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Abstract. The need for explainability of Al algorithms has been identified in
the literature for some time now. However, recently became even more
important due to new data protection act rules (GDPR 2018) and due to the
requirements for wider applicability of Al to several application areas. BT’s
autonomics team has recognized this through several sources and identified the
vitality of Al algorithms explainability to ensure their adoption and commer-
cialization. In this paper, we designed and developed a system providing
explanations for a prediction of patient readmittance using machine learning.
The requirements and the evaluation were set by BT through their projects with
real-customers in the medical domain. A logistic regression machine learning
algorithm was implemented with explainability “hooks” embedded in its code
and the corresponding interfaces to the users of the system were implemented
through a web interface. Python-based technologies were utilized for the
implementation of the algorithm (Scikit-learn) and the web interface (web2py),
and the system was evaluated through thorough testing and feedback. Initial
trade-off analysis of such an approach that presents the overhead introduced by
adding explainability versus the benefits was performed. Lastly, conclusions and
future work are presented, considering experimentation with more algorithms
and application of software engineering methods such as abstraction to the aid of
explainable Al, leading further along to “explainability by design”.
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1 Introduction

This paper discusses the design and implementation of a medical-domain system for
prediction of diabetic patient readmittance from the viewpoint of ‘Explainable AI’, a
concept used to provide explanations and understandability of the corresponding
machine learning algorithm’s decisions. The dataset used to develop said system was
provided by the UCI Machine Learning Repository [1, 2], first collected and donated
by Strack et al. [3]. The dataset details diabetic patient admission encounters and
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encourages the prediction of the binary attribute ‘Readmitted’ as either ‘readmitted’ or
‘not readmitted’. The client for this research was BT’s research labs at Adastral Park,
Ipswich, UK. BT initiated the need for explainability in their machine learning algo-
rithms and holds several clients in the health and other application sectors.

From extensive background study detailed in Sect. 2, it has been recognized that
algorithms of the future, such as Al and classification/prediction algorithms, will need
to explain themselves in order to ensure their adoption. Also, different types of algo-
rithms are amenable to different approaches that need to be investigated.

In this paper, we took the bottom-up approach as regards to the explainability
problem by starting from a specific case study that includes a specific classification
algorithm (logistic regression) and attempts to make it explainable to users ranging
from machine learning experts to domain experts (medical professionals in this case).

A systems engineering approach was taken to design the system at high-level of
abstraction prior to detailed implementation. Specifically, UML semi-formal notations
such as Class diagrams were used to define the system structure and functionality.
Detailed implementation that consisted in integrating the web2py web framework with
data science algorithms taken from the Scikit learn library followed. The developed
web interface environment enabled experimentation with explainability aspects of the
algorithm with promising results. It was observed that if “hooks” are positioned in
specific points of the algorithm presenting relevant information to the user following
would significantly improve explainability without compromising the overall algorithm
performance.

The remainder of the paper will cover in Sect. 2.1 a background study on
‘Explainable AT’ research and in Sect. 2.2 explainability for several types of classifi-
cation algorithms. In Sect. 3, the case study of an explainable algorithm for the medical
domain is detailed. Specifically, in Sect. 3.1 the system requirements are presented, in
Sect. 3.2 the system architecture and in Sects. 3.3 and 3.4 the design and implemen-
tation of the algorithm with the viewpoint of explainability are provided. Section 4
presents the evaluation of the proposed approach. Specifically, in Sect. 4.1 the classifier
accuracy is detailed, in Sect. 4.2 the functional correctness is presented, in Sect. 4.3 the
overhead to performance due to explainability is details and in Sect. 4.4 the client-
machine learning expert feedback is presented. Section 5 offers conclusion and sug-
gestions for future work and research directions.

2 Background Study: Explainable AI (XAI)

2.1 Explainable Al

‘Explainable AT’ (XAI) is a concept established in 2016 by DARPA, defining the
practice of improving understandability, trustability, and manageability of emerging
artificial intelligence systems [4]. Launchbury describes the evolution of artificial
intelligence, starting with describing; initially, artificial intelligence was able to provide
a description of data using sets of logic rules to represent knowledge in limited
domains, though had no learning capability, only data perception and reasoning. Next,
Al evolved to have the ability to predict and classify big data through training and
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testing of statistical models, however this is limited by its minimal ability to provide
reasoning, leading to improvements in Al perception and learning, but little in terms of
abstraction and reasoning. Launchbury introduces XAI as the next step in Al evolution;
a stage in which developers construct explanatory models for use in real world situ-
ations, with the hope of facilitating natural communication between machines and
people. In this evolution, systems can learn and provide reasoning, also improving
perception and abstraction [5].

With the nature of machine learning classification algorithms being black-box and
mostly uninterpretable, the integration of explainability through XAI into these algo-
rithms should be imperative, especially in high-risk situations where the algorithm’s
result must be trusted enough to avoid repercussions. It was determined that two
systems of XAI implementation can be used, being; ante-hoc and post hoc. Ante-hoc
systems encompass machine learning algorithms that already hold a level of inter-
pretability through ‘glass-box’ approaches, such as the decision tree or linear regression
algorithms [6]. Post hoc systems alternatively provide explanations for uninterpretable,
black-box systems such as neural networks, where their workings and decisions are
undeterminable without the intervention of a separate tool such as LIME (Local
Interpretable Model-Agnostic Explanations) [6, 7]. In both ante-hoc and post hoc
systems, explainability is used to enable and inform domain experts to make their own
decisions based on the outcomes of machine learning algorithms.

2.2 Types of Classification Algorithms and Their Explainability

Implementation of a classification system of any type requires thorough investigation
into varying machine learning algorithms to ensure that the correct and most accurate
algorithm is chosen for the task. In this case, as the system must not only classify but
also explain and provide reasoning, there are further implications which must also be
considered during investigation.

One such implication is the interpretability of the algorithm — or the ease at which
the mapping of an output to descriptors can be understood by a user. These descriptors
could be used to form the basis of explanations for the algorithm’s decision [6].
A notable understanding though is that usually the more complex an algorithm, the less
interpretable it is, even though the more complex algorithms tend to be more accurate
[8]. This introduces a trade-off and begs the question: Do we require an incredibly
accurate algorithm with limited to no explanations, or a reasonably accurate algorithm
with sufficient explanations? PwC define a gap analysis approach for understanding
and working with this trade-off. An algorithm’s ability to explain and an organisation’s
readiness are measured on scales from low to high. A required level along with a
current level are also defined on each scale. This method of analysis proves useful in
determining which aspects of machine learning the organization should focus on. For
instance, if they are comfortably past the required level of explainability, then this
should indicate that they are able to trade-off some of their model explainability for
accuracy instead [8]. In a business setting, a method such as gap analysis should be

considered when working with minimizing negative impacts of the explainability-
accuracy trade-off.
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Beyond the main categorization of classification algorithms in ante-hoc and post
hoc explainability types, current attempts in literature focus on reviewing (from the
explainability perspective) the following commonly used algorithms:

Decision Tree Algorithms. The decision tree algorithm is considered one of the
simplest and most interpretable white-box machine learning algorithms available, as it
can be compared to the human decision-making process. Compared to the performance
of a logistic regression model, it can be seen to underperform slightly, however due to
its simplicity it can be used to provide helpful visual explanations for its results [9].
Though simple and interpretable, the decision tree algorithm is particularly susceptible
to noisy data, for instance if two instances of data have the same values for some
attributes but differing classification results and is also prone to overfitting.

Neural Networks. These are black-box algorithms, known to provide good accuracy
but limited to no interpretability [10]. Neural networks require much lengthier training
times in comparison to simpler models, owing to their complex nature. They contain
considerably more connections and subtle properties when it comes to interactions
between attributes. Mixing this with the workings of hidden layers alone being noto-
riously difficult to decipher, the overall interpretability of the algorithm suffers [8]. Due

to the complexity of neural networks, extensive amounts of data are usually required to
train a reliable model.

Logistic Regression. Similarly to decision trees, logistic regression is considered a
simple, white-box algorithm which can provide interpretable explanations of results. Its
interpretability stems from the ability to easily extract and understand the workings of
the algorithm, for instance, through its coefficients [11]. Using these, the relationship
between each attribute and the resuit can be visualized, providing an initial step
towards explainability.

3 Case Study: Explainable Logistic Regression Algorithm
for the Medical Domain

3.1 System Requirements

The system was designed and developed as a project at Bournemouth University in
collaboration with an industrial partner, BT. BT’s autonomics team provided the
requirements for this project as they face the explainability problem in several of their
projects with real clients. As part of their attempts to commercialize their autonomic
algorithms and generally their classification algorithms adoption, explainability of the
algorithm’s decision making have arose several times. A medical application domain
prediction algorithm was chosen for this project due to the criticality of the risk taken
through classification decisions for these types of applications.

The main objective of the system was to predict patient readmission from the

dataset suggested by the client and provided by UCI, and to give explanations for the
given predictions.
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As mentioned in the background study, there are two types of explainability in
literature: ante-hoc where the explainability is inserted between the steps of the algo-
rithm and post hoc where the algorithm is so complicated that it can’t be stopped
without serious compromising and explainability is inserted at the end of the algorithm,
usually through applying external tools.

For this case study, an ante-hoc system with the aim of providing explainability of
machine learning algorithm decisions for a medical application was designed and
developed. Several technologies can be used towards this system with most cases
incorporating interface design and web technologies. Interface design and web tech-
nologies are the most common approaches used to enable the communication between
machines and users forming the backbone of any human—computer interaction. As
explainability and specifically to domain experts in our case lies in this human—com-
puter interaction point, it is apparent that interface design and web technologies should
be incorporated.

The implementation decisions for interface design and web technologies were
focused on the consistent use of Python as the backbone of the development. As
Python is a strong language when it comes to compute-intensive tasks and is consid-
ered a leading language for machine learning [12], and the Scikit-learn library is both
widely used and one of the top-performing machine learning libraries in terms of time
efficiency [12], both technologies were chosen. Previous works have identified the
ability of the Python web framework Web2py to work effectively with the Python
machine learning library Scikit-learn [13], therefore this was the primary web tech-
nology chosen to develop the system.

The system described in this paper utilises a logistic regression algorithm in order
to classify patients as regards to their probability of readmission. Several algorithms
were evaluated from their capability to solve the case study problem and their
explainability. The decision tree algorithms, however, simple and interpretable they
maybe, were not chosen due to their susceptibility to noise data and proneness to
overfitting. The neural networks are mostly categorized to post hoc explainability due
to their complexity and their requirement for enormous amount of data. The logistic
regression was the best choice as in terms of the medical dataset as enough data exists
to train the logistic regression model efficiently, and resulting probabilities provide
effective insight into how changes in their medical situation, for instance the number of
inpatient procedures they have had, could affect their likelihood of being readmitted.
Logistic regression also provides improved interpretability in comparison to more
complex algorithms such as neural networks.

3.2 System Architecture

The high-level proposed system architecture is depicted in Fig. 1.

In this figure, the Model View Controller architectural pattern followed by web2py
web framework is the center of the web interface design. In this model, the data stored
in the model are manipulated by the functions of the Controller and are being viewed
by the user.

In our proposed system architecture, this MVC model is enriched and extended
with data science algorithms from the Scikit learn library which are interacting at two
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points: as part of the controller where the classification algorithm is being called to
operate on data; as part of the model where we have integrated an existing data set and
with the additional data stored/retrieved by the user.
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Fig. 1. System architecture diagram

This architecture is reproducible and can be applied to create web interfaces that

use data science algorithms in several application contexts from explainable Al to
intelligent interfaces.

3.3 Explainable Algorithm Ante-Hoc Design

The class diagram in Fig. 2 details the architecture of the classification system.
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Fig. 2. UML class diagram for classification algorithm
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Classification using the Classify class itself requires the user to be logged in,
defined by the Authentication class, and a new patient to be created, defined by the New
Patient class. Once the patient is created, the patient data is transformed to ensure all
data points are integers, defined by the Transform Data class.

The classifier is then built by the Classify class using data returned by the Source
Data (model) class, also displayed on a web page, defined by the Source Data (view)
class. With a built classifier and transformed data, the Classifier class can classify the
new patient.

During classification, a confusion matrix and classification report are produced. The
Features class is used to find, plot, and return the important features. As well as this,
logistic regression coefficients are retrieved, and both the label and value of each
positive coefficient are retrieved, plotted, and returned, as defined by the Coefficients
class.

Once classified, both the results and coefficients are used to determine the relevant
explanation for each attribute, as defined by the Explanations class.

Finally, the patient’s data and results are inserted into the database, defined by the
Classified Patients (Model) all of which, when requested, can be viewed on the web
page defined by the Previously Classified Patients (View Controller) class. The
patient’s classification results, along with the confusion matrix, classification report,
plotted feature importances, plotted coefficients, and explanations for each coefficient
are displayed on the results page, as defined by the Results class.

The following sections detail all major points where explainability was added and
presented to the user and the corresponding interface will be depicted in figures.

3.4 Explainable Algorithm Ante-Hoc Implementation

Development of the machine learning classifier was carried out following the CRISP-
DM methodology [14]. Both the data understanding and data preparation stages were
carried out to ensure insufficiencies in the dataset, such as noise, missing data, and
incorrect datatypes, were resolved. These stages led to a reduction in dataset size from
100,000 instances to 69,374.

With a prepared dataset, a logistic regression model was developed in Python using
the Scikit-learn library and was chosen based on both its interpretability and suitability
to the dataset. Due to its interpretability, it was possible to implement explainability
using the ante-hoc method, therefore useful information could be extracted from the
classifier wherever it was required. For instance, once the classifier was trained and

tested using 70% and 30% of the dataset respectively, the following pieces of infor-
mation were extracted:

— Probabilities of both Readmitted and Not readmitted
- A confusion matrix representation of model performance
— Positive coefficients determined by the model

These pieces of information could be extracted as and when required, owing to the

ante-hoc implementation method used, allowing the creation of an *“explainable”
interface.
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Displaying the Classifier’s Results and Accuracy Metrics. As the final user’s (do-
main expert’s - doctors in this case) understanding of the overall result was paramount
and considering interface design research, a progress bar-styled visualisation was used
to display the results. As Wainer suggests, to display data accurately it is important to
choose a method which clearly demonstrates both the order and magnitude of the
resulting numbers [15]. Figure 3 demonstrates that this rule was followed, with each
segment of the bar representing the magnitude of both the ‘Readmitted’ and ‘Not
Readmitted’ results.

Classification Result

Percentage pobability of patient not being readmitted Is. T7%
Percentage probabélity of patient being readmitied is: 82%
As the probabifity of readmittance is the highest, the patient wit be readmitted within 30 days

Fig. 3. Classification result progress bar

Additionally, the user is presented with a section detailing the classifier’s accuracy.
This provides an overall accuracy score achieved by the classifier when comparing
classified test data against train data, and a confusion matrix to visualise the classifier’s
correct and incorrect predictions. This section can be seen in Fig. 4. This provides
information explaining the performance of the algorithm and it refers to machine
learning experts rather than the final users.

Accuracy & Confusion Matrix

Classifier Accuracy 64 81%

Pregicied Readmitted Predcied Not Readmtied
Actos] Ressmunes 50.22% £ 12534 NS 60
Acal Hot Reaomimied 4478 704 4 57% 7955

Correctly Predicted: 64 81% incorrectly Predicted 35.19%

Fig. 4. Confusion matrix for logistic regression classifier, as displayed on results interface

Understanding a classifier’s performance is crucial when identifying methods of
improvement requiring a suitable visualisation method, a simple and common one
being the confusion matrix [11]. The confusion matrix provides the data needed to
calculate various metrics; from a simple accuracy metric, to others such as precision,
recall, and accuracy [16]. From the client’s perspective, inclusion of the confusion
matrix provides the user with a basic accuracy measurement, useful for users with
limited machine learning experience, and more detailed metrics if required.
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The confusion matrix in Fig. 4 demonstrates that the classifier is weak at predicting
actual ‘Not Readmitted’ patients as ‘Not Readmitted’, and commonly predicts
‘Readmitted’ patients as ‘Not Readmitted’, therefore only receives an overall accuracy
of ~64%. Reasoning for this is further detailed in Sect. 4.1.

Next, a graph displaying feature importance is presented to the user and produced
using a Decision Tree algorithm to demonstrate a method for providing feature
information. This graph can be seen in Fig. 5.

Feature Importance

The top 5 features that influenced the algorithms decision during
classification were

11 -numder_outpatent 10 - num, { 4 lype.d
8- num_lab_procecures 12 - numder_emergency

Fig. 5. Dataset feature importance, as displayed on results interface

Scikit learn’s ExtraTreesClassifier was used to calculate a list of important features
based on the impact each attribute from the dataset has on the overall prediction result.
A similar activity was carried out by Saabas involving interpretability improvement of
random forest classifications through the development of a new Python library,
treeinterpreter. In his study, he extracted a figure for each attribute defining its con-
tribution to the result, both for individual predictions and for the classifier as a whole
[17]. Although produced through the ExtraTreesClassifier library instead of treein-
terpreter a similar result is received, with an ordered list of each attribute’s contribution
to the overall classifier’s result outputted. These results were plotted on a bar chart for
easy visualisation of attribute contributions as shown in Fig. 5. This provided a level of
explanation for the model as a whole, as the user can determine which features could
have affected the results in what way, however it does not focus on specific expla-
nations or reasoning for individual classifications.

Implementing Explainability for Individual Classifications. As the logistic
regression algorithm uses coefficients to determine the influence of attributes on the
result likelihoods, these coefficients must be retrieved and utilised to implement
explainability for individual classifications. The coefficients were first extracted
using the line of code: coefficients = X.columns, np.transpose(model.coef ). Next, a
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coefficientsHelper module was developed which enabled the coefficients’ attribute
labels and coefficients to be received separately. It also contained a function used to
retrieve only positive coefficients from the model, allowing the attributes which would
most affect a likelihood of Readmitted to be easily identified and presented to the user.
The coefficientsHelper module also contained a function which, using the retrieved
coefficients’ attribute labels and coefficients, would produce a bar chart plotted using
the Matplotlib library.

Combining these functionalities, it was possible to develop a new module which
would consider the coefficients and the user-entered patient data for each attribute. This
module, explainClassification, determined sets of informative phrases, one of which,
depending on the user-entered data for each positive coefficient, would be displayed
upon hovering over bars on the coefficients bar chart.

Implementing the ‘explainClassification® Module. Implementation of the ex-
plainClassification module made use of the algorithm’s domain decisions, but also of
domain knowledge where possible. For instance, in using its own knowledge on the
dataset the algorithm can identify which supplied attributes influence the classification
result and how. Figure 6 demonstrates the coefficients determined by the algorithm,
plotted on a bar chart. Using this, we can see that the algorithm believes that some of
the most influential attributes on a decision include; the number of times the patient has
been admitted previously as an inpatient, whether the patient’s diabetes medication/s
has/have been changed, the number of times the patient has been admitted previously
as an emergency, and the value of their last glucose serum test. The algorithm deter-
mines whether a patient will be readmitted or not based on the values of these coef-
ficients. For instance, if a patient has had more inpatient visits than emergency and had
an elevated glucose serum test result (>200 mg/dL or >8.59 A1C), the probability that
they would be readmitted in the near future would increase. These most influential
attributes are passed through to the explainClassification module, once the overall
result is determined, in order to decide which set of statements inside the module to use

to provide correct explanation statements. The code used to make this decision is
shown in Fig. 6.

1f notReadmitted > readmitted:
resuitSctr = “As the probability of non-readmittance is the highest,
the patient will not be readmitted within 30 days”™
result = "Not readmitted within 30 days”
explain = explainClassification.explainNotReadmitted(positiveCoefficients)

else:
resultStr = “As the probability of readmitvance is the highest,

the patient will be readmitted within 30 days®
result = "Readmicted within 30 days”

explain = explainClassification.explainReadmitted(positiveCoefficients)

Fig. 6. Decision statements determining how to use explainClassification module to retrieve
correct explanation statements
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For initial implementation of explainability, simple statements such as “The
probability of readmission increases as the patient’s glucose serum levels were >200”
were provided for each coefficient with the greatest impact on classification result. To
further improve these explanations a degree of domain knowledge was also utilised,
enabling the provision of explanations which considered the magnitude of change in
the classification’s result based on the change in data of the positive coefficients. The
idea that one unit of change in one attribute will not have the same influence on the
classification result as one unit of change in another attribute should be evident, as
displayed by the coefficients bar chart, however this could not be integrated into the
current explanations without developing the explainClassification module’s decision
statements. These statements were based on observational experimentation carried out
by classifying a patient multiple times, each time slightly changing the value provided
for one attribute at a time in order to determine its actual influence on the resulting
probabilities. As an example, a patient who had neutral values for all positive coeffi-
cients provided a 26% probability of being readmitted. If the number of inpatient
procedures is increased from 0 to 1, the probability of readmission increases to 32.7%,
meaning a singular unit of change for this attribute is 6.7%. In comparison, if the
number of inpatient procedures is reduced back to 0 and the number of emergency
procedures is increased from O to 1, the probability of readmission is 28.8%, therefore a
singular unit of change for this attribute causes a 2.8% increase in probability of
readmission. The decision statements rely on boundary values determined by the unit
changes for each positive coefficient attribute. When values for each positive coefficient
fall into a boundary, a suitable statement is provided to the user. For instance, since we
know that one unit of change in the number of inpatient procedures has a considerable
effect on the classification result, we can determine that if the patient has O inpatient
procedures, the classification result would not have been affected. However, if the
patient has between 1 and 5 inpatient procedures, the readmission probability would
have increased slightly, and inpatient procedures greater than 5 would have signifi-
cantly affected the readmission probability. Similar statements were generated for each
attribute with a positive coefficient. An example decision statement used to determine
an explanation for a result of Readmitted using a positive coefficient attribute is shown
in Fig. 7 below.

JQuery was then used to implement hotspots over each positive coefficient’s bar on
the bar chart. Upon hover of these hotspots, the statement related to the chosen attribute
and the user-entered data for that attribute would display in and information box,
providing the user with an explanation on that attribute’s effect on the overall proba-
bilities. Figure 8 demonstrates this functionality on a patient who is more likely to be
readmitted.

The explainClassification module produced results with which the client was
pleased, as during the final feedback stage they mentioned that it was easy for them to
understand the classifier’s result and how the data they entered affected it. Further in its
success in providing understandable explanations, a less detailed yet more textual result
was achieved when compared to explanations given by the SimMachines tool [18].
SimMachines classifies data and outputs a pie chart allowing the user to select each



950 S. Meacham et al.

if userEnteredCoefl]l == "> 300" or userEnteredCoefll == “> 200":

response = "The patient's glucose serum test result was elevated
at &s, therefore likelihood of readmission increases
slightly.” & userEnteredcoefll

explain.append (response)

elif userEnteredCoefll == “None” or userEnteredCoefl]l == “Normal® :

response = “The patient's glucose serum test result was is,
therefore this is unlikely to have affected the
likelihood of readmission.” § userEnteredCoefll
explain.append (response)

else:
response = " *
explain.append (response)

Fig. 7. Decision statements within explainClassification used to determine correct explanation
statements for a Readmitted result with the max_glucose_serum attribute
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Fig. 8. Bar chart displaying logistic regression coefficients, providing explanations for
classification result

e

segment of interest. This presents each piece of entered data which led to the chosen
segment’s result. For instance, the first split of the pie chart determines the overall
binary result of the classification, the next provides a feature and its value that led to the
binary result, and so on. Instead of focusing on each possible result as SimMachines
does, the developed system only focuses on the final result and each of the important
features. This allowed for the textual explanations behind the users’ entered data and its
effect on the overall result.



Towards Explainable Al: Design and Development for Explanation 951

4 Evaluation of the Proposed Approach

4.1 Classifier Accuracy

According to Fig. 4 in Sect. 3.4, the classifier achieves an accuracy of 64.81%. It was
identified that this inaccuracy could be due to dataset imbalance, as the confusion
matrix was based on the 30% test split of the dataset, however as the emphasis of this
research work was explainability of the machine learning algorithm and the imple-
mentation of the system was limited to a project timeframe, the accuracy of the clas-
sifier and imbalanced dataset were not prioritised, and a ~64% accuracy was deemed
satisfactory.

The ROC Curve generated by a classification attempt, shown below in Fig. 9,
demonstrates that the classifier is OK at separating readmitted patients from non-
readmitted patients. A much more successful classifier would result in a curve fol-
lowing the left-hand border of the graph, indicating a higher true positive rate and more
accurate results overall. Similarly, a graph with a larger area under the ROC curve
would also indicate a more accurate classifier.

Receiver operating characteristic
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Fig. 9. ROC (Receiver Operating Characteristic) curve plotting the TPR (True Positive Rate)
against the FPR (False Positive Rate) at differing thresholds

Again, the inaccuracy of the classifier is most likely due to the unbalanced nature of
the dataset, however a satisfactory result in terms of the project’s requirements was met.

4.2 Functional Correctness

System evaluation was performed as regards to functional correctness with functional
test cases, which covered all aspects of the produced system, including login and
registration, patient classification, previously classified patients and source data. From a
total of 43 tests only 40 were executable due to reasons such as unimplemented or
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partly implemented features. Of the 40 executed tests the system achieved a success
rate of 100% (Table 1).

Table 1. Record of test execution and success rates

Executed Tests 4903,33 Unexecuted Tests %,’&3
Passed Tests (of executed) :88%2 Failed Tests (of executed) 0({;8

4.3 Explainability Overhead Experimentation

During implementation of explainability features into the logistic regression classifier,
it was identified that a significant overhead exists pre-explainability upon classification
using a local version of the system. An experiment into said overhead was undertaken,
during which the following was attempted:

— Classification of the same patient was conducted 5 times pre-explainability, and
another 5 times post-ante-hoc-explainability using a local version of the system and
Internet Explorer.

— Internet Explorer’s network console was utilised to identify the loading speeds of
both the classifier and results page.

Pre-explainability, classification of a patient took an average of 4 s, resulting in an
average total load time of 4.5 s. Post-explainability, the same classification actions
resulted in an average time of 11.6 s, increasing the average total load time to 12.6 s.
These results can be seen in Fig. 10.

Overall, the introduction of ante-hoc explainability resulted in a 176% increase of
overhead. This finding would be crucial as, if the amount of data used for classification
exceeded 70,000 rows, or more predictors are required to make a prediction — which
are both likely in a real-world application — the total load time would increase further.

It is possible that chosen technologies could have influenced this increase in total
load time. For the sake of machine learning systems in risky domains requiring
explainability, this observed overhead is a consequence which must be understood and

prepared for though careful optimization of both chosen technologies and code if
timely results are relied on.

4.4 Client Feedback

Throughout the development of the system, the client (BT Adastral park, data science
team) was consulted on a regular basis and expected to provide two types of feedback;
written progress feedback throughout the lifetime of the project, and a final survey
covering all system functions upon completion. Feedback throughout the project’s
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Average Response Time(s) Average Response Time(s)
Pre-Explainability Post-Explainability

0.248 0.402

0.224 ey

=« POSTTime = GET Time » Requesttime = Total Time {including DOM content load)

Fig. 10. Pre-explainability and post-explainability average timings

lifetime influenced both changes and completion of the system’s features and played an
integral role in the evaluation of the system.

Final feedback received from the client was very positive and took the form of an
online survey created using MySurveyLab [19]. The client was asked to carry out
several tasks which would invoke each of the system’s features. Most importantly, they
were able to understand certain classification and explainability aspects, such as;
classifier performance and accuracy, feature importance, and explanations provided
using the coefficients bar chart. Though the client had the ability to provide reasoning
for their answers, they showed comfort in their understanding of explanations through
only selecting “Yes” where asked whether they understood the above aspects. It can be
assumed that, if the client was unsure about what was displayed to them, they would
have selected the “Somewhat” option, and provided extra written feedback.

More work is required to take this research forward and accumulate feedback from
the final users which is this case are the medical domain experts-doctors.

S Conclusions and Future Work

In this paper, the design and development of web system used to perform classification
and explanation of patient readmittance using machine learning has been explored and
detailed. Technologies used in both design and development stages are discussed, with
the aim of providing the reader with enough information to reproduce this system
architecture in their own applications.

The resulting web system successfully provided a facility with which patients can
be classified as either ‘will be readmitted’ or ‘will not be readmitted’ with satisfactory
accuracy for the purposes of this research which focused explainability of the algorithm
rather than its performance. More importantly, the system was able to provide the user
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with enough explanation with which an understanding of how changing user inputs -
patient attributes — can affect the classification result.

This paper was only the beginning of the journey towards more explainable
algorithms. More research is required in order to explore algorithmic properties that are
amenable to explainability by extending the work to include different algorithms. As
the problem is huge and difficult to address, we plan to start with classification-type
algorithms and ante-hoc explainability. After working with several algorithms, trends
and patterns to extract explainability are expected to emerge. We plan to use a bottom-
up approach through working with several algorithms first and generalizing afterwards.
Also, well-formed software engineering practices such as model-based design and
domain-specific modelling are expected to be applicable and play an important role in
this area. Identifying and appropriate describing the different domains such as the
medical professional users-doctors and the machine-leaming domain for developing
explainable algorithms would be part of our research direction. Bringing explainability
to the design level using the above methods will enable the final target of Explainability
by design for the future trustworthy, accountable and explainable Al systems.
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