.7 

7 Trainrp 25 1 144 0.1 61.1 

8 Trainrp 50 1 53 0.1 58.3 
 

 

Table 6.17 : Confusion matrix with a dataset of 7 attributes (hidden unit 50 with scaled Conjugate backpropagation) 

 

As per the confusion matrix overall classification success obtained was 67.4% shown in Table 

6.17.  

The main purpose of applying NN classifier on both the datasets was to identify the difference 

in results using all the attributes and using only 7 attributes. Table 6.14 shows the comparison 

resilient backpropagation algorithms (Trainrp) and scaled Conjugate back propagation 

(Trainscg) algorithms using 13 attributes. Results show epochs varied from 188 to maximum 

345 epochs this means that the training has stopped when it has stopped improving and 

reached the performance goal of 0. The maximum validation check has been set to 20, means 

that the training will stop when the validation subset error rate increases continuously for 

more than 20. Another important parameter is the learning rate, learning rate (LR) is the 

parameter which controls the adjustment of the weight with respect to the loss gradient. If the 

value of the learning rate is too low then it takes a long time to converge and if the value of 

learning rate too high that it might miss any local minima. Typically learning rate can be 

configured by an iterative process. The value has been tested for 0.1, 0.01 and 0.001. In Figure 
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6.5 (a), it shows that based on the choice of learning rate can affect the convergence of the 

algorithm.  

       
(a) Learning rate curves  

(b) Curve with LR equal to 0.1  

Figure 6.5: (a) showing the different effect of various learning rates (Fei-Fei Jan 2015) (b) Effect of leaning rate at 0.1 

Figure 6.5 (b) shows the loss function over time, that by selecting the value of 0.1 it looks more 

satisfactory for the selected dataset. Because of this reason the learning rate has been kept 

fixed at 0.1. It shows that the error is decreasing over time as per the requirement and then 

becoming constant. 

 

Similarly, using above mentioned algorithms neural network was trained with 7 attributes 

shown in Table 6.16. A dataset with 13 attributes was trained using resilient backpropagation 

algorithm with 50 hidden units and 1 hidden layer it provides optimal accuracy of 67.9%. In a 

dataset with 7 attributes, the scaled conjugate gradient algorithm with 50 hidden units and 1 

hidden layer provides the maximum percentage of correctly classified data to 67.2%.  

 By comparing the results between these datasets, the range of accuracy varies from 60% to 

67.9% in the dataset with 13 attributes while dataset with significant predictors in Table 6.14, 

the accuracy of the model varies from 57.7 to 67.4% in Table 6.16. It appears that there is no 

much distinction in accuracy, thus dataset with significant predictors can be used for further 

analysis. 

These are the results obtained by comparing various models of neural network classifier; 

however, it is essential to compare the results using a conventional classifier to assess the 

neural network classifier performance capability in handling these data. For comparison 

purpose discriminant functional analysis was implemented. 

6.6 Discriminant Function Analysis using summarised patient data 

DFA is performed on the patient data in order to compare the results with the neural network 

model output using the same class balanced patient data. DFA builds the predictive model of 

group membership. It is composed of discriminant functions depending on the linear 

combination of the variables to obtain the best discrimination between the groups. Its main 

purpose is to separate the groups at maximum level. It is used to obtain the relationship 

LR = 0.1 
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between all the independent variables groups and categorical labels. With this relationship, it 

is possible to predict the classification depending on how well these independent variables 

separate the categories in the classification. DFA is implemented using SPSS software with all 

the seven independent variables and three categories. 

6.6.1 Results from DFA analysis 

                                                                         

 

Figure 6.6 : Discriminant group of VPT categories (1-3) cat1 = Low, cat2 = medium and cat3 = high  

The three group mean is fully explained in the two-dimensional space. The graphical 

representation of group’s mean and the scatter of individual observations along with the 

centroid of each group in the discriminant coordinate system are shown in Figure 6.6. 

Function1 and Function 2 are calculated using standardized coefficients and the standardized 

variables as given below: 

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝟏 = 0.17*zHbA1c + 0.087*zACR + 0.966*zAge + 0.315*zWeight + 0.358*zHeight + 

0.063*zCholesterol – 0.064*duration of diabetes 

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝟐 =  0.171*zHbA1c - 0.417*zACR + 0.332*zAge - 0.748*zWeight - 0.009*zHeight + 

0.429zCholesterol – 0.064*duration of diabetes 

Where zHbA1c, zACR, zAge, zWieght, zHeight, zCholesterol and zduration of diabetes are the 

standardised variables multiplied by the magnitude of the coefficient. The magnitude of the 

coefficient can be used to indicate the impact on the discriminant score, so, for example, 

standardized coefficient of age in the first function is greater than the other coefficient which 

means age will have the greatest impact than other variables in the first discriminant score.   
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 The separations between the groups are not clear. The closer the group centroids, it is likely 

to have more errors of classification. The samples available in each group are overlapping with 

each other in the discriminant space due to which it is difficult to achieve a good classification.  

Table 6.18 : Confusion matrix of patient data 

 

Risk 

categories 

Predicted Group 

Membership Total 

 Low Medium High  

Count Low 1048 420 228 1696 

Medium 276 829 591 1696 

High 171 640 885 1696 

% Low 61.8 24.8 13.4 100.0 

Medium 16.3 48.9 34.8 100.0 

High 10.1 37.7 52.2 100.0 

 

The error count can be calculated (or misclassified) for each observation as 38.2% (i.e. 24.8% + 

13.4%) for low risk, similarly 51.1% for medium risk and 47.8% for high-risk categories as per 

Table 6.18. The overall correctly classified cases are calculated as 54.3%. The classification of 

individuals into their original population varied from 48.9% to 61.8%. Among the three 

categories, the portion of correctly classified low-risk samples into their original population 

was the highest as 61.8% while a portion of correctly classified medium risk samples into their 

original population was the lowest as 48.9%. 

Comparison between neural network classifier and conventional classifier has been performed 

to analyse the results. The percentage of correctly classified classes obtained using 

conventional classifier i.e. DFA is 54.3% while 67.4% accuracy was achieved using neural 

network classifier given in Table 6.16. This shows that neural network classifier is performing 

better than the conventional classifier. 

 By using DFA, we get an idea about the data distribution of each class in the discriminant 

space which were highly overlapped. In order to obtain higher accuracy, either data need to be 

collected precisely or need to process the data in a way to reduce the noise. Instead of 

choosing the prolonged process of collecting patient data again, the second option of 

increasing the predictor precision was taken into consideration by generating a simulated 

patient data. 
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6.7 Method of generating simulated patient data 

For generating simulated patient data with similar property, real patient data’s mean and 

covariance of each predictor were used with reduced standard error to increase the precision 

of data. The  summarised real patient data (summarised patient data as discussed in section 

6.3 is addressed as real patient data) consist of a number of observations, mean and standard 

error of all the seven significant predictors which were calculated as shown in Table 6.19. This 

simulated data were generated with real patient’s mean and covariance’s but with the 

reduced standard error. By this method, larger dataset can be obtained for improving 

predictor’s precision. The simulated data was generated using R software where genCor Code 

simstudy package was used (Goldfeld 2018). It requires the mean, standard error, correlation 

matrix or correlation coefficient of real patient data to use. 

Table 6.19 : Mean and standard deviation of the real patient data 

Variables Observations Mean  Std. dev. Min Max 
 
VPT 

 
5158 

 
17.82      

 
11.13        

 
1.5            

 
50 

HbA1c 5143 8.73      1.29 4.77     14.4 
Urine albumin to creatinine ratio (ACR) 3886 7.15 18.35 0 293.83 
Age 5158 57.73      18.45 7 98 
Weight 5156 83.42     19.67 32.77 192.2 
Height 5111 168.67      10.06 81 207 
Cholesterol 4852 4      1.19       1.43 18.7 
Duration of diabetes 5158 10.63 6.75             1 28 

Using this function, it will generate multivariate normal data. If data is generated by using the 

same standard error of the real patient data then the spread of the data may remain the same 

for each predictor, therefore standard error was reduced for independent variables. Two data 

sets were generated wherein the first dataset; 50% of standard error and named as simulated 

patient data 1. For comparison purpose, another dataset was generated by 40% of standard 

error and named simulated patient data 2. Around 1 million data was generated for each set 

by this method. The summary of the real patient simulated data were compared with the real 

patient’s summary in terms of range of each predictor. It was found that the tails in some of 

the predictors were far too long which means the values of the variable are outside the 

required limit. For example, as the range of the VPT from 0 to 50 Volts and in the generated 

data if the value is more than 50 Volts then the relationship of those values are unknown with 

the rest of the predictors and needs to be ignored. Similarly, for all of those variables whose 

data were out of the real patient data range were deleted from the simulated file to generate 

a more realistic simulated patient data set. After truncating data rows from the file, 757323 

and 830365 numbers of observations in each attribute were available in which 50% and 40% of 

standard error as shown in Table 6.20 and Table 6.21 respectively. 
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Table 6.20 : Summary of the simulated data 1 

Variables Observations Mean  Std. error. Min Max 
 
VPT 

 
757323 

 
18.13 

 
5.51 

 
1.01      

 
44.2 

HbA1c 757323 8.75     0.64  5.54  11.85 
Urine albumin to creatinine ratio (ACR) 757323 10.62 6.90 0 52.74 
Age 757323 58.06      9.23 19.16 97.86 
Weight 757323 83.70     9.79 37.17 128.13 
Height 757323 168.65      5.03 142.15 193.18 
Cholesterol 757323 4.01     .71       1.43 7.23 
Duration of diabetes 757323 10.66 3.37             1 22.12 

 
Table 6.21 : Summary of the simulated patient data 2 

Variables Observations Mean  Std. error. Min Max 
 
VPT 

 
830365 

 
18 

 
4.43 

 
1.5      

 
37.89 

HbA1c 830365 8.74 0.52 6.34 11.22 
Urine albumin to creatinine ratio (ACR) 830365 9.33 5.80 0 42.47 
Age 830365 57.95 7.40 24.04 93.69 
Weight 830365 83.58 7.84 48.36 118.67 
Height 830365 168.66 4.02 149.10 188.29 
Cholesterol 830365 4.01 0.57 1.45 6.88 
Duration of diabetes 830365 10.63 2.72 1.00 23.70 

 

The comparison was made between summarised real patient data and simulated patient 

datasets (Table 6.19, 6.20 and 6.21), it was found that they compare pretty close in mean and 

the range of each variable, in correlation and covariance, however, variance and standard 

error is reduced to 50% in (Table 6.20) and 40% in (Table 6.21) of the patient data as expected. 

This dataset were used for neural network modelling to calculate the percentage correctly 

classified class or accuracy. 

6.7.1 Experimental methodology 

1. Divide the simulated data into three categories based on VPT thresholds. (Low risk- 0 

to 20.99, medium risk - 21 to 30.99 and high risk - ≥ 31) 

2. Pre-process the simulated data or use a random sampling technique to achieve class 

balance for both the dataset. 

3. Divide both dataset into three sets as training (70%), testing 15% (unseen data) and 

validation sets (15%). 

4. Set important hyperparameters such as hidden neurons ϵ (10, 15, 25, and 50), hidden 

layers ϵ (1), learning rate ϵ (0.1), iterations ϵ (1000) and measure the epochs. 

5. Train the neural network using resilient backpropagation (Trainrp function) and scaled 

conjugate gradient (Trainscg function) algorithm.  

6. Train the neural network using simulated patient data 1. Select the model that gives 

optimal result by changing the values of required hyperparameters. 
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7. Train the neural network using simulated patient data 2. Select the model that gives 

optimal result by changing the values of required hyperparameters. 

8. Compute Confusion matrices to assess the neural network performance. 

9. Based on the classification success of training, testing and validation set, calculate 

overall accuracy for each trial for comparison. 

10. Compare the accuracy of both the dataset to select the best. 

Pre-processing the simulated patient dataset: 

The dataset was divided into three classes based on the VPT scores same as the real patient 

data.  After dividing the data into three classes, the number of instances available in each class 

for both the datasets was calculated. 

Table 6.22 : Instances per class of simulated patient data 1 

Class labels Number of instances – 
(Total number of 

instances -   757323) 

Percentage distribution % 

Low risk – class 1 529294 69.8 

Medium risk – class 2 220531 29.1 

High risk – class 3 7498 0.9 
 

As per the calculations it was found that class 1 is inflated with lot instances covering around 

69.8% of the total data while class 3 is having least number of instances around 0.95% of the 

total data as shown in Table 6.22. This shows that data is highly imbalanced to be trained for 

any classifier.  

 

Table 6.23 : Instances per class simulated patient data 2 

Class labels Number of instances – 
(Total number of 

instances -   830365) 

Percentage distribution % 

Low risk – class 1 623137 75 

Medium risk – class 2 205842 24.78 

High risk – class 3 1386 0.16 

 

Similarly, simulated patient data 2, 830365 data was generated in which the same issue of 

class imbalance was recognised as shown in Table 6.23. In order to use this dataset for any of 

the classifiers it is important to undergo a class balance technique as implemented for the real 

patient data. 

The benefit of using the simulated data is that large number of data can be generated as per 

the requirement. There are two options to adjust the class distribution of a dataset,  one is 

either oversampling of the minority class as performed on real patient data or undersampling 
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of the majority class (Hernandez et al. 2013). As per the data available in class 3, it is possible 

to perform undersampling of majority class on both the datasets of simulated patient data. 

As per the instances available in class 3, class 1 and class 2 were undersampled with the 

number of instance 7498.  Undersampling was successfully applied and the updated number of 

instances available in each class is displayed in Table 6.24: 

Table 6.24 : Class balanced for simulated patient data with 50% of standard error  

Class labels Number of instances – 
(Total number of 

instances -   22494) 

Percentage distribution % 

Low risk – class 1 7498 33.3 

Medium risk – class 2 7498 33.3 

High risk – class 3 7498 33.3 

Similarly undersampling of the majority classes was performed in simulated patient data 2 as 

well. Here 1386 instances were obtained by undersampling the majority classes by using 

MATLAB function as presented in Table 6.25. 

Table 6.25 : Class balanced for simulated patient data with 40% of standard error 

Class labels Number of instances – 
(Total number of 
instances -   4158) 

Percentage distribution % 

Low risk – class 1 1386 33.3 

Medium risk – class 2 1386 33.3 

High risk – class 3 1386 33.3 

In order to get all the attributes in the comparable range, all the data available in each 

attribute was normalised. After pre-processing the data, it can be trained by neural network 

classifier to get the classification success. 

6.7.2 Results  

 As the data been generated from the real patient data all the hyperparameters and specific 

training algorithms were used again for training this dataset. Some of the hyperparameters 

were kept fixed for both the data sets as mentioned below: 

1. Max_epoch = 1000 

2. Time = infinite 

3. Minimum gradient  = 1 

4. Maximum_validation_fail = 20  

5. Performance goal = 0 
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Table 6.26 : Comparison between training functions on simulated patient data 1 

 Training 
Algorithm 

Hidden 
neurons 

Hidden 
Layer 

Epoch Learning 
rate 

Overall 
Classification 
success % 

1 Trainscg 10 1 95 0.1 65.4 

2 Trainscg 15 1 62 0.1 65.4 

3 Trainscg 25 1 111 0.1 65.4 

4 Trainscg 50 1 113 0.1 65.1 

5 Trainrp 10 1 52 0.1 65.3 

6 Trainrp 15 1 92 0.1 65.5 

7 Trainrp 25 1 55 0.1 65.3 

8 Trainrp 50 1 37 0.1 65.8 

 

As per the results obtained, it shows that by using all these training functions the achieved 

range of the percentage of correctly classified classes is from 65.1% to 65.8% (this is the 

overall accuracy which includes trained, test and validation set confusion matrix). This means 

that by changing hidden neurons there is no further increase in accuracy. It will be interesting 

to know the results by using the simulated patient data 2 i.e. dataset with 40% of standard 

error. 

The results obtained using this simulated patient dataset 2 is as shown in Table 6.27. 

Table 6.27 : Comparison between training function on simulated patient data 2 

 Training 
functions 

Hidden 
neurons 

Hidden 
layer 

Epoch Learning 
rate 

Overall 
Classification 
success % 

1 Trainscg 10 1 59 0.1 68.3 

2 Trainscg 15 1 47 0.1 68 

3 Trainscg 25 1 59 0.1 68.6 

4 Trainscg 50 1 48 0.1 67.1 

5 Trainrp 10 1 54 0.1 68.6 

6 Trainrp 15 1 34 0.1 68.3 

7 Trainrp 25 1 43 0.1 68.6 

8 Trainrp 50 1 75 0.1 70.1 

 

As per the results obtained using dataset with a reduced standard error the range of overall 

percentage of correctly classified classes range varied from 68% to 70.1%. The resilient 

backpropagation with 50 hidden neurons with 75 epochs has provided the best result.  

Analysis of the results using simulated patient data 

First of all, by generating the simulated patient data from the real patient data by using means, 

covariance’s of each variable it was possible to reduce the skewness of the data and that of 

the real patient data. By comparing the accuracy obtained using both the dataset, it can be 
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concluded that by reducing the standard error of each predictor the accuracy is definitely 

increasing. Based on the obtained results it can be concluded that simulated patient data 2 i.e. 

40% of standard error can be used for further studies. However, for comparison purpose, the 

classifier outcome can be compared with the discriminant function analysis results as well. 

One limitation of reducing the standard error is, it could start affecting the range of the VPT. If 

the range of VPT is reduced more than the very less data or instances will be available in class 

3 which may lead to extreme imbalance of the class distribution.  

6.8 Discriminant Function Analysis using simulated patient data   

For comparison purpose the conventional classifier called discriminant functional analysis 

(DFA) was also implemented using simulated patient data 2 with 7 attributes.  

6.8.1 Results from simulated patient data 

 

Figure 6.7 : Discriminant group of VPT categories (1-3) cat1 = Low, cat2 = medium and cat3 = high using simulated 
data 

The three group mean are fully explained in the two dimensional space as shown in Figure 6.7. 

The function scores can be given as below: 

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝟏 = 0.041*zHbA1c + 0.127*zACR + 0.965*zAge + 0.208*zWeight + 0.399*zHeight + 

0.042*zCholesterol – 0.007*duration of diabetes 

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝟐 =  0.466*zHbA1c - 0.503*zACR + 0.059*zAge + 0.057*zWeight - 0.535*zHeight + 

0.298zCholesterol – 0.261*duration of diabetes 

Where zHbA1c, zACR, zAge, zWieght, zHeight, zCholesterol and zduration of diabetes are the 

standardised variables multiplied by the magnitude of the coefficient. The graphical 

representation of group’s mean and the distribution of individual observations along with the 



120 

 

centroid of each group are shown in the discriminant coordinate system. The separations 

between the groups are much clearer than the real patient data. This clarity in the distribution 

shows that the simulated patient data is much more precise and accurate than the real patient 

data and definitely has the capability to gain more accuracy, since the portion of the data 

available in the classes are not much overlapped in the discriminant space when the dataset is 

divided into three categories.  

Table 6.28 : Confusion matrix of simulated patient data 2 

 

Cat 

Predicted Group Membership 

Total Low risk  Medium risk High risk 

Count Low risk 1014 345 27 1386 

Medium risk 340 753 293 1386 

High risk 18 272 1096 1386 

% Low risk 73.2 24.9 1.9 100.0 

Medium risk 24.5 54.3 21.1 100.0 

High risk 1.3 19.6 79.1 100.0 

The error count (or misclassification) for each observation was estimated as 26.8% for low risk, 

45.6% for medium risk and 20.9% for high-risk categories. The overall correctly classified cases 

are calculated as 68.9% [calculated as (73.2 + 54.3 + 79.1) / 3)]. 

The classification of individuals into their original population varied from 54.3% to 79.1%. 

Among the three categories, the portion of correctly classified low-risk samples into their 

original population was the highest as 79.1% while a portion of correctly classified medium risk 

samples into their original population was the lowest as 54.3%. 

Using neural network classifier accuracy of 70.1% was achieved. However, using DFA classifier 

gains accuracy of 68.7%. This shows that neural network classifier is more capable of handling 

the data than the conventional classifier (DFA). At this stage, it can be assumed that the neural 

network trained on the simulated data with 40% of standard error is performing at the best 

level and can be used for further analysis.  

Limitations of using neural network classifier and DFA 

The best-trained model is saved in the workspace of MATLAB and results were analysed. When 

new inputs are provided results were obtained in terms of three probabilities of risk levels. So 

in order to test the neural network model as trained using all the seven best predictors, the 

input should be provided as the vector of 7 inputs in the same sequence i.e. HbA1c, acr, Age, 

Weight, Height, Cholesterol and duration of diabetes as followed during training procedure to 

get the expected output as shown in Examples 1 below: 



121 

 

Example 1: 

Input variable  Output probabilities 

HbA1c  -  8.9 Low  risk  - 96% 

Acr  -  13 

Age -  41 Medium risk  -  4% 

Weight – 82 

Height – 174 

Cholesterol – 3.6 High risk  - 0% 

Duration of diabetes -13 

 

Here the inputs were provided with all the best predictors as shown in the Example 1. The 

value of most significant predictor i.e. age is given as 41 years along with rest of the predictors 

and model predicted the outcome in terms of probability. The prediction shows that subject at 

low risk of developing diabetic neuropathy.  

Example 2: 

Input variable  Output probabilities 

HbA1c  -  8.9 Low  risk  - 13% 

Acr  -  13 

Age -  65 Medium risk  - 54% 

Weight – 82 

Height – 174 

Cholesterol – 3.6 High risk  - 32.2% 

Duration of diabetes -13 

Looking at Example 2, here keeping all the other predictors as constant, age was increase to 65 

and as seen the predicted probabilities changed as Low risk - ’13%’, medium risk - ’54%’ and 

high risk – ’32.2%’ which means subject is at medium risk of developing diabetic neuropathy. 

This reflects that based on the trained pattern, neural network is updating all the probabilities.  

Example 3: 

Input variable  Output probabilities 

HbA1c  -  9 Low  risk  - 30% 

Acr  -  13 

Age -  65 Medium risk  -  26% 

Weight – 88 

Height – 171 

Cholesterol – 5 High risk  - 44% 

Duration of diabetes -9 

 

Example 3 shows that based on the above mentioned inputs or predictors, the output 

probabilities were predicted by the model. This example shows that low risk is greater than 

medium risk and medium risk is less than high risk. In the practical scenario, we do not want to 
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get such kind of predictions where order is not maintained.  This unordered prediction is due 

to the limitation of the data and also the type of typical softmax based neural network model 

which was used but does not explicitly maintaning the order.  

This problem also persists while using discriminant function analysis, because DFA is normally 

applied when dependent variables are divided into two or more categories and these 

categories need to be mutually exclusive. So when DFA was applied using real patient data and 

simulated patient data, a test was performed to identify this type of unordered 

misclassification. It was found that using real patient data, the number of times class 1 

predicted class 3 was 53 times and a number of times class 3 predicted class 1 was 8 times and 

using simulated data set no such cases were found.  In the present dataset we have only 3 

class labels; however, if there are more than 3 classes then this type of error may increase a lot 

and may create confusion. The problem was seen more in real patient data may be because a 

portion of data in each class highly overlaps with each other and also not having large dataset, 

while in the simulated dataset it is much less due to less class overlaps as shown in the 

discriminant graph (Figure 6.6 and 6.7).  

Similarly, when neural network classifier was trained on real patient data, there was around 15 

to 20% of misclassification. And when NN was trained on simulated data only 1 or 2 cases were 

found. 

In fact, it shows that unordered misclassification is higher using real patient data than using 

simulated patient data. Perhaps the problem of misclassification may not occur once we have 

large enough dataset, however, in current scenario it is not possible to get more data, and 

therefore simulated patient data can be used for further analysis. Hence, ordinal logistic 

regression was implemented on simulated patient data 2 which will explicitly maintain the 

order of classification as shown in the next section. 

6.9 Ordinal logistic regression using simulated patient data  

 Ordinal logistic regression is applied on simulated dataset to obtain the information about the 

significant predictors along with classification success using simulated dataset as given in Table 

6.29. 

Table 6.29 : Case summary 

Categories of the dependent variables Range of VPT score in Volts (V) No. of instances (4158) 

Low risk 0 to 20.99 1386 

Medium risk 21 to 30.99 1386 

High risk  31 onwards 1386 
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In the model fitting information as shown in Table 6.30, as per the degree of freedom seven 

independent variables were used in the data set for performing the analysis. The last row (Sig.) 

of the table presents the information that either all or some of the variables are statistically 

significant and the mean variables are statistically significantly improving the model compered 

to intercept only model (no added variables). As p < 0.001 means model predicts the 

dependent variable better than the intercept only model.   

Table 6.30 : Model Fitting Information 

Model -2 Log Likelihood Chi-Square Df Sig. 

Intercept Only 9136.060    

Final 5602.161 3533.899 7 .000 

 

In the goodness of fit table, large chi-square values indicate poor fit of the model. A 

statistically significant value (p < 0.5) indicates that model does not fit well. The first row that 

is Pearson means, Pearson chi-square statistic as well as Deviance chi- square have  p > 0.05 

(from the Sig. column) i.e. not statistically significant indicates that model fits well with the 

data.  Pseudo R- squared presented in Table 6.32. The indicated pseudo R squared is higher 

than the Pseudo R squared of the real patient data seems that the model better predicts the 

outcome in this case.  

Table 6.31 : Goodness-of-Fit 

 Chi-Square df Sig. 

Pearson 7015.429 8303 1.000 

Deviance 5602.161 8303 1.000 

Table 6.32 : Pseudo R-square 

 

Pseudo R-Square 

Cox and Snell .573 

Nagelkerke .644 

McFadden .387 

There are coefficient, their standard errors, the Wad test and associated p- values (Sig.) and 

95% confidence interval of the coefficient as available in parameter estimated in Table 6.33. 

The dataset has three level of variable called <cat> (coded 1, 2, and 3) which will be used as an 

outcome variable. It can be used to determine number of statistical significant independent 

variables on the dependent variable (VPT). Out of all the seven predictors / attributes HbA1c, 

ACR, age, weight, height are significant predictors while Cholesterol and duration of diabetes 

are not significant. So for HbA1c variable, one unit increase in age (from 0 to 1), there can be 

0.140 increase in the logarithmic odds of being higher level of cat, with all the other variables 

in the model are constant. For ACR variable, one unit increase in age (from 0 to 1), there can 

be 0.37 increase in the logarithmic odds of being higher level of cat, with all the other variables 

in the model are constant. For age variable, one unit increase in age (from 0 to 1), there can be 



124 

 

0.25 increase in the logarithmic odds of being higher level of cat, with all the other variables in 

the model are constant. Similarly for rest of the variables can be interpreted from the table.   

 

Table 6.33 : Parameter Estimates 

 Estimate Std. 

Error 

Wald df Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 
Threshold 

 

[cat = 1.00] 50.221 1.976 646.017 1 < 0.001 46.348 54.094 

[cat = 2.00] 53.066 2.002 702.941 1 < 0.001 49.143 56.989 

Location HbA1c .140 .070 4.058 1 .044 .004 .277 

ACR .037 .006 37.443 1 < 0.001 .025 .048 

Age .250 .006 1616.672 1 < 0.001 .238 .262 

Weight .047 .005 80.779 1 < 0.001 .037 .057 

Height .174 .010 287.566 1 < 0.001 .154 .195 

Cholesterol .109 .066 2.772 1 .096 -.019 .238 

Duration of  

diabetes 

-.001 .013 .008 1 .928 -.027 .024 

 

By comparing all the values of the responsive variable with the values of the predicted 

outcome, it is possible to calculate the classification success for each class. Table 6.34 shows 

the cross tabulation (confusion matrix) of the model where data is presented for each of the 

classes in terms of true positive, true negative, false positive and false negative. It measures 

the percentage overall classification success estimated as  68.4%, where low risk category 

achieves classification success of 72%, medium risk category as 56.3%  and high risk category 

as 77.1% . 

Table 6.34 : cat * Predicted Response Category Cross tabulation 

 Predicted Response Category Total 

Low risk Medium risk High risk 
C 
A 
T 
A 
G 
O 
R 
I 
E 
S 

Low risk Count 998 367 21 1386 

% within cat 72.0% 26.5% 1.5% 100.0% 

% within Predicted 
Response Category 

74.3% 25.3% 1.5% 33.3% 

Medium risk Count 330 781 275 1386 

% within cat 23.8% 56.3% 19.8% 100.0% 

% within Predicted 
Response Category 

24.6% 53.8% 20.2% 33.3% 

High risk Count 15 303 1068 1386 

% within cat 1.1% 21.9% 77.1% 100.0% 

% within Predicted 
Response Category 

1.1% 20.9% 78.3% 33.3% 

Total Count 1343 1451 1364 4158 

% within cat 32.3% 34.9% 32.8% 100.0% 

% within Predicted 
Response Category 

100.0% 100.0% 100.0% 100.0% 
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By using ordinal logistic regression it is possible to obtain the overall classification success of 

68.4% with five significant predictors out of seven independent variables. Using this analysis a 

hint regarding significant predictors, and on the other hand it treat the data into the set of 

ordered category i.e. (Low risk < medium risk < high risk) (Chu and Ghahramani 2005) . So the 

issue of considering these classes as nominal did not arise in the above used classifier. This 

means that ordinal regression analysis applied on the data set is better to use, however if he 

data is trained using neural network then it might work better than the conventional method. 

So if it is possible to use a neural network based model which can take care of ordinal 

categories and predict the outcome in terms of probability then it can be used for developing a 

risk assessment tool. The advantages of using artificial neural network based model are 

learning in both real time and in batch mode, training on very large data and providing  good 

performance,  better in handling non- linear data, rapid prediction and model can be 

optimised using trained and tested data (unseen data set) with various hyper parameters like 

hidden neurons, hidden layers, no. of iterations to obtain better results (Cheng et al. 2008). In 

order to use such a model for taking advantages of neural network, neural network based 

proportional odds model was implemented. 

6.10 Neural Network based Proportional Odds Model  

There are many classifiers available to classify or predict the numerical values from the 

labelled patterns while less consideration was paid on ordinal classification problems in which 

labels of the dependent variable or targets have a natural ordering. In the current scenario, as 

stated before, labels are ordered as (Low risk, medium risk and high risk). While working with 

the problems misclassification which has more error if the patient of low risk was classified as 

high risk than misclassified as medium risk. This encouraged us to use an ordinal classification 

model to carefully handle an ordinal labels. Ordinal regression models are commonly used in 

many research areas such as medical research (Jang et al. 2011), brain computer interface, age 

estimation and more (Gutierrez et al. 2016). To adopt a probabilistic framework, Neural 

Network based Proportional Odds Model (NNPOM) is considered which is proposed by 

Mathieson (Mathieson 1996; Gutiérrez et al. 2014). The model approaches ordinal 

classification by estimating the latent variable belonging to ordinal categories and the model 

will learn based on the set of thresholds discretising variable. NNPOM is also called as 

threshold model that has been seen to perform well when classes are defined from a 

discretised variable (Gutierrez et al. 2016).  
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Figure 6.8 : Structure of the probabilistic neural network model (NNPOM) 

The structure of the NNPOM model is shown in Figure 6.8.  It consists of input layer; hidden 

layer and output layer same as the previously used neural network classifier. It has one input 

layer with 7 input nodes i.e. 7 best predictors given by variable X (X1 to X7). The input signal 

propagates through input layer by multiplying with weights W.  It has one hidden layer where 

number of hidden neurons M can be arbitrarily defined and can be given as B (B1 to BM). The 

input of the hidden layer propagates by multiplying with weights 𝜷 = (𝜷1 … 𝜷M) and transmit to 

the output layer. It has one output layer consisting of one neuron with as many thresholds as 

the number of classes minus one. The thresholds of each class 𝐶𝑞 are denoted by 𝑒𝑞 where 𝑞 is 

the number of thresholds. The main difference in the structure of NNPOM is standard softmax 

activation function in the output nodes used in traditional neural network classifier is replaced 

with a sigmoidal function as it will consider ordered partitions encoding instead of traditional 

encoding. Sigmoidal unit is define as 𝐵𝑗(𝑥𝑡 , 𝑤𝑗) =  𝜎 (𝑊𝑗
𝑇 . (1, 𝑥𝑡)),  𝑤𝑗 = {𝑤𝑗0, 𝑤𝑗1, … ., 𝑤𝑗𝑟} , 

𝑤0 is the bias and r is the number of inputs.  The whole parameter vector of NNPOM can be 

given as 𝐾 = {β, 𝐖, 𝒂𝟏, 𝒂𝟐, … , 𝒂𝐐−𝟏}. The cross entropy loss function is optimised by iRprop+ 

algorithm (improved resilient back propagation algorithm) to estimate the parameters of the 

model (Igel and Hüsken 2003). This model is adjusted and updates the weights by minimising 

cross entropy loss in every iteration iter. NNPOM is a linear combination of nonlinear basis 

functions i.e. hidden neurons (Pérez-Ortiz et al. 2018) given as: 
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      𝑓(𝑋𝑡 , 𝜃) =  ∑ 𝛽𝑗
𝑀
𝑗=1 𝐵𝑗 (𝑋𝑡 , 𝑤𝑗)                         (18) 

Where 𝜃 is the weight given as 𝜃 = (𝜷, W) and 𝑓(𝑋𝑡 , 𝜃) is the projection of the model for 

pattern 𝑋𝑡. 

In NNPOM, probabilities can be estimated in the following equations (Pérez-Ortiz et al. 2018):  

  𝑃(𝑦𝑡+𝑠 = 𝐶1|𝑋𝑡) =  𝜎(𝑓(𝑋𝑡 , 𝜃) − 𝑒1,  

𝑃(𝑦𝑡+𝑠 = 𝐶𝑞|𝑋𝑡) =  𝜎(𝑓(𝑋𝑡 , 𝜃) −  𝑒𝑞) −  𝜎( 𝑓(𝑋𝑡, 𝜃) - 𝑒𝑞−1),    (19) 

𝑞 ∈ (2, … 𝑁 − 1), 

𝑃(𝑦𝑡+𝑠 = 𝐶𝑁|𝑋𝑡) =  1 −  𝜎(𝑓(𝑋𝑡 , 𝜃) −  𝑒𝑁−1) . 

Where 𝑠 is the input nodes,  𝑒𝑞 is the threshold of class  𝐶𝑞 and 𝑒𝑞 can be defined as follow: 

𝑒𝑞 =  𝑒1 + ∑ 𝑎𝑗
2𝑞

𝑗=2         (20) 

𝑎𝑗 is the padding variable  and is kept square to make the threshold positive. 

NNPOM model can be adjusted by three hyper parameters as hidden neurons M, number of 

Iterations iter and value of lambda λ, where λ is the regularisation parameter that is used in 

the error function to avoid over fitting. 

6.10.1 Experiment methodology 

1. Use the categorical simulated dataset 2 with 7 best predictors (attributes). 

2. Divide the data into two sets i.e. training set (75%) and testing set (25%) save as 

text files. 

3. The format of the file should be (attribute1 attribute2 ….attribute7 label) where 

labels should be coded as [1, 2, 3]. 

4. Set the hyper parameter of such as hidden neurons M, number of iteration iter 

and regularisation parameter λ until the model achieve the optimal results. 

5. Compute confusion matrices of both training and testing sets to get the overall 

classification success. 

6. Compare the results with classical ordinal regression. 

7. Save the best trained model to build the risk assessment tool of VibraScan.  
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6.10.2 Results 

The training of neural network based proportion odds model was performed on MATLAB 

framework.  The performance of the model may vary depending on number of attributes; the 

percentage partition of training and testing sets and number of instances in the data file. The 

summary of the dataset is shown in Table 6.35 as below: 

Table 6.35 : Summary of the dataset 

Categories of the dependent variables Range of VPT score in Volts (V) No. of instances (4158) 

Training Testing 

Low risk 0 to 20.99 3188 970 

Medium risk 21 to 30.99 3188 970 

High risk  31 onwards 3188 970 

 

The data files were loaded in to the MATLAB workspace and NNPOM model was trained with 

prior setting of all the hyper parameters. The range was explored using different number of 

hidden neurons M ϵ {10, 40, 60, 80, 85, 120, 130}, iter ϵ {1000, 1500} and λ ϵ {0.01, 0.001}. The 

results obtained by using these range is given in Table 6.36. Accuracy of the model is 

calculated based on the percentage correctly classified class. The sum of training accuracy and 

test accuracy gives the total percentage of correctly classified class. 

Table 6.36 : Performance evaluation 

Number of hidden 

neurons M 

Number of 

Iteration  

Value of λ Training accuracy 

% 

Test 

accuracy 

% 

Overall 

accuracy 

% 

10 1000 0.01 68 68.7 68.25 

40 1000 0.01 68.6 69.5 68.8 

60 1000 0.01 69.1 69.1 69.14 

60 1000 0.001 68.5 69.5 68.75 

80 1000 0.01 68.9 68.9 68.9 

60 1500 0.01 68.9 69.1 68.9 

60 1500 0.001 63.6 63.7 63.6 

85 1500 0.001 69.3 69.6 69.4 

120 1500 0.01 70.02 69.79 70.1 

130 1500 0.01 69.3 69.7 69.7 

 

As per the results obtained in Table 6.36, various ranges of hidden neurons, iteration and value 

of lambda were used to select the optimal results. By increasing the number of hidden 

neurons the accuracy was increasing with lambda value equal to 0.01 and when lambda value 

was changed to 0.001 the accuracy was decreasing. By increasing the hidden units, training 

time increases. By changing these hyper parameters, results changes from 68.25% to 70.1%. 

By selecting M = 120, iter = 1500 and lambda value = 0.01 the highest percentage correctly 
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classified class was obtained as 70.1%. The overall confusion matrix (training and testing) of 

the whole data is displayed in Table 6.37 where the diagonal of the matrix is the truly 

predicted class used to calculate the accuracy (LR: Low risk, MR: Medium risk and HR: High 

risk). 

Table 6.37 : Confusion matrix (M = 120, iter = 1500 and λ = 0.01) 

 LR MR HR 

Classification 

overall 

Low risk(LR) 1017 344 25 1386 

Medium risk(MR) 234 831 262 1386 

High risk (HR) 16 303 1067 1386 

Truth overall 1267 1478 1354 4158 

 

This version of trained model with highest accuracy was selected to develop risk assessment 

tool for diabetic neuropathy. 

6.10.3 Development of risk assessment tool of VibraScan 

To make it user friendly and easy to use, an application was developed on MATLAB framework 

using the trained neural network model as shown in Figure 6.9. 

 

 

Figure 6.9 : Graphic user interface (GUI) of VibraScan risk assessment tool 

 

There are several user friendly steps to follow for operating this application: 

1. Open the Graphic User Interface on MATLAB platform. 

Load the trained NN model parameters 

User’s input 

Prediction based on input data 

Output  

Probabilities 
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2. The application will be displayed as shown in the Figure 6.9. 

3. There is a button called <Neural network model> needs to be used  to load all the 

necessary parameters like weights, output labels of the trained model as discussed 

before to predict the new outputs. 

4. In the input panel, there are seven inputs needs to be provided by the subject as per 

the clinical results. 

5. Use the button called <Predict> to obtain all the three predicted VPT level probabilities 

for low risk (0 - 20.99 V), medium risk (21 - 30.99 V) and high risk (≥ 31 V). 

6. Out of the three probabilities, highest probability can be used to measure the risk level 

of the subject. 

The following examples shown below were used to show case the usability of the tool and its 

advantages. 

1. Subject has provided following inputs in the input panel as displayed in the Figure 

6.10. 

 

Figure 6.10 : VibraScan risk assessment tool prediction based on input variable (Example 1) 

Based on the input values provided to the tool, VPT probabilities were predicted from the 

learnt model with 2% chance of low risk, 23% chance if medium risk and 75% chance of 

high risk. The result shows that the person is likely to have high risk of diabetic neuropathy 

according to their clinical characteristic. 

Second example was test by keeping all the parameter as constant and just decreasing age 

by 10 years to determine the categories and observe the change in the risk level. 
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Figure 6.11 : VibraScan risk assessment tool prediction based on input variable (Example 2) 

By keeping all the other inputs as constant other than age, it shows that when age is 

decreasing the risk level of diabetic neuropathy is reduces from high to medium risk 

showing approximate VPT level between 21 to 30.99 Volts. Thus, based on the 

combination and relationship between clinical inputs of the subject, tool can predict the 

VPT level to determine the risk level of diabetic neuropathy.  

Discussion: 

The risk assessment tool based on vibration perception thresholds is developed for the 

first time for easy and early diagnosis of diabetic neuropathy. The advantage of using this 

tool is to get the results in terms of probability and can be used as an alarm for 

progressiveness of this devastating disease. The study was started with the longitudinal 

data with the continuous measurement of VPT for which Box Cox transformation on all the 

independent variables with natural logarithmic transformation of dependent variable 

(VPT) was implemented to improve the skewness of the data. Then, ordinary least square 

method was used on this transformed variable to determine the significant predictors. Out 

of 13 variables, 7 variables were identified as the significant predictors. For easy 

interpretation of the risk level of DN, VPT was divided into three categories based on the 

VPT thresholds. For determining the significant predictors on this categorical VPT based 

dataset, Ordinal logistic regression (OLR) was implemented. OLR has achieved the accuracy 

of 71.5%. However, this high accuracy could be because category 1 was inflated with large 

number of data. Results of OLR have shown that age, weight and height as the significant 

predictors providing scope for further analysis. The determination of significant predictors 

using OLR is based on linear association; however, advanced model such as artificial neural 

network (ANN) can also learn non-linear association along with linear association from the 
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data. Due to this ability of ANN, we have considered all 13 variables for the training. At 

first multiclass neural network was implemented on the 2450 instance of summarised 

patient data. Due to data division, it has been identified that there is a class imbalance, for 

which oversampling of minority class was performed. The ANN was trained on 13 

attributes and accuracy of 67.9% was achieved. The ANN trained on 7 best predictors an 

accuracy of 67.4% was achieved. This comparison is giving an indication of using only 

significant predictors rather than all the attributes. Another classifier called discriminant 

functional analysis was used and achieved an accuracy of 54.3%. It has shown the 

distribution of summarised patient data on discriminant space where data in each class 

were highly overlapped.  

In order to improve the precision of summarised patient data, data with similar property 

was simulated using summarised patient’s covariance and mean value but with reduces 

standard error. Simulated data with 50% of standard error (simulated patient data 1) and 

40% of standard error (simulated patient data 2) was generated out of which simulated 

patient data 2 was considered for further analysis because of its higher precision. Due to 

class imbalance in the dataset, under sampling of majority classes was implemented. 

Neural network was trained on simulated data 2 and achieved accuracy of 70.1% and DFA 

classifier has achieved an accuracy of 68.7%.  From this new dataset, DFA has shown the 

distribution of the simulated data in the discriminant space where data in each class were 

less overlapped showing more precise dataset. This improvement in accuracy is due to less 

class overlap, however some class overlaps still exist and size of data may not be sufficient 

to train the models. Therefore, neural network and DFA analysis have shown to struggle 

for maintaining the order during classification in few cases. 

 As ordinal logistic regression is capable of handling this order, so OLR was implemented 

again using simulated dataset 2 where accuracy of 68.4% was achieved and has identified 

five significant predictors. However, as we have stated earlier this cannot deal with 

nonlinearity of the data, so the efforts were made to implement model using neural 

network which can maintain the orders explicitly. This order based neural network is called 

Proportional odds model. Finally, NNPOM is trained on simulated dataset 2 where 

accuracy of 70.1% was achieved with seven predictors. This method is working as per the 

requirements and risk assessment tool of VibraScan has been developed.  

Thus, the overall analysis of the data allowed us in getting the insight for selecting the right 

model as well as the importance of quality of the data. This limitation of quality of data is 
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handled by using simulated patient data the quality of data was increased by improving 

the precision of the variables. Hence, the achieved accuracy can be improved by collecting 

more patient data from the clinics specifically for the analysis purpose and can be trained 

using a suitable neural network model for early diagnosis of the disease. A futuristic 

framework of risk assessment tool is proposed in the concluding chapter using the 

VibraScan risk assessment tool with the advantage of collecting precise patient data and at 

the same time updating and improving the prediction over time. 
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Chapter 7 Conclusions  
 

This chapter provides the conclusions derived from the designing and experimental analysis 

conducted in developing the risk assessment tool for diabetic neuropathy. These conclusions 

are discussed based on fulfilling the set objectives of this thesis. It also discusses the 

limitations and future scope of the risk assessment tool where VibraScan and artificial neural 

network based application can be used together to enhance the capability of diagnosing 

diabetic neuropathy. 

7.1 Achieving the set objectives of the thesis 

 In order to detect diabetic neuropathy develop a smart, operator independent and user-

friendly device, which is capable of generating a vibration stimulus with a required 

frequency and varying amplitude. 

These conclusions are based on the literature survey conducted in Chapter 1, 2 and the 

developmental phase of device discussed in Chapter 3.  In the literature survey, study 

related to types of diabetes (type 1 and type 2) and its related complications were 

discussed. Diabetic neuropathy is one of the serious complications of diabetes. It has been 

found that the rate of neuropathy in type 1 diabetes is higher than type 2 diabetes. Various 

types of diabetic neuropathy, its prevalence and importance of early detection of DN were 

studied. The detailed discussion of the currently available methods and devices for 

diagnosing diabetic neuropathy are conducted in Chapter 2. Devices based on vibration 

perception were generally considered as the gold standard for diabetic neuropathy, a 128-

hertz tuning fork was the first tool used to assess the neuropathy based on vibration 

perception. Later more advanced device Biothesiometer was developed which was then 

replaced by Neurothesiometer. This works in the same way but with a self-contained power 

source. The method of conducting the test, generating vibration, vibration property such as 

a range of vibration amplitude and frequency of Neurothesiometer were carefully studied. 

By looking at the limitations, such as operator dependency, range of the vibration 

amplitude causing the ceiling effect, time is taken to conduct the test and manual 

interpretation of results in Neurothesiometer led to the idea of developing a smart device. 

Typically a Biothesiometer or Neurothesiometer vibrates at a fixed frequency and varying 

the vibration amplitude which is operator dependent was a major limitation. VibarScan can 

be used to measure VPT independently. It is developed as a platform based device where 

subject has to lay their feet on the device and provided a manual switch to capture VPT 

level.  The device will automatically calculate the VPT level and display the results in the 
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form of severity of DN. The vibration actuator C2- HDLF tactor was used in VibraScan which 

is capable of generating the vibration with the required range of frequency and amplitude. 

Pulse width modulation technique was used for generating vibration of required fixed 

frequency and varying voltage, discussed in Chapter 3. The vibration applied using the 

vibration actuator is digitally controlled and is fully programmable. Thus, the objective of 

generating fixed frequency with varying voltage in VibraScan device is successfully achieved 

where neuropathy assessment is possible without the need of an operator.  

 

 To be able to robustly detect diabetic neuropathy, develop a vibration generating device 

which can effectively increase the vibration intensity, in order to detect the vibration 

perception threshold of the subject. 

 These conclusions are based on the modelling and simulation conducted in Chapter 4 and 

5. The feeling of sensing the vibration is also based on the type of vibration motor and 

design of the test rig (discussed in Chapter 3). Using the Plate-form based device, the 

subject can comfortably place from their feet on the plate. Various vibration characteristics 

such as the nature of vibration, vibration site and safety measures during the test were 

analysed for developing the device.  By selecting the platform based device it was 

necessary that vibration should be applied perpendicularly to the skin. Various vibration 

motors such as Eccentric Rotating Mass Vibration Motors (ERM), linear actuators and C2 - 

high displacement and low frequency (C2- HDLF) tactor were analysed to make selection 

criterion, C2- HDLF was selected as it was capable of generating the required nature of 

vibration. Using PWM signals, this vibration motor can be controlled easily for increasing 

the vibration amplitude covering the same range of Neurothesiometer vibration amplitude. 

Initially, a device was made for testing purpose for one foot where platform inclination is 

allowed to change from 44 to 26 degree. By successfully testing the first version of the 

device, it was redesigned for both feet with all necessary advancement. In the latest 

version of the device, based on the flexibility of the user, the inclination was kept fixed at 

approximately 36 degrees. The software was also upgraded to measure the VPT from both 

feet and results are automatically interpreted in terms of severity level of neuropathy. In 

the latest version, vibration isolation technique using spring was implemented to avoid the 

background vibration. To obtain the comparative range of the vibration amplitude with that 

of the Neurothesiometer, an experimental study was performed to measure the 

displacement of the vibration amplitude for each device. Curve fitting technique was used 

to develop the equation for finding the relationship between VibraScan and 



136 

 

Neurothesiometer. The comparative study discussed in Chapter 5, was conducted between 

VibraScan and Neurothesiometer using twenty healthy subjects after getting approval from 

the ethical committee of Bournemouth University. The VPT was alternately measured for 

each foot using both devices. To get the linear interdependency of both the measurements, 

correlation coefficient was calculated as r = 0.816, p < 0.001 for left foot and r = 0.893, p < 

0.001 for right foot.  Although there is a strong correlation between both techniques it is 

possible to say that both the techniques are agreeing with each other. To support this 

Bland and Altman analysis was used which showed that there is a close agreement 

between both the measurement techniques. Hence, the vibration stimulation applied to 

the subject/patient using VibraScan is made effective by careful designing of the device, by 

selecting the appropriate vibration motor (which is capable of generating higher vibration 

amplitude than Neurothesiometer vibration probe i.e. greater than 250 micrometer) and 

depending on the experimental results using human subject, VibraScan can be used an 

smart screening tool for diabetic neuropathy.  

 

 To develop a more reliable device by maintaining a constant pressure while applying 

vibration stimuli to the patient. 

These conclusions are based on the evaluation of the pressure measurement carried out in 

Chapter 3. By studying all the devices available for measurement of vibration perception 

threshold, it was found that none of these devices like Biothesiometer / Neurothesiometer 

are considering pressure measurement during the test. In these devices, vibration stimulus 

are applied to the subject by holding the vibration probe. So while conducting the test 

there could be a possibility of applying vibration with higher pressure which can result in 

activating the human skin receptors abnormally. To overcome this limitation, with the 

special design of VibraScan, it is possible to conduct the test at constant pressure by simply 

placing the foot on the device. However, there could still be a chance of pressure change if 

it is not monitored during the test. Therefore force sensitive resistors (FSRs) were used to 

capture any change of pressure during the test. Based on the experimental analysis, the 

placement of FSRs was decided i.e. on the top of the C2 - HDLF tactor where the great toe 

of the subject is placed. These FSRs were used to monitor the pressure and also verify the 

correct placement of the foot.  A user-friendly graphic user interface (GUI) was developed 

on the Matlab framework to wirelessly control the device which captures and show the 

real-time pressure change during the test. The real-time pressure graph is useful for 

subjects for maintaining constant pressure during their assessment. 
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 To develop the risk assessment tool that is capable of utilising the clinical characteristics 

of a patient to predict the risk level of Diabetic neuropathy. 

These conclusions are based on the analysis conducted in Chapter 6. By developing 

VibraScan, diabetic neuropathy can be assessed by measuring vibration perception 

threshold; however, there is no consideration for clinical risk assessment of diabetic 

neuropathy. To help with the idea of assessing the disease through risk factors, summarised 

patient data were used. The data were analysed by classical statistical method using Box-

Cox transform to get information related to significant predictors from the summarised 

patient data. Ordinal logistic regression was applied using Box-Cox transforms variable with 

output variable as logarithmic VPT to identify the significant predictors such as age, height, 

weight, urine albumin to creatinine ratio (ACR), HbA1c, cholesterol, and duration of 

diabetes. The analysis results from the classical statistics have given the direction of 

predicting VPT using these significant predictors. Predicting VPT in terms of the continuous 

variable was considered less helpful. As a result, VPT is divided into low risk (0 to 20.99 V), 

medium risk (21 to 30.99 V) and high risk (≥ 31 V). To increase the precision of the 

summarised patient data, simulated patient data was generated with the similar property 

of summarised patient data but with reduced standard error. Ordinal logistic regression 

was applied to get the best predictor set based on this categorical outcome. The 

information obtained from this analysis has helped in creating the baseline for this 

classification problem and focus was set to find the best classifier. Finally, a neural network 

based proportional odds model (NNPOM) was implemented using simulated patient data 

that could obtain the highest accuracy of 70.1%, slightly higher than the classical classifiers. 

A version of this model is used to develop the risk assessment tool of VibraScan.  

Thus, VibraScan device diagnosis based on vibration perception and risk assessment tool of 

VibraScan using risk factors of the disease helps in providing a comprehensive assessment tool 

for diabetic neuropathy. 

 

7.2 Limitations and Future scope 

The VibraScan has been developed and was tested on healthy subjects. Although comparative 

study between Neurothesiometer and VibraScan has shown a strong agreement, but, the 

challenge was to access real patients for measuring VPT using VibraScan.  
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For the risk assessment of the VibraScan, the challenge was to deal with the summarised 

patient data in which VPT was measured continuously and was divided into categorised VPT. 

Due to this division, data sample available in each class was not equal; this was handled by 

sampling technique to obtain the class balance. Due to noise in the summarised data, the 

simulated patient data were used for developing the risk assessment tool to show the 

potential of the tool when clean patient dataset will be used in the future. The challenge was 

to get the large patient data which can be used to train the neural network for better 

prediction of VPT. 

 

The futuristic Model 

As VibraScan device is developed to measure the VPT of the subject and risk assessment tool is 

used to predict the VPT. Taking an opportunity of using both these features of the device, a 

futuristic framework has been proposed as shown in Figure 7.1. 

  

 

VibraScan device

Risk assessment 
tool of VibraScan

Central database
Train the Neural 

network

Transfer the 
weights

VPT

Subject

Attributes / 
risk factors

Monthly 
scheduler

Input

Input

VPT prediction

 
Figure 7.1: The futuristic model 

 
This model involves both VibraScan device and risk assessment tool of VibraScan as shown in 

Figure 7.1. For collecting a large patient data, the first subject needs to be tested using 

VibraScan, the measured VPT value should be collected in the central database.  

Secondly, subject should also use risk assessment tool so when they enter the values of risk 

factors i.e. age, height, weight, urine albumin to creatinine ratio (ACR), HbA1c, cholesterol, and 

duration of diabetes, it can be captured and transfered to the central database which is 

currently filled with simulated patient data. The format of collecting the data in the central 

database should maintain in the form of [attr1, attr2, attr3…. attrN, VPT] where attr is the 
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attributes/risk factors of diabetic neuropathy. The simulated patient data which is available in 

the central database should be replaced as per the VPT to maintain the categories with the 

fresh patient data as shown in the example below.  

 

Simulated 
patient 
data 

sVPT = 
5V 

sAttr1 sAttr2 sAttr3 sAttr4 sAttr5 sAttr6 sAttr7 

Patient 
data 

VPT = 
5V 

Attr1 Attr2  Attr3 Attr4 Attr5 Attr6 Attr7 

 
Here sVPT is the simulated VPT present in the database. Likewise, all the simulated patient 

data will be replaced by real patient data gradually. The monthly scheduler should fetch the 

data from the central data-base and neural network should be trained using the newly 

updated dataset. Once the optimal classification accuracy is achieved the weights should be 

transferred to the risk assessment tool. This process can be continued until large patient data 

is collected. By using this model following advantages can be achieved as shown in Figure 7.2: 

  

Collection of 
patient data

VPT measurement 
using VibraScan

Upgrading the risk 
assessment tool

Future Model 
benifits

Standalone 
VibraScan risk 

assessment  Tool 

 
Figure 7.2: Overall benefits of the futuristic model 

Using this latest model we can obtain mainly three benefits like a collection of the patient 

data, VPT measurement using VibraScan device and enriching the dataset of the risk 

assessment tool. 

1. Collection of patient data: At the moment the tool was modeled using simulated data, 

however with this proposal, it will eventually replace all the existing simulated patient 

data with new patient data. A large amount of patient data can be collected with this 

method covering the whole range of VPT.  There is a possibility of considering more 

attributes for research purpose during the collection of data. It is also possible to 

collect the data using internet where many VibraScan devices and risk assessment tool 

can be connected to the cloud for data collection.  
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2. VPT measurement using VibraScan device: This method gives an opportunity of using 

VibraScan for measuring VPT instead of Neurothesiometer. By using VibraScan device, 

it can be tested on patients as well.  

3. Upgrading risk assessment tool: The risk assessment tool will be upgraded on a timely 

basis. Neural networks should show their potential of performing better when more 

data is fed into it. In this way, the risk assessment tool can be updated to improve its 

prediction over time. 

When neural network model is trained with a large amount of the patient data which involves 

the VPT measurement using VibraScan, the updated version of the risk assessment tool should 

work as the standalone tool for predicting VPT without using the VibraScan device. Later on, 

the final version of the risk assessment tool software can be used as a mobile application 

where patients/subjects can easily measure their risk levels of diabetic neuropathy. 

 

Hence, the state-of-the-art diabetic neuropathy assessment tool VibraScan has been 

developed in the current project. This is an advanced tool with its intuitive mode of operation 

and independently assessing the disease based on the clinical history of the patient. There is 

further scope where knowledge of VibraScan can be converted into a smart application in 

which patients can just access the user-friendly risk assessment tool to get an instant 

assessment of diabetic neuropathy in terms of their risk level.  
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Appendix B: Participant Information sheet 

 

The title of the research project  

 Medical Device development for comprehensive clinical assessment of Peripheral Neuropathy 

Invitation 

You are being invited to take part in this research project conducted by Jugal Manoj Dave, a 

postgraduate researcher, in the Department of Computing and Informatics, Faculty of Science 

& Technology, Bournemouth University, UK. Before you decide, it is important for you to 

understand why the research is being done and what it will involve. Please take time to read 

the following information carefully and discuss it with others if you wish. Ask us if there is 

anything that is not clear or if you would like more information. Take time to decide whether 

you wish to take part. 

Who is organizing/funding the research? 

This research is being funded by Bournemouth University and Poole Hospital NHS Foundation 

Trust. 

What is the purpose of the project? 

The Purpose of this project is to detect diabetic neuropathy at the early stage. Diabetic 

neuropathy is the disease in which there is a reduction in the touch sensation causing the 

numbness in the feet and hands. 

As per World Health Organization (WHO), approximately 150 million people have diabetes 

mellitus worldwide, and that number may well double by the year 2025. Diabetic Neuropathy 

is common complications of diabetes. Studies suggest that up to 50% of people with diabetes 

are affected to some degree. To get into the effectiveness we have developed a device to 

detect neuropathy and conduct an experiment which will provide us the data from the normal 

people i.e. people having no history of neuropathy, and helps in diagnosing diabetic 

neuropathy at the early stage. 

You may have several questions in your mind such as: 

When this research is focused on diabetic patients. Why are we looking for normal subjects?  

How will this going to contribute to the research? What will be the potential benefits when 

considering normal subjects? 

As the focus is on early detection of neuropathy one has to establish the potential risk of 

neuropathy occurrence on normal people. It is important to explain that the subjects to be 

examined are to be provided with mechanical vibration to the foot so as to get whether the 

subject examined is normal or a progressive neuropathy patient. Due to diabetic neuropathy, 

patients may not feel the mechanical vibration in their extremities. It is important that level of 

neuropathy is identified in early detection of the disease. 
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Based on data analysis of the subject examined the threshold level of sensing the mechanical 

vibration of the normal subject can be determined. 

Why have I been chosen? 

This is an open call that aims to reach those who fulfills the criteria below can contribute to 

the research by providing their valuable feedback.  

Criteria: 

1.         above 18 years old. 

2.         Should be non-diabetic. 

3.   Should not have any injury or ulcers on the sole of the foot. 

4.   Should not have any problem in foot movement. 

Do I have to take part? 

It is up to you to decide whether to take part. If you do decide to take part, you will be given 

this information sheet to keep (and be asked to sign a participant agreement form).  You can 

withdraw at any time, up to the point where the data are processed and become anonymous, 

so your identity cannot be determined, without it affecting any benefits that you are entitled 

to in any way. You do not have to give a reason. Deciding to take part or not will not affect 

your treatment/care /education or studies at BU. 

What would taking part involve? 

Before the experiment: 

 You will be asked to remove the shoes and socks. 

 Once you are relaxed and ready test will start which will take approximately 5 minutes. 

During the experiment: 

 You will be given information about the study. 

 You will be attached with three surface electrodes in such a way that it will capture the 

muscle activity as shown in the Fig.1. 

 These electrodes are totally non- invasive and just stick to the surface of the skin as 

shown in Fig.1 
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 Then you will be asked to sit on the chair and to place your right foot on the 

inclined plate as shown in Fig 2 which consists of a vibrator and Force resistive 

sensor to monitor the pressure distributed at the planter surface of the foot.   

 The device will provide mechanical vibration starting with a low intensity and 

increasing where the subject will be asked to respond ‘Yes’ or ‘No’ when the 

vibration sensation is felt. (Vibration intensity will be similar to that of mobile 

phone vibration). 

 The Answer ‘Yes’ will be recorded against the vibration intensity level to 

determine the neuropathy level. 

 The vibration intensity will only be increased gradually till the vibration is felt. 

After the experiment: 

 Surface electrodes will be removed and you will be free to pop up your socks and 

shoes. 

What are the advantages and possible disadvantages or risks of taking part? 

Whilst there are no immediate benefits for those people participating in the project. There 

could be long term benefit to diabetic patients once the efficiency of device is proven. There is 

very low risk in the experiment as the experiment is limited to low intensity mechanical 

vibration. Vibration provided by the system will be on the skin surface. It is not going to 

rupture the skin and is totally safe. There is no chance of electric shock or mechanical piercing. 

The vibration will be applied at the speed of 100 cycles per second with the maximum of 1 mm 

displacement. The whole setup is wireless to make it safe to operate. You can withdraw at any 

time if feeling uncomfortable. 

Will my taking part in this study be kept confidential? 

All the information that we collect about you during the research will be kept in accordance 

with the Data Protection Act 1998. You will not be able to be identified in any reports or 

publications. All data relating to this study will be kept for 5 years on a BU password protected 

secure network. 

What type of information will be sought from me and why is the collection of this 

information relevant for achieving the research project’s objectives? 

The data collected are not going to be of a sensitive nature. 

The test will help us getting the data of Vibration perception threshold (VPT) for the normal 

subjects and can lead to early detection of Diabetic Neuropathy in patients. Your participation 

is very important in analyzing the hypothesis for early detection of diabetic Neuropathy. 

 

 

Figure 1: Electrodes attachment 

to capture muscle activity. 

Figure 2: Inclined plane with vibrator for 

the placement of the foot. 
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Who has reviewed the study? 

This study has been reviewed and approved in line with Bournemouth University’s Research 

Ethics Code of Practice. 

Will I be recorded, and how will the recorded media be used? 

Not applicable. 

Contact for further information 

If you have any queries about this research, please contact Prof. Venky Dubey by email on 

VDubey@bournmeouth.ac.uk or by phone on 01202 965986 or by post to: 

Prof. Venky Dubey 
Faculty of Science and Technology  
Bournemouth University 
BH12 5BB  

Complaints 

If you have any complaints about this project please contact Professor Keith Phalp, Executive 

Dean of the Faculty of Science and Technology at Bournemouth University at the following 

address: 

Professor Keith Phalp 

Poole House P426  

Talbot Campus, Fern Barrow, Poole, BH12 5BB 

E-mail: researchgovernance@bournemouth.ac.uk 

Tel: 01202 965571 

Thank you for taking the time to read this information sheet, and please do not hesitate to 

contact me if you have any queries 
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Appendix C: Participant Agreement Form 

 

Full title of project: Medical Device development for comprehensive clinical assessment of 

Peripheral Neuropathy 

Name, position and contact details of researcher: Jugal Manoj Dave, Postgraduate researcher, 

Department of Computing and Informatics, Faculty of Science & Technology, Bournemouth 

University. Email: jdave@bournmeouth.ac.uk                                                                                                                                      

                  

I have read and understood the participant information sheet for the above 
research project. 

 

I confirm that I have had the opportunity to ask questions.  

I understand that my participation is voluntary.  

I understand that I am free to withdraw up to the point where the data are 
processed and become anonymous, so my identity cannot be determined.  

 

During the tasks of the study, I am free to withdraw without giving a reason and 
without there being any negative consequences. 

 

Should I not wish to answer any particular question(s), complete a test I am free 
to decline. 

 

I give permission for members of the research team to have access to my 
anonymised responses. I understand that my name will not be linked with the 
research materials, and I will not be identified or identifiable in the outputs that 
result from the research. 

 

I agree to take part in the above research project.  

 

____________________________      _______________      

__________________________________ 

Name or Initials of the Participant                        Date                              Signature 

____________________________      _______________      

__________________________________ 

Name or Initials of the Researcher                        Date                              Signature 

 

 

 

https://www1.bournemouth.ac.uk/discover/faculties/faculty-science-technology/our-departments/department-computing-informatics/our-research
mailto:jdave@bournmeouth.ac.uk
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Appendix D: Datasheets 

 

1. ERM motors: 
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2. LRA motor
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3. C2 High displacement low frequency 
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