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Comparative phylogeography as an integrative approach to understand 

human and other mammal distributions in Europe. 

Oxala García Rodríguez 

Abstract 
 

Phylogeography refers to the phylogenetic analysis of organisms in the context of their 

geographical distribution. The analytical methods build phylogenetic trees and networks from 

haplotypes in order to investigate the history of the organisms. Phylogeographic studies have 

revealed the importance of climatic oscillations and the role of the Last Glacial Maximum 

(27,500 to 16,000 years ago) with the formation of refugia where distinct haplotypes originate 

in Europe. The population expansions and contractions into these refugial areas have driven 

the evolution of different lineages but the similarities and differences between species are still 

poorly understood. 

This thesis aims to gain a better understanding of the phylogeographical processes of different 

mammals’ species in Europe. This was done by collecting published mitochondrial DNA control 

region sequences of 29 different species and analysing them individually and comparatively. 

This research presents a standardised way of understanding phylogeography from the 

mitochondrial DNA perspective to improve the comparison of studies in the field. 

The project investigates the patterns of genetic diversity by examining various diversity indices 

to test for trends and commonalities. To enhance knowledge in phylogeography and the 

importance of refugia during the Last Glacial Maximum in Europe through a comparative 

phylogeographic meta-analysis of mammal species. This thesis developed novel insights into 

the phylogeographic interactions of different mammal species, including modern humans, in 

the European geographical context. Modern human phylogeography pattern from the short 

control region has been contextualised in the patterns observed for other mammal species, 

showing a homogeneous distribution across the continent. 

Finally, the commensal species Mus musculus domesticus (western house mouse) was 

investigated in detail from a current and a past phylogeographic perspective in two islands, 

Cyprus and Britain, using ancient and modern DNA. This was done using this new knowledge as 

a bioproxy to understand more recent human movements associated with the transport of this 

species. 
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This thesis, therefore, provides an integrated study with a new comparative framework and 

with results on the phylogeographical patterns of humans and other mammals in Europe. 
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Chapter 1. General introduction 

1.1 Introduction and literature review 

1.1.1 Phylogeography 

 

Biogeography is a subject that it is not difficult to define, it is the study of the geographic 

distribution of the species – but comprises great complexity. It includes the study of geology, 

geography and biology and, therefore, two main traditions in biogeographic research have 

been proposed; ecological and historical biogeography. Historical biogeography has developed 

different strategies to understand the evolutionary and geographical relationships of species 

since its inception (De Candolle 1820). During the end of 20th century and the beginning of 21st, 

new approaches took population genetics with a phylogenetic perspective in the context of 

biogeography to establish a new approach, called phylogeography. 

The main debates in evolutionary biology were based on the understanding of how 

microevolutionary processes within species can be extrapolated to the differences between 

species or higher taxa (Avise et al. 1987). Traditionally, microevolution has been related to 

population genetics and evolutionary processes like mutation, genetic drift and natural 

selection. However, the phylogeny or the macroevolutionary perspective, especially in 

palaeontology, often had another vision sometimes separated from this approach. The 

connection between these different fields was not clear and the historical perspective for 

population genetic analysis was mostly unknown (Hickerson et al. 2010). 

Avise et al. (1987) coined the term phylogeography, to describe a discipline with conceptual 

and technical roots linked to the emerging field of molecular genetics, but before that, about a 

decade earlier, mitochondrial DNA (mtDNA) had begun to be used for addressing how 

individuals are genealogically linked through their shared ancestors (Brown and Wright 1979). 

The reasons that were traditionally invoked to justify the choice of mtDNA were and still are, 

its high level of variability, its maternal inheritance, and its supposed neutral mode of 

evolution (Nabholz et al. 2008). The historical roots of phylogeography are intertwined with 

mtDNA studies. Major studies in the 1970s and 1980s were based on population surveys of 

different species in America (Avise et al. 1979; Lansman et al. 1983), which mainly laid the 

foundations for phylogeographic approaches. This knowledge expanded rapidly with the first 



2 
 

complete mtDNA genomes published soon afterwards for the house mouse (Bibb et al. 1981) 

and humans (Anderson et al. 1981).  

Studies started to connect the phylogenetic approach to mtDNA with a geographical context 

uncovering different patterns in the spatial arrangements of the mtDNA lineages (Avise and 

Ayala 2009). Identifying patterns that might help to characterise organisms that occupied 

diverse habitat has been the main goal for phylogeographers during the last decades. The 

literal meaning of phylogeography is the phylogenetic analysis of organismal data in the 

context of the geographic distribution of the organism (Hickerson et al. 2010). In this way, 

phylogeography deals with historical and phylogenetic components of the spatial distributions 

of gene lineages (Avise 2000). Through this, the relationship between geographic phenomena 

and the mechanisms driving speciation can be addressed. The final aim of phylogeography 

might be understanding microevolution and speciation in its geographic or spatiotemporal 

context (Kidd and Ritchie 2006).  

With this approach, phylogeography becomes an integrative field that lies at the junction 

between macroevolution and microevolution (Avise 2000). The interpretation of the different 

lineages’ distributions requires a good understanding of many fields to extrapolate 

microevolutionary processes operating within species to explain differences among them from 

a macroevolutionary perspective (Figure 1.1). The main challenge for phylogeography is to be 

able to extract the information that describes the relationship between patterns and processes 

from complex natural data (Dawson 2014). This is a significant challenge for an observational 

science if it is compared with experimental scientific approaches and their power to establish 

cause and effect (Freckleton 2009). 
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Figure 1.1 The central position between micro and macro evolutionary processes (Adapted from Avise 2000). 

Phylogeography adds an essential component to the understanding of population structure. 

Changes over time in the physical and biotic environment of a population lead to demographic 

variations that correlate with the structure of population genealogies (Avise 2000). The 

combination of phylogeographic and population-genetic approaches creates an important new 

framework for appreciating the processes that have shaped speciation and population 

distributions (Beheregaray and Caccone 2007). The comparison of phylogeographic data for 

multiple co-distributed taxa adds a valued extension for this framework. 

Avise et al. (1987) added that genetic data from multiple co-distributed taxa could improve the 

investigation and questions about the geographic or climatological phenomena that generated 

the observed distribution of different species. In terms of evolutionary biology, 

phylogeography has become one of the most integrative fields and it can be combined, for 

example, with ecological models (Peterson 2003), but also with such diverse disciplines 

including climatology, computer science and geology (Hickerson et al. 2010). The perspective 

of the phylogeography has transformed aspects of biodiversity conservation, biogeography, 

ecology, genetics, and population biology (Avise et al. 2016). 

1.1.2 Comparative phylogeography 

 

The demographic history of organisms can be tracked by using different genetic markers. 

Fitting their genealogies to geographical and temporal contexts can provide information about 
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the history of a particular species (Jones et al. 2013). However, in the case of more than one 

organism being examined, comparative phylogeography can be used to infer common histories 

between them (Gutiérrez-García and Vázquez-Domínguez 2011). The development of different 

molecular markers is allowing the investigation of interspecific phylogeographic patterns.  

MtDNA genealogies are traditionally used to infer historical demographies through 

coalescence theory (Kingman 1982). Statements that some markers are more sensitive to 

population structure than others have been part of the debate in molecular ecology (Karl et al. 

2012). Some studies have suggested that mtDNA has more power to detect population 

structure than single nuclear loci, but two or more polymorphic nuclear loci are expected to be 

more sensitive than mtDNA (Larson et al. 2009). For example, mtDNA has been suggested to 

show population divergence in recently divided populations due to higher levels of genetic 

drift, or that microsatellites will show divergence due to high mutation rates and 

heterozygosities (Karl et al. 2012). However, no class of markers is a priori more sensitive, for 

example better able to detect population differentiation, under every condition. One 

important caveat is that diversities among markers in these simulations are held to be 

identical. Species and evolutionary history influence can make it such that polymorphic mtDNA 

loci have more power than a cluster of microsatellite loci depending on overall diversity in 

these markers (Karl et al. 2012). 

 The aim of these studies might be to search for concordant geographical distribution among 

lineages within different species indicating a possible influence of a common historical factor 

(Taberlet et al. 1998). This study of geographic variation is the comparison of broadly co-

distributed species (Cracraft 1989) or comparative phylogeography. 

The historical stability of communities can be measured by the degree of phylogeographic 

concordance of the analysed species (Zink 2002). Combining the historical biogeography with 

the comparative phylogeography can reveal the history of the groups of species at different 

temporal scales. One of the first case studies was made by Avise (1992) who documented a 

similar phylogeographic pattern in several animal species in North America. Using mtDNA as a 

marker, a hypothesis was proposed concluding that a common historical event separated the 

Atlantic and Gulf coasts regarding their ancestral community gene pools for certain North 

American species.  

Through comparative phylogeography, congruent geographical patterns in genetic variation 

can be tested. A parsimonious explanation for a common pattern would be that historically co-

distributed species might respond in analogous ways to specific isolating barriers (Wiley 1988). 
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This is in accordance with the two ways in which organisms respond to changes in their 

environment. The first is to move and change their geographical distribution (extinction can 

also be included), while the second is to evolve (Eldredge 1995). However, the individualistic 

nature of species' responses to climate change implies that the adaptations of individual 

species or population can vary depending on the climate (Stewart 2008). Non-analogue 

ecological communities, also sometimes called disharmonious communities (Graham 1986), 

are being suggested as one of the most important characteristics to consider in the analysis of 

the different species histories. This has proved that the reality is much more complex giving 

more importance to the separate response of the species to environmental changes leading to 

non-analogue communities (Stewart 2009). Animals and plants could respond to climate 

change by geographical shifts that contribute to the modification in ecological communities. 

The individualistic response of species and the important role of the ecology in the process 

have implications to speciation and evolution. Furthermore, studies of one species by itself 

would not reveal general patterns. 

The genetic data of different co-distributed species has to be analysed carefully, but 

undoubtedly, it represents an outstanding tool to understand speciation and evolution. 

Concentrating on the individualistic responses of species to past climate or environmental 

changes could be a more valuable way to proceed in a similar manner that studies of biological 

diversity loss should, instead of focusing on the ephemeral associations that communities 

represent (Graham 1988). Future environmental fluctuations would cause different responses 

of species so static models for conservation area design would not be realistic (Thomas and 

Gillingham 2015).  

The phylogeographic approach in recent decades has allowed inferences in different aspects of 

the post-glacial colonisation in different species (Avise 2000). The genetic diversity and 

lineages have been one of the fundamental bases for these studies that have been focused 

principally on Europe (Taberlet et al. 1998; Hewitt 1999, 2004). Studies of changes in the 

biogeography of other species can provide a potential model for human evolution in the 

context of Europe. These phylogeographic studies are, for example, helping to understand the 

important role of population contractions into areas, described as refugia, where species 

survived for an entire glacial or interglacial cycle (Hewitt 1996; Stewart and Stringer 2012).  

More recently, domestic animals have also been used as bioproxies given their association 

with human migration and activities. The spread of the Neolithic to Europe has been inferred 

by the domestication process of pigs (Larson et al. 2007) and goats (Naderi et al. 2007). Rats 
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(Matisoo-Smith et al. 2004; Wilmshurst et al. 2008) and flies (Keller 2007) have also been used 

as commensal bioproxies. Mice, as another commensal species with human, have 

demonstrated that they can be used as a bioproxy to offer insight into human movements in 

the past (Förster et al. 2009; Searle et al. 2009; Hardouin et al. 2010; Jones et al. 2012, 2013). 

The house mouse (Mus musculus domesticus) has been a human commensal since the 

beginning of agriculture and they have spread together for about 12,000 years (Cucchi et al. 

2006; Bonhomme and Searle 2012). In this way, the colonisation history of the house mouse is 

informative about the humans that transported them (Bonhomme and Searle 2012). In the 

Mediterranean Basin, for example, the distribution of different mitochondrial clades of Mus 

musculus domesticus has revealed Iron Age relationships between central European and 

Mediterranean civilisations (Bonhomme et al. 2011). In the British Isles, with mitochondrial 

DNA markers, links between house mouse phylogeographic patterns and human activities 

have been suggested (Searle et al. 2009). 

With such a variety of approaches, comparative phylogeography becomes significant to 

comprehend human phylogeographic patterns through the understanding of other species’ 

distributional and demographic histories. Phylogeographic comparison among organisms is 

needed to reveal unavailable insights from individual examples (Bermingham and Moritz 

1998). The value of studying co-distributed species has been long appreciated (e.g. Wares et al. 

2001; Hickerson and Cunningham 2005; Crandall et al. 2008; Hickerson and Meyer 2008; 

Costedoat and Gilles 2009; Marko and Moran 2009), however hypothesis testing has been less 

common in the literature. In this context, the challenge for phylogeography has to focus on 

extracting information and describing the relationships between processes and patterns. 

The investigation of co-distributed species using statistical phylogeography can provide 

insights into the different responses to climate change affected by their life history and 

dispersal characteristics (Waltari et al. 2007). One of the main objectives for the future of 

phylogeography is to understand why co-distributed species show these discrepancies and 

whether the response to change is a stochastic or a predictable process (Barrow et al. 2017). 

Testing hypothesis related with the species distributions in Europe will help to enhance 

knowledge in evolutionary processes as migration and speciation. The geographical trends 

revealed by comparative phylogeography are the evidence needed to define refugia, 

diversification and dispersal of populations (Carnaval et al. 2009; Lexer et al. 2013; Avise et al. 

2016). 
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1.1.3 Climate during the last 60 kya in Europe 

 

In order to understand the demographic distributions of different species in Europe, this thesis 

has a temporal scope from the last part of the Late Quaternary until today. The Quaternary 

begins around 2.6 million years ago (mya) and continues to the present date. It is a period well 

characterised by climate oscillations with increasing intensity of glacial periods (Lowe and 

Walker 1997). Through the Quaternary we can identify two epochs; the Pleistocene (which 

starts at the same point as the Quaternary, 2.6 mya, and finishes 11,700 years ago and the 

Holocene (from 11,700 years ago until today).  

Around 2.4 mya, the Arctic ice cap became established. From then until 1 mya, the ice sheets 

advanced and retreated with a cycle’s duration of roughly 41,000 years. After this date, the 

periodicity changed to a 100,000-year cycle and had become increasingly dramatic (Hewitt 

2000). These cycles suggest a mechanism, and the Milankovitch theory proposes that regular 

variations in the Earth’s orbit are the pacemakers of the ice-age cycles (Bennett 1997). These 

changes are caused by different variations in the dominance of three different component 

cycles (Lowe and Walker 1997). The 100 ky cycle, knows as orbital eccentricity, is a process 

where the orbit of the earth around the sun changes from circular to elliptical and back (Imbrie 

et al. 1993). The variation in the Earth’s axial tilt has a 41 ky cycle, knows as obliquity cycle, and 

precession due to the Earth’s axial wobble has a 19–23 ky cycle. All these variations modify the 

insolation of the Earth changing the energy received by the planet. Climate change in those 

cases is caused by the high quantity of energy transported by the oceanic circulation system 

(Webb et al. 1997).  

The obliquity cycle is dominant during the early Pleistocene (2.6 – 0.78 mya). During the 

Middle (0.78 – 0.12 mya) and Late Pleistocene (0.12 ma– present), it is the eccentricity cycle 

that dominates. This has led to long-lasting glacial periods (ca. 100 ky) and much shorter 

interglacials (ca. 15 ky) (Pisias and Moore 1981; Lowe and Walker 1997). Palaeoclimatic 

records reveal that two interglacials took place over the last 150 ky. Evidence supports rapid 

warming and slow cooling through this time. The period identified in Northern Europe as the 

Weichselian, which occurred from 110,000 to 12,000 years ago, represents the most recent  
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glacial (Table 1.1). 

 

 

 

 

The Weichselian is also characterised by some warmer and colder episodes. The Greenland ice 

cores where the ratio of 
16O and 18O indicates extension or retraction of ice sheets and 

therefore terrestrial stadials (cooler periods) and interstadials (warmer periods), reflect the 

temperature changes over this period (Rasmussen et al. 2014). These changes in the ratio 

16O:18O are referred to as Marine Isotope Stages (MIS). The MIS 3 starting at 60 kya, followed 

by MIS 2, with the Last Glacial Maximum (LGM) at 21 kya, ending with the rapid warming of 

MIS 1, and the Holocene interglacial, from 10 kya, will be the temporal scope of this project. 

The Last Glacial Maximum (LGM) represents a cold period during the MIS 2 where global ice 

cover reached its greatest level during the late Pleistocene. The main ice sheet covered 

Scandinavia but at its maximum extent reached southwest Germany (Clark et al. 2009). Other 

major centres were in the Baltic region and the Alps. The sea level dropped and the mean 

temperature during winter in Central Europe was -20˚C (Barron et al. 2003). Some open 

grasslands still prevailed in southern areas over Europe with pockets of forest in some areas 

(Guthrie and Van Kolfschoten 2000).  

Between the LGM and the next warmer period is an interval sometimes defined as Late Glacial 

and is also a cold period although warmer than the LGM. This warming led to the return of 

some boreal woodland and shrub patches to Northern Europe (Allen et al. 2010). The 

Bølling/Allerød (circa 14.7–12.6 kya) was a warm phase that was marked by an abrupt rise in 
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Table 1.1 Geologic time scale from the Pliocene until Present and Marine Oxygen Isotope Stages (MIS). 
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temperature just after this short interval after the LGM. The Younger Dryas (12.6–11.5 kya) 

marked the last period of the Pleistocene with a dramatic cooling. Replacement of the 

woodlands with shrub-tundra took place in the north and open steppe vegetation returned in 

the south together with periglacial environments in Europe (Bell and Walker 2005). Around 

11.5 kya a rapid warming of 15˚C over 1,500 years marks the beginning of the Holocene (Bell 

and Walker 2005). The vanishing of the ice sheets caused sea levels to rise dramatically and 

the warmer and wetter conditions enabled, for example, tree species to recolonise northern 

areas of Europe. 

The great level of complexity shown here demonstrates the importance of defining a 

Milankovitch scale of climate change (i.e. the LGM cooling and the Holocene warming) as a 

context for understanding phylogeography (Brace et al. 2012). The sub-Milankovitch scale for 

climate change is more difficult to address in phylogeography due to a variety of reasons, 

including the dating of the fossils analysed and the limits of available ancient DNA data. 

Therefore, this thesis will concentrate on the importance of the LGM and the Holocene 

warming as the major climatic driven effects on populations. 

1.1.4 Phylogeographic patterns in Europe after the LGM and comparison between 

modern humans and other mammals 

 

All these climate oscillations during the late Pleistocene have significantly affected the past 

and modern distributions of species and the impact of the LGM on the present-day distribution 

of the species has been extensively discussed in the phylogeographic literature (Hewitt 1996; 

Bennet and Provan 2008). The expansion-contraction cycles have led to the actual genetic 

diversity where different clades might be attributed to different areas where distinct 

populations evolved in isolation from which they expanded (Avise et al. 1987). The areas 

where species persist during a glaciation period have traditionally been described as refugia. 

The understanding of how species responded to these periods has had a relevant interest in a 

variety of fields from palaeoecology to phylogeography due to the implications for 

evolutionary processes. 

Quaternary refugia can be defined as the geographical region that a species inhabits during the 

period of a glacial/interglacial cycle, representing the species’ maximum contraction in their 

geographical ranges (Stewart et al. 2010). This definition allows a more flexible concept for 

species regarding their adaptations to different climatic conditions. From here on, this is the 

definition that will be used for this thesis.  
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A well-defined model has been established for temperate species in Europe (e.g. Hewitt 1996; 

Taberlet et al. 1998; Lister 2004; Randi 2007; Bennett and Provan 2008; Stewart et al. 2010). 

The model proposes that temperate species were restricted to southern refugia, principally in 

the Iberian, Italian and Balkan peninsulas during glaciations (Hewitt 1996, 1999; Taberlet et al. 

1998; Hewitt et al. 2004). Understanding a refugium as an area where the biotic and abiotic 

conditions are adequate for a population to remain stable (Bennett and Provan 2008), cryptic 

or northern refugia have also been suggested as refugia for temperate-adapted species that 

can occur at higher latitudes, within regions of unsuitable habitat (Stewart and Lister 2001; 

Stewart 2003; Bhagwat and Willis 2008; Stewart and Stringer 2012). Phylogeographic studies 

and palaeontological studies have revealed faunal and floral cryptic northern refugia for 

temperate species during the last ice age (Kotlík et al. 2006; Bennett and Provan 2008; 

Tougard et al. 2008; Vialatte et al. 2008; Lagerholm et al. 2014). 

 

Figure 1.2 Classical southern glacial refugia for temperate species identified by phylogeographical research (source: 

Taberlet al. 1998). R1: Iberia refugium; R2: Italian refugium; R3: Balkans refugium. 

For cold-adapted taxa some efforts have also been made to identify a general model, however 

the evaluation of how cold-species population expanded and contracted has been complicated 

based solely on modern phylogeographic studies. Cold-adapted species will retreat into refugia 
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during warm stages like interglacials (Barnosky and Kraatz 2007; Stewart and Dalén 2008). 

Polar refugia (in interglacials) have been suggested for some mammal species at high latitude 

regions (Fedorov et al. 1999; Dalén et al. 2005; Stewart and Dalén 2008). Arctic species such as 

the collared lemming (Dicrostonyx groenlandicus) and the Arctic fox (Vulpes lagopus) are in 

polar refugium now (Fedorov and Stenseth 2001; Dalén et al. 2005).  However, cryptic 

southern refugia have also been suggested for species situated at lower latitudes than their 

general range during interglacials (Stewart and Lister 2001).  

The retreat into refugia has genetic consequences for species, often leading to a decrease of 

diversity. The reduction in population size between populations creates this overall loss of 

genetic diversity and gene flow between refugia is not expected to occur. When the conditions 

improve, populations can spread out of the refugium and extend their range. Species can 

respond to climate or environmental changes in an individualistic way suggesting that refugia 

may not coincide in their timing of retreat and expansion implying that refugial areas may 

change geographically (Stewart 2008; Stewart et al. 2010).  

The individualistic response of species to this contraction makes the pattern even more 

complex from a geographical and temporal perspective. Through the literature, mammal 

communities, for example, are often stated and regarded as a single unit moving through the 

landscape (van Kolfschoten and Laban 1995; Stewart et al. 2003). However, even populations 

may respond in an individualistic way to changes in the environment (Stewart 2008). The 

principle that modern communities’ ranges are equal to past ranges (uniformitarian principle) 

may not apply and a past species assemblage or community composition may be very different 

to which species occur together today (Finlayson 2004). This adds another level of complexity 

to our understanding of biogeographical knowledge of different species.  

The effects of the LGM on European mammals have been examined in detail in numerous 

phylogeographic studies (e.g. Hewitt 1996; Taberlet et al. 1998; Hewitt 2004; Provan and 

Bennett 2008). However, the influence of this cold Quaternary period on the geographical 

distribution of genetic diversity is still unclear and further integrative research needs to be 

done. Understanding these different patterns and responses through comparative 

phylogeography in a general meta-analysis and discussion seems to be an important approach 

to bring knowledge into evolutionary processes triggered by climate changes. In the first part 

of this thesis, an extensive comparison between 29 mammal species with a European range is 

made based on the mitochondrial DNA control region; testing the main hypotheses suggested 

for temperate and cold-adapted mammals from a phylogeographic perspective.  
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Using the different ranges of phylogeographic patterns in species in Europe to identify likely 

similar and different histories between modern humans and other mammals may help to 

establish similarities based on ranges, adaptations, habitats and movement. This novel 

approach will represent a new context for understanding comparative phylogeography 

including modern humans. 

The genetic makeup of current modern human European population and the historical 

processes which generated these patterns have attracted great interest from population 

geneticists, anthropologists, historians and archaeologists (Günther and Jakobsson 2016). The 

study of the human past using the techniques of molecular genetics was defined by Renfrew 

and Boyle (2000) with the term archaeogenetics. The mtDNA of human cells can give us a lot of 

information due to the number of copies that can be found in one cell, its high evolutionary 

rate and non-recombining nature transferring only through the maternal lineage. The 

mutations acquired over time can be used to subdivide the human population into different 

clades or haplogroups. The human mitochondrial genome is a small circular DNA molecule that 

comprises 16,569 base pairs, which form an inner light (L) strand and an outer heavy (H) strand 

whose names reflect the molecular weight that is affected by the guanine content (Stewart 

and Chinnery 2015).  

One of the first studies of human phylogeography was conducted by Brown (1980) studying 

humans from different geographic and ethnic backgrounds using restriction-enzyme fragment 

length polymorphism (RFLP) in the mtDNA in order to trace human history. Later studies were 

developed focusing on these RFLP (Brown 1980; Johnson et al. 1983). During the 90s a new 

target appeared: the first hypervariable segment (HSV-I) of the control region. This segment is 

non-coding and also fast evolving which are important characteristics in phylogenetic studies. 

However, its high levels of recurrent mutation can blur the structure of the phylogenetic tree 

(Torroni et al. 2006).   

With these studies a new nomenclature was initiated for the mtDNA haplogroups. A group of 

similar haplotypes that share a common ancestor with a single-nucleotide polymorphism 

mutation started to be defined as haplogroups (Arora et al. 2015). The first letters of the 

alphabet represented the first branches of the phylogenies and started to be proposed in 

studies on the Native Americans (Torroni et al. 1993). During the next years, other haplogroup 

structures for different continents were also established (Torroni et al. 1994; Richards et al. 

2000). The main rules for mtDNA haplogroups nomenclature were first proposed by Richards 

et al. (1998). The terminology has been followed with the same rules developing a system 
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respecting the published record and novel data (Torroni et al. 2006). However, sometimes the 

nomenclature has not been used consistently, for example the same name has been coined for 

different haplogroups or different names used for the same haplogroups (van Oven and Kayser 

2009). 

Focusing only on the mtDNA of modern humans and analysing the geographical variation of 

the lineages in the context of the phylogenetic estimate of the genealogy of this specific 

marker, a great number of studies have been developed (Richards et al. 1998; Simoni et al. 

2000; Richards et al. 2002). However, the main caveat is that through modern DNA we can 

only infer past events from the perspective of present distribution patterns. The arrival of 

ancient DNA analyses has the advantage of providing direct genetic evidence at a given point 

in the context of time. This allows complementing the hypotheses concerning the genetic 

affinity of ancient populations (Brandt et al. 2015). 

The first studies were focused on the short control region as a marker. The outputs of these 

studies showed a more homogenous pattern across Europe than previously imagined. Even 

some populations that were considered relatively isolated as the Basques, in southwest 

Europe, or the Sardinian population in the Mediterranean seemed to be quite similar in terms 

of genetic frequencies for different haplogroups (at that time called lineage clusters)(Pala et al. 

2014). That was not the case for the Saami, an indigenous Finno-Ugric people, which 

traditionally inhabit the Arctic area. Between 30-50% of lineages in these groups belonged to 

two subgroups that are extremely rare in Europe (Sajantila et al. 1995). But these analyses 

were made from summary statistic and their genetic history was then not related with other 

European populations. However more recent analyses have demonstrated that the Saami 

shared ancestry with other Europeans rather than from northeast Asia as was previously 

suggested (Huyghe et al. 2011). This distinctiveness might be due to genetic drift after the 

resettlement process of Scandinavia from the south around 10,000 ya (Tambets et al. 2004). 

The first anatomically modern humans lived in Europe as early as 43 kyr ago (Benazzi et al. 

2011). As there is evidence of a genetic turnover of Europeans before the LGM, possibly in 

relation to climate oscillations (Fu et al. 2016; Nielsen et al. 2017), these early Paleolithic 

Europeans have probably made little genetic contribution to the current European people 

(Günther and Jakobsson 2016). However, the precise contributions from early Europeans are 

still under debate (Gallego-Llorente et al. 2016). 

To understand the presence of modern humans in Europe three critical periods need to be 

considered. The first one is the colonisation of Europe, approximately 45 kya due to the 
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expansion of modern humans out of Africa. Second, is the LGM between 27 and 16 kya. And 

third, the spread of Neolithic culture from the Near East and its arrival in Europe around 9 and 

5 kya (Pinhasi et al. 2012). These are considered the major demographic events that shaped 

European modern human phylogeography. 

1.1.5 Human-mediated phylogeographic patterns  

 

The relationship between other mammal species and modern humans can also be closer for 

commensal and domestic animals that are moving with our species. Using certain species as a 

bioproxy for humans has been developed as a useful research tool to understand more recent 

human phylogeographical patterns. 

For the last millennia, modern humans have been transporting species outside their normal 

range (Hulme 2009). These movements have caused a clear modification of the 

phylogeographic patterns of several species that share a close association with humans (e.g. 

Larson et al. 2007; Naderi et al. 2007). Human-mediated transportations have also shaped 

current patterns of phylogeography for commensal or domestic species. It is still difficult to 

distinguish between natural movement and migration during the Late Pleistocene and 

prehistoric, human-mediated introductions for these species (Zeder 2008), but combining 

phylogeographic patterns and species life history information is helping to explain much better 

these patterns. Therefore, those organisms that are transported by people can be used as 

bioproxies for human movement (Jones et al. 2013), and this can have a profound impact in 

the understanding of more recent transportation and on our knowledge of more recent 

human movements.  

Several domestic species have already been used as bioproxies for human movement because 

of their close association with our species in more recent times (Matisoo-Smith and Robins 

2004; Naderi et al. 2007; Wilmshurst et al. 2008; Koch et al. 2015). House mice (Mus musculus 

domesticus) represent an invasive species that have accompanied humans since the beginning 

of agriculture and ocean-going navigation (Cucchi 2008) and have demonstrated their 

usefulness as a bioproxy to offer insight into human movements of population in the past 

(Förster et al. 2009; Searle et al. 2009; Hardouin et al. 2010; Jones et al. 2012, 2013). In the 

second part of this thesis, two case studies are used to address a comparative analysis based 

on the movement observed in the western house mice in two European islands (Cyprus and 

Britain) from the modern and the ancient perspective.  
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The western house mouse is considered a good bioproxy and phylogeographic studies of this 

species can complement our knowledge of the phylogeography of humans (Jones et al. 2013). 

In the last decades, several studies have been able to highlight links between the colonization 

of mice and humans by analysing mitochondrial control region sequences of insular 

populations of house mice (e.g. Gündüz et al. 2001; Duplantier et al. 2002; van Vuuren and 

Chown 2007; Förster et al. 2009; Searle et al. 2009; Hardouin et al. 2010; Jones et al. 2010, 

2011, 2012; Gabriel et al. 2011; Gabriel et al. 2015; Gray et al. 2014). Specifically, in the 

Mediterranean Basin, for example, the distribution of different mitochondrial clades of Mus 

musculus domesticus has revealed Iron Age relationships between the central European 

continent and Mediterranean civilizations (Bonhomme et al. 2011). In the British Isles, with 

mitochondrial DNA markers, links between house mouse phylogeographic patterns and human 

activities have also been suggested (Searle et al. 2009).  

The house mice expansion patterns in the Mediterranean Basin and the British Isles are an 

excellent bioproxy to analyse human movement history. As expected for a commensal species, 

the western house mouse is characterised by a complex history shaped by founder effects, 

genetic drift and admixture. Two insular areas, such as Cyprus and Britain, might represent 

important territories of human and mouse migration, where some hypotheses have suggested 

the connections between house mice introductions and the human transport (Searle et al. 

2009; Bonhomme et al. 2011; García-Rodríguez et al. 2018).  

Until now, only one study has been able to extract ancient DNA from the house mice (Jones et 

al. 2012). In the British Isles, the earliest credible records of house mouse in Britain date from 

the Iron Age (Coy 1984). In this thesis, the first ancient DNA study in Mus musculus domesticus 

in the British Isles is conducted to provide a new approach to test the colonisation of the 

British Isles of this invasive species by adding the time dimension to the arrival of house mice.   

1.2 Research Outline 

1.2.1 Research aims and objectives 

 

This thesis investigates different approaches in comparative phylogeography to understand 

the demographic patterns for mammal species, including modern humans, in Europe and to 

compare them, searching for similarities and differences. This chapter has outlined several 

inherent issues related to the comparative phylogeographic approaches that remain 

unexplored. Thus, the final aim of this research is to overcome these considerable gaps and to 



16 
 

enhance knowledge in evolution by elucidating patterns of population movement in the past 

that can be associated with several species, and also with their individualistic responses to 

changes.  

In the first part of the thesis (Chapters 2-4), the research investigates patterns of genetic 

diversity by examining various diversity indices across twenty-nine mammal species to test for 

trends and commonalities. The overall aim of this research is to enhance knowledge in 

phylogeography and the importance of refugia during the LGM in Europe through a 

comparative phylogeographic meta-analysis of mammal species in order to elucidate patterns 

of population movement in the past. This thesis develops novel insights into the 

phylogeographic interactions of different mammal species, including modern humans, in the 

European geographical context. Modern humans are integrated into the meta-analysis trying 

to find a new comparative approach that helps to understand better the main phylogeographic 

pattern of our species. 

The second part of the thesis (Chapter 5 and Chapter 6) investigates the phylogeographic 

patterns of the human commensal species, the western house mouse (Mus musculus 

domesticus), in two different European islands, Cyprus and Britain, from the modern and 

ancient DNA perspective, respectively. The main aim of this part of the thesis is to understand 

the house mouse phylogeographic patterns in two islands in Europe and to use this new 

knowledge as a bioproxy to understand more recent human movements associated with the 

transport of the species. 

Correspondingly, this research has five overall objectives (O): 

O1. Describe and compare the phylogeography of wild mammal species in Europe in order to 

identify patterns of distribution change from Late Pleistocene to phylogeographical patterns 

today. 

O2. Use the different ranges of phylogeographic patterns in mammal species in Europe to 

identify likely similar and different histories and establish similarities based on genetic 

diversities indexes.  

O3. Assess the human phylogeography in Europe through ancient DNA to elucidate patterns of 

population movement during the Palaeolithic and Mesolithic that may be similar to other 

mammal species. 
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O4. Develop a phylogeographic study of the species Mus musculus domesticus across the 

European Island of Cyprus with the aim to investigate mouse expansion patterns in Cyprus and 

indirectly the movement of human populations. 

O5. Obtain the first ancient DNA data for the house mice in Britain and shed light on the 

colonisation events that shaped the introduction of this species.  

The structure of this project will be based on the research aims and objectives outlined above. 

Therefore, this research is organised to achieve the mentioned objectives. These objectives 

refer to the four main data chapters and the conclusion chapter (Chapter 7) of the thesis.  

1.2.2 Thesis structure 

 

As mentioned above, this thesis is structured into two parts. The first part (Chapters 2-4) 

addresses the three first objectives (O1-O3) outlined and the second part (Chapter 5 and 6) the 

last two (O4-O5). This thesis also includes a general introduction (this chapter). A material and 

methods chapter (Chapter 2) which is followed by two data chapters that addressed the first 

main research aim (Chapter 3-4). Part two is presented without a material and methods 

chapter. Each data chapter contains its introduction, methods, results and discussion 

subdivisions.  A conclusion chapter (Chapter 7) describes and links the main findings and 

conclusion of each of the data chapters. The structure of the thesis is outlined below with a 

summary of each chapter’s content.  

Chapter 1: Introduction 

This chapter provides a comprehensive review of the significant literature in the field of 

phylogeography and identifies the knowledge gaps that are addressed in this thesis. The 

Introduction also gives context and justification for the thesis, presenting the research aims 

and objectives used to address these knowledge gaps. 

Chapter 2: Material and Methods 

This chapter introduces the main methods and analyses that represent the core of the first 

part of this thesis that laid the foundations of the main method of this research. The 

comparative approach that characterised this thesis is presented here in detail with the aim of 

helping to understand better the context in which this research has been developed.   

Chapter 3: Modern mammalian genetic diversity in Europe 
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This chapter expands the previous results on the study of genetic diversity in Europe by a 

combination of twenty-nine mammal species genetic diversity measures and their comparison 

between geographical areas. This chapter addresses the first aim and objective 1 (O1) and 2 

(O2). 

Chapter 4: Identifying genetic diversity patterns shaped by the LGM in modern humans and 

other mammal species 

This chapter evaluates the different phylogeographic patterns obtained for each species 

analysed individually discussing the patterns previously described. It also presents new 

analyses that are based on the meta-analysis approach. The main phylogeographic pattern 

obtained for modern humans during the Palaeolithic and Mesolithic in Europe is also 

presented and considered it in the context of other mammal phylogeographies and genetic 

diversity indices. This chapter addresses the first aim and objectives 1 (O1) and 3 (O3). 

Chapter 5: Cyprus as an ancient hub for house mice and humans 

In this chapter, the phylogeography of house mice in Cyprus is investigated using 

mitochondrial D-loop sequences and microsatellite data from modern samples. The dispersal 

of mice along with humans may have left a complex footprint on the island and this hypothesis 

is explored. This chapter addresses the second aim and objective 4 (O4). 

Chapter 6: Travellers to the north: ancient DNA from the first house mice in the British Isles 

The first ancient DNA study in the western house mouse in Britain is developed in this chapter. 

Eight house mouse and four field mouse specimens from the Bronze and Iron Age were 

targeted for the D-loop in order to insight the colonisation of England from these two species. 

This chapter addresses the second aim and objective 5 (O5). 

Chapter 7: Final Discussion 

This chapter comprises the concluding remarks and a recapitulation of the results obtained in 

the previous chapters and the conclusion. It also includes the limitations of this research and 

recommendations for the direction of future research. 
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Chapter 2. Material and Methods 

2.1 Introduction 
 

The advancements in the field of phylogeography have entailed comparative appraisals 

(Bermingham and Moritz 1998). Comparative phylogeography emerged as an integrative 

approach to historical biogeography and offered important insights into the factors that 

shaped genetic variation, and therefore, evolution (Arbogast and Kenagy 2001; Papadopoulou 

and Knowles 2016). The availability of genetic data in open access databases has helped to 

develop new studies, but there is still a lack of analyses and synthesised knowledge that can be 

obtained from them.  

A systematic review is characterised by addressing and collecting multiples studies with the 

aim to summarise their outcomes. The process includes the use of a methodological guideline 

for the literature search, study screening and selection, data extraction and discussion 

(Gurevitch et al. 2018). If this systematic review reveals enough quantitative data from the 

studies chosen, then a meta-analysis can be conducted using statistical analyses. Meta-

analyses are an examination and testing of general interactions that allow questioning 

paradigms on a larger scale than usually possible at a single case study level (Kaiser et al. 

2006).  To do so, the combination of the results from different studies to create a single and 

more realistic estimation of an effect is needed (Ferrer 1998). Standardisation and a well 

design for the effect sizes are also needed to put the outcomes from different studies 

combined at the same scale.  

Synthesizing results across different studies to reach an understanding of a problem is an 

essential part of the scientific process. One of the main goals for the use of meta-analyses is to 

reach generalisations across a large number of studies providing a better understanding than 

obtained from individual studies (Gurevitch et al. 2018). In this thesis, a meta-analysis is 

conducted to investigate broad patterns of genetic variation and demographic histories 

throughout Eurasia in order to elucidate concordant geographical patterns across different 

mammal species identifying common historical processes. Based on the data obtained from 

the systematic review approach, a meta-analysis has been designed and conducted. Here, the 

different steps followed to conduct the review and the meta-analysis are presented (Figure 

2.1).  
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Phylogeography focuses on the phylogenetic analysis of genetic data to test assumptions 

related to the geographical distribution of the species (Hickerson et al. 2010). Phylogeographic 

studies have been performed on a significant number of different organisms including from 

wild animals and plants to bacterial and viral pathogens.  Mitochondrial DNA (mtDNA) has 

been traditionally used as the main genetic marker in phylogeographic research, but many 

studies address phylogeography based on one species and a limited geographical area. The 

sequences from most of these genetic studies are deposited in the primary public archive for 

the deposition of genetic sequences such as GenBank (www.ncbi.nlm.nih.gov/genbank/), an 

accessible online database. This database comprises publicly available nucleotide sequences 

for more than 400,000 described species (Benson et al. 2018). The aim of testing 

phylogeographical hypotheses could be facilitated to a great extent by the data available in 

this database and this research follows this approach to do a comparative analysis. 

Significant efforts have been made using comparative phylogeography to understand 

European distribution of the species and common phylogeographic patterns (Taberlet et al. 

1998; Hewitt 1999; Hewitt et al. 2004). However, these analyses were limited by a low number 

of species and the small number of DNA sequences available at the early 2000s. Today, the 

access to much more data allows us to test the same phylogeographic hypotheses but founded 

in a much larger number of species and sequences.  

Twenty-nine mammal species were selected based on the availability of the sequences in 

GenBank. For analysing such data, a database for each species has been created to investigate 

the various patterns seen in different mammal species, which can then be grouped by 

similarity according to geographical and genetic diversity indices. These also include the 

diversity estimates as well as the species’ phylogenetic trees, haplotype network diagrams and 

population differentiation indexes.  

A large section of this Ph.D. thesis is based on creating and using a database for each species 

with sufficient available data. The database is used to address different analyses to infer 

phylogeographic patterns. To investigate the phylogeographic patterns in different species 

across Europe it is necessary to delimit certain aspects of the geographical areas included and 

the genetic markers available for all the species analysed and they are discussed in the 

following sections.  
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2.2 Genetic delimitations 
 

Mitochondrial DNA has been commonly used in phylogeographic studies across a wide range 

of vertebrate species (see Taberlet et al. 1998; Hewitt 2004; Hickerson et al. 2010 and 

references therein). Animal mtDNA in general exhibits remarkable conservation of gene 

content (Harrison 1989). The selection of mtDNA is due in part to its relatively rapid rate of 

mutation, a high number of copies per cell and its haploid maternal inheritance mechanism 

which make it useful for the elucidation of demographical changes as well as the population 

history of each species (Avise et al. 1987, 1995; Moritz 1994). This fast-evolving capacity makes 

mtDNA a good marker that can be used to follow divergence in closely related taxa and even 

within species. MtDNA is also characterised by low recombination, so it can be assumed that 

the genealogical history will be the same for the whole molecule, helping the interpretation of 

the demographic history. Indeed, this information is critical to interpret landscape-level 

patterns of genetic diversity in the context of phylogeographical reconstruction (Pavlova et al. 

2013). For these reasons, mtDNA sequence data are and will continue to represent an 

important marker in phylogeography (Garrick et al. 2015).  

The molecule itself includes two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes 

and other 13 genes that code for electron transport or ATP synthesis proteins. The mtDNA also 

includes a non-coding region, which is involved in the regulation and initiation of mtDNA 

replication and transcription, of approximately 1,200 nucleotides and is known by three 

different terms: control region, D-loop and hypervariable region. The control region (CR) 

occurs in a non-coding area of the mtDNA and presents strong rate heterogeneity between 

sites, a high frequency of events as insertion and deletions and lineage specificity which makes 

it an excellent genetic marker (Saccone et al. 1991; Pesole et al. 1999). This is the region that 

has been selected for the analysis and it represents a genetic marker that has been widely 

used in phylogeographic studies (e.g. Seddon et al. 2001; Troy et al. 2001; Scandura et al. 

2008). 

Achieving a high genetic resolution from short DNA sequences as the control region can only 

be based on its high variability due to its non-coding DNA nature with a relatively high 

mutation rate (Moritz et al. 1987). Some caveats can also be added by choosing small 

fragments due to homoplasies, or the effect of identical mutations that arise in different 

lineages, leading to misinterpretations in the reconstruction of species and populations 

histories. Increasing sequence lengths will provide better resolutions, but the absence of 
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longer fragments available for most of the species (or the reduced number of them) forced this 

research to be conducted based on a short fragment which has a large number of sequences 

to be compared with, helping to compensate for the caveat in resolution due to fragment 

length.  

Control region (CR) mitochondrial DNA sequences are targeted for mammal species within a 

European range. The selection of this region is also based on the availability of the sequences. 

The primary public archive for the deposition of genetic sequences, GenBank, was searched for 

mtDNA fragments that could be potentially used in this analysis. Searching on this database 

under the keyword “control region”, 2,578,227 results appeared and 3,156,225 sequences 

using “d-loop” (December 2016). Knowing that some entries display these two keywords, does 

not mean that the sum of both values will represent the total of sequences available. However, 

the next two most commonly used mtDNA regions, cytochrome B (cyt B) or cytochrome c 

oxidase subunit I (COI), yield fewer results (449,239 and 2,218,985 respectively). So clearly the 

CR or D-loop is the mtDNA fragment with the highest number of entries and that is the main 

reason why it has been selected. To achieve a reliable study comparing different species, this 

marker has to be consistent through the different species’ analyses. 

  

Figure 2.1 Schematic workflow of the review and the meta-analysis followed in this thesis (adapted from Marom et 

al. 2017).  
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The sequences have been searched using species names, with “d-loop” or “control region” as 

keywords on GenBank database. Where sequences were available, the primary literature and 

papers for each study were found through online data searches (e.g. Google Scholar, PubMed). 

How sequences’ were submitted onto the database varied widely. Some authors deposited 

sequences for all the individuals examined in each study, others submitted only each unique 

haplotype encountered, and others deposited only a single haplotype, and a reconstruction of 

all the haplotypes from the study is needed.  

The use of modern material has not always been sufficient to describe past diversity and 

resolve historical processes based on current phylogeographic patterns. However, the 

appearance of ancient DNA (aDNA) has helped understand population dynamics, extinctions 

and re-colonisations as far back as the Late Pleistocene (Leonard et al. 2000; Shapiro et al. 

2004; Thalmann et al. 2013; Horn et al. 2014). Ancient DNA has facilitated connections to be 

made with possible causal factors behind past shifts in genetic diversity. For this reason, for 

those species where aDNA is available an effort has been made in order to include the largest 

number of aDNA sequences available. 

The next section outlines the methods applied to the collection, management and analysis of 

data.  

2.3 Species collection 
 

Intense climate changes, such as the LGM, are important for the understanding of evolution 

and to comprehend how species respond to it. Mammal species have been considered one of 

the main model systems for palaeontological studies (Raia et al. 2006; Villalobos et al. 2016). 

Furthermore, mammals have also been important in relation to the study of ice age refugia in 

Europe enabling the detection of the genetic variation of interest (Bilton et al. 1998; Taberlet 

et al. 1998). Despite the individualistic responses of mammal species, incorporating 

phylogeographic information into the evolutionary context has revealed some interesting 

patterns.  

Specific criteria have been followed to address a wider range of mammal species but also to 

include as much diversity as possible in the analyses. From a body size perspective, small and 

large (megafauna) mammals have both been targeted, so a minimum of 10 small and 10 large 

has been established. Carnivores and herbivores were also considered, so a minimum of 10 

carnivores and 10 herbivores were set as a minimum. Herbivores are more abundant than 
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carnivores, but the ecological importance of carnivores make them species that need to be 

analysed (Peters and Raelson 1984). The different climatic and ecological adaptations to 

different areas have also to be tested so temperate and cold-adapted species have been 

considered and a minimum of 5 temperate species and 5 cold-adapted were set. Following 

these premises, the analyses could be conducted. 

All the terrestrial mammal species with a wide range in the European continent have been 

considered for this study. The IUCN list mammal species was downloaded from 

http://www.iucnredlist.org/technical-documents/spatial-data, date of download 11/2015). In 

total 179 terrestrial species were considered. Google Scholar and Web of Science were used as 

search engines for publications using the keywords “phylogeography Europe” and “control 

region phylogeography” until December 2017. Only studies where raw data sets in CR mtDNA 

were searched, to minimise the potential for different signals between genetic markers.   

A total of 225 species were investigated for sequences deposited in GenBank (Table A1.1 in 

Appendix 1). The searching was made using species name, with D-loop or control region as 

keywords. The data collection was ceased in January 2018 to allow the meta-analysis to 

proceed. 

A total of 69 species were discarded due to a total range of less than 0.5 x 106 km2 not covering 

an area where a general phylogeographic pattern could be identified. 36 other species were 

also discarded based on the low number of sequences available in Genbank, representing less 

than 50 sequences available for the cyt B and the D-loop. Therefore, a total of 74 species were 

examined where 73% (54 species) had more data available for the D-loop than the cyt B.  

Furthermore, from the 20 species that yielded more sequences for the cyt B, 6 of them have 

more than 50 sequences so where also included for the D-loop.  

Out of 60 mammal species, 13 were discarded because they represented bats, 9 because the 

range covered was not enough to conduct the analysis and 6 due to problems with the 

sequences available, e.g. short fragments, unverified sequences. The data available in Genbank 

have delimited the analysis but in total 84 species were included in the preliminary search. For 

those species with less than 50 sequences available the analysis has not been conducted. This 

leads to a total of 29 species that have been included in the analysis (Table 2.1). 

 

 

http://www.iucnredlist.org/technical-documents/spatial-data
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Table 2.1 Mammal species that have been chosen for the meta-analysis. CR and D-loop columns indicate the 

number of results for each species in GenBank associated with control region and D-loop as keywords. 

Species Common Name CR D-
loop 

Climate 
adaptation 

Size Diet Family 

Arvicola 
amphibius 

European Water 
Vole 

 92 Temperate Small Herbivore Cricetidae 

Arvicola 
sapidus 

Southern Water 
Vole 

7 89 Temperate Small Herbivore Cricetidae 

Microtus 
arvalis 

Common Vole 287 138 Temperate Small Herbivore Cricetidae 

Myodes 
glareolus 

Bank Vole 92 129 Temperate Small Herbivore Cricetidae 

Lemmus 
lemmus 

Norway Lemming 42 1 Cold Small Herbivore Cricetidae 

Cricetus 
cricetus 

Black-bellied 
Hamster 

 119 Temperate Small Herbivore Cricetidae 

Sciurus 
vulgaris 

Eurasian Red 
Squirrel 

92 507 Temperate Small Herbivore Sciuridae 

Castor fiber Eurasian Beaver 34 61 Temperate Small Herbivore Castoridae 

Lepus 
europaeus 

European Hare 305 563 Temperate Small Herbivore Leporidae 

Lepus timidus Mountain Hare 134 188 Cold Small Herbivore Leporidae 

Erinaceus 
europaeus 

Western European 
Hedgehog 

481 128 Temperate Small Herbivore Erinaceidae 

Erinaceus 
concolor 

Hedgehog 34  Temperate Small Herbivore Erinaceidae 

Sorex minutus Eurasian Pygmy 
Shrew 

158  Temperate Small Herbivore Soricidae 

Canis lupus Gray Wolf 4968 4301 Temperate Large Carnivore Canidae 

Vulpes 
lagopus 

Arctic Fox 80 100 Cold Small Carnivore Canidae 

Vulpes vulpes Red Fox 708 137 Temperate Small Carnivore Canidae 

Gulo gulo Wolverine 271 5 Cold Small Carnivore Mustelidae 

Mustela 
erminea 

Stoat 119 220 Cold Small Carnivore Mustelidae 

Mustela 
nivalis 

Least Weasel 122 140 Temperate Small Carnivore Mustelidae 

Martes martes Pine Marten 55 153 Temperate Small Carnivore Mustelidae 

Lynx lynx Eurasian Lynx 75 17 Temperate Large Carnivore Felidae 

Ursus arctos Brown Bear 774 415 Temperate Large Carnivore Ursidae 

Homo sapiens Modern Human - - Temperate Large Carnivore Hominidae 

Alces alces Eurasian Elk 308 212 Temperate Large Herbivore Cervidae 

Cervus 
elaphus 

Red Deer 846 870 Temperate Large Herbivore Cervidae 

Capreolus 
capreolus 

European Roe 
Deer 

122 734 Temperate Large Herbivore Cervidae 

Rangifer 
tarandus 

Reindeer 918 1403 Cold Large Herbivore Cervidae 

Bison bonasus European Bison 79 163 Temperate Large Herbivore Bovidae 

Sus scrofa Wild Boar 5138 4909 Temperate Large Herbivore Suidae 
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The individual information obtained for each of the 29 species (for studies used see Table 2.2) 

analysed are presented here including their distribution and habitat with a summary of the 

previous phylogeographic results for the control region. The classification follows the mammal 

classification based on orders. 

RODENTIA 

 

Arvicola amphibius (European Water Vole) 

Habitat and distribution: Current taxonomic determinations identify three different species of 

water voles that are associated with different ranges and areas. The northern water vole 

(Arvicola amphibius) with distribution across Eurasia, the southern common vole (Arvicola 

sapidus) in Iberia and France, and Arvicola scherman with a distribution characterised by 

several European mountain systems such as the Alps, Carpathians, Cantabrian Mountains, 

Massif Central and Pyrenees (Musser and Carleton 2005). The European water vole survives in 

a range of habitats around rivers and streams and in the lowlands and the mountains (Harrison 

and Bates 1991). 

Previous phylogeographic studies: Three main studies have been published aimed at resolving 

the evolution of the different water vole lineages through molecular analysis based on mtDNA 

(Taberlet et al. 1998; Piertney et al. 2005; Brace et al. 2016). Taberlet et al. (1998) addressed 

the phylogeography of the water vole identifying one lineage corresponding to A. sapidus and 

three others with A. amphibius [terrestris]. In Piertney et al. (2005) common voles across 

Britain were targeted showing two different clades suggesting two possible colonisation 

events, both during the early Holocene. Brace et al. (2016) added aDNA sequences from the 

Pleistocene and Holocene confirming the two colonisation events in Britain, one during the 

Pleistocene and the other during the early Holocene. 

Arvicola sapidus (Southern Water Vole) 

Habitat and distribution: Arvicola sapidus, the southwestern water vole, inhabits in parts of 

France, Spain and Portugal (Quéré and Le Louarn 2011). The origin of this species has been 

located in the Iberian Peninsula during the Pleistocene according to the fossil record (Sesé 

Benito 1994). The water vole is almost always found near water, preferring small freshwater 

lakes, ponds and rivers (Fedriani 2002). 
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Previous phylogeographic studies: Not many phylogeographic studies have been done in 

Arvicola sapidus (Centeno-Cuadros et al. 2009; Centeno Cuadros et al. 2011). These studies 

proved a relatively shallow phylogeographic structure with geographical coherence, however, 

seven spatially continuous groups inferred (Centeno Cuadros et al. 2009). 

Microtus arvalis (Common Vole) 

Habitat and distribution: Microtus arvalis is widespread in Europe with ranges from France to 

Central Asia (Amori et al. 2008). Farmland and open grassland are the habitats inhabited by 

the common vole with a broad range of altitudes occupied (Hausser 1995). 

Previous phylogeographic studies: Two different lineages have been identified using mtDNA as 

a marker and reflect the two main forms of the common vole, the arvalis and the obscurus 

subspecies, that occupied the west and east of its range respectively (Haynes et al. 2003; 

Jaarola et al. 2004). A hybrid zone between these two lineages has been described in the 

central European part of Russia (Meyer et al. 1997). 

The common vole is considered a species that does not conform to the southern refugial 

hypotheses (Fink et al. 2004; Heckel et al. 2005; Tougard et al. 2008). The study by Tougard et 

al. (2008) showed a west-central European persistence rather than southern refugia in Italy or 

Spain. The level of complexity shown by different phylogeographic studies using different 

markers has described at least five main lineages of M. arvalis in the European continent using 

the cytochrome b (cyt b) marker (Buzan et al. 2010; Stojak et al. 2015).  

Myodes [Clethrionomys] glareolus (Bank Vole) 

Habitat and distribution: The bank vole is a species with a wide range in the Palaearctic from 

the British Isles through continental Europe to Russia. Myodes glareolus is primarily a 

woodland species but can also be found in scrub and hedges (Spitzenberger 1999).  

Previous phylogeographic studies: From the phylogeographic perspective, unfortunately, most 

of the studies that have been carried out for the bank vole used cyt b as the genetic marker. 

From this, a strong complexity has been revealed based on at least seven well-defined lineages 

identified (Deffontaine et al. 2009). There is much available data for the control region. 

However, there are important geographical restrictions for these sequences as the most 

extensive investigation has been done to address Chernobyl radiation and associations 

between the species and in Puumala virus (e.g. Dekonenko et al. 2003; Meeks et al. 2007). 
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Therefore, the phylogeographic inferences based on control region are relatively restricted or 

biased by this oversampling.  

Lemmus lemmus (Norwegian lemming) 

Habitat and distribution: Lemmus lemmus is a species that inhabits mountain tundra of some 

regions in Scandinavia, Finland and the Kola Peninsula in Russia. It represents the only endemic 

mammal of the Scandinavian region known as Fennoscandia and the southern border of the 

species range is unstable due to significant migrations. The Norwegian lemming can also be 

found in forests and close to rivers and lakes (Hansson 1999). 

Previous phylogeographic studies: Fossil records from the Late Pleistocene from the genus 

Lemmus are found in the mid-latitude steppe-tundra in Europe and Asia (Nadachowski 1989). 

It is considered a cold-adapted species, whose southern range disappeared with the Holocene 

interglacial, either becoming extinct or changing their distribution to northern areas in 

Scandinavia. Two main hypotheses suggested a possible origin for the species. The first, from 

outside the Scandinavian Ice Sheet and from a non-Siberian source (Østbye et al. 2006) and 

the second, a northern refugium presence during the LGM surviving as a small source 

population for modern lineages. However, there is no fossil evidence of Lemmus lemmus in 

Scandinavia during the LGM (Ekman 1922; Fedorov and Stenseth 2001; Lagerholm et al. 2014).  

Ancient DNA analyses from the Pleistocene have revealed a high genetic diversity in the 

populations that inhabited the mid-latitude European areas (Lagerholm et al. 2014). This study 

also suggested an ice-free area in Scandinavia as a refugium due to that the main haplotype 

found in modern Scandinavia was not observed in any of the glacial populations south and east 

of the Scandinavian Ice Sheet. The latter indicated probably a non-postglacial colonisation 

from older southern populations (Lagerholm et al. 2014). 

Cricetus cricetus (Common Hamster) 

Habitat and distribution: The common hamster is a steppe species, also occupying meadows 

and steppe-forests, with an extensive range from Asia to Western Europe (Berdyugin and 

Bolshakov 1998; Nechay 2000). It forms some isolated populations in Belgium, France, the 

Netherlands and Western Germany (Mitchell-Jones et al. 1999). Common hamsters in western 

and central Europe are restricted mainly to agricultural sites and suitable microclimates 

(Nechay et al. 1977).  
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Previous phylogeographic studies: A steppe belt in Ukraine and Russia has been suggested as 

the main refugium for Cricetus cricetus during the Pleistocene glaciation (Neumann et al. 

2005). MtDNA phylogenetic lineage distribution seemed not to correlate with the existence of 

the two different subspecies, one in the west the other in the east (Mitchell-Jones et al. 1999). 

Two main distinct mtDNA lineages have been identified for C. cricetus in Europe labelled as 

'Northern' and 'Pannonian' (Neumann et al. 2004, 2005). The Northern lineage has been 

suggested as an expansive population from northern 'cryptic' refugium around Germany as a 

source for western populations. The 'Pannonian' lineage has been hypothesised to have 

expanded from the south reaching Czech Republic (Neumann et al. 2004, 2005). A more 

complex scenario exists in Poland with mixed signals from an eastern influence and the 

Pannonian area (Banaszek et al. 2009). The distinct north-south distribution in central Europe 

seems to differ from the phylogeographical structure found for other muroids in Europe 

(Jaarola and Searle 2002; Michaux et al. 2003). 

Sciurus vulgaris (Red squirrel) 

Habitat and distribution: The red squirrel is a species characterised by a great phenotypic 

variation that has led to the description of many different subspecies of Sciurus vulgaris (Barrat 

et al. 1999). It is a ubiquitous species and can be found in many types of coniferous, deciduous 

and mixed forests across Eurasia representing an extremely arboreal species with a 

distribution closely linked to the distribution of woodland habitat (Lurz et al. 2005). A 

classification made by Sidorowicz (1971) describing 17 subspecies has been used in the latest 

review on the subspecies status (Lurz et al. 2005), but these morphological groupings do not 

necessarily reveal the different phylogeographical patterns of the red squirrel (Hale et al. 2004; 

Grill et al. 2009).  

Previous phylogeographic studies: Studies using mtDNA D-loop as a marker have shown a lack 

of phylogeographical structure in Europe with the only exception of individuals from the region 

of Calabria, in the south of Italy, representing a different phylogroup and all the European 

individuals clustering together in a unique, distinct phylogroup (Grill et al. 2009). This genetic 

structure might show the evolutionary history of the species during the LGM because a rapid 

demographic expansion seems to have occurred (Grill et al. 2009; Dozières et al. 2012). 

Another explanation suggested for this pattern in some areas, like France, is related to high 

levels of gene flow leading to a lack of genetical differentiation of the population (Dozières et 

al. 2012).  
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Castor fiber (Eurasian Beaver) 

Habitat and distribution: The beaver is the largest Eurasian rodent and its habitat is 

characterised by living along rivers with adaptation for semi-aquatic life but may inhabit 

agricultural lands or urban areas (Tattersall 1999; Halley and Rosell 2003). Its distribution was 

wider in the past but over-hunting had reduced the number of individuals and also its range, 

being only around 1,200 individuals in Europe at the start of the 20th century (Nolet and Rosell 

1998).  

Previous phylogeographic studies: The first phylogeographical studies based on mtDNA 

showed non-sharing haplotypes between populations with some described as monomorphic 

(Ducroz et al. 2005; Durka et al. 2005). The species showed a high level of genetic structure 

across Europe with a strong differentiation of modern populations (Durka et al. 2005). 

However, aDNA has introduced a more complex scenario to the demographical pattern of the 

beavers, but they have not shown any notable degree of divergence between Late Pleistocene 

and Holocene samples (Horn et al. 2014; Marr et al. 2018). 

LAGOMORPHA 

 

Lepus europaeus (Brown Hare) 

Habitat and distribution: The brown hare is a widespread and highly adaptable species that 

inhabits a great variety of environments in Europe. The species is also characterised by an 

altitude range up to 1500 meters in the Alps. 

Previous phylogeographic studies: The presence of fossil records from the late Pleistocene in 

southern Europe has been suggested as an indicator for refugia there (Corbet 1986). The 

Balkan Peninsula has been indicated as a possible important refugium for Lepus europaeus, 

even multiple refugia have been indicated (Kasapidis et al. 2005). This has been previously 

suggested in Djan et al. (2017) as a postglacial expansion. At least four different clades have 

been identified for the species with a strong genetic structure (Fickel et al. 2008; Stamatis et al. 

2009). 

Lepus timidus (Mountain Hare) 

Habitat and distribution: Lepus timidus, or the mountain hare, is an Arctic species which 

inhabits tundra and taiga but also has an Alpine range where it lives in an isolated glacial relict 
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population (Bisi et al. 2011). The fossil record shows that L. timidus was the most common and 

widely distributed hare species in Europe during the last glacial period, with fossils being found 

in Central Europe and southern France (Martínez 1980), northern Spain (Altuna 1970) and also 

in Ireland (Woodman et al. 1997). 

Previous phylogeographic studies: Phylogeographic studies based on mtDNA has 

demonstrated the introgression of L. timidus mtDNA in the Iberian range of L. europaeus 

(Melo-Ferreira et al. 2005). Some populations have been suggested as subspecies; L. t. varronis 

in the Alps, L. t. hibernicus in Ireland and L. t. scoticus in highland areas of Scotland (Angerbjorn 

and Flux 1995). The phylogeography of the species seems to be characterised by a strong sub-

population division and the presence of distinct clades originating in different refugia or long-

term occupations of mountainous areas. Ancient DNA studies (Smith et al. 2017) have 

confirmed that the mountain hare has shown remarkable resilience throughout the last glacial, 

likely due to its capacity for occupying diverse habitats. 

EULIPOTYPHLA 

 

Erinaceus europaeus (Western European Hedgehog) 

Habitat and distribution: According to the classification proposed by Aulagnier et al. (2008) 

three species of the genus Erinaceus were recognised in the western Palearctic; the Western 

European hedgehog (E. europaeus), the Eastern European hedgehog (E. concolor) and the 

Northern white-breasted hedgehog (E. roumanicus). Miller (1912) proposed E. roumanicus as a 

separated species from E. europeaus for the first time but despite this, the classification was 

never popular and both continued to be regarded as conspecific (Ellerman and Morrison-Scott 

1966).  

The western European hedgehog (E. europaeus) is distributed across western Europe and its 

range spreads as far as Scandinavia reaching the Baltic States and northern areas in Russia. 

Deciduous woodland represents the main habitat of the species although they are also found 

in pastureland/meadows and grassland. In the fossil record, E. europaeus appeared for the first 

time in the Eemian Interglacial faunas of central Europe, between 133-114 kyr bp (van 

Kolfschoten et al. 2000).   

Previous phylogeographic studies: It represents one of the best genetically characterised 

species through this area and it was suggested as a principal example of recolonisation of the 
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north from the classic southern refugial areas (Hewitt 2000). Therefore, hedgehogs played an 

essential role as a model for revealing significant aspects of the Quaternary phylogeography of 

Europe.  

Three main clades of mitochondrial DNA have been identified for this species. The first one 

(E1) is a central European clade recolonising from the Apennine Peninsula up into the 

continent centre, even as far as Scandinavia and Estonia. The second is a group (E2) described 

from Iberia that recolonised the north through France to the Netherlands and the British Isles; 

and the third one (E3) is a restricted group from Sicily (Seddon et al. 2001; Bolfíková and Hulva 

2012). In central Europe exists a contact zone between E. europeaus and E. roumanicus (the 

northern white-breasted hedgehog) but the reproductive isolation between both seems to be 

maintained (Bolfíková and Hulva 2012). 

Erinaceus concolor (Hedgehog) 

Habitat and distribution: The range of southern E. concolor includes Asia Minor and the Levant, 

but is isolated from the E. roumanicus range by the Bosporus Strait and Caucasus Mountains 

(Seddon et al. 2002). In the Mediterranean region, the species occurs in Greece, Anatolian 

Turkey, Israel, Syria and Lebanon. Their habitat is mainly urban, suburban and related to 

agricultural areas. 

Previous phylogeographic studies: Studies on mtDNA sequences (Santucci et al. 1998) provided 

evidence of further phylogenetic divergence within the Eastern hedgehog, with a clear 

differentiation between populations from Europe and those from the Near East including a 

taxonomic distinction (Krystufek 2002). Genetic data showed that E. roumanicus is a sister 

species to E. concolor (time of divergence is suggested to 1.7-2.2 Myr; Bannikova et al. 2014) 

and the sister taxon to this group is E. europaeus (time of divergence is suggested to 3.2-4.5 

Myr; Seddon et al. 2001). 

Sorex minutus (Pygmy shrew) 

Habitat and distribution: The species lives in areas with dense vegetation at ground level. Its 

distribution goes from the British Isles and Iberia through much of continental Europe, 

European Russia and Siberia to Lake Baikal in the east. 

Previous phylogeographic studies: Previous studies on S. minutus have resolved a widespread 

lineage that extends from Britain through central and northern Europe to Siberia, and 

southern lineages in the three main southern Peninsulas (Mascheretti et al. 2003; McDevitt et 
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al. 2010). The northern- central European lineage has been suggested to expand from at least 

one central or eastern European refugium, revealing that the species survived the LGM in 

northern glacial refugia (Vega et al. 2010). Several studies, using cyt b, identified previously 

northern glacial refugia for the species (Bilton et al. 1998; Mascheretti et al. 2003). Five clades 

have been identified using the control region, but the support of some of them was low 

(McDevitt et al. 2010) 

CARNIVORES 

 

Canis lupus  

Habitat and distribution: Canis lupus, the grey wolf, is the largest extant member of the canid 

family. Originally, it was the world's most widely distributed mammal but it has become extinct 

in much of western Europe and their present distribution is much more restricted than in the 

Pleistocene. Currently, the species is spread across the northern hemisphere albeit 

discontinuously (Nowak 2003). A large number of subspecies have been described based on 

the considerable variation observed in sizes and coat colours.   

Previous phylogeographic studies: MtDNA phylogeographic studies based on modern samples 

have not revealed a clear geographical structure (Vila et al. 1999; Randi et al. 2000). However, 

when ancient DNA is added to the equation, two major haplogroups (1 and 2) are resolved 

showing a discontinuity and population turnover history from the Late Pleistocene to the 

modern times (Leonard et al. 2007; Pilot et al. 2010). The relationship between wolves and 

dogs is characterised by hybridisations events that could complicate the phylogeographic 

resolution of the species (Godinho et al. 2011). Most of the genetic studies have been focusing 

on short fragments and also in specific geographical regions, so some aspects of the 

phylogeography of the species are still not well resolved. For now, no strong phylogeographic 

structure is found for the species (Randi et al. 2000; Pilot et al. 2010) 

Vulpes lagopus (Arctic Fox) 

Habitat and distribution: The arctic fox is a well-adapted species to arctic conditions (Fuglei 

and Øritsland 1999). Two different ecotypes of foxes have been identified mainly because of a 

diet based on lemmings or coastal foxes characterised by eggs and birds (Braestrup 1941). The 

current habitat of Vulpes lagopus is restricted to tundra regions only in the northern 

hemisphere.  
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Previous phylogeographic studies: Three main hypotheses have been suggested for the origin 

of the Scandinavian fox, where Scandinavia was colonised from the south, from the east and 

surviving the LGM in a local Scandinavian refugium (Frafjord and Hufthammer 1994). The 

phylogeographic studies have revealed an eastern origin for the postglacial Scandinavian arctic 

fox population with the central-western European populations being unable to track their 

habitat responding to climate change (Dalén et al. 2007). The high genetic similarity between 

the extant populations in Scandinavia and Siberia has been suggested as an eastern origin for 

the Scandinavian populations (Dalén et al. 2007). 

Vulpes vulpes (Red Fox) 

Habitat and distribution: The red fox represents the current most widely distributed carnivore 

in the world with a natural range that extends across the entire Holarctic (Larivière and 

Pasitschniak-Arts 1996). The habitat of the species ranged from tundra to desserts with a 

broad spectrum in between.  

Previous phylogeographic studies: MtDNA sequences from Europe, northern Asia and North 

America revealed an ancient intercontinental divergence in the Pleistocene for the species that 

was followed by secondary contact during the last glaciation (Aubry et al. 2009).The 

phylogeography of the red fox in Europe is extraordinarily complex. The lack of 

phylogeographic structure seemed to be the best explanation for the results observed and this 

uncertainty in Eurasia has already been mentioned in the literature on several occasions 

(Teacher et al. 2011; Edwards et al. 2012).  

Gulo gulo (Wolverine) 

Habitat and distribution: The wolverine (Gulo gulo) is a species with a circumpolar distribution 

that corresponds with the Boreal zone of the northern hemisphere (Kvam et al. 1998). In 

Europe, the modern range of the species includes Scandinavia and Russia, north of 60ºN. It is 

also a resident species in Mongolia and China in Asia, but also in Alaska and Canada, including 

some western states in the USA (Whitman 1999). The varieties of habitats that the wolverine 

inhabits include tundra, taiga, forest and woodlands (Mitchell-Jones et al. 1999).  

Previous phylogeographic studies: In the European population five different subpopulations 

have been identified and its distribution is continuously connected with the eastern Russian 

population (Walker et al. 2001).  
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Mustela erminea (Stoat) 

Habitat and distribution: Mustela erminea, stoat or ermine, inhabits an extensive range of 

climatic conditions from warm temperate habitats to artic (King 1991). The earliest M. nivalis 

fossils in Eurasia date to the Late Pliocene (Kurten 1968). During the Late Pleistocene, the fossil 

record reveals the presence of the species in continental Europe during the LGM (Sommer and 

Benecke 2004) and even around 15,000 years ago in northern Norway, where the ice was still 

covering significant areas of Fennoscandia (Fjellberg 1978).  

Previous phylogeographic studies: The broad distribution of the species has not contributed to 

a strong regional phylogeographical structure in Eurasia (Dawson et al. 2014). However, four 

genetically distinct lineages have been identified and corresponded geographically to four 

probable distinct refugia although including North American samples (Dawson et al. 2014). 

Despite this, the effects of the LGM and the subsequent postglacial colonisations in Eurasia 

have yet to be explored. For Ireland, Martínková et al. (2007) concluded a natural colonisation 

by the stoat probably around the LGM. 

Mustela nivalis (Least Weasel) 

Habitat and distribution: The weasel is also a species with a wide distribution which includes 

nearly the entire Holarctic area and inhabits a wide range of habitats. The species has been 

identified with a broad spectrum of morphological variability which has led to the description 

of different subspecies (Frank 1985; Meia and Mermod 1992; Abramov and Baryshnikov 2000).  

Previous phylogeographic studies: Two main groups have been identified for M. nivalis with 

clade I including individuals from the western-Palaearctic region from Spain to Scandinavia and 

clade II more represented in eastern Europe and insular weasel populations (Lebarbenchon et 

al. 2010). In western Europe, two main lineages have been identified; one in the mainland and 

the other in Corsica (Lebarbenchon et al. 2006). 

Martes martes (Pine Marten) 

Habitat and distribution: Martes martes, commonly known as the European pine marten, is a 

mustelid with a wide range that inhabits Europe and northern/central Asia. It is a species 

associated with coniferous and mixed forests (Proulx et al. 2004).  

Previous phylogeographic studies: The species seems to be characterised by a mixed pattern of 

recolonisation after the LGM as previously suggested by Ruiz-González et al. (2013).The fossil 
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record indicates that M. martes could have survived in a cryptic glacial refugium in the 

Carpathians, as well as in the more traditional Mediterranean refugia (Sommer and Benecke 

2004; Sommer and Nadachowski 2006). However, the phylogeographic patterns described for 

the species are still limited. One of the first studies published suggested that central and 

northern populations came from different refugia (Davison et al. 2001). The lack of sampling in 

some areas added some difficulties to the identification of refugia. Ruiz-Gonzalez et al. (2013), 

added an important specimens number, as well as new locations to previous studies.  

Lynx (Eurasian Lynx) 

Habitat and distribution: Lynx lynx is a felid species that is widespread in Eurasia, from central 

Eastern Europe to Eastern Asia, but its range has been reduced in modern times (Nowell and 

Jackson 1996). It is a well-adapted species to different environments and has been considered 

a polymorphic species regarding its morphology.  

Previous phylogeographic studies: From the genetic perspective the Eurasian Lynx has been 

characterised by profound differences in genetic variability between lynx populations (Hellborg 

et al. 2002; Gugolz et al. 2008; Schmidt et al. 2011). At least two different refugia, in the 

Balkans and the Carpathian region, during the LGM are suggested for the Eurasian lynx (Gugolz 

et al. 2008). This is reinforced by the fossil record of the lynx during the LGM in the Balkan and 

Carpathian refugia (Sommer and Nadachowski 2006). 

Ursus arctos (Brown Bear) 

Habitat and distribution: The brown bear is the largest carnivore in Europe. Its habitat has a 

wide distribution, however it was even more extensive in the past, and has been gradually 

reduced by human expansion and hunting (Servheen et al. 1990). The species occupies a great 

variety of habitats from dry steppes in Asia to Arctic shrublands and temperate rain forests. 

During the Late Pleistocene, the range of Ursus arctos overlapped with that of the cave bear, 

Ursus spalaeus, in Europe and western Eurasia. The most recent split between U. arctos and 

another ursid species is with the polar bear (Ursus maitimus) estimated at 150 kyr ago based 

on mtDNA (Lindqvist et al. 2010). However, introgression of mtDNA from polar bears has been 

detected in modern and also ancient U. arctos populations (Edwards et al. 2011; Cahill et al. 

2013, 2015). 

Previous phylogeographic studies: Brown bear phylogeographic studies have shown a strong 

geographical structure in terms of the mtDNA variation (Taberlet and Bouvet 1994; Miller et al. 
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2006; Hirata et al. 2013). However, a lack of phylogeographic structure has been proposed for 

brown bears during the Late Pleistocene in Europe (Hofreiter et al. 2004). In current 

populations, two main clades are found representing the south-west and northeast (Leonard 

et al. 2000). The western clade has been divided into at least two subclades that might 

represent two separated populations that survived in different refugia during the LGM, Iberia 

and Italy (Taberlet et al. 1994; Davison et al. 2011). This current phylogeographical distribution 

is consistent with origins in the three major European southern refugia, so the species has 

served as one of the model species supporting a scenario of glacial refugia and postglacial 

recolonisation of central and northern Europe (Taberlet and Bouvet 1994; Taberlet et al. 1998; 

Hewitt 1999, 2000, 2004). However, Valdiosera et al. (2007) showed an alternative scenario 

where brown bears were not restricted to Mediterranean peninsulas during the LGM but also 

survived in mainland Europe. 

Homo sapiens (Modern Humans) 

Distribution and previous phylogeographic studies: Trying to follow a timeline, modern 

humans seem likely to arrive in Europe around 45,000 ya at the beginning of the Upper 

Palaeolithic (50,000-10,000 ya). The first archaeological record in this continent is dated 

around that time in a wide distribution across Europe with fossils found at Pestera cu Oase in 

Romania (Trinkaus et al. 2003), at Kent’s cavern in United Kingdom (Highman et al. 2011) and 

at Grotta di Fumane in Italy (Benazzi et al. 2015). The oldest dated modern human in Europe 

from which mtDNA has been retrieved and assigned to a specific haplogroup are the dental 

remains found at Grotta di Fumane (Benazzi et al. 2015) and belongs to haplogroup R. The 

individual at Pestera cu Oase carried haplogroup N (Fu et al. 2015). An individual from 

Ust’Ishim in western Siberia, dated earlier than these two individuals, has been assigned to 

haplogroup R as well.  This reflects the first roots of the principal haplogroups N and R from 

where the main European haplogroups arose.  

The next two individuals that still belong to the Early Upper Paleolithic in Europe (>33,000 

years ago) are from Troisième cavern (Goyet) in Belgium dated around 35,000 ya. Both of 

them are clustered in haplogroup M, a lineage which is absent in Europeans today (Posth et al. 

2016). However, this haplogroup is found at a relatively high frequency in modern Asians, 

Australasians, and Native Americans.  Another individual from Grotta Paglicci (Italy), dated to 

around the same period as those from Goyet, carries haplogroup U8c (Posth et al. 2016). 

Haplogroup U8c is a rare clade that is extinct in modern populations and was also described in 

an individual from Dolni Vestonice in the Czech Republic dated around 30,000 ya (Fu et al. 
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2013). Two Romanian samples completed the early upper Paleolithic aDNA dataset. The first 

one is a female from Pestera Muierilor dated around 35,000 ya and belongs to a basal 

haplogroup U6* that is not present in any extant or ancient humans (Hervella et al. 2016). 

However, derived U6 haplotypes are found in present North-Western African populations 

suggesting a possible origin of the lineage in Eurasia and a posterior back-migration to North 

Africa (Hervella et al. 2016). The other individual, a 33,000-year-old from Romania (Pestera 

Cioclovina) is assigned to a basal U lineage that had no derived position leading to known 

subhaplogroups (Posth et al. 2016). Another individual from Russia, Kostenki 14, is clustered 

on the same haplogroup U2 as the individual Kostenki 12 (Fu et al. 2016). 

Continuing the timeline, more individuals from Middle-Upper Palaeolithic (33,000-24,000 ya) 

have been analysed. From the Czech Republic, six individuals around 30 kya have been 

examined. Five of these individuals came from Dolni Vestonice and suggest three of them 

belong to haplogroup U5, one is haplogroup U and the other individual carries haplogroup U8c 

(Fu et al. 2013, Posth et al. 2016). U5 is also representative of the individual at Pavlov, also in 

the Czech Republic, and another individual in Austria (Krems-Wachtberg) (Fu et al. 2016). From 

Italy and Belgium, some individuals from this time belong to haplogroups U2, U5 and M (Posth 

et al. 2016). The detection of this novel branch of haplogroup M, in three Early Upper 

Palaeolithic individuals, is surprising because most M branches are found in the Indian 

Subcontinent and Southeast Asia as well as being widespread in the Pacific and the Americas. 

The period of the Late Upper Palaeolithic (19,000-10,000 ya) is marked by the rise of new 

subhaplogroups like U5b1, U5b2, U5b2a and U8a.  The individuals came from Germany, Italy, 

Belgium, France and Spain. 

The first industry in Europe produced by modern humans is the Aurignacian (appeared around 

42 cal. ka before present (bp)). It is characterised by prismatic blade production with 

retouched blades, carinated and nose-end scrapers (Klein 2008) and was made by hunter-

gatherers until about 30 cal. ka bp. The wider technocomplex includes ornaments such as 

beads, bone and antler implements such as needles and awls (Klein 2008). New technical 

innovations such as projectile hunting gear, bows and arrows appeared around 28 cal. ka bp 

following the Aurignacian. This new industry is named the Gravettian and occurs until around 

23 cal. ka bp at the beginning of the cooling into the LGM. More cultural complexity lead to 

new behaviours such as the construction of dwellings of mammoth bones and the 

transportation of raw material over longer distances (Nalawade-Chawan et al. 2014). 
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In western and central Europe, after an improvement of the climate conditions around 19 cal. 

ka bp, a new culture that represents the culmination of Upper Palaeolithic cultural 

development appeared. Small geometrically shaped implements, stone tools as triangles, 

conical points or semilunar blades were starting to be used. Bone was used extensively to 

make wedges, adzes, hammers, barbed points and harpoons, eyed needles and jewellery. This 

culture is known as the Magdalenian and it spread rapidly over Europe. 

As the ice sheets melted around northern Europe, modern humans were recolonising the 

north with similar stone tools to before the LGM although adding tiny bladelets that were set 

into composite tools as harpoons. These characteristic tools enable us to recognise what is 

known as the Mesolithic. Regarding the mtDNA haplogroups, the U clade is dominant in the 

European Mesolithic with almost all the aDNA samples from this period belonging to this 

haplogroup branch. U5 provides the most common branch found but U2 or U4 have also been 

found. However new haplogroups arrive in Europe such as haplogroup C and have been 

suggested as a possible arrival from eastern refugia (Derenko et al. 2010). 

ARTIODACTYLA 

 

Alces alces (Eurasian Elk) 

Habitat and distribution: The main habitats of Alces alces are the coniferous forests and bogs 

in northern latitudes. They especially favour river valleys and lakes. The modern range 

comprises northern Eurasia although they are also present in northern America. 

Previous phylogeographic studies: The moose is one of the first large mammal species that 

recolonised areas in Europe that were covered by glaciers after the LGM (Schmölcke and 

Zachos 2005). Previous studies suggested three main mtDNA lineages of moose well 

characterised by continent, with Asian, European and American clades identified (Hundermark 

et al. 2002). A contact zone between the Asian and European lineages occurs around Western 

Siberia (Moskvitina et al. 2011). The European lineage has been divided into three different 

sub-clades that were also suggested as possible LGM refugia for the species (Niedzialkowska et 

al. 2014). These are known as western, central and eastern clades (W, Ce and E, respectively). 

The western clade (W) is identified in northern and central Europe, the central (Ce) covers the 

western part of the species’ range and the eastern clade inhabits almost the whole range of 

the species in Europe, except for Scandinavia (Niedzialkowska et al. 2014). This 

phylogeographic pattern has probably been shaped by Late Pleistocene as well as the recent 



40 
 

human impacts on the species, such as overhunting and reintroductions (Niedziałkowska et al. 

2014; Świsłocka et al. 2015).  

Capreolus capreolus (Roe deer) 

Habitat and distribution: The roe deer, Capreolus capreolus, is a widespread species that has 

an extensive range in the Palaearctic, being found in most parts of continental Europe (Stubbe 

1999). It occupies different habitats from forest to semi-desert environments and is also well 

adapted to modern agricultural landscapes (Andersen et al. 1998). 

Previous phylogeographic studies: Despite the fact that C. capreolus is one of the genetically 

best-studied species, roe deer mtDNA studies have shown a complex pattern with difficulties 

in the identification of refugia and postglacial colonisations. Substantial studies have pointed 

to three main clades in western, eastern and central-northern areas in Europe (Vernesi et al. 

2002; Randi et al. 2004; Sommer et al. 2008). The western and the eastern clades are confined 

to Iberia and south‐eastern Europe respectively, probably the Balkans, while the origin of the 

central‐northern clade is still under debate (Sommer et al. 2008; McDevitt and Zachos 2014). 

In Italy, also the appearance of several genetic groups has been proposed (Lorenzini and Lovari 

2006). 

Cervus elaphus (Red deer) 

Habitat and distribution: The red deer is the most widespread deer species in the world. There 

are 22 different subspecies described in the Holarctic (Trense 1989; Geist and McShea 1999). 

Its habitat is characterised by great diversity but generally occupies woodland and feeds in (or 

at the edge) grasslands. 

Previous phylogeographic studies: The first phylogeographical study of this species was made 

by Ludt et al. (2004) and they concluded that a large number of subspecies has to be 

reconceived due to their results. Four different subgroups of red deer were identified in 

Europe, however, more sampling was required to better understand the possible reasons for 

this subdivision (Ludt et al. 2004).  

Skog et al.’s (2009) results across the entire European range of red deer found three major 

clades, called haplogroups A, B and C, with different geographical distributions. The genetic 

analysis of both studies exhibited a large-scale structuring with differentiation between 

western Europe (Hg A), eastern-central Europe (Hg C) and Mediterranean region (Hg B). The 

three clades showed a similar phylogeographical pattern to many other European mammals 
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(Hewitt 2004; Skog et al. 2009). Clades A and C can be identified as descended from glacial 

refugial populations in the Iberian Peninsula and the Balkans, respectively (Skog et al. 2009; 

Niedzialkowska et al. 2011). The fossil record of this species seems to be consistent with this 

phylogeographical data (Sommer and Nadachowski 2006). 

Red deer has been translocated in different areas by humans for more than a millennium and 

this has had a substantial impact on the current phylogeographic patterns (Hartl et al. 2003). 

Studies in Ireland, for example, have been able to detect translocation from Scotland 

(McDevitt et al. 2009c; Carden et al. 2012). This has to be taken into account when 

phylogeographical patterns are described. 

Rangifer tarandus (Reindeer) 

Habitat and distribution: The reindeer is a relatively widespread species around the northern 

Holarctic from the northwest USA to Norway. The habitat range of this herbivore species is 

also wide from continental coastal plains to mountain ranges but also spanning the high Arctic 

to Boreal forests. It has been classified into three different ecological groups; woodland, 

tundra and arctic islands forms (Banfield 1961). In North America, Rangifer tarandus is also 

known as caribou, but the European range (and therefore the classical reindeer designation) 

will be analysed here. 

Banfield (1961) described the distribution of the species during the Pleistocene based on the 

fossil records and the presence of the species south of the ice sheet in Eurasia is confirmed, 

helping him to suggest three different ecotypes originated in three or more isolated refugia 

during the last glacial. 

Previous phylogeographic studies: The first phylogeographic studies based on the control 

region resolved three main clusters, with two of them, found in Eurasia (but also one of them 

in North America with a probable Beringian origin) and probably originated in separate glacial 

populations (Flagstad and Røed 2003). Some more subdivisions have been added for two of 

these three clusters, also changing the nomenclature, not making easy the designation of them 

(Kvie et al. 2016).  

Bison bonasus (European Bison) 

Habitat and distribution: Bison bonasus is found now in Europe and the Caucasus, where it has 

been reintroduced. The habitat of the species is characterised by deciduous forest with 

scattered open glades and woodlands. 
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Previous phylogeographic studies: The European bison or wisent is one of the species (and 

genera) whose evolutionary history in Eurasia is still not well resolved despite its current 

endangered status and having a particularly rich fossil record (Kowalski 1967; Groves 1981). 

The species has no distinguishable identified fossils in the Pleistocene and seems to appear 

during the early Holocene (Benecke 2005). However, a recent study found that the ancestors 

of modern wisent were also present in Europe through the Late Pleistocene, with hybridisation 

processes between wisent and aurochs (Soubrier et al. 2016).  

The mtDNA analyses have revealed two different clades, including Clade X that is related to 

modern and historical wisent, but divergent from a modern wisent lineage probably due to a 

severe bottleneck that led to modern wisent (Soubrier et al. 2016). 

Sus scrofa (Wild Boar) 

Habitat and distribution: South-East Asia seems to be the area where the wild boar (Sus scrofa) 

was originated after the differentiation of the genus Sus about 3 million years ago (Lucchini et 

al. 2005). It is a species with one of the widest geographical ranges of all terrestrial mammals 

being native to Asia, Europe and North Africa but presents as an introduced species in all the 

continents, except Antarctica (Scandura et al. 2011). 

Previous phylogeographic studies: The oldest record of Sus scrofa in Europe are dated from the 

Early Pleistocene around 1.5-1.0 Mya and belonged to two archaeological sites, one in 

Germany and the other one in Spain (Rook and Martínez-Navarro 2010). In relation to the 

mtDNA estimation for the most recent common ancestor in Eurasia, the values changed and 

are closer to a more recent differentiation between 0.8 and 0.4 Mya (Mona et al. 2007).  

Quaternary contraction and expansion events due to climate fluctuation may explain the 

actual genetic variation in the wild boar across Europe, as can be described for other 

temperate mammals (Hewitt 2004). The current distribution of the wild boar was shaped by 

the glaciations of the late Pleistocene forcing the species to take southern areas as refugia and 

re-colonising the continent from there (Scandura et al. 2011).  

Studies of mtDNA have contributed to the understanding of the phylogeographic pattern of 

Sus scrofa in Europe. Based on the control region, two main European lineages or haplogroups 

have been identified sharing similar distributions. The first one is widespread over the 

continent from the west in Portugal to eastern Poland and is known as E1. This lineage can be 

divided in two main clades, A-side and C-side, described by Larson et al. (2005). The second 
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main lineage is E2 has been found in Italy and Sardinia today and in Croatia before the 

Neolithic based on an aDNA study (Larson et al. 2007). 

A Near Eastern haplogroup has also been identified in Europe but only in individuals from the 

Neolithic in France and Germany in the west (Larson et al. 2007). In the actual distribution of 

wild boar, the Near Eastern (NE) haplogroup is only found in eastern Greece and Turkey. Also 

found in Europe is the Asian (A) clade. Individuals from the Iberian and Italian Peninsulas and 

one individual from Belgium are clustered in this clade that is today native to Asia. Domestic 

pigs also carried this haplogroup across Europe and this might be a consequence of extensive 

cross-breeding performed mainly between the 18th to the early 19th century in Britain (Jones 

1998). 

2.4 Geographical delimitations 
 

From the geographical perspective of this project, Europe has been defined following specific 

borders based on the extent of political Europe. The northern border is represented by the 

Arctic Ocean, the western one by the Atlantic Ocean, and on the southern one by the 

Mediterranean Sea and the Black Sea. The continent’s eastern boundary runs along the Ural 

Mountains. For some species, areas that can be easily recognised as the Caucasus, Northern 

Africa and the Near East have been included if data were available.  

Given the variability of areas sampled and also based on the scope of this research, specific 

areas have been defined within Europe in order to test the central hypothesis. Europe has 

been divided into ten regions based on the significant biogeographic subdivision that were 

identified from previous phylogeographic studies (Petit et al. 2003; Lumibao et al. 2017). These 

areas are represented by the Iberian Peninsula, Western Europe, Central Europe, Apennine 

Peninsula, British Isles, Balkans, Eastern Europe, Scandinavia, Caucasus and the Near East 

(Figure 2.2). The definition of these areas could be altered based on more accurate available 

geographical information for species where a large area of the continent was not sampled. 

Through this delimitation, the understanding and identification of refugial areas can be 

addressed with confidence. This is because the main hypotheses suggested for most of the 

species previously analysed were southern and northern refugia.  

The three main traditional refugia that have been suggested for the southern refugia paradigm 

are Iberia, Italy and the Balkans (Hewitt 2000). Therefore, these areas have been included in 

the analysis but also some others that could represent northern refugia as have been 
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previously suggested (Stewart et al. 2010). The areas chosen also reflect the main barriers that 

might influence the migration of different species in the Late Pleistocene and Holocene. 

 

Figure 2.2 Map representing the geographical regions considered for the analysis. Each colour represents one area.  

2.5 Database 
 

For each analysed species in Europe, one database was created using Microsoft™ Excel. The 

purpose of the database was to create a Europe-wide record of the information available for 

the different species regarding mtDNA CR. This includes the lab code of the sample, the 

GenBank accession number, the site, the country, the area, the date (in case of ancient DNA 

sample), references (Table 2.2) and haplotype assigned to the sample (after analysis). The 

classification of “area” is divided by main geographical zones across Eurasia (discussed above) 

and is the principal distinction that is taken into account for the analysis of the general 

patterns. Not assigning a coordinate for each sample is because the insufficient available 

information (see Gratton et al. 2016) hence; countries are defined and selected as the 

minimum unit to take account in the main analysis.  
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Table 2.2 Mammal species that have been chosen for the meta-analysis and studies which sequences were included in the analysis. 

Species References 

Arvicola amphibius Piertney et al. (2005), Brace et al. (2016) 

Arvicola sapidus Centeno-Cuadros et al. (2009), Centeno-Cuadros and Godoy (2010), Alasaad et al. (2011) 

Microtus arvalis Haring et al.(2000), Fink et al. (2004), Heckel et al. (2005), Borkowska et al. (2010), Borkowska (2011) 

Myodes glareolus Stacy et al. (1997), Matson et al. (2000), Matson and Baker (2001), Spitzenberger et al. (2000), Dekonenko et al. (2003), Dunina-
Barkovskaya (2004),  Yashina et al. (2005 Unpublished), Wickliffe et al. (2006), Meeks et al. (2007, 2009), Johansson et al.(2008), Razzauti et 
al. (2012), Çolak et al. (2016) 

Lemmus lemmus Stacy and Ehrich (1998 Unpublished), Fedorov and Stenseth (2001), Lagerholm et al. (2014) 

Cricetus cricetus Neumann et al. (2004), Banaszek et al. (2009), Banaszek and Ziomek (2011), Schroder et al. (2014), Hegyeli et al. (2015), Feoktistova et al. 
(2016) 

Sciurus vulgaris Barratt et al. (1999), Reyes et al. (2000), Hale et al. (2004), Tamura and Hayashi (2007), Finnegan et al. (2008), Grill et al.(2009), Dozieres et 
al. (2012),  Simpson et al. (2013), Liu et al. (2014), Rezouki et al. (2014), Madsen et al. (2015), Lucas et al. (2015) 

Castor fiber Durka et al. (2005), Horn et al. (2011, 2014), Kropf et al. (2013), Biedrzycka et al. (2014), Frosch et al. (2014),  Senn et al. (2014) 

Erinaceus europaeus Seddon et al. (2001), Bolfíková and Hulva (2012) 

Erinaceus concolor Seddon et al. (2001, 2002), Bolfíková and Hulva (2012) 

Sorex minutus McDevitt et al. (2009, 2010, 2011) 

Lepus europaeus Thulin et al. (1997), Pierpaoli et al. (1999), Arnason et al. (2002), Kasapidis et al. (2005), Fickel et al. (2005, 2008),  Schmidt and Fickel (2005 
Unpublished), Fredsted et al. (2006), Melo-Ferreira et al. (2007, 2011), Sert et al. (2009), Stamatis et al. (2009),  Menzies et al. (2010 
Unpublished), Pietri et al. (2011), Antoniou et al. (2013), Canu et al. (2013), Sanz-Martín et al. (2014), Mengoni et al. (2015), Vernesi et al. 
(2016), Giannoulis et al. (2018) 
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Table 2.2 Mammal species that have been chosen for the meta-analysis and studies which sequences were included in the analysis. 

 

Lepus timidus Thulin et al. (1997), Pierpaoli et al. (1999), Wu and Zhang et al. (2000 Unpublished),  Waltari et al. (2004), Waltari and Cook (2005),  
Fredsted et al. (2006), Melo-Ferreira et al. (2007, 2014), Stamatis et al. (2008), Prost et al. (2010), Vernesi et al. (2010 Unpublished), Zachos 
et al. (2010), Liu et al. (2011),  Fu (2015 Unpublished), Mengoni et al. (2015) 

Canis lupus Tsuda et al. (1997), Vila et al. (1997, 1999), Randi et al. (2000), Valière et al. (2003), Verginelli et al. (2005), Björnerfeldt et al. (2006), 
Gomercic et al. (2010), Pilot et al. (2006, 2010, 2014), Baltrunaite et al. (2013), Boggiano et al. (2013), Druzhkova et al. (2013), Thalmann et 
al. (2013), Jansson et al. (2014), Ersmark et al. (2016), Koblmüller et al. (2016), Montana et al. (2017) 

Vulpes lagopus Maldonado et al (1997), Strand et al. (2000 Unpublished), Dalen et al. (2002, 2004, 2007), Nyström et al. (2006), Dzhikiya et al. (2007), 
Mellows et al. (2012), Ploshnitsa et al. (2013), Koepfli et al. (2015), Yan et al. (2016) 

Vulpes vulpes Koop et al. (1998), Okumura et al. (1996), Valiere et al. (2003), Statham et al. (2005, 2012, 2014), Arnason et al. (2006), Inoue et al. (2007), 
Kirschning et al. (2007), Berry (2008), Zhong et al. (2010), Teacher et al. (2011), Edwards et al. (2012), Kutschera et al. (2013), Galov et al. 
(2014), Koepfli et al. (2015), Leite et al. (2015), Sun et al. (2015) 

Gulo gulo Walker et al. (2001), Tomasik and Cook (2005), Zigouris et al. (2013). 

Mustela erminea Kurose et al. (1999, 2005), Martinkova et al. (2007), Dawson et al. (2014), Emami Khoyi et al. (2016) 

Mustela nivalis Kurose et al. (1999, 2005), Lebarbenchon et al. (2006, 2010), Yu et al. (2011), Emami-Khoyi et al. (2016), Rodrigues et al. (2016) 

Martes martes Davison et al. (2001), Statham et al. (2005), Pertoldi et al. (2008, 2014), Ruiz-Gonzalez et al. (2008, 2013), Rozhnov et al. (2010), Hosoda et 
al. (2011), Nagai et al. (2012),  Sindičid (2015 Unpublished), Korablev et al. (2017) 

Lynx lynx Hellborg et al. (2002), Gugolz et al. (2008),  Sindičid et al. (2012), Ratkiewicz et al. (2014), Rueness et al. (2014), Rodríguez-Varela et al. 
(2015, 2016),  Li et al. (2016), Paijmans et al. (2016) 

Ursus arctos Taberlet and Bouvet (1994), Leonard et al. (2000), Masuda et al. (2001), Barnes et al. (2002), Hofreiter et al. (2004), Valdiosera et al. (2007, 
2008), Bon et al. (2008), Calvignac et al. (2008, 2009),  García et al. (2009 Unpublished), Korsten et al. (2009), Murtskhvaladze et al. (2010), 
Edwards et al. (2011, 2014),  Kocijan et al. (2011), Hailer et al. (2012), Bray et al. (2013), Frosch et al. (2014b), Salomashkina et al. (2014, 
2017), Baca et al. (2014),  Xenikoudakis et al. (2015), Ashrafzadeh et al. (2016), Çilingir et al. (2016), Fortes et al. (2016)  



47 
 

Table 2.2 Mammal species that have been chosen for the meta-analysis and studies which sequences were included in the analysis. 

 

Homo sapiens *Palaeolithic: Bramanti et al. (2009), Krause et al. (2010), Hervella et al. (2012), Brandt et al. (2013),  Raghavan et al. (2014), Seguin-
Orlando et al. (2014), Benazzi et al. (2015), Fu et al. (2015, 2016), Posth et al. (2016)  

*Mesolithic: Bramanti et al. (2009), Delsate et al. (2009), Malmström et al. (2009, 2015), Der Sarkissian et al. (2011, 2013, 2014), Sanchez-
Quinto et al. (2012), Skoglund et al. (2012, 2014), Bollongino et al. (2013), Brandt et al. (2013), Lazaridis et al. (2014, 2016), Olalde et al. 
(2014), Haak et al. (2015),  Hofmanová et al. (2015), Mathieson et al. (2015), Fu et al. (2016), Posth et al. (2016) 

Alces alces Polziehn and Strobeck (1997), Hundertmark et al. (2002), Swislocka et al. (2008, 2013), Moskvitina et al. (2011), Hassanin et al. (2012),  
Kholodova et al. (2014), Niedziałkowska et al. (2014), Kangas et al. (2015), Nemoikina et al. (2016), Wennerström et al. (2016) 

Capreolus capreolus Douzery and Randi (1997), Wiehler and Tiedemann (1998), Vernesi et al. (2002, 2016), Randi et al. (2004), Fajardo et al. (2007), Royo et al. 
(2007), Gentile et al. (2009), Hassanin et al. (2011), Zvychainaya et al. (2011), Fickel et al. (2012, Unpublished), Mucci et al. (2012), Baker 
and Hoezel (2013, 2014), Lorenzini et al. (2014), Matosiuk et al. (2014), Olano-Marin et al. (2014), Puraite et al. (2014), Biosa et al. (2015), 
Nemeth et al. (2015 Unpublished) 

Cervus elaphus Hmwe et al. (2006), Nussey et al. (2006), Egyed et al. (2008 Unpublished), Nielsen et al. (2008), Perez-Espona et al. (2009), Skog et al. 
(2009), Haanes et al. (2010),  Niedziałkowska et al. (2011, 2012), Biedrzycka et al. (2012), Carden et al. (2012), Rosvold et al. (2012), Meiri et 
al. (2013), Krojerova-Prokesova et al. (2015), Borowski et al. (2016), Carranza et al. (2016), Frank et al. (2017) 

Rangifer tarandus Dueck (1998), Gravlund et al. (1998), Hundertmark et al. (2002), Flagstad and Røed (2003), Røed et al. (2008, 2011, 2014), Eger et al. 
(2009), McDevitt et al. (2009b), Bjornstad and Røed (2010), Kholodova et al. (2011), Lorenzen et al. (2011), Baranova et al. (2012), 
Bjornstad et al. (2012), Carden et al. (2012), Letts et al. (2012), Baranova et al. (2016), Kvie et al. (2016a, 2016b), Korolev et al. (2017) 

Bison bonasus Bork et al. (1991), Ward et al. (1999), Verkaar et al. (2004), Anderung et al. (2006), Wójcik et al. (2009), Zeyland et al. (2012), Yudin et al. 
(2012), Massilani et al. (2016), Soubrier et al. (2016), Wecek et al. (2016) 

Sus scrofa Okumura et al. (1996), Giuffra et al. (2000), Alves et al. (2003), Larson et al. (2005, 2007), Fang et al. (2006), Scandura et al. (2008), Hajji 
and Zachos (2011), Kim et al. (2011), Alexandri et al. (2012), van Asch et al. (2012), Ottoni et al. (2013), Kusza et al. (2014), Vilaça et al. 
(2014), Velickovic et al. (2015), Menendez et al. (2016) 
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All this information is retrieved from GenBank entries and directly from the publications (or 

supplementary materials). From the papers, the number of individuals (or frequencies) for 

each haplotype retrieved were obtained enabling a full reconstruction of all the original 

studies included in the database. These reconstructed data sets were combined for each 

species to create species-level diversity estimates across the sampled range. As mentioned 

before, one of the main difficulties is based on reconstructing the haplotypes. A high number 

of authors submitted only the haplotype sequences to GenBank, so it is essential to 

reconstruct and to know how many individuals are represented by each haplotype. From these 

papers, numbers of individuals for each haplotype are obtained (where published), enabling 

the full reconstruction of the original study data set through manual re-assembly using 

FASTA/Geneious files downloaded from GenBank. Some of the sequences have been 

impossible to attribute to a specific number of individuals, but sequences are still added to the 

analysis. After the creation of the database, the analysis will be the same for each species. 

2.6 Data analysis 
 

All sequences obtained were aligned and edited using the software BioEdit 7.2.3 (Hall 1999) 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and Geneious 9.1.4 (Kearse et al. 2012). 

Due to the variation in overlap and length of the currently available CR sequences from 

Genbank some adjustments have to be made. Within each species, sequences were 

standardised to the minimum overlapping sequence length available for each species. The 

alignment which allows the comparison with as many aDNA sequences as possible (where 

published) will be the one selected for the analysis. Ancient DNA typically presents shorter 

fragments due to a lack of preservation over time. As a result of these shorter alignments, the 

number of haplotypes might be reduced due to collapsing into larger ones. This will represent 

a caveat that needs consideration because it might represent a reduction of the resolution. 

However, for the majority of the species, the main genetic clades are not lost. If there was not 

aDNA data available, then the longest fragments had priority. Therefore, some sequences 

were not included in the analysis because of short length.   

The most common measures of genetic diversity in population studies are haplotype and 

nucleotide diversity (Egeland and Salas 2008, Goodall-Copestake et al. 2012). To calculate 

those values, a full reconstruction of the data sets (including all individuals) is required. That is 

why it is so important that what is mentioned in the last section is considered. The number of 

haplotypes, haplotype (hd) and nucleotide (π) diversity are calculated using DNAsp v.5.10.01 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
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(Librado and Rozas 2009). During the analysis, considerable confusion on each haplotype 

designation has been revealed. This is due to the variation in the sequence length and lack of 

common designation for new and already described haplotypes in different studies. This is the 

main reason to recalculate the number of haplotypes for the meta-analysis and then 

numbering them (this will vary regarding the numbers of haplotypes described per species). 

The number of individuals sampled for each species and the sample sizes per population varied 

among species and studies. Samples were grouped by the different regions described in 

section 2.4 ensuring a common within-region samples size that comprises a higher minimum 

number of samples. To understand what proportion of the population diversity (genetic 

diversity) was represented by the different sample sizes, haplotype sampling coverage was 

estimated following the methods of Dixon (2006). These are based on the number of 

haplotypes and individuals sampled using the Stirling probability distribution and Bayes 

theorem to obtain a posterior distribution of the total number of haplotypes in the population, 

including those that are not yet observed due to sampling constraints.  

Under-sampling can influence the diversity indexes (Goodall-Copestake et al. 2012) with, for 

example, haplotype diversity generally being increased with sample sizes (Pereira et al. 2004). 

Haplotype sampling coverage estimates indicate the proportion of the population genetic 

diversity that is represented by that specific sample size, so high level of sampling 

completeness is a requirement to address the meta-analysis. Following Pedreschi et al. (2018) 

a minimum of 75% completeness was established. An extra effort to standardise across 

differences in the geographical distribution of sampling was made by using rarefraction (Heck 

et al. 1975). Considering the effect of different sample sizes on genetic diversity estimations a 

rarefraction method implemented in HP- RARE (Kalinowski 2005) was used to calculate 

haplotype richness and the richness of private alleles. The minimum sample size between 

species and regions was established as the number of haplotypes rarefied following Lumibao 

et al. (2017). 

For all the 30 species analysed, and in addition to this interspecific study, an intraspecific 

analysis was conducted. This analysis enables a comparison of the effects and includes 

inferences on the location of refugia for differently adapted mammal taxa and the resultant 

patterns from different phylogeographical studies. 

Knowing the different haplotypes, a better phylogenetic analysis has been done through a 

phylogenetic tree for each species in order to identify the main mtDNA haplogroups. For the 

selection of the best model of nucleotide substitution JModelTest (Posada 2008) has been 
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used under the BIC criterion. The Bayesian phylogenetic method was implemented using 

MrBayes (Ronquist et al. 2012). The phylogenetic trees are represented using FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 

In many cases, phylogenetic trees might not accurately mirror the reticulated relationship 

among haplotypes (Posada and Crandall 2001). Networks can reflect these connections with 

more details, so network analysis is carried out through a median-joining networks algorithm 

using Network (Fluxus Technology Ltd) and PopART 1.0 (Leigh et al. 2015). Furthermore, 

temporal networks are also created using a statistical parsimony network using the script 

TempNet (Prost and Anderson 2011) in R (R Core Team 2013). This is useful for 

heterochronous DNA data (sequences of different ages) and to display information from more 

than one geographical group, fitting perfectly for the analysis. 

Through all these analyses, this thesis addresses fundamental questions in phylogeography 

and with a novelty of approach and develops a useful method that could also be implemented 

for other genetic markers in future research. The methods and the materials presented above 

represent the core of this research and lay the foundations for the next chapters. The 

comparative approach that characterised this research is presented here in detail with the aim 

to help to understand better the context in which this thesis has been developed.   

 

 

 

 

 

 

 

 

 

http://www.google.com/url?q=http%3A%2F%2Ftree.bio.ed.ac.uk%2Fsoftware%2Ffigtree%2F&sa=D&sntz=1&usg=AFQjCNHLWieszKe_rWLU_tzBrivx9OfC5g
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Chapter 3. Modern mammalian genetic diversity in 

Europe 

3.1 Introduction 
 

Genetic diversity has been traditionally considered one of the most fundamental dimensions 

of biodiversity (May 1994). The amount of genetic diversity within a species provides the 

potential for evolutionary change (Lewontin 1974). However, the general patterns of diversity 

are not always evident when the approach is focused on the individual taxa and their 

phylogeographic and phylogenetic relationships (Taberlet et al. 1998). Knowledge of the 

current European distribution of genetic diversity across different species is an important task 

to be addressed in order to understand the legacy of the Late Pleistocene glaciation in the 

evolution of the species.  

The comparative analysis of the spatial distribution of genetic diversity of species can answer 

many questions about the different demographic and regional trends (Bermingham and Moritz 

1998; Arbogast and Kenagy, 2001; Hewitt 2004; Hickerson et al. 2010; Gratton et al. 2017; 

Lumibao et al. 2017; Pedreschi et al. 2018). Current geographical patterns of biodiversity in 

Europe are shaped by significant climatic fluctuations during the Quaternary (Hewitt 2000). 

Genetic data have emerged as the most important source of information about demographic 

histories of species. Their spatial patterns, based on genetic diversity, can infer population 

range dynamics (Hewitt 2000; Drummond et al. 2005; Gratton et al. 2017). Traditionally, 

phylogeographic studies have suggested strong latitudinal patterns of genetic diversity due to 

repeated population expansions and contractions across glacial/interglacial periods including a 

loss of diversity from southern to northern Europe (Taberlet et al. 1998; Hewitt 1999, 2000, 

2004).  

The last glaciation in Europe, especially the Last Glacial Maximum (LGM), has been 

conventionally suggested as the period where many temperate species retreated to southern 

areas, recolonising central and northern Europe after the glaciation (Taberlet et al. 1998; 

Hewitt 1999, 2000, 2004). At least three main glacial refugia were identified for temperate 

species in southern Europe; Iberian, Italian and Balkan peninsulas (Hewitt 1999). Prolonged 

isolation in refugia is likely to have had an effect on the diversity and divergence of the 

populations. Therefore, these areas have been suggested as concentrating the highest genetic 

diversity in the European continent. As a consequence, the intraspecific diversity should 
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decline away from refugia, due to successive founder events during postglacial colonisation 

(Hewitt 1996, 2000; Petit et al. 2003). However, the presence of northern refugia probably has 

an impact on the genetic diversity patterns in Europe (Stewart et al. 2010). Refugia can also be 

identified based on the endemic haplotypes found in those areas in addition to higher genetic 

diversity values (Maggs et al. 2008). 

The phylogeographic patterns found in Europe have also been used to understand the genetic 

implications of current climate change (Petit et al. 2003; Hampe and Petit 2005; Linares and 

Tiscar 2010). The analysis of genetic data using trees suggested that southern refugia 

contributed to the post-glacial migration (Petit et al. 2002). This pattern was also supported in 

Petit et al. (2003), indicating a relatively common pattern for different trees and shrubs species 

in Europe using chloroplast DNA. Recent studies (Lumibao et al. 2017) have confirmed the 

classic southern richness and northern purity for woody taxa of the continent. However, the 

individualistic response of species makes it necessary to test this model for animal species 

(Stewart et al. 2010; Pedreschi et al. 2018). 

For animals, more descriptive interspecific analyses have been done with some reviews 

pointing to traditional patterns of diversity (Taberlet et al. 1998; Hewitt 2000). However, these 

studies did not reflect a definitive pattern of diversity due to a low number of comparison 

studies between species and a reduced number of species and individuals analysed at the start 

of the 2000s (Taberlet et al. 1998; Hewitt 2000). The most recent study of this nature 

(Pedreschi et al. 2018) including small mammals, established a complex scenario where no 

general patterns were found.  

The present study investigates general patterns of genetic diversity by examining the 

mitochondrial DNA (mtDNA) control region for a range of mammal species testing for 

congruence in genetic diversity patterns among them. The traditional pattern of southern 

richness and northern purity is tested and this analysis will provide a better understanding of 

the genetic diversity patterns in Europe and to identify possible refugia. 

3.2 Materials and Methods 

3.2.1 Data collection 

 

All terrestrial mammal species with a broad geographical range (0.5 x 106 km2) in the European 

continent have been considered. In total 181 terrestrial species were considered to be 

included in the analysis. However, due to small sample size, peculiarities in the sequence 
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availability and small sample ranges covered for the species a total of 84 species were 

selected, of these, 54 species were discarded as sample size availability was less than 50 

individuals. In total, this resulted in a sample size of 29 species.   

The main methods that defined how the sequences were obtained are described in Chapter 2. 

MtDNA sequences were targeted for mammal species within a European range. The selection 

of mtDNA is due in part to its relatively rapid rate of mutation, a high number of copies per cell 

and its haploid maternal inheritance mechanism which make it useful for the elucidation of 

demographical changes as well as the population history of each species (Avise 1987, 1995; 

Moritz 1994). For these reasons, mtDNA sequence data are and will continue to represent an 

important marker in phylogeography (Garrick et al. 2015). As different genetic markers could 

potentially distort the comparison based on diversity across taxa, the same mtDNA fragment 

has been chosen across all species. The region selected for the analysis (D-loop) is also widely 

used in phylogeographic studies (e.g. Seddon et al. 2001; Troy et al. 2001; Scandura et al. 

2008). The D-loop occurs in a non-coding area of the mtDNA. It presents a strong rate of 

heterogeneity between sites, a high frequency of events (i.e., insertion and deletions and 

lineage specificity) which makes it a good genetic marker for phylogeographic purposes 

(Saccone et al. 1991; Pesole et al. 1999).  

Phylogeographic studies of mammals in Europe were surveyed in the literature and for 

sequence availability. Publications with the keywords “phylogeography” “Europe” “mtDNA” 

were searched in Google Scholar and Web of Science. Furthermore, exhaustive research for 

data availability was done through GenBank where sequences have been searched using 

species names, with “d-loop” or “control region” as keywords in this database. This search was 

conducted until January 2018. 

The total number of individuals included for each taxon and the number of individuals per 

population varied among the studies considered for the meta-analysis. To test the main 

hypothesis and to consider the inconsistency of regions sampled, specific areas have been 

defined within Europe. The continent has been divided into ten regions based on significant 

biogeographic subdivisions or discontinuities identified from previous phylogeographic and 

palaeoecological studies. This ensured a minimum sample size across each region of more than 

10 individuals for the species analysed (see Chapter 2).  These regions are represented by the 

Iberian Peninsula, Western Europe, Central Europe, Apennine Peninsula, British Isles, Balkans, 

Eastern Europe, Fennoscandia, Caucasus and the Near East (see Chapter 2). 
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An effort to standardise for differences in the size and distribution of sampling has been made. 

Rarefraction (Heck et al. 1975) was used to standardise across uneven sample size between 

species. Haplotype sampling coverage (i.e., what proportion of the population/genetic 

diversity is represented by our samples) was estimated using the methods of Dixon (2006), 

based on the number of haplotypes and individuals sampled. The Stirling probability 

distribution and the Bayes theorem were used to obtain a posterior distribution of the total 

number of haplotypes, in the population including those not yet observed.  

3.2.2 Data analysis 

 

All sequences obtained were aligned and edited manually using the software BioEdit 7.2.3 (Hall 

1999) (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and Geneious 9.1.4 (Kearse et al. 

2012). Due to the variation in overlap and length of the current control region (CR) sequences 

available from Genbank, some adjustments have to be made. Within each species, sequences 

were standardised to the minimum overlapping sequence length available for each species. 

The alignment which allows the comparison with as many ancient DNA sequences as possible 

(where published) will be the one selected for the analysis. If there was no ancient DNA data 

available, then the longest fragments had priority. Therefore, some sequences were not 

included in the analysis because of short lengths.   

The most common measures of genetic diversity in population studies are haplotype and 

nucleotide diversity (Egeland and Salas 2008, Goodall-Copestake et al. 2012). To calculate 

those values, a full reconstruction of the data sets was required. The number of haplotypes, 

haplotype (hd) and nucleotide (π) diversity was calculated using DNAsp v.5.10.01 (Librado and 

Rozas 2009). The variation in the sequence length and lack of common designation for new 

and already described haplotypes in different studies, is the main reason to recalculate the 

number of haplotypes and numbered them according to the number of new haplotypes 

identified per species. 

A commonly used simple estimation for genetic diversity is the raw number of haplotypes. 

Haplotype uniqueness has also been suggested as a parameter to identify refugial populations 

(Petit et al. 2002; Maggs et al. 2008). High numbers of private haplotypes are associated with 

refugial areas, as well as areas of high allelic richness which would be indicative of refugia if 

the haplotype frequencies are higher than the genetic distance between haplotypes (Petit et 

al. 2002; Petit et al. 2003; Provan and Bennett 2008). For standardisation of the private 

haplotypes richness, a rarefraction method was set to a standard sample size of 5 and 10 using 

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
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HP-Rare v1 (Kalinowski 2004). The mean across all species was calculated for each of the 

regions to examine general trends for diversity and identify patterns of diversity in the 

continent. 

3.3 Results 
 

A total of 29 mammal species were investigated for genetic diversity measures across the 

European continent (Table 3.1). For 14 species ancient DNA (aDNA) sequences were available 

and then added to the comparative analysis for the temporal periods. For Homo sapiens, the 

Mesolithic samples were used as modern samples to avoid the complexity of the current 

diversity in Europe (Soares et al. 2010) and understand better the implications of the LGM. The 

minimum number of individuals per species included in the analysis was 60 for Erinaceus 

concolor and the maximum number of individuals included for one species was 4077 for Cervus 

elaphus. In total, between 8 and 247 different haplotypes were obtained for the species 

analysed. The sequence lengths, as well as the numbers of haplotypes observed, the 

completeness and the most likely number of haplotypes reported are presented in Table 3.1 

for each species. 
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Table 3.1 Species that were included in the analysis and for which genetic diversity measures were calculated. Number of individuals, sequence length, number of haplotypes observed 

and the most likely number of haplotypes in population and the percentage for completeness of sampling (Dixon 2006).   

Family Species Common Name Individuals 
included 

Sequence 
length 

Number of 
haplotypes 

Most likely No. of 
haplotypes (Range) 

Completeness 
(%) 

Ancient 
DNA 

Cricetidae Arvicola amphibius European Water 
Vole 

90 643 58 93(77-184) 62 ✓ 

Cricetidae Arvicola sapidus Southern Water 
Vole 

276 204 76 78 (76-81) 97 
 

Cricetidae Microtus arvalis Common Vole 683 274 73 73 (73-73) 100  

Cricetidae Myodes glareolus Bank Vole 1110 250 126 126 (126-126) 100  

Cricetidae Lemmus lemmus Norway Lemming 
105 98 19 19 (19-20) 100 ✓ 

Cricetidae Cricetus cricetus Black-bellied 
Hamster 

561 210 44 44 (44-44) 100 
 

Sciuridae Sciurus vulgaris Eurasian Red 
Squirrel 

1050 249 214 215 (214-218) 100 
 

Castoridae Castor fiber Eurasian Beaver 
633 487 36 36 (36-36) 100 ✓ 

Leporidae Lepus europaeus European Hare 2177 225 247 247 (247-247) 100  

Leporidae Lepus timidus Mountain Hare 
454 266 200 233 (220-247) 86 ✓ 

Erinaceidae Erinaceus 
europaeus 

Western 
European 
Hedgehog 

387 405 56 56 (56-57) 100 
 

Erinaceidae Erinaceus concolor Hedgehog 62 388 20 21 (20-24) 95  

Soricidae Sorex minutus Eurasian Pygmy 
Shrew 

280 290 138 171 (158-187) 81 
 

Canidae Canis lupus Gray Wolf 
1613 235 35 35 (35-35) 100 ✓ 

Canidae Vulpes lagopus Arctic Fox 
351 278 35 35 (35-35) 100 ✓ 
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Table 3.2 Species that were included in the analysis and for which genetic diversity measures were calculated. Number of individuals, sequence length, number of haplotypes 

observed and the most likely number of haplotypes in population and the percentage for completeness of sampling (Dixon 2006). 
Canidae Vulpes vulpes Red Fox 

983 219 146 146 (146-147) 100 ✓ 
Mustelidae Gulo gulo Wolverine 237 317 8 8 (8-8) 100  

Mustelidae Mustela erminea Stoat 207 502 66 69 (66-74) 96  

Mustelidae Mustela nivalis Least Weasel 192 514 82 94 (87-103) 87  

Mustelidae Martes martes Pine Marten 705 217 77 77 (77-77) 100  

Felidae Lynx lynx Eurasian Lynx 
810 498 50 50 (50-50) 100 ✓ 

Ursidae Ursus arctos Brown Bear 
849 122 141 141 (141-143) 100 ✓ 

Hominidae Homo sapiens Modern Human 
86 325 35 39 (36-45) 90 ✓ 

Cervidae Alces alces Eurasian Elk 1586 465 74 74(74-74) 100  

Cervidae Capreolus 
capreolus 

European Roe 
Deer 

2839 293 181 181 (181-181) 100 
 

Cervidae Cervus elaphus Red Deer 
4077 180 46 46(46-46) 100 ✓ 

Cervidae Rangifer tarandus Reindeer 
1607 117 236 236 (236-237) 100 ✓ 

Bovidae Bison bonasus European Bison 
172 225 25 25 (25-25) 100 ✓ 

Suidae Sus scrofa Wild Boar 
1220 73 39 39 (39-39) 100 ✓ 
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The haplotype (hd) and nucleotide (π) diversity values for each species were calculated 

without including aDNA sequences (Figure 3.1). Haplotype diversity measures ranged from 

0.4611 to 0.9863 and nucleotide diversity values ranged from 0.0055 to 0.067. The lowest 

values for haplotype diversity were found for Bison bison, Gulo gulo and Sus scrofa while for 

nucleotide diversity they were found for Gulo gulo, Mustela erminea and Lynx lynx (Figure 3.1). 

The highest values of diversity were identified in Arvicola amphibius, Lepus timidus and 

Mustela nivalis.  

 

 

 

 

 

 

 

 

 

Figure 3.1 a) Nucleotide diversity values for each of the 29 different species analysed. b) Haplotype diversity values. 

a) 

b) 
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For rodents, eulipotyphla, carnivores and arctiodactyla different groups were analysed (Figure 

3.2). Rodents and Eulipotyphla show relatively constant high values for haplotype and 

nucleotide diversity. This is in accordance with Pedreschi et al. 2018, including the high 

diversity values for small mammals. For carnivores and artiodactyla the diversity values are 

more variable, finding species with relatively low haplotype diversity (Gulo gulo, Lynx lynx, 

Bison bonasus and Sus scrofa). For larger mammals, the constant diversity values found for 

small mammals are not identified for large mammals. The highest values of diversity were 

identified in Arvicola amphibius, Lepus timidus and Mustela nivalis. The small mammals (0.94; 

σ= 0.04) displayed higher average haplotype diversity than the large mammals (0.78; σ= 0.17). 

 

Figure 3.2 Nucleotide diversity and haplotype diversity values for each of the 4 different groups defined by orders. 

a) Rodents; b) Eulypotyphla; c) Carnivores; d) Artiodactyla  

The haplotype diversity values were also calculated for different geographical regions of the 

European continent. Consistent with previous studies (Hewitt 1999; Petit et al. 2003) the 

averaged genetic diversity across the 29 different European species showed significant 

regional differentiation (Figure 3.4). Surprisingly, Iberia presents the lowest value of haplotype 

diversity (hd= 0.64) in the continent with Eastern Europe presenting the highest (hd=0.783).  

a) b) 

c) d) 
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The number of private haplotypes and allelic richness for each species were calculated after 

rarefraction (Heck et al. 1975) to a sample size of S=5 and S=10. High allele endemism is 

generally predicted to be an indicator of persistent isolation of populations in refugial areas, 

and therefore can be used as a proxy to identify refugia (Petit et al. 2002; Maggs et al. 2008). 

Table 3.2 shows the different values obtained for private alleles per region and allelic richness 

based on rarefraction to S=5 and S=10. The private allelic richness does not decline 

significantly with latitude from south to north (slope of the linear regression P>0.05) (Figure 

A2.1 in Appendix 2). 

Table 3.3 Allelic richness (S=5 and S=10), private allelic richness (S=5 and S=10) values calculated for the eleven 

different regions identified in Europe for this study and averaged across all taxa. 

Region Allelic richness 

(S=5) 

Allelic richness 

(S=10) 

Private Allelic 

Richness (S=5) 

Private Allelic 

Richness (S=10) 

Iberia 2.76 3.89 2.27 2.96 

Apennine 2.84 4.26 1.89 2.20 

Balkans 3.01 4.53 2.08 2.71 

Western 3.03 4.43 2.01 2.80 

Central 3.41 5.02 2.19 3.04 

Eastern 3.42 5.26 2.29 3.16 

Scandinavia 2.95 3.98 1.84 2.16 

British Isles 3.38 4.42 2.59 2.98 

Caucasus 3.31 4.59 2.35 3.20 

Near East 3.62 5.38 2.68 4.21 

 

The genetic diversity through different temporal periods was also calculated for 12 species 

that have sufficient ancient sequences available (Arvicola amphibius, Bison bonasus, Canis 

lupus, Castor fiber, Cervus elaphus, Homo sapiens, Lemmus lemmus, Lynx lynx, Rangifer 

tarandus, Ursus arctos, Vulpes lagopus and Vulpes vulpes). The Pleistocene represents the 

period with higher diversity compared with the Holocene and modern diversity for seven 

species (Figure 3.3).  Four species showed no significant change in haplotype diversity over 

time (Arvicola amphibius, Vulpes lagopus, Vulpes vulpes and Rangifer tarandus). Only one 

species, Homo sapiens, showed higher haplotype diversity in the Holocene than in the 

Pleistocene. 
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Figure 3.3 Haplotype diversity values for those species with different temporal sequences including Pleistocene 

(Blue), Holocene (Red) and Modern (Green). 

Species diversity indices for mtDNA were not found to consistently correlate with the area 

occupied (range) of the species analysed, so no relationship was evident between the area and 

any of these measures for genetic diversity (Figure A2.2 in Appendix 2). 

3.4 Discussion 
 

In the northern hemisphere, the well-known pattern of southern richness and northern purity 

was explained by repeated range contraction and possible northern extinction during the Ice 

Age (Hewitt 2000). The extent of the expansions and their directions can be inferred by genetic 

diversity (Ibrahim et al. 1996). It has been hypothesized that for temperate species, southern 

populations survived in glacial refugia preserving genetic diversity and regions in the north 

were colonised during the Holocene shaped by founder effects that decreased genetic 

variability with increasing distance from refugia (Hewitt 1996). The decrease in species 

richness has also been identified from east to west explained by east-west colonisation 

throughout the Quaternary, also known as the oceanic-continental gradient (Stewart et al. 

2010). The present study indicates that the genetic landscape of Europe is not as clear as 
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previously thought and the main genetic signals previously identified are blurred due to the 

high variability of diversities found across species.  

This chapter represents an updated and expanded study in relation to Pedreschi et al. (2018), 

where only small mammals were considered. Furthermore, the methods presented in Petit et 

al. (2003) and Lumibao et al. (2017) are also used and applied to animals. The results here 

indicate that the species-specific response found for small mammals is also confirmed in the 

context of large mammals. The species investigated in this chapter are all the Eurasian 

terrestrial mammal species that presented sufficient mtDNA control region sequences 

available to draw conclusions about their genetic diversity indices. The different patterns of 

genetic diversity examined here, show a species-specific response based on the individualism 

of each species analysed with different responses to climate oscillations in agreement with 

Pedreschi et al. (2018). For each glaciation that has occurred in Europe, genetic lineages are 

likely to be lost, complicating the interpretation of colonisation patterns. Climate oscillations 

have led to the replacement of important genetic lineages with new ones (Searle et al. 2009; 

Brace et al. 2012, 2016; Martínková et al. 2013), indicating that modern diversity alone cannot 

explain historical patterns (Hofreiter and Stewart 2009; Searle et al. 2009; Pedreschi et al. 

2018). 

The south-north paradigm for genetic diversity based on southern richness and northern purity 

does not correspond with the mtDNA genetic diversity found for 29 mammal species across 

the European range studied here. The haplotype and nucleotide diversity do not seem to be 

particularly high in southern regions (Iberia, Apennines and Balkans) compared to the mid-

latitudes or even the northern latitudes of the European continent (Figure 3.4). Particularly 

interesting is the Iberian case, that shows the lowest haplotype diversity of all the regions 

analysed. Iberia has been considered one of the most important refugial areas during the LGM 

and in many cases has been attributed to high diversity values (Hewitt 2004). Also, Italy does 

not show higher haplotype diversity than northern areas in the continent.  

The lower haplotype diversity displayed by southern peninsula might be reflecting the 

importance of calculating diversity indexes for many species. Including traditionally 

considering cold-adapted species in this analysis have contributed to re-shape the patterns of 

diversity in Europe. This can help to explain why the lower diversity found in southern areas is 

not in agreement with previous general hypothesis suggested (Hewit 1999; Petit et al. 2003).  
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Figure 3.4 Map showing the haplotype diversity values per geographical region included in the analysis. The darker 

red colour represents the highest values, the lighter the lower.  

The two different explanations that were suggested for the southern richness and northern 

purity were based, first, on the number of species and allelic diversity related to the loss of 

alleles due to population bottlenecking during expansion, preserving higher diversity in stable 

populations (Hewitt 1996, 2000, 2004). The second explanation is related to the more 

prolonged survival of the populations by moving up and down mountains (Tribsch and 

Schönswetter 2003). Testing the allelic richness of the species in Europe, the southern areas do 

not show higher values on average than the north (Table 3.2). This result can be explained due 

to the comparative approach of this research including a higher number of studies in the 

analysis. Furthermore, the inclusion of temperate and cold-adapted species might help to 

change the paradigm by having a more complex genetic diversity landscape in Europe. 

The high diversity, including private haplotypes (or alleles), expected when populations have 

contracted into refugia is not identified in this analysis for southern areas. Allelic diversity and 

heterozygosity are predicted to have higher values in populations that were/are stable 

(refugia) and to decrease in the direction of the expansion due to founder effects (Maggs et al. 
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2008; Grassi et al. 2009; Jezkova et al. 2011). The presence of haplotypes that are not found in 

other populations has been traditionally related with a refugium. Expanding populations can 

also show high diversity, but it is expected to have a low proportion of private haplotypes 

(Maggs et al. 2008). The higher frequencies of private alleles have also been used to infer 

population persistence (Hewitt 1996; Excoffier et al. 2008; White et al. 2013). The results 

presented in this chapter do not show a higher presence of private haplotypes in southern 

areas than northern areas (Table 3.2) and this assumption will need to be reconsidered, at 

least as a common or general pattern for species diversity. 

The results presented here have shown that genetic diversity in the mtDNA reflects a more 

profound complexity that should be taken into consideration for identification of glacial 

refugia in mammals. These results indicate that common genetic signals are not as easy to 

detect and instead it is species-specific responses that are of primary importance to 

reconstruct post-glacial recolonisation patterns. Despite using a more restricted taxonomic 

group (only mammals) than in previous comparative phylogeographic studies (Taberlet et al. 

1998; Hewitt 2000), the number of species included here and the large sample sizes, allowed 

this analysis to be robust enough to address this important phylogeographic question. The 

identification of refugia based only on genetic diversity can present serious problems and 

caveats, as the ones here presented, and have to be taken into account in the future. 

The understanding of southern richness based only on the southern refugial paradigm (Hewitt 

1996, 1999), could indicate a more simplistic implication and might reflect a ‘hotspot’ of 

endemism rather than the source populations that contributed to the post-glacial 

recolonisation of the north (Bilton et al. 1998; Tougard et al. 2008; Stewart et al. 2010; 

Pedreschi et al. 2018). If this is the case, the allelic richness shown by mid-latitudinal areas 

could help us to understand the importance of western and central European areas as a “hub 

for diversity” rather than simply one of contact and hybridisation zones.  

Studies focused on plants have found a wide range of species in more northern latitudes than 

expected during the ice ages highlighting the possible role of central Europe as an area much 

more habitable than previously suggested (Petit et al. 2003; Lumibao et al. 2017). In 

agreement with Petit et al. (2003) the genetically most diverse populations were not located in 

the southern areas of the continent but at intermediate latitudes. This was suggested as a 

likely consequence of the admixture of divergent lineages colonising the northern regions from 

separate refugia that have inflated measures of diversity, but this pattern, as indicated, could 

also highlight the importance of an east-west mid-latitudinal belt as a possible area for refugia.  
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The phylogeographic patterns have been suggested to be inversely correlated with dispersal 

rates (Hofreiter et al. 2004). However, no correlation between genetic diversity and the range 

of species was found (Figure A2.2 in Appendix 2), also suggesting a more complex scenario 

regarding the dispersal of species and their phylogeographic patterns, at least based on 

diversity. The analysis of mtDNA, which is transmitted by the maternal lineage, forms an 

important caveat in this assertion, as the different dispersal behaviours between male and 

females could reflect different phylogeographic patterns based on the marker analysed (e.g. 

brown bear, Valdiosera et al. 2007). However, it still represents the most common genetic 

marker used in phylogeographic studies, so a better understanding of its patterns will always 

be valuable (Hung et al. 2016).  

Including aDNA in this chapter has helped to answer new questions about the diversity in 

different temporal periods. This is an improvement from previous comparative approaches 

and follows the approach from Lorenzen et al. (2011) where different mammal species were 

targeted during different temporal periods. The extinction and reduction in diversity have 

been recorded in many mammal species (Barnosky et al. 2004; Hofreiter 2007). For example, 

Bison bonasus is showing a clear drop in diversity from Peistocene to Holocene, but also from 

Holocene to modern times. Understanding if these extinctions were caused by climate change, 

human hunting and activities, or a combination of the two, is difficult to discern within the 

scope of the present work. However, the results here proved the important reduction in 

genetic diversity through the Late Pleistocene-Holocene transition. 

The analysis of haplotype diversity through different temporal periods has demonstrated that 

the highest diversities are found in the aDNA samples from the Pleistocene/Late Pleistocene 

(Figure 3.3). Holocene and modern sequences do display lower diversity than Pleistocene 

samples, in agreement with the pattern described for many mammal species (Lorenzen et al. 

2011). Only for modern humans there is a higher diversity in Mesolithic samples than in 

Palaeolithic samples. The explanation for this result might be related with the more recent 

expansion of the species during the beginning of the Holocene in the European continent, 

probably with a reduction of population during the LGM and explained by a scenario of 

turnovers and movement (Yang and Fu 2018).  Furthermore, the relatively recent colonisation 

of Europe by modern humans, in comparison with other mammals that have resisted in the 

continent previous glacial and interglacial cycles, may contribute to the genetic diversity 

pattern found for our species.  
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3.5 Conclusion 
 

This research provides a new comparative approach to estimate genetic diversity in Europe 

and reveals a complex scenario that is not characterised by a ”southern richness northern 

purity” pattern.  The importance of mid-latitude areas of Europe as a possible refugial region 

instead of merely one of the contact zones is reflected in this chapter. Furthermore, with this 

analysis, the caveat of using only genetic diversity as a marker for identifying refugia has been 

demonstrated due to the complexity found in the European genetic landscape.   

The temporal analysis has shown the importance of the Late Pleistocene as a reservoir for 

diversity and the loss of diversity through the Holocene, except for modern humans. 
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Chapter 4. Identifying genetic diversity patterns shaped 

by the LGM in modern humans and other mammal 

species   

4.1 Introduction  
 

In the last two decades, phylogeography has become a major component of biogeography, 

with phylogeographic methods used to identify and address fundamental questions in 

evolution. One of the most important, ongoing challenges in phylogeography is the 

understanding of how the contemporary genetic patterns of many different mammals in 

Europe are shaped by climate change during the Late Pleistocene. During glacial periods the 

ranges of temperate and cold-adapted species contracted or expanded due to their climate 

adaptations (Hewitt 2000; Stewart and Lister 2001; Lister 2004; Stewart et al. 2010; Morales-

Barbero et al. 2017). Those areas representing the species’ maximum contraction in their 

geographical range are called refugia (Provan and Bennet 2008; Stewart et al. 2010). The 

importance of the Last Glacial Maximum (LGM), 24,000 to 15,000 years ago, in shaping the 

genetic landscape of many species has been demonstrated (Hofreiter and Barnes 2010) but 

there is still a lack of understanding about how and where species survived during this period.  

The data presented in the first phylogeographic studies of Europe suggested that the vast 

majority of the temperate species analysed responded with a post-glacial colonisation of 

central and northern Europe from southern refugia (Hewitt 1999, 2004: Seddon et al. 2001). 

These southern refugia have been traditionally identified on the southern peninsulas (Iberia, 

Italy and the Balkans) with at least three main latitudinal expansion routes (Hewitt 1999; 

2000). In addition to the traditional southern European refugial paradigm (Hewitt 2000), 

several studies also indicate that this model is probably too simplistic and does not fit as a 

general pattern for many temperate species (Taberlet et al. 1998; Valdiosera et al. 2007; 

Bhagwat and Willis 2008; Schmitt and Varga 2012; Stewart et al. 2010; Pedreschi et al. 2018). 

Therefore, many concepts have also been developed to explain the disparities in the 

phylogeographic histories including the existence of cryptic northern refugia (Stewart and 

Lister 2001), microrefugia (Rull et al. 1988, Rull 2009) or refugia within refugia (Gómez and 

Lunt 2007).  

Understanding the effects of the last glacial and post-glacial period in cold-adapted species is 

more complex and has been more difficult to suggest a general model. Stewart et al. (2010) 
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suggested that the range of cold-adapted species is at its minimum in the current interglacial 

period and therefore such species are in refugia now. However, the evaluation of how cold-

species’ populations expand and contract is complicated as they are based mostly on modern 

phylogeographic studies and the identification of survival by habitat tracking or local 

extinctions is complicated (Lagerholm et al. 2017). Ancient DNA (aDNA) has given an insight 

into a more common pattern for cold-adapted taxa characterised mainly by extinctions and 

population turnovers rather than survival by population contractions during the post-glacial 

period (Dalén et al. 2007; Lagerholm et al. 2014; Palkopoulou et al. 2016). Range shifts and 

habitat tracking have however also been identified in other species (Leonard et al. 2007; 

Hofreiter et al. 2007; Lagerholm et al. 2017). 

The majority of the literature regarding phylogeographic studies is based on local populations 

and, in many cases, there is a lack of a more general context of the species history itself. Due 

to the different natures of the studies, it is not an easy task to compare analyses due to 

discrepancies in genetic markers, geographical areas sampled and theoretical approaches. 

Recently, some efforts have been made to present reviews or meta-analyses of the data 

available (Lenstra et al. 2014; Niedziałkowska et al. 2017; Pedreschi et al. 2018). Mitochondrial 

DNA (mtDNA) has become the preferable option for phylogeographic studies, due to its 

relatively rapid rate of mutation, a high number of copies per cell and its haploid maternal 

inheritance (Avise 1987, 1995; Moritz 1994). Here, the mitochondrial control region (CR or D-

loop) has been chosen to address the analysis as a standard genetic marker, as it represents 

the most commonly used genetic marker in phylogeographic studies (see Chapter 2). Following 

this approach, a better understanding of the different phylogeographic models proposed is 

expected based on intraspecific analyses.  

The geographical distributions of the species are influenced by ecological and historical 

parameters. By comparing different species, it is possible to identify similar or dissimilar 

patterns of movements in the past that have shaped the current distribution and the impact of 

climate on them (Avise 2000). The application of molecular markers has helped to compare the 

phylogeographic patterns of several species that shared a common area (Taberlet et al. 1998; 

Hewitt 1999; Hewitt 2000; Petit et al. 2003; Maggs et al. 2008). However, this has proved as a 

difficult task as most of the taxa analysed show no evidence of common phylogeographies, 

although some general trends have been identified (Hewitt 2000; 2004).  

Some species have been proposed as a model for different expansion and contraction routes 

aiming to simplify the complexity of the phylogeographic patterns (Hewitt 2004). The brown 
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bear (Ursus arctos), the European hedgehog (Erinaceus spp.) and the meadow grasshopper 

(Chorthippus parallelus) were suggested as paradigm species with three different routes 

representing southern refugia based on mitochondrial DNA (mtDNA) data. However, species-

specific studies have at times contradicted or supported these assumptions (e.g. Valdiosera et 

al. 2007; Stojak et al. 2016), and no larger comparative analyses have been done to test them.  

Refugial populations have been traditionally inferred by diversity indices, but endemic or 

private alleles could contribute to a better level of resolution as it makes possible the 

distinction between refugial populations and more recently recolonised areas (Maggs et al. 

2008). Combining these two approaches has proved insightful as to common phylogeographic 

patterns (Petit et al. 2003; Maggs et al. 2008; Lumibao et al. 2017). 

Modern humans have sometimes been considered as a different species in terms of their 

response to climatic oscillations and environmental changes. However, the context of human 

evolution has demonstrated that our species was subjected to ecological constraints similar to 

those of other species despite high adaptability to different environments (Willis and 

Whittaker 2000; Stewart and Stringer 2012). Genomic data from modern and ancient humans 

have helped to identify migration routes, diversification events and genetic admixture (Nielsen 

et al. 2017). The last decade has been particularly important to understand past migrations in 

Europe, thanks to ancient DNA (aDNA) and in particular mtDNA sequences. The hypervariable 

segment I (HVS-I) is a fragment in the control region of the mtDNA that represent a similar size 

segment that the sequences that have been traditionally used for other mammal species (e.g. 

Seddon et al. 2001; Troy et al. 2001; Scandura et al. 2008), that have mainly contributed to the 

most important phylogeographic studies in Europe (Taberlet et a. 1998; Hewitt 2000, 2004).  

A great number of studies have been developed focusing only on the mtDNA of modern 

humans and analysing the geographical variation of the lineages in the context of the 

genealogy of this specific marker (Richards et al. 1998; Simoni et al. 2000; Richards et al. 2002). 

The majority of research on mtDNA in anthropological studies has used HVS-I to reconstruct 

the population history of our species. However, the main caveat is that through modern DNA 

past events can only be inferred from the perspective of present distribution patterns. The 

arrival of aDNA analyses has the advantage of providing direct genetic evidence at a given 

point in the context of time. Understanding the importance of the LGM in human populations 

can be a difficult task due to population movements after the Mesolithic and the genetic 

signals from the Neolithic (Richards 2003). In order to exclude the complexity brought by the 

Neolithic expansions to Europe and blurring the postglacial recolonisations movements, 
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Palaeolithic and Mesolithic (that are treated as “modern” population) are analysed in detail in 

this chapter to understand the species-specific phylogeographic pattern for our species. 

This chapter aims to determine the main phylogeographic patterns of 29 different mammal 

species, including modern humans, by combining all available sequences of a fragment of the 

control region of the mtDNA for species within the European range. This intraspecific approach 

enables a better comparison of the effect of geography on genetic diversity at an individual 

species level. A comparative genealogical meta-analysis study is also presented, containing 

data from previously published studies, reanalysed in a common framework. This chapter is 

also trying to elucidate patterns of biodiversity and colonisations based on genetic signatures, 

such as haplotype diversity and private haplotypes richness, for the detection of potential 

refugia and possible common patterns of phylogeography between species. Modern humans 

are considered within this broad-based comparison to establish where they fit within the 

patterns seen in other mammals in Europe. 

4.2 Methods 
 

The main methods that defined how the sequences were obtained are described in Chapter 2. 

The total number of individuals included for each taxon and the number of individuals per 

population varied among the studies considered for the meta-analysis. To test the main 

hypothesis and to consider the inconsistency of regions sampled, specific areas have been 

defined within Europe. The continent has been divided into ten regions based on significant 

biogeographic subdivisions or discontinuities identified from previous phylogeographic and 

palaeoecological studies. This ensured a minimum sample size across each region of more than 

five individuals for the species analysed. These regions are represented by the Iberian 

Peninsula, Western Europe, Central Europe, Apennine Peninsula, British Isles, Balkans, Eastern 

Europe, Fennoscandia, Caucasus and the Near East (see Chapter 2 for more details). 

For those species with aDNA data different temporal periods were defined in this chapter. 

Pleistocene samples represent specimens >30.000 years ago (the Late Pleistocene is defined as 

the period between 30.000 and 12.000 years ago). Holocene samples represent sequences 

between 12.000 and 2.000 years ago. Historical samples from 2.000 years ago until 1900 and 

modern samples from 1900 until current times.  

For modern humans, a more detailed analysis was carried. The HVS-I region for all the 

sequences available for the Palaeolithic and Mesolithic in Europe were retrieved from 
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GenBank. Reconstructions of the sequences were needed for some individuals and some 

sequences were discarded due to their poor quality. One of the main caveats of the analysis is 

that the HVS-I region does not define all the main haplogroups for human mtDNA. For 

example, haplogroup U8 is defined by some mutations outside this fragment. This reduces the 

resolution of this study, but the justification for using this region is due to the higher number 

of sequences that can be included in the analysis. Furthermore, the main aim of this chapter is 

developing a method suitable for all the different species that are analysed, as complete 

mtDNA sequences are not so common in the literature to allow their use. The fragment 

analysed corresponds to the interval 16056-16380 (325 bp).  

The phylogenetic trees calculated for all the species followed the methods presented in 

Chapter 2. For each species, one phylogenetic tree based on the control region sequences was 

calculated in MrBayes (Ronquist et al. 2012) after the selection of the best fit model chosen in 

Jmodeltest (Posada 2008) under the BIC criterion and were visualised in FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/).  

In many cases, phylogenetic trees might not accurately mirror the reticulated relationship 

among haplotypes (Posada and Crandall 2001). Networks can reflect these connections with 

more details, so network analysis is carried out through a median-joining networks algorithm 

using Network (Fluxus Technology Ltd) and PopART 1.0 (Leigh et al. 2015). Furthermore, 

temporal networks are also created using a statistical parsimony network using the script 

TempNet (Prost and Anderson 2011) in R (R Core Team 2013). This is useful for 

heterochronous DNA data (sequences of different ages) and to display information from more 

than one geographical group, fitting perfectly for the analysis. 

The most common measures of genetic diversity in population studies are haplotype and 

nucleotide diversity (Egeland and Salas 2008; Goodall-Copestake et al. 2012). To calculate 

those values, a full reconstruction of the data sets was required. The number of haplotypes 

and haplotype (hd) diversity was calculated using DNAsp v.5.10.01 (Librado and Rozas 2009). In 

order to compare haplotype diversity between species and regions, a statistical test was 

performed. Since the distribution of the differences between the various haplotype diversities 

is not known, a Wilcoxon Signed Rank Test, a non-parametric test, was chosen (see, for 

example, Hollander and Wolfe (1973).  

Another commonly used estimation for genetic diversity is the raw number of haplotypes. 

Haplotype uniqueness has also been suggested as a parameter to identify refugial populations 

(Petit et al. 2002; Maggs et al. 2008). High numbers of private haplotypes are associated with 

http://tree.bio.ed.ac.uk/software/figtree/
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refugial areas, as well as areas of high allelic richness which would be indicative of refugia if 

the haplotype frequencies are higher than the genetic distance between haplotypes (Petit et 

al. 2002; Petit et al. 2003; Provan and Bennett 2008). For standardisation of the private allelic 

richness, a rarefraction method was set to a standard sample size of 10 using HP-Rare v1 

(Kalinowsky 2004). These values were calculated for each species and per region (where 

sufficient sequences were available) with the aim to determinate similar patterns between 

species.  

4.3 Results 

4.3.1 Species by species 

 

Hereunder, the individual results obtained for each of the 29 species analysed are presented 

including a discussion of the phylogeographic patterns found. The classification follows the 

mammal classification based on orders. 

RODENTIA 
 

Arvicola amphibius (European Water Vole) 

A total of 119 sequences were included in the analysis for A. amphibius. Some areas did not 

have high sample sizes, so results should be taken cautiously. The genetic diversity of the 

species seemed to be high across all the temporal stages analysed from the Pleistocene to the 

present time (Table 4.1a). However, the temporal network helped to identify a certain lack of 

genetic continuity since the Holocene into modern times (Figure 4.1a). The phylogenetic tree 

(Figure 4.2) also resolved the three main clades previously identified for the species (Piertney 

et al. 2005; Brace et al. 2016). 

Table 4.1 Arvicola amphibius D-loop fragment sequences retrieved and analysed by temporal episodes (a) and 

geographical regions (b). n=samples size; BP= length in base pairs of the fragment analysed; Haplotypes= number of 

haplotypes found; hd = haplotype diversity; π= nucleotide diversity.  

 

Time n BP Haplotypes hd π 

Pleistocene 9 643 9 1 0.01735 

Younger Dryas 9 643 8 0.9722 0.00912 

Holocene 7 643 7 1 0.01361 

a) 
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Bronze Age/Roman 5 643 4 0.9 0.00222 

Historical/Modern 89 643 58 0.9815 0.01931 

Total 119 643 83 0.9863 0.01269 

 

Region n BP Haplotypes Hd π 

Apennine 2 643 2 1 0.01899 

Balkans 2 643 2 1 0.00791 

Central Europe 2 643 2 1 - 

Eastern Europe 7 643 7 1 0.0106 

Iberia 2 643 1 0 0 

Scandinavia 5 643 5 1 0.00696 

Scotland 35 643 16 0.916 0.00503 

Uk (Eng-Wales) 33 643 23 0.9697 0.00968 

Western Europe 2 643 2 1 - 

Total 90 643 58 0.9815 0.01931 

 

The number of individuals sampled across different areas varies considerably and for some of 

them the sample size is too low (n<5) to infer any phylogeographic pattern based on genetic 

diversity (Table 4.1b). However, it is relevant to indicate the low diversity found in the main 

southern refugia peninsulas (<0.02 for haplotype diversity).  

Three main clades can be identified for the species (Clade I, II and III in Figure 4.2). Clade I is 

found in continental Europe and the British Isles from the Late Pleistocene until today 

(especially in Scotland). Clade II is more restricted and more common in Holocene samples 

than Clade I. Clade III has a much more restricted distribution as it is only found in historical 

samples from Italy (and southern Switzerland) and shows no evidence for post-glacial 

colonisation of the north.  

b) 
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Figure 4.1 a) Arvicola amphibius D-loop temporal network showing the presence of the different haplotypes in the 

four periods analysed. Each layer represents a different temporal period. Circles represent haplotypes and numbers 

represent sample sizes. Empty circles represent absent haplotypes for a given period. b) Arvicola amphibius D-loop 

geographical network. Haplotypes found in multiple geographical areas are connected by vertical lines. Within each 

layer, black dots represent one mutation. 

A population replacement seemed to occur in Europe, probably after the Younger Dryas, as the 

Pleistocene samples across continental Europe seemed to be part of Clade I and Holocene 

samples from Belgium and Germany fall within Clade II. However, Clade I is found in the 

unique historical sample available from Belgium, indicating a likely survival of these clades 

even if it is not present in the Holocene samples (Brace et al. 2016). In Figure 4.1a, the shift 

from Clade I to Clade II is evident and is a full turnover by the Bronze Age/Roman period. The 

expansion is more likely to have occurred from a northern/eastern refugium rather than a 

CLADE I CLADE II 

a) 

b) 
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more traditional southern peninsula refugium as is clear from the lack of genetic legacy from 

the Apennine Peninsula.  

 

  

Figure 4.2 Arvicola amphibius D-loop Bayesian phylogenetic tree with the three main clades previously identified in 

Brace et al. (2016). 

Clade I is particularly important as it is found in Iberia, Western Europe and the British Isles 

(Figure 4.1b). The presence of this clade in Iberia may indicate that this area acted as a 

refugium for the whole clade. However, the limitation in sample size (1 sample) is not strong 

evidence and so opens the possibility that other refugia existed in western Europe/British Isles 

for Clade I, especially as Pleistocene samples from Marine Isotope Stage 3 (MIS3) of this clade 

have been found in the England (Figure 4.3). 

Arvicola sapidus 
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Figure 4.3 Map of the distribution of the main clades identified in the phylogenetic tree for Arvicola amphibius. 

The importance of aDNA to identify the population history of the species is proved by the 

British and Scottish sequences in Brace et al. (2016). The more comprehensive scheme 

developed by this study needs to be a stepping stone for future research for A. amphibius. 

Arvicola sapidus (Southern Water Vole) 

In the present analysis, 276 individuals were included and 76 different haplotypes were 

identified (Table 4.2). The species revealed a high overall genetic diversity (π=0.04542; 

h=0.9626). The Iberian Peninsula and southern France were the areas sampled, reflecting high 

diversity for most of the areas described (except for eastern Iberia). The phylogenetic tree 

(Figure 4.4) showed the clades delimited by previous studies and confirmed the presence of at 

least six different clades in Iberia (Centeno-Cuadros et al. 2009; Centeno Cuadros et al. 2011).  

Table 4.2 Arvicola sapidus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 
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Figure 4.4 Arvicola sapidus D-loop Bayesian phylogenetic tree with the seven main clades. 

The possibility of refugia-within-refugia seemed to be supported for this species based on the 

variability found in Iberia. However, the evidence for recolonisation of northern latitudes from 

the Iberian Peninsula could not be confirmed as the genetic diversity for the French samples 

does not seem to be reduced (Table 4.2). Furthermore, the distinct clade that French 

haplotypes formed (clade 2) has been suggested to colonise France before the LGM (Centeno-

Region n BP Haplotypes hd π 

France 54 204 17 0.914 0.02479 

NorthEast Iberia 35 204 12 0.672 0.03128 

NorthWestIberia 14 204 10 0.945 0.04249 

North Iberia 33 204 21 0.953 0.04109 

SouthEast Iberia 3 204 3 1 0.01307 

SouthWest Iberia 60 204 13 0.819 0.04297 

South Iberia 69 204 12 0.8218 0.02643 

East Iberia 8 204 2 0.25 0.01103 

Total 276 204 76 0.9626 0.04542 
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Cuadros et al. 2009) so will not represent a post-glacial colonisation, questioning the refugia-

within-refugia hypothesis for the species. 

Microtus arvalis (Common Vole) 

A total of 683 individuals were analysed and 73 different haplotypes were reported (Table 4.3). 

This analysis covered all the areas analysed by different studies using the D-loop. The genetic 

diversity may be biased by the small samples for western Europe and Iberia. 

Table 4.3 Microtus arvalis D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Iberia 47 274 2 0.3164 0.00117 

Western Europe 48 274 10 0.789 0.01704 

Central Europe 588 274 62 0.8334 0.01234 

Total 683 274 73 0.8724 0.01443 

 

The phylogenetic tree resolved three main clades that can be assigned or related to different 

geographical areas (Figure 4.5). The genetic structure of the tree is in agreement with the 

limited dispersal ability of small rodents over large distances (van de Zande et al. 2000). 

Hamilton et al. (2005) pointed that effective dispersal rates between male and female present 

lower values for females and higher for males and this can be explained by the strong 

geographical structure in Europe for mtDNA.  
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Figure 4.5 Microtus arvalis D-loop Bayesian phylogenetic tree with the main clades identified. 

The geographical network (Figure 4.6) showed no continuity through the different 

geographical areas with a higher number of haplotypes (this can be due to a higher samples 

size) in central Europe. Iberia does not seem to represent a refugium as it has low diversity, 

but this might reflect the small samples size, and more sampling might be needed to confirm 

the hypothesis of Iberia as a refugium for the species. Central Europe seems to have much 

more variability. Unfortunately, the east of Europe is not well represented in the database for 

the D-loop making impossible the detection of the suggested northern refugium in the 

Carpathians (Stojak et al. 2015). 

 

Microtus 

agrestis 



80 
 

 

Figure 4.6 Microtus arvalis D-loop geographical network. Haplotypes found in multiple geographical areas are 

connected by vertical lines. Within each layer, black dots represent one mutation. 

Myodes [Clethrionomys] glareolus (Bank Vole) 

The levels of haplotype diversity show specific variability and high values in northern areas 

(but noting that there is a lack of sampling in southern areas). The high diversity found across 

different regions might indicate the complexity below the colonisation patterns of the species 

(Table 4.4). 

Table 4.4 Myodes glareolus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

 

 

 

 

 

The phylogenetic tree (Figure 4.7) resolved two main clades but with a high number of 

subclades within them following the results for the cyt b (Deffontaine et al. 2009). No strong 

Region n BP Haplotypes hd π 

Eastern Europe 807 250 38 0.7969 0.00654 

Central Europe 67 250 24 0.8345 0.01105 

UK 2 250 2 1 0.004 

Scandinavia 198 250 52 0.8923 0.02463 

Near East (Turkey) 36 250 17 0.9286 0.00879 

Total 1110 250 126 0.8842 0.0132 
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geographical pattern seems to be causing this result, as the two main clades are formed by 

samples from diverse locations across the continent.  

 

Figure 4.7 Myodes glareolus D-loop Bayesian phylogenetic tree with the main clades identified. 

The network analysis displayed an interesting difference between some individuals from 

Scandinavia and the rest of the populations (Figure 4.8). This is also shown in the phylogenetic 

tree for the main clade with Swedish and Russian samples. Despite this clade, and due to the 

lack of sampling in western and southern areas, no more subclades where characterised 

through the phylogenetic tree and the network produced. In this case, cyt b seems a much 

better option to infer the phylogeographic pattern of the species and new studies have 

contributed to understanding better the demographic history in many areas of Europe (Filipi et 

al. 2015). It appears that the postglacial expansion was likely from multiple refugia and via 

different routes, with the traditional southern peninsular refugia maintaining populations 

throughout the Pleistocene but without contributing to the recolonisation of mainland Europe 

(Deffontaine et al. 2005). 
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Figure 4.8 Median-Joining network of all the D-loop sequences available for Myodes glareolus. 

Lemmus lemmus (Norwegian lemming) 

A total of 135 individuals have been included in the analysis (Table 4.5). The Pleistocene 

samples have the higher nucleotide and haplotype diversity values in agreement with 

Lagerholm et al. (2014) and related to the reduction of the genetic diversity in current times. 

The number of haplotypes found for the Pleistocene (12) almost matches the number amongst 

the modern samples (19), even if the number of sequences available for the Pleistocene is less 

(Table 4.5). 

Table 4.5 Lemmus lemmus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Time n BP Haplotypes hd π 

Pleistocene 15 98 12 0.9714 0.0863 

Late Pleistocene 8 98 5 0.7857 0.06259 

Holocene 7 98 4 0.7143 0.01504 

Modern 105 98 19 0.8284 0.01207 

Total 135 98 40 0.8947 0.04 
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In the phylogenetic tree (Figure 4.9), the three main clades previously identified are well 

resolved apart from some uncertainty between Clade A and B that has already been reported 

(see Lagerholm et al. 2014). In all the clades there are Pleistocene samples from western, 

central and eastern Europe, but the modern Scandinavian samples are only present in Clade B. 

This suggests that the extinction of Clades A and C across the Pleistocene-Holocene transition 

had a main role in the loss of genetic diversity of the species observed (Table 4.5).  

 

Figure 4.9 Lemmus lemmus D-loop Bayesian phylogenetic tree with the main clades identified. 

The modern population displayed the lowest nucleotide diversity and the star-shape haplotype 

network (Figure 4.10) might indicate a reduction in population size followed by a more recent 

expansion, which was previously described by Fedorov and Stenseth (2001). This could reflect 

a bottleneck during the LGM or a postglacial recolonisation founder effect in the region. The 

Holocene samples from Sirijorda Cave in Norway also supported the continuity between this 

period and modern time making it less likely for the hypothesis of a more recent colonisation 

due to a lack of continuity between Pleistocene/Late Pleistocene and the present (Figure 4.10) 

(Lagerholm et al. 2014).  
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Figure 4.10 Lemmus lemmus D-loop temporal network showing the presence of the different haplotypes in the four 

periods analysed. Each layer represents a different temporal period. Circles represent haplotypes and numbers 

represent sample sizes. Empty circles represent absent haplotypes for a given time period. Haplotypes found in 

multiple periods are connected by vertical lines. Within each layer, black dots represent one mutation.  

The loss of clade C is highlighted in the temporal network (Figure 4.10), where the biggest 

bottleneck is identified during the Late Pleistocene/Holocene transition. The Holocene and 

modern samples display the same pattern for clade B, indicating a possible colonisation of 

Scandinavia or the bottleneck caused by this transition. Clade A loss could be a consequence of 

LGM, but the small sample size does not allow better testing of this. However, the likely 

presence of boreal trees in the area during the LGM (Parducci et al. 2012) has contributed to 

support the presence of a local northern refugium.  

Cricetus cricetus (Common Hamster) 

A total of 561 sequences were included in the analysis of the species (Table 4.6). 

Unfortunately, the majority of the samples are concentrated in Central Europe. However, the 

samples sizes in western and eastern Europe are high enough to be considered for detecting 

any phylogeographic pattern based on diversity (>50).  

Table 4.6 Cricetus cricetus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

 

Clade B Clade A 

Clade C 
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Region N BP Haplotypes hd π 

Western Europe 84 210 3 0.047 0.00023 

Central Europe 420 210 23 0.805 0.01171 

Eastern Europe 57 210 22 0.906 0.01289 

Total 561 210 44 0.845 0.0129 

 

The phylogenetic tree is not well resolved and it did not show the two main clades previously 

described (Figure 4.11). However, Neumann et al. (2005) identified those using combined 

haplotypes from three different partial mtDNA genes and only using the D-loop does not seem 

enough to reveal those differences. The north-south division previously found for the species 

could not be confirmed with this analysis. 

The genetic data suggest that C. cricetus could cope well with cold climates and hence the LGM 

caused a retreat but without significantly affecting the population size of the initially 

expanding populations (Neumman et al. 2005). The networks (Figure 4.12) showed that 

western Europe is characterised by a main haplotype in agreement with the low haplotype 

diversity found in this area (Table 4.6). The difference between the individuals from the west is 

seen in the networks, with only three haplotypes represented its diversity. However, there is 

only one major phylogroup that includes the majority of the haplotypes except for one 

haplotype in the phylogenetic tree, indicating no strong differentiation of populations (Figure 

4.11). 
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Figure 4.11 Cricetus cricetus D-loop Bayesian phylogenetic tree with the main geographical regions identified. 

 

  

Figure 4.12 a) Cricetus cricetus D-loop geographical network. Haplotypes found in multiple geographical areas are 

connected by vertical lines. Within each layer, black dots represent one mutation. b) Median-Joining network of all 

the D-loop sequences available for Cricetus cricetus. 

Eastern Europe showed the highest diversity suggesting a main refugium in the east for this 

species during the last glaciation as has been suggested by Neumann et al. (2005). The 

phylogenetic structure of C. cricetus in Europe can be explained as a result of expansion from 

an eastern refugium covering the area of Russia and Ukraine. This is in concordance with the 

a) b) 

Cricetus griseus 
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fact that common hamsters are typical continental steppe animals that are adapted to open 

landscapes. Regarding the viability of the species during the LGM in northern latitudes, Grulich 

(1987) proposed that C. cricetus could not have survived through this period in Europe, but 

Jánossy (1986) and Hír (1997) showed an almost uninterrupted record of the species in 

Hungary from 40 kya onwards and it is well documented in western Europe in Late Pleistocene 

deposits (Cordy 1991). 

Sciurus vulgaris (Red squirrel) 

For this analysis, a total of 1050 individuals have been used, resolving 214 distinct haplotypes 

with high values for haplotype and nucleotide diversity (Table 4.7). The total length of the 

fragment analysed is 249 bp.  

Table 4.7 Sciurus vulgaris D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region N BP Haplotypes hd π 

Iberia 131 249 10 0.762 0.00986 

Apennine 79 249 28 0.912 0.03061 

Balkans 4 249 4 1 0.03024 

West Europe 222 249 67 0.934 0.02182 

UK 442 249 50 0.906 0.01853 

Scandinavia 95 249 16 0.779 0.01706 

Central Europe 29 249 19 0.906 0.00235 

East Europe 2 249 2 1 0.04839 

Asia 46 249 41 0.9942 0.02836 

Total 1050  249 214 0.9699 0.02255 

 

The haplotype and nucleotide diversities of the species are relatively high and particularly in 

Western European countries. The high diversity in the Alps and central Europe is common for 

other rodents and has been previously discussed in the literature (Barrat et al. 1999; Trizio et 

al. 2005; Grill et al. 2009). This might reflect the low mobility of the species and sensitivity to 

barriers (Grill et al. 2009). Surprisingly, the genetic diversity in Iberia and the Apennines is not 

higher than in other areas and this might be due to recent bottlenecks (Grill et al. 2009).  

The phylogenetic analysis (Figure 4.13) did not resolve geographical patterns for the main 

branch of the phylogenetic tree. One haplotype from the UK seems to form a different 

phylogroup than the continental sequences, although this is probably due to a considerable 
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number of non-identified nucleotides (Ns) in the sequence. Some lineages appeared with a 

better geographical resolution.  

 

Figure 4.13 Sciurus vulgaris D-loop Bayesian phylogenetic tree with the main clades identified.  

As previously reported (Grill et al. 2009) the Calabrian group forms a clade, but individuals 

from the British Isles also configured as a relatively separate clade. The relationship between 

haplotypes found in China and Italy is also seen here (Liu et al. 2014). However, no significant 

phylogroup clustering for the individuals from Calabria is reported in agreement with Lucas et 

al. (2015). In summary, mtDNA genealogies are not structured following a geographical 

provenance from the three main possible southern refugia. 

In the geographical network, only the Calabrian cluster appeared to be far from the main 

haplotypes (Figure 4.14). However, it showed continuity between the main haplotypes 

described for the Apennine Peninsula, central and western Europe. Western Europe seems to 

have the higher haplotype diversity and is characterised by at least five main haplotypes. This 

could also suggest that a band from western to eastern Europe acted as a genetic reservoir 

Sciurus lis 



89 
 

during the LGM with some population expansion to the south and/or north with changes in 

the climate conditions. 

 

Figure 4.14 Sciurus vulgaris D-loop geographical network. Haplotypes found in multiple geographical areas are 

connected by vertical lines. Within each layer, black dots represent one mutation. 

Other species associated with pine trees (whether as obligate pine associated species or one 

strongly associated with pine), such as forest-dwelling beetles (Pytho sp.), have been proposed 

as not having been restricted to refugial areas during glacial periods (Painter et al. 2007). This 

might be in concordance with the wide range of pine trees (Grichuk 1984; Alfano et al. 2003). 

Red squirrels feed preferably on pine cones, so they live in association with pine trees and our 

analysis has indicated a similar pattern rather that southern refugia for this species which may 

have been more widespread during glacial maxima.  

Castor fiber (Eurasian Beaver) 

The analysis included 681 sequences and the alignment was based in a 487 bp fragment. The 

identification of southern refugia for the species is complicated due to the lack of sampling in 

southern areas of Europe. However, the presence of beaver fossils during the Late Pleistocene 

in Italy and the ecological preference of the species open the possibility of refugia in southern 

Europe (Legge and Rowley-Conwy 1986; Barisone et al. 2006). The western clade refugium has 

been suggested in Iberia given the ecological preferences of beavers (Horn et al. 2014), but this 

is not inferred by phylogeographical data. In the analysis, and with the genetic data available, 

Iberia cannot be confirmed as a refugium for the western or central clade. The western 

Calabria 
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samples seemed not contribute to the Scandinavian populations. However, the haplotype 

found in higher frequency in Scandinavia is also found in central European samples opening 

the possibility of northern refugia for the species rather than an Iberian refugium, due to the 

absence of evidence of this from the genetic data (Table 4.8).  

Table 4.8 Castor fiber D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Apennine 1 487 1 - - 

Balkans 1 487 1 - - 

Mongolia 12 487 1 - - 

Western Europe 18 487 2 0.1111 0.00412 

Central Europe 445 487 41 0.7755 0.00711 

Eastern Europe 173 487 27 0.8598 0.02323 

North Sea 3 487 2 0.6667 0.00137 

Scandinavia 28 487 10 0.5476 0.01402 

Total 681 487 82 0.863 0.01502 

 

In the phylogenetic tree, the eastern and the western clades are well defined (Figure 4.15) and 

probably represent at least two main refugial populations. This indicates a strong west-east 

differentiation in central Europe, with the western clade found in eastern areas of Poland 

probably representing a contact zone of the two clades. This has also been documented for 

other species such as Ursus arctos and Erinaceus europaeus (Hewitt 2004).  

 

Figure 4.15 Castor fiber D-loop Bayesian phylogenetic tree and map of the distribution of the main clades identified. 
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The western clade includes the southern Scandinavian subclade reflecting the connection 

between the central European populations (western clade) and Scandinavia (Figure 4.15). This 

opens the possibility for northern refugia in Central Europe that contributed at least to 

southern Scandinavian areas. The beaver has been compared with the brown-bear pattern of 

postglacial recolonisation from Iberia (Hewitt 2000) despite the lack of evidence from the 

phylogeographical data. The low diversity found in Western Europe (the closest area to Iberia) 

does not suggest strong evidence of this pattern for the beaver.   

The Holocene samples showed higher diversity than modern samples and the decrease in 

genetic diversity is most likely caused by anthropogenic influences (Horn et al. 2014). In the 

temporal network (Figure 4.16) the reduction in the number of haplotypes is manifested. It 

also shows how the modern samples showed a much more structured phylogeographic 

pattern. The low sample sizes in Italy and the Balkans (n=2) does not allow the confirmation of 

these peninsulas as refugia for Castor fiber.  

 

Figure 4.16 a) Castor fiber D-loop geographical network. Haplotypes found in multiple geographical areas are 

connected by vertical lines. Within each layer, black dots represent one mutation. b) Castor fiber D-loop temporal 

network showing the presence of the different haplotypes in the Holocene (in red) and in modern samples (in blue).  

The phylogeographic pattern for the species is shaped by complex transitions from the 

Pleistocene until now, with the anthropogenic influences clearly affecting and probably 

blurring patterns. Pleistocene aDNA samples from before the LGM would help to better 

resolve this structure, as Marr et al. (2018) presented in their new study, but they have not 

shown any notable degree of divergence between Late Pleistocene and Holocene samples 

(sequences not included in this analysis). 

a) b) 
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LAGOMORPHA 
 

Lepus europaeus (Brown Hare) 

A total of 2171 sequences were used in the analysis (Table 4.9). The highest diversity indices 

were found in Anatolia, British Isles and the Balkans (Table 4.9). The lowest was found in 

Scandinavia and the Mediterranean islands (except the Greek islands). In agreement with 

previous studies (Kasapidis et al. 2005; Fickel et al. 2008; Stamatis et al. 2009), the Balkans and 

Anatolian regions seemed to be particularly important for the genetic variability of the species, 

and probably contributed as refugia for the species during the LGM explaining the high 

haplotype and nucleotide diversity values found in both areas. The British Isles high diversity is 

more complex to explain as most of the samples collected are from an unpublished study 

(Menzies et al. unpublished) whose sequences were available on Genbank. The previous study 

(Stamatis et al. 2009) suggested the opposite, with the British Isles representing an area with 

low diversity, although it is based only in two individuals, so more research need to be done in 

the region. 

Table 4.9 Lepus europaeus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Alps  113 225 11 0.7555 0.03942 

Anatolia 73 225 59 0.9909 0.05004 

Apennine 230 225 28 0.7972 0.03323 

Balkans 171 225 55 0.9546 0.02858 

Central Europe 900 225 37 0.5985 0.01285 

Corsica  16 225 5 0.5333 0.03128 

Crete 12 225 3 0.3182 0.00677 

Cyprus 6 225 1 - - 

Eastern Europe 14 225 10 0.9451 0.03646 

Greek Islands 17 225 9 0.9191 0.0471 

Iberia 220 225 20 0.8149 0.04743 

Scandinavia 375 225 5 0.2958 0.00594 

UK 13 225 12 0.9872 0.04136 

Western Europe 11 225 9 0.9636 0.01721 

Total 2177 225 247 0.7945 0.03058 
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The phylogenetic tree (Figure 4.17) resolved five main clades that corresponded with previous 

results (Stamatis et al. 2009). Clade SEE (south-eastern European type) is mostly related with 

samples from the Balkans. Clade M is related with the possible existence of the subspecies L.e. 

meridiei in Italy, but the differences found here and also with microsatellite data (Canu et al. 

2013), do not support the subspecies level of this population. Clade EuH(A) (European type 

haplogroup, subgroup A) is the main lineage that encompassed haplotypes from various 

regions of central/western Europe and the British Isles.  

, 

 

Figure 4.17 Lepus europaeus D-loop Bayesian phylogenetic tree with the main clades identified. Clade SEE (south-

eastern European type), EuH (European type haplogroup), AMa (Anatolian/Middle Eastern type haplogroup), Clade 

M (L.e. meridiei). 

The Median-Joining network has confirmed the distribution of the clades (Figure 4.18). Clade 

EuH is particularly interesting as two main haplotypes comprised most of the samples and they 

are shared by different regions but predominantly from Scandinavia and Central Europe. This 

could reflect the existence of two different refugia for this clade, but the location of them is 

indeterminate, as the wider geographical area where this clade is present complicates the 

identification. 

Lepus timidus 
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Figure 4.18 Median-Joining network of all the D-loop sequences available for Lepus europaeus. 

It seems plausible from these results that the central European populations derived from a 

Balkan (probably the northern part) refugium or refugia. This has been previously suggested in 

Djan et al. (2017) as a postglacial expansion. Furthermore, the shared haplotypes found in 

Scandinavia and Central Europe, as well as the low diversity found in this areas make this route 

likely as a postglacial expansion. However, the role of other possible refugial areas needs to be 

explored in more detail probably through aDNA if possible. 

Lepus timidus (Mountain Hare) 

AMa

Aa 

SEE 

Introgressed 

M 

EUh 
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A total of 454 sequences were collected for the analysis (Table 4.10). The genetic diversity of 

the species is very high across regions with the lowest being found for the population in 

western Europe. This high diversity might be explained due to the occupation of vast areas of 

the central European plain during glacial periods by arctic–boreal species (Hewitt 2004).  

Table 4.10 Lepus timidus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes Hd π 

Apennine 76 266 20 0.9165 0.04581 

Central Europe 115 266 20 0.8918 0.01474 

Eastern Europe 98 266 78 0.9952 0.05817 

Western Europe 7 266 4 0.8095 0.04123 

Scandinavia 64 266 37 0.9335 0.04786 

UK 44 266 19 0.9123 0.04197 

Asia 25 266 17 0.9667 0.06389 

Non geographical area 25 266 - - - 

Total 454 266 200 0.987 0.05864 

 

The phylogenetic tree (Figure 4.19) showed well-resolved branches that have been suggested 

to indicate the subspecies level of some of these populations (Hamill et al. 2006). However, for 

example, the previously suggested subspecies, like L. t. hibernicus in Ireland does not 

represent a deep lineage that supported this level. The Alpine population, in contrast, 

represented a well-supported clade that is more in agreement with the possible subspecies 

level of this population, L. t. varronis.  
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Figure 4.19 Lepus timidus D-loop Bayesian phylogenetic tree with the main clades identified. 

The species seems to be characterised by high variability even if some of the population 

seemed to be in isolation. The subspecies level may need further exploration to clarify the 

status, as some of the populations are divergent enough to be under the subspecies 

consideration as previously suggested (Hamill et al. 2006). The Median-joining network (Figure 

4.20) showed high variability regarding the high number of haplotypes identified that are 

clustering based on geographical areas. To infer any phylogeographic pattern for this species is 

challenging but this high diversity could reflect multiple refugia across Europe (Waltari and 

Cook 2005) or none. The high nucleotide diversity found (Table 4.10) probably indicates that 

the species did not undergo population decrease in recent times. This might be related with 

the persistence of suitable habitats for many populations during glacial cycles (Waltari and 

Cook 2005). 
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Figure 4.20 Median-Joining network of all the D-loop sequences available for Lepus timidus. 

The high diversity displayed by the species can be consistent with the different species and 

subspecies that have been described in the literature. However, the taxonomy needs to be 

revised as there is not fully agreement on the designation at species and subspecies level. 

L. timidus appears to have occupied different geographical areas across their European 

distribution with a demographic history that is not characterised by population extinctions. 

These results corroborate the hypothesis that diversification of high-latitude organisms was 

affected by Late Pleistocene climate fluctuations (Weir and Schluter 2004; Waltari and Cook 

2005).  Unfortunately, the ancient DNA sequences from Smith et al. (2017) were not added to 

this analysis due to availability. However, their results suggest that there is no apparent 

decrease in the genetic variation of the species after the Pleistocene/Holocene transition 

(Smith et al. 2017), which is in accordance with the results presented here.  
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EULIPOTYPHLA 
 

Erinaceus europaeus (Western European Hedgehog) 

The analysis included 387 individuals and 56 haplotypes have been reported (Table 4.11). 

Through the phylogenetic analysis, three main clades are identified with the main branches 

being well supported (Figure 4.21).  

Table 4.11 Erinaceus europaeus D-loop fragment sequences retrieved and analysed by geographical areas. 

n=samples size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = 

haplotype diversity; π= nucleotide diversity. 

Region N BP Haplotypes hd π 

Iberia 16 405 3 0.658 0.00307 

Apennine 29 405 6 0.768 0.01496 

Western Europe 76 405 16 0.913 0.02395 

UK 41 405 2 0.18 0.00089 

Scandinavia 20 405 4 0.595 0.00194 

Central Europe 196 405 24 0.896 0.01084 

Eastern Europe 9 405 6 0.833 0.00578 

Total 387 405 56 0.947 0.02295 

 

The haplotype diversity revealed that the highest variability is not in areas that have been 

considered as refugia such as the Apennine Peninsula and Iberia. Diversity does not appear to 

be lower in northern areas and the highest is reported in western Europe, 0.913 (Table 4.11). 

The areas identified as southern refugia for E. europaeus showed lower values and fewer 

numbers of haplotypes. This might suggest the possibility of northern refugia for this species 

(Stewart and Lister 2001) or a secondary contact between the main clades E1 and E2 in 

Western/Central Europe. Bhagwat and Willis (2008) also suggested that the southern refugia 

pattern for this species did not match with their analysis and the biogeographical traits of this 

species could suggest persistence also in northern refugia. The fact that this species presents 

low mobility might suggest that the phylogeographical pattern described might be shaped by 

northern refugia. 

The phylogenetic tree revealed the three main clades that have been already reported 

(Seddon et al. 2001; Bolfíková and Hulva 2012). The E3 clade seemed to be more related with 

the eastern clade (E1) which is the main clade present in the Apennine Peninsula. 
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Figure 4.21 Erinaceus europaeus D-loop Bayesian phylogenetic tree and map of the distribution of the main clades 

identified. 

To interpret these results, a geographical network has been made (Figure 4.22). Looking at the 

haplotypes reported in this analysis and separating them by geographical areas a better 

understanding of the data can be achieved. E2 is the main clade in western Europe, so an 

analysis of this area has been done. Iberia has been suggested as the refugium for this clade 

during the LGM, but with the present network, the major haplotypes are in western countries 

sharing a main haplotype with the individuals in the British Isles and without sharing any 

haplotype with Iberia. However, the Iberian haplotypes are only a few mutations steps from 

the main cluster of haplotypes found in the West. This might suggest that Iberia has 

contributed extensively to the post-glacial colonisation of northern areas or that those areas in 

the west (France and Belgium) were the core populations for refugia and is where Iberia was 

colonised from.  

Regarding the haplotypes reported in Iberia and the structure of the network (Figure 4.22), the 

possibility of northern refugia cannot be excluded. The same analysis for central Europe, clade 

E1, showed a similar pattern. Clade E3 is restricted to Sicily and is the one that appeared to be 

separated from but close to clade E1.  

Erinaceus concolor 
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Figure 4.22 Erinaceus europaeus D-loop geographical network. Haplotypes found in multiple geographical areas are 

connected by vertical lines. Within each layer, black dots represent one mutation. 

This analysis suggests that the evidence of southern refugia from the mtDNA perspective for E. 

europeaus is not clear, especially form the diversity perspective, and the pattern might suggest 

northern refugia due to the genetic diversity observed and the structure of the network 

analysis. 

Erinaceus concolor (Hedgehog) 

A total of 62 sequences have been analysed and comprise 20 different haplotypes. The 

number of individuals per area is not high but may give an idea of the genetic diversity 

identified in the Near East (Turkey, Lebanon and Israel) which is the area with higher haplotype 

and nucleotide diversity (Table 4.12). 

Table 4.12 Erinaceus concolor D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region N BP Haplotypes hd π 

Apennine 4 388 1 - - 

Balkans 5 388 3 0.7 0.00364 

Central Europe 14 388 4 0.78 0.0044 

East Europe 16 388 6 0.733 0.0081 

Near East 17 388 8 0.882 0.01963 

Causcasus 6 388 2 0.533 0.00138 

Total 62 388 20 0.926 0.02014 

 

E1 E2 

E1 

E2 

E3 



101 
 

The phylogenetic tree showed a well-supported clade that differentiates the Near East from 

the rest indicating the differentiation between populations from Europe and those from the 

Near East as has been previously reported (Krystufek 2002). Some clades corresponded with a 

geographical area but the yellow clade, in Figure 4.23, may correspond with a hybrid zone 

making a geographical resolution more complicated. 

. 

 

Figure 4.23 Erinaceus concolor D-loop Bayesian phylogenetic tree with the main clades identified. 

Sorex minutus (Pygmy shrew) 

A total of 280 sequences were included in the analysis of Sorex minutus (Table 4.13). 

Unfortunately, some of the locations included displayed low samples sizes, making it unlikely 

to find a general phylogeographic pattern for the species. The well-studied British Isles has 

contributed to the knowledge of the colonisation of this area for the species (McDevitt et al. 

2009), but not many other areas have been explored in similar numbers.  

Table 4.13 Sorex minutus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

 

Erinaceus 

europaeus 
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Region n BP Haplotypes hd π 

Anatolia 2 290 2 - - 

Apennine 8 290 8 1 0.039 

Balkans 1 290 1 - - 

CentralEurope 14 290 12 0.978 0.03712 

EasternEurope 5 290 4 0.9 0.02226 

WesternEurope 23 290 13 0.9407 0.0423 

Iberia 5 290 4 0.9 0.05035 

Scandinavia 9 290 8 0.9722 0.02969 

Siberia 1 290 1 - - 

UK 81 290 57 0.9895 0.03957 

Ireland 131 290 28 0.8217 0.013 

Total 280 290 138 0.9598 0.02785 

 

From the phylogenetic tree, two main clades can be inferred (Figure 4.24). No geographical 

pattern seems to be the cause of this differentiation as both clades have broad distributions 

across Europe. However, one clade seems to be more related to western regions as previously 

suggested (McDevitt et al. 2010). Some subclades are also indicated in the phylogenetic tree, 

but the geographical variability does not make an easy resolution of them. The distinctiveness 

of Iberia and Italy make them unlikely to have contributed to the postglacial colonisation. 

However, this is not the case for the Balkans and Slovakian samples. As previously suggested, 

this region may have represented the unique southern refugia for the species as predicted by 

species distribution modelling (Vega et al. 2010). Further sampling across southern Europe 

could contribute to understanding the role of possible refugia there and where the Western 

clade populations have been in refugia. Some areas in southern France have been suggested 

(McDevitt et al. 2010) but this cannot be reinforced by this analysis.  
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Figure 4.24 Sorex minutus D-loop Bayesian phylogenetic tree with the main clades identified. 

In the network analysis (Figure 4.25) the two main star-shaped haplotypes found for Irish 

samples agree with a more plausible recent colonisation during the Holocene transported 

there by humans (Mascheretti et al. 2003; McDevitt et al. 2009; McDevitt et al. 2010). The 

French population that has been indicated as a possible refugium for the Western clade does 

not have a central position in the network that will allow confirmation of this. However, more 

sampling is needed in the area to be able to solve this question. Although as the British and 

Irish samples seem unlikely to have contributed to the main variability of this clade, even this 

option could not be discarded. The Eastern clade is much more complex based on the network 

shape making any identification of phylogeographic patterns difficult, as many of the 

haplotypes are uniques for certain localities.  

 

Figure 4.25 Median-Joining network of all the D-loop sequences available for Sorex minutus. 

Western 
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Ancient DNA will contribute to insight and confirm the suggested refugial areas and the 

different routes of colonisations, as the current diversity of the species seems complex enough 

to be problematic to infer them in more detail.  

CARNIVORES 
 

Canis lupus  

Two different alignments were constructed in order to include the highest number of ancient 

DNA sequences as possible. For the longest alignment (235 bp), 1627 sequences were used 

(Table 4.14). For the shortest (53bp), 1723 sequences were taken into consideration.  

Table 4.14 Canis lupus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Apennine 262 235 7 0.0965 0.00177 

Balkans 211 235 12 0.8286 0.02139 

Caucasus 16 235 5 0.775 0.02298 

Central Europe 39 235 9 0.7018 0.01788 

Eastern Europe 770 235 21 0.8112 0.0153 

Eastern Russia 11 235 1 - - 

Greenland 6 235 1 - - 

Iberia 81 235 4 0.5194 0.00552 

Near East 9 235 5 0.8611 0.01345 

Scandinavia 101 235 7 0.5798 0.01303 

Siberia 10 235 7 0.9111 0.01792 

Urals 20 235 4 0.5 0.00935 

Western Europe 91 235 4 0.107 0.00206 

Total 1627 235 45 0.8761 0.02213 

 

The genetic diversity values for the species are variable with the highest diversity found in 

Siberia and the Near East and the lowest in the Apennine Peninsula and Western Europe 

(Table 4.14). The wide range of diversity probably reflects different demographic histories of 

the population. However, the high haplotype diversity (0.876) and relatively low nucleotide 

diversity (0.022) of the species might be consistent with a more recent demographic 

expansion.  
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The uniqueness of the Italian wolf is not well identified in the phylogenetic analysis (Figure 

4.26). The main haplotype in Italy, w14, (Randi et al. 2000) is also found in the Balkans. 

However, this is due to a reduction on the fragment length to 235 bp instead of the 543 bp 

fragment from the original paper. This is a definite caveat of reducing the length of the 

fragment analysed and has to be considered carefully.  

 

Figure 4.26 Canis lupus D-loop Bayesian phylogenetic tree with the main clades identified. 

No obvious strong associations between haplogroups and their geographic locations were 

found (Figure 4.27). Clade I is a good example of this situation. It is present in Iberia in high 

frequencies, but its presence in eastern Europe complicates the identification of this clade as a 

possible lineage related with an Iberian refugium population. Clade V is widely distributed and 

is present in all the regions analysed, except Iberia.  In order to shed more light on the genetic 

singularity and importance of these southern populations as possible refugia, additional aDNA 

sequences would be needed. With the present analysis, no strong phylogeographic structure is 

found for the species in agreement with previous important studies on the species (Randi et al. 

2000; Pilot et al. 2010; Ersmark et al. 2016) 
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Figure 4.27 Map of the distribution of the main clades identified in the phylogenetic tree for Canis lupus. 

The temporal networks produced for the two alignments showed certain continuity between 

Pleistocene and Holocene samples but with a significant reduction in haplotyped diversity 

(Figure 4.28). However, the previously described division of both contemporary and ancient 

wolves into two distinct clades is not found (Leonard et al. 2007; Pilot et al. 2010). However, all 

the Pleistocene and Holocene specimens clustered in clade V, indicating a certain level of 

division even if modern samples also belong to this clade, but in fewer frequencies (Figure 

4.28c). Although the species had an extensive distribution in northern Eurasia during the late 

Pleistocene (Hofreiter 2007), expansion from several refugia and replacement appear to have 

played an important role in structuring wolf phylogeography in Europe. 

 

a) b) 
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Clade V 

 

Figure 4.28 a) Canis lupus D-loop temporal network (using the 235 bp alignment) showing the presence of the 

different haplotypes in the two periods analysed. Each layer represents a different temporal period; b) Canis lupus 

D-loop temporal network (using the 53 bp alignment) showing the presence of the different haplotypes in the two 

periods analysed; c) Canis lupus D-loop temporal network (using the 235 bp alignment) showing the presence of the 

different haplotypes in the three periods analysed. Haplotypes found in multiple geographical areas are connected 

by vertical lines. Within each layer, black dots represent one mutation. 

Vulpes lagopus (Arctic Fox) 

A total of 351 sequences were analysed for Vulpes lagopus (Table 4.15). The highest diversity 

values were found in the European Pleistocene samples and modern Alaskan population. The 

diversity of the species is relatively high in most of the areas analysed, except for some 

populations in islands and remote regions such as Iceland and Svalbard. 

Table 4.15 Vulpes lagopus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes Hd π 

Alaska 18 278 8 0.889 0.01238 

Artic 81 278 2 0.458 0.00167 

Bering 92 278 7 0.542 0.00462 

Canadian Archipielago 18 278 9 0.882 0.00929 

Svalbard 11 278 2 0.545 0.00999 

Siberia 27 278 8 0.803 0.01102 

Iceland 38 278 4 0.329 0.00335 

Greenland 24 278 9 0.873 0.01314 

Scandinavia 18 278 4 0.699 0.01149 

Fennoscandia 16 278 3 0.492 0.00918 

 Europe (Pleistocene) 7 278 5 0.929 0.00939 

Total 350 278 35 0.902 0.01758 

c) 
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Figure 4.29 Vulpes lagopus D-loop Bayesian phylogenetic tree with the main clades identified. 

In the phylogenetic tree only the samples from Bering, Siberia, Alaska and Holocene samples 

from Iceland formed small clades (Figure 4.29). Two haplotypes found from samples from 

central/western Europe, during the Late Pleistocene, are shared with some modern samples 

(Figure 4.30), unexpectedly and not in agreement with the analysis from Dalén et al. (2007). 

This is due to a reduction of 14 bp from Dalén et al. (2007) study, but is something that needs 

to be further explored as these closer haplotypes could represent a degree of continuity 

between Late Pleistocene Europe and current Siberian/Alaskan populations. 

 

Figure 4.30 Vulpes lagopus D-loop sequences temporal network showing the presence of the different haplotypes in 

the Late Pleistocene and modern time. Each layer represents a different temporal period. 

Vulpes vulpes 
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Vulpes vulpes (Red Fox) 

A total of 983 sequences were collected for 11 different regions (Table 4.16). The diversity of 

the species is relatively high in most of the areas sampled. The high diversity found for the red 

fox is in agreement with a constant occupation of the European continent through different 

temporal periods and even during the LGM. The temporal network (Figure 4.31a) showed a 

continuity between the Pleistocene and the Holocene samples where the loss of diversity that 

has characterised other mammal species (Lorenzen et al. 2011) have not occurred with 

strength for V. vulpes. Except for Scandinavia, the high haplotype and nucleotide diversity 

found for the species across all the geographical areas analysed may be related to a constant 

occupation of the territory and stable population over the last 40,000 years (Teacher et al. 

2011).  

Table 4.16 Vulpes vulpes D-loop fragment sequences retrieved and analysed by geographical (a) areas and time 

periods (b). n=samples size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes 

found; hd = haplotype diversity; π= nucleotide diversity.  

 

Region n BP Haplotypes hd π 

Apennine 21 219 5 0.7524 0.00355 

Asia 10 219 7 0.8667 0.02558 

Balkans 367 219 38 0.9253 0.01431 

Central Europe 119 219 34 0.897 0.01255 

Eastern Europe 24 219 15 0.9565 0.01604 

Iberia 39 219 10 0.8812 0.01372 

Near East 5 219 5 1 0.01315 

North Africa 11 219 9 0.9636 0.03312 

Scandinavia 70 219 11 0.5048 0.00773 

UK 231 219 38 0.7816 0.01382 

Western Europe 86 219 30 0.9209 0.0163 

Total 983 219 146 0.9596 0.01398 

 

 

Time n BP Haplotypes hd π 

Pleistocene 14 219 14 1 0.01963 

Holocene 15 219 14 0.9905 0.0186 

Historical/Modern 967 219 126 0.9575 0.0139 

Total 996 219 146 0.9596 0.01398 

a) 

b) 
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Figure 4.31 a) Vulpes vulpes D-loop temporal network showing the presence of the different haplotypes in the two 

periods analysed. Each layer represents a different temporal period. Circles represent haplotypes and numbers 

represent. b) Median-Joining network of all the D-loop sequences available for Vulpes vulpes. 

Unfortunately, the phylogenetic tree does not solve any of the big phylogeographical 

questions about the red fox. Only the samples from northern Africa seem to be significantly 

different from the rest of the Eurasian samples (Figure 4.32). This uncertainty in Eurasia has 

already been mentioned in the literature on several occasions (Teacher et al. 2011; Edwards et 

al. 2012).  

 

 

 

 

 

 

 

 

Figure 4.32 Vulpes vulpes D-loop Bayesian phylogenetic tree with the main clades identified. 

The Median-joining network produced for the 983 sequences collected did not show much 

more information than the one obtained from the phylogenetic tree. In the network (Figure 

a) b) 
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4.31b), apart from the mentioned Northern African samples, no other big clusters of 

sequences are shown. The British samples that comprised a different group from the main 

European populations (Edwards et al. 2012) did not seem to be much different from other 

European areas, such as the Balkans, where many haplotypes are shared between these two 

areas. This is contradictory to the previous results observed (Teacher et al. 2011; Edwards et 

al. 2012) but it can be explained, again, by the sequence length caveat for the modern samples 

included. Although, this result may reflect that the lack of phylogeographic structure for the 

species extended to the British samples, as Pleistocene samples showed, with close haplotype 

sharing between Britain and Central Europe (Teacher et al. 2011). 

The short fragment used for this species (219 bp) does not seem enough to capture the 

genetic structure of the species and an increment on the length could contribute to improving 

the resolution of the shallow structure found here. However, species that are considered 

ecologically adaptable have been suggested to be able to exhibit high diversity and lack of 

population structure (as found here) related with a constant occupation of Europe (Edwards et 

al. 2012). The great mobility of the species and the high dispersal abilities have led to the lack 

of observable phylogeographic pattern in the red fox, probably reinforced by the adaptability 

of the species to a wide habitat range (Teacher et al. 2011). Red foxes do not seem to fit any of 

the classic models of postglacial colonisation which makes difficult to identify their former 

refugial areas (if they were any), indicating that the pattern observed is different. 

Gulo gulo (Wolverine) 

The sampling across Eurasia is restricted to Scandinavia and Russia so for this reason, 

Scandinavia has been divided by country. Sweden and Russia have similar genetic diversity 

(Table 4.17), but in Norway, all the 108 individuals analysed comprise the same haplotype. This 

represents an extremely low diverse population and needs also to be considered for 

conservational purposes.  
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Table 4.17 Gulo gulo D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; BP= 

length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype diversity; 

π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Norway 108 317 1 - - 

Sweden 63 317 2 0.0625 0.0004 

Russia 59 317 7 0.6184 0.00351 

Mongolia 7 317 2 0.4762 0.00302 

Total 237 317 8 0.4615 0.00551 

 

The haplotype network (Figure 4.33) showed that the European distribution is connected with 

the eastern Russian population and therefore with the Mongolian populations. They formed a 

relatively continuous distribution from east to west suggesting movement across the whole 

Eurasian range, as previously suggested (Walker et al. 2001; Tomasik and Cook 2005; Zigouris 

et al. 2013).  

 

Figure 4.33 Gulo gulo D-loop geographical network. Haplotypes found in multiple geographical areas are connected 

by vertical lines. Within each layer, black dots represent one mutation. 

Mustela erminea (Stoat) 

A total of 205 sequences were added to the analysis. Some of the geographical areas have a 

low sample size, so the phylogeographic pattern inferred is shaped by this caveat and the 

identification of possible refugia based on diversity is complicated  (Table 4.18). However, the 

highest haplotype diversity is found in eastern Europe while western Europe displayed the 

highest nucleotide diversity. 



113 
 

Table 4.18 Mustela erminea D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Apennine 3 502 2 0.6667 0.00402 

Asia 7 502 7 1 0.00553 

Central Europe 18 502 9 0.8889 0.00383 

Eastern Europe 27 502 21 0.963 0.00653 

Iberia  1 502 1 - - 

Greenland 1 502 1 - - 

Scandinavia 22 502 6 0.7489 0.00301 

UK/Ireland 104 502 21 0.8641 0.00673 

Western Europe 19 502 5 0.7661 0.00748 

Total 202            502 66 0.9508 0.00792 

 

The phylogenetic tree shows some shallow clades that can be identified with some 

geographical regions (Figure 4.34). The Irish population seemed to form several distinct clades, 

as previously suggested, probably representing a natural colonisation of the island possibly at 

the time of the LGM (Martínková et al. 2007). The small sample sizes for some of the regions 

do not allow a robust comparison based on genetic diversity. However, the highest diversity 

that is found in eastern Europe can help to identify where the species may have been in 

refugia during the LGM contributing, at least partially, to the recolonisation of certain areas of 

Scandinavia and Central Europe (Figure 4.35a). 

 

Figure 4.34 Mustela erminea D-loop Bayesian phylogenetic tree with the main clades identified. 

Mustela 

nivalis 
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The continuity found between different areas is consistent with the broad distribution of the 

species but also reflecting the importance of the east as a possible source of diversity. The high 

number of haplotypes found in eastern Europe in comparison with the rest of the areas 

analysed and the presence of some of them, or closely related ones, in central Europe and 

Scandinavia, makes it possible that the east was a possible reservoir for the genetic variability 

of the species (Figure 4.35b). 

  

Figure 4.35 a) Mustela erminea D-loop geographical network. Haplotypes found in multiple geographical areas are 

connected by vertical lines. Within each layer, black dots represent one mutation. b) Median-Joining network of all 

the D-loop sequences available for Mustela erminea. 

The lack of studies that examined the phylogeography of the species in Europe makes it 

difficult to identify the source of diversity and the possible refugia of M. erminea. The high 

diversity found in Eastern Europe might be a consequence of refugia in the area or alternative 

it is a contact zone with the Asian populations. The presence of a stoat vertebra around 15 kya 

in Norway opens the possibility of the long-term presence of the species in Scandinavia 

(Fjellberg 1978). More studies in western and central Europe will contribute to understanding 

the connection between the east and the west.  

Mustela nivalis (Least Weasel) 

A total of 192 samples have been considered in the analysis. Unfortunately, the samples sizes 

of many regions are quite low and inferring phylogeographic patterns from diversity is 

complicated (Table 4.19). However, the species shows high haplotype diversity in most of the 

areas analysed, except Iberia.  

a) b) 



115 
 

Table 4.19 Mustela nivalis D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Iberia 4 514 2 0.5 0.00297 

Baleares 3 514 1 - - 

Balkans 7 514 6 0.9524 0.00472 

Apennine 11 514 7 0.8909 0.00685 

Corsica 8 514 7 0.9643 0.00135 

Crete 24 514 3 0.6703 0.00265 

Sicily 7 514 3 0.5238 0.00113 

Sardinia 2 514 2 1 0.00198 

Malta 8 514 1 - - 

Near East 15 514 9 0.8857 0.00376 

Caucasus 3 514 3 1 0.04026 

Sandinavia 7 514 6 0.9524 0.00547 

UK 2 514 2 1 0.00594 

North Africa 11 514 5 0.7636 0.00267 

West Europe 14 514 7 0.8022 0.00429 

Central Europe 7 514 6 0.9524 0.00548 

East Europe 19 514 12 0.9357 0.01257 

Asia 37 514 18 0.9444 0.01848 

Oceania 1 514 1 - - 

Total 190 514 80 0.9769 0.01211 

 

The phylogenetic tree (Figure 4.36) resolved more than the previously identified two clades 

due to the incorporation of a broader geographical range and Asian haplotypes were included 

in the analysis. Asian, Eastern European (Ukraine) and Georgian individuals appeared to form 

separate lineages from the main one that included the two main clades previously described 

for the species (Lebarbenchon et al. 2010). Clade I includes individuals sampled in the western-

Palaearctic region covering the whole range from south to north, from Spain to Finland. Clade 

II is a more geographically mixed lineage as includes individuals from Eastern Europe and most 

of the insular M. nivalis including in the analysis. The population from Japan formed a different 

cluster. 
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Figure 4.36 Mustela nivalis D-loop Bayesian phylogenetic tree with the main clades identified. 

From the network analysis (Figure 4.37), the main two clades are also identified. The wide 

range of geographical areas identified within each clade complicates the identification of 

refugia for each clade. However, the areas close to the Carpathians and the Balkans displayed 

the highest diversity and may indicate a refugial area as previously suggested for the cyt b 

(McDevitt et al. 2012). Unfortunately, the control region is not as well sampled as the cyt b in 

important areas in central and eastern Europe such as Poland, where a contact zone has also 

been described (McDevitt et al. 2012). 
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Figure 4.37 Median-Joining network of all the D-loop sequences available for Mustela nivalis. 

Martes martes (Pine Marten) 

A total of 705 individuals were included in the analysis. The highest haplotype diversity is 

found in the Apennine peninsula (0.8775) and the lowest in Iberia (0.6475) (Table 4.20). The 

phylogenetic tree has resolved four main clades that have also been previously described 

(Figure 4.38). The presence of three of these four groups (Mediterranean, Central Europe and 

Fennoscandian) has been related with the different biogeographic regions: Alpine–Atlantic, 

Continental, and Boreal, respectively (Roekaerts 2002; Ruiz-González et al. 2013). In this 

analysis, one more clade is identified for samples from the British Isles (UK, in Figure 4.38), but 

these samples have previously attributed to the Fennoscandian clade.  

Table 4.20 Martes martes D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

 

Clade II 

Clade I 
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Region n BP Haplotypes hd π 

Iberia 68 217 7 0.6475 0.00383 

Apennine 27 217 10 0.8775 0.00946 

Balkans 25 217 7 0.78 0.01101 

Western Europe 119 217 14 0.71 0.01026 

Scandinavia 168 217 14 0.83 0.02415 

UK 97 217 4 0.4263 0.01293 

Central Europe 91 217 17 0.8288 0.00855 

Eastern Europe 96 217 32 0.87 0.02612 

Sardinia 14 217 3 0.7143 0.00434 

Total 705 217 77 0.9138 0.01967 

 

The results presented here indicated a complex and mixed pattern of recolonisation of 

northern Europe from different refugia. The widespread presence of the Central group across 

central and northern Europe (Figure 4.39), which is barely represented in the three main 

southern peninsulas, suggested that the source of this lineage is related with a northern 

refugium as has been previously hypothesised from genetic and palaeontological data 

(Sommer and Benecke 2004; Sommer and Nadachowski 2006; Ruiz-González et al. 2013). 

Central and eastern Europe are the areas displaying high genetic diversity (Table 4.20) and 

makes these regions strong candidates for the location of refugia during the last glaciation. 

The Fennoscandian–Russian clade does not seem to have any relationship with the southern 

clades, as it is not found in any other regions. The demographic history of this clade might be 

related with the process of speciation of Martes zibellina (Ruiz-González et al. 2013). The 

surprising result of the Mediterranean clade fitting in between variability of the Central and 

the Fennoscandian clades it is hard to interpret. More sampling in western Europe and the 

Mediterranean coast might help to clarify these results.  
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Figure 4.38 Martes martes D-loop Bayesian phylogenetic tree and map of the distribution of the main clades 

identified. 

 

Figure 4.39 a) Median-Joining network of all the D-loop sequences available for Martes martes. b) Martes martes D-

loop geographical network. Haplotypes found in multiple geographical areas are connected by vertical lines. Within 

each layer, black dots represent one mutation. 

The evidence that cryptic northern refugia existed in central Europe during the LGM does not 

exclude that southern refugia had an essential role in the postglacial colonisation of the 

species from the south. Therefore, the species seems to be characterised by a mixed pattern of 

recolonisation after the LGM as previously suggested by Ruiz-González et al. (2013). 

a) b) 

Gulo gulo 
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Lynx (Eurasian Lynx) 

A total of 832 sequences were included in the analysis (Table 4.21). A total of 56 haplotypes 

were identified across the four temporal periods identified using the available aDNA. The 

historical samples displayed the highest diversity (both haplotype and nucleotide), and the 

Pleistocene is not the period with the highest diversity as suggested for many mammal species 

(Barnett et al. 2009; Lorenzen et al. 2011). 

Table 4.21 Lynx lynx D-loop sequences retrieved and analysed by temporal periods. n=samples size; BP= length in 

base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype diversity; π= 

nucleotide diversity.  

Time n BP Haplotypes hd π 

Pleistocene 7 498 3 0.7143 0.00479 

Holocene 15 498 4 0.3714 0.00436 

Historical 135 498 40 0.8734 0.01052 

Modern 675 498 22 0.6256 0.00858 

Total 832 498 56 0.703 0.00946 

 

The phylogenetic tree resolved at least six clades (IN1-IN5, IN8) that have been previously 

suggested in the literature (Figure 4.40). The distribution map of the haplogroups (Figure 4.40) 

helps to identify the possible locations that may represent refugia. Unfortunately, the small 

sample size in some essential southern areas such as Iberia and Italy is an important caveat to 

infer the phylogeographic pattern of the species. The main pattern identified is the possibility 

of an eastern refugium for the species, due to the highest number of haplogroups found in 

that geographical region. However, through the temporal network (Figure 4.41), the continuity 

between Pleistocene-Holocene-Modern samples can be appreciated for three of the main 

clades described (IN3, IN4 and IN8) belonging to southern areas like Iberia, France and Italy, 

also indicating the possibility of southern refugia s for this species.  
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Figure 4.40 Lynx lynx D-loop Bayesian phylogenetic tree and map of the distribution of the main clades identified. 

 

 

Figure 4.41 Lynx lynx D-loop temporal network showing the presence of the different haplotypes in the three 

periods analysed. Each layer represents a different temporal period. Circles represent haplotypes and numbers 

represent sample sizes. Empty circles represent absent haplotypes for a given time period. Haplotypes found in 

multiple periods are connected by vertical lines. Within each layer, black dots represent one mutation. 

The overall phylogeographic pattern of Lynx lynx is complex, but the existence of eastern 

refugia for the species seems clear from the mtDNA data available. Several refugia in the south 

IN4 IN3 IN8 
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(but also in the north) cannot be discarded and more aDNA studies will probably confirm this 

helping to understand better the pattern found today and the complexity in the past.  

Ursus arctos (Brown Bear) 

Here, 826 samples were used to infer the phylogeographic patterns of the species (Table 4. 

22). The highest haplotype diversity was found in the Caucasus. Iberia also displayed the 

highest diversity for the southern peninsulas and it probably reflects the important role that 

has been already suggested as a source of populations (Taberlet and Bouvet 1994; Davison et 

al. 2011). 

Table 4.22 Ursus arctos D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes Hd π 

Apennine 6 122 3 0.6 0.0153 

Balkans 199 122 13 0.7716 0.04009 

Bering 39 122 24 0.8745 0.05214 

Caucasus 72 122 17 0.9049 0.04276 

Central Europe 10 122 5 0.8222 0.05118 

Eastern Europe 181 122 12 0.2273 0.00499 

Iberia 61 122 20 0.8186 0.02009 

Near/Middle East 60 122 16 0.774 0.0487 

North Africa 7 122 3 0.6667 0.05621 

Scandinavia 90 122 13 0.7446 0.0476 

UK 24 122 8 0.721 0.03647 

Western Europe 12 122 7 0.7727 0.02732 

Eastern  Russia 53 122 6 0.3396 0.00445 

Total 814 122 135 0.8456 0.05772 

 

The phylogenetic tree (Figure 4.42) resolved the two main clades that differentiated between 

the west and the east (clade 1 and 3, respectively) reported firstly by Taberlet and Bouvet 

(1994). The complexity of the species is based on the number of subclades that have been 

described in the literature. The presence in Iberia of the two main clades (clade 3 is found in 

Pleistocene samples from Spain) means that it remains poorly understood although the variety 

of haplotypes found there indicates a complicated story in the peninsula with turnovers and 

population migrations.  
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Figure 4.42 Ursus arctos D-loop Bayesian phylogenetic tree with the main clades identified. The nomenclature of 

the subclades is only indicated based on previous studies designation as the resolution of the phylogenetic tree is 

not as well resolved. 

From the temporal network (Figure 4.43), a loss of diversity seems to occur from the 

Pleistocene to the Late Pleistocene (probably due the LGM). However, there is a recovery in 

diversity at the beginning of the Holocene until a new decline in brown bear diversity that can 

be linked to an intense human impact (Kirby and Watkins 2015; but see also Barnes et al. 

2002). 

Pleistocene samples 
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Figure 4.43 Ursus arctos D-loop sequences temporal network showing the presence of the different haplotypes in 

the three periods analysed. Each layer represents a different temporal period. Circles represent haplotypes and 

numbers represent sample sizes. Empty circles represent absent haplotypes for a given period. Haplotypes found in 

multiple temporal periods are connected by vertical lines. Within each layer, black dots represent one mutation. 

The geographical network (Figure 4.44) helped to identify the contact zone in Scandinavia 

where the two main clades (1 and 3) met. Furthermore, the presence in Scandinavia of the 

western clade (1) associated traditionally with the Iberian Peninsula as the source for 

colonisation (Taberlet and Bouvet 1994; Davison et al. 2011) cannot be confirmed with this 

analysis. The western haplotypes that contributed to the Scandinavian landscape may have 

arrived from Iberia, but the possibility of northern refugia somewhere in France and Belgium 

have to be considered as some and close related haplotypes are shared between regions for 

Holocene samples. This will be in accordance with Valdiosera et al. (2007). A new study, as yet 

unpublished at the time this thesis was completed (Ersmark et al. in prep) has also shown that 

brown bear was in Belgium during the LGM (16,000 y.a) suggesting that southern Europe was 

not the area from where the species colonised northern areas in Europe. 
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Figure 4.44 Ursus arctos D-loop sequences geographical network showing the presence of the different haplotypes 

in the different regions analysed. Each layer represents a different geographical area. Circles represent haplotypes 

and numbers represent sample sizes. Empty circles represent absent haplotypes for a given area. Haplotypes found 

in multiple geographical areas are connected by vertical lines. Within each layer, black dots represent one mutation. 

Subclade 1a in Iberia and 1b in Italy-Balkans have been identified as possible refugia for the 

species in southern Peninsula (Davison et al. 2011). However, the resolution of the 

phylogenetic tree and the networks did not allow further exploration of these clades as the 

reduced short fragment analysed is a limiting factor for understanding the presence of these 

subclades.  

ARTIODACTYLA 
 

Alces alces (Eurasian Elk) 
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In total, 1586 individuals were included in the analysis (Table 4.23).  The highest genetic 

diversity was found in Siberia, where haplotype diversity (h) is 0.8517 and nucleotide diversity 

(    is 0.01698. This is in accordance with the previously suggested contact zone between the 

European and the Asian clades (Moskvitina et al. 2011). Central Europe represents the area 

with less diversity and even if it is the least sampled area, the sample size is high enough 

(n=52) to be confident about this result. 

Table 4.23 Alces alces D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Central Europe 52 465 6 0.629 0.01138 

Eastern Europe 958 465 32 0.7303 0.01274 

Scandinavia 246 465 9 0.6585 0.01061 

Lapland 81 465 4 0.5886 0.00982 

Urals 96 465 16 0.7846 0.00613 

Siberia 153 465 23 0.8517 0.01698 

Total 1586 465 74 0.8215 0.01524 

 

The phylogenetic analysis including Asian and European samples resolved two main lineages 

(Figure 4.45). The resolution within the European clade (E, Ce and W) is not particularly well 

resolved, especially the central-western (Ce and W) difference from the eastern haplogroup 

(E1-E4). This is reflected in some uncertainty for the assignment of the clades as previously 

reported (Niedziałkowska et al. 2017). 
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Figure 4.45 Alces alces D-loop Bayesian phylogenetic tree with the main clades identified. 

The haplotype geographical network showed a relative sharing of haplotypes between 

different locations (Figure 4.46). Eastern Europe is much better sampled than central Europe, 

but there is still a certain degree of continuity between these two areas. The presence of 

moose remains during the LGM in western areas of Siberia (Markova et al. 1995) with the high 

diversity found in this area and the high number of haplotypes identified (Table 4.23), makes 

Siberia a possible refugium for the species. All the major central haplotypes seemed to be 

present in the three main western areas analysed. The eastern populations (even from 

western Asia) seem to have contributed to the genetic landscape of central Europe.  

 In Scandinavia, the two main haplotypes identified formed part of the genetic landscape of 

eastern European diversity. It has been suggested that A. alces colonised Scandinavia from the 

south and the north of Europe with phylogeographic studies supporting this colonisation 

scenario (Hundertmark et al. 2002; Niedziałkowska et al. 2014). The western clade has also 

contributed to the current genetic scenario of Scandinavia, possibly after surviving during the 

LGM in western Europe (Björck 1995). The distribution of the Eastern and Central clades 

seemed to overlap, as all the haplotypes found in central Europe are found in the east, 

probably due to mixing after the LGM (Niedziałkowska et al. 2014).  
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Figure 4.46 Alces alces D-loop geographical network. Each layer represents a different geographical area. Circles 

represent haplotypes and numbers represent sample sizes. Empty circles represent absent haplotypes for a given 

area. Haplotypes found in multiple geographical areas are connected by vertical lines. Within each layer, black dots 

represent one mutation. 

The genetic structure of the European lineage of Alces alces seems to be more complex than 

previously thought. The high diversity found in Siberia is probably related with a contact zone 

between different clades, but it cannot be discarded as a possible consequence of a refugium 

contributing to recolonisation in western and eastern Eurasia. It is likely that the range of 

central and western haplotypes was broader in the past, with a higher genetic diversity that 

cannot be seen in the current populations. Ancient DNA studies will help to shed light on the 

distribution of the species’ genetic diversity before, during and after the LGM.  

Capreolus capreolus (Roe deer) 

Here, a total of 2691 sequences were analysed for the whole range of the species (Table 4.24). 

The genetic diversity is relatively high for most of the populations (except for Scandinavian and 

Russian samples). The sample sizes across regions are high (>40), so allowed a confident 

analysis for understanding the phylogeography of the species. However, the high diversity 

shown by the species makes it complicated to identify possible refugia based on diversity. 

Table 4.14 Capreolus capreolus D-loop fragment sequences retrieved and analysed by geographical areas. 

n=samples size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = 

haplotype diversity; π= nucleotide diversity. 



129 
 

Region n BP Haplotypes hd π 

Apennine 1090 293 52 0.8722 0.01102 

Balkans 189 293 22 0.9268 0.01422 

Central Europe 480 293 62 0.9055 0.01296 

Eastern Europe 65 293 21 0.8793 0.02126 

Iberia 291 293 22 0.8892 0.01372 

Russia  86 293 13 0.6996 0.01912 

Scandinavia 43 293 5 0.5504 0.0056 

UK 398 293 21 0.7981 0.00761 

Western Europe 49 293 14 0.8801 0.00887 

Total 2691 293 181 0.9588 0.01801 

 

The phylogenetic tree is not as well resolved as expected probably due to the reduction of the 

control region fragment (Figure 4.47). However, some distinct clades can be observed and 

described based on their geographical origins. The gene flow between populations is shown by 

the high number of haplotypes shared between most of the regions compared especially with 

connections between the south and the north as well as the east and the west (Figure 4.48). 

Iberia and western Europe are connected, sharing three main haplotypes between them, 

similar to the central European samples and Scandinavia (Figure 4.48). 

 

Figure 4.47 Capreolus capreolus D-loop Bayesian phylogenetic tree with the main clades identified. 

The high diversity across regions for the species is also highlighted through the geographical 

networks (Figure 4.48). There is haplotype continuity between the most important regions 

Cervus 

elaphus 
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analysed. The western and Iberian clades previously suggested, seem to be more diverse in 

Iberia and might reflect a possible southern refugium in the area. The distinctiveness of the 

Italian clades (Lorenzini and Lovari 2006) is not well supported in this analysis as most of the 

haplotypes are shared with Central Europe, not indicating a clear refugium in the Apennine 

peninsula, as the continuity also extends to Scandinavia. 

  

 

Figure 4.48 Capreolus capreolus D-loop sequences geographical network showing the presence of the different 

haplotypes in the different regions analysed. Each layer represents a different geographical area. Circles represent 

haplotypes and numbers represent sample sizes. Empty circles represent absent haplotypes for a given area. 

Haplotypes found in multiple geographical areas are connected by vertical lines. Within each layer, black dots 

represent one mutation. 

The complexity of the phylogeography of C. capreolus makes it challenging to identify refugia 

and possible postglacial colonisation routes in Europe. The appearance of aDNA studies for this 

species in the upcoming years will undoubtedly contribute to the better understanding of the 

roe deer phylogeographic patterns. 
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Cervus elaphus (Red deer) 

A total of 60 haplotypes has been identified for 4087 samples analysed. The highest haplotype 

diversity is found in Iberia and the Caucasus and the lowest in Scandinavia, Balkan and Italian 

Peninsulas (Table 4.25). The high diversity expected in southern regions for the species is not 

seen in these results. Surprisingly, the Balkans showed the lowest values of haplotype and 

nucleotide diversity and is not in accordance with a possible southern based on diversity. 

Table 4.25 Cervus elaphus D-loop fragment sequences retrieved and analysed by geographical areas. n=samples 

size; BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Apennine 92 180 5 0.5934 0.02095 

Balkans 53 180 3 0.1103 0.0041 

Caucasus 6 180 4 0.8 0.03617 

Central Europe 1336 180 24 0.7006 0.02688 

Eastern Europe 116 180 10 0.6852 0.03313 

Iberia 660 180 18 0.7908 0.02307 

Scandinavia 341 180 6 0.5459 0.0134 

UK/Ireland 1409 180 13 0.7584 0.03004 

Near East 3 180 3 1 0.0307 

Western Europe 71 180 5 0.6918 0.02697 

Total 4087 180 60 0.8022 0.02578 

 

The phylogenetic tree resolved two main clades (Figure 4.49). The first one comprised clade A 

and the second one presented clade B and C samples but it is not well resolved (clade B is only 

indicated based on the previous study from Skog et al. 2009).  



132 
 

 

Figure 4.49 Cervus elaphus D-loop Bayesian phylogenetic tree with the main clades identified. 

 

 

Figure 4.50 Cervus elaphus D-loop temporal network showing the presence of the different haplotypes in the two 

periods analysed. Each layer represents a different temporal period. Circles represent haplotypes and numbers 

represent. 

In the temporal network (Figure 4.50), the Pleistocene samples are more diverse than the 

Holocene ones, even if the sample size is higher for this period, reporting a loss of diversity for 

the species since the Pleistocene. The possibility of the species having a northern refugium 

Capreolus 

capreolus 
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cannot be discarded based on the high diversity found in the north, especially in Central 

Europe, in accordance with the results presented by Meiri et al. (2013). 

Rangifer tarandus (Reindeer) 

1609 sequences were collected and analysed for R. tarandus. The Pleistocene samples 

displayed higher haplotype diversity than the modern ones. However, the genetic diversity of 

the species has been kept in similar values since the Pleistocene and through different periods 

(Table 4.26). The well sampled Russia and Siberia displayed the highest diversity, but this has 

to be treated cautiously as the extensive area covered by the species in this country is an 

essential caveat for understanding diversity in the region. However, comparing it with the 

Scandinavian samples, the values are higher for the haplotype and nucleotide diversities.  

Table 4.26 Rangifer tarandus D-loop fragment sequences retrieved and analysed by geographical areas (a) and 

temporal periods (b). n=samples size; BP= length in base pairs of the fragment analysed; Haplotypes= number of 

haplotypes found; hd = haplotype diversity; π= nucleotide diversity. 

Region n BP Haplotypes hd π 

Alaska 30 117 19 0.9655 0.03649 

Asia 4 117 3 0.8333 0.09402 

Canada 135 117 57 0.9619 0.04067 

Central Europe 5 117 4 0.9 0.04103 

Greenland 24 117 2 0.3442 0.00294 

Russia 625 117 117 0.967 0.03855 

Scandinavia 779 117 61 0.8808 0.03814 

Siberia 6 117 6 1 0.04672 

UK 1 117 1 - - 

Total 1609 117 236 0.9565 0.04179 

 

 

 

 

 

The phylogenetic tree is not well resolved (Figure 4.51). The short fragment analysed (117 bp), 

in order to include the most aDNA sequences as possible, might be an important caveat to 

finding the subclades previously identified for the control region (Kvie et al. 2016). However, 

Time n BP Haplotypes hd π 

Modern 1199 117 169 0.9503 0.04277 

Historical 270 117 52 0.9221 0.03715 

Holocene 66 117 28 0.9245 0.03377 

Pleistocene 72 117 54 0.9887 0.03514 

Total 1607 117 236 0.9565 0.04179 

a) 

b) 
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some subclades were identified based on the previous nomenclature (Haplogroup I). The low 

support values identified in some of the branches are in accordance with Kvie et al. (2016) and 

the uncertainty introduced by using more, but shorter, sequences have not helped for a better 

resolution of the phylogenetic tree.  

 

Figure 4.51 Rangifer tarandus D-loop Bayesian phylogenetic tree with the main clade (Haplogroup I) identified. 
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Figure 4.52 Rangifer tarandus D-loop temporal network showing the presence of the different haplotypes in the 

two periods analysed. Each layer represents a different temporal period. Circles represent haplotypes and numbers 

represent. 

One of the analyses that could be done, regarding the lack of clades resolution, is based on a 

temporal comparison. The temporal network (Figure 4.52) showed an important continuity 

between the Pleistocene and the Holocene samples included in the analysis without 

identifying a significant loss of haplotype diversity over time. This is consistent with the 

demographic estimations previously made for the species (Lorenzen et al. 2011). 

With this analysis, the confirmation that R. tarandus populations remained relatively panmictic 

over time has been made. Unfortunately, the short fragment used here did not allow a good 

resolution of the clades/haplogroups previously identified and inferring possible refugia for the 

species has been limited. 

Bison bonasus (European Bison) 

The availability for D-loop sequences varied to a great extent, both in overlap and length, so 

two different alignments were constructed. The first one covered the entire stretch of 225 bp 

(n=217) (Table 4.27) and a second alignment with a length of 79 bp (n=267). The second 
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alignment was made in order to allow the comparison with as many ancient bison sequences 

as possible.  

Table 4.27 Bison bonasus D-loop fragment sequences retrieved and analysed by temporal period. n=samples size; 

BP= length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype 

diversity; π= nucleotide diversity. 

Time n BP Haplotypes hd π 

Pleistocene 36 225 35 0.9984 0.10872 

Holocene 9 225 4 0.7778 0.01645 

Historical/Modern 172 225 25 0.4985 0.03384 

Total 217 225 65 0.7 0.05426 

 

The shortest alignment (79 bp) was used to infer a temporal network (Figure 4.53a). 

Pleistocene samples present a clear star shape with a central haplotype that is also found in 

historical and modern samples. During the Holocene, the species seemed to have reduced its 

genetic variability and this has continued until the current time. The presence of 7 samples 

from a distinct haplotype in the modern range is probably due to introgression from domestic 

cattle in European bison from samples coming from Russia (Ward et al. 1999; Yudin et al. 

2012).  

 

Figure 4.53 a) Bison bonasus D-loop temporal network. Haplotypes found in different periods are connected by 

vertical lines. Within each layer, black dots represent one mutation. b) Median-Joining network of all the D-loop 

sequences available for Bison bonasus. 

The extreme reduction of variability in modern samples has been well described and has an 

essential role in the conservation of the species. The phylogenetic tree based on the longest 

fragment (225 bp) resolved the two main haplogroups that have been previously described 

a) b) 
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(Figure 4.54) and that delimited Clade X and the European Bison. Eastern European samples 

(including Poland), where the species is best represented, showed a star-shaped that probably 

is reflecting the main haplotype (Clade X) that included almost all modern and historical 

samples. 

 

Figure 4.54 Bison bonasus D-loop Bayesian phylogenetic tree with the main clades identified. 

The other main haplogroup previously described in Soubrier et al. (2016) is not well resolved in 

the temporal network (Figure 4.53a) due to the short length of the fragment analysed. 

However, there is some genetic distance between some Pleistocene and Holocene samples to 

the main modern haplotype. This is reflected in a bottleneck in modern samples and also 

possibly the extinction of some populations during the beginning of the Holocene and modern 

times (Lorenzen et al. 2011; Tokarska et al. 2011). 

The geographical distribution of the haplotypes found is well represented by the main 

haplotype that is mostly found in modern samples in Eastern Europe (Figure 4.53b). The 

European range of the species is restricted today to Białowieża Forest in Poland so the modern 

diversity and genetic landscape it is limited to infer phylogeographic patterns of the past. The 

new studies, which mainly incorporated aDNA, have opened a whole new understanding of 

the evolution of the species. 
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Sus scrofa (Wild Boar) 

The principal analysis that has been done is on those individuals indicated as wild boars in the 

literature. A total of 1220 individuals were analysed using this short fragment of the control 

region (73 bp). The representation of wild boar across Europe was such that data from a great 

variety of areas was included with only a low number of samples from the British Isles and the 

Caucasus (Table 4.28).  

Table 4.28 Sus scrofa D-loop fragment sequences retrieved and analysed by geographical areas. n=samples size; BP= 

length in base pairs of the fragment analysed; Haplotypes= number of haplotypes found; hd = haplotype diversity; 

π= nucleotide diversity. 

Region N BP Haplotypes hd π 

Iberia 139 73 4 0.2123 0.01 

Apennine 128 73 5 0.7287 0.03981 

Balkans 446 73 10 0.34 0.00634 

Sardinia 37 73 5 0.779 0.03169 

West Europe 50 73 4 0.558 0.0107 

UK 7 73 2 0.467 0.0063 

Central Europe 60 73 3 0.352 0.00485 

East Europe 273 73 7 0.417 0.00754 

Near East 50 73 5 0.599 0.02168 

Asia 8 73 1 - - 

North Africa 15 73 4 0.629 0.03148 

Caucasus 7 73 6 0.952 0.03783 

Total 1220 73 39 0.4611 0.01647 

 

The phylogenetic tree showed the main clades described already for the wild boar, so no loss 

of resolution occurred due to the shorter fragment used (Figure 4.55). Through the map 

(Figure 4.56) the distribution of the different clades across Europe is represented. The areas 

that present higher diversity are the Caucasus, Apennine Peninsula and Sardinia, however, the 

first one might be overestimated due to the short sample size (n=7). The existence of higher 

genetic diversity at lower latitudes in the Apennine Peninsula might suggest that this southern 

area had a significant role during the last glaciation as a genetic reservoir.  

The two longitudinal extremes across the continent from the west (Iberia) to the east (Eastern 

Europe) share a similar haplogroups distribution and this is in agreement with previously 

published studies (Scandura et al. 2008; Alexandri et al. 2012; Vilaça et al. 2014). This supports 

the genetic proximity of two eastern and western areas increasing the complexity of the 

pattern expected by isolation by distance (Vilaça et al. 2014). Furthermore, recent 
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translocation seems to have only affected the local scale (Vernesi et al. 2003) suggesting that 

postglacial colonisation processes may have shaped the dominant phylogeographical pattern. 

 

 

 

 

 

 

 

 

 

 

Figure 4.55 Sus scrofa D-loop Bayesian phylogenetic tree with the main clades identified. 

 

Figure 4.56 Map of the distribution of the main clades identified in the phylogenetic tree for Sus scrofa. The smaller 

pie charts represent the ancient DNA samples. 

Through a network between the main southern refugial areas (Figure 4.57), haplotypes are 

seemed to be shared between them. This may indicate possible gene flow between them but 

the possibility of modern reintroduction may also be taking account considering the significant 
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population reduction that the species went through during the last three or four centuries 

(Danilkin 2001; Apollonio et al. 2010).  

 

Figure 4.57 Network showing the presence of the different haplotypes in the three main traditional refugia. 

A south-north differentiation may not take place in the wild boar as there are some main 

important haplogroups shared between southern and northern areas (Figure 4.58). The 

similarity observed between Eastern Europe and Iberia could reflect a distribution where a 

single group formed a belt from the East to the West. This has been suggested as a pre-LGM 

distribution (Vilaça et al. 2014), but the present analysis does not show a clear continuity 

between the east and west to suggest that.  

The rare haplogroup E2 found in Sicily and southern Italy is also found in individuals from 

Croatia in the Mesolithic. This indicates a possible continuity or gene flow between the two 

areas and this is in agreement with the pattern seen in Figure 4.58, where the main haplotypes 

are shared between the southern areas.  
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Figure 4.58 Geographical network showing the continuity of the main haplogroups between southern and northern 

Europe for Sus scrofa D-loop. 

Regarding clade E1, the A-side group are more common in Central Europe and Italy while the 

C-side group is mostly represented in Iberia and Eastern Europe (Scandura et al. 2011). The 

complexity of identifying phylogeographic patterns for the wild boar is augmented by the 

hybridisation between local wild boars and domesticated pigs blurring the signal for the wild 

populations (Larson et al. 2007).  

Homo sapiens (Modern Humans) 

For this chapter, a total of 39 individuals were analysed for the Palaeolithic and 86 individuals 

have been analysed for the Mesolithic. A total of 19 haplotypes were resolved for the first 

period and 35 different haplotypes have been resolved for the Mesolithic. The genetic diversity 

in the Palaeolithic seems to be high across the continent despite the fact that the sample sizes 

are relatively low (Table 4.29a). The Apennine region (Italy) is the area presenting the highest 

values for haplotype and nucleotide diversity. However, the genetic variability during the 

Mesolithic seems to be higher than in the Palaeolithic and especially in the East (Table 4.29). 

There is a reduction in the number of samples available in western Europe and in the 

traditional refugial areas that can lead to misinterpretation of the results.  
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Table 4.29 Individuals from the Palaeolithic (a) and the Mesolithic (b) analysed for the HVS-I fragment. N=number of 

individuals; BP= base pairs analysed; Haplotypes=number of haplotypes identified; Hd=haplotype diversity; 

π=nucleotide diversity. 

      Region N BP Haplotypes Hd π 

Iberia 3 325 2 0.667 0.0041 

Apennine 6 325 5 0.933 0.0072 

West Europe 14 325 8 0.89 0.00739 

Central Europe 10 325 4 0.711 0.00514 

East Europe 6 325 4 0.8 0.00308 

 

Region N BP Haplotypes Hd π 

Iberia 1 325 1 - - 

Scandinavia 21 325 10 0.867 0.00861 

West Europe 5 325 5 1 0.01118 

Central Europe 17 325 11 0.926 0.00868 

East Europe 40 325 16 0.932 0.01641 

Balkans 2 325 2 1 0.00309 

 

The phylogenetic tree for the individuals from Palaeolithic and Mesolithic resolved a pattern 

difficult to interpret (Figure 4.59). No clear geographical pattern can be seen with the 

phylogenetic tree analysis. 

The Palaeolithic data has been subdivided in order to improve the resolution of the analysis 

and to distinguish possible signals of the different archaeological cultures present in Europe at 

that time. The following figure represents a network of all the available HVS-I (mtDNA) 

sequences for modern humans in the Palaeolithic that were able to be fully reconstructed 

(Figure 4.60). 

a) 

b) 
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Figure 4.59 Phylogenetic tree for the HSV-I fragment of modern humans in the Palaeolithic and the Mesolithic. 

A clear continuity is shown in the temporal network with a main star-shape haplotype from the 

Early Upper Palaeolithic from which at least four different haplotypes derived (Figure 4.60). 

During the Middle-Upper Palaeolithic new branches seems to arise and this might be in 

consensus with the appearance of new haplogroups such as U5 (Lell et al. 2000; Otte et al. 

2007). Haplogroups U2 and U8 remained prominent after the LGM in the late Upper 

Palaeolithic. Intriguingly, these two haplogroups seem to become less frequent after 15 kya 

and could suggest small cryptic refugia in central Europe (Richards et al. 2016). 
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Figure 4.60 Temporal network from Early Upper Palaeolithic to Late Upper Palaeolithic haplotypes. 

The comparison between the Palaeolithic and Mesolithic is critical in order to understand the 

post-glacial recolonisation. A temporal network (Figure 4.61a) shows the continuity between 

the two periods as well as the arrival of new haplotypes. The central haplotype described for 

the Palaeolithic is less represented in the Mesolithic and shows more ramifications. This 

indicates the basal haplotypes present in the Palaeolithic and the new haplogroups arrivals 

during this transition.  
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Figure 4.61 a) Temporal network between the Palaeolithic and Mesolithic haplotypes for the HVS-1 region. b) 

Temporal network to show the different haplotypes related to the main lithic cultures described for AHM. 

The analysis through the different lithic cultures shows an evident diversification of the 

haplotype branches with the arrival of the Gravettian when more variability is seen (Figure 

4.61b). However, the Magdalenian showed even less genetic variability with 8 out of 10 

individuals clustering on the same haplotype for the HVS-I fragment. New haplogroups, such as 

U5 and U8, seemed to appear with the Gravettian lithic culture and had not been identified 

before. 

 

 

a) 

b) 
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4.3.2 Phylogeographic patterns based on diversity indices for mammals in Europe 

 

Topological congruence of phylogenetic trees occurs when the phylogeographical patterns 

detected are similar between species that responded to the same historical event (Sullivan et 

al. 2000). However, tree topologies are insufficient to test the phylogeographical hypothesis 

and need to be complemented with other approaches, although they represent an excellent 

starting point for other analyses (Cartens et al. 2005). In this context, two different main 

topologies were found for all the phylogenetic trees produced for twenty-nine species (Figure 

4.62). First, there are nineteen species that have a phylogeny characterised by at least two 

main clades that are well supported (Figure 4.62a). Second, there are nine species displaying a 

phylogeny where more than 80% of the haplotype sequences cluster in a well-supported clade 

without a strong internal structure (Figure 4.62b). MtDNA sequences fail to support 

topological congruence between all the species, as expected, but these two main topologies 

define the general patterns. 

 

 

 

 

 

 

 

 

 

 

Figure 4.62 Schematic figures of the two main topologies of phylogenetic trees identified for the thirty species 

analysed. Topology a) is found for Arvicola amphibius, Arvicola sapidus, Microtus arvalis, Lemmus lemmus, Castor 

fiber, Erinaceus euroapeus, Erinaceus concolor, Sorex minutus, Lepus europaeus, Lepus timidus, Canis lupus, Lynx 

lynx, Martes martes, Mustela nivalis, Ursus arctos, Alces alces, Cervus elaphus, Bison bonasus and Sus scrofa. 

Topology b) is found for Cricetus cricetus, Myodes glareolus, Sciurus vulgaris, Mustela erminea, Vulpes lagopus, 

Vulpes vulpes, Capreolus capreolus, Rangifer tarandus and Homo sapiens. 

  

a) b) 
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To complement this first approach analysis, haplotype diversity values were calculated for 

each species and each region analysed. The values are displayed in Figure 4.63, where species 

are grouped by taxonomic similarities. The results show considerable variability in the diversity 

displayed by species and regions analysed. To determine the differences between species a 

Wilcoxon Signed Rank Test was performed between pairs of species. The results show that 

certain species can only be considered significantly different from the haplotype diversity 

displayed by each species by region analysed (Table A3.1 in Appendix 3). The species that is 

more significantly different from the other species is Vulpes vulpes, being significantly different 

to five species, followed by Capreolus capreolus, Sus scrofa, Canis lupus, Martes martes and 

Cervus elaphus, which are significantly different to four and three species. For seventeen 

species non-significant differences were found between pairs of species. 

 

Figure 4.63 Maps displaying the haplotype diversity values for each species per region analysed. Bars represent 

haplotype diversity values and each colour matches with the species that are classified by orders: Rodents, 

Artiodactyla, Lagomorpha/Eulipotyphla and Carnivores. 
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Haplotypes that are not found in other populations and are exclusive to certain regions, 

defined here as private alleles, can provide evidence of a refugium if they are in low values. As 

recolonised regions, on the other hand, can display high diversity but it is expected to have a 

low proportion of private haplotypes (Maggs et al. 2008). Following this approach and the 

calculation of private allelic richness, after rarefraction to S=10, the values for each species per 

region are plotted in Figure 4.64.   

Four different phylogeographic patterns can be inferred based on the private allelic richness 

values for some species and complemented by the haplotype diversity (Figure 4.63 and Figure 

4.64). The first one is represented by an east-west longitudinal gradient for diversity and it can 

be seen for Castor fiber, Cricetus cricetus, Alces alces, Mustela nivalis, Mustela erminea (except 

the British Isles) and Erinaceus concolor. This pattern is also reinforced by the genetic diversity 

found for Castor fiber, Cricetus cricetus, Alces alces and Mustela nivalis but not for Mustela 

erminea and Erinaceus concolor, where the haplotype diversity values seem more 

homogeneous through the geographical range of the species. The second pattern is a more 

central (Western-Central belt) distribution of private allelic richness, which was found for 

Erinaceus europaeus, Sciurus vulgaris, Sorex minutus, and Microtus arvalis. The haplotype 

diversity displayed a similar pattern for Erinaceus europaeus and Microtus arvalis, but it is not 

appreciated for Sciurus vulgaris and Sorex minutus, indicating the complexity for the species in 

diversity terms. For some species a third pattern of distribution for the private allelic richness 

shows southern areas with more private haplotypes than northern areas. These species are 

Capreolus capreolus, Sus scrofa, and Martes martes. The rest of the species analysed (eight 

more species from which enough data was available to infer diversity patterns) displayed and 

homogeneous pattern where no specific areas show much higher or lower private allelic 

richness than others. Modern humans from the Palaeolithic and the Mesolithic show this 

pattern. 
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Figure 4.64 Maps displaying the four main patterns of distribution identified for private allelic richness identified. 1. 

East-West cline; 2. Western-Central Belt; 3. Southern richness;  4. Homogeneous. Circles represent private allelic 

richness values and each colour matches with the species. 

4.4 Discussion 
 

Understanding the phylogeographic pattern of modern humans in Europe is a question that 

will undoubtedly receive continued attention in the upcoming years. The new methods, such 

as aDNA, are contributing insights into the main events of European modern humans 

migration during the Pleistocene (Posth et al. 2016; Fu et al. 2016). MtDNA still represents an 

important marker for understanding these events, however, it has important limitations 

1 2 

3 4 
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(Rubinoff and Holland 2005). In this chapter, the phylogeographic patterns of modern humans 

in the European continent during the Palaeolithic and Mesolithic have been addressed from 

the perspective of a short control region mtDNA sequence, although this has allowed an 

unexplored comparison with other mammals. The resolution of these results for moderns 

human is similar to the results obtained for most of the other mammal species in the 

continent, where the control region have been used extensively. Therefore, the comparison at 

this low scale of resolution has implied caveats, but also the benefit of a more integrative and 

comparative analysis between species.  

The genetic landscape and the diversity of the current modern human populations in Europe 

seem to be shaped mainly by the Upper Palaeolithic, specifically the middle and late rather 

than the early Upper Palaeolithic (Figure 3.58). This is consistent with previous studies based 

on longer fragments of the mtDNA, where the Upper Palaeolithic populations already 

represented the major genetic component of modern European populations (Fu et al. 2015, et 

al. 2016; Posth et al. 2016). The LGM had a tremendous impact on modern humans probably 

causing a severe bottleneck (Li and Durbin 2011; Posth et al. 2016) due to northern areas 

becoming uninhabitable and likely those remaining areas were fragmented (Stewart and 

Stringer 2012). The reduction in mitochondrial diversity found in Posth et al. (2016) is also seen 

here, even with a lower resolution, and is likely indicating the movement to refugia of hunter-

gatherer groups. Limited numbers of geographical areas have been studied, so the location of 

these refugia is still under debate. Although the reappearance of migrants from southeastern 

areas in Central Europe mixed with a local postglacial population has been interpreted as a 

possibility of a certain stability and uniform population during the late Upper Paleolithic and 

possibly even into the Mesolithic in some areas (Sánchez-Quinto et al. 2012; Lazaridis et al. 

2014; Fu et al. 2016; Günther and Jakobsson 2016). 

The analysis through the different lithic cultures shows a clear diversification of the haplotype 

branches with the arrival of the Gravettian when more variability is seen. However, the 

Magdalenian shows less genetic variability with eight individuals sharing the same haplotype 

for the HVS-I fragment, even if they are geographically dispersed (Germany, France and Spain) 

(Figure 3.59b). The haplogroups U5 and U8 seemed to appear with the Gravettian lithic culture 

and had not been identified before in Aurignacean populations, indicating a possible turnover 

previously identified in Posth et al. (2016). Higher diversity for the Mesolithic populations than 

for the Palaeolithic ones is also found.  The arrival of new haplogroups has contributed to 

increasing the diversity of the Mesolithic genetic landscape (see also Chapter 3).  
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The species-specific analysis of the 29 species examined in this chapter has shown the difficulty 

of identifying common patterns. The analysis of each species individually has proved the 

individualistic response of the species previously suggested (Stewart 2009; Stewart et al. 2010; 

Pedreschi et al. 2018). Identifying common patterns for phylogenetic trees topologies and 

network analyses has been shown to be a complex task that is characterised by great 

variability. 

However, the novelty of the research presented in this chapter relies mainly on the 

comparative approach. Therefore, modern humans have been treated as other mammal 

species analysed. The first approach to identify similarities between all the species analysed 

was based on the different phylogenetic tree topologies found. Two main topologies can be 

identified that help to classify species based on this feature (Figure 3.60). The more 

representative topology found in 19 species is characterised by at least two main well-

supported clades. This topology can be related with an allopatric structure of the populations 

where each clade has a different geographical origin (Pigot et al. 2010; Gascuel et al. 2015). 

However, the clades identified for some species analysed are not clearly related with different 

geographical areas, so the explanation behind this topology is complex and not only 

geographical arguments may not be the only causal factors. The second main topology was 

found in nine species and displayed a phylogeny where more than 80% of the haplotype 

sequences clustered in a main well-supported clade without a strong internal structure (Figure 

3.60b). This might indicate the possibility of a demographic history not characterised by not a 

strong population structure and more likely involving a lack of isolation of populations. 

Modern humans sequences from the Palaeolithic and Mesolithic showed the second topology 

(Figure 3.60b) probably indicating that a poor geographical structure of the data and that 

genetic interchange between populations occurred (Fu et al 2016; Posth et al. 2016). Other 

species that share this topology with modern humans are not particularly ecologically related 

to our species, such as Mustela erminea, so more analyses were performed.  

One of the main difficulties found in this research is related to finding commons pattern for 

the network analyses. The private allelic richness has shown more interesting results to 

propose a comparison based on similar patterns observed. Four main patterns were identified 

based on the distribution of the private allelic richness between species (Figure 4.64).  

The first pattern (see Pattern 1 in Figure 4.64) shows and east-to-west cline where the highest 

values are found in the east and the lowest in the west. Eight species display this general 

pattern, with some particularities for each of them, where the transition from eastern to 
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western Europe seems to produce a loss in private alleles. This might indicate that these 

species have their origin in the east or/and the LGM refugia were more likely located in the 

east. For Alces alces, Cricetus cricetus, Mustela erminea, Erinaceus concolor and Lynx lynx this 

pattern is in agreement with previous studies, where at least one refugium in the east was 

suggested for each of these species. For Castor fiber, Mustela nivalis and Bison bonasus the 

situation is a little bit more complex due to the significant reduction of populations and 

diversity in recent times for Bison bonasus and Castor fiber (see Chapter 3). In the case of 

Mustela nivalis this might be reflecting the uncertainty about the subspecies and distinct 

populations previously found in this species (Lebarbenchon et al. 2010). However, in the case 

for example, of Mustela nivalis, cyt b is showing the possibility of pointing to the Carpathians 

for an important refugium for the species (McDevitt et al. 2012), scenario that is not found in 

this analysis. 

The second pattern (see Pattern 2 in Figure 4.64) identified is related with a western-central 

belt that comprises the highest values of private allelic richness for Erinaceus europaeus, 

Sciurus vulgaris, Sorex minutus, and Microtus arvalis. Interestingly, this is in agreement with 

similar migration rates for these species and all of them are considered small mammals. The 

lack of phylogeographic patterns identified for the red squirrel (S. vulgaris) is not reflected for 

the private allelic richness indicating western and central Europe as possible areas of refugium 

for the species. The haplotype diversity has reinforced these results for Erinaceus europaeus 

and Microtus arvalis (Figure 4.63) where the highest diversity is found in central and western 

Europe indicating the importance of these areas as possible sources of diversity (Stojak et al. 

2016). For Sorex minutus, the pattern is not as clear as for the other species and the high 

values for private allelic richness identified in the whole range of the species complicate the 

resolution. However, the importance of areas in France as a possible refugium has been 

suggested (McDevitt et al. 2010) and this result would be in agreement with that possibility. 

For Microtus arvalis, this pattern may reflect a possibility of stable populations in these areas. 

However, cyt b analysis (Stojak et al. 2015) and new ancient DNA study (Baca et al. submitted) 

are indicated the possibility of a partial turnover during the Late Glacial/Holocene transtion at 

least in more eastern areas.  

The third pattern (see Pattern 3 in Figure 4.64) is the one that is more related to the traditional 

southern refugia hypothesis (Hewitt 1999, 2004). Capreolus capreolus, Sus scrofa, Martes 

martes and Vulpes vulpes display this pattern were the highest values of private allelic richness 

are found in the south (east or west) and there is a decrease in private haplotypes in northern 
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latitudes. For Capreolus capreolus, Sus scrofa and Martes martes southern refugia have been 

suggested, however, all of them seemed to have complex demographic histories. The domestic 

(wild boar) and translocation (roe deer) relationships between humans and these species 

could have also affected the pattern described here (Randi 2005; Larson et al. 2007; Olano-

Marín et al. 2014). For S. scrofa, modern reintroductions should also be taken into account 

when considering the significant population reduction that the species went through during 

the last three or four centuries (Danilkin 2001; Apollonio et al. 2010). Vulpes vulpes reflects a 

pattern that has not been previously reported, as the lack of phylogeographic pattern and 

homogeneous distribution of the species indicate a possible constant occupation of the 

territory (Teacher et al. 2011). Surprisingly, in the results here, V. vulpes shows a more 

traditional southern refugial pattern where Iberia, but especially the Balkans, represent 

important areas for private allelic richness. A new study has provided evidence of this and the 

possible contribution of Italy and the Balkans to the postglacial colonisation of central 

European populations (Statham et al. 2018). 

The last pattern identified is a traditional “lack of phylogeographic pattern” (see Pattern 4 in 

Figure 4.64) as presented for example in Hofreiter et al. (2004) for the Late Pleistocene genetic 

landscape. However, in the present research, the current distribution of private allelic richness 

and diversity are also identified with a lack of pattern. For eight different species, a 

homogeneous distribution of private alleles was found and areas with much higher diversity 

than others were not identified (Figure 4.63 and Figure 4.64).  

The absence of phylogeographic patterns in some species, such as wolves (Vila et al. 1999) has 

been explained by their high migration rate. In this case, the body size of the individuals does 

not seem the cause for this diversity pattern found, as four of the species are considered small 

mammals (Arvicola amphibius, Myodes glareolus, Lepus europaeus and Lepus timidus). The 

megafauna is represented by Cervus elaphus, Canis lupus, Ursus arctos and Homo sapiens. 

These species are characterised by a widespread range and this pattern of diversity can be 

explained by this more homogeneous distribution and their relative lack of ecological 

restrictions. Homo sapiens populations from the Palaeolithic and also the Mesolithic have this 

pattern, not showing particularly high values in southern areas. However, the private allelic 

richness is higher in the Mesolithic probably indicating fragmentation of populations in the 

continent during the LGM (Stewart and Stringer 2012), causing an increasing number of private 

haplotypes in different regions.  
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Particularly interesting are the cases of the bank vole, Myodes glareolus, and the red deer, 

Cervus elaphus, where phylogeographic patterns have been widely described and studies (Skog 

et al. 2009). For cyt b, this lack of phylogeographic patter has never been reported, and for 

example the bank vole, is well known for revealing a complex phylogeographical pattern with 

up to seven proposed clades, including some with subclades, allowing the resolution of both 

“northern” and “southern” refugia (Filipi et al. 2015). The results found here are not showing 

this strong phylogeographic structure, however, are consistent with multiple refugia and 

colonisation events (Filipi et al. 2015). 

In the case of red deer, the results here does not seem to complement the role of northern 

Spain as a possible refugium and in the recolonisation phase after the LGM (Meiri et al. 2013; 

Rey-Iglesia et al. 2017). However, this new pattern could be potentially influenced by recent 

movement of the species (Perez-Espona et al. 2009, Olano-Marín et al. 2014). For the brown 

bear, on the other hand, this analysis is confirming the complex genetic landscape of the 

species. This has been reinforced by a recent study (Ersmark et al. in prep) where this 

complexity in the genetic history of the brown bear in Europe has been demonstrated.  

Knowledge of the genetic diversity per species and per geographical region has helped with an 

understanding of the complexity of identifying a general pattern of diversity in the European 

continent. Relevant patterns were not found (Figure 4.63) and only certain differences 

between species were found (Table A3.1 in Appendix 3). The species that displayed a southern 

higher private allelic richness are interestingly the ones that are the significantly different 

species (Table A3.1 in Appendix 3). This might indicate that haplotype diversity is a good 

diversity index to identify clear latitudinal differences in diversity but not such a good proxy for 

the identification of refugial populations that show relatively less differentiation.  

This analysis reinforces the results of chapter 3, showing that haplotype diversity, taken alone, 

provides misleading inferences for identifying refugia, even when diversity is shown on maps 

on a species‐by‐species and region-by-region basis (Maggs et al. 2008). The high haplotype 

diversity found, for example, across modern humans in the Palaeolithic and Mesolithic 

complicates any identification of possible refugia from the haplotype diversity values (Figure 

4.63). However, the complementary analysis of the individual phylogeographic patterns based 

on phylogenetic tree topologies, networks and private allelic richness values are given insight 

to some patterns in all the species compared. 

The geographical distribution of the species seems to be primarily shaped by species’ biological 

traits such as tolerance ranges and adaptive capacity. Northern areas in the European 
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continent do not seem to be as hostile or barren as previously considered reinforcing the idea 

that simple regional restrictions cannot dictate the phylogeographic patterns observed 

(Pedreschi et al. 2018). The interpretation of the traditional expansion/contraction model for 

diversity does not seem to explain the different patterns shown in this chapter. The presence 

of dissimilar patterns that are shared by a different number of species can contribute to a 

better understanding of the influence of climate on their demographic history and also helping 

to find common ecological traits that contribute to shape those patterns.  Further 

investigations, through other genetic markers and methodological approaches, may provide 

further insight into these patterns, helping to identify the recolonisation of these species after 

the LGM. 

4.5 Conclusion 
 

The interspecific analysis for all the species, with sufficient numerical and geographical 

coverage in Europe, enables a comparison between different individual species and includes 

inferences on the location of refugia for differently adapted mammal taxa. Furthermore, the 

resultant patterns from different phylogeographical studies are combined here to obtain a 

better understanding of each species’ demographic histories.  

Being aware of the caveats involved in using only one mtDNA marker, revealing a small part of 

the evolutionary history of a species, the twenty-nine species seemed to display different 

patterns. Hence, it is difficult to infer only one or two models to describe this variability. The 

individualistic response of the species is shown by the species-specific patterns presented here 

for 29 species and is defining the main results of this chapter. However, from the perspective 

of the diversity and private allelic richness, the results show four different patterns of 

distribution that can help to understand better certain phylogeographic affinities between 

species. Modern humans, from the Palaeolithic and the Mesolithic, are defined by one of these 

patterns characterised by a lack of phylogeographic structure where the genetic diversity 

indices analysed seem to be homogeneous across the different geographical regions analysed. 
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Chapter 5. Cyprus as an ancient hub for house mice and 

humans 

5.1 Introduction 
 

Knowledge of human history has traditionally been inferred from documentary evidence, 

material artefacts and remains from humans. Remains from animals, particularly domesticated 

and commensal species, have also provided information about the human cultures with which 

they were associated. Recently, these approaches have been enriched by the use of genetic 

data from modern and ancient human DNA (Haak et al. 2010; Hervella et al. 2012; Malmström 

et al. 2015; Lazaridis et al. 2017). Many species have been linked with human migration and 

other anthropogenic activities and therefore may reflect a similar phylogeographic pattern 

(e.g. Jones et al. 2013; Thomson et al. 2014; Heintzman et al. 2016; Herman et al. 2017). These 

organisms are considered bioproxies or ‘living artefacts’ of human migration history and can 

complement our knowledge of the archaeology and phylogeography of humans (Jones et al. 

2013).  

Several domestic species have already been used as bioproxies for human movement because 

of their close association with our species. For example, the spread of Neolithic culture to 

Europe has been corroborated by the domestication process of pigs (Larson et al. 2007) and 

goats (Naderi et al. 2007). Rats (Matisoo-Smith and Robins 2004; Naderi et al. 2007; 

Wilmshurst et al. 2008) and cats (Koch et al. 2015) have also been used as commensal 

bioproxies to track more recent movements. Furthermore, pathogens and parasites can also 

be used as proxies that show histories of colonisation and demography (Jones et al. 2013).  

The western house mouse (Mus musculus domesticus) has been a commensal species since the 

beginning of stored grain (Weissbrod et al. 2017). Humans and mice have migrated together 

for about 12,000 years (Bonhomme and Searle 2012) travelling by land but also by boat 

(Cucchi and Vigne 2006). The colonisation history of the house mouse has been demonstrated 

to be informative in the study of the human population who transported them (Förster et al. 

2009; Searle et al. 2009; Hardouin et al. 2010; Jones et al. 2012, 2013); Gabriel et al. 2015). 

One of the main examples of this close association between human and house mouse has 

been demonstrated for the Vikings. Viking mouse haplotypes were found on Madeira, 

suggesting a possible Viking visit to the island, unrecorded in historical records (Gündüz et al. 

2001; Förster et al. 2009; Searle et al. 2009). Among subfossil house mouse remains on 
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Madeira found in 2010, radiocarbon dates of a house mouse mandible pre-date Portuguese 

colonisation and match the Viking hypothesis (Rando et al. 2014). In this context, house mouse 

phylogeography has been a powerful complementary tool to aid archaeologists and historians 

to understand recent human movement.  

Due to its location and richness in natural resources, Cyprus provides the key context for 

understanding the dynamics of human migration and trade, from mobile foragers to early 

farmers and later regional polities, sedentism and seafaring, together with the associated 

socio-cultural changes in the Eastern Mediterranean (Knapp 2013). Recent excavations (e.g. 

Simmons and Mandel 2007) confirm early human activity in the Late Epipalaeolithic, 

identifying sites that suggest seafaring foragers and fishers made seasonal return journeys 

from the Levantine shores to Cyprus between 11000 and 9000 cal BC to exploit local terrestrial 

and marine resources. The earliest Neolithic occupation and permanent settlement on Cyprus 

goes back to ca. 9000 cal BC, showing evidence for cultivated or even domesticated cereals 

and pulses virtually contemporaneous with earliest appearances in the Levant and Anatolia. 

Triggered by increasingly unstable environmental conditions on the mainland, this represents 

the ‘first successful overseas migration of farmers in the Mediterranean’ (Knapp 2013), which 

would have also entailed transport of plants and animals (Vigne et al. 2014). In the course of 

the prehistoric Bronze Age, regional interaction through seaborne trade contacts between 

Cyprus, Anatolia and the Aegean increase, to become even more established, and extended to 

Egypt, during the protohistoric Bronze Age (Knapp 2013).  

The Mediterranean basin is an area of considerable importance in understanding the close 

relationship between humans and the western house mouse. The initial commensalism of the 

house mouse began in the Near East (Cucchi et al. 2005). The range of house mice may have 

expanded slowly in the Near East by natural dispersal, but they had the potential to make 

rapid progress across the Mediterranean on boats (Cucchi 2008). The earliest evidence of such 

human-mediated transport is the presence of house mouse remains at an archaeological site 

from the Early Preceramic Neolithic on the island of Cyprus (late 9000 and 8000 BC) (Cucchi et 

al. 2002).  

Although the house mouse arrived in Knossos, Crete, during the Bronze Age (2500 – 1000 BC), 

it is only during the Iron Age (1000 BC - 300 AD) that the house mouse spread throughout the 

western Mediterranean basin and to Western Europe (Cucchi et al. 2005). Around 1000 BC, the 

Phoenicians were the most prominent traders and they are therefore the most likely 

mediators of these mouse expansions (Bonhomme et al. 2011). House mice feed on stored 
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grain but even though agriculture spread over much of Western Europe during the Neolithic, 

the species did not spread out of the extreme east of the Mediterranean at that time (Cucchi 

et al. 2005) probably because: (1) there was limited human maritime exchange between the 

eastern and western Mediterranean at this early stage,  and (2) there was competition with 

the native wood mouse (Apodemus sylvaticus), which may also have been commensal in small 

Neolithic settlements (Cucchi et al. 2005), such as Skara Brae, Orkney (Romaniuk et al. 2016).  

Being the first island in the Mediterranean colonised by mice makes Cyprus an interesting case 

study. Indeed, records from the archaeological site of Mylouthkia (situated close to Paphos on 

the west of the island) showed that the first introduction of the house mouse occurred during 

the Neolithic period, approximately 8000 BC (Cucchi et al. 2002). The house mouse 

colonisation history should, therefore, reflect the ancient migration of Neolithic people, 

Mycenaean Greeks, Phoenicians, Romans, Francs and Ottomans. The substantial genetic 

diversity found in the mouse mitochondrial D-loop, with seven differentiated haplogroups 

described in Cyprus, is a consequence of the island being at a maritime crossroads, with a 

consequently complex colonisation process shaped by many introductions of house mice from 

several origins (Macholán et al. 2007; Bonhomme et al. 2011). Human trade and migration 

related to secondary colonisations can also be inferred through nuclear markers, such as 

microsatellites, through data on genetic relationship of populations and levels of genetic 

diversity (Hardouin et al. 2010; Jones et al. 2011b).  

The purpose of this study is threefold: (1) to establish the different sources of house mice that 

colonised Cyprus, using the mitochondrial D-loop, (2) to establish the timing of these 

migrations and (3) to investigate the population structure of the house mouse on the island 

using microsatellites. We then compare these results with the previously known pattern of 

human migration to and from the island and consider the value of the house mouse as a 

bioproxy for studying modern human movement. 

5.2 Material and Methods 

5.2.1 Sample collection 

 

A total of 191 house mice (Mus musculus domesticus) were collected in Cyprus in 2013 and 

2015 (Table A4.2 in Appendix 4). The mice were sampled by trapping at 27 sites distributed 

across the island (Figure 5.1), and an additional 33 samples were collected from Patras, 

Greece, due to the historical link between Cyprus and Greece. Farms and agricultural settings 
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were targeted. The sampling follows the scheme from Ihle et al. (2006) and was made in order 

to minimise the sampling of highly related mice from the same family. All these samples were 

collected following local regulations for field collection of small mammals.  

 

 Figure 5.1 Map of Mus musculus domesticus sampling localities (numbered) on Cyprus and frequencies of each of 

the eleven different haplogroups (H1–H11) described by Bonhomme et al. (2011). These data incorporate new 

samples described here and those from Cucchi et al. (2006) and Bonhomme et al. (2011). 1. Athienou, 2. Dali, 3. 

Deryneia, 4. Frenaros, 5. Gerasa, 6. Geroskipou, 7. Kathikas, 8.  Kiti, 9. Kofinou, 10. Kokkinotrimithia, 11. Larnaka, 12. 

Lefkara, 13. Limassol, 14. Lythrodontas, 15. Mazotos, 16. Melini, 17. Meneou, 18. Mitsero, 19. Monagroulli, 20. 

Ormideia, 21. Pera, 22. Peristerona, 23. Pyla, 24. Skarinou, 25. Sotira, 26. Tseri, 27. Xylophagou, 28. Agios 

Sozomenos, 29. Akrotiri, 30. Lemesos, 31. Paphos, 32. Post Geri, 33. Pyrgos. The size of the pie chart is related to 

sample size. 

5.2.2 Mitochondrial DNA sequencing and analysis 

 

Genomic DNA was extracted using the DNeasy Tissue Kit (Qiagen), following manufacturers’ 

instructions. Mitochondrial D-loop (= control region) sequences of 894 bp were generated 

using the primers and protocol previously described in Hardouin et al. (2010).  

To infer the phylogenetic relationships of M. m. domesticus in the Mediterranean basin, 

northern Europe and the Near East, our data set was combined with 1319 previously published 

sequences downloaded from GenBank (www.ncbi.nlm.nih.gov/genbank/). The sequences 

were aligned using CodonCodeAligner Ver. 6.0.2 (CodonCode Corporation, Dedham, MA, USA), 
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BioEdit ver.7.2.5 (Hall 1999) and Seaview 4.5.4 (Gouy et al. 2010). A list with references of all 

the sequences used in the present study is available in Table A4.1 in Appendix 4. 

There has been some divergence in the earlier literature regarding the assignment for the 

main haplogroups described for M. m. domesticus with two main nomenclatures 

independently developed (Bonhomme et al. 2011; Jones et al. 2011). There is an almost exact 

correspondence between the main clades described (1=C1; 2=C; 3, 5, 9=B; 4=F; 7=D; 8=D1; 

10=A; 11=E) (Bonhomme and Searle 2012); the nomenclature of Bonhomme et al. (2011) was 

primarily used in this study, with occasional reference to the nomenclature by Jones et al. 

(2011). 

Haplotype diversity and nucleotide diversity were calculated using DnaSP 5.10.1 (Librado and  

Rozas, 2009). The substitution model, TN+G, was selected using JMODELTEST, version 2.1.7 

(Darriba et al.  2012), based on the Aikike Information Criterion (AIC, cAIC) and the Bayesian 

Information Criterion (BIC). This model was used in subsequent phylogenetic and population 

genetic analyses. The phylogenetic tree was calculated using MrBayes v. 3.2 (Ronquist et al. 

2012) with a MCMC for 2 million generations, with the first 25% discarded as burn-in. Mus 

musculus castaneus (AF088879) and Mus musculus musculus (U47532) were used as 

outgroups. The aligned haplotypes were used to construct a NeighbourNet network with the 

hypothesis-poor algorithm of Huson and Bryant (2006) implemented in the Splitstree package 

(v. 4.10) with P distance as a default setting.  

The mismatch distribution (MMD) was obtained using DnaSP v. 5.10.1 (Librado and Rozas, 

2009), and compared with the expected distribution under a model of population growth. The 

(mutational) time since expansion was calculated as Ϯ = 2μt, where Ϯ [tau] is a parameter 

deduced from MMD, t is the time since expansion in generations and μ is the mutation rate 

following Rogers and Harpending (1992). The D-loop mutation rate of 2 x10-7 substitutions 

site-1 generation-1 , inferred by Förster et al. (2009), was used assuming 1, 2 and 3 

generations per year (Förster et al., 2009). Two neutrality test statistics, Tajima’s D (Tajima 

1989) and Fu’s FS (Fu 1997), were used to detect recent population expansion. By comparing 

the value of the tests with distributions obtained by randomly placing the observed number of 

mutations onto 10,000 coalescent simulations of the genealogy, the significance of any 

departure from neutrality was determined. 

Further demographic analyses were performed using BEAST, version 2.3.2 (Bouckaert et al., 

2014). For each of the mitochondrial lineages identified on Cyprus, individual coalescent 

genealogies and skyline models (Drummond et al. 2005) of the effective female population size 
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were co-estimated using a shared model of sequence evolution. Separate genealogies and 

demographic models were used as the distinct maternal lineages are presumed to be 

independent and the result of separate introductions to the island. 

With this model, the generation time is confounded with population size, so relative rather 

than absolute values of population size are estimated and used to show the pattern of 

demographic change with actual time. Base frequencies, kappa values for 

transition/transversion rates, and the α parameter of the gamma distribution of rates were all 

estimated along with the other parameters of the model. 

The molecular clock rate was fixed at 4 x 10-7 substitutions site-1 year-1. This clock rate was 

previously estimated from mitochondrial D-loop variation and was based on the timing of the 

Neolithic expansion (Rajabi-Maham et al. 2008). It is broadly similar to rates that were 

estimated from mitochondrial genetic variation that had accumulated in other Eurasian 

rodents during the Holocene (Herman et al. 2014; Martinková et al. 2013). Given that 

intraspecific molecular clock rates are time dependent (Ho et al. 2005; Ho et al. 2014), it is 

important to use a clock rate estimated from genetic variation that accumulated over a similar 

timescale to the house mouse colonization of Cyprus.  

As all the sequences belong to a single species, little variation in branch rate was expected; 

therefore a strict molecular clock was used. Prior parameter distributions are shown in 

Appendix 4 (Table A4.5). All simulations were repeated without sequence data to test the joint 

distributions of parameters obtained with the priors alone and to ensure that the results were 

not unduly influenced by these. 

Posterior parameter distributions were obtained from 4 separate MCMC chains which were 

each run for 100 million generations, using different random seeds. The first 10 million 

generations were discarded as burn-in. The Log files were examined using TRACER, version 1.6 

(Rambaut et al. 2014), to check for convergence. The log files were combined using 

LOGCOMBINER in BEAST, version 2.3.2 package. Bayesian Skyline Plots (BSP), showing the 

pattern of demographic change in each lineage, were obtained using TRACER version 1.6 

(Rambaut et al. 2014). Maximum clade credibility (MCC) trees were identified from the 

posterior samples of genealogies, for each haplogroup, and posterior probability support for 

branches within each haplogroup were visualised using FigTree2 

(http://tree.bio.ed.ac.uk/software/figtree/). 
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All the Cypriot and Greek house mouse mitochondrial D-loop sequences generated in the 

course of the study were deposited in GenBank (accession numbers MG937349-MG937536 

and MG950367-MG950397) 

5.2.3 Microsatellite typing and analysis 

 

All the Cypriot and Greek house mice were genotyped for 18 unlinked autosomal 

microsatellites as in Hardouin et al. (2010). The microsatellite data were analysed and scored 

with GeneMapper (Applied Bioscience). This dataset was combined with Hardouin et al. (2010) 

and Linnenbrink et al. (2013) in order to compare the Cypriot data with Western European and 

Iranian populations. In order to calibrate the microsatellite allele size of the two datasets 

subsamples of individuals from the previous studies were genotyped with the new samples, 

without any discrepancies observed. The heterozygosity and the mean allele number per locus 

were calculated using Genetix 4.03 (Belkhir et al. 2004). Allelic richness was calculated using 

the rarefaction method available in HP-RARE (Kalinowski 2005). 

A Discriminant Analysis of Principal Components (DAPC) (Jombart et al. 2010) was performed 

using the R-package adegenet (Jombart 2008); http://www.r-project.org/). This multivariate 

analysis derived the probability of individual membership in each different group. The 

software covered a range of possible clusters representing the total number of populations in 

the dataset. Principal components were retained as predictors for discriminant analysis in the 

individuals studied.  

To address the differences within the island, STRUCTURE (Pritchard et al. 2000) was used. The 

software implemented a Bayesian clustering analysis. To find the possible number of clusters 

(K) into which our data can be divided, ten runs for each cluster were performed and the 

likelihoods were recorded. K was chosen using the criterion of Evanno et al. (2005). To draw 

the STRUCTURE diagram, CLUMPP (version 1.1.2 (Jakobsson and Rosenberg 2004)) and 

Distruct (Rosenberg 2004) softwares were used. 

5.3 Results 

5.3.1 Phylogenetic analysis 

 

A NeighbourNet network was drawn using 529 haplotypes derived from the 1540 sequences, 

comprising our 221 new sequences (189 from Cyprus and 32 from Greece)  and previously 

http://www.r-project.org/
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published data (Figure 5.2a). Figure 5.2a presents the 529 haplotype network showing 11 

identifiable haplogroups. This analysis helped the haplogroup identification in the Bayesian 

phylogenetic tree (Figure 5.2b) which are defined based on the network analysis. The 11 

haplogroups showed in this study correspond exactly with the ones described in Bonhomme et 

al. (2011). 

The 189 Cypriot sequences collected for this study can be seen in Figure 5.1. A total of 32 

haplotypes, belonging to 9 of the 11 described haplogroups, were found in Cyprus (Figure 5.1). 

The haplotype diversity (h) and nucleotide diversity (    were calculated for all the Cypriot 

samples together, giving values of 0.93 (h) and 0.00981    , respectively.  The high values 

probably reflect the presence of unrelated mitochondrial DNA (mtDNA) sequences due to 

multiple house mouse introductions. This result is consistent with the high variability 

previously described on Cyprus (Macholán et al. 2007; Bonhomme et al. 2011).  

  

Figure 5.2 Mus musculus domesticus D-loop genealogy. (a) NeighbourNet network for the 529 haplotypes described 

from 1540 individual mitochondrial D-loop sequences. (b) Bayesian tree generated with MrBayes for 529 house 

mouse D-loop haplotypes described here and previously published. The numbered haplogroups defined by 

Bonhomme et al. (2011) are displayed by different colours; some of these haplogroups are paraphyletic in our 

analysis. Haplotypes present on Cyprus are represented with black dots. 

A total of 65% of the Cypriot samples belong to three major haplogroups (H2, H4 and H7; i.e. 

clades C, F and D of Jones et al. (2011)). H2 is high in frequency around the Mediterranean 

basin and in the Near East, whereas H4 is present in 17% of the Cypriot samples and was 

previously associated with the British Isles and Norway (Searle et al. 2009). H7 was only found 

on two locations in Cyprus, Geroskipou and Larnaka (only one individual), (Figure 5.1; Table 

a) b) 
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A4.2 in Appendix 4) however it is distributed around the Mediterranean, with high frequency 

in North Africa, and also on the European continent (Figure 5.4). 

5.3.2 Demographic analysis and dating  

 

In Cyprus, demographic expansions of haplogroups H1, H3, H4 and H6 began ca. 500 years ago, 

according to the Bayesian skyline plots (BSPs; Figure A4.1 in Appendix 4) and unimodal 

mismatch distributions (MMDs; Figure A4.2 in Appendix 4). The expansion times from the 

MMDs with two generations give the closest correspondence with the timings obtained with 

the coalescent model, which is measured in real time, rather than generations (Figure 5.3; 

Table A4.3 in Appendix 4). The respective tMRCAs for these haplogroups are somewhat earlier, 

up to ca. 900 years ago (Figure A4.1 and Table A4.3 in Appendix 4), but these latter dates refer 

to the coalescence of the haplogroup members from Cyprus within the overall population, that 

is the time at which their ancestors diverged from the remainder of the haplogroup, rather 

than the colonisation or onset of demographic expansion on the island. 

Demographic expansion of haplogroup H2 began about 1,400 years ago, according to both the 

skyline plot (Figure A4.1 in Appendix 4) and unimodal mismatch distribution (Figure A4.2 in 

Appendix 4) with two generations per year (Table A4.3 in Appendix 4), while the coalescence 

time was again earlier, ca. 3,700 years. The coalescence of haplogroup H7 was ca. 3,200 years 

ago (Figure A4.1 and Table A4.3 in Appendix 4), but this is due to the presence of a single 

divergent sequence from Larnaka, whereas the remaining 39 sequences are all identical and 

from Geroskipou (Figure 5.1; Table A4.2 in Appendix 4). This pattern of variation precludes the 

use of the mismatch distribution to estimate the timing of the demographic expansion and 

also confounds the skyline model (Figure A4.1 in Appendix 4), however the MMD (Figure A4.2 

in Appendix 4) and the Bayesian genealogy (not shown) are consistent with recent 

introductions of this haplogroup to Cyprus rather than the tMRCA of ca. 3,000 years ago. The 

coalescence (tMRCA) of haplogroup H10 was about 2,400 years ago but the demographic 

expansion did not begin until ca. 2,000 years ago, according to the MMD with two generations 

per year (Figure 5.3; Table A4.3 in Appendix 4). The fit to this model was poor (Figure A4.2 in 

Appendix 4) and the coalescent model did not recover any signal of expansion (Figure A4.1 in 

Appendix 4), perhaps due to the rare appearance of this haplogroup in our sample (nine 

specimens). The coalescence and onset of demographic expansion for haplogroup H11 are 

recent, within the last 1,000 years, according to the Bayesian genealogy and mismatch models 

(Figure 5.3; Table A4.3 in Appendix 4) and although the latter appears to fit well (Figure A4.2 in 
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Appendix 4), the skyline model did not recover any demographic change (Figure A4.1 in 

Appendix 4), presumably due to the small sample size of only five sequences. Only one 

sequence was attributed to haplogroup H8, precluding further analysis. 

  

Figure 5.3 A summary of dates inferred from molecular data, for each Mus musculus domesticus haplogroup on 

Cyprus. The onset of demographic expansion estimated from mismatch distributions (MMD), using the mutation 

rate from Förster et al. (2009) and assuming one, two or three generations per year. Median tMRCA, from Bayesian 

genealogy sampling in Beast 2.3.2, is shown together with its 95% HPD limits. 

Tajima’s D values were negative for all haplogroups except H10 (Table A4.3 in Appendix 4), 

although only one was statistically significant (H7), indicating an excess of rare nucleotide site 

variants compared to what would be expected under a neutral model of evolution. An excess 

of low-frequency polymorphisms relative to expectation indicates a population size expansion 

(Tajima 1989). All the haplogroups, except H10, showed evidence of recent expansion. The 

more sensitive Fu’s FS also indicated expansion, except for H7, H10 and H11. This result is in 

agreement with BSP analysis however it might be due to subsequent replacement, given the 

rarity of H10 and H11 in the analysed sample, as mentioned before (H10=9 specimens; H11=5 

specimens). 
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5.3.3 Population structure on Cyprus 

 

A total of 18 microsatellites were analysed for all newly collected samples (Table A4.4 in 

Appendix 4). Heterozygosities, as well as mean numbers of alleles, were calculated for Cyprus. 

These values were compared with previous data from Hardouin et al. (2010) and Linnenbrink 

et al. (2013) to compare the Cypriot genetic diversity to that recorded for European and 

Iranian populations (Table 5.1). Those three datasets were calibrated using samples from 

Hardouin et al. (2010) that were re-genotyped. Mice from Cyprus displayed a very high 

observed heterozygosity (0.73) when compared to continental European populations (France, 

Germany and Greece; Table 5.1). The genetic diversity found in Cyprus is comparable to that in 

Iran (expected heterozygosity 0.89, average number of alleles per locus 15.1 – see Table 5.1). 

The two relatively recently founded populations of Cameroon (0.48) and Kerguelen (0.44) 

displayed low genetic diversity as expected (Table 5.1) (Hardouin et al. 2010; Ihle et al. 2006). 

The mean number of alleles per locus varied among localities across Cyprus from 1.38 to 8 

with an overall mean of 4.06 (Table A4.4 in Appendix 4). The values for the expected 

heterozygosity within locations are similar to those from Western Europe, for example 

Cologne-Bonn, Germany (0.85), Massif Central, France (0.86) and Patras, Greece (0.83) (Table 

5.1). The observed heterozygosity found on other islands are lower than on Cyprus (La Palma 

(0.75), Madagascar (0.67), Kerguelen (0.44) or Gough Island (0.70) (Duplantier et al. 2002; 

Hardouin et al. 2010; Bonhomme et al. 2011; Gray et al. 2014).  

Table 5.1 Population genetic parameters for the 18 microsatellite loci typed in Mus musculus domesticus on Cyprus 

and other localities (previous studies; see text). N = number of individuals, Hexp = expected heterozygosity, Hobs = 

observed heterozygosity. 

Countries/ 
Island group 

Location N Hexp Hobs Mean number 
of alleles 

Allelic 
richness 

Antipodes 
Island 

Antipodes Island 18 0.44 0.51 3.06 2.79 

Auckland 
Island 

Auckland Island 13 0.42 0.39 3.17 2.93 

Cameroon Kumba 46 0.61 0.48 6.67 4.3 

Cyprus Cyprus 191 0.84 0.73 15.89 7.66 
 Falkland 
Islands 

New Islands 12 0.44 0.41 3.20 
3.09 

France Anjou 20 0.81 0.62 9.39 7.28 
France Divonne les Bains 12 0.80 0.60 8.44 7.57 
France Espelette 38 0.77 0.60 9.94 6.85 
France Louan-Villegruis 12 0.76 0.67 6.83 6.39 
France Severac le Château 65 0.86 0.73 13.11 8.16 
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France Nancy 15 0.80 0.66 8.28 7.2 
Germany Cologne-Bonn 58 0.85 0.61 12.83 8.13 
Germany Schömberg/Langenbrand 18 0.79 0.55 8.06 6.82 
Greece Patras  33 0.83 0.67 10.61 7.52 

Iran Ahvaz  46 0.89 0.81 15.17 9.14 
Kerguelen  Cochons/ Cimetière 97 0.37 0.35 2.78 2.24 

Kerguelen  Port-aux-Français 41 0.48 0.44 4.10 3.06 

Macquarie Macquarie island 40 0.42 0.38 3.33 2.61 

 

Seven different clusters (K=7) were identified in the DAPC (Figure A4.3a in Appendix 4). All the 

continental populations from France, Germany, Greece and Iran clustered together, for Axis 1 

and two representations. The population from Cameroon formed a separate cluster, probably 

due to the relatively recent colonisation event of this country by the house mouse. The Cyprus 

population also formed its own cluster, as expected for an island, but is more closely related to 

the European and the Iranian populations than the one from Cameroon (Figure A4.3a in 

Appendix 4).  

The population structure on Cyprus was also investigated using DAPC (Figure A4.3b in 

Appendix 4). The number of detected clusters was coincident with the lowest BIC value 

identified for the DAPC analysis. Four clusters (K=4) were identified. The main cluster is 

composed by the populations collected in 22 locations. The specimens from Geroskipou 

formed a separate cluster possibly because the mice were collected in a restricted geographic 

area. Two other clusters were found, the first one is formed by specimens in Skarinou and 

Lefkara which are geographically close (8 km – Figure 5.1), which might explain the pattern. 

The second cluster is formed by Pyla and Gerasa although these populations are geographically 

distant (68 km – Figure 5.1). This pattern could be explained by a putative direct connection 

between the locations or as an artefact due to the small sample size at both locations (Pyla=2 

specimens and Gerasa= 1 specimen).  

A STRUCTURE analysis was performed on Cyprus to investigate population structure on the 

island. A value of K=4 was also found, in accordance with the DAPC (Figure A4.3b in Appendix 

4). The most differentiated subpopulation is Geroskipou. Limassol and Monagroulli formed a 

second cluster, Lefkara and Pera a third one, all the rest of the island clustered together 

(Figure 5.5). In order to investigate the population structure further, we decided to remove 

individuals sampled in the outlier population of Geroskipou. In this scenario, K=9 was found. 

Locations like Limassol, Pera, Pyla and Tseri form separate clusters. The rest of the populations 

were more admixed, probably reflecting high gene flow across the island. 
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Figure 5.5 STRUCTURE analysis for the different locations across Cyprus. a) The results for the Structure analysis 

with K=4 are shown, represented by different colours. b) Structure analysis without Geroskipou (K= 9), represented 

by different colours. Each vertical bar represents a single individual, as well as the likelihood to belong to a given 

population group. 

5.4 Discussion 

5.4.1 Multiple colonisation events 

 

The phylogenetic analyses revealed the presence of nine D-loop haplogroups on Cyprus out of 

the eleven haplogroups described for the western house mouse by Bonhomme et al. (2011). 

All five clades recognised in the alternative nomenclature scheme of Jones et al. (2011) were 

found on Cyprus. This mitochondrial diversity suggests a complex scenario with multiple 

colonisation events. This result was expected as Cyprus was the first island to be colonised by 

house mice in the Mediterranean basin (Cucchi et al. 2002). Due to its location in the eastern 

Mediterranean, Cyprus was a centre of commercial trade and this could have led to the high 

number of house mouse haplogroups found.  House mouse populations on islands are 

considered to be resilient to new introductions (Hardouin et al., 2010), however with these 

results, it is suggested that there were potentially many more introductions of house mice 

than are apparent from these nine possible successful colonisation events. It is also likely that 

some of the haplogroup populations are derived from more than one introduction as well, as 

multiple colonisation events are already implied by the presence of individuals from the 

different haplogroups. The signature of the founding females will generally be kept in the 
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matrilineal line, being rare for invading females to successfully integrate into an existing 

population (Bonhomme and Searle 2012) making mtDNA a good signature of founding females 

and providing an indicator of human exchanges (Jones et al. 2013). 

The molecular dating suggests that there may have been two main waves of colonisation (Fig. 

4; Table A4.3 in Appendix 4), given that the tMRCAs and expansion dates from the MMDs for 

the haplogroups fall into two groups of broadly similar dates. However, the 95% HPD ranges in 

the coalescent analyses are wide and there is considerable overlap between them, so this 

suggestion must be treated with caution. Furthermore, it is important to bear in mind that the 

tMRCAs represent the estimated coalescence times for the haplogroup members from Cyprus, 

but their divergence from the remainder of the respective haplogroup might have occurred 

before the colonisation of Cyprus. This could be the case if members of the haplogroup 

successfully colonised Cyprus on more than one occasion, or this variability was present among 

the original colonists. 

  

Figure 5.4 Geographical distributions in the Mediterranean and nearby areas for all the Mus musculus domesticus of 

all the D-loop haplogroups identified in Cyprus and constituent haplotypes. The pie charts display the proportion of 

individuals with the main haplogroups found on Cyprus. 

Nevertheless, the presence and timing of these two putative waves of colonisation does seem 

plausible in the context of human history. The earlier wave, represented by members of 

haplogroups H2 and H10, dates to ca. 2,400-3,700 years ago, according to the coalescent 
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genealogy sampling (Figure 5.3; Table A4.3 in Appendix 4). These two haplogroups are present 

in the Near East (Figure 5.4), where M. m. domesticus originated, so this earlier colonisation is 

plausible. The time of introduction coincides with the Bronze Age or Phoenician cultures, when 

the volume of trade may have increased in the eastern Mediterranean. According to the 

molecular dating, their introduction was much more recent than the Neolithic, whereas there 

is evidence from the zooarchaeological record that the house mouse was present in Cyprus 

already by ca. 8,500 cal (Cucchi et al. 2002), suggesting that either the genetic signature of 

these earlier colonists has been replaced by that of more recent introductions or that current 

sampling does not cover the full range of mitochondrial genetic variation on Cyprus.  

The demographic expansion of haplogroups H2 and H10 was delayed until much more 

recently, ca. 1-2,000 years ago (Figure A4.1 and Table A4.3 in Appendix 4). Once again the 95% 

HPD margins are broad, due to the nature of the coalescent modelling and the limited 

resolution of the data, therefore the signal and timing of this expansion must be treated with 

caution. Assuming that the dates are correct, the difference may be due to standing genetic 

variation within a single introduced population, more than one introduction from the source 

population, or delayed demographic expansion following introduction at the date of 

coalescence. The last of these could relate to changing ecological factors such as increasing 

agriculture or urbanisation, but is the least likely explanation, given the presence of clear splits 

within the trees inferred for each haplogroup. 

The second wave of colonisation involved members of five haplogroups (H1, H3, H4, H6 and 

H11) and coalescent genealogy sampling dates this to the last millennium, from ca. 1,000 years 

ago (Figure 5.3;  Table A4.3 in Appendix 4), although once again the uncertainty in this date 

should be acknowledged. If the date is accepted, this wave of introductions might be explained 

by the level of trade across the Mediterranean by that time. By then, the house mouse appears 

to have been arriving from two different directions, both the Near East and Western Europe, in 

the case of haplogroups H4 and H6 (Figure 5.4). Once again, the demographic expansion of 

these populations was more recent than their coalescence, in this case ca. 500 years ago, and 

the most likely explanation is that there were multiple introductions from the source 

population. 

Our results support the findings of Cucchi et al. (2006) and Bonhomme et al. (2011) concerning 

a complex introduction scenario with a notable presence of H2 and H4. The widespread H2 is 

geographically associated with the Near East and the Mediterranean basin. H4 (clade F) is 

found at highest frequency in Nordic countries and the British Isles (Figure 5.4) and is a lineage 
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found in the Near East that apparently was spread around the northeast Atlantic by the Vikings 

(Searle et al. 2009). H8 (clade D) has also been associated with Scandinavia (Searle et al. 2009). 

Interestingly, H8 was detected in Madeira and the Canary Islands and could represent a 

possible Viking introduction (Förster et al. 2009). We are not suggesting a Viking introduction 

on Cyprus although there are data suggesting trade between Cyprus and Scandinavia during 

the Bronze Age (Ling et al. 2014); the introduction of H8 is most likely due to more recent 

trade. Only 8.5% of our samples belonged to H1, although this haplogroup was the most 

common (37%) in Cyprus in Bonhomme et al. (2011). This difference may reflect our much 

increased sampling effort all across Cyprus (Figure 5.1). The high mitochondrial diversity 

suggests that the ecological conditions found on the island were favourable to establish large 

local populations of new migrants (Bonhomme et al. 2011). Propagule pressure must also have 

been high due to the central location of Cyprus in the Mediterranean Sea. 

5.4.2 House mice as a proxy to study human movement and genetic diversity 

 

Associations between house mice and human phylogeography have been well described and 

accepted, especially in the peripheral distribution of the species, for example in northern and 

western Europe in association with Viking movements (Gündüz et al. 2001; Förster et al. 2009; 

Searle et al. 2009) or between Australia and the British Isles, demonstrating that the house 

mouse was brought to Australia during the British colonisation (Gabriel et al. 2011). Cyprus has 

a more complex history and it is more difficult to identify specific associations between human 

travellers and the house mouse haplogroups introduced. There are two possible reasons for 

this, firstly the high level of trade in the Mediterranean and secondly the geographical location 

of Cyprus, close to the origins of commensalism of M. m. domesticus with humans (Cucchi et 

al. 2005). However, even if the signal is not very clear, it does give a good insight into the 

relationships and trading activities of the island.  

As house mice are moving using human-mediated transportation, their genetic diversity might 

correlate with human genetic diversity (Jones et al. 2013). The association between genetic 

diversity in mice and humans has been described in the Faroe Islands (Jones et al. 2011b). In 

this particular case low genetic diversity was found for both humans and mice. This 

relationship is also found on Cyprus where human genetic variability is relatively high, for 

example studies of Cypriot populations have revealed high mtDNA variability with six mtDNA 

haplogroups out of ten present across the island and high haplotype diversity (0.994) (Irwin et 

al. 2008; Badro et al. 2013). As expected from the geographical location of the island, Cypriot 
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people are related to Near Eastern populations (Jordanians, Lebanese, Palestinians and 

Syrians) (Badro et al. 2013). Future ancient DNA studies in this geographic region might help 

resolve the different waves of mouse introduction indicated by the present research. 

5.4.3 Population structure in Cyprus 

 

The 18 microsatellites genotyped for this study indicate a large mean number of alleles, high 

allelic richness and high heterozygosity on Cyprus when compared to other islands or even to 

continental populations (Hardouin et al. 2010; Linnenbrink et al. 2013).  Indeed, similar high 

variability was, for example, present in Iran, which is also a phylogeographic melting pot for 

house mice (Hardouin et al. 2015). Furthermore, this similarity between Iran and Cyprus was 

confirmed in the DAPC analysis, which shows the population from Ahvaz in Iran closest to 

Cyprus (Figure A4.3a in Appendix 4). Interestingly, little population structure was found on the 

island (Figure 5.5; Figure A4.3b in Appendix 4), potentially because of a high level of goods 

transportation, and so mice, all around the island.  

5.5 Conclusion 
 

As expected for a commensal species, the western house mouse is characterised by a complex 

history shaped by founder events, genetic drift and admixture. Cyprus seems to be a good 

model that represents this complexity due to different introductions that are related to human 

movements or transport. The substantial house mouse genetic variability found on the island 

reflects the level of human genetic diversity there. Two main waves of introductions could be 

tentatively identified and dated, the first one corresponding to the Bronze Age and the second 

one to more recent movements. Genetic variation in house mice from Cyprus does, therefore, 

appear to be concordant with the complex human history of the island. As a result, Cyprus is 

unusual, because genetic variation in populations on islands is often low, due to the genetic 

dominance of the first colonisations. Instead, Cyprus has high genetic diversity reflecting the 

hub-like nature of the island with respect to traffic of both humans and mice. 
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Chapter 6. Travellers to the north: ancient DNA from the 

first house mice in the British Isles 

6.1 Introduction 
 

The western house mouse (Mus musculus domesticus) is nowadays a widely distributed 

commensal species that is closely associated with human settlements. Although present during 

the Bronze Age in the Netherlands and elsewhere in Europe (Brothwell 1981; Ijzereef 1981), it 

is thought that they probably did not spread widely into Europe from the Near East until the 

Iron Age (Cucchi et al. 2005). As a non-native British species, the earliest records in Britain date 

from the Late Bronze Age (Brady and Ellison 1975; Bell 1990; Lawson 2000). However, as these 

may not be secure (O’Connor 2010), house mice probably did not arrive into Britain until the 

Iron Age period, and then firstly into southern England (Harcourt 1979; Coy 1984), where the 

presence of structures to store grain, which represent an ideal niche for house mice, would 

have helped their introduction (O’Connor 2001). 

Within the last 3,000 years alone, the British Isles have had multiple waves of human 

immigration. Demographic changes in human populations can lead to similar changes in the 

house mouse due to the close relationship between the two species, such that the house mice 

niche has been shaped by humans (Gabriel et al. 2011). Phylogeographic studies have shown 

that historical human movements impacted on current house mouse population patterns 

(Searle et al. 2009; Hardouin et al. 2010; Gabriel et al. 2011; Lippens et al. 2017). However, 

until now, conclusions have been drawn regarding the founding populations and colonisation 

routes based on modern phylogeography. Ancient DNA analysis of early house mice from 

Britain can test these assumptions and help us to understand the origins of the earliest house 

mouse populations in the British Isles. 

Islands are interesting for the varied ways in which they can be colonised, as species can arrive 

by natural ‘sweepstake’ dispersal (Simpson 1940) or introduced by humans (Martinkova et al. 

2013). In this study, we aim to identify the first colonisation of western house mouse in Britain, 

and the possible route that these first arrivals followed, based on ancient DNA (aDNA). To this 

end, ancient house mouse mitochondrial DNA (mtDNA) control-region sequences were 

obtained from four different Iron Age archaeological sites in southern England in an effort to 

sample some of the first populations that arrived to the British Isles. To understand the 



174 
 

phylogeographic history of the species, all modern mtDNA control-region data available for 

Britain were incorporated into the analyses. 

6.2 Material and Methods 
 

The archaeological record of small rodents are adversely affected by their small size, and 

sieving of soil into a minimum mesh of 2mm is necessary to recover them (O’Connor 2001; 

O’Connor and Barret 2006). The small size of the bones also makes them problematic for 

radiocarbon dating, as a single bone will rarely yield enough collagen for direct analysis. 

Therefore, the dating of mouse material often requires dating by context and association with 

artefacts. 

A total of 16 ancient mouse mandibles from four British archaeological sites were collected, 

ranging from the Late Bronze Age to the Roman period (Figure 1) – Potterne, Wiltshire (n=7); 

Battlesbury Bowl, Wiltshire (n=5); North West Farm, Dorset (n=2); and Druce Farm Roman 

Villa, Dorset (n=2). 

The site of Potterne, near Devizes, Wiltshire, was excavated by Wessex Archaeology between 

1982-84, and comprises an extensive accumulation of dark anthropogenic soil deposits, up to 

2m deep in places, covering an area of 3.5 ha. The ‘midden-like’ deposits are rich in artefacts 

and ecofacts, which result from the accumulation of manure and refuse from stock keeping 

and the repeated dumping and trampling of waste from human occupation and activities on 

and around the site over a 500 year period. Pottery typology and radiocarbon dating of 

charcoal from different levels within the deposit, and other cut features, suggest a date of 

1,200-600 BC, encompassing the Late Bronze Age into the very Early Iron Age period (Lawson 

2000). In addition to a large hand-recovered animal bone assemblage dominated by domestic 

mammals, small mammal remains were also recovered, mainly from sieved environmental 

samples, and house mouse remains have been identified from every level (Locker 2000). 

Although it was not possible to obtain radiocarbon dates from the mice directly to confirm this 

Late Bronze Age date, a radiocarbon date of 1,460-990 cal. BC (2ơ) was obtained from charcoal 

that came from the same posthole as mouse mandible OG06 (Lawson 2000). The assumption is 

that all the mice remains are contemporary with the associated archaeological materials of 

Late Bronze Age (c. 1,200-600 cal. BC) and date from the same layers and contexts, although 

Locker (2000) does caution that some small mammal remains may have filtered down the 

deposit from higher levels. 
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The later prehistoric site of Battlesbury Bowl lies along a narrow chalk ridge immediately to the 

north of Battlesbury Camp, an Iron Age hillfort near Warminster, Wiltshire. Excavations by 

Wessex Archaeology in 1999 revealed features of Late Bronze Age to Middle Iron Age dates 

(base on ceramic style), including ditches, post holes, and almost 200 pits (Ellis and Powell 

2008). The faunal assemblage is one of the largest collections of Early to Middle Iron Age 

faunal material from Britain. The presence of both house mouse and wood mouse in both the 

hand-recovered assemblage and the environmental sieved samples has been reported 

(Hambleton and Maltby 2008). The mouse mandibles included in this study came from the fills 

of pits (OG08, OG09, OG11, OG12) and a posthole (OG10), all of which were assigned Early to 

Middle Iron Age dates. Radiocarbon dating of a pig humerus, from the same context as mouse 

mandible OG11, provided a date of 420-100 cal. BC (2ơ) (Ellis and Powell 2008). 

The site at North West Farm, just outside the village of Winterborne Kingston to the north of 

Bere Regis, forms part of a programme of archaeological fieldwork, the Durotriges Project, 

designed to investigate native and Romano-British settlement across Dorset, focusing 

specifically on the archaeologically distinct Iron Age Durotriges tribe. The mouse remains were 

recovered from a chalk deposit (340) within one of three large storage pits in Trench H of the 

2017 fieldwork season.  

Druce Farm villa, Puddletown, Dorset, comprises a series of stone and flint constructed and 

timber post built buildings arranged on a courtyard plan surrounded by a series of ditched 

enclosures with features associated with industrial use (e.g. kilns/ovens and pits) (Ladle in 

prep). The site displays a number of phases of use between the 1st and 4th century AD. The 

samples were obtained from an extensive deposit of remains of microfauna which lay on the 

intact mosaic floor of a room in the main range of buildings, sealed by a deposit of degraded 

plaster and roof tiles. Analysis of the site and the deposit are ongoing (Ladle in prep), but this 

appears to represent a deposit of owl pellets, most likely derived from barn owls, which 

accumulated when the building was going out of use, and which was sealed by the collapsed 

roof. The mosaic floor has been typologically dated to the 4th century AD. Two water vole 

mandibles from the deposit were subjected to radiocarbon dating to elucidate the date of the 

building collapse, and returned dates of 1719 +30 BP (249-391 cal AD 95% probability) and 

1768+30 BP (208-346 cal AD 95% probability). More details regarding the archaeological sites 

can be found in Table A5.1 and Text A5.1 in Appendix 5. 

The morphological identification of the mouse mandibles was not easily resolved as the 

characters published to distinguish house mouse Mus spp. from Apodemus spp. (Chaline et al. 
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1974; Hilson 1986) are not thought to be reliable. Most identification characteristics depend 

on the state of wear of the teeth, or have not been tested against a number of individuals of 

each species, in the manner achieved for the identification of red deer (Cervus elaphus) versus 

fallow deer (Dama dama) (Lister, 1996). Specifically, some of the specimens (OG04, OG05, 

OG07, OG08 and OG09) were either missing the M1, where the distinguishing characters are 

present or are in an advanced wear stage. Therefore, mandibulae were sampled if they were 

recognisable as murids and could conceivably belong to either Mus or Apodemus. 

 

 

 

 

 

 

 

 

Figure 6.1 Map of the archaeological sites sampled in this study. 

6.2.1 DNA Extraction and Amplifications. 

 

Sample processing was done at the Ancient DNA Facility of the University of Huddersfield 

(England) under dedicated clean-room conditions supplied by a positive air pressure system. 

Full body suits, hairnets, gloves and face masks were worn throughout the sampling, extraction 

and PCR set-up processes. All tools and surfaces were constantly cleaned with LookOut® DNA 

Erase (SIGMA Life Sciences), as well as with bleach, ethanol and long exposures to UV light. 

The surface of the mandibles was decontaminated by UV radiation for 10 minutes on each 

side. Whole or partial jaws were shaken with a steel ball inside a metal shaker in a Mixer Mill 

(Retsch MM400) for 15 seconds at 30x frequency. DNA was extracted from the resulting 10-

50mg of powder produced, following the protocol by Yang et al. (1998) with modifications by 

MacHugh et al. (2000). Blank controls were included throughout the sampling procedure, 

extraction, PCR set-up to monitor for possible contamination. 

Battlesbury Bowl 
Potterne 

Druce Farm North West Farm 
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The mtDNA sequences were amplified and sequenced in 12 overlapping 121 to 150 bp 

fragments (Table 6.1) covering a 915 bp fragment of the control region. Seven primer pairs 

were designed specifically for this study and five were taken from Jones et al. (2012) with 

minor modifications (Table 6.1). Each pair amplified overlapping fragments including the most 

variable region (between positions 15381 and 15663). 

Three of the pairs of primers (2b, 2c and 3) were designed to be able also to amplify the other 

similarly sized murids of the Apodemus spp. (Table 6.1). This aided the identification at the 

genus level of jaws that presented identification issues and were not clearly attributed at the 

species level. 

Table 6.1 Primers used to amplify the ancient mitochondrial DNA control-region sequence. Seven primers were 

designed for this study, while five were taken from Jones et al. (2012). 

Fragment name Primer 

Name 

Primer sequences (5'-3') Size 

(bp) 

Reference 

Fragment 1 Mm-1F GCACCCAAAGCTGGTATTCT 146 Jones et al. 2012 

 Mm-1R TTTTATGACCTGAACCATTGATT  Modified from Jones et al. 2012 

Fragment 2 Mm-2F CCAAGCATATAAGCAAGTACAT 141 Jones et al. 2012 

 Mm-2R GTATGTCAGATAACACAGATAT  inverted 

Fragment 2a Mm-2aF CAATATATATACCATGAATATTATCTTA

A 

121 This study 

 Mm-2aR AAGGGGATAGTCATATGG  This study 

Fragment 2b Mm-2bF ATCTGTGTTATCTGACATACACC 150 This study 

 Mm-2bR TTTAATGGGCCCGGAGCGAGAA  This study 

Fragment 2c Mm-2cF ACTATCCCCTTCCCCATTTGG 143 This study 

 Mm-2cR GTAAGAACCAGATGTCTGATAA  This study 

Fragment 3 Mm-3F TCTACCATCCTCCGTGAAA 145 Modified from Jones et al. 2012 

 Mm-3R TATGGGCGATAACGCATTTGAT  Jones et al. 2012 

Fragment 4 Mm-4F CTTTATCAGACATCTGGTTCTT 124 Jones et al. 2012 

 Mm-4R CACAGTTATGTTGGTCATGG  This study 

Fragment 4b Mm-4bF CTTAAATAAGACATCTCGATGG 142 This study 

 Mm-4bR TAGACTGTGTGCTGTCCTT  This study 

Fragment 5 Mm-5F CTTTCATCAACATAGCCGTCAA 129 Jones et al. 2012 

 Mm-5R CATTTATGTCTAACAAGCATGAA  This study 

Fragment 6 Mm-6F CACCTACGGTGAAGAATCATT 146 Jones et al. 2012 

 Mm-6R TGTTTTTGGGGTTTGGCATTAA  Jones et al. 2012 

Fragment 7 Mm-7F CTCAATACCAAATTTTAACTCTC 144 Jones et al. 2012 

 Mm-7R GTCATATTTTGGGAACTACTAG  Jones et al. 2012 

Fragment 8 Mm-8F CTATCAAACCCTATGTCCTGA 140 Jones et al. 2012 

 Mm-8R CTTGTTAATGTTTATTGCGTAA  Modified from Jones et al. 2012 
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The alignment of the sequences from this study and previously published house mouse 

sequences from Britain (Prager et al. 1993; Nachman et al. 1994; Searle et al. 2009; Jones et al. 

2010) were used to create a Bayesian inference phylogenetic tree with MrBayes (Ronquist et 

al. 2012), using the parameters previously calculated in JModelTest (Posada 2008).  The 

analysis was run for 5 million generations with four chains and with a 25% burn-in. We used 

FigTree v.1.3.1. in order to visualise the tree and clades/haplogroups were assigned and 

named following previous nomenclature (Bonhomme et al. 2011; Jones et al. 2010) (1=C1; 

2=C; 3, 5, 9=B; 4=F; 7=D; 8=D1; 10=A; 11=E). 

A median-joining network (Bandelt et al. 1999) was constructed in POPART (Leigh and Bryant 

2015) for all the modern control-region sequences from Britain and the ancient sequences 

obtained for Mus musculus domesticus in this study.  

6.3 Results 
 

In total, genetic material from 13 samples was obtained, of which eight individuals were 

identified as Mus musculus domesticus , four as Apodemus sylvaticus, and one as Apodemus 

flavicolis (Table 6.2). The Bronze Age site (North West Farm) only yielded DNA for one 

individual, attributed to A. sylvaticus. Therefore, the presence of the western house mouse in 

Britain during the Bronze Age remains unconfirmed by molecular analysis. The Roman period 

site (Druce Farm) also yielded only A. sylvaticus (n = 2). Other Apodemus spp. were found at 

the Iron Age sites of Potterne (one A. sylvaticus; n = 1) and Battlesbury (A. flavicolis; n = 1). 

However, in both of these sites, we found eight M.m. domesticus samples (three at Potterne 

and five at Battlesbury). These results highlight the uncertainty in the identification of Murid 

species in the archaeological record based on jaw morphology. 

 

Table 6.2 Details of the ancient murid samples analysed in this study. 

Specimen Location Period MtDNA Species ID Total Length (bp) 

OG01 Potterne, Wiltshire Iron Age Mus musculus domesticus 74 

OG02 Potterne, Wiltshire Iron Age Mus musculus domesticus 772 

OG03 Potterne, Wiltshire Iron Age Mus musculus domesticus 576 

OG04 Potterne, Wiltshire Iron Age Mus musculus domesticus 772 

OG05 Potterne, Wiltshire Iron Age no amplification products n/a 

OG06 Potterne, Wiltshire Iron Age Apodemus sylvaticus 304 
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OG07 Potterne, Wiltshire Iron Age Mus musculus domesticus 744 

OG08 Battlesbury Bowl, Wiltshire Iron Age Mus musculus domesticus 772 

OG09 Battlesbury Bowl, Wiltshire Iron Age Mus musculus domesticus 744 

OG10 Battlesbury Bowl, Wiltshire Iron Age Mus musculus domesticus 354 

OG11 Battlesbury Bowl, Wiltshire Iron Age no amplification products n/a 

OG12 Battlesbury Bowl, Wiltshire Iron Age Apodemus flavicolis 259 

OG13 North West Farm, Dorset Bronze Age Apodemus sylvaticus 255 

OG14 North West Farm, Dorset  Bronze Age no amplification products n/a 

OG15 Druce Farm, Dorset Roman Period Apodemus sylvaticus 131 

OG16 Druce Farm, Dorset Roman Period Apodemus sylvaticus 104 

 

The longest fragment obtained for M.m. domesticus was 772 bp (OG04), from position 122 to 

893 of the reference house mouse mitogenome. The shortest fragment (OG01) had a length of 

74 bp, so we were unable to assign it to a clade. 

All house mouse individuals analysed here date to the Iron Age, and clustered in two main 

clades/haplogroups (D1/8 and E/11), described previously in modern samples from Britain 

(Table 6.3). Two individuals clustered in clade D1 and six individuals belonged to cluster E 

(Figure 2). Interestingly, clade F/4, the most widespread clade in Britain today, was not present 

in our sample set. Three samples (OG04, 07 and 08) belonged to the same haplotype, and the 

rest of the sequences were unique. 

Unfortunately, the fragments obtained for the Apodemus spp. are too short for meaningful 

integration into wood mouse (A. sylvaticus) or yellow-necked (A. falvicolis) mouse 

phylogeographies. Phylogeographic studies based on the control region for wood mice species 

are scarce, so that further exploration of the data was not possible. 
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Table 6.3 Variable positions in control region sequences of archaeological Mus musculus domesticus samples from the British Isles between positions 122 and 893, compared with the 

reference house mouse mitogenome. Differences are indicated, whilst a period denotes identity. Missing sequence data are denoted by question marks. Sequence codes are given in the first 

column. In the final column, each sample has been assigned to a mitochondrial clade by means of its relative position in a Bayesian phylogenetic tree and the mutations sites compared with 

modern samples. 
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OG10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . . T . T . . T T T ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? A . . C D1 
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6.4 Discussion 
 

Britain is at the periphery of the western European expansion of M. m. domesticus if, as 

believed, the subspecies started its spread from the Near East associated with modern humans 

at around 8000 BC (Cucchi et al. 2005; Hardouin et al. 2015).The phylogeography of the 

western part of the Atlantic geographical range of the western house mouse has been 

particularly well studied (Förster et al. 2009; Searle et al. 2009; Jones et al. 2011). Britain has a 

relatively high genetic variation based on haplotype diversity and the presence of different 

clades (Searle et al. 2009).  

This study complements the understanding of the colonisation of the British Isles by the 

western house mouse by showing that two clades, D1 and E, were present in southern Britain 

during the Iron Age. These two clades may represent different human movements into Britain. 

Clade D1 has been previously suggested to play a fundamental role in the distribution of the 

species across the Atlantic coast. Sequences of this clade are common in northern Germany 

today as well as Scandinavia, but also in more peripheral regions such as Madeira and the 

Canary Islands (Gündüz et al. 2001; Förster et al. 2009; Bonhomme et al. 2011). The 

colonisation of these islands by clade D1 has been attributed to Danish Viking movements first 

to Madeira and then to the Canary Islands followed by the Portuguese settlement (Förster et 

al. 2009; Bonhomme et al. 2011). The presence of this clade also in the Faroe Islands (Jones et 

al. 2011b) has also shown a more complex scenario than a simple Norwegian Viking 

colonisation (related with clade F) as has been previously suggested  and pointed to a more 

southern Norwegian origin or even a possible continental origin (Jones et al. 2012). However, 

the presence of this haplogroup in Britain since the Iron Age is more in agreement with an 

introduction from continental Europe rather than a later Danish Viking introduction.  If clade 

D1 is, as supported by this and other phylogenetic analyses (Jones et al. 2011), a subclade that 

derives from clade D, it can be hypothesised that the continental route took more time and 

probably allowed the appearance of this clade in western Europe (including Scandinavia). We 

can also infer this from the distribution and high frequency of D1 in western Europe and lower 

representation in the east (Figure 6.3).  
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Figure 6.2 a) Bayesian phylogenetic tree for all the British mtDNA control-region sequences. Ancient samples 

indicated with a black dot. b) Median-joining network calculated with POPART for all British sequences available. 

Clade E is well represented in modern southern British samples, but also in areas in the north 

of the country, as well as in Ireland (Searle et al. 2009; Jones et al. 2011). Searle et al. (2009) 

noted that the distribution of E appears to reflect the colonisation of Britain from the 

European mainland during the Iron Age. As this clade is not well represented in central Europe, 

it has been suggested that it did not arrive with people overland but via a maritime route, 

possibly transported from the Mediterranean by the seafaring Phoenicians in the late Bronze 

Age/Iron Age (Bonhomme and Searle 2012). However, the presence of E in northern France 

may provide evidence that this area was the continental source of British house mouse 

populations (Jones et al. 2011), which has been further supported by zooarchaeological 

evidence of house mice in this area during the Iron Age (Cucchi et al. 2005). The presence of E 
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in the Iron Age in Britain demonstrates that the introduction occurred at least as early as in the 

Iron Age, and was the result of an ancient expansion caused, most likely, by trade routes 

between Mediterranean cultures (Phoenicians and Greeks) and the Atlantic seaboard, 

including Britain, during this time (Cunliffe 2001). 

 

Figure 6.3 Maps of the distribution of clade D/7 (a), D1/8 (b) and E/11 (c). The hypothesised routes are represented 

with colour arrows. 

The distribution data for the western house mouse mtDNA clades from both ancient and 

modern British DNA samples allow us to make a synthesis for the island’s first colonisation. 

Five main clades are represented in modern British samples (C, F, D, D1 and E), while only two 

of these have been found in the Iron Age sites analysed (D1 and E). The presence of these two 

clades in Britain since the Iron Age had previously been hypothesised from the analysis of 

modern samples (Bonhomme and Searle 2012; Jones et al. 2012). This study provides the first 

direct evidence of the presence of D1 and E in Britain from at least the Iron Age period. 

6.5 Conclusion 
 

The presence of clades D1 and E during the Iron Age in Britain has provided evidence of an 

early house mouse colonisation that may be related with Iron Age expansions of humans. This 
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is in agreement with what has been previously suggested for clade E, but gives a new 

perspective on the origins of clade D1 in Britain, which has traditionally been linked to the 

movements of Danish Vikings. 
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Chapter 7. Discussion 

7.1 Overview of the thesis 
 

In recent times many advances have been made in order to collect and analyse genetic data 

from many different mammal species and identify the main phylogeographic patterns inferred 

by these data. Despite most of scientific studies addressing phylogeographic questions, there is 

a traditional species-specific scheme that analyses the data from the perspective of each 

taxon. Few studies use a holistic approach, covering multiple taxa, and try to understand 

common patterns. This thesis has investigated different approaches in comparative 

phylogeography to understand the demographic patterns for mammal species and to compare 

them, searching for similarities and differences between them. 

Europe has been the principal area of study given the extensive amount of genetic data that is 

available. This research has laid its foundations in recompiled these data, reanalysed it, in a 

new framework, common across different taxa and interpreting the results based on an 

integrative approach. Nevertheless, the “genetic record” has some deficiencies such as varying 

levels of resolution based on genetic markers and/or fragment lengths. The standard method 

developed during this research has constructed a common framework that allowed the 

comparison between species (Chapter 2).  

Genetic diversity has been the core of this research by describing the diversity distribution 

across Europe, helping to identify areas of richness and purity in modern distributions (Chapter 

3). Genetic diversity and phylogeographic patterns have been examined for each species, 

describing the main results found in a more traditional and descriptive phylogeographic 

approach (Chapter 4). For each species, new phylogeographic inferences have been discussed, 

contradicting or reinforcing previous knowledge by using a meta-analysis of the genetic data 

available for the control region. Common trends in Europe for genetic diversity were also 

analysed and compared between species including an assessment of the importance of the 

LGM to the current patterns (Chapter 4). In the last two chapters of this thesis (5 and 6), the 

commensal species, the western house mouse, has been studied in two different insular 

contexts and from the perspective of modern and ancient DNA analyses. This helps to 

understand the pattern of human colonisation and the human transport of this species.  
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This chapter discusses the key findings of this research in the context of existing knowledge 

and their relevance to the understanding of comparative phylogeography in Europe. Research 

limitations are also considered and suggestions made as to future research. 

7.2 Findings and original contribution to knowledge 
 

The developed method in Chapter 2 to assess the comparative approach between different 

mammal species and the reliability of genetic diversity indices, with the reconstruction of 

phylogeographic patterns, assigned the context for the comparative analysis developed in the 

thesis. Meta-analyses like this are a useful tool in collecting data from numerous studies to 

identify common effects with increased power (Borenstein et al. 2009). It has proved to be a 

simple and clear approach to introduce an extensive meta-analysis perspective into genetic 

data providing useful insights for phylogeographic purposes. The methods previously 

developed by Pedreschi et al. (2018) and Lumibao et al. (2017) have been expanded and 

updated to be applied to mammal species with a European range and using the same genetic 

marker. This method has been applied to 29 different mammal species in Europe. 

The genetic diversity paradigm to understand refugia has also been tested in a new common 

framework (Chapter 3 and 4). First, in Chapter 3 general trends in Europe were identified 

indicating the more complex relationship between latitude and diversity previously reported. 

This study shows that the southern richness and northern purity for genetic diversity are not 

confirmed when a large number of taxa is added to the equation and that southern areas 

showed no higher diversity than northern regions. Furthermore, three different temporal 

periods were compared (Pleistocene, Holocene and Modern) for twelve species where ancient 

DNA was available. This analysis showed a higher diversity during the Pleistocene for seven 

species and not significant variation in four species. Only Homo sapiens were found to be more 

diverse in the Holocene than in the Pleistocene. 

Each of the mammals has been analysed individually after having systematically reviewed the 

literature and compiling the genetic data available, reanalysing it and interpreting it (Chapter 

4). This section of the chapter probably represents the first attempt to describe the 

phylogeography of such an extensive number of species using the same genetic marker and 

has contributed to a better understanding. The disparity in patterns found suggest that species 

responded differently to climatic changes, as previously suggested (Stewart et al. 2010) and 

that species-specific analyses also need to be considered in the context of the previous work 

developed.   
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In Chapter 4, a new approach to identify potential refugial areas in the continent has been 

established based on identifying areas were private allelic richness displayed high values and 

complemented by haplotype diversity indices and phylogenetic tree topologies. This research 

continues the comparative approach legacy (Taberlet et al. 1998; Petit et al. 2003; Hewitt 

2004; Maggs et al. 2008) but adding new formulas to try to identify similarities between 

species. Four different patterns have been identified contributing a new framework where the 

species can be compared. Modern humans, from the Palaeolithic and the Mesolithic, are 

defined by one of these patterns characterised by a lack of phylogeographic pattern found 

where the genetic diversity indices analysed seem to be the same across the different 

geographical regions analysed. 

In Chapter 5, two main waves of colonisation were found in the Mediterranean island of 

Cyprus for the western house mouse, Mus musculus domesticus, inferred by modern mtDNA 

data. These two different colonisation events are likely related to human transport first during 

the Bronze Age/Iron Age, and second with more recent transportation. This study was 

complemented by the microsatellite analysis to understand the variability within the island 

complementing the mtDNA approach, confirming the high gene flow found in the island 

between populations.  

In Chapter 6, the first ancient DNA study in the British Isles for the western house mouse has 

been developed. The presence of two main clades during the Iron Age in Britain has provided 

evidence of an early house mouse colonisation that may be related with Iron Age human 

expansions.  

7.3 Implications 

The use of the method developed in Chapter 2 allows for quantitative analysis of the genetic 

data based on the database produced and the analysis in a common framework for all the 

species included in this research. This method is used in Chapters 3 and 4. The main 

implication of Chapter 3 is that the general trend of genetic diversity based on mammals is less 

straightforward than previously presented in the literature. The framework provided by this 

study should aid with more and different genetic indices to address the general pattern of 

diversity in Europe.  
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In Chapter 4, each species is presented individually but the compilation and reanalysis of all 

the available sequences have given insight and a new perspective on the treatment of the 

genetic data and the need for more extensive analyses as a literature review on their own can 

be misleading and studies that might be difficult to compare between them seem to be the 

rule rather than the exception. In this same chapter, the comparative approach has proved the 

importance of using the same genetic marker to infer phylogeographic patterns. 

The geographical ranges of mammals alter as climate changes, but predicting how each species 

will respond is still difficult (Helmuth et al. 2002; Broitman et al. 2009). Understanding the 

distributions during previous climatic events, such as the LGM, provide valuable insights into 

migration and a population’s resistance to changes. Genetic data have been essential to 

understanding the evolutionary legacy of the ice ages (Hewitt 1996, 2004) and this will 

continue in the upcoming years. 

The main implications of Chapters 5 and 6 are related to highlighting that the analysis of 

modern and ancient sequences can be complementary. Both approaches can give important 

perspectives to address phylogeographic questions related to the species of interest, but also 

being used as a bioproxy for human dispersal, as the western house mouse has proved in these 

two studies.  

7.4 Research limitations 

The examination and testing of general relationships that enable asking phylogeographical 

questions on a larger scale than usually possible at a single taxon study level are allowed by 

meta-analyses (Kaiser et al. 2006). However, there are specific limitations associated with such 

a study. Below is a summary of the limitations encountered during this research, however, the 

specific research limitations are covered in each chapter and discussed accordingly.  

7.4.1 Mitochondrial DNA as a marker 

One of the main caveats of this research is related with the genetic marker used. The well-

studied mitochondrial DNA has been the centre of this thesis and also the most common 

genetic marker used to infer phylogeographic patterns (Petit et al. 2005; Galtier et al. 2009). 

MtDNA benefits from a higher rate of mutation than nuclear DNA, so that the events that 

allow for the reconstruction of the genealogy are more frequent, being able to resolve 

branching structure in the maternal genealogy (Macaulay and Richards 2013). These are the 

main reasons for selecting it to address this project; however, it can only reveal a small part of 
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the evolutionary history of a species. One of the caveats for using mtDNA is that the benefit of 

the high mutation rate is engendered by mutation at the same positions, leading to alternative 

branching orders being equally plausible for sets of sequences. Some critiques to mtDNA 

phylogeography often ignore that this marker has led the way in the reconstruction of many 

different species demographic histories from genetic data. 

Nuclear DNA studies have revealed different phylogeographic and demographic histories for 

some species (e.g. Posth et al. 2017) but have also confirmed similar results for both markers 

(e.g. Hardouin et al. 2010). Chapter 5 is the only study in this thesis that analyses both, mtDNA 

and nuclear DNA, and showed how both markers could be used to complement each other. In 

order to achieve a reliable study comparing different species, this marker has to be constant 

through the different species’ analyses.  

7.4.2 Short fragment used 

The short fragment of mtDNA used in this research is also a matter of possible concern. Due to 

the difficulties found in the compilation of the data (see Chapter 2) and in order to include the 

largest number of sequences per species as possible, for some species, the fragment length 

used has been reduced (see Chapter 3 and 4). This has a clear impact on the phylogeographic 

inference, however, for most of the species, this short length has not represented a loss of 

resolution of the main populations, clades or haplogroups previously described in the 

literature. Although it is important to point out that the individual phylogeographic patterns 

seen in some species may be altered by this constraint and the interpretation of the results has 

to be taken carefully.  

7.4.3 Common framework 

The constructed database (Chapter 2) with all the sequences, number of individuals, 

geographical areas, countries and reference information may have missed some studies and 

sequences that were not found during the literature process and the collection of the data 

from Genbank. Some sequences were not added to the analysis due to a lack of information, 

for example, the exact number of individuals represented by the data. Moreover, the lack of 

geographical coordinates in GenBank, or in the publication itself has not allowed a full 

reconstruction (see Gratton et al. 2016). Finally, sequences published or submitted to GenBank 

after January 2018 have not been added to the database as a cut-off date, after which the 

analysis was done had to be agreed. This may have an impact on the studied phylogeography 
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of the different taxa (Chapters 3 and 4), however, new data is unlikely to change the 

interpretation of the data and it will not change the main conclusions of the thesis. 

7.5 Recommendations for future research 

This thesis has highlighted issues regarding the use of genetic data as “big data” to identify 

common patterns and to generate a common framework to analyse it. However, these big 

data have proved to be “dirty” and contain errors and incomplete information. This has been a 

common pattern found in the research. The lack of complete information has affected the 

choice of some species and has introduced caveats on others (see limitations below). 

Therefore, the first recommendation is to publish and submit a complete record of the 

sequences uploaded to GenBank database. The geographical coordinates, the number of 

individuals that share the same haplotype, the information regarding studies that have not yet 

been published, are issues that need to be addressed and improved. Gratton et al. (2016) 

found that only 6.2% of tetrapods surveyed in GenBank submissions reported geographical 

coordinates, without any increase in recent years. Enhancing georeferencing of genetic data 

must be continued to help researchers to address phylogeographic questions with more 

confidence. New databases, such as BOLD (Ratnasingham and Herbert 2007) and GeOMe 

(Deck et al. 2017), are also trying to ensure scientific reproducibility allowing syntheses of big 

data.  

The second set of recommendations are those relating to the implications of this research for 

general trends and patterns. The difficulty behind this has been addressed previously (Taberlet 

et al. 1998; Maggs et al. 2008; Pedreschi et al. 2018) and has been confirmed in this thesis. 

Accepting paradigms of phylogeography based on model species (that are most likely based on 

small sample sizes and limited geographical areas covered) can prevent new questions being 

asked. Therefore, a deeper understanding of the complexity seen in phylogeography will be 

achieved if more new hypotheses that contradict or reinforce certain ideas are acknowledged. 

Many ideas have also been developed to explain the disparities in phylogeographic histories 

including the existence of southern refugia (Hewitt 2000), cryptic northern refugia (Stewart 

and Lister 2001), microrefugia (Rull et al. 1988, Rull 2009) or refugia within refugia (Gómez and 

Lunt 2007). These different paradigms demonstrated the complexity behind the 

phylogeographic patterns and in many occasions seems to be ignored or not well considered.  

The third group of recommendations are related to the last two chapter of this thesis (5 and 

6). The phylogeographic studies in the commensal species Mus musculus domesticus, have 
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proven to be very useful to gain new knowledge of human movement. As seen here, the 

modern and ancient analyses of DNA sequences can (and should) be complementary. 

However, despite the complexity behind the phylogeny of Mus musculus domesticus, the 

uncertainty in the nomenclatures traditionally used for the species (Bonhomme et al. 2011; 

Jones et al. 2011) needs to be resolved. The use of ancient DNA analyses may help to gain 

resolution on this matter.  

7.3 Conclusion 

The work presented in this thesis shows a new common framework for meta-analyses in 

phylogeography. The collection of such genetic data as part of ongoing new efforts can 

contribute to understanding general patterns of diversity and phylogeography. The species 

analysed in this research have shown that genetic diversity trends in the European continent 

are characterised by a more complex pattern than previously described. Despite this 

complexity, the most important outcome, and hopefully the area where this study will be most 

influential, is with the approach that can help to identify possible refugial areas and the 

postglacial colonisations by species. It is hoped that outcomes from this research will influence 

the study of phylogeography using a common framework for different species. Both the 

findings and limitations of this study will be able to give a better context for future research in 

the field of specific taxon phylogeography (Chapter 4, 5 and 6) and also into comparative 

phylogeography (Chapter 2, 3 and 4). Modern human phylogeography pattern from the short 

control region has been contextualised in the patterns observed for other mammal species, 

showing a homogeneous distribution across the continent. The western house mouse has also 

been confirmed as an excellent bioproxy to understand human movement in more recent 

times, especially on insular scenarios such as Cyprus and Britain.  
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9. Appendices 
 

9.1 Appendix 1 

Table A1.1 225 species (including marine mammals and bats) considered for the database at the beginning of this 

project indicating the number of entries found in Genebank for the control region, D-loop and cyt b. 

Species Terrestrial/Non 
Endemic 

Control 
Region 

D-
loop 

CytB 

Acomys minous (Crete Spiny Mouse)  ✗ ✗ ✗ ✗ 

Alces alces (Eurasian Elk)  ✓ 308 112 32 

Apodemus agrarius (Striped Field Mouse)  ✓ 18 151 60 

Apodemus alpicola (Alpine Field Mouse)  ✓ 1 1 0 

Apodemus epimelas (Western Broad-
toothed Field Mouse)  

✓ 0 1 18 

Apodemus flavicollis (Yellow-necked Field 
Mouse)  

✓ 20 35 4 

Apodemus mystacinus (Eastern Broad-
toothed Field Mouse)  

✓ 41 57 16 

Apodemus sylvaticus (Long-tailed Field 
Mouse)  

✓ 5 16 4 

Apodemus uralensis (Herb Field Mouse)  ✓ 3 2 144 

Apodemus witherbyi (Steppe Field Mouse)  ✓ 0 0 21 

Arvicola amphibius (European Water Vole)  ✓  59 91 

Arvicola sapidus (Southern Water Vole)  ✓ 7 89 98 

Arvicola scherman (Montane Water Vole)  ✓ 0 3 2 

Atelerix algirus (North African Hedgehog)  ✓ 0 15 59 

Balaena mysticetus (Bowhead Whale)  ✗ ✗ ✗ ✗ 

Balaenoptera acutorostrata (Common Minke 
Whale)  

✗ ✗ ✗ ✗ 

Balaenoptera borealis (Sei Whale)  ✗ ✗ ✗ ✗ 

Balaenoptera edeni (Bryde's Whale)  ✗ ✗ ✗ ✗ 

Balaenoptera musculus (Blue Whale)  ✗ ✗ ✗ ✗ 

Balaenoptera physalus (Fin Whale)  ✗ ✗ ✗ ✗ 

Barbastella barbastellus (Western 
Barbastelle)  

✓ 0 29 54 

Bison bonasus (European Bison)  ✓ 79 169 70 

Bos primigenius (Aurochs)  ✓ 21 93  

Canis aureus (Golden Jackal)  ✓ 14 37 77 

Canis lupus (Gray Wolf)  ✓ 4968 4301 2815 

Capra ibex (Alpine Ibex)  ✓ 5 2 9 

Capra pyrenaica (Iberian Wild Goat)  ✓ 32 7 37 

Capreolus capreolus (European Roe Deer)  ✓ 122 734 168 

Castor fiber (Eurasian Beaver)  ✓ 34 61 19 

Cervus elaphus (Red Deer)  ✓ 846 870 575 
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Chionomys nivalis (European Snow Vole)  ✓ 10 18 63 

Cricetulus migratorius (Gray Dwarf Hamster)  ✓ 0 2 64 

Cricetus cricetus (Black-bellied Hamster)  ✓ 0 180 126 

Crocidura canariensis (Canarian Shrew)  ✗ ✗ ✗ ✗ 

Crocidura leucodon (Bicolored Shrew)  ✓ 3 3 84 

Crocidura pachyura (North African White-
toothed Shrew)  

✗ ✗ ✗ ✗ 

Crocidura russula (White-toothed Shrew)  ✓ 41 45 117 

Crocidura sicula (Sicilian Shrew)  ✗ ✗ ✗ ✗ 

Crocidura suaveolens (Lesser Shrew)  ✓ 0 0 197 

Crocidura whitakeri (Whitaker's Shrew)  ✗ ✗ ✗ ✗ 

Crocidura zimmermanni (Cretan White-
toothed Shrew)  

✗ ✗ ✗ ✗ 

Cystophora cristata (Hooded Seal)  ✗ ✗ ✗ ✗ 

Delphinapterus leucas (Beluga)  ✗ ✗ ✗ ✗ 

Delphinus delphis (Short-beaked Common 
Dolphin)  

✗ ✗ ✗ ✗ 

Dicrostonyx groenlandicus (Northern 
Collared Lemming)  

✓  19 350 

Dinaromys bogdanovi (Martino's Snow Vole)  ✓ 0 0 53 

Dryomys nitedula (Forest Dormouse)  ✓ 0 0 50 

Eliomys melanurus (Asian Garden 
Dormouse)  

✗ ✗ ✗ ✗ 

Eliomys quercinus (Garden Dormouse)  ✓ 0 0 53 

Eptesicus bottae (Botta's Serotine)  ✓ 0 0 39 

Eptesicus nilssonii (Northern Bat)  ✓ 0 1 31 

Eptesicus serotinus (Serotine)  ✓ 69 24 131 

Erignathus barbatus (Bearded Seal)  ✗ ✗ ✗ ✗ 

Erinaceus europaeus (Western European 
Hedgehog)  

✓ 315 82 378 

Erinaceus roumanicus (Northern White-
breasted Hedgehog)  

✓ 60 13 3 

Eschrichtius robustus (Gray Whale)  ✗ ✗ ✗ ✗ 

Eubalaena glacialis (North Atlantic Right 
Whale)  

✗ ✗ ✗ ✗ 

Felis silvestris (Wild Cat)  ✓ 117 21 197 

Feresa attenuata (Pygmy Killer Whale)  ✗ ✗ ✗ ✗ 

Galemys pyrenaicus (Pyrenean Desman)  ✓ 1 267 311 

Glis glis (Edible Dormouse)  ✓ 0 2 52 

Globicephala macrorhynchus (Short-finned 
Pilot Whale)  

✗ ✗ ✗ ✗ 

Globicephala melas (Long-finned Pilot 
Whale)  

✗ ✗ ✗ ✗ 

Grampus griseus (Risso's Dolphin)  ✗ ✗ ✗ ✗ 

Gulo gulo (Wolverine)  ✓ 271 5 53 

Halichoerus grypus (Grey Seal)  ✗ ✗ ✗ ✗ 
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Homo sapiens (Human)  ✓    

Hyperoodon ampullatus (North Atlantic 
Bottlenose Whale)  

✗ ✗ ✗ ✗ 

Hystrix cristata (Crested Porcupine)  ✓ 29 47 23 

Kogia breviceps (Pygmy Sperm Whale)  ✗ ✗ ✗ ✗ 

Kogia sima (Dwarf Sperm Whale)  ✗ ✗ ✗ ✗ 

Lagenodelphis hosei (Fraser's Dolphin)  ✗ ✗ ✗ ✗ 

Lagenorhynchus acutus (Atlantic White-
sided Dolphin)  

✗ ✗ ✗ ✗ 

Lagenorhynchus albirostris (White-beaked 
Dolphin)  

✗ ✗ ✗ ✗ 

Lemmus lemmus (Norway Lemming)  ✓ 42 1 29 

Lepus arcticus (Arctic Hare)  ✓ 3 63 8 

Lepus capensis (Cape Hare)  ✓ 64 245 165 

Lepus castroviejoi (Broom Hare)  ✓ 15 1 11 

Lepus corsicanus (Corsican Hare)  ✗ ✗ ✗ ✗ 

Lepus europaeus (European Hare)  ✓ 305 563 267 

Lepus granatensis (Granada Hare)  ✓ 15 226 239 

Lepus timidus (Mountain Hare)  ✓ 151 188 258 

Lutra lutra (Eurasian Otter)  ✓ 86 14 53 

Lynx lynx (Eurasian Lynx)  ✓ 74 17 47 

Lynx pardinus (Iberian Lynx)  ✗ ✗ ✗ ✗ 

Marmota marmota (Alpine Marmot)  ✓ 1 0 18 

Martes foina (Beech Marten)  ✓ 15 53 55 

Martes martes (Pine Marten)  ✓ 55 153 160 

Martes zibellina (Sable)  ✓ 166 188 158 

Megaptera novaeangliae (Humpback Whale)  ✗ ✗ ✗ ✗ 

Meles meles (Eurasian Badger)  ✓ 23 75 65 

Mesocricetus newtoni (Romanian Hamster)  ✗ ✗ ✗ ✗ 

Mesoplodon bidens (Sowerby's Beaked 
Whale)  

✗ ✗ ✗ ✗ 

Mesoplodon densirostris (Blainville's Beaked 
Whale)  

✗ ✗ ✗ ✗ 

Mesoplodon europaeus (Gervais' Beaked 
Whale)  

✗ ✗ ✗ ✗ 

Mesoplodon mirus (True's Beaked Whale)  ✗ ✗ ✗ ✗ 

Micromys minutus (Eurasian Harvest 
Mouse)  

✓ 81 13 94 

Microtus agrestis (Field Vole)  ✓ 2 2 431 

Microtus arvalis (Common Vole)  ✓ 287 138 1086 

Microtus bavaricus (Bavarian Pine Vole)  ✗ ✗ ✗ ✗ 

Microtus brachycercus (Calabria Pine Vole)  ✗ ✗ ✗ ✗ 

Microtus cabrerae (Cabrera's Vole)  ✗ ✗ ✗ ✗ 

Microtus duodecimcostatus (Mediterranean 
Pine Vole)  

✗ ✗ ✗ ✗ 

Microtus felteni (Balkan Pine Vole)  ✗ ✗ ✗ ✗ 
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Microtus gerbei (Pyrenean Pine Vole)  ✗ ✗ ✗ ✗ 

Microtus guentheri (Günther's Vole)  ✓ 33 1 45 

Microtus levis (East European Vole)  ✗ ✗ ✗ ✗ 

Microtus liechtensteini (Liechtenstein’s Pine 
Vole)  

✗ ✗ ✗ ✗ 

Microtus lusitanicus (Lusitanian Pine Vole)  ✗ ✗ ✗ ✗ 

Microtus multiplex (Alpine Pine Vole)  ✗ ✗ ✗ ✗ 

Microtus oeconomus (Tundra Vole)  ✗ ✗ ✗ ✗ 

Microtus savii (Savi's Pine Vole)  ✗ ✗ ✗ ✗ 

Microtus subterraneus (European Pine Vole)  ✗ ✗ ✗ ✗ 

Microtus tatricus (Tatra Vole)  ✗ ✗ ✗ ✗ 

Microtus thomasi (Thomas's Pine Vole)  ✓ 164 2 161 

Miniopterus schreibersii (Schreiber's Bent-
winged Bat)  

✓ 0 223 434 

Monachus monachus (Mediterranean Monk 
Seal)  

✗ ✗ ✗ ✗ 

Monodon monoceros (Narwhal)  ✗ ✗ ✗ ✗ 

Mus macedonicus (Macedonian Mouse)  ✓ 7 120 2 

Mus musculus (House Mouse)  ✓ 7523 2795 3321 

Mus spicilegus (Mound-building Mouse)  ✓ 32 4 5 

Mus spretus (Western Mediterranean 
Mouse)  

✓ 8 7 28 

Muscardinus avellanarius (Hazel Dormouse)  ✓ 0 12 42 

Mustela erminea (Stoat)  ✓ 119 220 330 

Mustela eversmanii (Steppe Polecat)  ✓ 5 7 5 

Mustela lutreola (European Mink)  ✓ 7 44 27 

Mustela nivalis (Least Weasel)  ✓ 122 140 159 

Mustela putorius (Western Polecat)  ✓ 0 32 50 

Myodes glareolus (Bank Vole)  ✓ 92 129 1525 

Myodes rufocanus (Grey Red-backed Vole)  ✗ ✗ ✗ ✗ 

Myodes rutilus (Northern Red-backed Vole)  ✗ ✗ ✗ ✗ 

Myomimus roachi (Roach's Mouse-tailed 
Dormouse)  

✗ ✗ ✗ ✗ 

Myopus schisticolor (Wood Lemming)  ✓ 0 1 62 

Myotis alcathoe (ALCATHOE MYOTIS)  ✓ 0 0 35 

Myotis aurascens (STEPPE WHISKERED BAT)  ✓ 0 0 36 

Myotis bechsteinii (Bechstein's Myotis)  ✓ 48 4 7 

Myotis blythii (Lesser Mouse-eared Myotis)  ✓ 6 39 50 

Myotis brandtii (BRANDT'S MYOTIS)  ✓ 515 144 43 

Myotis capaccinii (Long-fingered Bat)  ✓ 0 0 1 

Myotis dasycneme (Pond Myotis)  ✓ 0 0 1 

Myotis daubentonii (Daubenton's Myotis)  ✓ 1 135 76 

Myotis emarginatus (Geoffroy's Bat)  ✓ 0 0 51 

Myotis myotis (Greater Mouse-eared Bat)  ✓ 61 143 99 

Myotis mystacinus (Whiskered Myotis)  ✓ 0 0 22 
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Myotis nattereri (Natterer's Bat)  ✓ 38 0 89 

Myotis punicus (Maghreb Mouse-eared Bat)  ✓ 27 0 1 

Myotis schaubi (Schaub's Myotis)  ✓ 0 0 4 

Neomys anomalus (Southern Water Shrew)  ✓ 0 0 32 

Neomys fodiens (Eurasian Water Shrew)  ✓ 2 2 39 

Nyctalus azoreum (Azores Noctule)  ✗ ✗ ✗ ✗ 

Nyctalus lasiopterus (Giant Noctule)  ✓ 0 427 219 

Nyctalus leisleri (Lesser Noctule)  ✓ 15 30 31 

Nyctalus noctula (Noctule)  ✓ 2 3 14 

Odobenus rosmarus (Walrus)  ✗ ✗ ✗ ✗ 

Orcinus orca (Killer Whale)  ✗ ✗ ✗ ✗ 

Oryctolagus cuniculus (European Rabbit)  ✓ 474 343 103 

Ovibos moschatus (Muskox)  ✓ 240 19 32 

Pagophilus groenlandicus (Harp Seal)  ✗ ✗ ✗ ✗ 

Phoca vitulina (Harbour Seal)  ✗ ✗ ✗ ✗ 

Phocoena phocoena (Harbour Porpoise)  ✗ ✗ ✗ ✗ 

Physeter macrocephalus (Sperm Whale)  ✗ ✗ ✗ ✗ 

Pipistrellus kuhlii (Kuhl's Pipistrelle)  ✗ ✗ ✗ ✗ 

Pipistrellus maderensis (Madeira Pipistrelle)  ✗ ✗ ✗ ✗ 

Pipistrellus nathusii (Nathusius' Pipistrelle)  ✗ ✗ ✗ ✗ 

Pipistrellus pipistrellus (Common Pipistrelle)  ✓ 160 103 122 

Pipistrellus pygmaeus (Pygmy Pipistrelle)  ✓ 112 42 39 

Pipistrellus savii (Savi's Pipistrelle)  ✗ ✗ ✗ ✗ 

Plecotus auritus (Brown Big-eared Bat)  ✓ 29 26 21 

Plecotus austriacus (Gray Big-eared Bat)  ✓ 15 14 49 

Plecotus kolombatovici (Kolombatovic's 
Long-eared Bat)  

✓ 18 3 2 

Plecotus macrobullaris (Mountain Long-
eared Bat)  

✓ 8 85 72 

Plecotus sardus (Sardinian Long-eared Bat)  ✗ ✗ ✗ ✗ 

Plecotus teneriffae (Tenerife Long-eared 
Bat)  

✗ ✗ ✗ ✗ 

Prolagus sardus (Sardinian Pika)  ✗ ✗ ✗ ✗ 

Pseudorca crassidens (False Killer Whale)  ✗ ✗ ✗ ✗ 

Pteromys volans (Siberian Flying Squirrel)  ✓ 4 2 72 

Pusa hispida (Ringed Seal)  ✗ ✗ ✗ ✗ 

Rangifer tarandus (Reindeer)  ✓ 918 1403 703 

Rhinolophus blasii (Blasius's Horseshoe Bat)  ✓ 9 7 14 

Rhinolophus euryale (Mediterranean 
Horseshoe Bat)  

✓ 3 23 16 

Rhinolophus ferrumequinum (Greater 
Horseshoe Bat)  

✓ 121 174 89 

Rhinolophus hipposideros (Lesser Horseshoe 
Bat)  

✓ 375 375 397 

Rhinolophus mehelyi (Mehely's Horseshoe ✓ 4 14 10 
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Bat)  

Rupicapra pyrenaica (Pyrenean Chamois)  ✗ ✗ ✗ ✗ 

Rupicapra rupicapra (Northern Chamois)  ✗ ✗ ✗ ✗ 

Saiga tatarica (Mongolian Saiga)  ✗ ✗ ✗ ✗ 

Sciurus anomalus (Caucasian Squirrel)  ✗ ✗ ✗ ✗ 

Sciurus vulgaris (Eurasian Red Squirrel)  ✓ 92 507 157 

Sicista betulina (Northern Birch Mouse)  ✗ ✗ ✗ ✗ 

Sicista subtilis (Southern Birch Mouse)  ✓ 0 5 20 

Sorex alpinus (Alpine Shrew)  ✗ ✗ ✗ ✗ 

Sorex antinorii (Valais Shrew)  ✓ 40 0 113 

Sorex araneus (Eurasian Shrew)  ✓ 266 97 56 

Sorex arunchi (Udine Shrew)  ✓     

Sorex caecutiens (Laxmann's Shrew)  ✓ 2 1 115 

Sorex coronatus (Crowned Shrew)  ✓ 0 0 17 

Sorex granarius (Lagranja Shrew)  ✓ 0 0 7 

Sorex isodon (Even-toothed Shrew)  ✓ 1 0 9 

Sorex minutissimus (Eurasian Least Shrew)  ✓ 225 152 298 

Sorex minutus (Eurasian Pygmy Shrew)  ✓ 158 0 344 

Sorex samniticus (Appenine Shrew)  ✗ ✗ ✗ ✗ 

Spalax graecus (Balkan Blind Mole Rat)  ✗ ✗ ✗ ✗ 

Spalax leucodon (Lesser Mole Rat)  ✗ ✗ ✗ ✗ 

Spermophilus citellus (European Ground 
Squirrel)  

✓ 8 0 134 

Spermophilus suslicus (Speckled Ground 
Squirrel)  

✓ 108 12 3 

Stenella coeruleoalba (Striped Dolphin)  ✗ ✗ ✗ ✗ 

Stenella frontalis (Atlantic Spotted Dolphin)  ✗ ✗ ✗ ✗ 

Steno bredanensis (Rough-toothed Dolphin)  ✗ ✗ ✗ ✗ 

Suncus etruscus (White-toothed Pygmy 
Shrew)  

✗ ✗ ✗ ✗ 

Sus scrofa (Wild Boar)  ✓ 5138 5601 1993 

Tadarida teniotis (European Free-tailed Bat)  ✗ ✗ ✗ ✗ 

Talpa caeca (Mediterranean Mole)  ✗ ✗ ✗ ✗ 

Talpa europaea (European Mole)  ✓ 0 2 367 

Talpa levantis (Levantine Mole)  ✓ 0 0 18 

Talpa occidentalis (Iberian Mole)  ✓ 2 0 31 

Talpa romana (Roman Mole)  ✓ 0 0 120 

Talpa stankovici (Stankovic's Mole)  ✓ 0 0 19 

Tursiops truncatus (Common Bottlenose 
Dolphin)  

✗ ✗ ✗ ✗ 

Ursus arctos (Brown Bear)  ✓ 792 415 396 

Ursus maritimus (Polar Bear)  ✓ 509 143 398 

Vespertilio murinus (Particoloured Bat)  ✓ 0 53 29 

Vormela peregusna (Marbled Polecat)  ✓ 0 21 20 
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Vulpes lagopus (Arctic Fox)  ✓ 80 100 57 

Vulpes vulpes (Red Fox)  ✓ 137 708 328 

Ziphius cavirostris (Cuvier's Beaked Whale)  ✗ ✗ ✗ ✗ 

 

9.2 Appendix 2 

 

 

Figure A2.1 Private allelic richness examined in relation to latitude. The private allelic richness was not found to be 

correlated with the latitudinal distribution (slope of the linear regression P>0.05). 

 

 

y = -0,0004x + 2,7719 
R² = 7E-05 

1,5

1,7

1,9

2,1

2,3

2,5

2,7

2,9

3,1

3,3

35 40 45 50 55 60 65

A
lle

lic
 r

ic
h

n
e

ss
 

Latitude 



242 
 

 

Figure A2.2 MtDNA haplotype diversity indices of all 29 mammal species examined in relation to area. Species 

mtDNA diversity indices were not found to consistently correlate with area. 
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9.3 Appendix 3 

Table A3.1 Results of the Wilcoxon Signed Rank Test (see, for example, Hollander and Wolfe (1973) to compare haplotype diversity values between species and regions performed between 

pairs of species. The results show that certain species can only be considered significantly different (p<0.05, indicating in yellow). 

Alces alces Arvicola amphibiusBison bonasusBos primigeniusCanis lupus Capreolus capreolusCastor fiber Cervus elaphusCricetus cricetusErinaceus europaeusErinaceus concolorGulo gulo Lepus europaeusLepus timidusLemmus lemmusLynx lynx Martes martesMicrotus arvalisMustela ermineaMustela nivalisMyodes glareolusRangifer tarandusSciurus vulgarisSorex minutusSus scrofa Ursus arctos Vulpes lagopusVulpes vulpesHomo sapiens

Alces alces NA 0,37109337 0,37109337 0,422678074 0,789268026 0,422678074 0,422678074 0,789268026 0,37109337 0,422678074 0,37109337 0,37109337 0,789268026 0,181449208 0,37109337 1 0,181449208 1 0,181449208 0,37109337 0,181449208 1 0,37109337 0,181449208 0,37109337 1 1 0,181449208 0,181449208

Arvicola amphibius 0,37109337 NA 1 0,181449208 0,37109337 0,181449208 0,37109337 0,181449208 1 0,181449208 1 0,37109337 0,422678074 0,181449208 0,181449208 0,37109337 0,181449208 NA 0,181449208 1 0,37109337 1 0,37109337 0,422678074 1 0,37109337 1 0,181449208 0,37109337

Bison bonasus 0,37109337 1 NA 0,37109337 0,37109337 0,37109337 0,37109337 0,37109337 0,37109337 0,37109337 0,37109337 1 0,37109337 0,37109337 1 1 0,37109337 1 0,37109337 0,37109337 0,37109337 NA 1 0,37109337 0,37109337 1 NA 0,37109337 0,37109337

Bos primigenius 0,422678074 0,181449208 0,37109337 NA 0,401678166 0,014266187 0,855132141 0,233952833 1 0,352542137 0,789268026 1 0,08005792 0,036031686 0,422678074 0,787406491 0,293621544 1 0,059058229 0,100348246 0,181449208 1 0,036031686 0,059058229 0,142213242 1 1 0,014266187 0,059058229

Canis lupus 0,789268026 0,37109337 0,37109337 0,401678166 NA 0,034610558 0,361310429 0,672603817 0,422678074 0,036031686 1 0,37109337 0,150785565 0,059058229 0,37109337 1 0,034610558 0,789268026 0,100348246 0,100348246 0,422678074 1 0,059058229 0,100348246 1 0,446872821 1 0,022494271 0,059058229

Capreolus capreolus0,422678074 0,181449208 0,37109337 0,014266187 0,034610558 NA 0,100348246 0,020862582 0,422678074 0,150785565 0,181449208 0,37109337 0,624064532 0,208412804 0,789268026 0,059058229 0,183430619 0,181449208 0,589638552 0,855132141 1 1 0,294507394 0,059058229 0,036031686 0,108319381 1 0,944182513 0,059058229

Castor fiber 0,422678074 0,37109337 0,37109337 0,855132141 0,361310429 0,100348246 NA 1 1 0,201242621 1 0,37109337 1 0,100348246 0,37109337 0,37109337 0,100348246 0,37109337 0,100348246 0,181449208 0,789268026 1 0,181449208 0,100348246 1 0,583882421 1 0,100348246 0,100348246

Cervus elaphus 0,789268026 0,181449208 0,37109337 0,233952833 0,672603817 0,020862582 1 NA 1 0,446872821 0,181449208 0,37109337 0,183430619 0,036031686 0,422678074 0,787406491 0,293621544 1 0,059058229 0,100348246 0,181449208 1 0,059172068 0,059058229 0,401678166 0,672603817 1 0,014266187 0,059058229

Cricetus cricetus 0,37109337 1 0,37109337 1 0,422678074 0,422678074 1 1 NA 0,422678074 0,37109337 1 0,789268026 0,181449208 1 1 0,789268026 0,37109337 0,181449208 0,181449208 1 NA 0,37109337 0,422678074 1 0,789268026 NA 0,181449208 0,181449208

Erinaceus europaeus0,422678074 0,181449208 0,37109337 0,352542137 0,036031686 0,150785565 0,201242621 0,446872821 0,422678074 NA 0,37109337 0,37109337 0,672603817 0,142213242 0,181449208 1 0,446872821 0,181449208 0,418492233 0,583882421 1 1 0,036031686 0,059058229 0,059058229 0,142213242 1 0,150785565 0,100348246

Erinaceus concolor 0,37109337 1 0,37109337 0,789268026 1 0,181449208 1 0,181449208 0,37109337 0,37109337 NA 1 0,422678074 0,37109337 1 1 0,181449208 1 0,37109337 0,37109337 0,37109337 NA 1 0,37109337 0,181449208 1 NA 0,181449208 0,181449208

Gulo gulo 0,37109337 0,37109337 1 1 0,37109337 0,37109337 0,37109337 0,37109337 1 0,37109337 1 NA 0,37109337 0,37109337 0,37109337 0,37109337 0,37109337 NA 0,37109337 1 0,37109337 1 1 0,37109337 1 1 1 0,37109337 0,37109337

Lepus europaeus 0,789268026 0,422678074 0,37109337 0,08005792 0,150785565 0,624064532 1 0,183430619 0,789268026 0,672603817 0,422678074 0,37109337 NA 0,401678166 0,789268026 0,105645429 0,624064532 0,789268026 0,589638552 0,855132141 0,422678074 1 0,401678166 0,589638552 0,036031686 0,55411313 1 0,726286149 0,105645429

Lepus timidus 0,181449208 0,181449208 0,37109337 0,036031686 0,059058229 0,208412804 0,100348246 0,036031686 0,181449208 0,142213242 0,37109337 0,37109337 0,401678166 NA 0,181449208 0,181449208 0,036031686 0,37109337 0,059058229 0,855132141 0,181449208 1 1 0,418492233 0,100348246 0,059058229 1 0,294507394 1

Lemmus lemmus 0,37109337 0,181449208 1 0,422678074 0,37109337 0,789268026 0,37109337 0,422678074 1 0,181449208 1 0,37109337 0,789268026 0,181449208 NA 0,37109337 0,181449208 NA 0,789268026 1 1 1 1 0,422678074 1 0,37109337 1 0,181449208 1

Lynx lynx 1 0,37109337 1 0,787406491 1 0,059058229 0,37109337 0,787406491 1 1 1 0,37109337 0,105645429 0,181449208 0,37109337 NA 0,280712665 1 0,37109337 0,37109337 1 1 0,181449208 0,37109337 0,361310429 0,787406491 1 0,105645429 0,181449208

Martes martes 0,181449208 0,181449208 0,37109337 0,293621544 0,034610558 0,183430619 0,100348246 0,293621544 0,789268026 0,446872821 0,181449208 0,37109337 0,624064532 0,036031686 0,181449208 0,280712665 NA 1 0,280712665 0,100348246 1 1 0,093492484 0,059058229 0,036031686 0,108319381 1 0,058707408 0,059058229

Microtus arvalis 1 NA 1 1 0,789268026 0,181449208 0,37109337 1 0,37109337 0,181449208 1 NA 0,789268026 0,37109337 NA 1 1 NA 1 0,37109337 1 NA 0,181449208 0,37109337 0,181449208 1 NA 0,181449208 0,37109337

Mustela erminea 0,181449208 0,181449208 0,37109337 0,059058229 0,100348246 0,589638552 0,100348246 0,059058229 0,181449208 0,418492233 0,37109337 0,37109337 0,589638552 0,059058229 0,789268026 0,37109337 0,280712665 1 NA 0,422678074 0,789268026 1 0,100348246 0,105645429 0,181449208 0,583882421 1 0,418492233 0,201242621

Mustela nivalis 0,37109337 1 0,37109337 0,100348246 0,100348246 0,855132141 0,181449208 0,100348246 0,181449208 0,583882421 0,37109337 1 0,855132141 0,855132141 1 0,37109337 0,100348246 0,37109337 0,422678074 NA 0,37109337 NA 0,789268026 0,789268026 0,100348246 0,100348246 NA 0,855132141 1

Myodes glareolus 0,181449208 0,37109337 0,37109337 0,181449208 0,422678074 1 0,789268026 0,181449208 1 1 0,37109337 0,37109337 0,422678074 0,181449208 1 1 1 1 0,789268026 0,37109337 NA 1 1 0,181449208 0,37109337 0,181449208 1 0,181449208 0,422678074

Rangifer tarandus 1 1 NA 1 1 1 1 1 NA 1 NA 1 1 1 1 1 1 NA 1 NA 1 NA 1 1 NA 1 1 1 1

Sciurus vulgaris 0,37109337 0,37109337 1 0,036031686 0,059058229 0,294507394 0,181449208 0,059172068 0,37109337 0,036031686 1 1 0,401678166 1 1 0,181449208 0,093492484 0,181449208 0,100348246 0,789268026 1 1 NA 0,100348246 0,100348246 0,059058229 1 0,674986714 0,181449208

Sorex minutus 0,181449208 0,422678074 0,37109337 0,059058229 0,100348246 0,059058229 0,100348246 0,059058229 0,422678074 0,059058229 0,37109337 0,37109337 0,589638552 0,418492233 0,422678074 0,37109337 0,059058229 0,37109337 0,105645429 0,789268026 0,181449208 1 0,100348246 NA 0,181449208 0,100348246 1 0,280712665 0,855132141

Sus scrofa 0,37109337 1 0,37109337 0,142213242 1 0,036031686 1 0,401678166 1 0,059058229 0,181449208 1 0,036031686 0,100348246 1 0,361310429 0,036031686 0,181449208 0,181449208 0,100348246 0,37109337 NA 0,100348246 0,181449208 NA 0,142213242 NA 0,036031686 0,100348246

Ursus arctos 1 0,37109337 1 1 0,446872821 0,108319381 0,583882421 0,672603817 0,789268026 0,142213242 1 1 0,55411313 0,059058229 0,37109337 0,787406491 0,108319381 1 0,583882421 0,100348246 0,181449208 1 0,059058229 0,100348246 0,142213242 NA 1 0,022494271 0,059058229

Vulpes lagopus 1 1 NA 1 1 1 1 1 NA 1 NA 1 1 1 1 1 1 NA 1 NA 1 1 1 1 NA 1 NA 1 1

Vulpes vulpes 0,181449208 0,181449208 0,37109337 0,014266187 0,022494271 0,944182513 0,100348246 0,014266187 0,181449208 0,150785565 0,181449208 0,37109337 0,726286149 0,294507394 0,181449208 0,105645429 0,058707408 0,181449208 0,418492233 0,855132141 0,181449208 1 0,674986714 0,280712665 0,036031686 0,022494271 1 NA 0,418492233

Homo sapiens 0,181449208 0,37109337 0,37109337 0,059058229 0,059058229 0,059058229 0,100348246 0,059058229 0,181449208 0,100348246 0,181449208 0,37109337 0,105645429 1 1 0,181449208 0,059058229 0,37109337 0,201242621 1 0,422678074 1 0,181449208 0,855132141 0,100348246 0,059058229 1 0,418492233 NA
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9.4 Appendix 4 

Figure A4.1 Bayesian skyline plots showing effective female population size (Nef x T), in thousands, with time for each D-loop 

haplogroup detected in Mus musculus domesticus on Cyprus. The solid line is the median and the dashed lines are 95% highest 

posterior density (HDP) limits. 
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Figure A4.2 Mismatch distributions for each D-loop haplogroup represented by the Cypriot Mus musculus domesticus samples. 

Observed values and the expected distribution according to the constant population size model. Harpending's raggedness 

index (r), as calculated in DnaSP v. 5.10.1 (Librado & Rozas, 2009), is also indicated. 
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Figure A4.3 Discriminant Analysis of Principal Components (DAPC) based on microsatellite data comparing populations of Mus 

musculus domesticus typed by us and in published studies (see text). The first two principal components of DAPC are 

represented using population locations as prior clusters. Populations are labelled inside their 95% inertia ellipses and dots 

represent individuals from (a) France (multiple locations), Germany (multiple locations), Greece, Iran, Cameroun and Cyprus; 

(b) All the locations from Cyprus. The DAPC eigenvalues correspond to a ratio of between to within group variance calculated 

for each function. 
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Table A4.1 Detailed publication references, number of individuals and geographical locations included in the alignment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

References Number of individuals Locations 

(Prager et al., 1993)  232 British Isles (5), Croatia (2), Denmark 
(114), Egypt (5), Germany (60), 
Greece (1), Israel (2), Italy (2), 

Morocco (3), Peru (1), Portugal (1), 
Scandinavia (30), Spain (2), 
Switzerland (2) and USA (2) 

(Nachman, Boyer, Searle, & Aquadro,  1994)  51 British Isles (12), Greece (7), Italy 
(25), Spain (6) and Switzerland (1) 

(Prager, Tichy, & Sage, 1996)  9 Austria (1), Croatia (1), Georgia (2) 
and Norway (5) 

(Gündüz, Rambau, Tez, & Searle, 2005)  100 Turkey (100) 
(Ihle, Ravaoarimanana, Thomas, & Tautz, 

2006) 
124 Cameroon (27), France (56) and 

Germany (41) 
(Geraldes et al., 2008)  11 Israel (11) 

(Rajabi-Maham, Orth,  & Bonhomme, 2008)  133 Bulgaria (24), Iran (78) and Italy (31) 
(Förster et al., 2009; Gündüz  et al., 2001)   200 Madeira (124), Portugal (76) 

(Searle et al., 2009)  77 British isles (77) 
(Bonhomme et al., 2011)  383 Algeria (12), Canary Islands (140), 

Cyprus (38), Egypt (2?), France (9), 
Georgia (4), Germany (7), Israel (11), 
Kenya (11), Lebanon (58), Morocco 
(29?), Qatar (2), Senegal (12), Spain 

(3), Syria (12) and Tunisia (33) 

            Total 1319  
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Table A4.2 Collection sites for Mus musculus domesticus on Cyprus and allocation of individuals to the eleven mitochondrial haplogroups as defined in Bonhomme et al. (2011). 

                                                                  Total                                               Number of individuals in each haplogroup 

Population  Latitude                  Longitude N 1 2 3 4 5 6 7 8 9 10 11 

Athienou N 35°03.897'  E 33°31.208' 12  7 2 2    1     

Dali N 35°03.344' E 33°25.527' 4  1 3          

Deryneia N 35°03.344' E 33°57.505' 7  4        3   

Frenaros N 35°03.117' E 33°54.367' 6 2 3  1         

Gerasa N 34°46.418' E 32°59.355' 1  1           

Geroskipou N 34°45.444' E 32°28.401' 39       39      

Kathikas N 34°55.028' E 32°26.125' 1      1       

Kiti N 34°50.221' E 33°33.112' 2  1 1          

Kofinou N 34°49.185' E 33°24.094' 1  1           

Kokkinotrimithia N 35°09.919' E 33°11.304' 15 1 6 3       5   

Larnaka N 34°58.055' E 33°36.211' 10 2 5 2    1      

Lefkara N 34°50.302' E 33°20.185' 13 1   12         

Limassol N 34°39.765' E 32°56.141' 20 8 2 1   9       

Lythrodontas N 34°58.188' E 33°18.237' 2  1         1 
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Mazotos N 34°48.040' E 33°30.454' 8  5  3         

Melini N 34°51.893' E 33°09.786' 2  1 1          

Meneou N 34°51.031' E 33°35.484' 1           1 

Mitsero N 35°03.200' E 33°06.611' 5  1 1 1       2 

Monagroulli N 34°45.780' E 33°13.190' 5 2 1    2       

Ormideia N 35°00.208 E 33°48.452' 2    2         

Pera N 35°02.248' E 33°16.407' 6   6          

Peristerona N 35°07.353' E 33°03.688' 8  7    1       

Pyla N 35°00.292' E 33°41.679' 2  1  1         

Skarinou N 34°49.061' E 33°20.025' 1  1           

Sotira N 35°00.636' E 33°56.388' 3  1 2          

Tseri N 35°02.790' E 33°19.271' 5    5         

Xylophagou N 34°58.413' E 33°49.796' 8  3  5         
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Table A4.3 Neutrality test statistics, Tajima’s D and Fu’s FS, with significance determined from 10,000 coalescent simulations. Dates estimated in years, for time to most recent common 

ancestor (tMRCA), with median and 95% highest posterior density (HPD) range; and onset of demographic expansion (tau) from mismatch distributions according to different estimations of 

number of generations per year. All statistics relate to house mouse mitochondrial haplogroups, treated as populations. 

 

 

           

Molecular date estimates (in years) 

 

        BEAST 

analysis 

  Mismatch distribution 

analysis 

Haplogroup N Tajima’s D p-value Fu’s FS p-value Tau 

value 

95% HPD 

lower  

tMRCA 

median  

95% HPD 

upper  

1 Generation 

per year 

2 Generations 

per year 

3 Generations 

per year 

H1 29 -1.028 0.168 -1.563 0.080 0.433 60 907 2959 1210 605 403 

H2 58 -0.682 0.280 -3.708 0.035 1.001 983 3699 7974 2796 1398 932 

H3 24 -0.890 0.179 -0.919 0.259 0.319 9 640 2472 892 446 297 

H4 40 -0.416 0.320 -0.366 0.381 0.367 3 694 2609 1026 513 342 

H6 20 -0.812 0.190 -0.775 0.257 0.368 11 791 2811 1029 514 343 

H7 40 -1.880 <0.0001 0.241 0.530 0 454 3226 7760 NA NA NA 

H10 9 0.794 0.790 0.909 0.745 1.333 223 2434 6273 3727 1863 1242 

H11 5 -0.816 0.280 0.090 0.198 0.400 0 634 2925 1118 559 372 
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Table A4.4 Locations, coordinates and number of Mus musculus domesticus individuals analysed for microsatellite data and the mitochondrial D-loop, with measures of variation. N = number 

of individuals, Hexp = expected heterozygosity, Hobs = observed heterozygosity 

 

     Microsatellites              Mitochondrial DNA  

Location Latitude Longitude N 

(individuals) 

Hexp Hobs Mean number of alleles 

per locus 

N  

(individuals) 

N 

(haplotypes) 

Athienou N 35°03.897' E 33°31.208' 12 0.74 0.77 6.78 12 5 

Dali N 35°03.344' E 33°25.527' 4 0.60 0.65 3.83 4 3 

Deryneia N 35°03.344' E 33°57.505' 7 0.67 0.78 4.67 7 3 

Frenaros N 35°03.117' E 33°54.367' 6 0.71 0.79 5.28 6 4 

Gerasa N 34°46.418' E 32°59.355' 1 0.19 0.39 1.39 1 1 

Geroskipou N 34°45.444' E 32°28.401' 41 0.66 0.71 4.61 39 2 

Kathimerini N 34°55.028' E 32°26.125' 1 0.36 0.72 1.72 1 1 

Kiti N 34°50.221' E 33°33.112' 2 0.54 0.75 2.78 2 2 

Kofinou N 34°49.185' E 33°24.094' 1 0.28 0.56 1.56 1 1 

Kokkinotrimithia N 35°09.919' E 33°11.304' 15 0.78 0.74 7.83 15 9 

Larnaka N 34°58.055' E 33°36.211' 9 0.75 0.76 6.44 10 6 

Lefkara N 34°50.302' E 33°20.185' 13 0.57 0.71 4.00 13 3 
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Limassol N 34°39.765' E 32°56.141' 18 0.78 0.77 8.00 20 5 

Lythrodontas N 34°58.188' E 33°18.237' 2 0.52 0.67 2.78 2 2 

Mazotos N 34°48.040' E 33°30.454' 10 0.73 0.72 5.72 8 2 

Melini N 34°51.893' E 33°09.786' 2 0.57 0.67 2.89 2 2 

Meneou N 34°51.031' E 33°35.484' 2 0.63 0.81 3.17 1 1 

Mitsero N 35°03.200' E 33°06.611' 5 0.70 0.81 5.00 5 4 

Monagroulli N 34°45.780' E 33°13.190' 5 0.68 0.73 4.22 5 3 

Ormideia N 35°00.208 E 33°48.452' 2 0.65 0.83 3.28 2 1 

Pera N 35°02.248' E 33°16.407' 6 0.5 0.68 2.89 6 1 

Peristerona N 35°07.353' E 33°03.688' 8 0.69 0.74 5.61 8 3 

Pyla N 35°00.292' E 33°41.679' 2 0.44 0.75 2.11 2 2 

Skarinou N 34°49.061' E 33°20.025' 1 0.25 0.50 1.50 1 1 

Sotira N 35°00.636' E 33°56.388' 3 0.62 0.62 3.39 3 3 

Tseri N 35°02.790' E 33°19.271' 5 0.43 0.62 2.44 5 1 

Xylophagou N 34°58.413' E 33°49.796' 8 0.71 0.73 5.61 8 3 
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Table A4.5 Prior parameter distributions from coalescent genealogy sampling with Beast 2.3.2 applied to all available 

Mus musculus domesticus D-loop sequences from Cyprus (published and new data here). Substitution and clock model 

parameters were linked, tree parameters unlinked. 

   
 

Parameter Prior distribution Range Initial value 

Kappa1 Lognormal (1.0/1.25) 0 – inf 1 

Kappa2 Lognormal (1.0/1.25) 0 – inf 1 

Gamma shape Lognormal (1.0/1.25) 0 – inf 1 

Frequencies Uniform 1.0e-9 - 1.0 0.25 

Strict clock rate ---- ---- 4e-4 

Tree (each haplogroup) Coalescent BSP 
 

Random tree 

Population size (each haplogroup) Jeffrey's (1/x) 1.0e-9 - 1.0e12 100,000 

Pop. groups (Cyprus only Haplogroup 1) ---- ---- 5 

Pop. groups (Cyprus only Haplogroup 2) ---- ---- 5 

Pop. groups (Cyprus only Haplogroup 3) ---- ---- 5 

Pop. groups (Cyprus only Haplogroup 4) ---- ---- 5 

Pop. groups (Cyprus only Haplogroup 6) ---- ---- 4 

Pop. groups (Cyprus only Haplogroup 7) ---- ---- 5 

Pop. groups (Cyprus only Haplogroup 
10) 

---- ---- 3 

Pop. groups (Cyprus only Haplogroup 
11) 

---- ---- 3 
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9.5 Appendix 5 

Table A5.1. Table of archaeological Mus/Apodemus specimens studied, with associated period and context information. 

Specimen Location Period Context information 

OG01 Potterne, Wiltshire Iron Age N35 134 122 Cutting 12 

OG02 Potterne, Wiltshire Iron Age W35 221 5 159 Cutting 12 

OG03 Potterne, Wiltshire Iron Age W35 202 565 Cutting 12 

OG04 Potterne, Wiltshire Iron Age W35 202 564 Cutting 12 

OG05 Potterne, Wiltshire Iron Age W35 221 5160 Cutting 12 

OG06 Potterne, Wiltshire Iron Age W35 3716 5.676R Cutting 12 

OG07 Potterne, Wiltshire Iron Age W35 221 5160 Cutting 12 

OG08 Battlesbury Bowl, 

Wiltshire 

Iron Age W4896 4817 <2143> 

OG09 Battlesbury Bowl, 
Wiltshire 

Iron Age W4896 4817 <2143> 

OG10 Battlesbury Bowl, 
Wiltshire 

Iron Age W4896 4174 <2010> 

OG11 Battlesbury Bowl, 
Wiltshire 

Iron Age W4896 5137 

OG12 Battlesbury Bowl, 
Wiltshire 

Iron Age W4896 5056 

OG13 North West Farm, 

Dorset 

Bronze Age NWF17 340 "2" bag 79 

OG14 North West Farm, 

Dorset  

Bronze Age NWF17 340 "1" bag 78 

OG15 Druce Farm, Dorset Roman Period DF13 (2) (197) HXAM 

OG16 Druce Farm, Dorset Roman Period DF13 (2) (197) HXAM 
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Text A5.1: 

Battlesbury Bowl 

The site of Battlesbury Bowl, lies along a narrow chalk ridge immediately to the north of 

Battlesbury Camp, an Iron Age hillfort near Warminster, Wiltshire. Excavations by Wessex 

Archaeology in 1999 revealed features of Late Bronze Age-Middle Iron Age dates (base on ceramic 

style), including ditches, post holes, and almost 200 pits (Ellis & Powell 2008). The faunal 

assemblage is one of the largest collections of Early-Middle Iron Age faunal material from Britain. 

Hambleton & Maltby (2008) report the presence of both house mouse and wood mouse in the 

hand-recovered assemblage and from environmental sieved samples. The mouse mandibles 

included in this study come from the fills of pits (OG08, OG09, OG11, OG12) and a posthole (OG10) 

all of which were assigned Early-Middle Iron Age dates. Radiocarbon dating of a pig humerus, from 

the same context as mouse mandible OG11, provided a date of calBC (2ơ) 420-100 (Ellis & Powell 

2008). 

Potterne 

The later prehistoric site of Potterne, near Devizes, Wiltshire, was excavated by Wessex 

Archaeology between 1982-4 and comprises an extensive accumulation of dark anthropogenic soil 

deposits up to 2m deep in places, covering an area of 3.5 ha. The ‘midden-like’ deposits are rich in 

artefacts and ecofacts and result from the accumulation of manure and refuse from stock keeping 

and the repeated dumping and trampling of waste from human occupation and activities on and 

around the site over a 500 year period. Pottery typology and radiocarbon dating of charcoal from 

different levels within the deposit and other cut features suggest a date of 1200-600BC, 

encompassing the Late Bronze Age into the very Early Iron Age period (Lawson 2000). In addition 

to a large hand-recovered animal bone assemblage dominated by domestic mammals, small 

mammal remains were also recovered mainly from sieved environmental samples. Locker (2000) 

reports that house mouse remains were identified from every level although it was not possible to 

obtain radiocarbon dates for the mice to confirm their Late Bronze Age date. However, a 

radiocarbon date of 1460-990 (2ơ) cal BC (Lawson 2000:) was obtained from charcoal that came 

from the same post hole one of the mouse specimens included in this study (OG06). The 

assumption is that all the mice remains are contemporary with the associated archaeological 

materials of Late Bronze Age (c.1200-600BC) date from the same layers and contexts, although 
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Locker does caution that some small mammal remains may have filtered down the deposit from 

higher levels. 

North West Farm 

The site at North West Farm, just outside the village of Winterborne Kingston to the north of Bere 

Regis forms part of a programme of archaeological fieldwork, The Durotriges Project, designed to 

investigate native and Romano-British settlement across Dorset, focussing specifically in the 

archaeologically distinct Iron Age Durotriges tribe.  

The land, which is sub-divided in to large land parcels bounded primarily by mature hedge and 

fence and post field divisions, is primarily under arable cultivation with parcels set-aside for 

pasture and habitat creation. The underlying geology comprises Upper Chalk. 

The site lies in an area of known archaeological monuments, sites and findspots recorded on the 

Dorset Historic Environment Record, although none of these occur within the site or within its 

immediate vicinity. The invasion of southern Britain by Rome is usually treated as if it was a single, 

dramatic event, with the Roman legions fighting a lengthy and bitter war of conquest. The 

Durotriges Project is reconsidering the Iron Age to Roman transition through a detailed 

programme of field survey, geophysical investigation and targeted excavation. Previous seasons of 

investigation focused upon an enclosed later Iron Age ‘banjo’ settlement containing round houses, 

storage pits (containing enigmatic human and animal hybrid ritual offerings) , a later Iron Age 

Durotrigan cemetery and the remains of a 4th century Roman villa. In 2014 a small yet significant 

late Roman cemetery, with five inhumations recorded in close vicinity to the Roman villa, was 

recorded while in 2015 an extensive undefended Late Iron Age settlement of the scale of a small 

town, consisting of an estimated 100-150 roundhouses was identified.  

In 2017 a series of later Bronze cylindrical cuts or pits were excavated across three trenches some 

of which incorporated domestic ‘midden’ waste material, whilst a few also contained copper and 

iron working debris. The term ‘storage pit’ has generally applied to these features although no 

definitive evidence as to the nature of material being stored has yet been recovered. If intended 

as functional elements within a settlement these features may have been designed to function as 

a cold store for dairy produce or as a silo for grain with each pit acting as a silo designed to contain 

the surplus perhaps on an annual basis.  
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The mouse remains were recovered from a chalk deposit (340) within one of three large storage 

pits in Trench H of the 2017 fieldwork programme. The almost circular pit measured 3.46m at its 

widest and was 2.13m deep. The sides of the pit were generally steep becoming vertical and then 

undercut below a depth of 0.75m. The base was flat, sloping gradually from NE to SW. A total of 

37 fills were recorded filling the pit, and within the excavated half of the pit the base was entirely 

lined by a thin, 10-15mm deep black deposit with a very high concentration of charred organic 

remains (341). This material was sealed by a series of chalk rubble deposits (340, 385, 383 and 

381) interpreted as being derived from erosion and collapse of the pit sides after it went out of 

use. These were interspersed with deposits of soil (384, 382 and 375) which have been interpreted 

as deliberate deposits within the same timeframe and may have been organic based. 

A subsequent sequence of fills were piled against the north east side of the pit characterised as 

thin banded deposits of chalk and soil, potentially representing alternating episodes of organic 

waste, possibly cess disposal and the capping/covering of this material with clean chalk, followed 

by substantial deposits of chalk rich soil representing a deliberate deposition of material and 

gradual accumulations of back fill material. 

Druce Farm Roman Villa 

Druce Farm villa, Puddletown, Dorset, comprises a series of stone and flint constructed and timber 

post built buildings arranged on a courtyard plan surrounded by a series of ditched enclosures 

with features associated with industrial use (e.g. kilns/ovens and pits) (Ladle in prep). The site 

displays a number of phases of use between the 1st and 4th century AD. The samples were 

obtained from an extensive deposit of remains of microfauna which lay on the intact mosaic floor 

of a room in the main range of buildings, sealed by a deposit of degraded plaster and roof tiles. 

Analysis of the site and the deposit are ongoing (Ladle in prep; Randall in prep), but this appears to 

represent a deposit of owl pellets, most likely derived from barn owls, which accumulated when 

the building was going out of use, and which was sealed by the collapsed roof. The mosaic floor 

has been typologically dated to the 4th century AD. Two water vole mandibles from the deposit 

were subjected to radiocarbon dating to elucidate the date of the building collapse, and returned 

dates of 1719 +30 BP (249-391 cal AD 95% probablilty) and 1768+30 BP (208-346 cal AD 95% 

probablilty).  
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Initial analysis indicates that the deposit is dominated by field vole (Microtus agrestis), which 

makes up almost half of the material identified to species. Shrews contributed a further third of 

the material, with a similar amount identified as Apodemus. A small selection of elements could be 

attributed to bank and water voles, song birds and amphibians, mainly frogs. The identification of 

the single example of potential Mus musculus domesticus as Apodemus is therefore not surprising 

given the nature of the deposit. It does however confirm the general picture of abandonment of 

the site at the point that the deposit was forming, with the owls predating the microfauna of the 

surrounding landscape, rather than taking advantage of house mice present within adjacent 

buildings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


