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Abstract. This paper proposes an efficient domain adaption approach
using deep learning along with transfer and meta-level learning. The ob-
jective is to identify how many blocks (i.e. groups of consecutive layers)
of a pre-trained image classification network need to be fine-tuned based
on the characteristics of the new task. In order to investigate it, a number
of experiments have been conducted using different pre-trained networks
and image datasets. The networks were fine-tuned, starting from the
blocks containing the output layers and progressively moving towards
the input layer, on various tasks with characteristics different from the
original task. The amount of fine-tuning of a pre-trained network (i.e.
the number of top layers requiring adaptation) is usually dependent on
the complexity, size, and domain similarity of the original and new tasks.
Considering these characteristics, a question arises of how many blocks
of the network need to be fine-tuned to get maximum possible accuracy?
Which of a number of available pre-trained networks require fine-tuning
of the minimum number of blocks to achieve this accuracy? The exper-
iments, that involve three network architectures each divided into 10
blocks on average and five datasets, empirically confirm the intuition
that there exists a relationship between the similarity of the original
and new tasks and the depth of network needed to fine-tune in order to
achieve accuracy comparable with that of a model trained from scratch.
Further analysis shows that the fine-tuning of the final top blocks of the
network, which represent the high-level features, is sufficient in most of
the cases. Moreover, we have empirically verified that less similar tasks
require fine-tuning of deeper portions of the network, which however is
still better than training a network from scratch.

Keywords: Computer Vision · Convolutional Neural Networks · Deep
Learning · Domain Adaption · Meta-Learning · Transfer Learning

1 Introduction

Deep learning has demonstrated tremendous success in various domains, par-
ticularly Computer Vision, and Speech and Language Processing (SLP) [28,
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25], where it is consistently outperforming traditional machine learning ap-
proaches [2]. Among the key developments in the field of deep learning, Con-
volutional Neural Networks (CNNs) stand out as the workhorse of Computer
Vision. Training a large CNN with millions of parameters is a computationally
intensive task which also requires a significant amount of training data. How-
ever, several state-of-the-art image classification architectures trained on large
image datasets are publicly available, including Visual Geometry Group Network
(VGGNet) [20], Inception [22], Residual Networks (ResNet) [9] and Inception-
ResNet [21]. These networks are trained on the ImageNet [18] dataset which
consists of 1.2 million images and 1000 classes.

Training of these types of deep networks from scratch on a huge dataset is a
computationally demanding task, e.g. training of models on each dataset used in
this work usually takes a few days of processing time using an Nvidia GTX 1080
GPU. As a result, transfer learning, i.e. reusing parts of the pre-trained models
either as-is or as a starting point within the training process, quickly became a
de-facto standard in Computer Vision tasks. The general consensus seems to be
that the more data one has, the more ‘aggressive’ the re-training process can be
(e.g. re-training more final layers). Conversely, the more similar the new dataset
is to the one used to train the original model, the fewer layers need to be fine-
tuned. Despite the wide adoption of transfer learning in the context of CNNs,
to the best of our knowledge, there is still no principled way of approaching
this process. The number of layers to re-train or even the network architectures
themselves are chosen in an ad-hoc manner and tested one after the other, which
is a computationally inefficient procedure.

This paper proposes and investigates a new approach to adapt pre-trained
CNNs to new domains using the Meta-level Learning paradigm. Meta-learning,
also known as ‘learning to learn’, was introduced around three decades ago [24],
and was initially limited to classification and clustering tasks [1, 12]. Recently,
it has also been used in deep learning for the selection of hyper-parameters of a
specific architecture. [15] proposed a comprehensive set of global and node level
hyper-parameters which are critical to optimizing deep learning architectures
through evolution. The use of Reinforcement learning to generate CNN and Re-
current Neural Network (RNN) architectures have been proposed by [3] and [29].
They have used Q-learning to produce new CNN architectures. [7] introduced
a simple but powerful approach, model-agnostic meta-learning, which provides
an optimal initialization of model parameters that lead to fast learning on new
tasks.

Transfer learning has been positioned to effectively adapt pre-trained net-
works to a new domain by fine-tuning their final layers. Some studies, such as
[26] and [19], propose re-training of only final fully-connected (FC) layers of the
network which does not guarantee state-of-the-art accuracy, particularly on rel-
atively dissimilar tasks. On the contrary, domain adaptation becomes beneficial
by fine-tuning an increasing number of layers based on the complexity and rel-
evance of the new task [27]. Therefore, a question arises as to how many blocks
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need fine-tuning to adapt to a new domain based on the complexity, size and
domain relevance.

The rest of the paper is organized as follows. Section 2 is devoted to elabo-
rating the overall approach of this work. Section 3 outlines the methodology of
this study. Section 4 reports the experimental results followed by their analysis.
Finally, the paper is concluded in Section 5.

2 Methodology

In order to carry out the investigations, a platform has been implemented to
conduct experiments with different combinations of pre-trained networks, their
hyper-parameters, and image datasets. The experiments have been designed to
investigate the relationships among these three key components while fine-tuning
the pre-trained networks on new tasks. There are several characteristics which
can be considered but the two most important features selected for this study
are the size and similarity of the new task. The four transfer learning scenarios
are based on these two features. A schematic view of transfer learning based is
shown in Figure 1 where Task-A is representing the original problem and Task-B
the new problem datasets.
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Large image
repository, i.e.,

ImageNet
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knowledge to
distinguish

various objects

Image
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Fig. 1: Schematic diagram of transfer learning

Despite the popularity of transfer learning in computer vision, there is no
principled way of finding the relation between characteristics of a dataset and
depth of the network that needs to be re-trained. In this work, an effort has
been made to find this relationship by identifying a pre-trained network where
the minimum number of blocks need to be re-trained to achieve state-of-the-art
accuracy. Moreover, instead of learning the general characteristics of the dataset
which is usually practiced in shallow learning, e.g. feature statistics [1], a higher
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level characteristics have been pursued, such as layer activations. The focus of
the experiments was to investigate the following key scenarios:

1. If Task-B is small in size and similar to Task-A (e.g. both tasks are concerned
with natural images), re-training of the entire network might lead to over-
fitting. The higher-level features of the pre-trained network, Task-A, are
usually relevant for Task-B. Hence, the re-training of a single or a few final
layer(s) becomes very effective.

2. If Task-B is large and similar to Task-A, there is less possibility of over-fitting
while fine-tuning more layers of the network.

3. If Task-B is small but less similar to Task-A, there is a possibility that
Task-A does not contain relevant features for Task-B. In this case transfer
learning might not be very useful, however, re-training of final layers might
give reasonable results.

4. If Task-B is large and very different from Task-A, both the training of the
network from scratch and initialization of the network with the weights of
the pre-trained model would be beneficial.

Figure 2 is summarising the above four scenarios.
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layers (high level
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Fig. 2: Transfer learning scenarios

Datasets with appropriate characteristics have been gathered for the experi-
ments to cover the above four scenarios. The network architectures used in this
study vary greatly, hence we fine-tune groups of layers rather than individual lay-
ers. Please refer to Figure 3 for the details of how the layers of each architecture
have been grouped into what we refer to as ‘blocks’.

The pre-trained networks have been fine-tuned on each of the new tasks.
The experimental approach was to fine-tune an iteratively increasing number
of blocks of each network, starting from the final block, while the lower blocks
of the network act as a fixed feature extractor for Task-B. The train and test
accuracies have been recorded on every iteration. In some cases, where Task-B
is similar, the re-training of only the final layer produces close to the state-of-
the-art accuracy. On the contrary, it is hardly applicable when both tasks are
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very different. In that case, more final layers need to be re-trained. In general, a
network learns the hierarchy of features starting from generic ones, e.g., colors,
edges, curves, etc., which can be reused for most of the tasks. Conversely, the
later layers respond to more specific features of the original task which can only
be reusable in case the new task is similar.

3 Experimentation Environment

To further investigate the questions raised in the previous section, a comprehen-
sive experimentation environment has been setup. It comprises of five datasets
of different characteristics and three state-of-the-art pre-trained image classifi-
cation networks. The complexity of the experiments has been calculated as the
number of datasets times the number of trainable blocks of all the networks.
Therefore, computational power becomes a critical factor to perform these ex-
periments in a reasonable time. There were five GPUs used to train around 200
models.

Table 1: Open-source image repositories

Dataset Training-set Testing-set Classes Avg. Class Size

ImageNet [18] 1.2 million 50,000 1,000 1,200
Food [4] 75,750 25,250 101 1,000
Caltech-101 [6] 6,144 2,096 101 82
Chest-Xray [5] 5,943 1,487 2 3,715
Flowers [16] 2,753 917 5 734
Coco-Animals [14] 800 200 8 125

3.1 Datasets

In this work, five publicly available datasets have been used with different do-
main and characteristics. They can be divided into two categories based on their
size and number of classes; large and small as shown in Table 1. The pre-trained
networks which are selected for this work are trained on ImageNet. The Food
dataset, introduced by [4], is a challenging collection of 101 food categories and
101,000 instances. Likewise, Caltech dataset also has 101 categories with 82
images per category on average [6]. The images are not specific to any partic-
ular domain. Chest-Xray [5] is a relatively smaller dataset, originally published
with 14 classes. The images were mostly tagged with multiple labels which are
converted to a two-class problem where every image can be classified as either
normal or nodule. This dataset is composed of frontal-view X-ray images of the
screening and diagnosis of many lung-related diseases. Similarly, Flowers is an-
other small dataset consisting of five different categories of flower species [16].
Microsoft has gathered a large dataset consisting of 91 categories, known as
Common Objects in Context (Coco) [14]. Coco-Animals (Animals) is a subset
of the original Coco dataset which is composed of 8 animal categories.
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Table 2: Benchmarking of various pre-trained image classification models

Network Layers Top-1 Accuracy Top-5 Accuracy

Inception-v3 [23] 22 78.0% 93.9%
Inception-ResNet-v2 152 80.4% 95.3%
VGG-19 [20] 19 71.1% 89.8%

3.2 Pre-trained Image Classification Networks

Three pre-trained image classification and detection CNNs have been used in this
work. These networks are trained on ImageNet dataset which consists of 1000
classes [18], however, their internal architecture, depth, and other aspects differ
considerably. The first few layers of the networks capture low-level features of
the image like edges, curves, etc. The subsequent layers learned shapes and more
abstract features related to the problem domain. The final layers have learned
more specific features corresponding to a particular category which is eventually
used to classify the images. The pre-trained networks are listed in Table 2 along
with the number of layers and accuracy in the ImageNet dataset.

Inception-ResNet-v2 Google released Inception-ResNet in 2016 and it be-
came a state-of-the-art image classification network of ILSVRC-2016. Inception-
ResNet-v2 is a deeper but simplified version of Inception-v3. The residual connec-
tions allow the model to be even deeper, leading to better performance. ResNet
relies on micro-architecture modules which consist of building blocks.

A schematic view of different pre-trained architectures can be seen in Fig-
ure 3. The architectures are also labelled with the block numbers, in blue, that
can be subject to fine-tuning.

VGG-19 VGG network was developed by Visual Geometry Group of Oxford
University which secured first place in the ImageNet ILSVRC-2014. It has two
versions which consist of 16 and 19 layers. The 19 layer version has been used
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Fig. 3: Schematic view of Inception-v3, Inception-ResNet-v2 and VGG-19 net-
works where the blue colour is representing a re-trainable layer/block.

in our experiments. The VGG network uses 3x3 convolutions stacked on top of
each other in increasing depth which makes it relatively simpler than AlexNet.
The convolutional layers are followed by two FC layers, each one consisting of
4,096 neurons, and a Softmax classifier.

Inception-v3 Inception, or GoogLeNet, was developed by Google and was
state-of-the-art for image classification and detection in the ILSVRC-2015. Inception-
v3 is a 22 layers deep network but computationally inexpensive [22].

3.3 Transfer Learning

In transfer learning, three pre-trained networks are re-trained/fine-tuned sequen-
tially on the same task. The training process fine-tunes a range of blocks per
training iteration, starting from the final block. This process has been repeated
for all the pre-trained networks and datasets. The hyper-parameters have been
also updated layer-wise one by one where the learning rate initializes from a
comparatively large number to iteratively smaller. Conversely, the number of
training epochs parameter has been initialized from a smaller number which
gets bigger as more layers need to re-train. The rmsprop optimizer [11] and layer
dropout of 20-30% have been used while re-training the network. The learning
rate and the number of training epochs are dependent on the nature of the tasks
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and depth of the network. The training begins with the higher value of learn-
ing rate and lower number of epochs which gradually decreases and increases,
respectively, as more layers of the network require fine-tuning. Their values are
changed with a small factor upon the addition of a new layer for fine-tuning. The
idea is to use the lower value of learning rate and a higher number of epochs
for larger datasets. Table 3 is showing hyper-parameters that are used in our
experiments.

Table 3: Hyper-parameters that are used for transfer Learning

Datasets Learning rate Epochs Dropout

Food 10−3 − 10−7 180-1000 20%
Caltech 10−4 − 10−7 180-1000 20%
Chest-Xray 10−3 − 10−6 120-800 20-30%
Flowers 10−3 − 10−6 120-800 20%
Animals 10−3 − 10−6 120-800 20%

4 Results and Analysis

An extensive set of experiments has been performed to analyze the relationship
of size and similarity of a task with the depth of pre-trained network that needs
to be fine-tuned. The depth of the pre-trained networks, which is fine-tuned, is
varied from 7 to 18 blocks. The layer-wise training and validation accuracies have
been reported in Table 4. The table shows accuracies of five datasets against three
different architectures and the number of fine-tuned blocks. The top-performing
numbers of blocks are in bold. The relationship between the validation accuracy
and the number of blocks has been depicted in Figure 4.

The accuracy of a pre-trained network after fine-tuning every block, also
know as block-wise result, is validated with dataset similarity analysis. The net-
works that are used in this work were originally trained on the ImageNet dataset.
Therefore, the validation set of all the datasets have been inferred by the pre-
trained networks to compute their similarity with ImageNet. As a result, the
maximum of the probability mass function of an image over the 1000 classes,
which is referred to as image similarity to ImageNet, and entropy have been cal-
culated and averaged over the number of images N in the dataset. The similarity
and entropy are calculated using Equations 1 and 2, respectively.

similarity =
1

N

N∑
i=1

max(f(xi)) (1)

where f(xi) is the probability mass function over classes conditioned on the input
image xi, typically the output of the Softmax layer.
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Fig. 4: Transfer learning accuracies of pre-trained networks; (a) Inception, (b)
Inception-ResNet and (c) VGG-19 on ImageNet

Table 4: Transfer learning accuracies of the various datasets, classification archi-
tectures, and their layers

Network re-training accuracy (train %–test %) upon fine-tuning a range of blocks, one block per iteration

Dataset FC 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Inception-v3 network

Food 85–53 84–48 84–49 72–55 70–57 73–66 73–66 76–68 79–62 84–75 82–79 85–80 86–82 79–69 80–70
Caltech 95–84 95–87 96–86 96–89 96–87 95–86 93–84 88–78 82–76 69–61 48–45 37–31 24–18 15–16 12–14
Chest-Xray 96–50 96–52 96–52 96–59 96–61 96–67 96–68 96–69 96–71 96–70 96–71 95–71 92–71 78–72 87–75
Flowers 84–25 84–27 87–19 88–27 91–34 95–86 96–86 96–89 96–88 95–89 92–82 86–83 78–70 56–58 41–38
Animals 54–14 47–17 58–48 81–59 88–61 90–64 92–69 91–62 90–69 88–56 81–52 69–46 58–51 47–44 38–41

Inception-ResNet-v2 network

Food 86–56 86–64 86–74 86–74 87–78 89–85 86–84 80–76 71–73 78–75 – – – – –
Caltech 96–83 96–84 95–83 94–84 94–79 93–79 91–78 88–64 79–64 67–59 – – – – –
Chest-Xray 91–61 89–43 88–44 91–79 91–79 91–44 91–44 91–79 91–80 91–79 – – – – –
Flowers 89–22 89–28 91–35 92–26 93–81 94–87 95–83 96–85 96–84 94–81 – – – – –
Animals 65–49 71–60 77–70 77–56 82–77 85–74 86–68 88–68 88–68 85–66 – – – – –

VGG-19 network

Food 85–69 85–67 85–67 90–77 81–80 77–73 77–73 – – – – – – – –
Caltech 79–78 72–70 80–77 74–70 68–66 66–53 71–66 – – – – – – – –
Chest-Xray 89–43 87–43 89–61 88–78 89–74 89–78 89–78 – – – – – – – –
Flowers 83–59 81–80 83–81 86–84 79–72 79–63 90–39 – – – – – – – –
Animals 78–71 79–76 70–57 74–49 72–38 73–37 79–34 – – – – – – – –
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average entropy =
1

N

N∑
i=1

(−
1000∑
j=1

(fj(xi) ∗ log2(fj(xi)))) (2)

The similarity of an image from the new domain with the original domain is
computed by feeding the image to the original pre-trained network and examin-
ing the output probability distribution over the classes. The dataset similarity
scores have been recorded in Table 5. The similarity results are correlated with
the number of blocks that are needed to fine-tune networks on new tasks. Fig-
ure 5(a-c) shows that for tasks where similarity is higher (and the entropy is
lower), fewer blocks need to be fine-tuned. On the contrary, more blocks need
to be fine-tuned where the datasets are less similar (having low similarity and
higher entropy values). This supports our claim that transfer learning is effec-
tive for related tasks regardless of their size. However, transfer learning is also
useful for dissimilar tasks, i.e., Chest-Xray and Food, but more blocks need to
be re-trained to get good results. Moreover, similar tasks require fine-tuning of
either only fully-connected layer(s) or high-level features block in some cases.
Accordingly, less similar tasks require fine-tuning of more deeper layers, i.e.,
blocks representing shapes and edges blocks.

Table 5: The similarity and average entropy of different datasets

Dataset Inception-v3 Inception-ResNet-v2 VGG-19

ImageNet 76.61% – 2.11 78.77% – 1.84 72.7% – 2.23
Food 53.40% – 3.52 59.23% – 3.47 51.24% – 3.83
Caltech 60.41% – 3.27 64.30% – 2.62 57.58% – 2.40
Chest-Xray 40.88% – 4.88 43.25% – 4.40 34.72% – 4.74
Flowers 52.25% – 4.01 60.19% – 3.15 49.72% – 3.12
Animals 54.88% – 3.68 64.87% – 2.68 53.08% – 2.79

Figure 5(d) shows that the size meta-feature has a good correlation with the
depth of the network that is fine-tuned. The contribution of the similarity of a
dataset dominates over its size when both datasets are similar. However, size
becomes critical when both datasets have less similarity between them. It only
supports the network to generalize while fine-tuning more deeper blocks of the
network, e.g., Food and Chest-Xray dataset. The Food datasets consist of over
100,000 examples with over 100 classes whereas Chest-Xray has around 8,000
instances with only 2 classes. Based on the number of classes both datasets have
a reasonable size to the class ratio which allow them to fine-tune more deeper
networks.

The Food and Chest-Xray datasets’ domains are different from ImageNet.
Consequently, more deeper blocks have been fine-tuned. Transfer learning is more
effective than training the model from scratch for these tasks. The maximum
validation accuracy of fine-tuned Food and Chest-Xray is closer to the model
which is trained from scratch. These accuracies as compared to the training of
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Table 6: The state-of-the-art accuracy (training of the network from scratch)
versus maximum accuracy from this work

Dataset Accuracy of the network
from scratch

Architecture Reference Accuracy from
this work

Food 88.28% InceptionV3 [8] 84.93%
Caltech 91.44% SPP-Net [10] 89.00%
Chest-Xray 84.11% CheXNet [17] 79.52%
Flowers 91.52% CNN-SVM [13] 89.06%
Animals - - - 76.70%

the network from scratch, reported by various studies, are presented in Table 6.
However, transfer learning requires much less effort and resources, in terms of
parameter tuning and computation.

Fig. 5: Datasets similarity with ImageNet for: (a) Inception-v3, (b) Inception-
ResNet-v2, (c) VGG-19. (d) Inception-v3 blocks vs dataset size/class ratio. The
similarity is normalized to 1-10.
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5 Conclusion

This paper presents an empirical study of the relationship between various
characteristics describing the similarity of two datasets and based on that, the
amount of fine-tuning required to achieve accuracy close to state-of-the-art. Even
though the experiments were limited to only two characteristics, size and simi-
larity with the original task, still as per some studies these are most important
in this context. The datasets with both similar and different domains as well as
different sizes have been used. Also, three state-of-the-art image classification
networks trained on ImageNet were used in the experiments. Extensive exper-
iments have been conducted on different combinations of pre-trained networks
(and their blocks), datasets and hyper-parameters. The block-wise results are
validated with dataset similarity analysis where the probability of match and
entropy of the datasets are correlated with the fine-tuning of the number of
blocks. The proposed approach first computes the similarity of the new task
with the original one and combines it with the size of the new task to identify
which section of the architecture needs fine-tuning.

The experiments were designed around two meta-features where only the
datasets having different characteristics were considered. In general, transfer
learning is found to be effective for tasks similar to the original one, regardless
of the size, where mostly fine-tuning of the final blocks produces close to state-
of-the-art accuracy. On the other hand, this work is handy for the tasks having
less or no similarity with the original task with very few training examples, i.e.,
problems related to Medical Imaging [17]. It allows to find the minimum number
of blocks a pre-trained network require fine-tuning to achieve the best possible
accuracy based on the characteristics of two tasks. It also identifies the portion
of the pre-trained network which can be reusable based on the similarity and
size among two tasks. The key characteristic of transfer learning is that it saves
significant computation and training time while achieving similar accuracy to
the networks trained from scratch. This study preserves the key characteristics
of transfer learning atleast for less similar tasks which verifies the intuition that
one can more effectively reuse pre-trained network.
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