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ABSTRACT 

A causal link between climatic changes and hominin evolution is an established one, yet the 
exact dynamics of this relationship is debated. Key climatic changes, such as the 
intensification of the Northern Hemisphere Glaciation, the onset of the Walker Circulation 
and the Mid-Pleistocene Revolution, have been linked to palaeoenvironmental changes that 
catalysed hominin evolutionary events in Plio-Pleistocene Africa. Climate-induced faunal 
turnover has not been found in East Africa, largely due to local buffers of large-scale 
climatic and environmental changes. Away from the dynamic landscapes of East Africa, 
southern Africa is thought to be more vulnerable to the effects of climate change. 

Southern Africa, as a major locale of hominin evolution and associated 
behavioural advancements, (with the appearance and disappearance of Australopithecus 
africanus, Australopithecus sediba, Paranthropus robustus and the emergence the Homo 
genus) requires greater understanding of the underlying catalysts for paleoenvironmental 
change and resultant pressures subjected upon the fauna (including hominins). A holistic 
palaeoenvironmental and palaeovegetational context for these hominin advancements 
remains elusive. This research aims to contribute to that holistic palaeoenvironmental signal 
for southern Africa between 2.0 to 0.8 Ma.  

As herbivorous, mixed-feeding antelopes, the abundant springbok (genus 
Antidorcas) adapt their diet according to the prevailing vegetation conditions. Via a multi-
method analysis of Antidorcas diets, this enables inferences to be made regarding the 
prevailing palaeovegetational trends and habitat availability in the landscape, through this 
crucial temporal period.  

In this thesis, the taxonomic identity of the Antidorcas genus represented at the 
Cradle of Humankind is initially established. Antidorcas dental specimens from multiple 
hominin sites in South Africa from the temporal range, 2.8-0.8 Ma, are subject to a multi-
method analysis. Dental metrics allow inferences into Antidorcas phylogenetic adaptations 
and establishes the baseline of dietary capabilities. Dental use-wear analysis provides the 
lifetime (mesowear) and end of life (microwear) dietary signals, supplemented by the early 
years signal from stable isotope analysis (carbon and oxygen). Further palaeoenvironmental 
conditions, such as precipitation levels (oxygen isotopes) and exogenous grit/dust particles 
(use-wear) is inferred from use-wear and isotope analysis.  

This research concludes that there is limited evidence for the presence of A. australis as a 
distinct species in the fossiliferous deposits of the Cradle of Humankind. All Antidorcas 
species show mixed-feeding dietary preferences through time, with the ancestral, 
Antidorcas recki, tending more towards browsing and Antidorcas bondi showing some 
tendencies towards grazing.  

Antidorcas display no obvious turnover point within the lineage but rather gradual 
adaptation and speciation. An underlying palaeoenvironmental trend of increased aridity 
and open grasslands is apparent with a marked shift around c. 1.7 Ma. Around 1.7 Ma 
Antidorcas dietary changes display high inter- and intraspecific variation, implying 
increased palaeoenvironmental instability and habitat heterogeneity.  These behavioural 
adaptations (via dietary inferences) coincide with climatic changes around 1.7 Ma, such as 
the onset of the Walker Circulation. This in turn may be linked to the appearance of the 
southern African Homo genus and associated hominin Acheulean toolkit.  
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 GLOSSARY OF TERMS  

AAC: Alcelaphine+Antelopini criterion (Vrba 1974, 1975, 1980) 
Breccia: Calcified or decalcified cave infill.  
Chronospecies: a species derived from sequential evolution (i.e. no sister taxa) 
Evolutionary events: Speciation: (first appearance of a new species), extinction (last 
appearance of a species) and migration (immigration/emigration of a species from/to an 
area).  
ENSO: El Niño Southern Oscillation 
El Niño: Temporary climatic event, characterised by unusually warm temperatures and 
reversal of wind patterns and unseasonal rains. The warm phase*. 
FAD: First Appearance Datum (oldest known appearance of the species) 
Inter-specific: Between species 
Intra-specific: Within species 
iNHG: intensification of the Northern Hemisphere Glaciation 
Karst: Topography formed from the dissolution of soluble limestone rocks. 
LAD: Last appearance Datum (last known appearance of the species prior to extinction).  
La Niña:As El Niño but less severe and occurring less frequently, the cold phase*. 
Lineage: a continuous species (e.g. fossil Antidorcas marsupialis to extant Antidorcas 
marsupialis). Here, a lineage is taken to show the ancestral, fossil and modern forms, i.e. 
Antidorcas recki (ancestral), fossil Antidorcas marsupialis and extant Antidorcas 
marsupialis. 
LGM: Last Glacial Maximum 
Member: Cave deposit stratigraphic unit 
MPR / MPT: Mid-Pleistocene Revolution / Mid-Pleistocene Transition 
oWC: onset of the Walker Circulation 
Palaeoecology: Diet and ecology of fossil species 
Palaeohabitat: Inferred habitats available within the landscape or an area inhabited by 
fossil species 
Palaeoclimate: Past climate 
Palaeoenvironment: Past environmental conditions 
Palaeovegetation: Past vegetation (Flora, all plants, including tress and grasses) 
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Speleothem: Cave precipitate 
Uniformitarianism: Using extant / modern species to inform on the genera/ species in the 
past, assuming they yield the same characteristics. 
Vegetation 
See Appendix A2. 

C3: Plants using the Calvin cycle / C3 photosynthetic pathway to fix carbon. Typically trees 
and shrubs found in wetter, more humid areas. 
C4: Plants using the C4 photosynthetic pathway, prevailing in cooler, more arid 
environments, typically grasses.  
CAM: Crassulacean acid metabolism. Typically grow in arid conditions, using both the C3 
and C4 photosynthetic pathway.  
Dietary Ecologies 
Browser: Herbivore consuming predominantly C3 dicotcotyledonous plants, including 
trees, seeds, fruits and shrubs.  
Dicot: Flowering plants (angiosperms) with two cotyledons (embryonic leaves) 
Grazer: Herbivore consuming predominantly C4 monocotyledonous plants, such as 
grasses, 
Monocot: Flowering plants (angiosperms) with one cotyledon (embryonic leaf) 
Dates 
ka: Thousand years ago  

Ma: Million years ago 
Pliocene: c. 5.33-2.58 Ma  
Pleistocene: c. 2.58- 0.01 Ma 
Plio-Pleistocene: Geological time period at the boundary of the Pliocene and Pleistocene 
epochs (Stratford 2018). It is the sixth epoch of the Cenozoic era and the first epoch of the 
Quaternary period. The end of the Pleistocene corresponds to the end of the Palaeolithic. 

Date South African term Epoch 

3.4Ma-300,000ya Early Stone Age (ESA) Pliocene/Pleistocene 

280,000-50,000ya Middle Stone Age (MSA) Pleistocene 

50-39,000ya Late Stone Age (LSA) Holocene 
Taxonomy 
As there is considerable debate regarding the taxonomic identification of certain 
specimens, a debate which is beyond this research, I summarise the species referred 
to here.  
-Homo erectus: as referred to throughout this thesis refers to Homo erectus senso 
lato. 
-Homo erectus (senso lato): African and Eurasian ‘Homo erectus’  
-Homo erectus (senso stricto): Asian ‘Homo erectus’ 
-Homo ergaster: African ‘Homo erectus’ 
-Paranthropus robustus is alternatively referred to in published literature as 
Australopithecus robustus or the southern African robust Australopithecines 
Method specific glossary 
DMTA: Dental Microwear Texture Analysis 
Asfc: Area-scale fractal complexity 
EpLsar: Exact proportion length scale anisotropy of relief 
HAsfc: Heterogeneity of area-scale fractal complexity, measured at varying scales 
(such as those used here, of 3 squares by 3 squares (3x3) is 9 cell, 9 by 9 (9x9) is 
81 cell 
Tfv: Textural fill volume  
Smc: Scale of maximum complexity 
Abrasion: Food (or particle) to tooth contact 
Attrition: Tooth to tooth contact 
Cusp shape: Shape of the molar cusps 
Relief: Relative occlusal relief of the molar cusps 
Mesowear Score: Numerical scale combining cusp shape and relief attributes 
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New Mesowear Score, New relief, New cusp shape: Mesowear scales and 
parameters trialled in this research (see chapter 11) 
Buco-lingual (BLW): the width of the molar, taken across the occlusal surface 
(outside of mouth to the inside of the mouth) 
Mesio-distal (MDL): the length of the molar, taken across the occlusal surface (if 
of M2, from the first molar edge to third molar edge)  
Crown height (CH): The enamel covered part of the tooth, visible above the 
gumline 
Occlusal height (OH): Measured height of the molar cusps 
Total height (TH): Total height of the molar from root to cusp 
Anatomical terminology 
M

1: Upper permanent (adult dentition) first molar (i.e. adult maxillary dentition). 
M1: Lower permanent (adult dentition) first molar (i.e. adult mandibular dentition). 
M2: Permanent second molar  
UM2: Upper permanent second molar 
RUM2: Right upper permanent second molar 
LLM2: Left lower permanent second molar 
Pm: pre-molar 
Buccal: Outer edge of the tooth surface next to the cheek 
Distal: Surface of the tooth towards the back of the mouth 
Lingual: Inner edge of the tooth surface, next to the longue  
Mesial: Surface of the tooth towards the front of the mouth 
Occlusal: Biting surface of the tooth, that comes into contact with the opposing 
teeth when chewing / grinding 
Site and assemblage acronyms 
CoH: Cradle of Humankind 
SK: Sterkfontein  
SKX: Swartkrans 
K: Kromdraai  
GD: Gondolin 
CC: Cooper’s Cave 
PL: Plovers Lake 
COH: Cave of Hearths 
GL: Gladysvale 
DMQ: Drimolen Main Quarry 
M: Member 
M5W: Member 5 West 
PM6: Post-Member 6 
 
 
 

CHAPTER 1 

 INTRODUCTION 
 

The Plio-Pleistocene in southern Africa was a centre of hominin evolution. This epoch 

heralded the emergence and disappearance of several hominin species in East and South 

Africa. For South Africa, this epoch witnessed the appearance and disappearance of 

Australopithecus africanus, Australopithecus sediba, Paranthropus robustus and eventually 

the emergence of the Homo genus. Causally related to the appearance of the Homo genus, 

was the advent of new stone tool technologies and other associated behavioural 

advancements, such as the controlled use of fire.  
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These great changes and advancements in hominin adaptations seen during the Plio-

Pleistocene have been investigated via a plethora of methods that have been implemented 

and continually refined. These include but are not limited to: hominin-cercopithecoid 

comparisons (e.g. Jolly 1970; Elton 2000; Beaudet et al. 2016; Gilbert et al. 2016); analysis 

of tool use (e.g. McHenry 2018); and palaeoenvironmental influences via bovids (e.g. Vrba 

1985, 1988; Spencer 1997), carnivores (e.g. Kuhn et al. 2017), micromammals (e.g. Avery 

2001); and climate (e.g. de Menocal 1995, 2004; Lupien et al. 2017; Quinn 2017). 

Pliocene and Pleistocene climate transitions are theorised to have led to cooling, drying 

trends that resulted in the spread of grasslands and the shrinking of forests (e.g deMenocal 

1995, Spencer 1995, Lee-Thorp et al. 2007).  This, in turn, is hypothesised to have led to 

major changes in the structure of the inhabiting faunal community (e.g. the Pulse Turnover 

Hypothesis proposed by Vrba 1985). Ultimately, these variations have been implicated in 

the major changes (tool use, brain size increase) and associated behavioural advancements 

seen at the emergence of the Homo genus (e.g. Dart 1925; Hopley et al. 2007). 

The National Research Council (US) (2010) identified that how climate has shaped 

hominin evolution is a key knowledge gap, encouraging research for understanding the 

potential impact of climate change contemporaneously and in the future. This research 

addresses that gap in southern Africa. In order to adequately address this gap, there are 

numerous factors to consider.  

The palaeovegetation of a landscape is shaped by a combination of factors, including 

climatic and environmental conditions, hydrological factors, geology, topography, altitude 

and soil matrix. Climatic conditions are believed to be the prevailing influential factor 

dictating the palaeovegetation cover of the area (e.g. Cerling et al. 1997). Any 

palaeovegetational changes then influence faunal adaptations in southern Africa. The extent 

of this link is currently disputed. From the savannah hypothesis (Dart 1925), to Vrba’s 

highly influential Pulse Turnover Hypothesis (1985) to Potts’ Variability Selection 

Hypothesis (1998) and the relatively recent Pulsed Climate Variability Hypothesis (Maslin 

et al. 2015), the link between climate change and faunal evolution is debated. What were 

the palaeoenvironmental and vegetational conditions and changes therein that occurred in 

southern Africa in the Plio-Pleistocene between 2.8 and 0.8 Ma? And how did this impact 

on the faunal community inhabiting the landscape? Establishing this palaeovegetational 

backdrop will allow us to infer the environmental changes and impact of climatic stimuli 

the resident faunal community (including hominins) were subject to.  

Limited botanical or palynological remains are preserved in South Africa (but see Bamford 

1999, 2015; Bamford et al. 2010), particularly in the cave deposits where the majority of 

the Plio-Pleistocene hominins are found. Bamford (2015)’s macrobotanical evidence from 

Wonderwerk Cave (Northern Cape Province, South Africa) from 2 Ma to 14 ka provides 

some of the only direct floral evidence of vegetation present throughout this crucial time 

period in hominin and faunal evolution. However, evidence of this kind remains scarce 

within the geographical range of the Cradle of Humankind, (Gauteng Province, South 
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Africa) where the majority of hominin remains are found to date. There are multiple 

vegetation biomes present across South Africa today and it should not be assumed that the 

Plio-Pleistocene vegetation in the Gauteng Province would match that identified from the 

Northern Cape.  

In light of the limitations from the direct botanical evidence, utilising the bovids that 

consume the vegetation is a viable alternative palaeovegetation indicator. Using 

palaeovegetational indicators to understand faunal (including hominin) turnover is an 

established connection. Bobe and Behrensmeyer (2004) for instance, highlight the long-

held link between palaeovegetation, palaeoclimate and hominin evolution, discussing the 

grassland expansion, driven by global climatic changes, leading to divergence in the 

hominin lineage. There is likely to be a lag effect from climatic changes to climatically-

induced vegetation changes and, subsequently, for vegetation-change induced faunal 

changes. Therefore, any changes seen within a relatively short timeframe after known 

climatic events can be considered to have been potentially catalysed by the preceding 

climatic change. Fossil bovids specifically, are widely recognised as valuable ecological 

indicators due to their representation of the entire vegetation spectrum from specialised, 

through mixed-feeding taxa, to specialised browsers. Their use in palaeoenvironmental 

reconstructions associated with the hominins of Africa is proven (e.g. Gentry 1970; Vrba 

1985; Spencer 1997; Reed 1998; Hernández Fernández 2001; Luyt 2001; de Ruiter et al. 

2008a; Steininger 2011; Brophy et al. 2014).  

To establish the palaeovegetation of the area, the dietary signals from the springbok, genus 

Antidorcas are used here. Antidorcas was an abundant herbivorous antelope genus present 

throughout this time period, and a reliable reflector of the available vegetation. As much of 

the bovid fossil record (and, therefore, palaeovegetational indicators) is represented by 

isolated dentition (e.g. Brain 1981; Brophy et al. 2014), multiple diagnostic methods are 

implemented to more precisely determine dietary ecologies of fossil specimens.  
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Figure 1.1. Map of South African key hominin-bearing fossil site locations indicated (left), 
with a focus on the Cradle of Humankind (right). Map created by L. Crété.  
With the limitations in mind, the knowledge gap of the palaeoenvironmental backdrop to 

hominin evolution can be addressed in southern Africa, with the following research 

questions. 

1.1 RESEARCH QUESTIONS   

1) What was the prevailing landscape vegetation cover and aridity like in southern 
Africa between 2.8-0.8 Ma? 

2) What was the extent and tempo of vegetation and faunal change? Do these changes 
relate to known global climatic trends and events (if so, how), and how do these 
changes relate to prevailing evolutionary hypotheses (e.g. Vrba’s (1985) turnover 
pulse hypothesis)? 
-Are there any major evolutionary events or dietary shifts seen in the Antidorcas 
lineage? 

3) What was the palaeoecology of the Antidorcas species? 
4) What can Antidorcas information gained here add to the hominin story? 
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1.1.1 Aims and objectives 
Table 1.1 Aims and objectives of thesis. 

AIMS OBJECTIVES 

 Reconstruct the palaeovegetation in 
southern Africa between 2.8-0.8 Ma 

Interpret the diet of Antidorcas species 
through time via use-wear analysis and 
stable isotope analysis.  
 
Interpret the hydrological changes through 
time via stable oxygen isotope analysis. 

 Evaluate the Antidorcas genus and lineage, 
taxonomic identifications and 
palaeoecology 

Dental morphological measurements, is 
there a directional change through time? 
Behavioural change is inferred from dietary 
shifts. 
Establish the likely dietary preference for 
each Antidorcas species via use-wear and 
stable isotope analysis.  

 Evaluate the catalysts and drivers of 
hominin and faunal evolution in southern 
Africa 

Compare Antidorcas data to known climatic 
events 
Compare Antidorcas data to evolutionary 
hypotheses (e.g. Vrba’s TPH) 
Compare Antidorcas data to known hominin 
trends, particularly across the Oldowan-
Acheulean transition in southern and East 
Africa. 

 Evaluate the methods used and the value of 
a multi-method analysis for detailed 
palaeoenvironmental reconstructions. 

Consider what each method informs on for 
the palaeoenvironment. 
Combine the results from each method. 
Does this give a more holistic picture, can 
we learn more than from the individual 
methods? 

1.2 RATIONALE 

The diet of fossil springbok (Antidorcas) will be used to infer the palaeovegetation of 

southern Africa between c. 2.8-0.8 Ma. Antidorcas dental morphology is measured to 

assess consistent morphological changes potentially indicating Antidorcas lineage turnover. 

Antidorcas dietary evidence available from dental specimens (via use-wear, and isotope 

analysis) is used to infer likely prevailing vegetation cover, highlighting when and if any 

changes within this vegetation cover take place during this temporal period in South Africa.  

Then the inferred palaeovegetation coupled with any lineage changes within the Antidorcas 

genus will be compared to known climatic data; obtained from marine (e.g. deMenocal 

1995, 2004, 2011) and terrestrial (e.g. from speleothems Hopley et al. 2007, 2009) sources.  

Oxygen isotopes provide an insight into aridity levels. Dietary morphology shows the long-

term, ancestral dietary capabilities, with reference to ancestral dietary adaptation-inducing 

stressors. Individual animal lifetime dietary signals (short-term, vegetation presence 

indicator) are indicated by dental use-wear and dental enamel carbon isotope values.  

The palaeoenvironmental picture obtained from established research and information 

gained here, from Antidorcas, will subsequently be used to infer the palaeoenvironmental 

conditions experienced by southern African hominins. Particular attention will be paid to 

dates of believed hominin adaptation and advancement.  
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This research aims to provide an environmental and vegetation context within which to 

postulate how climate and habitat changes may have affected hominin evolution in South 

Africa. The multi-proxy approach produces robust measures of habitat conditions and 

allows inferences to be drawn about the forces that shape evolutionary processes in humans 

and other mammals.  The relatively recent discoveries in South Africa of Australopithecus 

sediba (Berger et al. 2010) and Homo naledi (Berger et al. 2015) further underline the need 

for more research on such fossil collections: our understanding of the hominin evolutionary 

trajectory is itself ever-evolving. This palaeoenvironmental research aims to increase both 

scientific and public understanding of human evolution and survival in southern Africa 

between 2.8-0.8 Ma. How hominins adapted to varying climatic stimuli will be of 

considerable use to the scientific community studying human evolution from any time 

period anywhere in the world.  

Antidorcas dentition as a bioproxy for vegetation change 
Antidorcas dietary change (as evidenced by use-wear analysis and stable carbon isotope 

values from dental enamel), is indicative of vegetation change. Using a relatively 

continuous chronology of Antidorcas dentition, a chronological sequence (spanning 2 

million years) of prevailing vegetation from the Cradle of Humankind can be drawn. 

Supplementary species (Damaliscus pygargus and Tragelaphus strepsiceros) are used to 

establish the grazing-browsing parameters for each time-period represented by assemblages 

within this temporal range.  

Rationale for using springbok 
To investigate the nature and extent of 2 million years of palaeovegetation and 

palaeohabitat changes across the landscape; an herbivorous, mixed-feeding genus (fossil 

springbok) is used. Because the springbok has evolved successfully throughout the 

temporal period under study, it can be presumed that their ability to vary their diet in 

accordance with the prevailing vegetation enabled their success. Analysing the dental 

enamel traits (enamel thickness, mesowear, microwear and stable isotope analysis) enables 

a reconstruction of the likely diet, in order to extrapolate differential proportions of 

vegetation around the Cradle of Humankind during the 2.8-0.5 Ma period (The temporal 

range is partially extended for Antidorcas palaeoecology investigations beyond 0.8 Ma due 

to the prevalence of Antidorcas at slightly younger, related sites, such as the Cave of 

Hearths).    

Antidorcas yields a more abundant fossil record than hominins from the same deposits, 

from which to interpret palaeoenvironmental changes. A more abundant taxa enables larger 

sample sizes to be studied, and the implementation of destructive techniques, such as stable 

isotope analysis (C3/C4 vegetation dominance, habitat types supported and hydrological 

information) in the landscape, shared by hominins and their faunal community, of which 

Antidorcas was a part.  

Hominins are believed to have been omnivorous (e.g. Lee-Thorp et al. 1994; Sponheimer et 

al. 2005), clouding the palaeovegetational signal. The data gained from this research will be 

corroborated with published hominin data to further understand how hominins fit into this 



24 

 

palaeoenvironmental picture. As mixed-feeding herbivores, Antidorcas can give a more 

faithful reflection of the palaeovegetation conditions than would be possible via hominin 

fossils. The dietary niche of an animal species is influenced by (and therefore reflective of) 

the local quality, quantity and accessibility of available resources (Lehmann et al. 2015). 

Dietary niches of populations are expected to expand and contract in response to the 

availability of the animals preferred food items (Codron et al. 2007; Owen-Smith et al. 

2013). Obligate grazing / browsing species may be intermittently present / absent from the 

fossil record, likely as a reflection of the presence / absence of their preferred vegetation 

type. As a mixed-feeding species, capable of adapting its diet to the prevailing vegetation, 

Antidorcas is continuously present throughout. This mixed-feeding species is therefore 

likely to be a faithful bioproxy, reflecting the changeable availability in a wide array of 

vegetation types supported by the given environment of the time.  

Antidorcas is also found in great abundance in the other centre of hominin evolution, in 

East African fossil faunal assemblages and hominin contexts. The ancestral A. recki is 

found in East African contexts such as Lake Turkana (Kenya) and the Omo valley 

(Ethiopia) between ~3.36-1.6 Ma (Harris 1991; Brugal et al. 2003), as well as Olduvai 

Gorge (Tanzania) up to ~0.8 Ma (Bed IV) (Gentry and Gentry 1978). Thus, should 

Antidorcas prove to be a faithful bioproxy, there is potential to use their remains in other 

areas / periods significant to our understanding of human evolution.  

Rationale for using fossils from southern Africa 
Australopithecus, Paranthropus and Homo are present in both East and South Africa 

between 3-0.5 Ma. Yet their species differ (Australopithecus afarensis, Paranthropus 

boisei and aethipicus in East Africa). Towards the latter end of this temporal range, Homo 

is found in sites outside Africa, such as Dmanisi (Georgia) (Gabunia et al. 2000) and 

Atapuerca (Spain).  

It is believed that hominin sites in East Africa were buffered from major climatic and 

environmental changes by regional factors such as dynamic landscapes with palaeolakes 

and ongoing tectonic activity (i.e. the Tectonic Landscape Model or ‘TLM’ (Bailey et al. 

2011; Reynolds et al. 2011)). Contrastingly, this influence of such large-scale buffers on 

landscapes is believed to be considerably lower in southern Africa. Thereby, making 

southern Africa more vulnerable to global and regional climatic and environmental factors, 

and potentially ensuring them as the main drivers of hominin evolution.  

Thus, in southern Africa, climatic conditions are believed to be the primary influencing 

factor dictating the palaeovegetation present (e.g. Reynolds 2007; Vrba 1985; deMenocal 

1995). Southern Africa should show the impact of these global climatic trends to a far 

greater extent than in East Africa, where signals may be further mediated by multifaceted 

influences of dynamic, tectonically active landscape processes that modify regional 

environments (Reynolds et al., 2011). Work in East Africa has not shown to be in line with 

Vrba’s Turnover pulse hypothesis, as no major ‘pulses’ (faunal evolution co-occurring in 

multiple species within a short time frame) were detected (Bibi and Kiessling 2015). There 

is the possibility that the pulses were an artefact of the fossil record and of taxonomic 
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uniformitarianism assumptions (e.g. Maxwell et al. 2018; Lee-Thorp et al. 2007). 

Therefore, the question of the pace and severity of evolution and its drivers remains 

pertinent.  

Assessing the role of climate as an evolutionary driver is crucial when attempting to 

understand the complexities surrounding hominin evolution. DeMenocal (1995) has shown 

the importance of understanding global climatic trends, which will be addressed in this 

research. Amongst others, DeMenocal (2004; 2015) showed causal links between climatic 

events and evolutionary events, as will be discussed in later sections. Yet, further 

conclusive research is required to truly understand the nature of climate’s role as an 

evolutionary driver.  Published climate data will be used in corroboration with the 

palaeovegetation data gained from this research to better understand the role of climate as 

an evolutionary driver.  

1.3 HYPOTHESES  

Evolutionary hypotheses are explained in detail in the following chapter. A selection of the 

ones deemed most relevant to this research are explored here, hypothesising what may be 

expected of the Antidorcas data obtained in this research to satisfy each hypothesis.  

Expanded explanation of hypothesis Figure 1.2: The arrow along the bottom represents 

time from 3 Ma to 0.5 Ma, with major climatic events added (these are explained in full in 

chapter 2), with coloured vertical bars (iNHG = intensification of the Northern Hemisphere 

Glaciation; oWC=onset of the Walker Circulation; MPR=Mid-Pleistocene Revolution). The 

size of the springbok represents their relative dominance (blue-grey horizontal bar),. A recki 

is the more abundant springbok at 3 Ma, A. bondi (green) is the most abundant c. 1.7 Ma 

and A. marsupialis (extant springbok) slowly becomes the most dominant springbok form. 

Above this, the springbok genus is depicted with A. recki represented by a red line, A. 

marsupialis by blue and A. bondi by green. Potential habitat evolution is shown above 

(green-yellow horizontal bar), with a shift from C3 to C4 vegetation from 3.0 Ma to 0.5 Ma. 

Two possible scenarios are suggested, the climate-driven transition from woodland to 

grassland occurring rapidly and suddenly caused by climatic events (top vegetation 

scenario). Alternatively, climate is buffered by local and regional factors (bottom 

vegetation scenario), allowing habitat heterogeneity to persist through global climatic 

changes, with vegetation and subsequent Antidorcas evolution correspondingly more 

gradual. Southern African hominins are shown at the top, roughly aligned to their temporal 

range. 
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Table 1.2: Some of the key evolutionary theories (or hypotheses) and their proposed vegetation changes, in response to global climatic events and how each would manifest in the 
Antidorcas evidence achievable from this research. The 3 main global climatic events are indicated, with their impact on the vegetation according to each hypothesis (in the central 
column). The right column indicates how each of these scenarios would be apparent from the Antidorcas data.  
Hypothesis Proposed environmental and vegetation change according to climatic stimuli Antidorcas evidence 
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The relative components may 
change but ‘micro-habitats’ are 
continuously available (in varying 
sizes). 
This would be evidenced by no 
directional change apparent in 
dietary signals (use-wear and carbon 
isotopes) through time (presumably 
up to a threshold aridity level-
visible through oxygen isotopes).   
Relatively high but constant intra- 
and inter-specific dietary variability 
would prevail.  
Habitats and species they support 
would be less affected by global 
climatic influences. 
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Figure 1.2 Hypothesised Antidorcas evolution and palaeoenvironmental changes as a response to climatic influences. The upper, green horizontal band shows dominant vegetation 
and the lower, grey, horizontal band depicts Antidorcas evolution. The size of the springbok represents relative abundance.  See expanded explanation above. 
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1.4 RESEARCH METHODS STATEMENT 

To address the research questions outlined above in section 1.1, the following 

methodological approaches will be taken. Each method is implemented on Antidorcas 

dental specimens from the same Member (site stratigraphic unit) provenance. Members are 

organised into relative chronological order to establish change through time (as detailed in 

‘Materials: sites’ chapter).  

� Dental morphological measurements are taken to establish the phylogenetic 

adaptive responses within the Antidorcas lineage and to assist in specifying, as far 

as possible, the taxonomic identity of each specimen. The measurements can also 

provide a starting point for dietary indicators, as dental morphology highlights the 

inherited dietary capabilities of an animal.  

� Use-wear analysis of Antidorcas molars is implemented to establish the 

generalized lifetime diet of the Antidorcas individuals (mesowear) and a short-

term snap-shot of the last few weeks of the Antidorcas individuals’ life 

(microwear).  

� Stable isotope analysis (carbon and oxygen) of selected Antidorcas molars allows 

an insight into the diet of young Antidorcas (during enamel formation and 

mineralisation), and potentially sheds light on the seasonality of their feeding 

preferences and preferential palaeohabitats. Oxygen isotope δ18O values also give 

an indication of aridity levels and hydrological factors.  

� [Phytolith analysis (in an attempt to gain direct evidence of vegetation present 

during the lifetime of that Antidorcas individual) from the dental calculus of 

Antidorcas molars forms the basis of ongoing work but falls outside the scope of 

the current thesis].   

For each method, a selection of modern Antidorcas marsupialis dental specimens (see 

chapter 4) are subject to the same analysis as the fossil specimens, to predict the likely 

range of intraspecific variation within an Antidorcas species. A small subset of 

supplementary fossil species (Damaliscus pygargus and Tragelaphus strepsiceros) are also 

subject to the same analysis to establish the expected grazing (Damaliscus) and browsing 

(Tragelaphus) parameters for each cave deposit Member.  

1.5 THESIS STRUCTURE 

Following from this introduction, background into global climatic trends, the southern 

African palaeoenvironment and associated evolutionary theories and an introduction to the 

sites from which Antidorcas fossils originate is presented (chapter 2). The ecology and 

palaeoecology of the Antidorcas taxa is then summarised (chapter 3). This is followed by a 

chapter introducing the materials and methods used throughout this research (chapter 4). 

Background results follow: a meta-analysis of their faunal assemblages (chapter 5), The 

Antidorcas species taxonomic identifications are explored and a summary of modern 

Antidorcas data is provided (chapter 6) before fossil data is analysed. This is followed by 

the main data chapters (chapters 7-11), providing an analysis of Antidorcas insights into 
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southern African palaeovegetation. Each method implemented will be addressed in 

independent chapters, followed by a chapter combining all methods (chapter 11), which are 

drawn together prior to the overall discussion and conclusions (chapter 12). 

The methods implemented with individual chapters are linear morphological measurements 

of Antidorcas dentition (dental molar volume and enamel thickness), use-wear analysis 

(mesowear and DMTA) and stable isotope analysis (carbon and oxygen). 

 

 

CHAPTER 2 

PALAEOENVIRONMENT OF 
SOUTHERN AFRICA 2.8-0.8 Ma 
and BACKGROUND TO THE 
CRADLE OF HUMANKIND SITES 
Landscapes are vulnerable to fluctuating climatic and environmental factors from varying 

scales. At the largest scale, the global climate and environmental trends (such as ice ages) 

impact upon the landscapes, dictating many conditions and consequent vegetation and 

habitats the environment is able to support. On a smaller scale, regional environments (e.g. 

southern Africa to South Africa range) can be impacted to varying degrees depending upon 

the relative geology, soil matrix, tectonics, water sources and other features of the 

landscape, these regional scale variations can buffer or exacerbate global influences. At the 

local scale, (Gauteng province to Cradle of Humankind range) again differential buffers can 

exist, supporting vegetation across the region differentially according to local 

environmental and other abiotic influences. And at the smallest scale here, ‘micro’- habitats 

(micro here refers to an area inhabitable by Antidorcas-sized animals) can further buffer or 

exaggerate the impact of the global, regional and local abiotic and biotic influences.  

The key objective for this research is to add a novel approach contributing to the 

understanding of the environmental change that occurred and the catalytic impact of such 

environmental changes on faunal (Antidorcas) evolution. To achieve this, a temporal period 

in which faunal (including hominin) variability is apparent is required, as is a geographic 

region in which climate is believed to be one of the primary influencing factors, without 

conflicting buffers to their impact (e.g. palaeolake and, tectonic activity). The temporal 

period of 2.8-0.8 Ma in southern Africa undoubtedly experienced a period of environmental 

transition, but the severity, pace and variability of these changes are yet to be fully 

understood. By considering the believed climatic changes (published sources) that 

occurred, alongside the palaeovegetation indicators obtainable via herbivore (Antidorcas) 

dietary indicators during this temporal period, this research can extrapolate information 



31 

 

pertaining to the nature of the impact of these climatic changes on faunal and hominin 

evolution.  

In this chapter, the area chosen to address this question (South Africa), is placed into 

context within Africa from the Plio-Pleistocene to Modern day. Global, regional and local 

factors are considered and the predicted evolutionary influencing climatic and 

environmental transitionary events are examined. The scale gradation of climatic and 

environmental impacts will be considered in turn. Attention will be given to the likely 

global climatic influences that catalysed faunal and hominin evolution. A brief discussion 

of the prevailing evolutionary theories is presented (and see Appendix A1) and previously 

proposed Plio-Pleistocene palaeoenvironments for southern Africa and specifically for the 

Cradle of Humankind are established.  

BACKGROUND 

Proposed evolutionary theories, such as Vrba’s (1985) turnover pulse hypothesis (TPH) 

would see Antidorcas and hominins evolving in pulses, in response to global climatic 

changes (such as 2.7 Ma: Intensification of Northern Hemisphere Glaciation (iNHG); 2.0-

1.7 Ma: Onset of the Walker Circulation (oWC); 1.0 Ma: Mid-Pleistocene Revolution 

(MPR)). Maslin et al.’s (2014) East African research was at odds with the TPH, suggesting 

that regional scale influences, such as tectonics (Reynolds et al. 2011; Bailey et al. 2011) 

created dynamic landscapes acting as buffers to these global influences, preventing major 

disruption to the floral and faunal biomes, and thus, were not the major catalyst driving 

hominin and faunal evolution as had been postulated. Such dynamic landscapes are not as 

apparent in southern Africa, which hosts the other major centre of African Plio-Pleistocene 

hominin evolution (the Cradle of Humankind). By considering the impact of global climate 

on the ‘quieter’ southern African region, the role of climate as an evolutionary driver is 

likely to be more apparent. If inferred palaoevegetation and palaeoenvironmental changes 

from Antidorcas (dietary evidence of prevailing vegetation cover and aridity levels) and/or 

known hominin adaptation (morphological or behavioural) and Antidorcas dental 

morphology (resulting from adaptive/evolutionary selection pressure) coincide with known 

global climatic change, climate can be shown to have an influential impact on faunal and 

hominin evolution.  

2.1 Modern environment of South Africa 
Today, South Africa is mostly semi-arid with three distinct rainfall zones, and 

corresponding vegetation biomes (Cowling et al. 2002) partitioning the landscape. Each of 

these biomes differentially support vegetation utilizing the three main photosynthetic 

pathways [C3, C4 and Crassulacean Acid Metabolism (CAM)] to varying frequencies. The 

distribution of these pathways is largely determined by environmental factors (Farquhar et 

al. 1989, see chapter 4).  

The winter rainfall zone of western South Africa covers roughly 200km2, in which roughly 

54% of the mean annual precipitation occurs between April and September. The summer 

rainfall zone is influenced by the warm Agulhas Current that flows along the eastern coast 
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of South Africa (Lehmann et al. 2016). Between these two major meteorological zones, 

along the South coast of Africa (southern coast of the Eastern Cape Province into the 

Western Cape Province), there is a region that receives rainfall during the summer and 

winter months (e.g. Chase and Meadows 2007). There is the possibility that fossil 

springbok may have been migrating between the western and southern regions, following 

the seasonal rainfall and resultant vegetation.  

 

Figure 2.1 Map of southern Africa showing the location of some of the key cave sites 
(Brook et al. 2015, p.671). The vegetation zones and underlying base map are from 
Rutherford (1997). The dotted lines are the boundaries between the winter and year-round 
rainfall zones (W-Y) and between the year-round and summer rainfall zones (Y-S) of Chase 
and Meadows (2007). The rainfall histograms cover the period from 1961 to 1990 and are 
from the gridded data of New et al.(1999) as made available at the World Bank’s Climate 
change Knowledge Portal at 
sdwebx.worldbank.org/climateportal/index.cfm?page=global_map, 
http://sdwebx.worldbank.org/climateportal/index.cfm?page%25E2%2580%2589=%25E2
%2580%2589global_map. 

Modern Local Environment of the Cradle of Humankind 
Contemporary natural vegetation in the Cradle of humankind is a mixture of open 

grassland, bush and woodlands (Stuart and Stuart 1997, see Appendices A2). The area is 

dominated by Rocky Highveld grassland with many natural springs 

(www.maropeng.co.za). Most rainfall is concentrated in the summer months (650-

750mm/year), with temperatures ranging from -12°C to 39°C (www.maropeng.co.za). 

Modern precipitation is dominated by austral summer rainfall (Tyson et al. 2000). Summer 

insolation, associated with eccentricity, increases the variability in rainfall (Caley et al. 

2018).   

2.2 PLIO-PLEISTOCENE PALAEOENVIRONMENT 

Maslin and Christensen (2007) suggest there are three main forcing factors significant for 

regional and global climate change. These are: local tectonics, regional orbital forcing and 

global climatic changes. A key aim here is to assess the role of climate as an evolutionary 
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driver for fauna in southern Africa, where local tectonic activity is believed to be less of an 

influential factor than in East Africa.  

East Africa yields more resolute records than currently obtained for South African hominin-

bearing locales. The East African landscape is dynamic, with tectonic plates, volcanoes, 

mountains, greater riverine systems and basins. Although not devoid of dynamic areas, 

southern Africa’s landscape is relatively ‘quiet’ and thus any species inhabiting these areas 

have fewer evolutionary stimuli. If, as hypothesised, climate is a major evolutionary driver, 

adaptive evolutionary events experienced in southern Africa are more likely to be a 

response to climate than regional influences more heavily experienced in East Africa (e.g. 

Reynolds 2007).  South Africa contains few deposits that hold a detailed proxy climate 

record, which has prevented solid links between climate and faunal evolution from being 

conclusively made. Marine proxies are often cited (e.g. deMenocal 1995, 2004, 2011) but 

may not be directly transposed to terrestrial settings. One of the few possibilities of 

obtaining a high temporal resolution terrestrial record is to use evidence contained in 

speleothems and tufas in the entrance of fossil-bearing caves (e.g. Hopley 2004; Hopley et 

al 2007b, 2009; Brook et al. 2010, 2015; Sletten et al. 2013; Lehmann et al. 2016). To date, 

there are currently no terrestrial proxies with an equivalent time span or resolution (to 

marine proxies) with which to match these records and accurately pinpoint causality.  

Figure 2.2 shows the major climatic trends over the past 5 million years (de Menocal 2004, 

2011). Climatic changes have been causally linked to increasing aridity and expanding 

grasslands (Bobe and Eck 2001, Bobe and Behrensmeyer 2002); to evolutionary events 

(e.g. Brain 1981, de Menocal 1995) and more specifically, these trends have been linked to 

faunal turnover (Vrba 1985) and hominin evolutionary events (e.g. Vrba 1985; deMenocal 

1995, 2011). From the marine oxygen isotope record (deMenocal 1995, 2004, 2011), major 

climatic ‘pulses’ occur at ~2.8, 2.4, 2.0, 1.7Ma.  

Thus FADs (first appearance datums) and LADS (last appearance datums) in Antidorcas 

species (and other bovid species within the faunal community of the area) may be expected 

to occur in tandem (during or shortly after, allowing for a lag effect) with these climatic 

pulses (e.g. Vrba 1985) or be impacted behaviourally (temporary migrations, increased 

intra-specific variation and dietary variability/change), according to environmental forcing 

hypotheses (Vrba 1985; Potts 1996, 1998; Maslin and Trauth 2009).  

There are numerous ways to investigate palaeoenvironments through a range of proxies 

(e.g. stable isotope analysis of rock hyrax faecal pellets (Carr et al. 2016), analysis of 

ostrich egg shell (Ecker et al. 2015) and palynology (Meadows 2015)), some of which are 

more informative and robust than others. As this is such a vast topic, I will focus on the 

research directly relevant to the research questions addressed here.  
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Figure 2.2: Diagrammatic representation of the prevailing concept of climate change relating to human evolution and continental landscape vegetation change, inferred from plant 
wax biomarkers, soil carbonates and fossil bovid diets (Figure adapted from De Menocal 2004, 2011).  
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The Pliocene intensification of the Northern Hemisphere Glaciation (iNHG) and African 

aridification at ~2.8-2.4 Ma has been aligned with bovid and hominin radiation and with the 

eventual emergence of both Homo and Paranthropus (Vrba 1988; Vrba 1995; Vrba 1996; 

DeMenocal 2011). The Pleistocene saw the onset of the Milankovitch (glacial-interglacial) 

cycles (deMenocal 1995). These ~100,000year climatic oscillations have been causally 

linked to moderate levels of faunal evolution (Faith and Behrensmeyer 2013). The resultant 

onset of the Walker Circulation around 1.7 Ma has been associated with the emergence of 

Homo in southern Africa and the appearance of the associated Acheulean toolkit (Vrba 

1996; deMenocal 1995, 2011; Hopley et al. 2007).  

Furthermore, the aridification and intensified upwelling of the Benguela currents through 

the Plio-Pleistocene (Lee-Thorp and Beaumont 1995) has been causally associated with the 

distribution of rainfall zones in southern Africa (Chase and Meadows 2007) and the onset 

and speciation of the endemic Cape flora (Dupont et al. 2011). Such palaeoenvironmental 

influences should be visible via herbivore dietary indicators.  

2.3 GLOBAL CLIMATE 

‘Known’ global climate is taken from published sources, largely from marine proxies (e.g. 

deMenocal 1995, 2004). Glacial stages can be visible via increased seasonality and 

increased precipitations (deMenocal 2004; Mosbrugger et al. 2005). Such colder, drier 

climatic conditions caused definitive herbivore community structural changes in West 

Europe, with high turnover peaks during the Middle Pleistocene (e.g. deMenocal 2004; 

Mosbrugger et al. 2005). Glacial-interglacial cycles of different dominant periodicity (41 

Kyr at ca. 2.6 Ma, then 100 Kyr at ca. 1 Ma) have been seen to coincide with seasonal 

isotope signals (e.g. via European bison sinusoidal variations of seasonal origin over 2.5 

years by Bernard et al. 2009).  

Proposed major climatic changes: 
2.7 Ma: Intensification of Northern Hemisphere Glaciation (iNHG) 

2.0-1.7 Ma: Onset of the Walker Circulation (oWC) 

1.0 Ma: Mid-Pleistocene Revolution (MPR) 

2.3.1 Intensification of the Northern Hemisphere Glaciation (iNHG) 
The iNHG is considered to have occurred in the Pliocene (c.5.33-2.6 Ma), between c. 3.6-

2.4 Ma (Mudelsee and Raymo 2005), likely c. 2.75 Ma (Haug et al. 2005), as part of a long-

term cooling trend (Jakob et al. 2017). The related fluctuations between El-Niño and La-

Niña-like climatic states (see glossary of terms) on glacial-interglacial timescales across the 

intensification of the Northern Hemisphere glaciation, is debated (e.g. Philander and 

Fedorov 2003; Federov et al. 2006; Bolton et al. 2010; Jakob et al. 2017). The Pleistocene 

epoch (c. 2.58 Ma) is typified by glacial-interglacial cycles, with the end of the Pleistocene 

typically seen as the end of the LGM c. 11.7ka (CLIMAP Project Members 1976; Hughes 

et al. 2013). 

During the iNHG, MIS (Marine Isotope Stage) 100 warrants considerable attention, as this 

is suggested to be the earliest glacial during which the Laurentide Ice Sheet is fully 

developed (Denison et al. 2005) and advanced into the mid-latitiudes c. 2.5 Ma (Balco and 

Rovey 2010) with implications for global temperatures and environmental conditions. 
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Marine records show that there was a shift in climate variability towards more arid 

conditions after 2.8 Ma, associated with the onset of Northern Hemisphere glacial cycles 

(deMenocal 1995). Vrba (1985) first causally linked global climate change with African 

mammalian evolution, citing radiations in bovid species occurring c. 2.5 Ma, which 

appeared coincident with the iNHG. It is this link that led to the development of the 

turnover pulse hypothesis (TPH). However, as advancements in palaeoclimatology, 

mammalian fossil records and ocean drilling programmes occurred, equipped with greater 

knowledge, the timing and underlying mechanisms of this link and the TPH have been 

questioned (Maslin et al. 2014). The iNHG began considerably before 2.5 Ma and was a 

long-term process (Tiedemann et al. 1989) and connections between high latitudes and low 

to middle latitudes are not as straightforward as originally thought (Maslin et al. 2014). At 

least for East African sites, it would appear that the iNHG had less of an impact on faunal 

and hominin evolution (e.g., Behrensmeyer et al., 1997; Faith and Behrensmeyer, 2013) 

than the subsequent development of Walker Circulation at c. 1.8 Ma (Ravelo et al., 2004). 

2.3.2 Onset of the Walker Circulation (oWC) 
The development of the Walker Circulation is theorized to have produced the first actual El 

Niño events in Africa. ENSO (El Niño Southern Oscillations) produce extreme climates, 

typically lasting roughly a year and therefore being influential on the survival of individual 

animals (i.e. the scale at which selective pressure and evolution works) (Maslin and 

Christensen 2007). At c. 2 Ma (Ravelo et al. 2004) / 1.9-1.7 Ma (Maslin and Christensen), 

the onset of the intensified Walker Circulation (deMenocal 2011; Maslin and Christensen 

2007) occurred. This saw a re-organisation of tropical climate (Hopley et al. 2007) and 

marks the start of the 100-year obliquity cycles. The intensified Walker Circulation has 

been causally linked to mammalian evolution (deMenocal 1995; Vrba 1985). Many studies 

indicate a shift towards more open landscapes, dominated by C4 grasses in both south and 

East Africa (e.g Lee-Thorp et al. 2007, Hopley 2004, Reed 1997). In southern Africa at 

least, this phenomenon may be linked to the onset of seasonal conditions and vegetation 

biomes similar to those seen today (e.g. Lee-Thorp et al. 2007).  

South Africa becomes much warmer during El Niños, whereas East Africa becomes much 

wetter (e.g. Wara et al. 2005; Moore et al. 2017). This is when Antidorcas might be 

expected to disperse to southern Africa, during prolonged El Niño events. The contrasting 

La Niña’s produce much colder years. It is this global climatic influence that is arguably the 

primarily global climate change that has been linked to advances in human evolution (e.g. 

Hopley et al. 2007; Maslin and Christensen 2007).  

Antidorcas might be expected to initiate seasonal mixed feeding as a response to seasonal 

fluctuations. Modern Antidorcas at least, feed according to seasonal conditions, 

predominantly browsing but shifting to graze after the rains, when fresh grass is in 

abundance, before grass begins to lignify and becomes unpalatable (Skinner & Louw 

1996).  

2.3.3 Mid-Pleistocene Revolution (MPR) 
The MPR (Berger and Jansen 1994) or MPT (Mid-Pleistocene Transition) (Raymo et al. 

1997) is a response to Northern Hemisphere ice sheet increase. From c. 1.0 Ma-0.7 Ma 



37 

 

(MIS 24/23), glacial-interglacial cycles, with a periodicity of 100-kyr, became dominant 

(Jahn et al. 2003). The glacial-interglacial cyclicity changed from the higher-frequency 

variations (41-kyr cycles) characteristic of the early Pleistocene, to the lower-frequency 

variations (100-kyr cycles) characteristic of the late Pleistocene (Jahn et al. 2003). 

Maximum cooling associated with this occurred slightly later. C. 0.8-0.6 Ma (MIS 17/16) 

(Jan et al. 2003). At this time, response to obliquity and eccentricity forcing declined, 

whilst response to precession slightly increased, which is similarly reflected in the dust 

input and continental climate in South Africa (based on Benguala Current proxy records by 

Jahn et al. 2003).  

Long term trends towards aridification are postulated to coincide with the Mid-Pleistocene 

Revolution’s ice sheet expansion and global sea surface temperature decrease (McClymont 

et al. 2013). The opposing palaeoenvironmental conditions evidenced for East Africa 

(wetter, Lake Malawi) and Southeastern Africa (more arid, Limpopo catchment) from c. 1.0 

Ma has been suggested to indicate a gradual contraction of tropical rainfall away from 

Southeast Africa, towards lower latitudes, as a response to the MPR ice sheet expansion 

(Caley et al. 2018). 

2.4 EVOLUTIONARY THEORY 

The fossil record is far from perfect with the nature of the material used by no means 

complete and what is present has been subject to taphonomic processes. Difficulties can 

arise when using the fossil record to identify species and FADS/LADS (first 

appearance/last appearance datums) and identifying the timing and nature of evolutionary 

events. Thus, mechanisms pertaining to evolutionary theory have been postulated, to 

transpose what is believed about the nature of evolutionary events to what is visible in the 

fossil record. Speciation, extinction and long-term migrations (dispersion) can be classified 

as ‘evolutionary events’.  Environmental / climate forcing hypotheses postulate that global 

climate is the key evolutionary driver and is necessary for evolutionary events to occur. 

Following on from the Turnover pulse hypothesis (Vrba 1985), the environmental forcing 

hypothesis promotes the idea that there is a direct relationship between environmental 

change and speciation. Although Maxwell et al. (2018) question the reliability of such links 

without a better understanding of the fossil record and the extent of its accuracy in 

reflecting the living communities.  

In a similar way to which researchers must acknowledge their tendency towards 

lumping/splitting for species (i.e. if a researcher is prone towards emphasizing the 

differences being sufficient to warrant branding of a new species, or seeing a range of 

variation and more conservatively placing similar enough specimens within a single 

species), the theoretical stance on evolutionary processes taken by the researcher impacts 

upon their understandings of data and conclusions drawn. Moreover, knowing where to 

eventually place this research is dependent on the theory of evolution I believe it most 

strongly fits to.   Some of the key evolutionary theories considered here are briefly 

summarised here. A more extensive overview is given in the appendices (Appendix A1; 

Table A1.1) and see ‘Introduction’ chapter hypothesis figure.  
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2.4.1 Turnover Pulse Hypothesis (TPH)  
Vrba’s (1985) Turnover pulse hypothesis can be summarised by major biotic turnover 

(speciation, extinction and dispersion) occurring in pulses, in line with global climatic 

change (Vrba 1985, 1990, 1993b; Potts and Behrensmeyer 1992). Physical (climate induced 

habitat / vegetation) change is necessary for the initiation of faunal evolution (Vrba 1993b). 

These changes, according to this hypothesis, can only occur when environmental changes 

create fragmentation of habitats leading to vicariance (Potts and Behrensmeyer 1992). 

Habitat specialists are more likely to be affected by climate and habitat change than 

generalists (Vrba 1987). In this case, Antidorcas (following previous palaeodietary 

indicators, e.g. Brink and Lee-Thorp 1992; Lee-Thorp et al. 2007) recki (browser) and 

Antidorcas bondi (grazer) might be expected to be preferentially targeted by climatic shifts 

than Antidorcas marsupialis (mixed feeder). Turnover pulses may be small, involving only 

a few species or in a restricted geographic location up to major global events (Bennett 

2004).  

Vrba’s original proposed palaeoclimatic transition, allowing for the assumption of 

ecological uniformitarianism, was one of a wooded environment around 3 Ma 

(Makapansgat Limeworks), towards a more open, grassland around 1.4 Ma (Vrba 1975, 

1982). Yet the Turnover pulse has limited support in East Africa, where mammalian 

evolution does not neatly correspond with major ecological changes (Bibi & Kiessling 

2015). However, based on recent models aimed to test this theory in vertebrates, the idea of 

evolution occurring in pulses has re-gained support (Landis and Schraiber 2017).  Landis 

and Schraiber found many vertebrate species were well fitted to Lévy models whereby long 

periods of evolutionary stasis are intermittently disrupted by pulses of rapid evolutionary 

change. Crucially though, it has been suggested that apparent ‘pulses’ in the fossil record 

reflect only the pulse of preservation (Maxwell et al. 2018) rather than being a reflection of 

the living community.  

2.4.2 Variability Selection Hypothesis (VSH) 
Developed by Potts (1996; 1998), the variability selection hypothesis (VSH) proposed that 

change was not caused by any specific environmental condition or trend but rather by 

heightened environmental instability. More intraspecific variation occurs as a result of 

environmental instability and habitat heterogeneity (Potts and Faith 2015). This encourages 

species plasticity to ensure survival in variable environments. Periods of extreme 

environmental variability, alternating between wet and dry have been documented for East 

African Plio-Pleistocene (e.g. Campisano and Feibel 2007; Hopley et al. 2007; Kingston et 

al. 2007; Lepre et al. 2007; Trauth et al. 2007), which would have a significant impact on 

the regional climate and vegetation and have been linked to hominin evolution (Potts 1996, 

1998). These alternating periods are caused by precession (Deino et al. 2006; Kingston et 

al. 2007; Maslin and Christensen 2007) creating short periods of rapid, intense forcing 

followed by relatively weak forcing.  

This theory is particularly pertinent to the variable palaeoenvironments around the East 

African Rift Valley, as a result of their landscape dynamics. For example, variability in the 

Omo Valley post-2.5 Ma was noted by Bobe et al. (2002).  However, Hopley (2004) 
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suggests that it would be difficult to prove this theory and set it apart from Natural 

Selection, as well as accusing this theory of being anthropocentric. This theory has 

subsequently been modified by Maslin and Trauth (2009) and Maslin et al. (2014), to 

include East African palaeolake activity and is referred to as the ‘Pulsed Climate Variability 

Hypothesis’. 

2.4.3 Pulsed Climate Variability Hypothesis (PCVH) 
This hypothesis suggests that hominin speciation, dispersals and encephalisation were 

driven by punctuations in the long-term drying trend in East Africa. Punctuated episodes of 

short, alternating periods of extreme aridity and humidity leading to climatic variability in 

400 or 800kyr cycles driven by the eccentricity maxima (Maslin and Trauth 2009; Maslin et 

al. 2015).  

Maslin et al. (2014, 2015)’s proposed conceptual framework was postulated to examine 

macro-scale events such as phyletic gradualism and punctuated equilibrium and 

evolutionary theories at the species level (hominin and Antidorcas evolution scale), 

including allopatric speciation, aridity hypothesis, TPH, VSH, Red Queen hypothesis and 

sympatric speciation based on sexual selection. It is proposed that each of the differing 

evolutionary mechanisms hypothesised could have been acting on hominins (and other 

species) during episodes of climatic instability, resulting in a range of different traits, 

ultimately leading to the emergence of new species (Maslin et al. 2015).  For example, 

Maslin et al. (2015) demonstrate how the framework can be used to interpret Vrba’s (1985) 

Turnover Pulse Hypothesis and how the TPH scenario would operate under proposed 

extreme climatic cycles (see Maslin et al. 2015, p.5, fig.5).  

2.4.3.1. Smooth model, threshold model, or extreme climate 
variability model   
A ‘smooth model’ with prolonged periods of wet, followed by long periods of dry 

environmental conditions, with a smooth transition between each, supports Red Queen or 

TPH as possible catalysts of evolution. Conversely, a ‘threshold model’ suggests rapid and 

extreme environmental variability, in line with Potts’ (1998) VSH. The ‘extreme climate 

variability’ model is a more extreme version of the threshold model, whereby, extreme 

climatic variability occurs during transitionary phases between periods of extreme wet and 

extreme dry environmental conditions.  

A fourth possibility posited by Maslin and Christensen (2007) is one of prolonged, extreme 

wet periods occurring, which could encourage speciation events in a high competition/ 

high-energy environment that such wet environments promote. This model lends support to 

the Red Queen hypothesis (Van Valen 1973), as one group succeeds, other co-evolving 

groups must adapt alongside the successful group, or be outcompeted. However, such 

prolonged wet environments appear to be limited, at least for East Africa, where this area of 

research has focused.  

Summary of Evolutionary Mechanisms 

Substantial progress has been made in recent years, although perhaps only insomuch as 

adding further factors to consider. For example, the inclusion of individualistic responses 

within faunal communities, which may be largely temporary but can ultimately confuse the 
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palaeoecological record (Stewart 2008, 2009; Bennett 2004). However, it is most likely that 

multiple interacting factors and processes are involved in evolutionary change at all levels. 

[See Appendices A1]. 

2.5 PALAEOVEGETATION 

Palaeovegetation inferences (Antidorcas dietary evidence of use-wear and carbon isotope 

analysis) and hydrological subtleties (evidenced via Antidorcas oxygen isotope analysis) 

enable suggestions of habitat types present within the landscape and this build a 

palaeoenvironmental picture for the region (see Appendix A2 for full vegetation and habitat 

definitions).  

There would inevitably be some degree of lag effect expected between climatic changes 

before this impact is shown through vegetation change and a further period before this 

vegetation shift is visible through dietary indicators showing Antidorcas dietary changes. 

These dietary shifts could ultimately impact on the Antidorcas’ dental morphology, again 

this would be anticipated to be shown considerably later on, after evolutionary adaptation to 

the changed vegetation. The timings and pace of change would depend on multiple 

influencing factors.  

2.6 REGIONAL PALAEO-CLIMATE AND 

ENVIRONMENT 

Whilst there will be microclimatic and smaller-scale habitat variations, there is a prevailing 

opinion that southern Africa experienced a gradually increasing aridity (e.g. Bobe and Eck 

2001) and spread of grasslands through time after 5 Ma. This has been shown through 

various methods, such as an increase in grassland-adapted taxa (e.g. Vrba 1973, 1985; 

Spencer 1997) and isotopic analysis (Hopley et al. 2007; Maslin and Christensen 2007). 

Interestingly, a second grassland expansion is also shown through isotopic analysis, at 1.75 

Ma (Lee-Thorp et al. 2000; Hopley et al. 2007). Around the time which also saw the 

emergence of the genus, Homo in southern Africa. The first appearance of Homo in 

southern Africa is thought to be Homo habilis ~1.8 Ma in Sterkfontein Member 4 (Hughes 

and Tobias 1977) although the taxonomic assignment remains to be confirmed (see Wood 

and Collard 1999; Pickering et al. 2011). 

Recently, basinal-scale habitats (Feibel 1999), local landscape factors (Reynolds et al. 

2011), mosaic habitats (Reynolds et al. 2015) or seasonality (e.g. Antón et al. 2014) have 

been considered to play a greater role than previously assumed in influencing local habitats. 

The possibility of mosaics habitats challenges the assumptions and bias of previous studies 

by considering smaller scale factors within the environment.  

However, the prevailing paradigm is that southern Africa experienced climate change that 

saw change from woodland to more open and arid lands from c.2-1.5 Ma. Despite advances 

from varying methods, a complete picture of palaeoenvironmental reconstruction for 

southern Africa remains to be achieved.  

2.6.1 East Africa 
In East Africa, extreme variability intermittently punctuating a long-term drying trend is 

inferred between 2.8 and 0.8 Ma (Maslin and Christensen 2007). These intermittent 
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variations coincide with the major global climatic transitions of the intensification of the 

Northern Hemisphere Glaciation (~2.7-2.5Ma), the intensification of the Walker 

Circulation (~1.9-1.7 Ma) and the Mid-Pleistocene Revolution (~1-0.7Ma) and this 

environmental instability has been hypothesized to catalyse hominin evolution (Potts 1996, 

Maslin & Christensen 2007).  However, variations across East Africa exist, for instance, 

palaeoclimatic records from Lake Malawi show a progressively wetter environmental trend 

over the past 1.3 Ma (Lyons et al. 2015; Johnson et al. 2016).  

Largely due to tectonic faulting, coupled with climatic and environmental interactions and 

resultant palaeolake availability, East Africa harbours extremely dynamic landscapes (e.g. 

Bailey et al. 2011; Reynolds et al. 2011). In this environment, micro-habitats can vary 

dramatically. Because of this, major global climate change can be buffered or exaggerated 

by dynamic landscapes and unique microclimates in East Africa (Feibel 1999; Bobe et al. 

2002; Bailey et al. 2011; Reynolds et al. 2011). The fluctuating presence of palaeolakes for 

instance can spark variable resource availability and the differential evolution of specialists 

and generalist depending on lake status (which is in part climatically controlled) (Feibel et 

al. 1999; Maslin et al. 2014), as water is a fundamental resource for hominins (see Cuthbert 

et al. 2017) and other fauna. Away from the extreme dynamic landscapes with local 

environmental buffers encountered in East Africa, South Africa has been seen as a sort of 

refugium (Reynolds 2007). 

2.6.2 Southern Africa 
The Cradle of Humankind lies on a fault also, yet the same degree of environmental 

instability and intermittent palaeolake resource availability (East Africa) as a major buffer 

for climatic influences is not suggested. Thus, the impact of climate may be more apparent 

for South Africa than is the case for East Africa. The Plio-Pleistocene expeirenced the onset 

of glacial-interglacial cycles, with the first major ice-age c. 2.15 Ma (Haug and Tiedermann 

1988; Rochling et al. 2014; see section 2.3.2.1). Accordingly, sub-Saharan Africa saw a 

gradual replacement of woodland habitats in favour of savanna grasslands from 3.0-2.0 Ma 

(Braga et al. 2016), evidenced by soil carbonate isotope records (Levin et al. 2004; Wynn 

2004; Segalen et al. 2007) and deep-sea sediment biomarkers (Feakins et al. 2005). 

The East African stable isotope record supports increasing proportions of C4 plants in the 

early Pleistocene. In contrast, evidence from stable isotopes, faunal abundance and 

phytoliths (Bamford et al. 2010) at Wonderwerk Cave (South Africa) show that both C3 and 

C4 grasses and prolonged wetlands remained major components of Early Pleistocene 

environments in the central interior of southern Africa (Ecker et al. 2018). Climate across 

the Oldowan-Acheulean transition is driven by global CO2 levels and regional rainfall 

seasonality (Ecker et al. 2018), producing regionally distinct vegetation ecosystems for East 

Africa, the central interior of southern Africa, the coastal regions of southern Africa and 

eastern southern Africa (Cradle of Humankind).  

Hydroclimatic records for the Limpopo catchment area, in which the Cradle of Humankind 

lies, reveals a long-term trend towards aridification between 1.0-0.6 Ma and marked 

precessional variability (Caley et al. 2018), the opposite to the trend shown in East Africa 
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(Lyons et al. 2015; Johnson et al. 2016). Caley et al. (2018) infer this to show an Equator-

wards contraction of the rain belt in response to increased high latitude ice volume.  

A more humid phase is shown c. 2.0-1.75 Ma, coinciding with the emergence of 

Paranthropus robustus and presence of Australopithecus sediba. Consistent with the trend 

towards drier, more open habitats at Swartkrans (Lee-Thorp et al. 1994, 2000; Sponheimer 

et al. 2005, 2006; Steininger 2012), the hydrological evidence supports the notion of multi-

millennial scale changes and long –term increasing aridity after 1.0 Ma, driven by the 

MPR. This would see reduced C3 vegetation, i.e. fewer closed/wooded habitats and reduced 

humidity (Caley et al. 2018).  

2.7 SITES 

The geographic area of interest for this research is southern Africa, with the research 

collection coming from South Africa (Cradle of humankind, UNESCO World Heritage 

Site, Gauteng province) [25.9254°S, 27.7674°E]. The Cradle of Humankind (CoH) is a 

series of cave systems with fossil-bearing deposits, predominantly located in the Gauteng 

province of South Africa (Figure 2.1), with some sites lying outside the geographic area but 

still referred to as the ‘Cradle of Humankind’ (such as Makapansgat, Limpopo Province 

and Cave of Hearths). Specimen lists detailing all collections used are included in the 

appendices (Appendix A10).  

These sites and their stratigraphic unit deposits (members) have been chosen due to their 

estimated age (Table 2.2) and presence of Antidorcas and hominin fossils (or evidence of 

hominin presence, such as stone/bone tools) within their assemblages. Each member is 

ordered chronologically (Table 2.2) and used as a proxy for its temporal range. The site 

members (stratigraphic units) are chronologically combined to provide a relatively 

continuous temporal range.  

This section of the chapter will briefly summarise the sites’ stratigraphy, taphonomy and 

relative chronology (see Appendix A3 for further detail on confounding issues, such as the 

complexity of cave stratigraphy, relative dating, averaging of assemblages and the nature of 

deposition, which are addressed for each site individually). The purpose of this chapter is to 

establish the background to each deposit and highlight, in each case, the factors for 

consideration when using fossils yielded from them.  

Here, when referring to the collective sites within this area of interest, they are referred to 

as the Cradle of Humankind (CoH), Figure 2.. The CoH spans wider than its strict 

geographic area to encompass the surrounding hominin bearing localities. The focal sites’ 

assemblages considered for this research are from the Sterkfontein Valley sites 

(Sterkfontein, Swartkrans and Kromdraai), alongside the younger deposit of the Cave of 

Hearths, located to the North of the Sterkfontein Valley, in the Limpopo Province of South 

Africa. The following sites within this locality were used. Their taphonomic processes, 

dates, formations and other potential confounding factors have been considered prior to 

using their assemblage material, a summary of which is included in Appendices A3, along 

with detail of previous palaeoenvironmental reconstructions.  
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Rationale for using this geographic location 
The Cradle of Humankind is one of the key centres of Plio-Pleistocene hominin evolution 

and have yielded considerable bovid fossils alongside hominin remains (e.g. Vrba 1973, 

1974; Brain 1981; Spencer 1997; Avery 2001; Luyt 2001; Steininger 2011). Cave 

deposition and fossil preservation is not entirely divorced from Plio-Pleistocene climatic 

changes. Climatic changes could be the cause of deposition and, or preservation. The cave 

sites are often associated with geological faults (Dirks and Berger 2013), whilst not on the 

scale of the active faults of East African hominin landscapes; the subtle landscape dynamics 

played a part in habitat formation, creating favourable environments with key resources (e.g 

Cutherbert et al. 2017) and fossil preservation (Dirks and Berger 2013). Moreover, CoH 

cave formations contain the sites from which Vrba initially postulated a causal link between 

faunal evolution and climate change (Vrba 1985). 
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Cradle of humankind (South Africa) 

 

Figure 2.3: A map to show the location of the Cradle of Humankind (top image: within 
Africa, left: within South Africa) and the main fossil-bearing sites on the right (created by 
L. Crété).  
South African Plio-Pleistocene sites are often subject to dating issues (see Table 2.2), with 

large date ranges and the lack of agreement between faunal/archaeological dates (e.g. 

Clarke 2012). The sites rarely yield absolute dates for their deposits. Given the 

complexities of cave formation processes, it is not surprising that different techniques 

applied to the same site member may provide conflicting dates (as has been suggested by 

Pickering and Kramers (2010) and Herries and Shaw (2011) for Sterkfontein). The 

complexity of the karst deposits lies at the heart of this debate.  These deposits result from 

various processes, each acting on different scales, from large-scale climatic cycles, down to 

the prevailing conditions at the individual site catchment area.  At the very largest scale, 

climate conditions are linked to planetary orbital variations (Milankovitch cycles) and more 

regional effects created by circulation patterns and variation in the Earth’s surface (de 

Menocal, 1995; 2004; Hopley et al., 2007).  At smaller, local scale, the floral communities 

are composed of different proportions of C3 (trees) and C4 (grass) vegetation, supporting the 
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fauna associated with these habitat types respectively (e.g. Vrba 1974, 1975; Reed 1997; 

Andrews and Bamford 2008). Taphonomic processes, (carnivory/scavenging, hydrological 

conditions and slope wash) control how faunal specimens enter the fossil record, but due to 

the longevity of deposition, each member is likely subject to multiple taphonomic 

processes, with several habitat-types possibly represented within a single deposit (Pickering 

1999, Hopley and Maslin 2010).  Hopley and Maslin (2010) suggest that southern African 

cave deposits sample more than one processional cycle (~7000 years), and are therefore 

likely to be ‘climate-averaged’, with their faunal assemblages showing a mix of species 

characteristic of both open, grassland-dominated periods of the climate cycle, as well as 

woodland-dominated extremes (O’Regan and Reynolds 2009; Hopley and Maslin 2010). 

Moreover, within breccias (fossil-bearing clastic sedimentary rock) there is increasing 

evidence for cyclic deposition, erosion and re-deposition (de Ruiter 2003; Reynolds et al. 

2007; Herries et al. 2009). Any fossil assemblage is only partially representative of the 

living community due to depositional and taphonomic processes. This is exaggerated in the 

CoH cave assemblages due to mixing of deposits and may also have implications for, and 

exacerbate, the dating difficulties posed by these site members. Thus, considerations that 

interpretations concluding ‘habitat heterogeneity’ may in fact be a confused mix of distinct 

palaeoenvironmental periods, from closed and wetter environments to more open, arid 

ones, masked by time- (and climate-) averaging of deposits (Hopley and Maslin 2010) 

remains a necessity.  

Although the proposed taphonomic processes and accumulating agents for each site 

member are discussed here (see Appendix A3), Bountalis and Kuhn’s (2014) study showed 

that identifying any single accumulating agent or assemblage modifier for cave deposits is 

highly unlikely. Therefore, each assemblage is utilised with caution and interpretations 

made only after consideration of these potentially multifaceted processes.  

In summary, the complexity of the karst formations affects all other aspects of 

interpretation, including evidence of climate change, understanding fossil communities, 

dating possibilities and identifying possible speciation and extinction events (e.g. O’Regan 

and Reynolds 2009; Hopley and Maslin 2010; Herries et al. 2006; Herries and Shaw 2011).  

As a result, the evidence for the various patterns observed in the fossil record is best viewed 

as having been filtered by numerous processes, which should be borne in mind when 

interpreting data obtained from their assemblages. The sites and their relevant complexities 

are presented here. These issues do not render the sites irrelevant but simply pose issues 

that should be considered and mitigated for as far as possible.  
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Figure 2.3: Map of the Cradle of Humankind area, with the main hominin site locations 
indicated.  

2.8 IMPACT OF LOCAL FACTORS AND ‘MICRO’-

HABITATS ON PALAEOVEGETATION AND 

LANDSCAPE HABITATS 

The subtle matrix of small-scale changes in local water, latitude, altitude, geology, 

topography and soil edaphics can buffer or exaggerate regional climatic influences.  The 

scale here refers to Antidorcas / hominin-sized habitats (rather than micromammal/ insect – 

scale habitats, as may be defined by ecologists). 

The Cradle of Humankind 
The differential factors influencing the fossil-bearing sites within the Cradle of Humankind 

area can have bearing on any interpretations made. The impact of the Blaubank river today, 

can be seen when visiting the area. With closer proximity to the river, Swartkrans’ 

surrounding area is more sheltered, supporting wetter vegetation with more trees, making 

the area less exposed and arid than the nearby Sterkfontein cave entrance area (Figure 2.4). 
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Figure 2.4: The surrounding areas of Swartkrans (left) and Sterkfontein (right) to illustrate 
the ‘micro’ scale vegetation differences (Photographs taken within a few hours on the same 
day).  
RIVERS: Water bodies, such as rivers, can influence both living communities inhabiting 

an area, and their subsequent preservation in the fossil record. Water sources, both 

permanent and temporary, impact upon the habitats supported in the landscape and the taxa 

within them. The knock-on effects and implications of hydrological changes for the 

vegetation and canopy cover in an area can have major implications for the fauna inhabiting 

and depending on these habitats (Feibel 1999). Antidorcas marsupialis are water-

independent, capable of surviving on very little drinking water when times are scarce (Estes 

1991; Skinner and Louw 1996, see chapter 3 ‘Antidorcas’). If the fossil record indicates 

there are times when Antidorcas is more abundant, and this coincides with more water-

dependent species being less abundant, this could indicate reduced water availability, i.e. 

increased aridity (e.g. Ecker et al. 2018). Although, the same water-independence cannot 

necessarily be assumed for fossil Antidorcas, oxygen isotope analysis will provide an 

indication of moisture (aridity) levels for each member Antidorcas dentition is sampled 

from. The presence of permanent water sources, such as springs and rivers, being used by 

Antidorcas could affect the interpretation of oxygen isotope signals. Differential 

interpretations of similar results would be either an indication of seasonal rainfall or of 

Antidorcas consuming plants growing around permanent water sources (Lehmann et al. 

2016).  

A recent model revealed the possible role of groundwater hydro-refugia through orbital-

scale climate cycles in East Africa (Cuthbert et al. 2017). Similar may be expected for 

South Africa. Groundwater can buffer climate variability differentially, supporting habitats 

according to the respective geology and topography (Cuthbert et al. 2017) and providing 
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refugia habitats (e.g. Stewart 2008). Hydro-refugia areas in an otherwise arid environment 

would have been depended upon by many taxa, including hominins (Cuthbert et al. 2017). 

However, certain water levels are also required for fossilisation to occur and thus there may 

be an inherent bias in the fossil record towards wetter habitats (Feibel 1999; de Ruiter et al 

2008a; Pickering et al. 2007). Even if deposition only occurred episodically, the 

palaeoenvironmental trends over larger timescales would still be captured. The potential 

glacial or seasonal fluctuations within that may go relatively unnoticed but comparing each 

sequential deposit should yield the trend through time (even if just the less arid extent of 

such).  

FIRE can play an important role in shaping vegetation biome distribution (Charles-

Dominique et al. 2017; Bond et al. 2002, 2005). For instance, fire can aid in maintaining 

grassy vegetation, as found in savannas, where climatic conditions may be more suited to 

supporting woodland and forest-type flora (Bond and Midgley 2012).  Fires are typically 

characteristic of seasonally wet savannas, with the vegetation present being more tolerant to 

fire (Bond and Midgley 2012).  

In the fossil record, it is possible that at some point an aridity threshold was reached that 

resulted in wildfire, or simply wildfire resulting from lightning strike. In this instance, 

particularly if these fires were prolonged or rapidly repeated, C3 plants (larger trees), which 

are more fire-resistant (Bond and Midgley 2012) would temporarily prevail.  

The direct impact of climate-controlled vegetation can be overridden by fire, as it has been 

in areas of the modern world and throughout history (Bond & Midgley 2017). Brain and 

Sillent (1988) suggested hominin controlled-fire was evident at Swartkrans Member 3. 

Beaumont (2011) also infers the presence of repeated burning events to be indicative of 

controlled fire c. 1.7 Ma. However, fires are likely to have been naturally prevalent within 

the landscape periodically, causing readjustments within the ecosystem. Evidence of fire 

presence should be considered when relying on palaeovegetation indicators. Modern A. 

marsupialis consume acacia (Acacia) (Skinner and Louw 1996) and may prove an efficient 

proxy at predicting the occurrence of wildfires in palaeolandscapes, Acacia species are 

known to survive and even flourish from repeated burning. New acacia shoots regrow in 

the first months of the wet season but photosynthetic rates of the acacia remain high into 

the dry season months (enabling root starch replenishment) (Schutz et al. 2009).  

This is of importance to establish the cause of any apparent palaeovegetation changes; we 

need to be able to determine whether vegetation changes were primarily influenced by 

climate or other factors. Fire has been causally linked to major vegetation community 

changes and consequent megafaunal extinctions (e.g. Gill et al. 2009). Changes in 

atmospheric CO2, seasonality of climate and fire are linked to the spread of C4 grasslands 

after c. 3 Ma. A consensus remains to be achieved as to the lead catalyst of this expansion 

but recent models propose that fire is a crucial driver for C4 dominated biome expansion 

(Scheiter et al. 2012).  

CO2: Major changes in CO2 levels have been associated with changes in vegetation cover. 

CO2 influences plant growth rates, potentially critically influencing the proportions of 

grasslands to forest within a landscape as well as the tree cover within a savannah (Bond & 
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Midgley 2017). Low CO2 levels have been associated with the invasion of C3 grasslands by 

C4 grasses in the Pleistocene (Ehleringer et al. 1997; Scheiter et al. 2012), expanding and 

contracting the tropical grasslands during glacials and interglacials, respectively (Damsté et 

al. 2011).  

BIOTIC FACTORS: The nature of biotic interactions within an ecosystem is crucial to 

understanding the influences on faunal turnover and success. Biotic interactions can both 

drive ecological and evolutionary processes, mediating their ecosystems response to 

climatic changes, and be themselves driven by the intensity, direction and frequency of 

climate change (Blois et al. 2013). Whilst care must be taken to avoid uniformitarianism 

assumptions (Plummer & Bishop 1994), the context of the faunal community in which the 

Antidorcas specimens are found should be considered. A meta-analysis of the faunal 

communities for each deposit is presented in Chapter 5. Considering the faunal assemblage, 

places Antidorcas in to context of the faunal community, and can provide a contextualized 

and robust image of habitats available across the landscape.  

How Antidorcas interacts with other taxa with overlapping niche preferences, such as with 

the impala (Aepyceros melampus) can be indicative of the extent of habitat types and of the 

degree of habitat heterogeneity. Indirect climate changes (via climate-induced 

environmental variations) can impact on species interactions, for instance metabolic needs; 

growth rate changes can alter body size, impacting on species interactions, such as 

predator-prey relationships, as a result (Vasseur & McCann 2005; Gilman et al. 2010).  

INTANGIBLE PALAEOENVIRONMENTAL FACTORS: A factor to consider is 

the invisible canopy (tree) cover that may actually have been crucial to / dictated 

Antidorcas presence yet remain largely invisible via methodologies available for 

application to the fossil record. Stapelberg et al. (2008) observed the importance of tree 

cover to the behaviour of modern springbok (Antidorcas marsupialis) in the Kalahari 

Gemsbok National Park. The presence of trees providing shade as protection against 

extreme heat or hot winds was shown to be important to the observed springbok behaviour. 

As the springbok do not necessarily feed on these trees though, their importance for the 

springbok would not be easily shown in data analysis of dietary signals and dental 

morphologies. However, we can add to any palaeoenvironmental reconstructions gained 

from the data in this research, that tree cover is highly likely to have been present within the 

area also, particularly with higher C3 plant consumption and / or wetter environments.  

Another feature of the landscape utilised by modern springbok but likely difficult to show 

conclusively via dietary and morphological analyses, is the use of natural licks (geophagy). 

Kalahari springbok were observed regularly using natural licks in dried river beds 

(Stapelberg et al. 2008), partly to supplement their diet to fulfil nutrient requirements. This 

is discussed further in subsequent chapters but has bearing on the palaeoenvironmental 

habitats capable of supporting certain taxa throughout changeable environments. 

One of the crucial issues is in understanding the nature of paleovegetational change. Are 

changes simply a record of a snapshot in time that happen to reflect different seasons? What 

is the ‘normal’ variation for this area and time period and what is the threshold required to 

initiate environmental change? For accurate interpretation, the fossil assemblage should be 
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reflective of the living assemblage at the time of deposition.  If this is swayed by a 

particular species for instance, by preferential prey selection or a death trap encountered by 

a herd of migrating bovids, the disproportionate assemblage would be not be a true 

reflection of the palaeoenvironment (Vrba 1980). Further, Vrba (1980) states that the 

autochthonous/allochthonous nature of an assemblage should be known prior to attempting 

palaeoenvironmental reconstruction. In this instance, this is something we can only 

speculate on, the Antidorcas could have been migrating and thus, be more vulnerable to 

death. However, comparing the isotopic signatures of the Antidorcas sampled with the 

signals from elsewhere (e.g. other taxa in the assemblage, speleothems, associated breccia) 

should alleviate this and allow fairly confident assumptions that the assemblages used here 

represents majority autochthonous individuals.  

Cradle of Humankind assemblage formation and cave 

stratigraphy 
The majority of the sites in the Cradle of Humankind are cave deposits and surface finds. 

The cave deposits harbour complex stratigraphy that are being continuously studied and 

refined (e.g. Val and Stratford; Stratford et al. 2012, 2014; Stratford 2015). Many of the 

hominin and faunal assemblages were discovered by mining in the area, when dynamite 

explosions exposed the fossils.  

Cave stratigraphic formation is important for palaeoclimatic reconstruction purposes. The 

erosional and depositional phases can give insight into the moisture levels and vegetation 

cover density of the time and by inference, the other climatic conditions (such as 

temperature) of the time. It has been suggested that cave deposition is highly episodic (e.g. 

de Ruiter et al. 2008 and Pickering et al. 2007, Pickering et al. 2004, Stratford et al. 2014), 

with fossil deposition occurring primarily in open, arid conditions (Pickering et al. 2007). If 

so, the cave assemblages may not be entirely representative of the available habitats 

spanning this temporal period. These phases are likely to represent glacial-interglacial 

sequences (Brain 1993a,b,c) or, ‘dry/wet’ episodes. Sedimentary infill deposition (in which 

assemblages are preserved) can be highly episodic; with large periods of time likely 

unrepresented, yet the timing and nature of such episodes are not fully understood (see 

Pickering et al. 2007). Many of the South African hominin-bearing cave sites are 

interpreted as reflecting interglacial sedimentation periods and glacial erosion periods 

(Brain 1995). However, the relatively well-dated site of Gladysvale portrayed the opposite, 

with flowstones being created during periods of higher precipitation and restricted cave 

entrances, whereas clastic sediments accumulated during periods with more open 

vegetation (Pickering et al. 2007).  

Maxwell et al. (2018) reported the likelihood that assemblages actually represent a 

sampling bias, rather than true environmental variation, and only truly indicative of 

environmental conditions when deposition levels are greater. Therefore, peak taxic 

diversity reported at 1.9 Ma may be a sampling artefact (Maxwell et al. 2018). Caution is 

exercised, acknowledging this temporal range has the potential to include more of the living 

Antidorcas assemblage (and consequent variation within) than other deposits used. That is, 

increased variability for this temporal period cannot automatically be inferred as 
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‘increased’, as the preceding temporal range may be underrepresented, with some of the 

living assemblage absent from the fossil record.  

Time and climate-averaging undoubtedly play a part in these assemblages, with some 

deposits being averaged over thousands of years (Hopley and Maslin 2010) and 

assemblages can be mixed, combining specimens from across 2 members (mixing 

specimens over a considerable timespan). This renders population level differentiation 

extremely unlikely but the member assemblages can be successfully used for comparison 

against one another to portray a relative trend through time from Sterkfontein Member 4, c. 

2.8 Ma to Cave of Hearths < c.0.8 Ma. 

This is the nature of cave deposits and is certainly true for South African cave deposits. 

However, by utilising a species whose remains are more abundant throughout the 

deposit(s), it is hoped that any trend will be more readily observable, rather than simply 

yielding a mixed signal.  

The assemblages used are detailed in the following chapter (Chapter 4 Materials and 

Methods) and Appendix A10. 

2.9 SUMMARY OF THE PALAEOENVIRONMENTAL 

RECONSTRUCTIONS TO DATE FOR THE CRADLE OF 

HUMANKIND 

With the considerations discussed in this chapter (and see Appendix A3) borne in mind, the 

prevailing palaeoenvironmental reconstruction from which to build upon with this research 

is a transgressive trend with smaller scale shifting habitat heterogeneity. The overall trend 

shows that Sterkfontein gradually became more open and arid from Member 4 to Member 5 

(e.g. Vrba 1974) with this trend continuing throughout Swartkrans Member 1 to M3 (Vrba 

1985, Lee-Thorp et al. 2007, see Table 2.1 and detailed more extensively in Appendix A3). 

These reconstructions however, are still being challenged and adapted in light of new 

evidence and advancing techniques (e.g. 3D microwear, Merceron et al. 2016; speleothem 

evidence, Hopley et al. 2007; and hydro-climatology, Caley et al. 2018).  
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Table 2.1: Summary of Published palaeoenvironmental reconstructions by Member. References1 Kibii, 2004;2 Pickering et al., 2004a; 3 Mokokwe, 2016; 4 O’Regan and Reynolds, 
2009 5Reynolds et al., 2007; 6Ogola, 2009; 7 Elton 2001, 8Luyt 2001, 9Fourvel et al. 2018; 10deRuiter et al. 2008a; 11Brophy et al. 2014; 12Pickering et al. 2007; 13Avery 2001. 
Although Kromdraai ‘A’ and ‘B’ are now recognised as non-homogeneous, arbitrary prefixes, their published palaeoenvironmental reconstructions are included here to place them 
into context of the available literature. ‘M’ stands for Member (cave deposit stratigraphic unit Member). Only reconstructions still considered valid are included.  
DEPOSIT 

 

PUBLISHED PALEOENVIRONMENTAL RECONSTRUCTIONS FOR DEPOSITS 

 

Pre-2.8 Ma 

Sterkfontein 

Jacovec Cavern 

A mosaic of both open and closed habitats, comprised of a riverine gallery forest, with bushland and open country1. Relatively open with a permanent 
water supply in the vicinity2 

Sterkfontein M2 Open grassland and rocky outcrops.  2Riverine gallery forest with surrounding bushland and occasional open areas with the possibility of standing local 
source of water. 
 

2-8-0.5 Ma 

Sterkfontein M4 Mosaic habitats with the greatest variety of habitats available3. Mosaic but with more dominant woodland component than later Members. Wetter (faunal 
remains and woody plants- Bamford 1999; Kuman & Clarke 2000). Presence of arboreal primates suggests at least some tree cover3. Forest fringe 
environment with both open and wooded plains4.  A continuum of forested, open woodland, and grassland habitats1. 

Sterkfontein M5 

StW 53 Infill: 

Open, drier (than Member 4), grassland. 

Sterkfontein M5 

East Infill: 

Moderately wooded areas3. More open grassland than Member 4 but more C3 vegetation than Member 5 West8. 

Sterkfontein M5 

West Infill: 

Mosaic but with greater grassland presence than Member 4. Open/woodland grassland or open savannah. A marked shift to drier, more open grassland 
environments. More grassland than Member 5 East8.  

Sterkfontein Post 

M6: L/63 Infill 

Savannah mosaic environments; savanna woodland and grassland habitats near a permanent water source (such as a swamp or perennial stream)6. 
Changing environment3  

Lincoln Cave 

North 

Slightly wetter than the earlier Member 5 West and later, Lincoln Cave South and L/635. 

Lincoln Cave 

South 

Drier, more open grassland environments, similar to Member 5 West5,6 and modern analogues5. 

Swartkrans M1 Open habitats present7 
Swartkrans M2 Slightly wetter, more wooded than Member 1 or 3 (e.g. Steininger 2012) Drier than Member 1 with grasslands and wetlands (Bamford 2015).  
Swartkrans M3 Mosaic habitat landscapes with a dominance of open grasslands10,13 
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DEPOSIT 

 

PUBLISHED PALEOENVIRONMENTAL RECONSTRUCTIONS FOR DEPOSITS 

 

Plovers Lake Grassland dominance10 with similar woodland as today11 
Gladysvale C4 vegetation existed during the early Pleistocene, with a shift towards C3 dominance during the mid-Pleistocene, but an overall trend of cooler, drier 

conditions12 
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2.10 DATING  

Originally, South African deposits were at the mercy of biochronology and 

biochronological comparisons with East African sites, which appear to be at discord due 

perhaps in part to the origination of many species in South Africa, as well as South Africa 

serving as a refugia for East African populations throughout the Plio-Pleistocene (and 

therefore not allowing corroboration of appearance datums) (e.g. Lorenzen 2012; Pickford 

2004). Fortunately, in recent years, with advancing dating techniques (e.g. Herries et al. 

2013; Herries and Adams 2013; Lacruz et al. 2002), biochronology is no longer the leading 

dating technique for these deposits.  The dates used in this study are given in the Table 

below (Table 2.2). Each deposit is used as a representative of a temporal period, rather than 

using the material to provide an in-depth analysis on that site per se. All interpretations are 

subject to change as further temporal resolution of deposits emerge.  
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Table 2.2: Dates and methods for each member used. Maximum date ranges are indicated below each Member row. Member deposits ordered chronologically relative to one 
another (oldest to youngest) based on the dates provided in this table. *The site of Cornelia is not used in this research but is included in this table because of the Kromdraai KA 
locality comparison of date range based on the Cornelian Faunal span.  

Member Date Method  Reference 
Sterkfontein Member 4 2.8-2.4 Ma 

~2.5 Ma 
2.8-2.6 Ma 
~2.1 Ma 
 
2.15-2.14 Ma 
2.65-2.01 Ma 
 
2.8-~2.0 Ma  

Bovid biochronology 
Primate biochronology 
Mammalian biochronology 
ESR (electron spin resonance) 
 
Palaeomagnetism 
Uranium-Pb  
 
ESR, and palaeomagnetism 
 

Vrba 1976, 1980 
Delson 1984, 1988 
Mckee 1993 
Schwarcz et al. 1994 
 
Partridge 2005 
Pickering and Kramers 2010 
 
Herries and Shaw 2011 

Date range: 2.8-2.0 Ma. 

Sterkfontein Stw infill 2.6-2.0 Ma 
1.8-1.4 Ma 
1.8-1.5 Ma 

Biochronology 
Biostratigraphy 
ESR and palaeomagnetism 

Kuman and Clarke 2000 
Herries et al. 2009 
Herries and Shaw 2011 

Date range: 2.6-1.4 Ma. 

Sterkfontein M5 East 2.0-1.7 Ma 
1.4-1.1 Ma 
1.4-1.2 Ma 

Biochronology and archaeology 
Dating seriation 
ESR, isotopes and palaeomagnetism 

Kuman and Clarke 2000 
Herries et al. 2009 
Herries and Shaw 2011 
 

Date range: 2.0-1.1 Ma. 

Sterkfontein M5 West 1.7-1.4 Ma 
1.3-0.8 Ma 
1.3-1.1 Ma 

Biochronology and archaeology 
Dating seriation 
ESR and palaeomagnetism 

Kuman and Clarke 2000 
Herries et al. 2009 
Herries and Shaw 2011 

Date range: 1.7-0.8 Ma. 

Kromdraai A 1.8-1.6 Ma 
<1.95 Ma 
 

Biochronology 
Palaeomagnetism 
Biochronology* 

Pickford 2013 
Thackeray et al. 2002 
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Member Date Method  Reference 
Cornelian Land Mammal Age 1.07-0.99 Ma Palaeomagnetism of the Cornelia-Uitzoek 

type site 
Brink et al. 2012 

Kromdraai W 2.6-2.3 Ma [Members 1 and 2] Biochronology Braga et al. 2017 
Kromdraai B  
 

c. 2.6 Ma  
 
2.0-1.77 Ma (c.1.95 Ma) 
 
1.8-1.6 Ma 

Biochronology 
 
Palaeomagnetism of capping flowstone 
younger than Member 3 
 Cited Palaeomagnetism 
 

McKee et al. 1995; Heaton 2006; Pickford 
2013 
Thackeray et al. 2002 
 
Herries et al. 2009 

Date range: 2.6-1.6 Ma 

 

Swartkrans Member 1 LB 1.8-1.7 Ma 
 
 

Biostratigraphy 
 
 

Vrba 1985; Churcher and Watson 1993; 
Brain 1995, Vrba 2000; de Ruiter 2003a,b  

Swartkrans Member 1 HR 1.6 Ma 
 
 
(2.0-1.4) 1.6 Ma 

Biostratigraphy 
 
 
ESR 

Vrba 1982, 1985; Delson 1984; Brain 
1995; Berger et al. 2002; de Ruiter 
2003a,b 
Curnoe et al. 2001 

Swartkrans Member 1  
(combined) 

2.0-1.4 Ma 
2.0 (±0.02) Ma 

ESR 
U-Pb bovid enamel dating 

Curnoe et al. 2001 
Albarède et al. 2006 

Date range: 2.0-1.4 Ma.  

Swartkrans Member 2 1.36 (±0.29)Ma (1.65-1.07 Ma) 
1.44± 0.05 
1.7-1.1 Ma 

U-Pb enamel dating 
U-Pb enamel dating 
Biochronology 
Dating seriation 
 

Balter et al. 2008 
Albarede et al. 2006 
Brain 1995; Vrba 1995a,b: Herries et al. 
2009 

Date range: 1.7-1.07 Ma.  

Cooper’s Cave (D) 1.9-1.6 Ma  Berger et al. 2003 
Swartkrans Member 3 0.83(±0.21)Ma (1.04-0.61 Ma) 

0.988±0.003 
U-Pb enamel dating  
U-Pb enamel dating  

Balter et al. 2008 
Albarède et al. 2006 
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1.0-0.7 Ma Biochronology Brain 1993; Vrba 1995a,b; Herries et al. 
2009 

Date range: 1.5-0.61 Ma. 

Plovers Lake external deposit ~ 1. Ma Biochronology Thackeray & Watson 1994 

Plovers Lake 88.7 (±1.36) - 62.9 (±1.3) Ka  
[0.09-0.06 Ma] 
75.6 (±5.6) Ka 

U-series dating 
 
ESR 

De Ruiter et al. 2008a 
 
Skinner et al. 2005 

Gondolin GD1 
 

1.8-1.7 Ma Paleomagnetism Adams et al. 2007, Adams et al. 2016; 
Herries and Adams 2013. 

Gondolin GD2 1.95-1.78 Ma 
(1.8 / 1.78 Ma) 

Paleomagnetism and biochronology Herries et al. 2006 

Gladysvale 
 

~ 0.57 Ma-7ka U-Th chronology Pickering et al. 2007 

Cave of Hearths MSA; 0.6-0.4Ma  Biochronology/Radiometric Wadley & McNabb 2009 
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CHAPTER 3  

ANTIDORCAS: Evolution, 
Systematics and Palaeoecology, and 
supplementary species used 
A synopsis of the evolution, ecology and other relevant information of the extant 

Antidorcas marsupialis (A. marsupialis) and fossil Antidorcas (A. recki, A. bondi, A. 

marsupialis and the potential fourth species, A. australis) is presented here. This chapter 

introduces some of the fundamental aspects impacting upon the modern springbok, which 

may be used as an analogue to provide a guide as to what may be the main influencing 

factors for the adaptation and evolution of ancestral and extinct species of Antidorcas.  

Literature-based research into the ecology of the springbok is presented in section 1. A 

synthesis of published fossil Antidorcas information is then presented. ‘Springbok’ refers to 

the extant species of Antidorcas, inclusive of sub-species, ‘fossil springbok’ refers to all 

species of Antidorcas present in the Plio-Pleistocene, namely Antidorcas recki, Antidorcas 

bondi, Antidorcas marsupialis and Antidorcas australis. Mitigation of influencing factors 

that could potentially affect interpretations of the fossils is then summarised. The 

potentially causes of A. recki extirpation are then discussed. Finally, a brief ecology of the 

extant representatives of the fossil species used as supplementary taxa in this research to 

establish grazing (Damaliscus pygargus) and browsing (Tragelaphus strepsiceros) 

parameters, and likely palaeoecology of their fossil counterparts, are summarised in section 

2.  

SECTION 1: ANTIDORCAS 
When analysing the fossil record, factors influencing dietary choices should not be 

overlooked. To anticipate reasonable levels of intraspecific variation in the fossil record, 

one must understand the variation in the extant community. Therefore, the modern 

springbok behaviour is considered, in order to understand variations that are likely to have 

occurred to a similar degree in the past. The extant Antidorcas Sundevall (1847), contains a 

single extant species, with 3 sub-species of Antidorcas marsupialis (Zimmerman). The 

extant species, A. marsupialis, is found in southern Africa, south of the Zambezi (Gentry 

1966). Fossil Antidorcas showed greater diversity however, with 3, or possibly 4, species 

(the likely presence of a fourth species is discussed in chapters 4 and 6).  

Extant Antidorcas 
Antidorcas marsupialis are herbivorous, seasonal mixed-feeding antelopes, capable of 

surviving without water for a considerable length of time, obtaining water through feeding 

on moisture-retaining vegetation, such as succulents (Estes 1999; Kingdon 1997). Though 

considerably reduced in numbers in recent years, the springbok were previously far-ranging 

and involved in mass migrations (Dewar et al. 2006; Wilcove 2007). The modern 

Antidorcas marsupialis can be found in South Africa, Angola, Namibia and Botswana. 

Human influence has led to the considerable decline of springbok populations in recent 
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years. The fencing introduced across the landscape by farmers, increased human hunting of 

springbok and the outbreak of diseases such as rinderpest have taken their toll on springbok 

population numbers. The majority of springbok inhabiting areas south of the Botswana 

border now live in fenced land (Estes 1991).  Their geographic range has contracted and the 

territories they inhabit may not be entirely representative of their natural preferences. There 

is some debate about the taxonomic distinction of these geographically distinct populations 

to sub-species (e.g. Castelló 2016) which is briefly examined but for the purposes of this 

research, the focus will be on Antidorcas marsupialis as a single species. It is perhaps scope 

for future research to analyse the sub-species within Antidorcas.  

Fossil Antidorcas  
As a brief introduction to the proposed fossil Antidorcas species, the ancestral Antidorcas 

recki (Schwarz 1932) is found in abundance in both South and East African deposits. 

Antidorcas bondi (Cooke and Wells 1951) is particularly abundant in South African 

deposits during this temporal range (mainly c. 2.0 – 0.5 Ma); and fossil Antidorcas 

marsupialis (Zimmermann 1780) was also increasingly abundant in South African deposits. 

The contentious Antidorcas australis (Hendey and Hendey 1968) 

is found in South Africa and is possibly conspecific or a 

chronospecies to A. marsupialis. The taxonomy of A. australis has 

been disputed*, particularly in the more northern, inland Plio-

Pleistocene deposits of the Cradle of Humankind. The taxonomy 

of specimens identified as ‘A. australis’ in relevant deposits is 

explored in chapter 6. 

Figure 3.1: Adult male Antidorcas marsupialis from the Rhino and Lion Nature Reserve, 
Kromdraai, Krugersdorp, South Africa. [Photograph by L.Sewell, October 2017]. Note the 
form of the horns.  

3.1 ANTIDORCAS EVOLUTION 

Significant variation in Antidorcas horncore morphology, provides the earliest indication of 

Antidorcas splitting from gazelles at least 15 million years ago (Kingdon 1997; Gentry 

1966; 2010). The exact evolutionary trajectory of this lineage is not completely understood 

but it is possible that the modern springbok evolved from forms descended from European 

populations as some early ‘springbuck’ fossils are known from Eurasia.  Pliocene fossils 

from the Atlas Mountains show that Antidorcas were already adapted to cool Eurasian-type 

habitats by 4 Ma (Kingdon 1997). Similarly, South west Africa, where modern springbok 

inhabit is dry and periodically cool (Kingdon 1997). Springbok could have migrated from 

Eurasia through North Africa and existed in many ancestral forms before thriving in 

southern Africa.  The fossil Antidorcas species found in the southern (A. recki, A. bondi and 

A. marsupialis) and East (A. recki) African Plio-Pleistocene are discussed here.  

Antidorcas evolution in southern Africa 2.8-0.8ma 
Following from A. recki’s migration from East Africa, adaptation and speciation events 

occur in southern Africa. The reasoning behind A. recki’s extirpation in East Africa remains 

unclear and is examined in greater detail later in this chapter. A. recki is thought to have 

migrated to South Africa by c. 2.8 Ma (Sterkfontein Member 4) and the Antidorcas lineage 
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to have evolved further in South Africa. A. recki is believed to be ancestral to the modern 

form (Gentry 1978), splitting into A. bondi, and eventually speciating into A. marsupialis 

(or A. australis and A. marsupialis) (Vrba 1973).  

It is believed that many grazers and mixed feeders evolved from browsers as grassland 

spread (Solounias and Moelleken 1993). This too has been postulated for Antidorcas, with 

the extant mixed-feeding Antidorcas marsupialis evolving from the browsing A. recki 

(Vrba 1973). Recently considered for East Africa (Potts and Faith 2015) is the means by 

which plasticity, mixed-feeding tendencies and highly-specialised behaviour evolves. In 

southern Africa, a demise in specialised feeders may be expected, alongside an increase in 

species, such as Antidorcas marsupialis, that are more flexible according to on climatic 

conditions and nutritional availability. With the modern Antidorcas marsupialis being 

highly arid-adapted, this could be indicative of a trend towards increasing aridity, capable 

of sustaining mixed habitats or, a trend towards aridity alongside variations in 

environmental stability.  

3.2 ANTIDORCAS TAXONOMY 

3.2.1 Modern Springbok (Antidorcas marsupialis)  
TAXONOMIC CLASSIFICATION 
Kingdom: Animalia 
Phylum: Chordata 
Class: Mammalia 
Order: Artiodactyla 
Family: Bovidae 
Subfamily: Antilopinae 
Tribe: Antilopini 
Genus: Antidorcas (Sundevall 1847) 
Species: marsupialis (Zimmermann 1780) 

Sub-species 
� Antidorcas marsupialis angolensis. 
� Antidorcas marsupialis hofmeyri 
� Antidorcas marsupialis marsupialis  
 

The single extant Antidorcas species, are variable in size at least according to their locality 

(Skinner and Louw 1996). Understanding the degree of intraspecific variation for modern 

Antidorcas could provide an insight into expected variation in fossil assemblage and allow 

distinctions between species and sub-species based on variations, and the anticipated 

thresholds between species and sub-species distinctions for the Antidorcas genus. Although 

generally considered sub-species, these are occasionally elevated to species level (Castelló 

2016). Antiquarian sub-species names still present on museum labels (listed below) are 

now regarded as synonymous with Antidorcas marsupialis marsupialis (A. m. marsupialis). 

A. m. centralis (Lyddeker and Blaine 1914), A. m. euchore (Sundevall 1947), A. m. dorsata 

(Daudin via Buffon 1802; Desmarest 1804), A. m. pygargus (Thurnberg 1811), A. m. 

saccata (Boddaert 1785), A. m. saliens (Daudin via Buffon 1802; Desmarest 1804), A. m. 

saltens (Kerr 1792). 

Antidorcas marsupialis marsupialis (Zimmermann 1780) 
Country Range: South Africa 
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Range distribution: South Africa, Cape Province, Orange Free State, Transvaal. 
Characteristics: The typical springbok. 3 colour variations exist, the tricolour, white and 
black pelage variations. These colour morphs are sometimes artificially bred on South 
African farmlands.   

 
Figure 3.2: Male Antidorcas marsupialis centralis (Lyddeker and Blaine (1914:112)), Type 
locality is Deelfontein, Cape Colony. Now synonymous with A. m. marsupialis (Cain et al. 
2014). Specimen number: NHM.2.12.1.35 (curated at the Natural History Museum, 
London).  Scale bare equals 10mm.  

Antidorcas marsupialis angolensis (Blaine 1922) 
Country Range: Angola and Namibia 
Range distribution: Southwest Angolain Coastal region of Angola, between Benguela and 
Mossamedes.  
Characteristic: Considered slightly larger than the southern populations. 

 
Figure 3.3: Male Antidorcas marsupialis angolensis. Specimen numbers: NHM.20.4.27.32 
(curated at the Natural History Museum, London). Scale bare equals 10mm. 

Antidorcas marsupialis hofmeyri (Thomas 1926) 
Country Range: Botswana, Namibia and South Africa.  
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Range distribution: Central Namibia to Botswanan Great Namaqualand to the Kalahari 
and Ngamiland.  
Characteristic: Postcranially, this is the largest springbok subspecies. (http://www.planet-
mammiferes.org/drupal/en/node/39?indice=Antidorcas+marsupialis+hofmeyri). 

  
Figure 3.4: Female Antidorcas marsupialis hofmeyri. Specimen number NHM.28.9.11.454 
(curated at the Natural Hisotry Museum, London). Scale bare equals 10mm. 

3.2.2 Fossil Antidorcas Species  
Antidorcas recki and Antidorcas bondi have been shown to have a similar degree of sexual 

dimorphism as that displayed by the modern Antidorcas marsupialis (Cooke 1996; see 

chapter 6). Each species is summarised in the following text. Dental traits characteristic of 

each fossil Antidorcas species are summarised more extensively in chapters 4 and 6.  

Antidorcas recki (Schwarz 1932) 
First appearance (FAD): East Africa, Omo Shungura Member F3 (2.34±0.04 Ma: Feibel 

et al. 1989). Based on dentition alone, A. recki is evidenced to be present in South Africa 

ca. 3/2.8 Ma-2.0 Ma from Sterkfontein Member 4 but separation from A. bondi and A. 

marsupialis can be problematic (Cooke 1949; Vrba 1976, 1995; Turner and Wood 1993; 

Gentry 2010). 

Last appearance (LAD): Difficult to prove due to taxonomic identification complications.  

A. recki disappears from the East African fossil record around 0.8 Ma (Reynolds 2007). 

The last known appearance of A. recki from an archaeological context occurs at 

Elandsfontein (South Africa) around 0.6 Ma (Vrba 1995; de Ruiter 2003).  

Synonyms: Identified as a separate species of the Phenacotragus genus, termed ‘Adenota 

recki’ from remains of skull and right horncore at Olduvai OR-NR VIII 343 (Schwarz 

1932). Schwarz (1932) assigned A. recki to ‘Reduncinae,m Adenota recki’. This type 

specimen was destroyed during World War II. Possibly Olduvai’s ‘Gazella gazelle 

praecursor’ (Schwarz 1937) also referred to A. recki but this was also destroyed during 

WWII, the same specimen was reassigned to ‘Phanacotragus recki’ by Schwarz (1932). 

Although the type specimen was lost but a cast is held at the Natural History Museum, 
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London [specimen number M.21460] (Cooke 1996). A. recki specimens were referred to 

thereafter as Phanacotragus recki (Schwarz 1932, 1937; Gentry 1966; Leakey 1965) until 

in 1949, Cooke assigned the specimen to ‘Gazella Wellsi’ (Cooke 1949). Subsequently, 

‘Gazella sp.’ (Leakey 1965, Olduvai), ‘Gazella wellsi’ and ‘Phanacotragus recki’ 

specimens were described and likened to the modern springbok but not amalgamated due to 

lack of definite evidence (Gentry 1966). In 1973, Vrba cited personal communication from 

Gentry, suggesting Phanacotragus and Gazella wellsi should in fact be assigned to 

Antidorcas (Reck’s springbok) (Cooke 1996; Klein et al. 2007). Vrba (1973) suggested that 

those specimens previously assigned to Gazella wellsi (Cooke 1949) were likely to be 

conspecific with Antidorcas bondi or Antidorcas recki (Vrba 1973, p.311) and later, Gentry 

(1978), encouraged for all G. wellsi material to be reassigned to A. recki, with the two now 

being synonymous.  

Palaeoecology and distribution: A. recki appears to have been one of the most abundant 

antelope in East Africa and has been recorded from East African sites of Olduvai Gorge, 

Kanjera, Peninj, Laetoli and Omo (Gentry 1978) and South African sites, in addition to 

those used in this research, of Bolt’s Farm, Elandsfontein and the Vaal River gravels (de 

Ruiter 2003). A. recki has been less well represented in South Africa, and even where it has 

been recorded, such as by Vrba (1976), the classification of these specimens as A. recki has 

since been questioned (deRuiter 2001). There are fewer specimens assigned to Antidorcas 

recki from either Sterkfontein or Swartkrans. This could be due to issues in differential 

taxonomic classification, particularly from the descendant A. marsupialis, on isolated 

dentition. This may be further complicated by sexual dimorphism of both species, creating 

overlap in their dimensions, for example, Adams et al. (2016) report the marked sexual 

dimorphism apparent for Antidorcas recki. 

Similar to the modern springbok, the diet of A. recki was believed to be browse-dominated 

(Lee-Thorp et al. 2007). Yet other studies stress the inclusion of grass within a mixed-

feeding (mixed grass feeding) diet and a habitat preference of woodland / bushland (e.g. 

Spencer 1997; Plummer and Bishop 1994). Although similar, A. recki’s relative 

constituents within the ‘mixed-feeding’ dietary spectrum appear to differ to those of the 

descendant A. marsupialis (Spencer 1997).  

Within A. recki, there is considerable variation in horncore morphology, which is perhaps 

indicative of consistent population splitting (Gentry 1978). High levels of feature variation 

in any species is perhaps indicative of instability and frequent splitting of populations, 

possibly due to climatic variations.  

Antidorcas bondi (Cooke and Wells 1951) 
First appearance (FAD): Specimens have been identified as A. bondi from Sterkfontein 

Member 4 (e.g. Luyt 2001; van der Merwe et al. 2003). 

Last appearance (LAD): End of the Pleistocene c.7000years ago (Brown & Verhagen 

1985; Brink & Lee-Thorp 1992; Vrba 1973; Owen-Smith 1987).   

Synonyms: Gazella bondi, Bond’s springbok. Previously identified as Gazella bondi at 

some sites and subsequently included in ‘Antidorcas’ (Gentry 1978). Originally listed by 
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Cooke and Wells 1951 as ‘Antilope gen. et. sp. indet.’, similar dentition was later referred 

to as ‘Gazella bondi’. Vrba (1973) referring to Gentry’s opinion, stated that the ‘Gazella 

bondi’ specimens, more closely fit to Antidorcas and should be called ‘Antidorcas bondi’. 

A. bondi has been recorded from Chelmer, Vlakkraal and Florisbad (in addition to the sites 

used in this research) from South Africa (de Ruiter 2003). De Ruiter (2003) suggests that A. 

bondi is unlikely to fall into the A. recki to A. marsupialis lineage, yet it is probable that A. 

recki is ancestral to A. bondi and A. marsupialis.  

Palaeoecology and distribution: A. bondi has been documented from South African 

deposits ranging in time from c. 2 Ma (Swartkrans Member 1) (de Rutier 2003; Herries et 

al. 2009; Pickering et al. 2011) to the Holocene, c. 7Kya (Gentry 2010). A. bondi has been 

suggested to have been the smallest member of a Pleistocene grazing succession (Brink and 

Lee-Thorp 1992). Stable isotope analysis suggested A. bondi was primarily a grazing 

species around the Cradle of Humankind sites, particularly around its FAD (Brink and Lee-

Thorp 1992; Lee-Thorp et al. 2000; Codron et al. 2007) with more mixed–feeding diets 

from Cornelia (1.07-0.99Ma) (Brink et al. 2012), Florisbad (0.295-0.225 Ma) (Herries 

2011) and mixed-feeding to browsing from Haasgat (c. 2.2-2.0 Ma) (Adams et al. 2013). A. 

bondi is the dominant faunal species in Swartkrans Member 2 (de Ruiter 2003; Vrba 1973).  

Fossil Antidorcas marsupialis (Zimmermann 1780) 
First appearance: The extant springbok, Antidorcas marsupialis first appeared in South 

African deposits in the Cradle of Humankind, at Sterkfontein Member 5 (Vrba 1974) and 

Swartkrans Member 1 (Watson 1993) c. 2.0-1.4 Ma.  

Synonyms: Springbuck. Antilope marsupialis, Cemas marsupialis. First described by 

Zimmermann (1780), the fossil A. marsupialis is differentiated from A. recki by enlarged 

third molars with larger hypoconulid lobes and longer metatarsals (e.g. Brink 1987; Gentry 

2010). 

Palaeoecology and distribution: Studies have found the fossil A. marsupialis to be a 

mixed feeder (e.g. Steininger 2012; Lee-Thorp et al. 2007), just like its extant forms and 

therefore, likely a migratory species. In spite of the large ‘trekbokken’ of Springbok having 

ceased in recent years, it is thought that they migrated in large herds at regular intervals 

(Dewar et al. 2006, Wilcove 2008).  

Other sites from the temporal range (e.g. Haasgat c. 2.2-2.0 Ma yielded low δ13C enamel 

isotope values Lee-Thorp et al. 2007; Adams et al. 2013.) have found A. marsupialis’ diet 

to be broadly consistent with their modern conspecifics with C3 plant diet-dominance, 

indicating mixed-feeding to browsing (Gagnon and Chew 2000; Cerling et al. 2003; 

Sponheimer and Lee-Thorp 2003).  

Antidorcas australis (Hendey and Hendey 1968) 
Antidorcas australis, described by Hendey and Hendey (1968) was potentially a form 

smaller than the living springbok, displaying compressed horn cores without a sharp bend 

backward (Gentry 2010).  The taxonomy of A. australis as a separate species (i.e. not a 

chrono- or sub-species, or within the range of variation of A. marsupialis) is contentious 

and warrants further investigation prior to using ‘A. australis’ dental specimens for this 
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research. The specimens assigned to ‘A. australis’ (Vrba 1973) are therefore considered 

separately; see results (Chapter 6, ‘taxonomic identification of Antidorcas species’).  

Suggested first appearance date (FAD): Swartkrans Member 1 (Vrba 1973) 
Suggested last appearance date (LAD): 11,950± 15014Cyr BP, Nelson Bay Cave (Klein 
1983). 
Synonyms: southern springbok; A. marsupialis australis; A. marsupialis/australis 

It is even more challenging than is the case for other fossil species to pinpoint a FAD/LAD 

for A. australis due to taxonomic identification complications. The dentition of A. australis 

is almost identical to that of A. marsupialis (Vrba 1973), and the scarcity and fragmentary 

nature of horncore and/or associated postcranial remains prevents more definitive species 

identifications. The latest tentatively claimed appearance of A. australis would have the last 

appearance dating to ~60- 50 ka at Die Kelders Cave or as ‘A. cf. australis’ (Klein, 1980, 

1983) (11,950± 150 14C yrs BP= 13,430 to 14,140 cal yrs BP) at Nelson Bay Cave 

(Schwarcz & Rink 2000; Klein & Cruz-Uribe 2000; Feathers and Bush 1999). Alternative 

suggestions of the End of the Pleistocene (12,000-9,000BP; Owen-Smith 1987) and 

similarly, the late Pleistocene-Holocene transition (Faith 2014) have been suggested for the 

last appearance of A. australis forms.  

Palaeoecology: A. australis is associated with open habitats, alongside grazers such as 

Equids (Faith 2014) but believed to be a mixed feeder (Klein 1980). However, Lee-Thorp 

et al. (2000)’s carbon isotope study shows ‘Antidorcas australis’ to be a predominantly 

browsing herbivore.  

Antidorcas australis identification history: Hendey & Hendey (1968) described 

Antidorcas marsupialis australis as a new sub-species of springbok from Swartklip, near 

Cape Town (Brain 1993). When Vrba (1973) discovered similar fossils from Swartkrans, 

this ‘sub-species’ appeared more widely distributed and thus was deemed to warrant 

distinct species status. From this, A. recki was assigned to being ancestral to A. bondi and 

then at a later stage, ancestral to both A. australis and A. marsupialis.  Vrba (1976) since 

disputed this, preferring to refer to the Swartkrans material as ‘pre-marsupialis’, 

representing an evolutionary transition between A. recki and A. marsupialis (see Figure 

3.6). Some years later, many of Vrba’s original classifications of A. australis were 

reassigned e.g. to A. bondi by de Ruiter (2003). 

Cooke (1996) states that Antidorcas australis is a southern species, not found in northern 

breccia (rock typical of the Cradle of Humankind cave range in which fossilised remains 

are typically found) sites. However, it is not easily differentially identified from Antidorcas 

marsupialis, certainly not from dentition alone. Therefore, caution is suggested before 

ruling out its presence/absence from any sites from its believed temporal range. There are 

numerous examples of re-identification of taxonomic assignment for various faunal 

remains. Cooke (1996) suggests the possibility of Antidorcas australis material perhaps 

being actually Antidorcas recki. Despite dental similarities, identification difficulties should 

not necessarily dictate the lumping of species as it is a known phenomenon within modern 

zooarchaeology that sheep and goat are extremely difficult to tell apart, even by experts in 

the field (e.g. Zeder and Pilaar 2010). When translated to fossilized species, the problem is 

undoubtedly exacerbated without any historical documents or known ecologies to rely on to 



66 

 

aid differentiation. Some confusion may arise when attempting comparisons with published 

data when the same specimen has been assigned to an alternative species.  

The legitimacy (and accuracy of its identification in Cradle of Humankind contexts) and 

palaeoecology of this proposed taxa is yet to be untangled and is one of the key focus’ of 

this research as a part of the aim of understanding the palaeoecology of the Antidorcas 

lineage. 

Characteristic features for Antidorcas australis identification: The differential 

lyrateness of the horns of A. australis (Hendey and Hendey 1968) compared to other fossil 

springbok, may differentiate more readily from other Antidorcas forms, enabling easier 

identification than is possible from dentition alone. Unfortunately, horncores are rarely 

found intact with dentition on Antidorcas crania within these deposits from which to 

conduct a detailed study. Based on dentition (see Figure 3.5), A. australis specimens have 

only been tentatively identified (e.g. Vrba 1973) due to being slightly narrower than those 

of A. marsupialis.   

 

Figure 3.5: An example of potential Antidorcas australis maxillary dentition, SKX 30334 
Swartkrans Member 3, RM2 (identified as ‘A. australis’ by Vrba 1973). From left to right: 
occlusal, buccal and lingual views. Scale bar represents 10mm. Original photographs 
taken by L. Crété 2017. 
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Figure 3.6: Possible evolutionary scenarios for Antidorcas australis.; A: A. australis is a transitional form between the ancestral A. recki and the descendant A. marsupialis; B: A. 
australis and A. marsupialis are separate species, both descendant from A. recki; C: There is no species distinction between A. australis and A. marsupialis but A. australis could be 
a sub-species of A. marsupialis, both descendant from A. recki; D A. recki splits into A. marsupialis  (and potentially a branch to A. australis additionally) as a sister species but 
temporarily continues to exist as a species alongside.  
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3.3 ANTIDORCAS ECOLOGY AND PALAEOECOLOGY 

Extant Antidorcas Ecology 
“Springbok are both selective and opportunistic feeders that adjust their diet, microhabitat 
and foraging time to the highly variable quality of the forage in arid areas. In doing so they 

can change from habitat generalists and diet specialists to habitat specialists and diet 
generalists, depending on environmental conditions. They do, however, remain selective 

foragers at all times and avoid highly lignified forage plants.”  
(Skinner & Louw 1996, p. 24). 

Distribution 
A. marsupialis are found in South Africa, Namibia, Botswana and Angola. The relative 

distribution of springbok sub-species tends to be geographically isolated. The current 

distribution of springbok population ( 

Figure 3.7), has been blighted by diseases (e.g. rhinderpest) and human intervention 

(hunting and farming enclosures, restricting their habitat availability and movement). The 

majority of springbok south of the Botswana border now live in fenced land (Estes 1991; 

Skinner and Louw 1996). Springbok typically inhabit savannas or grasslands, where 

vegetation is short (low and fresh grass and shrubs), often associated with the edges of dry 

river/lake beds (Bigalke 1972; Milton et al. 1992; Skinner and Smithers 1990), to promote 

vigilance and movement, as an anti-predator response (Bigalke 1972; Smithers 1983). 

Although capable of inhabiting many biomes, A. marsupialis does not inhabit mountains or 

woodland with tall, dense vegetation (Estes 1991).  

 

Figure 3.7: A map of current Springbok (Antidorcas marsupialis) distribution (Skinner and 
Louw 1996, P.9). 

Behaviour  
Springbok behaviour has been reported to vary seasonally (e.g. Kingdon 1997), according 

to multiple factors, as will be discussed in the following sub-sections. The implications of 

such seasonal variation, when extrapolating back to fossil springbok for 

palaeoenvironmental reconstruction purposes, are cause for consideration (as will be 

discussed).  
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DIET: Although categorized as a mixed feeder, the springbok has been observed to be 

primarily a summer grazer and a winter browser (Kingdon 1997; Skinner and Louw 1996; 

Gagnon & Chew 2000), overall having a browse-dominated dietary pattern, feeding on 

karroid, dicotyledonous vegetation  particularly in the cold, dry season but grazing largely 

in the hot, rainy season, where grass shoots, especially favouring young succulent grasses 

before they lignify (East 1999; Skinner and Chimimba 2005; Bigalke 1972; Van Zyl 1965; 

Estes 1991; 2017). This is largely in response to grass availability. The springbok can 

survive on very little water (Estes 1991; Kingdon 1997; Skinner and Louw 1996) and 

tolerates water with a high mineral content and often obtains water from succulents and the 

food it eats but will drink water when it is readily available (Nagy and Knight 1994).  

Springbok have been observed feeding on karooid vegetation from riverbeds and dry lake 

beds as well as foraging on tall shrubs or consuming leaves from the ground and 

occasionally will dig for roots (Bigalke 1972; Eloff 1959; Van Zyl 1965; Cain et al. 2004) 

or seek succulents and cucurbits (gourds) in the absence of surface water (Kindon 1997). 

Some of the favoured vegetation are succulent shrub leaves (e.g. Acacia mellifera) and 

coarse/hard-stemmed grasses, including Aristida, Eragrostis, Cynodon, Panicum and 

Sporobolus (Davies et al. 1986; Nagy and Knight 1994; Skinner 1996; Skinner and Louw 

1996). 

Table 3.1: Diets of male springbok during observation in the Kalahari from stomach 
contents. Table adapted from Nagy & Knight 1994 pp. 866-867. 
Season Plant 

species 
Part of 
plant 

Percentage 
of diet (%) 

Energy 
content 
(Kj/g dry 
mass) 

Water 
content (ml 
H2O/g dry 
matter) 

Hot, 
dry 

With 
drinking 
water 

Stipagrostis 
obtusa 

Dry leaves 65.1 16.5 0.064 
Green 
leaves 

10.3 18.2 1.950 

Rhigozum 
trichotomum 

Green fruits 5.9 17.7 4.977 
Small twigs 5.5 17.3 0.377 
Dry flowers 1.6 17.6 0.092 

Acacia 
erioloba 

Dry seed, 
pod 

5.5 18.0 0.054 

Leaves, 
flower 
stems 

0.7 18.5 0.556 

Acacia 
mellifera 

Old leaves  0.9 18.7 0.556 

Boscia 
albitrunca 

Green 
leaves 

0.8 14.3 2.532 

Monechma 
incanum 

Flowers 0.7 17.1 0.100 

Gisekia 
africana 

Green 
leaves 

1.7 16.3 5.745 

Unknown  1.3   
Weighted 

mean 

  16.9 0.699 

Hot, 
dry 

Without 
drinking 
water 

Acacia 
mellifora 
and 
A.hebeclada 

Flowers 15.9 18.9 1.559 
Leaves 0.3 18.3 1.062 

Acacia 
erioloba 

Seeds 10.6 17.8 0.022 
Leaves 1.0 18.8 1.385 

Stipagrostis Dry leaves 9.0 15.8 0.014 
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obtusa Green 
leaves 

0.5 18.7 0.775 

Boscia 
albitrunca 

Leaves 1.4 18.6 1.006 

Unknown Flower pulp 61.1 18.9 1.559 
Weighted 

mean 

  18.5 1.241 

Hot, 
wet 

With 
drinking 
water 

Stipagrostis 
obtusa 

Green 
leaves 

15.7 17.5 1.008 

Old leaves 52.0 16.3 0.445 
Dry leaves 13.8 17.2 0.171 

Acacia 
mellifera 

Green 
leaves 

5.0 19.5 0.980 

Rhigozum 
trichotomum 

Green 
leaves 

4.9 17.5 0.786 

Acacia 
erioloba 

Green 
leaves 

1.8 19.5 0.923 

Tribulus 
terrestris 

Stems 6.8 17.4 0.296 

Weighted 

mean 

  17.0 0.537 

Cold, 
dry 

With 
drinking 
water 

Stipagrostis 
obtusa 

Leaves, 
stems 

14.3 18.0 0.120 

Acacia 
mellifera 

Old leaves 41.8 18.6 1.062 
Dry leaves 1.8 20.2 0.042 

Monechma 
incanum 

Dry leaves, 
stems 

4.8 16.6 0.514 

Tribulus 
terrestris 

Stems 5.1 15.1 0.028 

Acacia 
erioloba 

Old leaves 2.2 20.7 0.851 

Boscia 
albitrunca 

Green 
leaves 

5.1 119.2 0.870 

Unknown Leaf pulp 24.8 18.6 1.062 
Weighted 

mean 

  18.3 0.814 

Interestingly, from the observations of springbok in the Kalahari by Nagy & Knight (1994), 

the springbok ate a wider range of foods with relatively high water content in the hot, dry 

season without drinking water but chose fewer, higher water-rich plants (and plant parts) in 

the hot, dry season with access to drinking water. The latter choice provided comparatively 

less energy to the springbok than plants with lower water content (as may be expected). The 

overall mean water consumed was higher from utilising the range of plants with relatively 

lower moisture content, which also provided comparatively more energy than the plants 

with higher moisture content. In accordance with many similar-sized antelopes, springbok 

feed most intensively around dawn and dusk (Kingdon 1997), when moisture content of 

vegetation is high. Without access to drinking water, the springbok consumed 

predominantly flowers, whereas with drinking water available, their highest intake was 

from the leaves (from various plant species) with Stipagrostis obtusa being an apparent 

preferred species. Stipagrostis obtusa is a species of perennial grass (monocot), requiring 

relatively large quantities to fulfil nutritional requirements, hence why larger quantities of 

this species may be consumed.   

This may prove relevant for stable isotope analysis interpretations (see chapter 10). Whilst 

Table 3.1 is a snap-shot into the dietary habits of male springbok, these observations could 
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be useful in interpreting some of the dietary indicators from fossil Antidorcas. For instance, 

the preferred plants could highlight the cause of microwear scarring seen on dental enamel 

surfaces (see chapter 4, for explanation of DMTA variables). As an example, the expected 

dietary use-wear signal from Stipagrostis obtusa would be one of high enamel wear 

anisotropy, low complexity and low heterogeneity (microwear), i.e. a summer grazing 

signal. However, it is likely that this vegetation species was consumed alongside other 

vegetation (seasonally and alongside other summer grazing vegetation types), more likely 

to produce wear typical of abrasive mixed feeding (high relief with rounded cusps 

mesowear signal; medium anisotropy, medium complexity and high heterogeneity 

microwear signal). The impact upon microwear values of consuming succulents, cucurbits 

and roots would presumably create a similar range to that of fruit-browsing/mixed-feeding. 

There is the potential to understand seasonality from corroborations with this type of 

modern observational data also, with comparisons of the fossil observations (via 

carbon/oxygen isotopes or microwear signals) with the plant species, plant parts and their 

respective nutritional (energy and water content) properties.  

Kalahari springbok have also been observed to make use of natural ‘licks’, presumably to 

supplement their diet (Stapelberg et al. 2008). When and where any natural lick areas 

would have been present and utilised in the Plio-Pleistocene is not known.  

Fossil Intangible traits and behaviour 
Extinct Antidorcas species would have had intangible traits that although not directly 

visible, could have allowed survival in certain habitats or encourage dietary changes. For 

example, their pelage (properties of their coat-including colour and thickness) may have 

contributed to their demise should other species occupying a similar niche thermoregulate 

more effectively in fluctuating climates. Optimal feeding, reproductive behaviours and 

vigilance would be vulnerable to compromise. Thus, the springbok would be outcompeted. 

We might expect to see this for example, in variable climates or major climatic shifts 

around 2.8, 1.7 and 1.0 Ma (e.g. deMenocal 1995), exaggerated if species such as impala 

are present or if multiple Antidorcas species co-exist at any one time. Although largely 

intangible, their effects could impact the data obtainable, those that may directly impact 

data obtained in this research are discussed briefly here (see Appendices A5 for further 

discussion).  

THERMOREGULATION: Modern springbok adjust their behaviour throughout the day 

as a response to thermoregulatory needs compromised with nutritional requirements 

(Skinner and Louw 1996). Springbok have a thin pelage, leaving it vulnerable to extreme 

temperatures. Where feeding requirements mean feeding in sub-optimal sun intensity or 

temperature conditions, the animal either seeks shade or orients its body accordingly 

(Skinner and Louw 1996). The pelage and thermoregulatory needs and responsive 

behaviour to variable climates of extinct Antidorcas are unknown. The speculative 

possibility exists that fossil Antidorcas species died out due to increased aridity and 

reduced shade as grasslands expanded and tree cover reduced. This could be loosely 

inferred via dietary vegetation proxies and oxygen isotope (δ18O) values could be used as 

supportive evidence for thermoregulation-implicating hypotheses.   
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Figure 3.8: Springbok 
(Antidorcas marsupialis) 
observed at the Rhino and Lion 
Nature Reserve within the 
Cradle of Humankind World 
Heritage Site, Gauteng 
Province, South Africa. 
 
 
 

Herd demographics 

Figure 3.9: Springbok (Antidorcas marsupialis) observed at the Rhino and Lion Nature 
Reserve within the Cradle of Humankind World Heritage Site, Gauteng Province, South 
Africa. 
Herd demographics and Male / female springbok behaviour can differ seasonally, such as 

during the rutting or lambing season, with their nutritional needs fluctuating differentially 

throughout the year (more dispersed in the dry season). Dietary differences can also be 

dimorphic as a result of herd demographics and differential habitat preference, vigilance 

requirements and many other related factors. Modern A. marsupialis of known sex can be 

used to inform on the predicted degree of sexual dimorphism likely in the fossil record. 

Although this can only be based on assumptions on the behavioural similarity of fossil 

species, it can nonetheless be used as a helpful indication. The social constraints, such as 

individual ranks, age and sex within herds may impact on food selection (Appleby 1980; 

Cȏté 2000). This factor should be borne in mind when interpreting dietary indicators, 

particularly of fossil Antidorcas.   

Sexual Dimorphism: Different selection pressures act on males and females throughout 

the year. This factor is worth bearing in mind when considering the success of the lineage 

in contrast to others. For example, nutritional requirements of the female can fluctuate 

according to season and reproductive status. The quality and quantity of the available 

vegetation can dictate the success of the springbok ewe and her lamb(s). Modern springbok 

data will be tested for sexual dimorphism as a factor, to ensure any similar patterns in the 

fossil data are not misinterpreted as signifying distinction of species.  

Although lambing can happen any time of year, it tends to peak in summer within the 

summer rainfall period, with the breeding process correlated to the onset of the spring rains 

(Skinner and Louw 1996; David 1978).  

Migration: Until the end of the nineteenth century, huge migratory herds of springbok 

were witnessed (Wilcove 2007, Estes 1991, Kingdon 1999, Dewar et al. 2006). Referred to 

as ‘trekbokken’ (Bigalke 1972, p. 338), large numbers of springbok would come together 

from the interior of the Kalahari and Karroo and invade surrounding areas during times of 

drought when the animals were essentially forced outside their normal range (Estes 1991). 

Bigalke (1972) reports on this trend being observed following a period of unfavourable 

conditions in the favoured habitat of the springbok. The level of migration, seasonal or 
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otherwise, in extinct Antidorcas, is unknown. That Antidorcas marsupialis was previously 

known to embark on periodic mass migrations (Dewar et al. 2006; Berger et al. 2006) 

suggests the migratory tendency may have been prevalent in the ancestral form.  

It is possible that the palaeovegetation signal obtained here will reflect a larger regional 

scale, if the extinct forms migrated on a similar scale to the extant springbok. Thus, 

although assemblage provenance is used as a means to show temporal range, Antidorcas 

data cannot definitively give a vegetation reconstruction on the microscale for each site. 

Vrba (1980) states that the autochthonous or allochthonous (indigenous/immigrant species) 

nature of an assemblage should be known prior to attempting palaeoenvironmental 

reconstruction. Modern springbok are thought to follow their preferred vegetation 

according to the seasonal climate (Bigalke 1972). Should their preferred vegetation have 

been lacking around the Cradle of Humankind at any point, perhaps seasonally, the 

springbok species could have migrated, following their nutritional requirements. 

Consequently, the vegetation conditions at the Cradle of Humankind during their migration 

elsewhere would not be represented in the results of this study. However, the southern 

African regional palaeoenvironmental signal would prevail.  

Seasonality: To know the extent of fossil springbok movements and dietary fluctuations, 

for all the Antidorcas species, according to season is extremely challenging from the 

current knowledge of the fossil record (as Figure 3.10 for extant springbok). Yet seasonal 

movements or dietary fluctuations could influence interpretations in this study. For 

example, if the springbok were to migrate during the ‘grazing season’, there could be an 

under-representation of grazing signals in the microwear and isotopic dietary results 

obtained. It would be difficult to assess whether the under-representation of browsing is the 

result of a lack of browse at the site or seasonal preference.  

In many modern zooarchaeological assemblages, seasonality can be inferred through age at 

death (e.g. Lubinski 2001). Age at death can be learned from dental eruption patterns and 

dental enamel wear rates. However, paleontological samples have a high quantity of 

individual teeth, eliminating eruption patterns from available methods. Wear rates are 

recorded in this study but require caution as the scale of wear can be species-specific and 

can vary according to the food consumed. Hard-object feeders are more likely to have 

greater wear rates than those ruminating on softer foodstuffs.  

If there is an over-abundance of similar ages represented within the species assemblage, 

this can be used to infer seasonality. For example, Dewar et al. (2006) use this method to 

infer catastrophic mortality profiles for springbok in Namaqualand, as wild springbok in 

Namaqualand are born within a few weeks in July and there was an over-representation of 

6-month-old mandibles within the assemblage, a (December) summer season of death was 

implied. The microwear signal on the teeth of the individuals in this assemblage could be 

reliably indicative of the summer diet of the springbok in the area. Alternatively, 

seasonality has been inferred from dentition in archaeological assemblages by reading the 

dentin-cementum bands which form seasonally and can be used like tree rings to 

understand season of death (Speiss 1976; Lieberman 1994). Further investigation into the 
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feasibility of the method could be considered as an avenue for future research should 

seasonality be deemed to be a significant factor. 

Whilst the visibility of seasonality in the fossil record is poor, by utilising multiple 

methods, seasonality can be inferred. For instance, seasonality may become apparent from 

serial sampled stable isotope signals, if sample sizes are sufficiently large to allow accurate 

interpretations. Additionally, seasonality may be inferred from a discrepancy between 

dietary indications from a single individual, via stable isotope analysis (young springbok), 

mesowear (averaged lifetime signal) and microwear analysis (end of life). Additional data, 

such as the presence of resident browsers (e.g. Makapania broomi and Tragelaphus 

strepsiceros) and grazers (e.g. Damaliscus pygargus) in each deposit will be factored into 

this.  

Knowledge of seasonal changes adds to palaeoenvironmental interpretations and allows 

understanding of environmental stressors impacting upon the faunal community. An 

intensification of the seasons for instance would likely create temporary habitat instability 

and perhaps lead to rapid adaptation and/ or demise of the more specialist fauna (who, in 

contrast to generalists, would be more vulnerable to habitat and niche variability).  

 

Figure 3.10: From Skinner and Louw 1996, page 22. The impact of seasons on the 
nutritional requirements of springbok (the rutting season here is in April (Skinner and 
Louw 1996, page 21)). Vorster’s 1994 experiment in the Vrolojkheld Nature Reserve on 
springbok rumen analysis showed that the springbok preferentially selected young green 
shrubs and leaves. This preference for the new shoots is inferred for the extinct species, 
Antidorcas bondi, as the smallest member of a grazing succession (Brink and Lee-Thorp 
1992, see below). This information is useful for understanding the ontogeny of the 
springbok and the potential influencing factors for dietary signals, particularly isotopic 
values. 
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3.3 CONTEXT WITHIN THE FAUNAL COMMUNITY and 

potential biotic causes of dietary change 

Associated species  
To accurately infer palaeoenvironmental change from palaeovegetation indicators 

obtainable via Antidorcas dentition, considerations regarding the biotic influence on 

Antidorcas diet must be considered. The associated species within the faunal community 

and their impact on the success of the springbok may not be immediately obvious but 

undoubtedly existed. For fossil springbok, species within the same assemblage could be 

inferred as associated (however, due to the complexity of the cave stratigraphy at the Cave 

of Humankind, this signal is likely further complicated by factors such as time-averaging).  

An association exists today between the modern springbok, blue wildebeest, red hartebeest 

and zebra in parts of Namibia and Botswana (Estes 1991). Observations have been made in 

the Kalahari, of the blue wildebeest (Connochaetes taurinus) preceding the feeding of the 

springbok; feeding on the higher-level grasses before the lower-level grazing of the 

springbok (Knight 1995; Stapelberg et al. 2008). However, although these two species are 

often found together, studies suggest they prefer not to be in close proximity (Stapelberg et 

al. 2008). This is similar to observations on the Thomson’s gazelle (Gazella thomsonii) in 

the Serengeti, with a similar niche partitioning shown with the white-bearded wildebeest 

(Connochaetes taurinus maernsi), the Thomson’s gazelle (Gazella thomsoni) and the plains 

zebra (equus quagga) but with increased competition displayed by the wildebeest on the 

gazelle (Sinclair & Norton-Griffiths 1982).  

Furthermore, the Cape buffalo (Syncerus caffer) for example, is a known carrier and 

propagator species of diseases (Michel and Bengis 2012). Hypothetically, if Antidorcas 

were to inhabit areas in close proximity to these buffalo, they would be at increased risk of 

rinderpest and other zoonotic diseases.  

Competitors 
Where there is more than one Antidorcas species in the same member, they would be 

expected to have contrasting diets and either occupy contrasting dietary niches or adopt 

flexibility in their feeding practices. as witnessed in other multi-species taxa, such as 

Darwin’s finches on Daphne Major, Galapagos (Weiner 1994) and as assumed for 

Paranthropus and Homo (e.g Robinson 1965). There are many other bovids present 

throughout the temporal period which would compete with Antidorcas species, depending 

on their respective preferred diets. Key competitors can be more comprehensively 

appreciated after establishing dietary signals from all 

Antidorcas species.  

MIXED FEEDER:  Based on modern comparisons, it could 

reasonably be assumed that the impala (Aepyceros melampus) 

occupies the most similar niche, and ranges across old and new 

springbok territories (see 

Figure 3.11 Male impala 
observed in Pilanesberg 
National Park, Gauteng 
Province, South Africa. 
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Figure 3.7), and thus may be considered a key competitor to Antidorcas (see Table A5.1, 

Appendix A5).  

The impala appears around 3 Ma at Makapansgat (Reed 1996), then disappears from the 

South African fossil record, and reappears around 1.8 Ma at Gladysvale (Cradle of 

Humankind, Gauteng Province, South Africa) (Cooke 1963; Lacruz et al. 2003). If 

accepting ecological uniformitarianism, one might expect the impala to be more abundant 

than the springbok during interglacials. The impala and springbok have relatively similar 

niches (see Appendices A5). However, the springbok is less dependent on water and more 

arid-adapted than the impala. When considering the requirements of the species, there is the 

potential that it is not the impala itself impacting upon the community but the changing 

environmental conditions. The very conditions that draw the impala in could be what 

pushes other species (especially springbok) out. Therefore, it is not actually inter-specific 

competition for resources but a response to environmental change. If impala obviously 

appear when springbok disappear, this would make conclusions simpler to draw. 

Potentially dependent fossil species: GRAZING SUCCESSION 
Brink and Lee-Thorp (1992)’s suggested grazing system highlights an ecosystem 

symbiosis, with grazing bovids of varying sizes, cropping grasses according to their size 

and nutritional demands and become relatively dependent on the other species within this 

succession. Each animal within this succession would consume a different part of the plant, 

with the smallest successor, A. bondi, eating the shortest shoots and roots, closest to the 

ground (Brink and Lee-Thorp 1992). If so, it is likely that there would be a substantial 

amount of grit in the diet, adding to increased wear on the tooth surface, which should show 

up in the microwear analysis (see chapter 9 ‘Microwear’). A. bondi was proposed as the 

smallest member of a grazing succession suggested as a result of isotopic analysis 

combined with morphological and mesowear-type analysis (Brink & Lee-Thorp 1992), 

supported at other sites, such as Florisbad (Codron et al. 2008).  

Within this suggested grazing succession A. bondi’s diet consisted of high soil moisture, 

with newly-sprouted grass, thanks to the regular mowing of the ‘sward’ by larger 

herbivores and regular moisture would encourage regrowth and thus, sufficient nutrients for 

Antidorcas bondi. (Brink & Lee-Thorp 1992). The nutritional plane is less subject to the 

seasonal changes under these conditions (Skinner & Louw 1996). A change in moisture 

level or any palaeoenvironmental/paleovegetational change that impacts any of the other 

‘facilitator’ species in the succession as well as directly A. bondi, could impact on A. 

bondi’s success. 

Such a scenario is similar to the grazing succession for modern African ungulates proposed 

by Bell (1971). Further to this, the blue wildebeest (Connochaetes taurinus) has been 

observed to avoid competition with the modern springbok (Antidorcas marsupialis) by 

niche separation (Stapelberg et al. 2008). Knight (1995) suggested the blue wildebeest 

grazed at a higher level than the springbok, forming a type of grazing succession with the 

wildebeest preceding the feeding of the springbok. Connochaetes sp. has been found in 

deposits from Sterkfontein Member 4 and Member 5 (East and West) alongside Antidorcas 

sp. as well as in the unstratified D16, D8 and H2 deposits. As is the case for Swartkrans 



77 

 

Member 1 (HR and LB), 2 and 3 (Brain 2004; Reynolds et al. 2003, 2007; de Ruiter 2003; 

Reynolds & Kibii 2011; McKee et al. 1995). Whilst the same niche partitioning and dietary 

behaviour may have differed for both Antidorcas and Connochaetes in the past and differed 

with the ancestral and varying species, the potential of dependence on other species is 

worth considering when attempting to understand the evolutionary event potential and 

influence of environmental and climatic changes in catalysing evolutionary change in the 

Antidorcas lineage (senso lato).  

Other species within the ecosystem have the potential to buffer the environmental stressors 

on Antidorcas, or conversely, to heighten the competition for desired resources, increasing 

the impact of palaeoenvironmental changes. It is worth considering the possibility 

therefore, that these antelope died out as a result of another species due to their dependence 

on other species within this succession. The beginning of the Holocene saw a decline and 

extinction of many of these species (Brink and Lee-Thorp 1992). With the ultimate 

extinction of A. bondi occurring at roughly 7000 years ago at the end of the last glacial 

when environments became wetter (Skinner and Louw 1996), alongside other faunal 

extinctions.  

 

Figure 3.12: Hypothesised Florisian grazing succession including A. bondi as the smallest 
antelopes forming this succession, Larger-bodied grazers feeding on the longer grass, 
keeps the grass in a constant state of regrowth, enabling smaller-bodied species to occupy 
a grazing niche whilst still meetings its nutrient requirements (from Brink 2016, Figure 
18.4, p. 298). 
 

Predators 
Knowledge of probable predators of fossil Antidorcas allows for comprehension of the 

likely nature of deposition (Cillié 2004).    
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Table 3.2: Likely predators of springbok, predators present in the same CoH assemblages 
as Antidorcas. Leopard (Panthera pardus), caracal (Caracal caracal), cheetah (Acinonyx 
jubatus), lion (Panthera leo), brown hyaena (Hyaena brunnea), African wild dog (Lycaon 
pictus) and spotted hyaena (Crocuta crocuta). Others, placed in brackets, such as 
Chasmaporthetes nitidula (and extinct hunting hyaena) are likely to have been predators to 
Antidorcas based on modern Antidorcas predator (and size) associations. The predators 
listed with ‘modern’ refer to know Antidorcas predators. References: Brain 2004, Reynolds 
et al. 2003, 2007, Reynolds & Kibii 2011, Mckee et al. 1995, deRuiter 2001, 2003. 
Member Predators present 

Sterkfontein Member 4 Panthera pardus, Panthera leo, 
(Chasmaporthetes nitidula, 
Chasmaporthetes Silberberg, Homotherium 
crenatidens) 

Sterkfontein Member 5 West Crocuta crocuta, (Homotherium 
crenatidens, Megantereon cultridens, 
Chasmaporthetes silberbergi, 
Chasmaporthetes nitidula) 

Swartkrans Member 1 HR Panthera pardus, Caracal caracal, 
Panthera leo, (Chasmaporthetes nitidula) 

Swartkrans Member 1 LB Panthera pardus, Caracal caracal, 
Acinonyx jubatus Panthera leo, 
(Chasmaporthetes nitidula) 

Swartkrans Member 2 Acinonyx jubatus, (Chasmaporthetes 
nitidula) 

Swartkrans Member 3 Panthera pardus, Acinonyx jubatus, 
Crocuta crocuta,  (Chasmaporthetes 
nitidula) 

Modern Panthera pardus, Acinonyx jubatus, 
Crocuta crocuta, Caracal caracal, 
Panthera leo, Hyaena brunnea, Lycaon 
pictus 

 

SECTION 2: SUPPLEMENTARY SPECIES 

ECOLOGY 
 

GRAZER: Blesbok (Damaliscus 

pygargus)  

Figure 3.13: The blesbok (Damaliscus pygargus) pictured 
with springbok (Antidorcas marsupialis) at the Rhino and 
Lion Nature Reserve within the Cradle of Humankind World 
Heritage Site, Gauteng Province, South Africa. 

Extant ecology: Damaliscus pygargus pygargus, the 

Bontebok and the Blesbok, Damaliscus pygargus dorcas are considered conspecific. 

Damaliscus pygargus is a characteristic species of open grasslands of the southern African 

Highveld and are considered obligate grazers, with a preference for short grass. They are 

also obligate drinkers (Lloyd and David 2008).   

Fossil Damaliscus pygargus (dorcas): The two modern species of Damaliscus, 

the Blesbok (Damaliscus pygargus dorcas) and Tsessebe (Damaliscus lunatus) are thought 

to have diverged very recently with a common ancestor, Damaliscus agelaius being found 
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in fossil form from sites less than 1 Ma in South and East Africa. Kingdon (1997) suggests 

that this is due to the emergence of a new competitor taking over as the dominant grazer in 

dry savannah grasslands.  

D. dorcas was found at the cradle of Humankind sites but its geographical range no longer 

extends this far and is confined to small areas in the southern half of South Africa (Estes 

1991). The Tsessebe (Damaliscus lunatus) inhabits floodplain areas, where small, isolated 

populations appear to be vulnerable to environmental changes (Kingdon 1997 p.427; Estes 

1991). Some D. lunatus teeth are likely to be included in the fossil Damliscus sp. 

(undintified beyond genus level) category from the Cradle of Humankind assemblages. A 

small selection of modern D. lunatus were included in the dataset for comparison to these 

fossil examples (see Appendix A7).  

BROWSER: Greater Kudu (Tragelaphus strepsiceros) 

Figure 3.14: Male greater kudu observed in Pilanesberg 
National Park, Gauteng Province, South Africa, 
surrounded by tall trees and browse vegetation. 

Extant ecology:  Preferred habitats include mixed 

scrub woodland, acacia, and mopane bush on 

lowlands/highlands. Greater kudus are considered obligate 

browsers, independent of water unless the vegetation is 

very dry (Owen-Smith 2013).  

Fossil Tragelaphus strepsiceros: The Greater 

kudu is found extensively across South Africa and 

throughout the deposits of Sterkfontein and Swartkrans but in relatively low numbers. 

Typically, the greater kudu feeds preferentially on browse (Estes 1991; Castelló 2016). 

 

 

CHAPTER 4 

 MATERIALS AND METHODS 
SECTION 1: MATERIALS 

A selection of Antidorcas, and supplementary taxa of Damaliscus pygargus and 

Tragelaphus strepsiceros dentition was used from the Cradle of Humankind site 

assemblages ( 

Table 4.1), as well as a selection of comparative modern dentition from each of these taxa. 
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Figure 4.1: University of the Witwatersrand, BPI comparative collection: Antidorcas 
marsupialis cranium with facet identification for maxillary (upper) molars.  

Selection Criteria: The selection criteria used for each method, including minimum 
number of individuals, tooth type, species, tooth characteristic and quality, are discussed 
individually for each method used in the Methods section (section 2) below.  

Main site assemblages: 
Sterkfontein (Member 4, Member 5 East, 5 West and StW53 Infill), Swartkrans (Member 1 

lower breccia, hanging remnant, Member 2 and Member 3), Kromdraai (KA, KB, KE and 

KW specimens) and Cave of Hearths (COH Beds 1-3, unstratified and Bed 9). 

Additional site assemblages used (fewer Antidorcas specimens used): 

Sterkfontein unstratified, Sterkfontein L63, Gondolin GDA, Gladysvale and Plovers Lake 

Further faunal assemblages from additional sites were used for a meta-analysis (chapter 4) 

of southern African hominin-associated deposits from within this timeframe (2.8-0.8 Ma). 

These are briefly discussed.  

Chronology and Acronyms used 
Before using the data collected, the provenance of the material must be considered. 

Published dates and relative chronologies will be relied upon. All conclusions are subject to 

revision should these dates be amended. Within this research, the following chronological 

order (from oldest to youngest) for deposits is used to represent a temporal sequence:  

Sterkfontein Member 4 (SK M4); Kromdraai W, B and E (KW, KB, KE); Sterkfontein 
Member 5 (SK M5) StW53 Infill (SK M5StW), East (SK M5E) and West (SK M5W); 
Swartkrans Member 1 (SKX M1) Lower Bank (LB) and Hanging Remnant (HR); 
Kromdraai A (KA); Gondolin (GA); Swartkrans Member 2 (SKX M2); Cooper’s Cave 
(CC); Swarktrans Member 3 (SKX M3); Plovers Lake (PL); Cave of Hearths (COH), 
Gladysvale (GV) and Modern.  

 

Specimens used 
Full specimen lists are provided in Appendices (Appendix A10).  

Table 4.1: Fossil and modern specimens used for this research, separated by site, context 
(Member), and taxa. N= number of specimens used. Each specimen may be represented by 
more than one tooth (detailed in Appendix A10). 
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SITE MEMBER GENUS SPECIES N 

Sterkfontein 

4 

Antidorcas (total) 13 
Antidorcas recki 12 
Antidorcas bondi 1 
Damaliscus pygargus 8 
Tragelaphus strepsiceros 6 

5 Antidorcas (total) 59 

5 West 

Antidorcas recki 14 
Antidorcas bondi 24 
Antidorcas marsupialis 2 
Antidorcas sp. 1 
Damaliscus pygargus 10 
Damaliscus sp. 2 

5 East 

Antidorcas recki 6 
Antidorcas bondi 8 
Antidorcas marsupialis 2 
Antidorcas sp. 2 
Damaliscus pygargus 9 
Damaliscus sp. 13 
Tragelaphus strepsiceros 3 

StW53 Infill 
Damaliscus pygargus 3 
Tragelaphus strepsiceros 2 

L/63/ PM6 
Infill 

Antidorcas marsupialis 12 
Damaliscus pygargus 6 

Swartkrans 

1 

(total) 29 
Antidorcas (total) 25 
Antidorcas sp. 4 
Antidorcas recki 4 
Antidorcas bondi 3 
Antidorcas marsupialis 14 
Damaliscus pygargus 4 

1, Hanging 
Remnant 

(total) 5 
Antidorcas sp. 1 
Antidorcas bondi 2 
Tragelaphus  strepsiceros 2 

1, Lower Bank 

(total) 13 
Antidorcas sp. 2 
Antidorcas recki 3 
Antidorcas bondi 1 
Antidorcas marsupialis 6 
Damaliscus pygargus 1 

2 

(total) 99 
Antidorcas (total) 82 
Antidorcas sp. 28 
Antidorcas recki 7 
Antidorcas bondi 36 
Antidorcas marsupialis 11 
Damaliscus pygargus 8 
Tragelaphus strepsiceros 9 

3 

(total) 118 
Antidorcas (total) 116 
Antidorcas sp. 15 
Antidorcas cf. recki 24 
Antidorcas bondi 4 
Antidorcas marsupialis 73 
Damaliscus pygargus 2 

Kromdraai (total) 69 

Kromdraai 
 Antidorcas (total) 57 

KA 
Antidorcas sp. 37 
Damaliscus sp. 12 
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KB 
Antidorcas sp. 1 
Damaliscus sp. 3 

KE Antidorcas sp. 3 
KW Antidorcas sp. 16 

Cave of Hearths (total) 70 

Cave of Hearths *see text below 

Antidorcas sp. 8 
Antidorcas bondi 45 
Antidorcas marsupialis 13 
Tragelpahus  strepsiceros 2 
Aepyceros  melampus 2 

Gondolin 
Antidorcas sp. 2 
Damaliscus sp. 1 

Plovers Lake Antidorcas  sp. 32 
Gladysvale (total) 12 

Gladysvale 

Antidorcas  sp. 2 
cf. Antidorcas  1 
Damaliscus  7 
Tragelaphus  2 

Modern 

Antidorcas marsupialis 43 
Damaliscus pygargus 31 
Damaliscus other 10 
Tragelaphus strepsiceros 10 

Further information on specimens used  
Sterkfontein and Swartkrans faunal collections used for this research were previously 

curated at the Ditsong Museum of Natural History (2016 data collection only) but are 

currently, at the ESI, University of the Witwatersrand (2017 data collection).  

Kromdraai faunal collections used for this research are curated at the Ditsong Museum of 

Natural History (pre-2014) and the ESI, University of the Witwatersrand (2014 onwards, 

labelled with the prefix ‘KW’). KW and the few KB and KE specimens are positioned on 

the timeline between Sterkfontein Member 4 and Sterkfontein Member 5. KA and KB are 

no longer justified prefixes as these represent a mix of stratigraphic units that are not 

temporally homogeneous. [KB and KE specimens used here were checked against current 

records held (ESI, University of the Witwatersrand, Zipfel pers comm.) to place them in the 

appropriate chronology. Of those recorded, the Antidorcas specimens, KE 7196 was found 

at the base of the flowstone (Bas Coulée Stalagmitique) and KE 7257, KE 6939 were found 

on the West Portos Wall/ Brain Trench (Edge and North respectively)]. Pending refinement 

of member temporal ranges and clarification on provenance of individual KW specimens, 

Kromdraai deposits’ specimens here are placed between those of Sterkfontein Member 4 

and Sterkfontein Member 5 / Swartkrans Member 1 in the chronological succession used in 

this research to represent change through time.  KA (1.5-1 Ma) is positioned between 

Swartkrans Member 1 and Swartkrans Member 2 in the chronological sequence applied 

here.  

The Cave of Hearths, Plovers Lake, Gladysvale and Gondolin faunal assemblages are 

curated at the ESI, University of the Witwatersrand. A very small sample size is 

represented from Gondolin.   

Although outside the main geographic focus of this research (Cradle of Humankind, CoH), 

hominins and Antidorcas were present at the Cave of Hearths (COH), which represents the 

youngest deposit used as a focus site for this research. Including this site enables 
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consideration of a wider geographic area, incorporating more vegetation and habitat types. 

Faunal assemblages considered here are primarily from Beds 1-3, believed to be ESA (early 

stone age) deposits. Antidorcas remains have been recovered from surface finds, unknown 

stratification, Bed 3 and Beds 8/9 and are subject to the multi-method analysis of this 

research dataset* (see  

Table 4.1).  

At c. 0.08 Ma, the internal deposit of Plovers Lake is beyond the youngest limit considered 

for this research and are used here primarily as a relatively ‘modern’ comparisons for fossil 

Antidorcas palaeoecology.  

A selection of modern specimens were measured to establish the intra-specific variation 

levels for an Antidorcas species (and for supplementary species of Damaliscus and 

Tragelaphus). All information held by the housing institution was recorded to allow for 

detailed interpretation of findings. Information such as where the animal lived -country, 

geographic area, wild/zoo specimen; date killed/died and sex of the individual. Priority was 

given to wild-caught individuals. Zoo specimens were avoided as far as possible as they are 

not reflective of a natural diet.  

SECTION 2: METHODS 
A faunal meta-analysis and Antidorcas identification methods are introduced first to 

establish the baseline from which the majority of this research depends. The main methods 

used in this research to assess palaeoenvironmental reconstructions and changes are then 

introduced, how the methods have been used to date (as available from the literature) is 

summarised and evaluated and the sampling strategy and the particular method 

implemented here is provided.  

4.1 Faunal Community Meta-analysis 

Published faunal assemblage records (cited in chapter 5) are used to establish the fossil 

faunal community for each site and stratigraphic unit member to assess the environmental 

signal suggested by the entire faunal community. For example, an assemblage dominated 

by grassland taxa could be indicative of grassland-dominated habitats (Vrba 1980), 

consequently we may expect Antidorcas’ dietary behaviour to reflect increased grassland. 

This not only gives an expected signal as a starting point but allows the assessment of 

Antidorcas as a bioproxy (i.e. by comparing the final Antidorcas results with those gained 

from the entire faunal community). The more detailed vegetation picture and temporal 

changes of such are then gained from Antidorcas data from this research.  

Lists of recorded taxa for faunal assemblages from contemporary South African sites were 

compiled. All sites falling between 3.0-0.5 Ma were considered. Those with adequately 

recorded and freely-available published faunal data were used for this analysis. Due to the 

variability in published faunal records, presence/absence data at genus level was used for 

the main focus of this meta-analysis. For the purposes of this study, presence/absence is 
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appropriate as only an indication of similarity is required. It is provided as background to 

the research, rather than a fundamental aspect of the research.  

Various linkage methods were trialled to assess the most representative method to 

implement here as are discussed in more depth in chapter 5. 

4.2 Taxonomic Identification Methods 

Identifying dental remains to genera in mixed bovid fossil assemblages can be challenging 

(e.g. Brophy et al. 2014) and attempting to identify to species level even more so. 

Specimens are often represented by isolated molars, making many of the characteristic 

species’ discrete traits of the masticatory apparatus invisible from the specimens. An 

overview of the concept of what constitutes a species is discussed in Appendix A5. This 

section provides a breakdown of how taxonomy was determined for the dentition used in 

this research. Although taxonomic identification of fossil Antidorcas is most easily 

differentiated with horncores, horncore and dental specimens were rarely relatable to one 

another due to the nature of the fossil deposits and horncore remains were relatively sparse. 

Focus is given to the dental remains due to their dietary indication potential. The question 

of horncores is addressed separately in Appendix A4 and not does not form a central part of 

this research.  

The identification of Antidorcas dental specimens underpins the analysis in this research.  

In the absence of a more in-depth taxonomic-focused research for the Antidorcas fossil 

record, the basic taxonomic identification requirements are covered here (see results 

chapter 6, section 2) in order to accurately utilise the Antidorcas material.  

RATIONALE: Where dietary responses may be inferred to be indicative of 

palaeoenvironmental change, knowledge of species is crucial. In order to see any dietary 

changes that may reflect differential palaeovegetation availability, one must first 

acknowledge which species is represented by the specimen, to know which specimens to 

accurately group together to determine species’ diet, and then, how this diet changes 

through time. Species need to be identified as far as possible to ensure this vegetation signal 

is a true reflection of palaeovegetation availability change and not skewed, for instance due 

to an over-abundance of A. bondi within the ‘Antidorcas’ sample, in favour of increased 

grassland. Closely related bovid taxa often have differing ecological requirements, as is true 

of the fossil springbok species. Therefore, inaccurate identifications could have 

ramifications when reconstructing Palaeoenvironments (Brophy et al. 2014).  

Antidorcas australis? 
In addition to the established species categories of A. recki, A. bondi and A. marsupialis, a 

potential fourth species, of unknown palaeoecology, Antidorcas australis has been 

contentiously suggested (Hendey and Hendey 1968). It remains unclear as to the 

geographic and temporal range of this fourth ‘species’, being perhaps only a Cape endemic, 

although suggested to be present in Swartkrans (e.g. Vrba 1973). The taxonomic level of A. 

australis is also open for debate, representing perhaps only a sub-species or even regional 

population. As Gentry (2010) points out, the likelihood of three, let alone, four species of 

one genus present at any one time, in a geographically restricted area seems unlikely.  
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Method of differential identification of Antidorcas dentition  
Images of antelopes with similar dental morphology, likely to be found within the same 

assemblage are provided below (Figure 4.4). Antidorcas can be differentially identified 

from other similar bovids by the following features (as outlined by Gentry 1966, 2010; 

Vrba 1970; Groves 2000):  

� Antidorcas has 5 pairs of grinding teeth, as opposed to 6 pairs characteristic of 
Gazella (Cain et al. 2004). 

� Styles (Figure 4.2) of maxillary molars appear more pronounced than in Gazella.  
� Lower molars have straight lingual walls. The mandibular molar buccal midwall 

stylids are a derived characteristic of Antidorcas dentition. 
� Premolar row is reduced and P2 is often absent. 
� Small P3 and functional P4, whilst P1 is phylogenetically lost (Skinner & Louw 

1996) in the adult dentition. 
 

Antidorcas adult dental formula is the same for all extinct and extant species:  I  C  P  M 

 

 

Figure 4.2: Dental nomenclature used for upper (maxillary) molars. P= premolar, M= 
Molar. 
Taxonomic Identification of Antidorcas Specimens  
The question of taxonomic identity of many of the Antidorcas specimens will be addressed 

and clarified, where possible, within this research. Antidorcas species characteristics are 

summarised in Table 4.2. Dental specimens assigned in published sources to ‘Antidorcas 

sp’ (Brain 1981; Reynolds 2005) or ‘Antidorcas australis’ are reconsidered here for 

taxonomic assignment. The label of ‘Antidorcas sp.’ was also given if conflicts arose 

between published sources (e.g. Vrba 1973; de Ruiter 2001, 2003) identifications or 

between personal identifications and published sources. Reassignments are based on visual 

observation and comparison with modern specimens and comparative collections (at the 

ESI, University of the Witwatersrand).  

Antidorcas australis dentition was originally differentiated primarily on being slightly more 

gracile with narrower molars (Vrba 1973). That there is likely to be overlap of smaller male 

A. australis and larger female A. marsupialis individuals; and with larger A. recki and 

smaller A. marsupialis due to being potentially a chronospecies (transitional form between 

A. recki and A. marsupialis) further complicates accurate species identification. Visual 

assessments were made without prior knowledge of previous published taxonomic 

assignments. For initial, visual taxonomic classifications, no differentiation was made 

P
4
 

P
3
 M

1
 M

2
 M

3
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between A. marsupialis and A. australis. Instead, these specimens were grouped as ‘A. 

marsupialis / australis’ to establish taxonomy without a priori assumptions, as it is 

acknowledged that visually A. australis dentition are almost indistinguishable from fossil A. 

marsupialis (Hendey & Hendey 1968). 

 

 

Figure 4.3:Examples of Antidorcas maxillary (upper) dentition. A-B: Antidorcas recki 
(A=KA2610; B=KNM-ER 6-18 [KNM-ER 6-18 photographed by Lucile Crété]), C-E: 
Antidorcas australis as identified by Vrba (1973): (C=SK 3055; D and E=SK 2115), F-H: 
Antidorcas bondi (F=SF 592; G=KA 2472; H=SK 2366), I: modern Antidorcas 
marsupialis. [Key: KA= Kromdraai, KNM-ER=Kenya National Museum-East Rudolph, 
SK= Swartkrans, SF= Sterkfontein]. Scale bars equal 10mm.  Figure from Sewell et al. 
2019 (p. 4, Figure 1). 
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Table 4.2:Features typical of each Antidorcas species found in Southern Africa, used to aid in species identification of fossil dentition. Characteristic features used to establish 
taxonomic assignment of fossil dental specimens (Vrba 1973; Cooke 1996; Cooke & Wells 1951; Brain 1983; de Ruiter 2003; Gentry 1978, 2011, 2010). Typical M2 dimensions 
established according to the type specimens, from corresponding reference as stated in the table. 1 Cooke &Wells 1951; dimensions written as length x breadth (in mm). 2 
mesiodistal length x bucco-lingual width. Based on mean measurements taken of A. recki from Sterkfontein and Swartkrans by L. Sewell (2016). 3Vrba 1970; mesiodistal length 
taken from the mesial surface of the parastyle to the distal surface of the metastyle x mean value from modern A. marsupialis specimens (measured by L. Sewell). 4 Based on mean 
measurements (by L. Sewell and Vrba 1973) of specimens assigned to A. australis; mesiodistal length x buccolingual width. Table from Sewell et al. (2018). Text in bold indicates 
where dental measurements can support visual taxonomic identifications. 

Species Antidorcas bondi Antidorcas recki Antidorcas marsupialis Antidorcas cf. australis 

Reference Cooke & Wells 1951  Schwarz 1932 Zimmermann 1780 Hendey & Hendey 1968 
Figure See Figure 4.3, Images F-H 

 
See Figure 4.3, Images A-B 
 

See Figure 4.3, Image I 
 

See Figure 4.3, Images C-E 
 

Characteristic 

dental  

features  

• Upper: Strongly developed styles on buccal 
walls (are often basally (i.e. towards the 
body of the tooth) pinched, giving a more 
prominent impression).  

• Upper: Strong external ribs (thickened 
enamel lingual surface). 

• Upper: Complicated folding of enamel walls 
of central cavities, with a greater tendency 
towards dumbbell- shaped central cavities 
(infundibula) and increased curvature. 

• Molar lingual walls have a strong, 
undulating aspect. 

• Outside enamel edges typically ‘wavier’ 
than the flattened appearance of those in A. 
marsupialis. 

• Unbent central cavities (U-
shaped infundibula) 

• Straight mandibular lingual molar 
face 

• Buccal lophs are V-shaped (more 
so than the more rounded ones of 
A. marsupialis) 

• Has styles on upper molars, 
which are more often V-shaped.  
Concave labial walls behind their 
mesostyles a flatter, even 
concave, wall between the 
mesostyle and metastyle. 

• Upper: Less strongly pronounced 
concave posterior part of lateral 
wall (than in A. marsupialis/ A. 

• Lower: Lingual walls are 
straight and almost flat in 
mandibular molars (less 
outwardly bowed than in the 
impala). 

• Lower: Central cavities 
straighten in relatively early 
wear stages 

• Large M3 metastyle, with 
noticeably enlarge third 
(hypoconulid) lobes 

• Lacks PM2 
• Reduced PM3 
• Uncomplicated infundibula 

(unlike A. bondi) 

• Molars are bucco-
lingually narrower in 
mesiodistal length (Vrba 
1973) than A. 
marsupialis (Vrba 1970)  

• Lower: Central cavities 
straighten in relatively 
early wear stages 

• Large M3 metastyle. 
• Lacks PM2 
• Reduced PM3 
• Narrower than A. 

marsupialis and appear 

more gracile (Vrba 

1970) 
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• Extreme hypsodonty (tall teeth) 
• Hypsodonty index for M2 was higher at all 

wear stages than in other species of 
Antidorcas. 

• Teeth narrow relative to length. 
• Similar to impala but transversely narrower. 
• Lower: a depression runs from occlusal 

surface to root between lingual molar lobes. 
Adjacent to these depressions the molar 
walls appear to "bow out", giving the whole 
lingual molar edge a wavy look (more 
similar to impala than the other Antidorcas 
species). 

• Lower: Sometimes present: lingual "rib" 
(metastylid) in the or depression between 
molar lobes. 

• Lower: Central cavities are centrally 
constricted, creating a dumbbell appearance. 

• Large M3 metastyle. 
• Typically Retains PM2 
• PM3 is larger and more complex than in A. 

marsupialis.  
• Buccal lobes of lower molars are generally 

more pointed (less ‘squaring’-where the 
anterior part of the lobe approaches the lobe 
in front), than is the case in the other 
Antidorcas species. The same for the lingual 
walls of upper molars.  

bondi).  
• Upper: Stronger styles than A. 

marsupialis, with a flatter and 
even concave wall between 
mesostyle and metastyle.  

• P2 is usually retained (sometimes 
absent).  

• Lower: Central cavities straighten 
in relatively early wear stages. 

• Lower: lingual walls of lower 
molars are almost as flat as in A. 
marsupialis 

• Large M3 metastyle. 
• Typically Retains PM2 
• PM3 is larger and more complex 

than in A. marsupialis. 
  
 
 

• Typically, slightly larger in 
overall occlusal dimensions 
than A. recki. 
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• Lower: Occasionally goat folds/basal pillars 
are present (extra folds on the anterior-
posterior aspect of the tooth), characteristic 
of goat molars. 

• Thickness of enamel; enamel walls, 

especially those surrounding central 

cavities (infundibula) typically appear 
thicker with respect to tooth size than is the 
case in other Antidorcas species.   

• Lower: Fused paraconid and metaconid. 
Mean M

2 

dimensions 

116mmx9mm 213.3mmx6.3mm 317.4mm(Female)18mm (Male)x 
10.9mm 

412.5mmx7.95mm 
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Figure 4.4: Dentition with similar morphology to Antidorcas, likely to found in the 
assemblages at the Cradle of Humankind to assist with differential identification of 
Antidorcas dentition. A-C: Redunca arundinium (Reedbuck) maxillary dentition, Distong 
Museum of Natural History Mammology department; D-E: Tragelaphus scriptus 
(Bushbuck) mandibular dentition, University of the Witwatersrand BPI comparative 
collection; F: Gazella vanhoepeni (fossil) M611 right maxilla, University of the 
Witwatersrand BPI comparative collection.  
 

4.2.2 Antidorcas recki morphology 
The ancestral springbok was smaller than the descendant springbok, with proportionally 
shorter legs, possessing horncores that were bent sharply backwards distally, with more 
mediolateral compression than A. marsupialis (Brain 1993; Gentry 2010). The horncores 
recovered from Olduvai showed great variation, all with thicker bases than Gazella but with 
some individual specimens’ horncores being shorter and tapering rapidly to a point, with no 
flattened lateral surface or transverse ridges (Gentry 2011). 

 The morphology of A. recki recovered from Kromdraai A is believed to differ slightly from 
that of the Swartkrans, Gondolin and East African (Olduvai Bed 1) A. recki (Herries et al. 
2009; Vrba 1973, 1976; Gentry & Gentry 1978; Adams & Conroy 2005). As alluded to 
previously and stated by Vrba (1976), Antidorcas morphology has little clear succession 
and a broad time span across both East and southern Africa. Antidorcas recki was however, 
the first Antidorcas species recognised outside southern Africa (Gentry 2010).  
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Characteristic dentition features for A. recki 

 
Figure 4.5: A. recki Sterkfontein Member 4. Specimen number: STS 1944; Mandible 
fragment with M2-3 in situ. From left to right: lingual, buccal and occlusal views (lower 
image). Scale bar represents 10mm.  

 
Figure 4.6: A. recki maxillary molar (M3). Specimen number: STS 1325(a). Sterkfontein 
Member 4. From left: buccal, lingual and occlusal (lower image) views. Scale bar 
represents 10mm.  
 

4.2.3 Antidorcas bondi morphology 
A. bondi was shorter but sturdier than the extant A. marsupialis (Plug and Peters 1991). 
Skeletal features of the ulna, proximal radius, os carpi, phalanges, metapodials and distal 
humerus can be used to distinguish A. bondi from A. marsupialis postcranially (Plug and 
Peters 1991).  

Characteristic dentition features for A. bondi 
A. bondi is the most readily differentiated fossil Antidorcas species from dental remains.  
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Figure 4.7: A. bondi Sterkfontein Member 5 East Specimen number: SF 1799 M2. From 
left: buccal, lingual and occlusal (lower image) views. Scale bar represents 10 mm.  

 
Figure 4.8: A. bondi Sterkfontein Member 5 West. Specimen number: SF 915 mandible 
fragment with M3 in situ. From left: lingual, buccal and occlusal (lower image) views. Scale 
bar represents 10 mm.  
 

4.2.4 Antidorcas marsupialis morphology 
A. marsupialis evolved from A. recki (Vrba 1973; Brain 1981) yet a clear FAD for A. 
marsupialis has not been established, in part due to the taxonomic uncertainty of 
Antidorcas australis. Although dentally and postcranially, A. recki was smaller (Vrba 1974) 
and A. marsupialis has been proposed as the largest bodied Antidorcas (conforming to 
Cope’ rule), with large M3 displaying enlarged hypoconulid (third) lobes. From dentition, 
fossil A. marsupialis is difficult to distinguish from the ancestral A. recki. This is 
particularly true for early forms, and perhaps exacerbated by sexual dimorphism in both A. 
recki and A. marsupialis resulting in size overlap from large females of A. recki and small 
males of A. marsupuialis.  
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Characteristic dentition features for Antidorcas marsupialis  

 
Figure 4.9: A. marsupialis Swartkrans Member 2. Specimen number: SK 2953. M3 in 
mandible fragment. From left: lingual, buccal and occlusal (lower image) views. Scale bar 
represents 10 mm.  

 
Figure 4.10: A. marsupialis Swartkrans Member 3 Specimen number: SKX 25562 isolated 
LM1. From left: buccal, lingual and occlusal (lower image) views. Scale bar represents 
10mm.  

4.2.5 Supplementary Species 
A) THE BROWSING END OF THE DIETARY SPECTRUM 

Tragelaphus strepsiceros Images of molars 

 UPPER DENTITION 
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Figure 4.11: South African female Greater kudu (Tragelaphus strepsiceros) maxillary 
dentition in buccal view (upper image) and occlusal view (lower image). Specimen number: 
AZ 1261 (curated at the Ditsong Museum of Natural Hisotry, Pretoria). Scale bar equals 
2cm. 
LOWER DENTITION 

 

 
Figure 4.12: South African female Greater kudu (Tragelaphus strepsiceros) mandibular 
dentition, lingual (upper image) and buccal (lower image) views. Specimen number: AZ 
1261 (curated at the Ditsong Museum of Natural History, Pretoria). Scale bar equals 2cm. 
 

B) THE GRAZING END OF THE SPECTRUM 
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Damaliscus pygargus Images of molars 

 
Figure 4.13: NHM.70.345 Damaliscus pygargus dorcas maxilla (left) and mandible (right). 
Scale bar equals 10mm.  

4.2.6 Assessing the TAXONOMY of the Cradle of Humankind 

ANTIDORCAS AUSTRALIS 
Whether the ‘A. australis’ dental specimens (identified by Vrba 1973 from the Cradle of 

Humankind fossil sites, and also measured in this study) align with any particular 

Antidorcas taxa is assessed in the ‘Antidorcas results’ chapter (chapter 6). Of the Cradle of 

Humankind (Sterkftonein, Swartkrans and Kromdraai) assemblages, some of the specimens 

previously assigned to A. australis (Vrba 1973), and used within this research, were 

separated for this targeted investigation. Results are drawn from each of the methods (linear 

dental measurements, enamel thickness, mesowear, microwear and isotopes) later 

implemented for the palaeoenvironmental investigation. 

A conscious effort was made during data collection to taxonomically identify each 

specimen without a priori assumptions regarding previous researchers’ assignment of 

species. These identifications were made visually based on the criteria outlined in Table 

4.2. Taxonomic assignments made on visual assessment ‘in the field’ were removed for the 

potential A. australis specimens listed in Table 6.20 ‘Antidorcas results’ section 2, to 

remove any potential bias based on prior taxonomic assumptions.  

Scatter plots of all fossil species and modern springbok were made, comparing BLW 

(bucco-lingual width) against MDL (mesio-distal length) (see Figure 6.3-Figure 6.8) to 

assess dental occlusal area in Antidorcas. Subsequently, scatter plots were made using 

enamel thickness data (see Figure 9.2). Discriminant function analyses were then applied to 

see if the morphology of any of the ‘A. australis’ specimens aligned with known A. recki, 

A. bondi or A. marsupialis (fossil and modern) (Figure 6.13). Finally, evidence from dietary 

methods (use-wear and isotopes) was applied.  
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4.3 Linear Morphological Measurements Method 

Basic dental measurements were taken of selected Antidorcas specimens from each 

member (Figure 4.14). Where present in an assemblage (i.e. where present and full 

measurements were obtainable, and not limited by damage), a maximum of 30 teeth from 

each species for each member were selected. Permanent second molars were preferentially 

selected as the methods used here to obtain palaeodietary information can be implemented 

ubiquitously. If M2s were not in sufficient abundance for any particular species or member, 

measurements were taken additionally for permanent first and/or third molars. Maxillary 

(upper) and mandibular (lower) molars were analysed separately for all measurements [i.e. 

All M1s together, separated from all M1s, All M2s together, separated from M2s, All M3s 

together, separated from M3s.]. A total of 704 Antidorcas dental measurements were 

obtained (181 Modern and 523 fossil). Maxillary second molars (M2) were shown to be the 

most abundant in the fossil record and were primarily used for analysis, giving a total of 

361 Antidorcas measurements (64 modern and 297 fossil). M2 were secondarily used. M1 

and M3 (maxillary and mandibular dentition separated), were also analysed (separately) for 

corroborative purposes.  

Descriptive statistics for second molars are summarised in Antidorcas results chapter tables 

(Chapter 6,Table 6.1-Table 6.5).  Corresponding tables for first and third molars are 

included in the appendices (Appendix A6).  

A selection of modern Antidorcas marsupialis dentition were measured for comparative 

purposes and to establish expected levels of intra-specific variation. All permanent molars 

were measured for each individual. As the most abundant tooth type from the fossil sample 

was selected for primary analyses (M2), the corresponding tooth type is selected from the 

modern dataset. Where an individual yielded more than one set of measurements (i.e. left 

M2 and right M2), both measurement sets were taken through to analysis. This was to 

ensure comparability with the fossil dataset as there is no reliable way to identify isolated 

molars to individuals in an assemblage and there is the possibility of taking more than one 

molar (both left and right M2) from an individual as part of the fossil dataset.  

Each molar was assessed using Rautenbach’s (1971) ageing criteria and given a wear 

rating. Very young or unworn dentition, and old or very worn dentition was excluded from 

analyses to avoid influences of age and wear level as far as possible (this is primarily of 

importance for enamel thickness measurements).  

Modern A. marsupialis and supplementary species (Damaliscus pygargus and Tragelaphus 

strepsiceros) were subjected to the same metrical analysis to establish the likely 

intraspecific variation parameters and anticipated levels of change and variability through 

time. Enamel thickness measurements were taken for modern A. marsupialis only (not for 

supplementary species). Enamel thickness was measured on all molars across the toothrow 

for upper and lower dentition.  In line with the other measurements and due to the variation 

in enamel thickness across the toothrow, and between upper and lower dentition (Winkler 

and Kaiser 2015), each molar type is analysed separately.  

Data was sorted and preliminary descriptive statistics calculated in Excel v.1804. All 

statistical analyses were completed in SPSS. Data was tested for normality prior to 



97 

 

statistical analysis to accurately subject data to either parametric or non-parametric 

analyses. All measurements were subject to an independent samples Kruskal-Wallis Test 

and post-hoc Mann-Whitney U pairwise comparisons, with Bonferroni adjusted 

significance levels.  

Glossary of dental and measurement terms used: 
Maxillary M2 = UM2 or M2 
Mandibular M2= lm2, LM2 or M2 

Right upper second molar: RUM2 / RM2 
Left lower second molar: LLM2 / lm2 

Dental molar measurements taken:  
BLW: Bucco-lingual width 
MDL: Mesio-distal length 
OH: Occlusal Height (cusp height) 
CH: Crown Height (in situ dentition) 
TH: Total Height (of isolated molars) 
Enamel Thickness (A, B, C, D) 

 

 

 

B 

A 
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Figure 4.14: Measurements taken of each tooth and tooth position. Images [A, B] of 
Antidorcas marsupialis (TM 13232) maxillary plate with location of measurements taken 
for each tooth. and [C] isolated tooth (SK 2366). Scale bar represents 10mm. 
 

4.3.1 Enamel Thickness Measurements 
Enamel thickness has been linked to dietary abrasiveness (e.g. Damuth & Janis 2011; Janis 

& Fortelius 1988, Martin 1985). Investigating the differences and changes in enamel 

thickness is implemented here with the intention of achieving insight on the likely 

abrasiveness of Antidorcas diets, which may manifest as increased dental enamel thickness 

as an ancestral and/ or adaptive (if consistent increase/ decrease occurs through time) trait. 

Enamel thickness may also have been altered by taphonomic processes, yet it is envisaged 

that taphonomy would act relatively consistently, irrespective of species, within the same 

deposit and therefore any differences can be inferred to be predominantly reflective of those 

present in the living assemblage. 

The thickness of the dental enamel has the potential to impact on the isotopic values 

obtainable if only the outer enamel layers are taken for sampling due to the enamel 

mineralisation process (Reade et al. 2015).  

 

1 

C 
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Figure 4.15: Location of enamel thickness measurements taken on upper molars (1) and 
lower molars (2). Location point ‘D’ (thickness of mesostyle) is not present on lower 
molars. 
 

Table 4.3: Locations of measurements taken on dental molars 
Location Maxillary Mandibular 

A Lingual enamel band 
[protocone/ hypocone] 

Buccal enamel band 
[protoconid/hypoconid/hypoconulid] 

B Internal enamel band 
[Paracone/ metacone] 

Internal enamel band 
[metaconid/entoconid] 

C Buccal enamel band  Lingual enamel band  
D Mesostyle Not present 
Table 4.3 and Figure 4.15 show the locations from which enamel thickness measurements 

were taken on the tooth. The difference between upper and lower dentition is visually 

represented here, whereby lower molars enamel thickness A is located on the buccal 

enamel surface and thus has different masticatory pressures exerted to the maxillary enamel 

thickness A location (located on the lingual enamel surface). These two locations may be 

subject to differing abrasiveness from vegetation in the palette according to the masticatory 

movement of the jaw, the precise detail of which tends to be species specific.  

It is acknowledged that some level of variation may arise from obtaining measurements 

from slightly varying points. However, every effort was made to ensure all measurements 

were taken at the same point on the tooth. Measurements are taken at the point of typical 

maximum enamel thickness along the relevant facet. Further research (beyond the scope of 

this study) into the exact morphology of dental shape and enamel thickness would be of 

benefit to scrutinise morphological variation more closely.  

4.3.2 Considerations 
Taxonomic identification As discussed, identifying to species level from isolated molars 

presents challenges. For example, S94-8283 from Sterkfontein Member 5 West had been 

identified as ‘Antelopini’. This taxonomic identification was originally assumed here. 

However, this is definitely not Antidorcas as it is too large and morphologically dissimilar 

to the Antidorcas dentition. Other African Antelopini species include: gazelles, gerenuk and 

blackbuck. Grant’s gazelle or similar is the only possible size candidate when considering 

modern body size of extant species. Alternatively, it belonged to a now extinct form of 

Antelopini or, another tribe altogether. As refined species identification as possible is 

crucial, with only millimetres of morphological differences separating species and genera, 

to ensure accuracy when attempting to pick up on any morphological changes at species or 

genus level through time. 

Intra-specific variation Difficulties may arise in anticipating the levels of intra-specific 

dental variation in fossil species. Further, which specific features one should anticipate 

2 
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higher levels of variation in than others, may be changeable. For example, COH 1816 

(Figure 4.16) looks more morphologically similar to Aepyceros melampus (the impala) than 

to Antidorcas. Yet as Vrba’s (1973) identification of A. bondi makes clear, there are a 

plethora of similarities between Antidorcas bondi and Aepyceros melampus.  

 

 

A 

B 



101 

 

 

Figure 4.16: Images of A) COH 1816, ‘Antidorcas’ upper molar identified from cave of 
Hearths and comparative modern B) A. melampus  (NMS Z. 20002.212.5) and C) A. 
marsupialis  (NMS 2002.212.2) all in buccal, occlusal and lingual view. 
Overlap of species It is probable that there will be morphological similarities and 

dimensional overlap between Antidorcas species.  For example, between large females of 

A. recki and small males of A. marsupialis. This is an issue when attempting to identify 

lineage changes and major evolutionary events (i.e. speciation) from consistent 

morphological directional changes (e.g. a noticeable prolonged enlargement of the bucco-

lingual width of an Antidorcas species or sustained hypsodonty increase). This is mitigated 

by extensive consideration of species based on features other than linear measurements (see 

‘Taxonomic identification of Antidorcas species’ sections and chapter 6, section 2), 

allowing for intra-specific changes through time to be noticeable.  

When Antidorcas (as a genus) measurements through time are used (although identified 

individually to species), the trend through time is likely to prevail for the genus, to at least 

be able to identify change at the general level. I.e. unless direct character displacement 

creates opposing selection pressures, an increase in grazing through time is likely to select 

for increased crown height, which should be reflected at the genus level.   

Identification of tooth-type Molar-averaging is likely to occur (i.e. a combined signal 

from all molars). For the majority of techniques implemented, this does not cause a major 

issue. However, when attempting to understand the nature of Antidorcas dental evolution 

from a morphological point of view, size and shape averaging across the molar row can 

confuse the signal.  For example, SK 41626 is a left maxillary molar with similarities to M1 

in the roundedness of the lingual cusps but the extended posterior style characteristic of an 

M3. This specimen was treated in analysis as an M3. To ensure accuracy, initial 

identifications of tooth types were corroborated by published sources where possible and 

from photographs taken of each specimen.  

C 
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4.4 Mesowear Methods 

All specimens selected for dental measurements were subject to mesowear analysis, 

providing their cusps were intact. Providing juvenile and heavily worn teeth are excluded, 

age-related wear stages do not infringe upon mesowear values. Traditional mesowear 

variables include occlusal relief, cusp shape and a combination of these factors to create a 

‘mesowear score’. These variables are used in this research, scored following Figure 4.17 

below. The method is then developed further for this study as detailed later in this chapter.  

Figure 4.17: Mesowear scoring parameters defined by Fortelius and Solounias 2000 
(Figure from Sewell et al. 2019 p. 6, Figure 2). 
The four main dietary categories obtainable from mesowear variables identified by 

Fortelius and Solounias (2000) are: grazer, grazing-dominated mixed feeder, browse-

dominated mixed feeder and browser; going from abrasion-dominated to attrition-

dominated respectively. Cusp shape and relief are not entirely independent variables as the 

progressive blunting of tooth cusps inevitably reduces dental occlusal relief (Fortelius and 

Solounias 2000), as such, mesowear scoring systems (from LB [low relief, blunt cusps] to 

HS [high relief, sharp cusps] or vice versa) have been established (e.g.Fortelius and 

Solounias 2000; Kaiser and Schulz 2006; Louys et al 2012; Kubo and Yamada 2014; Croft 

and Weinstein 2008). Certain wear patterns are less likely to occur, High relief, blunt cusps, 

for example, would be rare to see and has been excluded in some publications (e.g. Kaiser 

et al. 2009’s ‘0-4’ scoring method).  

Modern specimens were assessed for significant differences to establish expected fossil 

intra- (Antidorcas sub-species comparisons) and inter-specific (comparisons between 

Antidorcas, Damaliscus and Tragelaphus) ranges of variation for each dietary category 

(grazer, browser and mixed-feeder). Where more than one tooth from the toothrow was 

scored on the same individual, all scores were included. This is to ensure comparison with 

the fossil collection, which could comprise of dentition from the same individual, 

represented by multiple isolated molars.  
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Mesowear as a Dietary Indicator 
Both the mechanical properties of mastication and of the food itself can impact upon 

mesowear gradients (Janis 1990). Tooth morphology is determined by a combination of 

ancestral traits (dental structure and phylogenetic history) and dietary input (e.g. Janis 

1988, 1995; Damuth and Janis 2011). Mesowear is a methodology similarly derived from 

the observations of tooth morphology, occlusal height (relief) and profile (cusp shape). 

Occlusal contact (tooth-tooth) produces characteristic attritional wear patterns (Butler 

1952), these wear patterns can be used to deduce directions of jaw movement during 

mastication and the lifetime diet of the individual.  

Fortelius and Solounias (2000) pioneered this macro-level dental use-wear method for 

determining the diet of ungulates. Based on relative facet development, mesowear is used to 

differentiate between feeding types (along a grazing to browsing spectrum) and by 

inference, allow an informed palaeovegetational signal for the respective temporal and 

geographical range (Blondel et al. 2010; Kaiser et al. 2013).  

Abrasive particles in masticated foodstuffs cause additional, abrasive wear (food-tooth). It 

is the combination of abrasive and attritional wear that results in the mesowear patterning 

evident in herbivore dentition. Attritional contact creates facets, resulting in high relief 

between cusps and sharp cusp apices. Conversely, abrasive food-tooth contact obliterates 

dental facets, thereby reducing the depth between cusps and producing rounded apices 

(Fortelius and Solounias 2000; Kaiser et al. 2009). Highly abrasive diets, such as is typical 

of grazers (but see Janis 1995; Damuth and Janis 2011) lead to greater wear of the occlusal 

surface, resulting in lowered occlusal relief and rounded/ blunted molar cusps (Fortelius 

and Solounias 2000). Browsers tend to have higher occlusal relief and sharper cusps than 

grazers (Chapter 4, 

Figure 4.17; Kaiser and Fortelius 2003). No extant grazer has more than 40% (of a species’ 

population) sharp cusps and no extant browser has more than 10% blunt cusps (Fortelius 

and Solounias 2000). Mixed feeders may show no significant differences from browsers 
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(Fortelius and Solounias 2000), suggesting browse has more macroscopic impact on wear. 

This is also likely for microscopic wear, with browse particle-induced wear likely to be 

sustained for longer (see ‘DMTA’ section).  

A general relationship between climatic factors (e.g. humidity) and the properties of the 

vegetation available is likely. The abrasiveness of certain foods can also vary depending on 

the part of the plant consumed and the quantity (Kaiser and Schulz 2006). Low quality 

grasses, of which a considerable amount needs to be consumed in order to maintain 

nutritional needs, induce considerable abrasion on the dentition, thus grazers tend to have 

blunter cusps.  

Considering the dominant diets of Antidorcas for each discrete temporal period (member) 

[based on mesowear values for Antidorcas in each members’ assemblage], inferences can 

be made in relation to the overall vegetation cover and trends from the surrounding 

temporal periods. Establishing intra- and inter-specific mesowear ranges within each 

Antidorcas assemblage provides insight into the homogeneity of dietary preferences and by 

inference, of vegetation cover.  

Regional and seasonal dietary variations can be implied via the individual ranges of 

mesowear patterns within the population/ assemblage (e.g. Kubo and Yamada 2014). 

Combined with the phylogenetic adaptations (e.g. crown height) addressed previously, the 

added mesowear values will shed light on the diet of the individual animals and contribute 

to knowledge of the dietary preferences of the Antidorcas species.  

Mesowear and Dietary Abrasiveness 
Rounding or blunting of molar cusps may be due to abrasive silicas found in grasses, or 

other abrasive agents. Before concluding a dietary category for each species/ individual 

animal, each method can be assessed alongside the lifetime wear patterning provided by 

mesowear to give a more holistic insight into feeding and habitat preferences. For example, 

Sanson et al’s (2017) study based on African buffalo (Syncerus caffer) in the Kruger 

National Park, examining the relative contribution of exogenous (dust/grit) and endogenous 

(plant silica) particles to tooth wear, proposed an interaction between these abrasives 

(endogenous and exogenous particles) and suggest that abrasion should be considered more 

holistically. That is, rather than simply exerted via a grazing or a browsing -type diet.  

In this way, mesowear can provide an indication of potential selective pressures acting 

upon Antidorcas. Feedback systems within the dentition may act in response to the 

presence of particles during chewing, to reduce the occlusal load and therefore, reduce 

excessive damage (Lucas 2004). The cumulative impact of such feeding would likely result 

in dental evolution towards greater crown height or other similar reinforcements, as found 

by Hummel et al. (2010; see ‘measurements’ chapter, chapter 7).  

Mesowear as a Palaeovegetation Indicator 
Due to the properties discussed above, mesowear can be indirectly indicative of the spread 

of grassland. The abrasiveness of a grazing diet will result in herbivores with flatter (more 

abraded) molars. Theoretically, the expected evolutionary transition from browsing to 

grazing would show in the dentition of ungulates, with a transition from low to high crowns 
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(Janis 1988; Janis and Fortelius 1988; Solounias and Semprebon 2002) with decreased 

relative cusp heights.  

Choice of habitat and feeding style have been shown to be as important as diet in 

determining levels of hypsodonty (as discussed in chapter 7) due to the inclusion of 

dust/grit on low level vegetation in dry environments (e.g. Janis 1995). The level of 

hypsodonty can therefore be seen as the long-term selective pressure of a feeding behaviour 

that would produce heavy and abrasive wear on a mesowear scale (i.e. preference of low 

occlusal relief and rounded to blunted cusps) (but see Mihlbachler and Solounias 2006).  

Mesowear has been utilised previously to indicate climatically-driven environmental 

parameters, related to humidity and seasonality. The attrition/abrasion mesowear 

equilibrium can reflect climate driven habitat conditions. High dental occlusal reliefs and 

rounded cusps are positively correlated with mean annual precipitation, water balance and 

humidity; which may be complemented by oxygen isotope analysis (see chapter 10 ‘Stable 

isotope analysis’).  Low relief, blunt cusps are negatively correlated and are restricted to 

drier environmental conditions, where more dust and particulate matter is incorporated on 

plants, resulting in higher incidences of abrasive wear (Kaiser and Schulz, 2006). Climate-

driven vegetational gradients cause a shift in the mesowear equilibrium independent from 

species-specific dietary adaptations (Kaiser and Schulz 2006).  

Developing the Method Further 
Mesowear is inexpensive and can be done relatively quickly, providing an overview of 

faunal diet (Loffredo and DeSantis 2014; Jones and DeSantis 2017). However, it is highly 

subjective, and scoring can vary considerably depending on a plethora of issues, such as the 

selection of specimens being observed at any one time, when breaks were taken, lighting 

and so on, rendering scores relatively incomparable between observers and between studies.  

Due to the hereditary element of molar morphology, inter-specific differences can be 

masked. For instance, the majority of variation for the Antidorcas appears to be above ‘low’ 

threshold when considering only Antidorcas. A lot of variation in size and cusp height just 

fall into the ‘high’ relief category with no further distinction available. Yet when compared 

to other species, Antidorcas appears to typically have low relief (see new mesowear 

categories, Table 4.4).  

Moreover, the determining factors behind mesowear scores are not necessarily as clear-cut 

as suggested. When dealing with extinct species it can be difficult to ascertain the causes of 

observed physical characteristics. A certain degree of the appearance of the teeth could be 

due to post-depositional processes (taphonomy, explosion or excavation processes).  There 

is the potential that other factors also impact the physical properties of the dentition. For 

example, the impact of grit and dust ingested on mesowear is not fully known. 

Understanding its impact could enlighten on other environmental aspects.  

Differential mesowear across the tooth 
Many of the third molars in this study show differential wear on the facets on the same 

tooth, which could easily be scored in three different categories. This is presumably due to 

the function of the tooth in mastication, with the facets being differentially exposed to 

abrasive food particles or being in contact with the opposing dentition (attritional wear). 
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For example (Figure 4.18; fossil Antidorcas left M3 COH 1543). Fortelius and Solounias 

(2000) identify this occuring and classify individuals where this occurs as ‘mixed cusps’-

for either inter or intra-tooth variation. Simply scoring the sharpest cusp, as is often 

practiced (e.g. Fortelius and Solounias 2000), may cloud the palaeovegetation signal 

obtainable (DeSantis et al. 2018).  

 

Figure 4.18: Fossil Antidorcas left M3 COH 1543 showing differential mesowear 
appearances across the facets on the same molar. Scale bar represents 10mm. 
 

Traditional methods would score only the sharpest cusp on the upper second molar 

(Fortelius and Solounias 2000). However, when extending the method to fossil bovids, 

where tooth type and taphonomy may not allow sufficient sample size of the preferred 

molar (M2), advancements in the method and decisions on the mesowear values represented 

by molars such as these (Figure 4.18) are valuable. 

Testing the mesowear method 
Due to the many considerations, the method was refined for this specific dataset. Further, 

because of the apparent subjectivity and confounding factors surrounding mesowear, 

experiments to assess the reliability of this method were conducted, to look for the source 

of error in dietary and palaeoenvironment signal discrepancies found from the fossil 

analysis. Two small experiments were conducted to test the merit of using the traditional 

mesowear methodology established for the field (Fortelius and Solounias 2000) and the 

viability of using photographs of specimens to assign scores (with the aim of reducing 

travel costs and creating an online database of specimens to increase access for 

researchers). These experiments were conducted as part of this research, and help to inform 

on the reliability and limitations of the mesowear method but do not assist in answering the 

fundamental research questions of southern African palaeoenvironments. Therefore, the 

experiment is detailed in full in Appendices A7 but not discussed further in the central body 

of the thesis.  

4.4.1 Refining the Method for Mixed Feeding Bovids 
From results of the experiments (Appendix A7), extra categories to allow refinement of 

mesowear scoring for this dataset were introduced.  

New Mesowear Categories: 
Table 4.4 details the categories trialled in this research. The first letter (for both occlusal 

height and then for cusp shape) shows the dominant category. For example, molars 

displaying obviously low occlusal relief with blunt cusps are scored as ‘LB’. Where there is 

some difficulty in assigning between high/low relief, the dominant category is chosen as the 
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first letter, so ‘L-M’ (low to medium) shows lower relief than ‘M-L’ (medium to low). If 

there is no definitively dominant category, ‘M’ is chosen. The same logic is used for cusp 

shape.  

For initial multivariate statistical analysis, relief scores are assigned based on the closest 

assignment. Original mesowear scores were given as high or low relief (2016 data 

collection). To ensure consistency, those given new mesowear scores, including medium 

relief (from 2017 data collection), are also given a separate high/low assignment. Where the 

new mesowear score is ‘H-M’ (high to medium) or ‘M-H’ (medium to high) (the first letter 

is the dominant category but is not as clear as if scored as only ‘H’ (high) or ‘M’ 

(medium)), the tooth is assigned high relief. If the new mesowear score is ‘L-M’or ‘M-L’, 

the tooth is assigned low relief. Where the relief has been said to be ‘M’, photographs of 

the specimens were used to assign either high or low relief for this purpose.  

Additional Mesowear Scoring Method Implemented in This 

Research: 
Rautenbach’s (1971) ageing criteria of the springbok was used to assess age and wear rates, 

in order to eliminate very old (and very worn) or very young (unworn) molars. This is to 

mitigate for the impact of age-wear on mesowear variable scores as far as possible 

(although challenging for isolated teeth, without the toothrow to more accurately assess 

wear).  

Upper molars were scored from the buccal view, lower molars from the lingual view, 

according to 

Figure 4.17, with ‘medium’ relief scored if it was between high and low relief. Upper and 

lower dentition are analysed separately to ensure comparability (e.g. Fortelius and 

Solounias 2000; Blondel et al. 2010; Loffredo and DeSantis 2014). Mandibular dentition is 

believed to be more likely to emphasise the grazing proportion of a diet due to lower molars 

having a tendency towards flattening (e.g. Fortelius and Solounias 2000).  
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Table 4.4: New mesowear scoring categories trialled in this research; a continuous scoring scale for mesowear. Scores are given according to occlusal relief alongside cusp shape, 
viewed from the buccal view of maxillary molars and the lingual view of mandibular molars. 

LB 1 L-MB 8 M-LB 15 MB 22 M-HB 29 H-MB 36 HB 43 

LB-R 2 L-MB-R 9 M-LB-R 16 MB-R 23 M-HB-R 30 H-MB-R 37 HB-R 44 

LR-B 3 L-MR-B 10 M-LR-B 17 MR-B 24 M-HR-B 31 H-MR-B 38 HR-B 45 

LR 4 L-MR 11 M-LR 18 MR 25 M-HR 32 H-MR 39 HR 46 

LR-S 5 L-MR-S 12 M-LR-S 19 MR-S 26 M-HR-S 33 H-MR-S 40 HR-S 47 

LS-R 6 L-MS-R 13 M-LS-R 20 MS-R 27 M-HS-R 34 H-MS-R 41 HS-R 48 

LS 7 L-MS 14 M-LS 21 MS 28 M-HS 35 H-MS 42 HS 49 

KEY   

L-low relief 

M-medium relief 

H-high relief 

B-blunt cusps 

R-rounded cusps 

S-sharp cusps 
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The following variables were assessed for each tooth: 

• Relief: high or low relief 
• Relief: high, low or medium relief 
• Cusp shape: Sharp, rounded or blunt 
• Mesowear scores: 0-4 (Kaiser et al. 2009) and 1-6 [1=LB, 2=LR, 3=LS, 4=HB, 

5=HR, 6=HS]. 
• New mesowear categories were implemented and trialled for this research, [1(LB) 

– 49 (HS)], see Table 4.4. 
• Mesowear III scores (Solounias et al. 2014) on the internal enamel band, on upper 

molars only.  
 

Antidorcas and supplementary species permanent molars were scored ‘in the field’ and 

corroborated from photographs taken at the time of the original scores. Some duplicates 

were made of selected mesowear scores from 2016 to 2017 data collection trips. Following 

from preliminary results, obtained via data collection in 2016, sample sizes were 

significantly increased to investigate potential patterns (Sewell et al. 2019) further. All 

scoring was undertaken personally, without looking at previous scoring. In spite of a 

consistent photography protocol, unavoidable minute angle changes and light differences 

could alter perceptions of occlusal relief and cusp shape. Photographs, although unreliable 

for definitive mesowear scores when used in isolation, were beneficial for confirming 

visual mesowear assessment when away from the dental specimens. Photographs were used 

for corroboration where discrepancies between variables exist (e.g. 2016 score of high 

relief, sharp cusps and 2017 score of low relief, rounded cusps for the same specimen). 

Where repeated scoring yielded differing results, photographs taken in 2016 (by Rupert 

Cope and L. Sewell) and 2017 (by Lucile Crété and L.Sewell) were used to establish the 

most appropriate mesowear values. Moreover, where discrepancies occurred, the sharper 

mesowear values (relief, cusp shape and score) were selected, as bluntness is more likely to 

be a taphonomic artefact (Franz-Odendaal and Kaiser 2003).  

4.4.2  Mesowear III 
Solounias et al. (2014) described and tested a new method of mesowear, termed ‘Mesowear 

III’, with focus on specific facets, namely the metacone and paracone. This uses the same 

facets as used in DMTA, thereby allowing some degree of comparability between the 

methods. Therefore, an attempt to implement this method was made in 2017. Although 

some mesowear III scores were obtained, this method does not form a central part of this 

research due to small sample sizes. Only upper molars can be used for this method, 

reducing potential sample sizes. Additionally, many of the specimens used here showed 

taphonomic wear on the relevant facets, further reducing sample size. Although a relatively 

novel method, Mesowear III or ‘inner mesowear’ scores have already been successfully 

implemented on Middle Pleistocene ungulates, establishing fossil palaeoecology (Strani et 

al. 2018) and would be of benefit to relate to inner enamel thickness (location B) 

measurements (see ‘measurements’ method above). Mesowear III sores when separated by 

species and provenance sample sizes are too small to show any significant differences and 

are only analysed by species and through time (for all Antidorcas specimens combined).  
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Analysis Method: 
Modern Antidorcas is analysed initially to establish the best method of analysis and 

combination of results to take forward for the fossil samples. That is, considering which 

samples could be grouped together to enable larger sample sizes whilst maintaining 

accuracy (without potentially falsely averaging across the toothrow, for example).  

Basic descriptive statistics are calculated showing the number of specimens falling in each 

mesowear category and their relative percentages calculated. All statistics are analysed in 

SPSS v.23/24. Medians are calculated to allow comparisons between each ordinal 

mesowear variable within each category. Independent samples kruskal-wallis test with post- 

hoc Mann-Whitney U pair-wise comparisons are conducted to test for significant 

differences between members intra- and inter-specifically (Antidorcas, and supplementary 

species (separately analysed)).  

Finally, data reduction via a principal component analysis (PCA) and discriminant function 

analysis (DFA) is carried out on the mesowear variables of all Antidorcas species. 

Antidorcas as a genus and individual Antidorcas species mesowear trends through time are 

evaluated.  

4.5 DMTA  

Sampling Strategy 
Permanent molars were selected for microwear analysis based on the completeness of their 

occlusal surface. If the facets of interest (Figure 4.20-Figure 4.21) were complete, molars 

were separated for potential analysis. Of these selected specimens, a maximum of 20 

specimens per Antidorcas species (recki, bondi and marsupialis, where present) per site (or 

10 of each of the supplementary species) were chosen for microwear analysis. 

Modern Antidorcas marsupialis from National Museums Scotland, Edinburgh (n=3), 

Natural History Museum, London (n=25) and the Ditsong Museum of Natural History 

(n=10) were cast to establish the modern mixed-feeding DMTA signal and assess the 

anticipated dietary parameters for fossil Antidorcas. Modern Damaliscus pygargus (n=10) 

were used to establish expected grazing signals. 

Data was supplemented with modern DMTA data for species with known diets, Alcelaphus 

buselaphus, Syncerus caffer, Cephalophus sylvicultor and Giraffa Camelopardalis. This 

data, cited here for comparative purposes, belong to Dr Gildas Merceron, Laboratoire de 

Paléontologie, Évolution, Paléoécosystèmes, Paléoprimatologie (PALEVOPRIM; ex-

iPHEP), Université de Poitiers.  

Antidorcas specimens are used at genus level initially to assess palaeovegetation change 

through time. They are then separated to species level to establish Antidorcas 

palaeoecology for each species and any changes therein through time.  

Individuals are selected at random to assess the impact of individual variation on the overall 

microwear signal for any given member (Provenance). A group of individuals are also used 

to examine how species and individual preference influences the palaoevegetation signal 

obtainable. For this, the ‘A. australis’ subset is used here (see ‘Taxonomic Identification of 

Antidorcas species’). This subset is used as it may contain any Antidorcas species and is 
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represented in the focus members for the main sites (Sterkfontein, Kromdraai and 

Swartkrans).  

Microwear as a dietary indicator 
From microscopic wear patterns, animals’ diets can be categorized into distinct feeding 

groups. Although an oversimplification and new categories have since been added, 

Hoffmann and Stewart’s (1972) distinctions of grazing, browsing and mixed feeding, can 

be used to identify a herbivore’s diet, which can subsequently be used to infer the nature of 

the vegetation cover of the landscape that that species inhabits (or inhabited).  

When examining images produced through DMTA (alternatively known as DASTA), 

grazers have higher epLsar values, showing more anisotropic microwear surface textures, 

whereas browsers have higher Asfc values, indicative of more complex microwear surface 

textures (Ungar et al. 2007).  Going beyond simple grazing versus browsing insights, leaf 

browsing for example, produces anisotropic surfaces (high Asfc) with high homogeneity 

(low HAsfc) via uniform pits. The opposite signal is obtained from fruit browsers. As such, 

DMTA enables a more holistic view of an animal’s palaeoecology. 
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Figure 4.19: A simplified representation of how microwear is impacted on dental enamel 
surfaces differentially, according to diet. Bold arrows indicate the strongest forces acting 
on the dental enamel surface. When grazing, phytoliths (plant stones) within grasses are 
dragged across the surface of the tooth, causing striations in a uniform direction. When 
browsing, the main force exerted is the downward pressure between the upper and lower 
teeth onto the browse substance, creating pits into the enamel (of varying sizes). 
Grazers feed predominantly on monocotyledons (e.g. grasses) and browsers (e.g. trees and 

cacti) on dicotyledons (Merceron and Ungar 2005). The microwear patterns are produced 

because of the differing physical properties and nutrient contents of grasses and browse 

(Shipley 1999; Solounias and Semprebon 2002; Schulz et al. 2013a). 
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Scratches are believed to be caused by hard (typically grass silica bodies, i.e. phytoliths) 

particles being dragged across the tooth surface in a uniform manner, usually directed 

labio-lingually (Schubert et al. 2006) during the shearing phase of mastication (Baker et al. 

1959; Ungar et al. 2007).  Browse does not contain as high a concentration of phytoliths as 

grasses do, and the phytoliths present tend to be smaller (McNaughton et al. 1985).  

Contrastingly, pits are caused by indentation into the enamel from the vertical force of the 

upper and lower dentition closing onto the food particle (typically from browse-type 

materials such as twigs/seeds) (Solounias and Semprebon 2002; see Figure 4.19). Browse 

vegetation is typically harder, or more brittle, requiring crushing, which leads to pit 

formation. Pits can be formed by a variety of particles and actions and understanding the 

aetiologies of pit formation allows informative inferences about diet to be made. The size 

and shape of each pit is dependent on the particle that caused it (e.g. Lucas et al. 2014). The 

prevailing belief is that larger pits are caused by concentrated pressure on hard food 

between enamel surfaces, leading to puncture crushing. In contrast, smaller pits tend to be 

formed by tooth-to-tooth wear (Teaford and Runestad 1992).  

Due to the abrasiveness of a grazing diet, where food particles are continually dragged 

across the tooth surface during mastication, at a relatively shallow depth into the enamel 

surface, microscopic wear on the enamel surface gets overwritten more regularly than 

occurs from the less abrasive practice of browsing, that creates pits at a relatively greater 

depth into the enamel surface.   

Interestingly, Solounias and Semprebon (2002) identified a differentiation in scratch 

appearance based on the properties of the grass eaten. Isotopic analysis will show the 

differential levels of C3 to C4 grasses in the diet (see chapter 10 ‘Isotope analysis’). Coarse 

scratches were shown to be typical of C4 grazers and fine scratches more typical of C3 grass 

consumption due to possible phytolith size variation and differential silica content 

(Hummel et al. 2010). Therefore, microwear could provide another insight into the climate 

(supporting C3 or C4 vegetation dominance accordingly) and consequential dietary 

adaptations for Antidorcas.  

The microscopic wear patterning produced by succulents has not been considered in detail 

but may be a consideration here, as modern springbok are known to consume certain 

succulent species. The majority of succulents adopt the CAM photosynthetic pathway (see 

chapter 10 ‘Isotopes analysis’ for definition). CAM plants typically invest heavily in 

herbivory defence due to the high energy cost of adopting the CAM photosynthetic 

pathway. With this in mind, the likely DMTA signal obtained may be expected to be 

similar to a browsing signal. CAM plants are typically restricted to arid conditions, 

suggesting high levels of dust/grit and related abrasion would also be prevalent associations 

with these plants.  

However, microwear profile images are rarely that simple to interpret and there are many 

factors to consider prior to conclusively associating dental microwear patterns with any 

particular diet. For example, grit, or silica particles (phytoliths) found in monocot grasses, 

often associated with grazing, can cause pitting of the enamel surface (pits), thereby 

skewing the grazing signal somewhat. Yet these findings do not undermine the usefulness 
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of microwear analysis. Increased grit in the diet can be indicative of low-level grazing, i.e. 

feeding close to the ground (Healy and Ludwig 1965). Based on stable carbon isotope 

analysis, it is believed that Antidorcas bondi, for example, was last in a line of grazing 

succession (Brink and Lee-Thorp; Brink 2016) as detailed in chapter 3 (‘Antidorcas’), 

feeding on the small shoots closest to the ground.  Research to date would suggest that diet 

creates a more prominent microwear impact than exogenous particles (e.g. Merceron et al. 

2016 feeding experiments; but see Wood 2013; Lucas et al. 2014). However, A. bondi as a 

believed low-level feeder may incorporate high levels of dust and/or grit into the microwear 

signal that may be subtly apparent via DMTA. For instance, a higher microscopic pit 

prevalence, and/ or high abrasion, could be indicative of grit and go some way to 

confirming this grazing succession hypothesis. In terms of specific DMTA variables, low-

level grazing might be expected to show as lower heterogeneity (dust/grit of more uniform 

size than mixed browse particles).  

Microwear as a palaeoenvironmental indicator 
Combined dietary signals obtained via DMTA, allow inferences to be made regarding 

vegetation present and therefore, of palaeoenvironmental conditions. For example, a 

dominance of grazing signals is inferred as indicative of savannah landscapes; varying diets 

within one geographic and temporal range is likely indicative of mosaic habitats (e.g. 

savanna grasslands and woodland forest habitats present within the shared landscape).  

Yet beyond simple extrapolation of dietary indicators to inform on likely vegetation cover, 

other palaeoenvironmental indicators can be detected through microwear analysis. For 

example, it has been hypothesized that dust covered grasses would result in greater abrasion 

and potential decreased pit percentage (Shubert et al. 2006) due to the abrasive nature of 

dust/sand particles and consequent overwriting of wear scarring. This in turn could be 

reflective of climatic shifts or events, such as the aolian dust fluctuations throughout the 

Plio-Pleistocene, which increased gradually in concentration and flux from c. 2.8 Ma 

(deMenocal 2004), as such, abrasive microwear signatures reflected on the Antidorcas 

enamel surfaces may be expected to gradually increase. However, considerable research has 

focused on the nature of microwear signatures in whether dust and grit do cloud the dietary 

signals obtained. Ungar et al. (2016) and Merceron et al. (2016) show that overall, 

microwear data is more informative of dietary preferences and therefore, about 

palaeovegetation.  

Further, the dietary plasticity of Antidorcas has the potential to mirror climatic variations. 

As a mixed-feeder, consuming a greater array of the vegetation present (dictated largely by 

climatic influences), the dominant dietary strategy would be visible via shifting DMTA 

signals through time, indicative of associated climatic shifts. For instance, Berlioz et al. 

(2018) found the mixed-feeding European large deer, Eucladoceros to be reflective of 

glacial (grazing signal), interglacial (browsing signal) events. 

DMTA variables 
Complexity (Area-scale fractal complexity, Asfc) measures the roughness of the dental 

facet surface. Scale of maximum complexity (Smc) shows the scale range Asfc is 

calculated from (taking the steepest part of the relative area against the scale of the curve). 
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Anisotropy (epLsar) considers the direction of wear and relative lengths of vectors (depth 

profiles), essentially providing a view of direction of wear and a glimpse into heterogeneity 

(Scott et al. 2006). Multiple scratches with no pitting would produce anisotropic surfaces 

with a high epLsar value, indicating of grazing. Whereas a surface with scratches in 

opposing directions coupled with pits of varying depths and sizes would produce a complex 

(high Asfc) and isotropic (low epLsar) surface and be more indicative of browsing diets 

(Scott et al. 2012, 2006). Homogeneity of wear is provided through HAsfc values 

(Heterogeneity of Area-scale fractal complexity). Higher HAsfc values indicate greater 

variation in diet. Homogeneity of diet tends to show in homogeneity of surface texture (i.e. 

lower HAsfc values) (Scott et al. 2006). HAsfc is calculated through a 9- and an 81-cell 

mesh over each scanned surface. Tfv (Textural fill volume) values represent the surface 

texture based on fill volume at different scales (i.e. the relief of the surface) (Scott et al. 

2006). Textural ‘fill’ derives from a cuboid representation of the parameter (see Table 4.5), 

in which the relative number of cuboids, and their volume, that fit into a cross-section of 

the enamel surface, is indicative of enamel surface wear depth and uniformity thereof (Scott 

et al. 2006).  
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Glossary 
Table 4.5: Glossary of DMTA nomenclature used. Parameters are based on established protocols (e.g. Ungar et al 2003, Scott et al. 2005, 2006), Tfv images from Scott et al. (2006). 

Acronym   Description Diet 

Typical 

DMTA 

image 

 Asfc Area scale fractal complexity; surface roughness (complexity) 

Grazer; low Asfc 
 

Browser; high Asfc 
 

 EpLsar Length-scale anisotropy of relief; direction and consistency of wear (anisotropy) 

Grazer; high epLsar 
 

Browser; low epLsar 
 

 HAsfc 
Heterogeneity of Area scale fractal complexity 
Measured scales used for HAsfc for this research: 
 3 squares x 3 squares (3x3) 9 cell; 9 squares by 9 squares (9x9) 81 cell 

Grazer; low HAsfc 
 

Leaf browser; Low-
medium  HAsfc  
Mixed/ fruit browser; 
High HAsfc 

 

 Tfv 

Textural Fill Volume (shape and texture of the surface) at a fine (a) and coarse (b) scale. 

A B  

Higher values (Mixed-
feeding) 

More cuboids 
fit; deeper, 
larger wear 

 

Lower values  

 Smc Scale of maximum complexity  
Grazer Fine scale 

Browser Coarse scale 
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Acronym   Description Diet 

Typical 

DMTA 

image 

 S.E.M. Scanning electron microscopy x x 

 SSFA Scale sensitive fractal analysis x x 

 DMTA Dental Microwear Texture Analysis x x 

 DASTA Dental Area Surface Texture Analysis x x 
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4.5.1 CONSIDERATIONS 
Phylogeny: The structure and formation of a tooth, especially the enamel and dentine 

components, vary between species. The properties of the enamel presumably play a part in 

enamel susceptibility to microscopic damage (the microwear signature). The extent to 

which enamel properties play a part is not clear for Antidorcas. However, Mihlbachler and 

colleagues (2016) found that, in Perissodactyls, phylogeny and diet influence microwear 

signals equally. As discussed in the ‘measurements’ section (4.3), enamel-thickness can 

give a longer-term indicator of the ‘hardness’ of the animal’s diet (Lucas et al. 2008). If 

coupled with an examination of the formation and evolution enamel-dentine junction (with 

relative indication of enamel thickness), a greater insight could hopefully be gained for 

Antidorcas specifically. However, this is beyond the scope of the current research project.  

Extensive research has been conducted into the most appropriate facet and combination of 

facets to sample to obtain a reliable dietary signal (e.g. Merceron et al. 2016; Ramdarshan 

et al 2016, 2017), reducing as far as possible the phylogenetic impact, to promote a clear 

palaeodietary signal independent of taxon.  

Overwriting: Microwear signals can be confused due to reflecting slightly differing time 

scales for individuals. The ‘Last Supper’ effect (Grine 1986) is a process whereby new 

wear marks replace those underneath (i.e. there is significant and repetitive ‘overwriting’ 

making the microwear signature indicative of only the last, or last few, meals of the 

individual). This occurs more frequently with high levels of dietary abrasion. Thus, it is 

more likely to be seen in hypsodont bovids, associated with increased wear rates and 

abrasion of the tooth generally (e.g. Janis 1998). This link provides an insight into how 

mesowear and microwear analysis can really complement one another to provide a more 

complete picture.  

 Typically, browsing diets with lower abrasion, on higher-crowned teeth, require longer 

timeframes and greater vegetation consumption to overwrite previous scarring (Schulz et al. 

2013). Deeper pits take longer to overwrite, as there are more ‘layers’ to go through before 

overwriting occurs. In contrast, obligate-grazers have a comparatively high degree of 

abrasion (Kaiser et al. 2009). High abrasion diets encourage constant ‘overwriting’, 

resulting in a uniform anisotropic wear pattern on the enamel surface (Schulz et al. 2013). 

Mixed feeders, such as Antidorcas, often differ from habitual grazers by having more pits 

remaining on the surface from a browsing phase (Solounias and Semprebon 2002), even if 

consuming graze relatively soon before death. Mixed feeders may be more difficult to 

differentiate from obligate browsers but tend to have less extreme complexity with greater 

heterogeneity and more variability in DMTA parameters, particularly Tfv.  
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Taphonomy: When considering dentition from archaeological assemblages, microscopic 

wear features may be either obliterated or created, as an artefact of taphonomic processes 

(such as the effects of sand particles on deposited dentition). The typically shallow, 

homogenous, anisotropic scratches characteristic of grazers are believed to not be as easily 

replicated by naturally occurring taphonomic processes, whereas taphonomic processes can 

produce similar pit and/or abrasion features to those produced by diet, indicative of 

browsing (King et al. 1999). A comparison with modern microwear analysis (section 6.1.3) 

is used to examine the need for an ‘off-set’ to allow for potential taphonomic influences 

(Schubert et al. 2006).  

Moreover, the nature of cave deposits, with karst water presents the possibility of wetter 

refugia at certain times within any given landscape, therefore likely to over represent the 

browse content of the landscape (Stewart pers comm.). This would dampen the 

palaeoenvironmental signal obtainable somewhat. To negate this issue, consistent site types 

(i.e. open air, not cave deposit) would need to be compared from East and South Africa to 

answer similar research questions. This is not currently a possibility due to the reality of 

hominin-bearing sites in South Africa being predominantly from cave deposits.  

4.5.2 Dental Microwear Texture Analysis Method 
Specimens were cleaned using acetone-soaked toothbrushes and cotton buds. All specimens 

were cleaned once with a toothbrush, followed by twice with cotton buds, with 3-5 minutes 

between each round of cleaning. Negative dental moulds were made using a 

polyvinylsiloxane elastomer (Regular Body President, Coltene President MicroSystems), a 

dental grade material which easily peels away from the tooth once dried (drying takes only 

a few seconds) with no harm inflicted on the specimen when the impression material is 

removed. This method focuses on the specific dental facets of interest, (Figure 4.20). At 

least 2 moulds were made of each tooth.  

Inevitably, something of the original scar pattern will be lost or hidden (e.g. by bubbles) 

when creating the moulds. Creating moulds is deemed by some as a destructive technique 

and many museums will no longer allow this method to be used on their collections. 

However, this facet-specific method implemented by Ramdarshan et al. (2016) is intended 

to be non-destructive.  

 

Figure 4.20: Facets used for DMTA sampling. Image from Merceron and Ramdarshan 
TRIDENT casting protocol 2016 (Ramdarshan et al. 2017). The top image indicates the 
facets to be scanned on maxillary dentition, primarily the mesio-lingual protocone or 
paracone; the lower image indicates the facets to be scanned for mandibular dentition, 
primarily the distal-buccal protoconid. 
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Moulds were subject to DMTA, analysed at the Laboratoire de Paléontologie, Évolution, 

Paléoécosystèmes, Paléoprimatologie (PALEVOPRIM; ex-iPHEP), Université de Poitiers 

in October 2016 and March 2018 under the guidance of Dr Gildas Merceron.  

Prepared dental occlusal surface moulds are cut to isolate the facet to be scanned. 

Ramdarshan et al. (2017) have shown that there are significant differences in dental 

microwear textures between the disto-buccal facets of the protoconid on lower teeth and the 

lingual facet of the paracone on upper; but not with the protocone from upper molars (see 

discussion in Ramdarshan et al. 2017). Primarily, mesio-lingual facets of protocones (upper 

molars) and distal-buccal facets of protoconids (lower molars) (or on the hypoconid if the 

former facet is broken) were combined for analyses (see Figure 4.20; Figure 4.21). 

Research has shown these facets to be comparable (see Ramdarshan et al. 2017). 

The mould must be cut as flat as possible to maximise light exposure to the facet surface. 

The prepared moulds are placed under a Leica DCM8 confocal profilometer using white 

light confocal technology with a Leica 100x objective (numerical aperture = 0.90; working 

distance = 0.9 mm). The lateral resolution is an (x, y) interval of 0.129 µm, with a vertical 

numerical step of 1 nm. Scans are taken in the centre of the facet, where possible, to ensure 

repeatability and to limit subjectivity. Scans are treated using LeicaMap to eliminate 

artefacts, such as abnormal peaks following procedures detailed in the supplementary 

material in Merceron et al. (2016). Artefacts can be due to numerous factors, such as 

bubbles in the mould or dirt on the facet surface. Some specimens could not be used for 

microwear due to excessive bubbles, which tends to occur more frequently at higher 

altitudes (Merceron pers. Comm.); or due to mycellum on the tooth surface masking any 

microwear damage to the surface. Mycellum growth often favours museum specimens and 

cannot be removed by acetone alone.  

Data analyses for DMTA are run through Sfrax and Toothfrax software, following protocol 

established by Scott et al. (2005, 2006).  

 
Figure 4.21: Mandibular molar DMTA image: Dental microwear texture analysis is run on 
the disto-buccal facets of the buccal cuspids along the lower arch (modified from Merceron 
et al. 2016). 

Methodological adjustment 
Typically, scans with R2 values under 0.97µm (minimum angle of the slope) are removed 

prior to data analysis. However, this would have removed almost 50% of the microwear 

dataset. Therefore, all scans were re-run on SFrax and ToothFrax after subtracting the 

polynomial surface in LeicaMap to eliminate the shape of the facet as the principle 

influencing factor. Francisco et al. (2018) explored the issue of polynomial surface 

modifications and found no impact was made to DMTA patterns produced. It is suggested 
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that the unusually concave facet exhibited by certain Antidorcas species is indicative of a 

highly abrasive diet. By comparison, A. recki casts tended to not be vulnerable to this issue. 

Individual dietary preference can skew the mean signal when grouping at species level 

(Lehmann et al. 2015). Consequently, individual animal dietary indicators were considered, 

as well as analysing the mean/median microwear signals for each species for each time 

period (member).  

4.6 Stable Isotope Analysis Method 

Examining the carbon and oxygen isotopes within the dental enamel of the various 

springbok species enables insight into the different dietary components the animals were 

exposed to as the enamel was being created and mineralised. Used alongside other 

methodologies, stable isotope analysis provides insight into the diet of now extinct species 

and allows a re-examination of previous palaeoenvironmental markers.  

4.6.1 Carbon Isotopes 
Stable carbon isotope ratios of herbivore dental enamel are related to the 13C content of the 

diet (De Niro and Epstein 1978a, b; Vogel 1978; Tieszen et al. 1983; Kennedy 1988). This 

is due to the way plants differentially fractionate carbon according to their photosynthetic 

pathway (Bender 1968; Lee-Thorp et al. 1989; Tieszen 1991), as detailed below.  

 

Figure 4.22: Diagrammatical explanation of carbon fixation via photosynthesis. There is a 
+14.1‰ dietary enrichment from plants to that found in herbivores. The values given by 
the tooth images are indicative of those expected for each dietary type. 
C3 versus C4 plants abundance varies depending on climatic condition (C4 plants 

preferentially grow under more arid conditions, whereas C3 plants can inhabit warmer, 

wetter areas). Care must be taken when inferring climate to ensure seasonality is 

considered. The percentage of C3/C4 consuming animals is suggestive of the relative 

availability of these plants.  

Carbon isotope values of modern South African herbivore values are shown in Figure 4.22 

(Sponheimer et al. 2003); >-3.0‰ C4 dominated, grazing diets; <-9.0‰ C3 dominated, 

browsing diet. In between these values, mixed feeding diets are assumed, with values close 

to the boundaries (i.e. -2.5 to-3.5 and/or -9.5 to -8.5) said to be more variable in their diet. 
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Dental enamel, a bio-apatite consisting primarily of calcium carbonate, has often been used 

to reflect the relative proportions of C3 and C4 biomass within a particular environment (e.g. 

Luyt 2001; Lee-Thorp et al. 2007; van der Merwe et al. 2003; Cerling & Harris 1999; 

Codron 2006; Plummer et al. 2009; Steininger 2011). Isotopic sampling establishes the 

proportions of C3 versus C4 in the diets of herbivores (here, Antidorcas). From this, 

inferences can be made regarding palaeohabitats, i.e. how closed or open the local 

environment experienced by the herbivore was (Sponheimer and Lee-Thorp 1999b).  

Photosynthetic pathways 
Plants photosynthesise by absorbing light energy from the sun, absorbed by the plants’ 

chlorophyll. The energy is converted to hydrogen ions and oxygen is given off as a waste 

product at this point (the light reactions). Using the energy produced by this initial step, 

carbon is subsequently fixated, taking CO2 from the atmosphere to convert to sugars. The 

three photosynthetic pathways differ in how these processes are completed (Forseth 2010). 

The different photosynthetic pathways utilised by plant species follow differing methods to 

fix carbon within the plants’ structures. These plants differ in the way they fractionate 13C 

(Vogel 1978). Thus, the principle factor controlling δ13C values present in plants (and 

consequently in herbivore tooth enamel) is the photosynthetic pathway the plant utilises 

(Smith and Epstein 1971; Tieszen 1991).  

Vegetation can reflect climatic conditions, if the relative abundances of C3 versus C4 plants 

(and CAM plants) are evaluated. There are a few factors to consider before inferring 

climatic conditions, as various factors can impact the vegetation type (according to 

photosynthetic pathway) that any given environment can support. These factors include soil 

geochemistry, altitude, climate, disturbance, CO2 (carbon dioxide) levels, pre-existing 

canopy cover (and light) and hydrological influences of rainfall and seasonality thereof 

(Lehmann et al. 2011). The interplay locally of factors (such as soil fertility) with global 

factors, (such as climate) causes differential habitat-dominance across landscapes. For 

instance, altitudinal variation has been shown to differentially affect C3 and C4 plants 

proportions (e.g. Stewart and Mitchell 2018).  

C3 pathway 
The C3-Calvin cycle pathway is used by most plants growing in areas with sufficient 

moisture. For this photosynthetic pathway, the RuBP carboxylase enzyme absorbs CO2, 

providing there is sufficient CO2, compared to O2 (oxygen). If there is too much oxygen, 

RuBP carboxylase will preferentially absorb the O2 over the CO2 (photorespiration), 

preventing plant growth. If an area is too arid (i.e. sufficient water is not available), excess 

O2 builds (is not released through the stomata) and triggers photorespiration. With 

sufficient moisture (water availability), light reactions and carbon fixation occur 

simultaneously, allowing almost all of the leaf cells in the plant to produce sugars 

(Ehleringer and Monson 1993; Forseth 2010).  

C3 vegetation (trees, shrubs, forbs and most temperate grasses) preferably grow in cool 

growing periods, with higher groundwater levels (Vogel et al. 1978). These plants are 
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consumed predominantly by browsing herbivores and are considered indicative of a more 

closed environment (Smith and Epstein 1971; Lee-Thorp et al. 2007; Radloff 2008).  

C4 pathway 
The C4-dicarboxylic acid pathway uses the enzyme PEP carboxylase to absorb CO2, 

building carbon in mesophyll cells of the leaf. A 4-carbon chemical compound, 

oxaloacetate is formed and pumped to bundle sheath cells, where the remainder of the 

Calvin cycle occurs. Transferring CO2 between cells within the plant is less energy efficient 

but more effective to reduce water loss under arid conditions. The PEP carboxylase enzyme 

is less likely to bind to O2 than RuBP carboxylase, reducing the chances of photorespiration 

preferentially occurring under arid conditions. Stomata therefore stay closed for longer, 

trapping oxygen in the plant (Ehleringer et al. 1997; Forseth 2010). (Hence, higher oxygen 

δ18O values are indicative of more arid conditions).  

Amongst C4 vegetation (all angiosperms, most commonly monocotyledons), tropical 

grasses are prevalent, and the main source of nutrition for grazing herbivores (e.g. Lee-

Thorp et al. 2007). C4 grasses are better competitors in warmer growing seasons with lower 

but seasonal rainfall (Lehmann et al. 2011). These grasses are primarily consumed by 

grazers and indicative of an open, grassland environment (Smith and Epstein 1971; Lee-

Thorp et al. 2007; Lehmann et al. 2011). 

The carbon isotope composition of these plants is greater (heavier) than that of C3-plants. 

C4 plants are more efficient at carbon fixation, allowing them to tolerate drier conditions 

with lower levels of atmospheric CO2 but require more energy and are therefore, often 

outcompeted by C3 plants under higher carbon dioxide levels (Hopley et al. 2006; Lehmann 

et al. 2011).  

C4 photosynthesis has a high metabolic cost, relative to C3 photosynthesis and C4 plants 

therefore cannot outcompete C3 plants to dominate in a low-light environment, such as an 

area with a pre-existing closed canopy (e.g. dense woodland/forest) (Sage and Kubien 

2003) unless there is a disturbance in the C3 dominated biome (e.g. by fire) (Lehmann et al. 

2011).  

CAM pathway 
This Crassulean Acid Metabolism (CAM) method of fixing carbon is largely confined to 

shrubs in desert and semi-arid areas of South Africa (Luyt 2001). CO2 is only absorbed at 

night, under the coolest conditions, and stored. The stored carbon is converted to sugars 

(encouraging growth) for a limited period (until carbon stores are depleted) in the daytime. 

This pathway enables plants to survive incredibly arid conditions but at the expense of 

rapid plant growth (Bloom and Troughton 1979; Forseth 2010).  

The plants utilising this pathway flourish over others in CO2 or water-deprived areas. This 

pathway has been relatively ignored as it is thought not to be experienced around the area 

of the Cradle of Humankind and is rarely used as a food source by savanna herbivores 

(Codron et al. 2005). It is however, potentially worth considering here as modern springbok 

(Antidorcas marsupialis) will utilise the moisture in succulents (typically CAM plants) 

when water is scarce.  
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The CAM pathway alternates between C3 and C4 photosynthesis but tends to yield similar 

C4 plant-like carbon isotope values (in tropical Africa) in being 13C enriched (Mooney et al. 

1977; Codron et al. 2005; Sponheimer et al. 2013; Boom et al. 2014). In southern Africa 

today, there are 16 families of succulent plants, most of which use the CAM photosynthetic 

pathway (Mooney et al. 1977). 

Palaeovegetation in southern Africa 
One of the dominant vegetation biomes visible from fossil evidence is that of savanna 

landscapes. Savannas are typically open habitats with a substantial C4 grass layer (Lehmann 

et al. 2011). In the spread of savannas over the last c. 7 Ma (Cerling et al. 1997), C4 grasses 

replaced pre-existing C3 grasslands (Strömberg 2004) or other C3 vegetation landscapes, 

such as forests, thickets and shrublands (Keeley and Rundel 2005). With a combination of 

disturbance (such as fire) (Lehmann et al. 2011) and low level, seasonal rainfall, C4 

vegetation is a more effective competitor (Orions and Solbrig 1977; Edwards et al. 2010; 

Lehmann et al. 2011) and capable of dominating the landscapes (spreading savanna 

grasslands). 

Figure 4.23: Map depicting the varying vegetation biomes of modern day southern Africa, 
figure from Lee-Thorp et al. 1989 (page 589, Figure 2). 
Carbon isotopes to infer South African palaeoenvironments 
Isotope data have assisted in refining palaeoenvironmental reconstructions, e.g. 

Makapansgat Limeworks 3 was more closed than previously indicated by Vrba (1975, 
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1982; see chapter 2) as some species assumed to be grazers or mixed feeders based on their 

extant counterparts, were actually browsers (Sponheimer et al. 1999). Significantly for 

paleovegetational reconstructions of Sterkfontein, Luyt (2001) noticed a greater mean δ13C 

depletion in Sterkfontein Member 4 than in Member 5, suggesting a warming and drying 

through time from Member 4 accumulation (~2.5 Ma) to Member 5 accumulation (~1.7 

Ma). An increase in carbon isotopes δ13C values through time in Antidorcas would support 

the proposed long-term drying trend (see chapter 2). Using stable isotopes alongside other 

methods enables further refinement of our understanding of the palaeoenvironmental 

context from 2.8-0.8 million years ago in southern Africa. 

4.6.2 Oxygen Isotopes 
The oxygen isotope composition of vertebrate teeth is extensively used as a geochemical 

means to decipher the palaeoenvironmental air temperature (e.g. Bernard et al. 2009). As 

plants undergo evapotranspiration, 18O is unevenly distributed through the plant, with leaf 

water becoming the most enriched in 18O (Gonfiantini et al. 1965; Dawson et al. 2002). 

Herbivore δ18O values are dependent on which plant parts are preferentially consumed. 

Browsers therefore, tend to have enriched δ18O values as they feed primarily on plant 

leaves, whereas grazers rely more on regular consumption of drinking (meteoric) water 

(Cerling et al. 1997; Sponheimer and Lee-Thorp 1999a; Levin et al. 2006; Ecker et al. 

2018). Stable oxygen isotopes can inform more on a landscape’s aridity, an aspect scarcely 

obtainable via other means.  
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Figure 4.24: Visual explanation of stable oxygen isotope found in bovid dental enamel. On 
the left, shows non-obligate drinkers, such as A. marsupialis, who obtain the majority of 
their water via the leaves they consume. This dietary behaviour leaves their oxygen isotope 
values vulnerable to climatic variability. In more arid conditions, evapotranspiration 
occurs more rapidly in plants, resulting in the leaves consumed by browsers, being more 
enriched in δ18O. In contrast, when the temperatures are lower and the environment is 
wetter, evapotranspiration occurs at a slower rate, therefore, the leaves are depleted in 
oxygen δ18O, consequently, the ingested and preserved δ18O in the herbivore is also 
depleted. 
Oxygen isotopes to infer South African palaeoenvironments 
Animals’ isotopic compositions vary in response to environmental change (Longinelli 

1984; Luz et al. 1990; Ayliffee & Chivas 1990). δ18O values obtained from bovid dental 

enamel are indicative of water use (predominantly drinking behaviour) and 

thermoregulatory behaviour (Luyt 2001). Water-dependent animals (i.e. that drink more 

regularly) have more depleted 18O values than those that obtain their water from plant 

sources (particularly leaves) (Sponheimer & Lee-Thorp 2001). Water-dependent animals 

typically have δ18O values, in line with local precipitation (Bernard et al. 2009; Faith 2018). 

Knowledge of a taxa’s ES-EI (evaporation sensitive or insensitive respectively) has been 

shown to be of importance when utilising oxygen isotopes from enamel samples to 

determine aridity levels (Faith 2018). Leaf water is relatively enriched in H2
18O due to 

preferential evapotranspiration of the lighter H2
16O molecule (Gonfiantini et al. 1965; 

Epstein et al. 1977; Sternberg 1989; Yakir 1992). Thus, animals obtaining most of their 

water via leaf water, as opposed to drinking water, will have enamel more enriched in 18O 

(Sponheimer & Lee-Thorp 2001). Modern Antidorcas marsupialis can survive without 

drinking water during the dry season and can be considered evaporation-sensitive taxa 

(obtaining most of their water from leafy dicots). It may be expected that fossil Antidorcas 

was also water-independent, and consequently had δ18O enrichment. 

Oxygen isotopes 18O/16O ratios (expressed as δ18O values) obtained from dental enamel 

apatite reflect aridity (Levin et al., 2006) along with the oxygen isotope composition of 

local meteoric water consumed by fossil bovids (Sponheimer and Lee-Thorp, 1999; 

Podlesak et al., 2008). For non-obligate drinkers, such as Antidorcas, typically, higher δ18O 

values would imply more arid conditions. Relatively low δ18O values for non-regular 

drinking species (obtain the majority of their water intake from plant consumption), such as 

Antidorcas marsupialis, suggests low evapotranspiration rates, and by inference, wetter 

environmental conditions (Ecker et al. 2018; Sponheimer and Lee-Thorp 1999a).  

δ18O often do not preserve as well as δ13C values (Wang and Cerling, 1994; Zazzo et al., 

2004). Nevertheless, these may be coupled with carbon isotope ratios to reveal the dietary 

niches of fossil bovids in greater detail (e.g. Luyt et al. 2000; Hare & Sealy 2013). The 

concentration of oxygen isotopes in meteoric water (which is in turn, taken on by the 

animals and distributed throughout the tissues (such as dental enamel), and measured 

through mass spectrometry) is influenced by numerous factors, such as air temperature 

(Bernard et al. 2009). Levin et al. (2006)’s study on stable isotope aridity index for East 

African terrestrial mammals highlights how oxygen isotopic composition of mammal tooth 

enamel (δ18O values) can be used as an aridity proxy. The study shows the importance of 
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determining the species’ isotopic sensitivity to environmental aridity; evaporation sensitive 

(these animals δ18O values increase with aridity) or evaporation insensitive (these animals 

mirror local meteoric water). δ18O values from dental enamel of contemporary animals in 

the same geographic area will record slightly different aspects of the environment; 

understanding the animal’s environmental sensitivity allows their 18O composition of 

bioapatite to be used to show changes in aridity (Levin et al. 2006).  

Blumenthal et al. (2017)’s revised aridity index for quantifying water deficit in terrestrial 

environments from dental enamel δ18O has been shown to be a useful tool in assessing 

palaeoaridity in East Africa. This method is based on the water deficit (i.e. annual 

difference between water loss (via evaporation/transpiration) and water gain (via 

precipitation) (Lehmann et al. 2011) and δ18O enrichment between local meteoric water and 

that of tooth enamel. As meteoric water cannot be directly known from the fossil record, 

estimates are made from EI (evaporation insensitive) taxa δ18O values (Blumenthal et al. 

2017; Faith 2018). However, this type of analysis requires many factors to be considered, 

including, taxonomic identification and understanding of the palaeoecology of the taxa 

chosen, particularly their water intake (Levin et al. 2006; Kohn et al. 1996; Blumenthal et 

al. 2017). Although methodologically not directly applicable for this research, this type of 

analysis has enabled suggestions of decoupling of the long-established link between aridity 

and increased abundance in C4 vegetation and grazing; thereby highlighting the importance 

of other environmental factors that should be considered, such as rainfall and seasonality.  

Variation of mean air temperature by only a few degrees, evidenced via often <2‰ δ18O 

variations can be indicative of major climatic changes (Zazzo et al. 2004). Inferences of 

climate or climatic instability may be possible if sufficient variation exists in the oxygen 

isotope signature, as a result of individual physiological stress and mechanism for 

thermoregulation. For example, animals that pant to reduce heat loss will have a higher 

δ18O value than one that sweats (releasing water and ions through the skin) to allow cooling 

as isotopically depleted oxygen is being lost in the process of panting (more concentrated 

water evaporation) (Luyt 2001). This is a useful tool for understanding some of the 

otherwise intangible behavioural aspects of fossil ecology. For example, observational 

analysis of modern springbok has shown herd size and associated behaviour is linked to 

specific rainfall patterns (rather than to seasonal patterns per se), which is believed to be 

due to the lambing season occurring post-rainfall (Stapelberg et al. 2008), when new 

grasses sprout and nutrition availability is increased. Modern A. marsupialis lose significant 

water via sweating and panting during hot, arid conditions to ensure thermoregulatory 

needs are met (Hofmeyr and Louw 1987). Modern A. marsupialis is able to survive without 

drinking water provided their food content contains over 10% moisture (Greenwald 1967) 

but they will drink water when it is in abundance (Bigalke 1972; Nagy and Knight 1994; 

Skinner and Louw 1996). Behavioural adaptations, such as nocturnal feeding and selective 

feeding of shrubs with high water content enable this type of non-obligate water activity 

(Shortridge 1934; Nagy and Knight 1994; Bigalke 1972). Although the same can only be 

inferred for fossil Antidorcas species, here the assumption is made that all Antidorcas 
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species were not obligate drinkers, and the stable oxygen content of their dental enamel is 

predominantly reflective of aridity levels.  

Dental enamel δ18O variations are reflective of seasonal food and drinking water δ18O. 

Other factors, such as weaning may play a part in the variations seen but precipitation 

levels are the dominant contributor in the variation of δ18O in bovid enamel (Luyt & Sealy 

2018). Seasonal precipitation variations are averaged in the enamel values, as seasonal 

variations would have been experienced by the individual during enamel formation. 

Seasonal factors influence δ18O of teeth that are forming and mineralising at the time 

(Bryant et al. 1996; Murphy et al. 2007b; Tornero et al. 2016), are shown via serial samples 

from individual teeth.  

As some of the oxygen is derived from vegetation consumed and respiration, the enamel 

oxygen isotope values are not completely indicative of precipitation levels. No discernible 

weaning signal or difference across the toothrow has been found when testing the method 

(e.g Luyt & Sealy 2018). 

Taken together, δ13C and δ18O isotope values allow insight into climatic drivers of 

landscape habitats and consequent niche partitioning (Ecker et al. 2018).  

4.6.3 Considerations 
Degeneration and preservation The differential taphonomic agents acting upon each 

assemblage is addressed Appendix A3. Whilst enamel is able to withstand the effects of 

degeneration and is less susceptible to taphonomic factors compared to bone, some degree 

of differential degeneration between deposits and between individuals is possible (Luyt 

2001). Luyt’s (2001) study showed little diagenetic alteration had taken place for the 

Swartkrans samples. The method implored by Sponheimer (1999) for the pre-treatment of 

samples limits the possibility of contamination and the impact of taphonomic factors but 

cannot completely exclude them. Oxygen isotopes are more complex to interpret but are 

believed to be more prone to diagenetic affects and chemical alteration than carbon isotopes 

(Wang and Cerling 1994; Luyt 2001).  

Contamination Schoeninger et al. (2003) highlighted the possibility of chemical alteration 

of fossil enamel by the surrounding sediments. The context of archaeological deposit the 

specimen was found in should be recorded to mitigate this issue if necessary.  

Sampling procedure Although experimental evidence often comes from different species, 

records of intra-tooth variability must be considered to ensure sampling is representative of 

environmental variability as far as possible. For example, enamel growth of M3 slows 

exponentially, making consistent sampling distance misrepresentative of consistent time 

periods (Zazzo et al. 2012). See Table 4.6 for Antidorcas dental molar formation, 

mineralisation and eruption patterns. The mesial side of the tooth records environmental 

variability more faithfully than the buccal side, and has been proven to show greater intra-

tooth variability (Zazzo et al. 2012).  

Scale Observed changes may reflect subtle, smaller-scale environmental changes occurring 

within a longer-term trend (e.g. Hopley 2004; Lee-Thorp et al. 2007). Therefore, 
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consideration of scale and likely longevity of vegetation change must be taken when 

making inferences using the isotopic data.   

Stable isotopes in dental enamel are fixed during enamel formation, which occurs in the 

early years of the animal’s lifetime, and differs according to tooth type (following dental 

eruption patterns) (e.g. Balasse 2002). As discussed, microwear analysis is reflective of the 

last few meals consumed by the animal, using both techniques, alongside the lifetime-

averaged mesowear signal, on the same animal’s dentition, provides holistic information on 

diet for the individual animal.  

Dental eruption patterns Isotopic sampling provides only a snap-shot signal according to 

season (if bulk sampled), age of individual and tooth used for analysis. It has been 

suggested that isotope values vary across the toothrow (Lee-Thorp et al. 1997). Although 

this has been contested (e.g. D’Ambrosia et al. 2014; Luyt & Sealy 2018), attention is given 

to tooth choice for sampling. Dental eruption occurs progressively; with enamel being 

formed as each tooth matures, thus, isotopic ratios will vary accordingly (as the animal 

ages, until enamel is fully mineralised). Enamel mineralisation is progressive (along the 

toothrow) but discontinuous (Reade et al. 2015). 

The season during which this enamel formation occurs and the tooth sampled (and related 

age of the individual), is likely to yield differential isotopic signals. Diets will differ 

seasonally and by population, alongside this, nutrient requirements are likely to alter as an 

individual matures. Serial sampling attempts to capture the seasonal signal, providing the 

sampling is consistently spaced across the tooth (from cervix to apex) (e.g. Balasse et al. 

2002; Zazzo et al. 2002, 2012; Bernard et al. 2009 but see Zazzo et al. 2012). Where bulk 

sampling is used, the same position on each tooth should be taken where possible to 

mitigate for the possibility that isotope ratios may vary between different locations on the 

same tooth (Koch et al. 1989; Balasse 2002).    

Table 4.6: Dental eruption ages for Antidorcas, modified after Rautenbach 1971; De 
Villiers et al. 1985 (Skinner & Louw 1996). 
Tooth  Crown formation 

and mineralisation 
Tooth eruption begins  Tooth eruption  

completion 
M1  1-3 months  3-6 months  6 – 10 months 
M2  3-7 months  7-15months  9-16 months  
M3  7-10 months  10-22months 18–24 months  
 

Typically, modern springbok are capable of breeding at any time of year, and do so 

opportunistically, following seasonal rains (Skinner and Louw 1996). The rains maximise 

the landscape’s nutritional potential by initiating new grass shoot growth preferred by the 

springbok. It is possible that the isotope signature for modern springbok is therefore likely 

to overemphasise high moisture content (depleted δ18O) and grass consumption (more 

enriched δ13C). Table 4.6 suggests that isotope samples are yielded from Antidorcas with a 

maximum age of 2 years. Therefore, the isotope analysis cannot reflect diet after the 

springbok was 2 years old (maximum). Springbok lambs are weaned around 4 months 

(120- days) (Skinner and Louw 1996) and mineralisation occurs early in the animal’s life. 

Enamel formation (amelogenesis) takes place in two stages, where the enamel matrix is 

secreted initially and then crystallised to form a densely packed mass of enamel crystallites 
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(Hillson 2005). Enamel formation occurs prior to dental eruption. For cheek teeth, first 

molars erupt first, followed by premolars, then second, followed by third molars (Swindler 

2002). Mandibular teeth erupt slightly earlier than maxillary teeth (Smith 2000). It was 

thought that isotopic signatures differed across the toothrow, with the first molar reflecting 

the weaning signal as it mineralises whilst the lamb is suckling (Passey and Cerling 2002). 

However, since the lipid content of ungulate milk is low, any effect is likely to be small 

(Balasse 2002) and recent studies found no weaning signal for either carbon or oxygen 

isotopes (Luyt & Sealy 2018).  

Various studies have investigated the differential toothrow isotopic signals (e.g. Gadbury et 

al. 2000; Zazzo et al. 2002, 2012; Wang et al. 2008) but found that although there is 

variation for individuals across the toothrow, there is little evidence of systematic off-sets 

between the teeth for carbon and no off-set for oxygen isotopes (D’Ambrosia et al. 2014; 

Luyt & Sealy 2018).  

Intra-specific variation and individual preference It is important to consider the dietary 

niches of animals from the sum of individual feeding preferences (with a population) 

(Bolnick et al. 2003, 2007) due to the local impact on individualistic food selection 

(Lehmann et al. 2015). This is especially true of species with a high degree of individual 

dietary specialization, as has been shown for the modern springbok (Lehmann et al. 2015). 

That is, although they may be classified as ‘mixed feeders’ on a species level, individuals 

may be anywhere along the feeding spectrum (grazing-browsing), rather than having 

roughly similar proportions of grass and browse. This is especially true of fossil 

‘populations’ which may span many living populations/herds of springbok over hundreds 

or thousands of years, within one member. This supports earlier discussions for microwear. 

4.6.4 Stable Isotope Method 
SELECTION 
Molars identified to at least genus level as ‘Antidorcas’ were isolated for potential 

sampling. Following the requirements of the respective institutes, those with some degree 

of breakage were selected preferentially (rather than destroying any prime molars that may 

be of benefit for taxonomic identification purposes or similar). Where molars fit this 

selection criteria, an ideal of 4-5 individuals of each Antidorcas species per member were 

selected. This was not always achievable, with some species within members being better 

represented than others. Those selected were then subject to approval for temporary export 

and destructive sampling permits from A) The resident institute (the University of the 

Witwatersrand) and B) SAHRA (South African Heritage Resource Agency).  

SAHRA permit reference numbers: 9641 and 2478.  

Select sample analysed specifically for this research 
Prepared Antidorcas enamel samples from Swartkrans were sent to Dr Angela Lamb at the 

Stable Isotope Facility, British Geological Survey, National Environment Research Council 

to conduct a pilot study. Carbon (δ13C) and oxygen (δ18O) isotope data were obtained via 

VG SIRA 12 mass spectrometer. The results of both isotopes are expressed as per mil (‰) 

against the VSMOW (Vienna standard mean ocean water) standard, or SMOW and VPDB 

standards respectively (Hornberger 1995).   
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Swartkrans Member 1 and 3 isotope values are obtained as a pilot study for a NERC grant 

and are presented for the first time with this research (see ‘Isotopes’ chapter 10). 

Swartkrans Member 2 isotope values from Sewell et al. 2019. All other values are from 

published sources as detailed in Appendix A8 and chapter 10. Results obtained here (Table 

10.3 ) are compared to previously published results for Antidorcas and supplementary 

species* from relevant time periods and species at these sites (see Table 10.4 and Table 

10.5).   

* Damaliscus pygargus and Tragelaphus strepsiceros are used as the C4 grazing and C3 

browsing ends of the spectrum respectively. Climatic conditions are likely to affect 

fractionation in plants and therefore the signal left in the dental enamel of the fauna 

consuming them (Lee-Thorp et al. 1994; Lee-Thorp et al. 2000; Luyt 2001). By including 

supplementary species, the grazing-browsing spectrum shift according to climatic 

conditions can be established.  

SAMPLING  
Once dental enamel powder is sampled (conducted personally at Bournemouth University), 

isotopic ratios can be measured using mass spectrometry to separate the different isotopes 

based on their mass-to-charge ratio (Breci 2017). 

Each tooth was considered for bulk or serial sampling. Initial sampling was limited to a 

‘pilot study’ of a maximum of 30 samples. Consequently, only the Swartkrans material was 

prioritised (as Swartkrans Member 2 isotope samples had already been completed by Dr 

Sally Reynolds and Dr Philip Hopley at the University of Liverpool in 2002; this data was 

therefore available to be combined to additional results gained here). 4 specimens (SKX 

28008- A. marsupialis, Swartkrans Member 3; SKX 34249- Antidorcas sp., Swartkrans 

Member 3; SKX 10703- A. marsupialis, Swartkrans Member 1 LB and SKX 11602- A. 

australis, Swartkrans Member 1 LB) were identified for serial sampling, based on their 

provenance and species identification. Of these 4, 3 were serial sampled. SKX 10703 was 

bulk sampled to minimize damage due to cracks on the tooth (serial sampling is invasive 

over a larger area of the tooth and was deemed likely to cause more damage than bulk 

sampling).  

The tooth surface was cleaned with acetone to remove any soil/other potential 

contaminants. The surface was cleaned by abrasion if sediment was attached. A Dremel 

(model 8200) with 1mm diamond-tipped drill bit was used on a low speed to obtain dental 

enamel samples from selected Antidorcas molars. The Dremel was cleaned with spray 

duster and acetone between each sample. The samples were collected in a 1.5 ml 

Ependorf© centrifuge tube. Each tube was weighed before and after the sample was 

collected. 

The tooth was drilled according to the appropriate sampling method indicated below. In 

each case, the tooth was held on smooth paper to catch the enamel powder. The paper was 

used as a funnel to ensure all the enamel powder was tipped into the tube. If small pieces of 

enamel broke off (rather than as ground powder), these pieces were separated and ground 

into a powder in a pestle and mortar before being added to the sample.  
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Enamel samples were taken from the same location for each tooth where possible to allow 

the best chance at comparative results. As discussed above, the location of the sample 

obtained can reflect a different part of the animal’s life, due to the enamel mineralization 

process (Reade et al. 2015). Photographs of each specimen were taken before and after 

sampling to record this destructive sampling.  

Enamel powder sample size is dependent on enamel thickness, and for serial sampling, the 

number of samples depends on the spacing (which should be consistent) and the height of 

the tooth (i.e. the length of enamel available).  

 

 

Figure 4.25: Dental enamel sampling: A: Bulk sampling: a single (vertical) sample is 
obtained. B: Serial sampling: roughly 6 (horizontal) samples are taken, from root to cusp, 
attempting to reflect seasonal increments. 
Serial sampling 
Serial sampling attempts to capture the seasonality by taking enamel samples from the 

tooth root to cusp. It is entirely possible that seasons are missed if the bands of enamel 

sampled are not consistent, or that a mixture of seasons is obtained if taken along a plane 

that is not the seasonal delineation. Care is taken to ensure consistency of spacing between 

enamel samples taken to mitigate for this as far as is achievable.  

All equipment and teeth were cleaned after each sample taken. Samples were labelled with 

their specimen number and a letter to correspond to the sample location (a-f, where ‘a’ was 

taken closest to the tooth root/ jawline and ‘f’ closest to the apex of the tooth). 6 samples 

for each tooth, with approximately 3-5 mg of enamel powder was desired. In some cases, 

due to small teeth or thin enamel, this was not possible. This is indicated in the raw data 

table in Appendix A8.  

SPECIMENS SERIAL SAMPLED IN PILOT STUDY: SKX 28008 (Swartkrans Member 

3), SKX 34249 (Swartkrans Member 3), SKX 11602 (Swartkrans Member 1). 

Bulk sampling 
Roughly 7mg of dental enamel powder was obtained (See pre-treatment sheet in appendix 

A8). Caution to avoid excessive damage to the tooth was exercised. Drilling close to 

cracks, for example, was avoided where possible.  

SPECIMENS BULK SAMPLED IN PILOT STUDY: SKX 34249 (Swartkrans Member 3), 

SKX 35326 (Swartkrans Member 3), SKX 33839 (Swartkrans Member 3), SKX 10703 
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(Swartkrans Member 1), SKX 36545 (Swartkrans Member 3), SKX 28999 (Swartkrans 

Member 3), SKX 10697 (Swartkrans Member 1), SKX 4842 (Swartkrans Member 1). 

Pre-treatment 
The pre-treatment process was initiated by Lee-Thorp et al. (1997) and considerably refined 

by Sponheimer (1999), allowing for minimal sample destruction or contamination. 

Guidance on pre-treatment was given by Dr Philip Hopley at the University of Birkbeck 

(2017). Samples were pre-treated at Bournemouth University. 

1) 2-3mg of powder is obtained from the tooth enamel using a rotary drill with 
1.2mm diamond-tipped drill bit.  

2) Treat with 1ml of 2% sodium hypochlorite (NaOCL) for 45minutes to remove any 
organic material. 

3) Centrifuge (using 1 standard for each batch of 8 samples). 
4) Remove acid with pipette/tip acid out. 
5) Rinse 3-4 times with deionised water (18.20hms). Shake tube until cloudy. 
6) Place samples in the centrifuge on high speed for 3minutes.  
7) Pre-treat with 0.5ml of 0.1M acetic acid for maximum of 15 minutes. 
8) Centrifuge (after 10 minutes to ensure acid is removed by 15 minutes). 
9) Rinse 3-4 times with deionised water (18.20hms). Shake tube until cloudy. 
10)  Place the powder sample in the oven overnight at 70°C.  

 

 

CHAPTER 5 

META-ANALYSIS OF FAUNAL 
COMMUNITIES 
5.1 INTRODUCTION 

For the majority of this research, Antidorcas fossil teeth from selected hominin-bearing 

sites in southern Africa are used. The sites were chosen as a proxy for the temporal range, 

rather than a detailed study being conducted on each site chosen. Yet in order to accurately 

analyse findings obtained via springbok dentition, certain elements of each site’s 

background must be considered. The majority of these issues are discussed in Appendix 

A3. Here, attention is given to the faunal communities, of which both Antidorcas and 

hominins were a part. The degree of faunal diversity present through time, within a 

relatively close geographic proximity, can be estimated through a meta-analysis of faunal 

assemblages recovered from each site. Further, the impact of local factors on faunal 

distribution and faunal community interactions can be assessed, and considered against the 

impact of palaeoenvironmental change.  This is likely to be visible in sites that are 

considered roughly contemporary but are geographically distinct. For example, although 

only just over 1 km apart, the separated sites of Sterkfontein and Swartkrans are believed to 

temporally overlap in certain Members (Sterkfontein Member 5 and Swartkrans Member 

1), any faunal community dynamics differences are likely to be due to local factors. The 

global and regional climatic influence would also be consistent across both sites (although 

local scale buffers of such should be considered). Therefore, any discrepancies in faunal 

community constituents would likely be due to smaller scale influential factors, rather than 

palaeoclimatic differences. 
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The faunal communities of sites within the temporal range of 3-0.5 Ma were assessed to 

place Antidorcas data gained from this research into context as far as possible, to 

understand the characteristics of each assemblage and assemblage formation patterns. This 

may be impacted by species abundances and taphonomy. Taken alongside site 

accumulating agents and taphonomic information, as discussed in (Appendices A3) (e.g. 

Partridge 1986, de Ruiter et al. 2008a,b, Pickering et al. 2004; Behrensmeyer et al. 2000; 

Adams et al. 2007; Val et al. 2015; Bountalis and Kuhn 2014; Fourvel et al. 2018), a meta-

analysis can be used to understand the sites’ faunal communities and Antidorcas’ place 

within them. Thereby enabling accurate interpretations from the information gained from 

Antidorcas data, as well as placing each site and member in an expected grouping / 

palaeoenvironment type (from the clusters that group similar sites/Members together). 

5.2 CONSIDERATIONS 
There are numerous confounding factors that must be considered prior to interpretation of 

the faunal meta-analysis (Stewart 2008). 1) The difference in taphonomic origin, i.e. how 

the animals became incorporated into the assemblage; and differential taphonomic 

processes acting upon the assemblage thereafter; 2) whether the site has been sieved during 

excavation (and sieve mesh size), which will skew results one way or another for the 

smaller taxa; 3) taxonomic assignment level, the importance and expertise included for the 

faunal assemblage during excavation and post-excavation analysis is likely to differ for 

each site (and potentially for each member if the excavation team alters through the 

excavation/investigation seasons). Each of these factors may artificially enhance 

differences between sites, yet, without further research to resolve each of these issues for 

each site, these potential biases can only be acknowledged.  

Taxonomic identification level / Scale 
Taxonomic identification levels vary tremendously between site assemblages and are thus 

likely to create an artefact of difference between sites. To rule this out, identifying only to 

family or genus level may be required, however, there is then the possibility that this 

creates false similarities between sites. Thus, taxonomic identification is a major factor, 

with the level of identification (i.e. to genus/species etc.) and accuracy of identification 

ultimately plays a part in which assemblages/sites appear most similar.  

Some conflicting identifications in the literature also exist for certain sites (e.g. Vrba 1973; 

Watson 1993; de Ruiter 2001, 2003). Particularly the taxonomic identification of extinct 

species or genera. For instance, the controversial extinct racoon dog (Nyctereutes 

terblanchei), was assigned to the genus: Nyctereutes (e.g. by Turner and Wood 1993), yet if 

this is the case it would be the only example found in Africa and restricted to the Cradle of 

Humankind sites. Although researchers provide sound and (metrically argued) arguments 

against this assignment (e.g Reynolds 2012), the assignment remains in the literature and 

continues to generate artificial differences between sites on presence/absence analysis, 

based on taxonomically identified fauna.  

Predators  
Within any assemblage, their accumulation factors must be taken into consideration. That 

is, are changes in faunal communities in assemblages a reflection of predator 
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preference/differing predators rather than changes in environmental conditions and changes 

in the dietary strategies and habitat preferences of the living faunal communities?  When 

used in conjunction with knowledge of site accumulation, a more holistic overview of the 

site, its living faunal community and the ultimate taphonomic processes acting upon them 

as a deposited assemblages and ultimately impacting their representation from the fossil 

record, is obtained.  

Accumulating agents and other confounding factors notwithstanding, it is anticipated that 

sites accumulating under similar palaeoenvironmental conditions, and therefore having 

fauna representative of that palaeoenvironment, will cluster together.  

Sample size 
The overall sample size can impact upon interpretations. If sample sizes are small, this may 

reflect the taphonomy of the individual site rather than being a reflection of the living 

biodiversity of the time. 

Presence/absence data 
Using presence/absence data weighs all species equally within the assemblage, yet only 1 

individual of a particular species could be present, giving as much impact on the overall 

trend as more dominating species, (which could be represented by hundreds of individuals). 

The relative abundance of different species, particularly bovid species would be of interest 

for a future study and would add information of the nature and degree of competition and 

faunal community dynamics. The abundance of bovid species provides an indication of the 

extent of grasslands within a landscape, where the presence alone of multiple grassland-

adapted species cannot give as clear an indication. Many grassland-adapted taxa perhaps 

hint at more habitat heterogeneity, allowing greater taxonomic diversity in smaller habitat 

niches across the landscape. Or, suggest far-ranging grassland capable of supporting 

multiple species that might otherwise compete in a more restricted grassland area.  Yet 

abundance data also has limitations, an example of which is indicated by the reduction in 

dependence on Vrba’s (1980) AAC (Antelopini-Alcelaphini criterion), as detailed 

elsewhere (see chapter 2).  

Presence/absence data is more easily obtainable from the literature. This is partly due to 

simplicity, with it being easier to identify to genus level or to identify if a species/genus is 

present but not as easy to determine MNI/ MNE and then which of these is the most 

reflective and most appropriate for each instance.  

5.3 DATA COLLECTION 
Faunal lists were assembled for the following sites and deposits: 
Table 5.1: Sites (and stratigraphic members) and corresponding site codes used. 
SITE CODE SITE 
1 Malapa 
2 Gondolin GD1 
3 Gondolin GD2 
4 Drimolen Main Quarry 
5 Sterkfontein Member 4 
6 Sterkfontein Member 5 StW 53 Infill 
7 Sterkfontein Member 5 East 
8 Sterkfontein Member 5 West 
9 Sterkfontein Member 5 L/63 
10 Sterkfontein unstratified 
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SITE CODE SITE 
11 Swartkrans Member 1 HR 
12 Swartkrans Member 1 LB 
13 Swartkrans Member 2 
14 Swartkrans Member 3 
15 Kromdraai A 
16 Kromdraai B 
17 Cave of Hearths 
18 Wonderwerk Cave 
19 Buffalo Cave 
20 Gewihaba&Nqumtsa (Botswana) 
21 Modern South Africa 
22 Modern Botswana 
23 Modern Namibia 
24 Modern Angola 
Additional sites (to those included in the main analyses of this research) were included for 

this method to place this research into context within southern Africa. A table of 

presence/absence data of species and genera for each site is analysed. Kromdraai was 

grouped according to available faunal lists, as A and B but in future studies, as research 

progresses, Kromdraai should be able to provide more accurate temporal refinement of 

species presence/absence lists (see Braga et al. 2016). Modern faunal lists were acquired 

from IUCN Red lists (http://www.iucnredlist.org/ 2018); mammal list for each southern 

African country inhabited by springbok are used here to provide the degree of intra-genera 

species variation and presence/absence of genus. Each fossil site (faunal diversity via 

presence/absence data) can be assessed against modern faunal diversity (presence/absence 

data) indices to see if they align with any particular modern geographic analogue (areas/ 

habitat/landscape type) within southern Africa. Although countries are too large to be 

directly comparable to fossil cave sites (Stewart 2008), this may still enable the degree of 

biodiversity supported within each fossil site to be estimated. 

5.3.1. METHOD 

A Hierarchical cluster analysis for binary data was performed in SPSS v.23.software 

package. This was originally done by nearest neighbour analysis (single linkage) clustering 

method and squared Euclidean distance measure of proximity and subsequently repeated by 

average linkage between groups, clustering with squared Euclidean distance proximity 

measure. There are a numerous methods of clustering that can be used to yield 

similarities/dissimilarities. A few different methods were considered and included here to 

highlight where discrepancies may occur based on the clustering method used yet show the 

consistencies in the results for the faunal communities. In these instances, each method is 

acknowledged in the relevant dendrogram (a visual representation of clustering) figure 

caption.  

Cluster analyses were conducted for all fossil assemblages at each site within each deposit 

(references are cited with Table 5.4). Some fossil assemblages (or certain elements/taxa 

within them) can only be identified to genus level, so by scaling back to genus level, the 

relationship between sites is perhaps more accurately established than using species-level 

comparisons. Particularly with fossil taxa, species-level identifications can often require 



136 

 

considerable experience to enable precise identifications; consequently, identifications 

likely differ between researchers.  

The fossil sites were then compared to modern analogues within southern Africa according 

to presence/absence of genera. This was done at genus level due to the discrepancy between 

extinct (fossil sites) and extant taxa (modern analogues) at species level. Whilst many of the 

same lineages exist today, with their ancestral forms present in the fossil sites; if taken at 

species level, they may not be identified as such due to differing species names. Whilst not 

taken further here, the range of species present for each site (and deposit) could be inputted 

to establish potential clustering based on the level of taxonomic variation.  

Sites which group first are considered more similar in their faunal assemblages (closer to 

the Y axis). Single linkage (or nearest neighbour clustering) is one of several methods of 

hierarchical cluster analysis (Figure 5.2). At each step, the site that is the most similar (the 

closest site in terms of taxa similarity ‘nearest neighbour’) is added the cluster, in a step-

wise fashion, until all sites are included on the cluster. Equal distances (similarities of taxa) 

are not assumed (Gower and Ross 1969).   

 Average linkage (UPGMA) is another method of stepwise agglomerative 

hierarchical clustering (Sokal and Michener 1958) but uses the mean of all distances 

(distance between site similarity), compared to the distance between any two sites, to create 

groupings; assuming a rate of constant distance (distance meaning similarity of taxa 

present) for each clustering group.  
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5.4 RESULTS 

META-ANALYSIS FAUNAL LISTS 
Table 5.2: Genera presence / absence data used for each site (site numerical code as listed in <<table 5.1>>>). Black square / ‘1’ shows the genus was present, ‘0’ in a square, 
depicts genus absence from the fossil record for this site Member. Data from Berger and Brink 2007; Berger et al. 2015b; Adams et al. 2007, 2016; Adams 2012; Watson 1993, 
2004; Keyser et al. 2000; Avery 2001; De Ruiter 2001, 2003; De Ruiter et al. 2008; Kibii 2004; McKee et al. 1995; Reynolds 2005; Reynolds & Kibii 2011; Pickering 1999; Vrba 
1974; Brink et al. 2015; Matmon et al. 2012; Kuykendall et al. 1995; Pickford 1990; Val et al. 2015; IUCN 2017). 
TAXA ORDER SITES 

1 2 3 4 5 6 7 8 9 10 1
1 

12 13 14 15 16 17 18 19 20 21 22 23 24 

Dinofelis  Carnivora 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
Panthera Carnivora 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 
Genetta   Carnivora 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 
Megantereon  Carnivora 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Machairodontinae 
indet. Carnivora 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Mungos sp. Carnivora 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Felis  Carnivora 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 
Felidae indet. Carnivora 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Proteles sp. Carnivora 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 
Caracal  Carnivora 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 
Homotherium  Carnivora 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
Megantereon  Carnivora 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 
Acinonyx  Carnivora 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 1 
Carnivora indet. Carnivora 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Atilax  Carnivora 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 
Cynictis  Carnivora 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 
Suricata   Carnivora 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 1 
cf. Herpestidae Carnivora 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Herpestes sp. Carnivora 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 0 1 
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Vulpes sp. Carnivora 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 1 1 
Otocyon  Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 
Lycaon sp. Carnivora 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Nyctereutes Carnivora 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Canis sp. Carnivora 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 
Aonyx capensis Carnivora 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 
Mellivora  Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 
Chasmaporthetes sp.  Carnivora 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
Pachycrocuta Carnivora 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Lycyaenops  Carnivora 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Hyaena  Carnivora 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 
Hyaenidae indet. Carnivora 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
Crocuta  Carnivora 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 
Leptailurus Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Profelis Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Civettictis Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Nandinia Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Crossarchus Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Galerella Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Helogale Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Ichneumia Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Paracynicitis Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Rhychogale Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Ictonyx Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Peoecilogale Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Lutra Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Atelerix Carnivora 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
Manis  Pholidota 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 
Equus  Perissodactyla 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 
Hipparion  Perissodactyla 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 
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Diceros Perissodactyla 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Ceratotherium Perissodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
Indeterminate bovid 
(Size II/III) Artiodactyla 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Indeterminate bovid 
(Size III) Artiodactyla 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Large-sized 
alcelaphine Artiodactyla 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Alcelaphini indet. 
(medium) Artiodactyla 0  0 0  0     0  0 0 0 0 0 0 0 0 0 0 0 0 
Alcelaphini indet.  Artiodactyla 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 
Bovidae indet. Artiodactyla 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Megalotragus sp. Artiodactyla 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 
Antidorcas Artiodactyla 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 
Oreotragus  Artiodactyla 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 
Tragelaphus sp. Artiodactyla 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 
Connochaetes sp. Artiodactyla 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 
Damaliscus sp. Artiodactyla 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 
Raphicerus sp. Artiodactyla 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 
Redunca sp.  Artiodactyla 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 
Sylvicapra Artiodactyla 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Kobus  Artiodactyla 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
Ourebia  Artiodactyla 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Taurotragus sp. Artiodactyla 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 
Gazella sp. Artiodactyla 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
Boselaphini sp. Artiodactyla 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Kobus  Artiodactyla 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Pelea sp.  Artiodactyla 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 
Alcelaphus  Artiodactyla 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 
Hippotragus  Artiodactyla 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 



140 

 

Makapania sp. Artiodactyla 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
Syncerus sp. Artiodactyla 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 
Pelorovis sp.  Artiodactyla 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 
Potamochoerus Artiodactyla 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Kolpochoerus  Artiodactyla 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Antilopini sp. Artiodactyla 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
Aepyceros sp. Artiodactyla 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Hippotragus sp. Artiodactyla 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 
cf. Pronotochoerus 
sp. Artiodactyla 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Phacochoerus Artiodactyla 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 
Tapinochoerus  Artiodactyla 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
cf. Parmularius sp. Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Bos makapania Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
Metridiochoerus sp. Artiodactyla 0 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
Suidae indet. Artiodactyla 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Giraffidae indet. Artiodactyla 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 
Sivatherium  Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
Hippopotamus sp. Artiodactyla 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 
Hyemoschus Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Neotragus Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Madoqua Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
Cephalophus Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
Oryx Artiodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Loxodonta Proboscidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Papio sp. Primates 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 
Australopithecus sp.  Primates 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Paranthropus  Primates 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 
Homo sp. Primates 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 
Hominidae indet. Primates 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Theropithecus  Primates 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
Parapapio sp. Primates 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 
Cercopithecidae 
indet. Primates 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 
Cercopithecus Primates 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 
Leophocebus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Colobus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Gorilla Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Pan  Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Galago Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Galagoides Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Otolemur Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
Euoticus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Allenopithecus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Miopithecus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Chlorocebus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Sciurocheirus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Perodicticus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Arctocebus Primates 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Struthio camelus Struthioniformes 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Lepus sp. Lagomorpha 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 
Lagomorpha indet.  Lagomorpha 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
Pronolagus sp. Lagomorpha 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 
Leporidae indet. Lagomorpha 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
Procavia Hyracoidea 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 
Elephas sp. Proboscidea 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 
Elephantidae indet. Proboscidea 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Myosorex  Eulipotyphla 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 
Suncus  Eulipotyphla 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Chrysospalax Afrosoricida 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
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Chlorotalpa Afrosoricida 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Neamblysomus Afrosoricida 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Rhinolophus Chiroptera 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Myotis Chiroptera 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Neoromicia Chiroptera 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Orycteropus Tubulidentata 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 
Bunolagus Lagomorpha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Poelagus  Lagomorpha 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Heterohyrax Hyracoidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 
Dendrohyrax Hyracoidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
Macroscelides Macroscelidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
Petrodromus Macroscelidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 
Bathyergus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 
Fukomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Petromus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 
Thryonomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
Anomalurus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Anomalurops Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Xerus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Funisciurus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
Heliosciurus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Paraxerus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Protexerus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Tachyoryctes Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Petromyscus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 
Cricetomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 
Saccostomus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Mystomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Lophuromys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Parotomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
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Desmodillus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Gerbillurus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Tatera Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Colomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Grammomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
Hybomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Hylomyscus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Lemniscomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Malacomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Myomyscus Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
Mylomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Oenomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Pelomys Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
Chrysochloris Afrosoricida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Amblysomus Afrosoricida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Calcochloris Afrosoricida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
Ateleric x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Crocidura Eulipotyphla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Sylvisorex Eulipotyphla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Potomogale x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Hystrix  Rodentia 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 
Mystromys Rodentia 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
Gerbilliscus Rodentia 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Gerbillus sp. Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Dasymys Rodentia 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 
Rhabdomys Rodentia 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Zelotomys Rodentia 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Otomys Rodentia 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Proodontomys Rodentia 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
Rodentia Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
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Millardia  Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Mus Rodentia 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Steatomys sp. Rodentia 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Malacothrix sp. Rodentia 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Dendromus sp. Rodentia 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Taterillus  Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Graphiurus sp. Rodentia 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
Georhychus sp. Rodentia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Pedetes sp. Rodentia 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 
Acomys Rodentia 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
Aethomys Rodentia 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Mastomys Rodentia 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Thallomys Rodentia 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
Cryptomys Rodentia 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 
Georychus Rodentia 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
Elephantulus sp. Macroscelidea 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 
Chelonia indet. Testudines 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Chiroptera indet. Chiroptera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Ophidia indet. Squamata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Eremitalpa Afrosoricida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 
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Figure 5.1: Hierarchical cluster analysis dendrogram, with between groups linkage with 
binary squared Euclidean distance of southern African fossil and modern sites, according 
to genus present/absent. The Y axis represents the faunal assemblages used, which 
correspond to the sites as listed in Table 5.1. 
Figure 5.1 dendrogram shows the sites that are most similar (branching closest to the Y 

axis) and those that are least similar (branching furthest from the Y axis). Modern and fossil 

sites are the least similar, i.e. fossil sites are more similar to other fossil sites than to any 

modern analogue (sites 21-24 branches at the furthest distance from sites 1-20). The 

Swartkrans sites are most similar to each other (sites 11-14).  

However, that Swartkrans Members cluster together has the potential to be an artefact of 

faunal records, reported by the same researchers. Taxonomic identification level (i.e. 

whether identified to genus/species/sub-species level) and method of recovery 

(sieving/research focus: e.g. zooarchaeology/hominins/lithics) may vary between research 

groups, when the research group is consistent across the members within a site (as at 

Swartkrans) but not between sites, the potential for exaggerated differences in faunal 

assemblages exists. 

Of the modern sites, South Africa, Namibia and Botswana are more similar to each other 

than any are to Angola. Of the fossil sites, Sterkfontein Member 5 East (Oldowan) and 

West (Acheulean) (sites 7 and 8) are the most dissimilar to any other fossil site.  

Sterkfontein Member 4 (site 5) distinction appears stronger using the nearest neighbour 

cluster method (Figure 5.2) where equal taxa differences between sites are not assumed, 
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and is shown to be less similar to Drimolen Main Quarry (site 4) than indicated by average 

linkage (Figure 5.1) which assumes a constant rate of taxa similarity between sites. This 

means in comparison to all the other sites, Sterkfontein Member 4 and Drimolen Main 

Quarry are similar but when compared only to one another, they differ.  

 
Figure 5.2: Hierarchical cluster analysis dendrogram, with nearest neighbour linkage with 
binary squared Euclidean distance of southern African fossil and modern sites, according 
to genus present/absent. The Y axis represents the faunal assemblages used, which 
correspond to the sites as listed in Table 5.1. 
 
The sites most dissimilar are linked last (separated first, i.e. branch furthest away from the 

Y axis) in Figure 5.2. The first cluster separates modern from fossil, as may be expected, as 

modern sites have more of the same (extant) genera across the whole of southern Africa, 

compared to fossil sites with more extinct genera not present in modern southern African 

sites, as expected from Stewart (2008). This shows the total level of diversity in the past 

(combined for the temporal range shown here, 3.0-0.5 Ma) was greater than the range of 

diversity across southern Africa today.   
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5.4.1 Micromammals removed 
A discriminant function was attempted to see with which modern faunal community each 

fossil site most closely resembled. Although the discriminant function analysis yielded 91.7 

% accuracy, only 2 genera were taken forward in the analysis as accurate predictor 

variables. The discriminant function analysis was therefore disregarded until more suitable 

data can be obtained in future research (results presented in Appendix A3 as not 

successfully used in this research).  

 

 
Figure 5.3: Hierachichal cluster analysis dendrogram, using nearest neighbour linkage 
with binary squared Euclidean distance of southern African fossil and modern sites, 
according to genus present/absent without micromammal taxa. The Y axis represents the 
faunal assemblages used, which correspond to the sites as listed in Table 5.1. 
 

Even without micromammals, modern faunal communities are not similar to any fossil 

faunal community (Figure 5.3). Angola is the more distinct of the modern communities 

than any of the others are from each other. The Swartkrans Members still group together, 

suggesting their clustering was not an artefact created by differential sieving at Swartkrans 

compared to other fossil sites. Of the other fossil sites, Gondolin GD2, Drimolen Main 

Quarry and Sterkfontein Member 4 appear the most different to the rest of the fossil sites. 
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Figure 5.4: Hierarchical cluster analysis dendrogram, between-groups linkage with binary 
squared Euclidean distance of southern African fossil and modern sites, according to genus 
present/absent without micromammal taxa. The Y axis represents the faunal assemblages 
used, which correspond to the sites as listed in Table 5.1. The green box, highlights the first 
fossil cluster separated, which is all of the Swartkrans Members. The yellow lines delineate 
clusters, which are numbered according to the stage of separation. Sterkfontein sites are 
identified by a red square and Kromdraai by purple square. 
Again, modern fauna separates first, with no fossil sites being linked to them. Of the 

modern faunal presence, Angola is the least similar to the others. This would be expected, 

being closer to the forests of Central Africa with a greater potential for forest taxa to be 

present. Swartkrans also forms a separate cluster and appear extremely similar in their 

faunal communities. Drimolen and Sterkfontein M4 are the first of the presumed- to-be-

unrelated sites to cluster.  

 

Modern 

Fossil   
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Figure 5.5: Hierarchical cluster analysis dendrogram, by Ward’s method with binary 
squared Euclidean distance of southern African fossil and modern sites, according to genus 
present/absent without micromammal taxa. The Y axis represents the faunal assemblages 
used, which correspond to the sites as listed in Table 5.1. 
The Ward’s method (Figure 5.5) is similar to using nearest neighbour (Figure 5.2) 

algorithms in assessing minimum variance (Ward 1963).  Using the Ward’s method, the 

clusters become more apparent. Again, modern fauna forms a separate cluster from all 

fossil sites, with Botswana, Namibia and South Africa being more similar than Angola. 

Sterkfontein Member 4 and Drimolen Main Quarry create a distinct cluster, as do the 

Swartkrans members; each of which are more similar to each other than any of the other 

fossil sites. Interestingly, all Swartkrans members next cluster with Drimolen (MQ) and 

Sterkfontein Member 4. This is perhaps an indication of the range of variation of species 

within genera that are hidden in this analysis. Based on genera diversity alone, Swartkrans 

would appear to accommodate more woodland-dominated genera, in line with Sterkfontein 

Member 4.  

5.5 Evaluation: genus level 
Distinct clusters form consistently, irrespective of linkage and clustering method. Certain 

taxa present in their faunal assemblages are therefore scrutinised here to highlight which 

taxa may be important for creating these clusters and are considered here. Within this, 

palaeoenvironmental/habitat indicator species may be present and enable insight into 

potential habitat clustering.  

- Swartkrans sites (11-14) compared to 4,5,9,10 (DMQ, Sterkfontein M4, L63 and 

unstratified) As Swartkrans has been shown to cluster together more than align with any 

other fossil site, the faunal community dynamics (taxa present and not present) are 
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considered further. Swartkrans Members continuously group together, suggesting either 

that their faunal communities were unchanged through time, and/or that the excavation 

method/ research team focus was unchanged for each member. This is contrasted against 

the other distinct grouping that formed. As such, the latter is more plausible as Sterkfontein 

yields roughly contemporary members and sits within the same catchment area for many of 

the taxa incorporated into each of the assemblages at Sterkfontein and Swartkrans and yet 

their faunal communities differ.  

Table 5.3: Comparative taxa from Swartkrans Members (sites 11-14) and the other distinct 
group forms (sites 4,5,9 and 10) from certain Sterkfontein Members. ‘x’ denotes where the 
taxa IS present, ‘-‘ denotes where the taxa has not been published as being present. 
Micromammals are listed at the end in square brackets but do not act as major 
contributors to these groupings. 
TAXA Sites 11-14  Sites 4,5,9,10 

Hippopotamus, Sivatherium (extinct giraffid) x - 
Genetta (genet) x - 
Acinonyx (cheetah) x - 
Atilax (marsh mongoose) x - 
Cynictis (yellow mongoose) x - 
Otocyon (bat-eared fox) x - 
Aonyx (African clawless otter) x - 
Mellivora (Honey Badger) x - 
Manis (Pangolin) x - 
Theropithecus (gelada baboon) x - 
Aepyceros (impala) - x 
Hippotragus (roan/sable antelope) - x 
Pronotochoerus - x 
Pomaochoerus - x 
Alcelaphus - x 
Kobus (waterbuck) - x 
Oerebia (oribi) - x 
Sylvicapra (duiker) - x 
Diceros (rhinoceros) - x 
Lycaon (African wild dog) - x 
Parahycrocuta (extinct hyaena) - x 
Lepus (hare) - x 
 [Orycteropus] x - 
[Myosorex] - x 
[Suncus] - x 
[Mystromys] - x 
[Gerbilliscus] - x 
[Dasymys] - x 
[Rhabdomys] - x 
[Zelatomys] - x 
[Otomys] - x 
[Proodontomys] - x 
[Dendromus] - x 
[Elephantulus] - x 
 

- Sites 4,5,9&10 (DMQ, Sterkfontein M4, L63 and unstratified) clustered together 

(1st cluster), compared to clustered sites 7&8 (Sterkfontein M5 E and W) (2nd 

cluster): Again, the level of taxonomic identification creates issue (for example, those not 

identified to genus level such as ‘size II bovid’ do not allow direct comparison with other 

sites that perhaps provided the same taxa as ‘Antidorcas’). The first cluster sites support 
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more open habitat taxa and have more numerous and different predators (i.e. assemblage 

accumulating agents). 

Table 5.4: Comparative taxa of distinct groupings from certain Sterkfontein Members (1st 
cluster: sites 4,5,9 and 10) and (2nd cluster:sites 7-8). ‘x’ denotes where the taxa IS present, 
‘-‘ denotes where the taxa has not been published as being present. Micromammals are 
listed at the end in square brackets but do not act as major contributors to these groupings. 
*but see Reynolds 2012. 
TAXA 1

st
 cluster 2

nd
 cluster 

Megantereon (sabre-toothed cat) x - 
Vulpes (fox) x - 
Lycaon (African wild dog) x - 
Redunca (reedbuck) x - 
Sylvicapra (duiker) x - 
Kobus (waterbuck) x - 
Ourebia (oribi) x - 
Pelea (rhebok) x - 
Alcelaphus (hartebeest) x - 
Syncerus (buffalo) x - 
Pelorovis (extinct African wild cattle) x - 
Potamochoerus (red river hog) x - 
Kolpocherus (extinct pig) x - 
Hippotragus (roan/sable antelope) x - 
Pronotochoerus x - 
Papio (baboon) x - 
Australopithecus x - 
Parapapio (extinct baboon) x - 
Cercopithecus (old world monkey) x - 
Lepus (hare) x - 
Mungos (mongoose) - x 
Nyctereutes (racoon dog)* - x 
Hipparion (extinct horse) - x 
Diceros (rhinoceros) - x 
Paranthropus - x 
Theropithecus (gelada baboon) - x 
Struthio (ostrich) - x 
[Chrsospalax] - x 
[Chlorotalpa] - x 
[Neamblysomus] - x 
[Rhinolophus] - x 
[Myotis] - x 
[Neoromicia] - x 
[Mus] - x 
[Steatomys] - x 
[Malacothrix] - x 
[Graphiurus] - x 
[Acomys] - x 
[Aethomys] - x 
[Mastomys] - x 
[Thallomys] - x 
[Cryptomys] - x 
[Georychus] - x 

5.4.2 Palaeoenvironmental change through time 
A Jaquard index was calculated to assess the similarity of sites (Figure 5.6). As the main 

aim of this research is to consider palaeoenvironmental changes and Sterkfontein Member 4 

has been previously shown (e.g. Vrba 1975, Reynolds & Kibii 2011) to be akin to a closed, 

woodland environment, Sterkfontein Member 4 was chosen as the baseline. Sterkfontein 

Member 4 is also the earliest dated site used in the rest of this research.  Figure 5.6 shows 
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how similar the faunal communities of each site considered are to Sterkfontein Member 4, 

and by extension, how similar each faunal community is to a woodland faunal community.  

Site 4, Drimolen Main Quarry is the most similar to Sterkfontein Member 4, showing just 

above 50% similarity. This is followed by Swartkrans (all members) and Sterkfontein 

Member 5 West, at roughly 40% similarity to Sterkfontein Member 4. The least similar are 

the fossil sites in Botswana (Gcwihaba and Nqumtsa), followed by Gondolin (GD1), 

Sterkfontein unstratified, Kromdraai B and Cave of Hearths. All modern analogues appear 

less than 25% similar to Sterkfontein Member 4 mammalian taxa.  

The Gcwihaba Caves in Botswana (roughly 50km from the Sterkfontein Caves), preserve 

the desert environment (Kalahari) evolution through the Plio-Pleistocene epoch, from c. 2 

Ma (https://whc.unesco.org/en/tentativelists/5558/[accessed 30/07/2018]. 

It is not surprising, therefore, that they are support differing taxa to the believed, woodland-

dominated palaeohabitats of Sterkfontein Member 4 (c. 2.8-2.0 Ma). 

Jaccard Coefficient 
To assess the similarity between sites, a Jaccard coefficient of each site to Sterkfontein 

Member 4 was created (Figure 5.6).  The Jaccard coefficient is calculated as follows 

(Teknomo 2015): 

 
S= the number of taxa absent in both site 1 (Sterkfontein Member 4) and site 2 (each of the 
other sites, compared in turn); i=Site 1 (Sterkfontein Member 4); j= Site 2 (each other site, 
compared individually to site 1, in turn); p= number of taxa present in both sites; q= 
number of taxa present at site 1 but absent at site 2; r= number of taxa absent from site 1 
but present at site 2.  
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Figure 5.6: Jaccard coefficient similarity matrix of faunal communities (genus level) from fossil southern African sites and modern analogues to Sterkfontein Member 4 (category 
5:5), (see Table 5.1: Sites (and stratigraphic members) and corresponding site codes used.Table 5.1). Groupings occur for Swartkrans (sites 11-14) and modern (21-24). 
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Faunal community similarities through time 
 

 
Figure 5.7: Scatterplot showing similarity of taxa present in sites through time (Plio-Pleistocene to late Pleistocene, based on published deposit dates for each site Member), 
according to average linkage clustering.  Numbers shown by the points correspond to number assignments given in Table 5.1. Sites grouped within each horizontal bar are more 
similar than those within a different horizontal bar. Swartkrans Members show more similarity to each other than to other sites, and are therefore clustered together in the top 
horizontal bar grouping. 
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Figure 5.7 shows that the early Pleistocene sites of Sterkfontein Member 4, Drimolen Main 

Quarry and Swartkrans Member 1 (LB and HR) had dissimilar fauna to each other and to 

all other early Plesitocene sites (Malapa, Gondolin 1 and 2, Gcwihaba Caves and 

Kromdraai A and B).  

The early-mid Pleistocene Swartkrans Member 2 had a faunal community dissimilar to 

Sterkfontein Member 5 Stw53 Infill and Wonderwerk Cave. 

Sterkfontein Member 5 East (Oldowan) was dissimilar to both Swartkrans Member 3 and to 

the group of sites including Sterkfontein Member 5 West (Acheulean), Sterkfontein L/63 

and Buffalo Cave.  

Brief review of clustering methods used 
From the methods trialled with the dataset here, both single linkage and average linkage can 

adequately inform on fossil faunal communities. However, the most appropriate for fossil 

fauna meta-analysis here is nearest neighbour linkage, as a rate of constant faunal similarity 

between sites is not assumed.  

The Jaquard index, as is often used in ecological studies of living fauna, is useful in 

comparing multiple other sites/ faunal communities to a specific faunal community/site, as 

was done here for Sterkfontein Member 4.  

5.6 DISCUSSION 

The meta-analysis links together similar sites. Whilst there are multiple confounding 

variables, such as sieving method and cave taphonomy, which must be considered, this 

analysis is our best tool to distinguish between major site differences, based on faunal 

assemblages alone. 

None of the fossil sites are particularly similar to any modern analogues. Modern South 

African faunal communities ally the closest with the fossil sites but are more similar to 

other southern African modern faunal communities than any fossil site.  

Sterkfontein appears more disjointed than Swartkrans, with members having diverse faunal 

communities. Sterkfontein Member 4 has more woodland-dominated fauna than later 

members (supporting previous reconstructions e.g. Vrba 1973). Sterkfontein Member 4, 

closely followed by Drimolen Main Quarry, yield the most woodland-associated genera. 

The most similar assemblages (genus-level) appear in Swartkrans and Sterkfontein Member 

5 west. This may indicate a higher woodland-component or perhaps be indicative of the 

local buffer impact of the Blauubank river (a constant resource and supporting sheltered 

environments, see chapter 2) for Swartkrans, making Swartkrans able to accommodate 

these genera locally, regardless of the regional palaeoenvironment.  

As Swartkrans faunal communities appear more similar to each other than to any other 

fossil site, the assumption can be made that any significant differences found throughout 

this research are less likely to be due to post-depositional taphonomic processes or 

excavation/researcher bias and more likely to be due to other factors, such as 

palaeoenvironmental differences. Additionally, all Swartkrans members appear to support 

more woodland taxa than other South African sites, likely due to the Blaubank river 
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providing suitable habitats and making the vicinity less vulnerable to environmental 

changes than more exposed areas (within a water source) (e.g. Cuthbert and Ashley 2014; 

Cuthbert et al. 2017).  

Angola is shown to have the most distinct faunal community of all modern southern 

African countries in which extant Antidorcas marsupialis inhabit. Habitats consistent with 

the central African rainforest exist within Angola, which is extremely different to habitat 

types in the rest of southern Africa. This helps support that a meta-analysis at this level 

works in establishing basic vegetation and habitat differences (via the taxa they support).  

This meta-analysis ensures this research is now equipped with knowledge of the faunal 

community context for the Antidorcas assemblages being utilised. With this in mind, the 

next chapters will assess the palaeovegetation signals, using Antidorcas as a bioproxy.  

 

CHAPTER 6 

ANTIDORCAS BACKGROUND 
RESULTS 
To ensure accurate interpretations are obtained from the fossil Antidorcas dataset, a results 

summary for modern Antidorcas are presented here. Data (dental measurements and use-

wear) was collected on modern Antidorcas marsupialis, which are incorporated into each 

methods’ results chapter. A summary (from each method) of the modern range of variation 

is included in this chapter to establish expected intra-specific variability for the genus. The 

levels of sexual dimorphism and sub-specific variation are explored. This modern 

Antidorcas information can then be used as a base from which to interpret the fossil 

Antidorcas.  

This is followed by results of the investigation into the likelihood of the presence of a 

fourth fossil species, ‘Antidorcas australis’ in the fossil contexts at the Cradle of 

Humankind sites.  

SECTION 1: DATA SUMMARY FOR 

MODERN A. MARSUPIALIS 

Each subsequent chapter includes data from modern Antidorcas marsupialis, from which 

summaries are presented here (see chapter 4 and chapters 7-11 for an explanation of each 

method and variables therein). This section provides the range of variation for the extant A. 

marsupialis, to establish the uniformitarian analogue for fossil Antidorcas. Additional 

supplementary information was gained to establish grazer-browser parameters from taxa of 

known dietary type (as introduced in chapter 3)  
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Figure 6.1: Antidorcas marsupialis (male) dentition AZ 3140 (Ditsong Museum of Natural 
History, Pretoria. Top image shows maxillary dentition in occlusal view, lower image 
shows right mandibular dentition in lingual view. 
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Figure 6.2: Lingual (top) and buccal (bottom) view of modern Antidorcas marsupialis 
mandibles with lower dentition. NHM. 26.12.7.324 
The following tables are indicative of the modern range of variation for Antidorcas 

marsupialis. These tables (Table 6.1-Table 6.15) provide expected variability parameters, 

to help understand results obtained from fossil Antidorcas.   

Use-wear (mesowear and microwear) indicates a mixed-feeding diet with a tendency 

towards browse. No significant differences were found between sub-species for use-wear. 

The use-wear results for modern A. marsupialis from this study (as detailed in this section, 

below) is supported by published isotope results, indicating a dominance of C3 plants in the 

diet e.g. Vogel 1978; Sponheimer et al. 2003; Cerling et al. 2003) are consistent with 

reported diet of the modern springbok via other study means (e.g. Gagnon and Chew 2000) 

and field observation (e.g. Bigalke 1972; Nagy and Knight 1994; Skinner and Louw 1996).  

6.1.1 Dental Morphology of Modern Springbok 

Modern A. marsupialis dental specimens of known sub-specific level were tested for 

significant differences for all methods, other than isotopes (where sub-specific level data 

was unavailable).  

For measurements, tooth types were analysed separately (see chapter 7) BLW and MDL 

measurements were normally distributed, and no significant differences were found via a 

one-way ANOVA for any tooth type. The other measurements (CH, OH, TH) were not 

normally distributed and were subject to non-parametric statistical analysis (although the 

same significant differences were found via a parametric one-way ANOVA). Significant 

differences were found for M1, for crown height between the larger A .m. hofmeyri and the 

smaller, more variable, A. m. angolensis. The differences found in occlusal height are 

between A. m. marsupialis and A. m. angolensis, and A. m. hofmeyri and A. m. angolensis. 
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A. m. angolensis shows more individual variation within the sub-species but mean occlusal 

height is the tallest of the sub-species.  

Because sub-specific level significant differences occur for dental measurements in modern 

Antidorcas, it is anticipated that identifying A. australis as a sub-species may be 

challenging or unachievable from dental measurements alone. Could A. m. angolensis for 

example, show as much/more variation than the difference between A. australis and any of 

the other fossil species, particularly fossil A. marsupialis? In which case, A. australis 

should not be identified as a separate species. It does however, highlight the possibility that 

A. australis could show significant differences from A. marsupialis for isolated molars even 

if only sub-specifically taxonomically different.  

Potential A. australis specimens would ideally need to show significant differences for 

more than one tooth type across the tooth row (as is the case for the measurements of the 

different Antidorcas fossil species). This would require a collection of toothrows (rather 

than isolated molars). Additionally, some degree of niche partitioning suggestion via use-

wear analysis would encourage confidently suggesting A. australis to be regarded as a 

distinct grouping. 

Measurements summaries for M2 (upper permanent second molar) are provided in the 

following tables. Measurement acronyms are presented in chapter 4 (Materials and 

Methods).  

Table 6.1: Extant Antidorcas marsupialis M2 measurement descriptive statistics. (Number 
of individuals (n), mean, mode, median, minimum, maximum and range) All measurements 
are given in mm to 1 decimal place.  
Descriptive MDL BLW CH OH A B C D 

N 64 64 64 44 20 20 20 20 
Mean 16.0 11.4 10.8 2.9 1.1 0.8 0.71 1.8 
Mode 16.4 11.1 11.5 2.7 1.0 0.6 0.6 2.1 
Median 16.4 11.6 11.2 2.7 1.1 0.7 0.7 1.7 
Minimum 8.3 2.2 1.8 1.4 0.9 0.4 0.6 1.2 
Maximum 19.6 14.2 22.0 9.5 1.3 1.1 0.9 2.4 
Range 11.3 12.0 20.2 8.1 0.4 0.7 0.3 1.2 

Sexual dimorphism 
When considering fossil variation, identifying sex of an individual from an isolated molar is 

almost impossible. By evaluating the level of sexual dimorphism found within modern 

Antidorcas marsupialis, an idea regarding the likely degree of sexual dimorphism in the 

fossil record can be attained. Where groupings exist in the fossil record, these may be due 

to sexual dimorphism, and thereby suggest which sex the fossil molar belonged to. 

Alternatively, these groupings could be due to sub-specific or perhaps population (as the 

deposits are time-averaged and dental adaptation may have occurred within the timeframe 

incorporated in the member assemblages) differences within the assemblage. 

Modern Antidorcas dental measurements showed significant differences between males and 

females (Table 6.2). Males have consistently larger mean dentition values but there is 

overlap in their dental size ranges. As shown in Table 6.3, males show significantly larger 

bucco-lingual widths and enamel thickness (location B, see methods chapter 4, 

‘Measurements’).   
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Table 6.2: Summary of modern Antidorcas measurements for M2 (upper permanent second 
molar) separated according to sex to establish the range of sexual dimorphism present in 
dentition. MDL=mesio-distal length; BLW= bucco-lingual width; CH= Crown height; OH 
= occlusal height; A=enamel thickness at location A; B= enamel thickness at location B; 
C= enamel thickness at location C; D= enamel thickness at location D. Measurements in 
mm. Means given to 2 decimal places, ranges given to 1 decimal place.  

 

Null hypothesis: There are no significant differences in M2 molar measurements between 
male and female Antidorcas marsupialis.  

Table 6.3: Significant differences for Antidorcas marsupialis M2 across specimens of 
known sex (i.e. sexual dimorphism in dentition). ‘Sig.’=significance. 
Null Hypothesis Test Sig. Decision 
The distribution of BLW is 
the same across categories of 
Sex. 

Independent-Samples Mann-
Whitney U Test 

.008 
Reject the null 
hypothesis. 

The distribution of Enamel 
Thickness (B) is the same 
across categories of Sex. 

Independent-Samples Mann-
Whitney U Test 

.011 
Reject the null 
hypothesis. 

 
No other measurements showed significant differences and the null hypothesis is retained 
for these measurements (MDL, CH, OH, EA, EC, ED).  

Sub-specific variation 
Measurements of second molars from the three recognised sub-species of extant Antidorcas 

were summarised and tested for significant differences.  

Table 6.4: Summary of modern Antidorcas measurements for M2 (upper permanent second 
molar) separated according to sub-species to establish the range of variation within species 
present in dentition. MDL=mesio-distal length; BLW= bucco-lingual width; CH= Crown 
height; OH = occlusal height; Measurements in mm. Means given to 2 decimal places, 
ranges given to 1 decimal place. 

A non-parametric kruskal-wallis test with post-hoc Mann-Whitney U pairwise comparisons  

showed significant differences exist for dentition across sub-species of A. marsupialis, 

when separated by tooth type (Table 6.5). Non-parametric tests were used because the data 

did not meet the assumption of normal homogeneity of variance to allow parametric 

statistical analysis. However, the homogeneity of variance was significantly different only 

for the measurements that showed significant difference across sub-species. It is suggested 

that these apparent significant differences may actually be an artefact of differential sample 

sizes.  

Sex N  MDL BLW CH N OH N EA EB EC ED 

Male 21 Mean 16.16 12.10 11.64 10 2.54 11 1.07 0.86 0.71 1.95 
Range 14.5-

18.2 
10.4-
13.1 

9.0-
22.0 

1.4-
3.9 

0.9-
1.2 

0.4-
1.1 

0.6-
0.9 

1.5-
2.4 

Female 16 Mean 16.16 11.37 10.03 9 4.06 7 1.04 0.59 0.74 1.73 
Range 13.0-

22.9 
9.4-
14.2 

1.8-
16.0 

1.6-
9.5 

0.9-
1.3 

0.5-
0.7 

0.6-
0.9 

1.5-
2.1 

Sub-species N  MDL BLW CH OH 
A.m. marsupialis 49 Mean 16.21 11.61 11.01 2.63 

Range 13.0-22.9 9.4-14.2 4.8-22.0 1.4-3.9 
A.m. hofmeyri 8 Mean 17.35 11.84 11.63 2.49 

Range 16.5-18.6 10.8-13.0 10.4-130 1.6-3.4 
A.m. angolensis 5 Mean 16.18 11.72 7.10 5.24 

Range 15.6-16.5 10.9-12.2 1.8-11.8 2.1-9.5 
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From this, either Castelló (2016)’s elevation of these sub-species to species level should be 

viewed as accurate. Alternatively, caution should be advised against differentiating species 

on dental measurements alone and a conservative approach taken to assessing where 

speciation occurs from dental morphology in the fossil record.  

Table 6.5: Modern Antidorcas sub-specific significant differences in M2 measurements. All 
measurements given in mm to 2 decimal places. Mean and range of significantly significant 
measurement differences are given and detailed in the text below the table. UM1= M1 

upper first molar, UM2= M2, upper second molar.  
Molar Sub-species N Measurement Mean  Range 

UM1 A. m. 
marsupialis 

25 CH 10.08 3.50-13.30 

A. m. hofmeyri 7 11.91 9.40-13.80 
A. m. 
angolensis 

5 6.60 1.10-11.80 

A. m. 
marsupialis 

25 OH 2.01 0.50-3.20 

A. m. hofmeyri 7 1.89 0.50-3.00 
A. m. 
angolensis 

5 5.36 2.20-9.50 

UM2 A. m. 
marsupialis 

51 MDL 15.91 8.30-22.90 

A. m. hofmeyri 8 17.35 16.50-18.60 
A. m. 
angolensis 

5 16.18 15.60-16.50 

 

Table 6.5: UM1: CH (p=.033) significant difference was between A. m. hofmeyri and A. m. 
angolensis. OH (p=.042) was significantly different between all species apart from between 
A. m. marsupialis and A. m. hofmeyri. UM2: MDL (p=.011) significant difference was 
between A. m. hofmeyri and A. m. marsupialis (p=.003) and A. m. angolensis (p=.007).  

6.1.2 MESOWEAR 

A summary of the differences in mesowear results (for each mesowear variable) from 
upper, compared to lower dentition, are presented here (Tables 6.6-6.12).  
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Occlusal relief and cusp shape 
Table 6.6: Mesowear occlusal relief and cusp shape relative percentages, separated according to maxillary (upper) and mandibular (lower) dentition (see ‘Mesowear’ 
data chapter for further explanation) for modern Antidorcas marsupialis. 
Dentition N % High % Low % Sharp %Rounded %Blunt 

Upper 107 53 49.53 42.06 47 11 

Lower 68 41.18 58.82 25 61.8 13.24 
 

Mesowear Score  
Table 6.7: Mesowear scores (occlusal relief and cusp shape variables combined to produce a ‘mesowear score’, separated according to maxillary (upper) and 
mandibular (lower) dentition (see ‘Mesowear’ data chapter for further explanation) for modern Antidorcas marsupialis. 
Dentition N LB % LB LR % LR LS % LS HB % HB HR % HR HS % HS 

Upper 107 10 9 31 29 13 12 2 2 19 18 32 29.91 

Lower 68 9 13.24 23 33.82 8 11.76 0 0 19 27.94 9 13.24 

Occlusal relief with a medium relief category added 
Table 6.8: Mesowear occlusal relief scores, with a ‘medium’ relief category added, separated according to maxillary (upper) and mandibular (lower) dentition (see 
‘Mesowear’ data chapter for further explanation) for modern Antidorcas marsupialis. ‘n’ shows number of individual specimens. 
Dentition N High (n) % High Medium (n) % Medium Low (n) % Low 

Upper 105 30 28.57 54 51.43 21 20 

Lower 69 11 15.94 38 55.07 20 28.99 

New Mesowear scores 
Table 6.9: New mesowear scores for modern Antidorcas marsupialis, separated according to maxillary (upper) and mandibular (lower) dentition (see ‘Mesowear’ data 
chapter for full explanation of this scoring system). 
Dentition  N Sharp % 

S 

Sharp-
Rounded 

% S-

R 

Rounded-
Sharp 

% R-

S 

Rounded % 

R 

Rounded-
Blunt 

% R-

B 

Blunt-
Rounded 

% B-

R 

Blunt % B 

Upper 105 27 26 17 16 13 12 23 22 14 13 5 5 6 5.71 
Lower 69 10 14 8 12 16 23 14 20 10 14 5 7 6 8.70 
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Table 6.10: Mesowear III Method scores for modern Antidorcas marsupialis (mesowear III/ Inner mesowear scores are only applicable to maxillary (upper) dentition). 

N 
Mesowear III Score 

1 1% 2 2% 3 3% 4 4% 

19 6 31.58 6 31.58 6 31.58 1 5.26 

Sexual dimorphism  
Table 6.11: Median mesowear variables for modern Antidorcas marsupialis of known sex for maxillary dentition, to establish the sexual dimorphism apparent in dietary 
behaviour. 
 Mesowear score 0-4 Mesowear score 1-6 Relief Cusp shape New relief New cusp shape New score (1-49) 

Male (n=11) 
Median 2 3 1 2 2 4 23 
Std. Deviation 1.45 1.83 0.47 0.75 0.54 2.05 12.88 
Range 4 5 1 2 2 6 46 
Female (n=14) 
Median 3 2 1 2 1.5 5 9 
Std. Deviation 1.07 1.27 0.27 0.73 0.65 2.02 14.25 
Range 4 5 1 2 2 6 48 

Sub-specific variation  
Table 6.12: Median mesowear values for maxillary molars of modern Antidorcas marsupialis sub-species, to establish the sub-specific variation apparent in dietary 
behaviour. 
 Mesowear score 0-4 Mesowear score 1-6 Relief Cusp shape New relief New cusp shape New score (1-49) 

A. m marsupialis (n=19) 
Median 3 2 1 2 2 3 17 
Range 4 5 1 2 2 6 48 
A. m . hofmeyri (n=5) 
Median 2 2 1 2 2 5 18 
Range 1 2 0 1 0 3 9 
A. m. angolensis (n=1) 
Median 0 3 1 3 2 7 28 
Range x x x x x x x 
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6.1.3 MICROWEAR (DMTA) 

Table 6.13: Summary dental microwear texture parameter statistics. Mean (M), standard deviation (SD) and standard error of the mean (SEM) for modern Antidorcas 
marsupialis. N=43. Measured in µm. All values given to 2 decimal places.  
Asfc epLsar (x10-3) HAsfc 9 HAsfc 81 Tfv2 Smc 
M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM 
4.10 3.94 0.60 0.00343 0.00170 0.00026 0.54 0.33 0.05 1.02 0.62 0.09 42010.3 11510.9 1755.4 0.19 0.23 0.04 
Range: 23.50 Range: 0.00770 Range: 1.44 Range: 2.78 Range: 67583.3 Range: 1.12 

Sexual dimorphism 
Table 6.14: Summary dental microwear texture parameter statistics for Antidorcas marsupialis according of known sex, separated to assess dietary sexual dimorphism. 
Range, mean (M), standard deviation (SD) and standard error of the mean (SEM). Measured in µm. All values given to 2 decimal places.  
Male Antidorcas marsupialis (n=11) 
Asfc epLsar HAsfc 9 HAsfc 81 Tfv2 Smc 
M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM 
2.70 1.19 0.36 0.00350 0.00149 0.00045 0.54 0.27 0.08 0.75 0.31 0.09 40716.3 7837.6 2363.1 0.22 0.34 0.10 
Range: 3.45 Range: 0.00462 Range: 0.93 Range: 0.86 Range: 19460.2 Range: 1.12 
Female Antidorcas marsupialis (n=14) 
Asfc epLsar HAsfc 9 HAsfc 81 Tfv2 Smc 
M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM 

2.73 1.54 0.41 0.00383 0.00199 .00053 0.48 0.39 
0.10 
 

0.79 0.58 0.15 39217.0 6758.5 1806.3 0.13 0.09 0.02 

Range: 5.08 Range: 0.01 Range: 1.44 Range: 2.26 Range: 22478.7 Range: 0.22 
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Table 6.14 shows that very little sexual dimorphism is observed in the feeding behaviour, 
as observed through microwear texture variable, in the modern Antidorcas marsupialis. 
However, there is a considerable range of variation for Asfc values for the combined (male 
and female) values, suggesting dietary variability is prevalent, evident through complexity 
of enamel surfaces. Unfortunately, sub-species could not be assessed for DMTA variables 
as sample sizes were too small.  

6.1.4 ISOTOPES  

Stable carbon isotope values for modern South African Antidorcas marsupialis are from 
published sources. Mean values are given from the references provided.  

Table 6.15: Extant Antidorcas marsupialis carbon isotope values (mean δ13C ‰), their 
resultant dietary categorisation and the references these values were taken from. 
(References are detailed further in Appendix A6). 

Mean δ
13

C (‰) Diet Reference 

-18.10 Browser Vogel 1978 

-10.10 Browser Sponheimer et al. 2003 

-11.4 Mixed-feeder (browser) Luyt 2017  
Extant Antidorcas marsupialis display browse (C3 vegetation) dominated diets via stable 

carbon isotope analysis. Luyt 2017 highlights that compared to specialist grazers or 

browsers, A. marsupialis as ‘mixed feeders’ were the least helpful in deciphering between 

modern vegetation biomes. In part, this is because they align more closely with obligate 

browsing isotope values, as evidenced via Table 6.15. However, by appreciating this trend 

for stable isotope values and by utilising the isotope values alongside the other methods 

implemented here, mixed feeders can be reliable reflectors of their environment (e.g. 

Berlioz et al. 2018). Further, although overall depleted δ13C values may be yielded, the 

trend of increased/decreased C3/C4 consumption should still prevail according to habitat 

type. Although A. marsupialis did not clearly reflect the vegetation composition of each 

modern vegetation biome through carbon isotope analysis in Luyt’s (2017) study, their δ13C 

values did adjust according to the biome.  Albeit within the range of browsing diets in the 

actual δ13C values, a difference was apparent for each vegetation biome and varied to that 

of either obligate browsers, or obligate grazers. Thereby showing that mixed-feeders do 

have a role to play as environmental proxies.  

SECTION 2: Fossil taxonomic identification 

and the presence of Antidorcas australis 
In this chapter, dental specimens that have at some point been tentatively assigned to A. 

australis (e.g. by Vrba 1973) will be scrutinized in an attempt to add to this debate on the 

taxonomic status of A. australis. This chapter will also enable more efficient grouping of 

specimens taking this research forward. The taxonomic identity of ‘A. australis’ is 

established here to ensure species groupings are accurately made for the following data 

chapters (chapter 7-10). The potential A. australis specimens are evaluated individually for 

morphological comparisons with the rest of the dataset (of identified Antidorcas species) 

used in this research. Behavioural (dietary) indicators (use-wear and stable isotope analysis) 

are then used to supplement visual and morphological identifications. Care is taken to avoid 

circular reasoning of dietary evidence to inform on species taking this research forward. 

This is achieved by only using the dietary evidence as a supplementary indicator, rather 
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than conclusive stand-alone evidence, of species identification. If the specimens assigned to 

A. australis show limited differentiation in dental morphological indicators, within the 

range of variation of modern Antidorcas sub-species and this is supported by behavioural 

(dietary) indicators from A. marsupialis, A. australis will be taken forward as a sub-species 

and integrated into the ‘fossil A. marsupialis’ grouping for this research. If considerable 

variation is apparent, the two will be separated as distinct species/ groups. Since their 

original classification (Vrba 1973), some of the specimens have since been re-identified 

(e.g. de Ruiter 2003), and these newer identifications will be considered here, alongside 

visual taxonomic classifications implemented personally (as detailed below and in chapter 

4).  

6.2.1 Measurements 

No significant difference was found between right- and left-sided molars for any fossil or 

modern Antidorcas species in this study. Therefore, right- and left-sided dentition is 

grouped together for analysis. ‘Fossil A. marsupialis’ refers to any A. australis/marsupialis 

specimens that have not been previously identified as ‘A. australis’ (Vrba 1973) or 

suspected as being A. australis here (not readily identified as another Antidorcas species, 

based on non-metric traits, by the author).  [For a full explanation of the measurements 

used, see chapters 4 ‘Measurements’].  

Table 6.16: Means and standard deviation (SD) of dental volume; MDL (mesio-distal 
length of M2) and BLW (bucco-lingual width of M2) for each species. All measurements in 
mm to 2 decimal places. 
Species N Mean MDL SD Mean BLW SD 

A. recki 60 13.75 1.48 9.97 2.04 

A. bondi 84 14.65 0.93 9.67 1.15 

A. marsupialis/australis (f) 104 15.32 1.62 11.26 1.60 

A. marsupialis (m) 64 16.04 1.91 11.42 1.81 

A. melampus (m) 31 16.98 1.35 11.42 1.55 

     

Table 6.17: Mean and standard deviation (SD) of MDL (mesio-distal length of M2) and 
BLW (bucco-lingual width of M2) for each species (modern Antidorcas marsupialis and 
Aepyceros melampus), separated according to sex. All measurements in mm to 2 decimal 
places. 
Species Sex N  MDL BLW 

Antidorcas marsupialis Female 25 Mean 15.35 10.85 

SD 2.55 2.66 

Male 29 Mean 16.24 11.92 

SD 1.34 0.79 

Aepyceros melampus Female 18 Mean 16.63 11.43 

SD 1.55 1.86 

Male 13 Mean 17.46 11.41 

SD 0.84 1.03 
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Results: Occlusal area 
Potential ‘Antidorcas australis’ specimens were plotted against the other Antidorcas 

species molars measured. For each molar BLW x MDL measurements were used to 

visually assess likely taxonomic identification based on basic morphological parameters 

(occlusal area) (Figure 6.3-Figure 6.8).  

Some of the potential A. australis specimens have almost identical measurements to other 

specimens readily identifiable to species level. Listed below are the specimens identified as 

A. australis in the literature, coupled with the specimens they align with on the scatter plot 

here for occlusal area (Figure 6.3-Figure 6.8). The specimen they align with and that 

specimen’s species identification is given in the table below. 

Table 6.18: ‘A. australis’ specimens and the Antidorcas species they align most closely 
with based on morphological measurements. ‘Known species’ (and their ‘known specimen 
number’) specimens have been identified by the author (often supported by published 
sources, where the specimen has been taxonomically identified). A. marsupialis refers to 
fossil specimens unless otherwise stated.  
Molar  ‘A. australis’  Known species  Known specimen number 

M
1 SKX 32887 A. recki KW 9106 

SKX 14250 Modern A. marsupialis NHM.31.2.1.34 
NHM.20.4.27.35 

SKX 29278 A. marsupialis SK 50 0049 
M

2 SK 30334 Modern Antidorcas marsupialis Multiple specimens 
SKX 35320 
SK 3055 
SKX 35327 
KA 1111 

M1 SKX 11602 A. bondi SK7435 
M2 SKX 20143 A. marsupialis SF 548 

SKX 8455a A. recki KA 1205 
GV 8250 

Modern A. marsupialis NHM.2.12.1.35 
NHM.28.9.11.450 

STS 2076 A. bondi SK 6080 
SK 2310 A. bondi COH 2445 
SKX 28999 A. bondi SK12677 

SK 117 
SF 890(2) 

STS 1944(2) Antidorcas sp COH 1589 
A. bondi KA 999 

PV 10724 
KA 964b A. bondi SK 5354 

STS 1125 
SF 677 

KA 1002 A. bondi SK 10577 
M3 STS 2369 Modern A. marsupialis AZ 3140 

SK 12056 A. recki KW 8152 
KA 964b(2) A. bondi SK 12669 
KA 1002 (2) A. bondi SK 10278 

 

In these instances, basic tooth morphology appears indistinguishable from other species and 

should not be assumed to be a separate (A. australis) species. However, this is based on 

only two linear measurements and can only hint at species similarities rather than proving 

taxonomy absolutely. Thus, this is used as one piece of evidence alongside many others to 
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assess each potential A. australis specimen analysed in this study (see Table 6.20, Table 

6.23).   

This may be particularly pertinent for those specimens that align perfectly with more than 

one species (e.g. SKX 8455a aligns with both A. recki and modern A. marsupialis, see 

Figure 6.7) highlighting the range of variation and extent of overlap of measurements 

prevalent within the genus and perhaps indicative of A. australis as a transitional form. 

Alternatively, the ‘A. recki’ specimen may be misidentified and perhaps represents A. 

marsupialis/ pre-marsupialis. Specimens that align to fossil A. marsupialis may indicate 

very little as these might simply not have been considered by other researchers, such as 

Vrba, and so not previously suggested as being A. australis. The degree of overlap of all 

Antidorcas species however (including A. bondi, which is more readily visibly identifiable), 

renders identifying potential A. australis from dental occlusal measurements in isolation as 

challenging.  

Similarly, in Figure 6.7, of lower second molars, individuals such as STS 1944 (number 10) 

and KA 964b (number 11) would strongly suggest being A. bondi. Many of the ‘A. 

australis’ specimens have been reassigned to A. bondi over the years by various researchers 

(e.g. de Ruiter 2003).  

All other taxonomic assignments from morphology (see Table 6.16-Table 6.17) are 

suggested based on the closest measurements.   
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Figure 6.3: Scatter plot for Antidorcas M1 area (MDLx BLW) of potential A. australis specimens compared to known Antidorcas species. Where unknown species directly map onto 
the dimensions of known species, the known species is given in brackets next to the unknown species specimen number (specimen number and species).
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Figure 6.4: Scatter plot for Antidorcas M2 area (MDLx BLW) of potential A. australis specimens compared to known Antidorcas species. Where unknown species directly map onto 
the dimensions of known species, the known species is given in brackets next to the unknown species specimen number (specimen number and species).
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Figure 6.5: Scatter plot for Antidorcas M3 area (MDLx BLW) of potential A. australis specimens compared to known Antidorcas species. Where unknown species directly map onto 
the dimensions of known species, the known species is given in brackets next to the unknown species specimen number (specimen number and species).
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Figure 6.6: Scatter plot for Antidorcas M1 area (MDLx BLW) of potential A. australis specimens compared to known Antidorcas species. Where unknown species directly map onto 
the dimensions of known species, the known species is given in brackets next to the unknown species specimen number (specimen number and species).
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Figure 6.7: Scatter plot for Antidorcas M2 area (MDLx BLW) of potential A. australis specimens compared to known Antidorcas species. Where unknown species directly map onto 
the dimensions of known species, the known species is given in brackets next to the unknown species specimen number (specimen number and species).
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Figure 6.8: Scatter plot for Antidorcas M3 area (MDLx BLW) of potential A. australis specimens compared to known Antidorcas species. Where unknown species directly map onto 
the dimensions of known species, the known species is given in brackets next to the unknown species specimen number (specimen number and species). 
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Results: Enamel Thickness 
The same scatter plots (as for linear metrics) were created using enamel thickness 

measurements. As no significant difference was found between enamel thickness 

measurements for locations A-C (see ‘Measurements’ chapter for location of these 

measurements) for any particular Antidorcas species, Enamel A measurements 

(representing the outer enamel for locations A-C as a proxy for the outer enamel for the 

entire tooth) were plotted against Enamel D (the mesostyle) measurements (Figure 6.9-

Figure 6.11). Enamel thickness at location ‘D’ is only present in (and therefore, measured 

on) upper molars.   

Based on enamel thickness, some ‘A. australis’ specimens had identical (or very similar) 

measurements to other Antidorcas species (Figure 6.9-Figure 6.11). These specimens are 

listed below, coupled with the species and specimen number (given in brackets) their 

enamel thickness measurements most closely resemble. This evidence supports these 

particular specimens as belonging to the same species as those their enamel thickness 

measurements align with most (Table 6.20 ‘e’ specimens).  

Table 6.19: ‘A. australis’ specimens and the Antidorcas species they align most closely 
with based on enamel thickness. ’Known species’ specimens (specimen number included 
here as ‘known specimen number’) have been identified by the author (often supported by 
published sources, where the specimen has been taxonomically identified). A. marsupialis 
refers to fossil specimens unless otherwise stated. 
Molar ‘A. australis’  Known species  Known specimen number 
M

2 SKX 35320 Antidorcas sp SK 5938 
KA 1111 A. bondi PV 21589 
KA 964c A. bondi PV 10703 

Modern A. marsupialis AZ 3140 
SKX 35327 A. bondi SKX 52703 
SKX 30332 A. marsupialis SKX 36544 

Modern A. marsupialis AZ 2437 
M

3 KA 964c (2) A. bondi PV 14545 
SKX 35066 A. marsupialis SKX 10703 
SKX 35384 A. recki KA 1639 
SKX 28381 Antidorcas sp COH 1740   
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Figure 6.9: Scatter plot for Antidorcas M1 of potential A. australis specimens enamel thickness A (lingual enamel facet) on the Y axis and D (mesostyle) on the X axis, compared to 
known Antidorcas species.
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Figure 6.10: Scatter plot for Antidorcas M2 of potential A. australis specimens enamel thickness A (lingual enamel facet) on the Y axis and D (mesostyle) on the X axis, compared to 
known Antidorcas species.
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Figure 6.11: Scatter plot for Antidorcas M3 of potential A. australis specimens enamel thickness A (lingual enamel facet) on the Y axis and D (mesostyle) on the X axis, compared to 
known Antidorcas species.
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Table 6.20: Table of specimens for taxonomic identification. Morphological taxonomic identifications are based on linear morphological measurements and enamel thickness. 
*Where specimens are closest to other fossil A. marsupialis, this could be indicative of both being A. australis or A. marsupialis. If occlusal area measurement taxonomic 
identification indicators differ from those from enamel thickness, (e) indicates where identification is based on enamel thickness, both are quoted in this instance. If the dimension 
measurements are in agreement for taxonomic identification with the enamel thickness measurements, only one species is presented, with the addition of an ‘(e)’ to show this has the 
support of both occlusal area dimensions and enamel thickness. Where no specific species aligns more closely than any other based on morphological measurements, ‘sp.’ is given. 
‘DFA’ indicates these species assignments are a result of the discriminant function analysis (as discussed below). 

Site and Member Specimen Number Tooth type 
Tooth 

Measured 
Visual taxonomic ID 

Morphological 

taxonomic ID 

Swartkrans 
Member 1 LB 

SKX 5821 Isolated permanent upper tooth RUM2 A. australis/marsupialis sp. 

SKX 12067 Isolated permanent upper tooth RUM1 A. australis/marsupialis sp. 

SKX 12068 Isolated permanent upper tooth RUM1 A. recki sp. 

SKX 14250 Isolated permanent upper tooth RUM1 A. australis/marsupialis A. marsupialis 

SKX 11602 Isolated permanent lower tooth LLM1 A. bondi A. bondi*** 

SKX 8455a Isolated permanent lower tooth LLM2 A. australis/marsupialis 
A. marsupialis; A. 
recki 

SKX 6331 Isolated permanent lower tooth LLM3 A. australis/marsupialis sp. 

SKX 6432 Isolated permanent lower tooth LLM3 A. australis/marsupialis sp. 

SKX 7066 Isolated permanent lower tooth RLM3 A. australis/marsupialis sp. 

Swartkrans 
Member 2 

SK 1055 Isolated permanent upper tooth LUM3 A.cf.bondi sp. 

SK 3055 
Right maxilla P4-M3 
 

RUM2 A. australis/marsupialis A. marsupialis 

SK 12056 
Left mandible fragment, M3 
 

LLM3 A. recki  A. recki 

SK 5958 
Right mandible fragment, M1-M2 
 

RLM2 A. bondi A. marsupialis 

SK 3116 
Right mandible fragment, M2-M3 
 

RLM2&3 A. recki sp. 
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Site and Member Specimen Number Tooth type 
Tooth 

Measured 
Visual taxonomic ID 

Morphological 

taxonomic ID 

SK 2366 
Right maxilla fragment, M1-M2 
 

RUM2 A. bondi A. bondiDFA 

SK 2115 
Left maxilla, P4-M3 
 

LUM2 Antidorcas sp. sp. 

SK 2953 
Right mandible fragment, M3 
 

RLM3 Antidorcas sp. sp. 

SK 14070 
Left mandible fragment, M3 
 

LLM3 Antidorcas sp. sp. 

SK 2664 
Left mandible fragment, P4-M1 
 

LLM1 Antidorcas sp. sp. 

Swartkrans 
Member 3 
Swartkrans 
Member 3 

SKX 32176 Mandible piece RLM1 A. australis/marsupialis sp. 

SKX 21826+21834+21835 Mandible piece LLM1 A. australis/marsupialis sp. 

SKX 28008 Isolated permanent upper tooth LUM2 A. australis/marsupialis sp. 

SKX 29147 Isolated permanent upper tooth RUM3 A. australis/marsupialis sp. 

SKX 29278 Isolated permanent upper tooth RUM1 A. australis/marsupialis *A. marsupialis 

SKX 46244 Isolated permanent upper tooth RUM3 A. recki sp. 

SKX 37809 Isolated permanent upper tooth RUM1 A. australis/marsupialis sp. 

SKX 36347 Isolated permanent upper tooth RUM1 A. australis/marsupialis sp. 

SKX 32887 Isolated permanent upper tooth LUM1 A. recki A. recki 

SKX 27876 Isolated permanent upper tooth RUM3 A. australis/marsupialis sp. 

SKX 27717 Isolated permanent upper tooth RUM2 A. recki sp. 

SKX 35320 Isolated permanent upper tooth RUM2 A. australis/marsupialis A. marsupialis 

SKX 30334 Isolated permanent upper tooth RUM2 A. australis/marsupialis A. marsupialis 
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Site and Member Specimen Number Tooth type 
Tooth 

Measured 
Visual taxonomic ID 

Morphological 

taxonomic ID 

SKX 30332 Isolated permanent upper tooth RUM2 A. australis/marsupialis A. marsupialis 

SKX 20143 Isolated permanent upper tooth LLM2 A. australis/marsupialis A. marsupialis* 

SKX 37716 Isolated permanent upper tooth RUM3 A. australis/marsupialis sp. 

SKX 35066 Isolated permanent upper tooth RUM3 A. australis/marsupialis A. marsupialis* 

SKX 35326 Isolated permanent upper tooth LUM1 A. australis/marsupialis sp. 

SKX 25562 Isolated permanent upper tooth LUM1 A. australis/marsupialis sp. 

SKX 36545 Isolated permanent upper tooth LUM2 A. australis/marsupialis sp. 

SKX 35327 Isolated permanent upper tooth LUM2 A. australis/marsupialis 
A. marsupialis; A. 
bondi (e) 

SKX 33839 Isolated permanent upper tooth LUM2 A. australis/marsupialis sp. 

SKX 28381 Isolated permanent upper tooth LUM3 A. australis/marsupialis sp. 

SKX 35388 Isolated permanent upper tooth LUM3 A. australis/marsupialis sp. 

SKX 35384 Isolated permanent upper tooth LUM3 A. australis/marsupialis A. recki 

SKX 37102 Isolated permanent upper tooth RUM2 A. australis/marsupialis sp. 

SKX 32624 Isolated permanent upper tooth LUM1 A. australis/marsupialis sp. 

SKX 22287 Isolated permanent upper tooth RUM1 A. australis/marsupialis sp. 

Swartkrans 
Member 3 

SKX 25040 Isolated permanent upper tooth LUM2 A. recki sp. 

SKX 39103 Isolated permanent upper tooth RUM1 A. recki sp. 

SKX 39611 Isolated permanent upper tooth RUM1 A. australis/marsupialis sp. 

SKX 39719 Isolated permanent upper tooth RLM1 A. australis/marsupialis sp. 

SKX 28491 Isolated permanent lower tooth LLM1 A. recki sp. 
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Site and Member Specimen Number Tooth type 
Tooth 

Measured 
Visual taxonomic ID 

Morphological 

taxonomic ID 

SKX 30875 Isolated permanent lower tooth LLM1 A. recki sp. 

SKX 29771 Isolated permanent lower tooth LLM1 A. recki sp. 

SKX 26844 Isolated permanent lower tooth RLM2 A. australis/marsupialis sp. 

SKX 28999 Isolated permanent lower tooth LLM2 A. australis/marsupialis A. bondi 

SKX 37821 Isolated permanent lower tooth RLM1 A. australis/marsupialis sp. 

SKX 28393 Isolated permanent lower tooth LLM2 A. australis/marsupialis sp. 

SKX 39908 Isolated permanent lower tooth RLM2 A. australis/marsupialis sp. 

SKX 38594 Isolated permanent lower tooth RLM3 A. australis/marsupialis sp. 

SKX 37198 Isolated permanent lower tooth LLM1 A. australis/marsupialis sp. 

SKX 35038 Isolated permanent lower tooth LLM1 A. recki sp. 

SKX 34250 Isolated permanent lower tooth LLM1 Oreotragus major** sp. 

SKX 30878 Isolated permanent lower tooth LLM1 A. australis/marsupialis sp. 

SKX 29420 Isolated permanent lower tooth LLM2 A. australis/marsupialis sp. 

SKX 30806 Isolated permanent lower tooth RLM1 A. australis/marsupialis sp. 

SKX 22254 Isolated permanent lower tooth RLM1 A. recki sp. 

SKX 27338 Isolated permanent lower tooth RLM3 A. australis/marsupialis sp. 
Swartkrans 
Member 3 

SKX 36803b Isolated permanent lower tooth LLM2 A. australis/marsupialis sp. 

   
   

Kromdraai A 
KA 901 Left maxilla; P2-M3 LUM3 A. recki sp. 

KA 964b&c Left hemimandible M1-M3 
LLM2&3 
LUM2&3 

A. recki 
****A. bondi; A. 
marsupialis (e) 



183 

 

Site and Member Specimen Number Tooth type 
Tooth 

Measured 
Visual taxonomic ID 

Morphological 

taxonomic ID 

KA 925 Left upper M3 RUM3 A. recki sp. 

KA 765 Left maxilla frag, M1-2 LUM2 A. recki A. reckiDFA 

KA 1111 Left maxilla frag, P2-M2 LUM2 A. recki 
A. marsupialis; A. 
bondi (e) 

KA 1310 Right maxilla, (B) M1-2 RUM1&2 A. recki sp. 

KA 2474 Left mandible P4-M2 LLM1 A. recki sp. 

KA 1002 Left hemimandible P3-M3 LLM2&3 A. recki A. bondi 

      

Sterkfontein 
Member 4 

STS 1325 A Right upper M2 RUM3 A. recki sp. 

STS 2369 Right mandible P3-M2 RLM3 A. recki A. marsupialis 

STS 2076 Left mandible frag, M1-M3 LLM2 A. recki A. bondi 

STS 1944 Left mandible frag, M2-M3 LLM2&3 A. recki A. bondi 

S94-6871 Right mand. Frag., M1-2 RLM2 A. australis/marsupialis sp. 
**SKX 32704 also preliminarily visually identified as cf. Oreotragus major (an extinct form of klipspringer with very similar dental morphology to Antidorcas). However, 
morphometrically, this specimen lies in the middle of the other Antidorcas M1 dentition (see Figure 6.3, UM1). Where specimens were measured on 2016 and 2017 data collection 
trips, 2017 measurements were chosen for this purpose (all measurements fell within the acceptable intra-observer error margin, as established in the Methods section, see chapter 4 
and 7). ***SKX 11602 was broken, rendering its mesio-distal length relatively unusable, the present MDL (9.8 mm) was included for the purpose of showing this point on the 
taxonomic association scatter plots but this point/tooth would have had greater mesio-distal length prior to breakage. ****KA 964B lower M2 and M3 aligned most with A. bondi, 
the enamel thickness of KA 964c with A. bondi for the lower M2 and with A. bondi and modern A. marsupialis for the lower M3.  
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Individual Taxonomy Discrepancies 
The majority of specimens are represented by isolated molars. However, there are a few 

specimens represented by a toothrow, or more than one molar. For these specimens, 

measurement-based taxonomic identification indicators are used for each tooth as if they 

were isolated molars, to ensure consistency.  

These individuals (SK 3116, KA 964b & c, KA 1310, KA 1002, STS 1944) were examined 

to check the taxonomic identifications are consistent across the toothrow. It was found that 

all taxonomic identifications, from each method implemented, were consistent across the 

toothrow.  

Discriminant Function Analysis  
UM2 specimens were subject to a discriminant function analysis, the predictor variables 

from which could then be carried forward for further DFAs on other molars.  

Using the primary measurements that may be expected to be indicative of species, i.e. MDL 

and BLW, 2 discriminant functions were created and 63% of individuals were correctly 

classified to species, according to original taxonomic assignments input into this model. 

Table 6.21: Discriminant function analysis for UM2 main measurement predictor 
variables. A. Eigenvalues; B. Wilks’ Lambda; C. standardised canonical discriminant 
function coefficients; D. classification results. 
A) Summary of canonical discriminant functions: Eigenvalues  
Function Eigenvalue % of 

Variance 

Cumulative 

% 

Canonical correlation 

1 .319 78.9 78.9 .492 
2 .085 21.1 100.0 .280 
B) Wilks’ Lambda  
Test of 

Function(s) 

Wilks’ 

Lambda 

Chi-Square df Significance 

1 through 2 .699   41.246  6  .000 
2  .922  9.397  2 .009 
C) Standardised canonical discriminant function coefficients 
 Function  

1 2 

Mesio-distal length .514  .925 
Bucco-lingual width .706  -.789 
D) Classification results 

Species 

Predicted group 

membership 

  

recki bondi marsupialis 

(fossil) 

marsupialis 

(modern) 

Total 

Original Count recki 6 4 3 0 13 
bondi 5 15 2 2 24 
marsupialis 

(fossil) 

1 1 8 6 16 

marsupialis 

(modern) 

3 1 16 46 66 

ungrouped  12 7 6 12 37 
 % recki 46.2 30.8 23.1 .0 100.0 

bondi 20.8 62.5 8.3 8.3 100.0 
Marsupialis 

(fossil) 

6.3 6.3 50.0 37.5 100.0 

marsupialis 

(modern) 

4.5 1.5 24.2 69.7 100.0 

ungrouped 32.4 18.9 16.2 32.4 100.0 



185 

 

Figure 6.12: Taxonomic assignments using all measurement variables as predictor 
variables were classified via a discriminant function analysis as being 63% accurate for 
upper second molars (M2).  
When using all measurements, 100% of original groups were classified correctly in the 
following DFA. Through the DFA, it was found that cusp height and enamel thickness C 
were not sufficient species predictor variables and were not used in the analysis, 2 
discriminant functions were created.  
 
Table 6.22: Discriminant function analysis results on UM2 using all measurements. A. 
Eigenvalues; B. Wilks’ Lambda; C. standardised canonical discriminant function 
coefficients; D. classification results. 
A) Summary of canonical discriminant functions: Eigenvalues  
Function Eigenvalue % of 

Variance 

Cumulative 

% 

Canonical correlation 

1 72.454 89.0 89.0 .993 
2 8.961 11.0 100.0 .948 
B) Wilks’ Lambda  
Test of 

Function(s) 

Wilks’ 

Lambda 

Chi-Square df Significance 

1 through 2 .001 247.324 16 .000 
2  .100 86.200 7 .000 
C) Standardised canonical discriminant function coefficients 
 Function  

1 2 

Mesio-distal length 7.033 .884 7.033 .884 
Bucco-lingual width -2.639 -1.307 -2.639 -1.307 
Crown height 3.395 1.313 3.395 1.313 
Overall height -5.926 -.368 -5.926 -.368 
Enamel Thickness A -7.171 -1.223 -7.171 -1.223 
Enamel Thickness B 2.549 2.028 2.549 2.028 
Enamel Thickness D -5.041 -2.904 -5.041 -2.904 
Enamel thickness 8.703 2.413 8.703 2.413 
D) Classification results 
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Figure 6.13: Canonical discriminant function of Antidorcas, based on molar measurements 
and their range of variation of each species, 100% of the original groups were classified 
correctly. 
A discriminant function analysis (DFA) was used to predict the likelihood of potential A. 

australis specimens belonging to another species of Antidorcas (Figure 6.12, Figure 6.13). 

The model was based on measurements of the M2 BLW and MDL of A. recki, A. bondi, 

fossil A. marsupialis and modern A. marsupialis, with an accuracy of 63%. The ‘A. 

australis’ outliers seen here do not fit easily with any of the other species, perhaps 

indicating a separate species. However, all other fossil and modern Antidorcas specimens 

tend to overlap considerably, therefore even if another species of Antidorcas (such as A. 

australis) were present, one might expect to have at least some degree of overlap.  

Although enamel thickness is one of the characteristic features used to distinguish between 

Antidorcas species, with A. bondi having thicker enamel (particularly around central 

cavities on the occlusal surface), only enamel measured at point C (see chapter 4, Figure 

4.15) was a good predictor variable. Based on enamel thickness measurements, accuracy of 

Species Predicted group membership  

recki bondi marsupialis/australis Total 

Original Count recki 20 0 0 20 
bondi 0 16 0 16 
marsupialis/ 

australis 

0 0 8 8 

ungrouped 0 4 0 4 
 % recki 100.0  .0 100.0 

bondi .0 100.0 .0 100.0 
marsupialis/ 

australis 

.0 .0 100.0 100.0 

ungrouped .0 100.0 .0 100.0 
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species assignments is only 34%.  In spite of this low accuracy level, enamel thickness for 

A. bondi is shown to be as predicted relative  to the overall tooth dimensions. Therefore, 

another DFA for all predictor variables was conducted. In this case, the model is only 40% 

accurate at predicting each species overall, other than A. bondi which is accurately 

predicted with 79% accuracy.  

A DFA using all measurements taken as predictor variables returns a model with 66% 

accuracy, predicting with 71% A. recki and A. bondi with 93% accuracy. This analysis 

includes overall height (applicable only to isolated molars, so does not include modern A. 

marsupialis where all specimens were in situ in the jaw) and enamel thickness 

measurements B and D. These levels of accuracy appear reasonable for palaeoecological 

models but undoubtedly there is a margin for error with these models. They do however 

allow a good starting point for potential species identification, for each to then be 

investigated further via other means.  

From these discriminant function analyses, two individuals are consistently given the same 

species assignment. SK 2366 is consistently predicted to be A. bondi, supporting my visual 

species assignment but surprising, as dietary indicators via use-wear show SK 2366 to be 

primarily browsing. KA 765 is consistently grouping with A. recki. The other specimens 

show greater variation and either indicate that these measurements, or combination of 

measurements are not accurate predictor variables for species identification. Or, that the 

other specimens do not comfortably align with one particular species and are perhaps 

indeed candidates for A. australis. The latter may be particularly relevant to specific cases 

[SK 3055, SKX 35327, SKX 35320 and SKX 30332], which group with either A. recki or 

fossil or modern A. marsupialis, depending on the combination of measurements taken 

forward. As A. australis is potentially a transitional form from the ancestral A. recki to the 

extant A. marsupialis, these individuals could represent A. australis as a transitional form. 

This analysis adds a degree of clarity to these unknown specimens by using the ‘known 

individuals’ model to make informed predictions for the unknown specimens. However, 

other factors such as, the degree of sexual dimorphism and overlap between small 

individuals of one species (A. marsupialis) and large individuals from another (A. recki) are 

unknown. Therefore, making any definitive taxonomic classifications unachievable.   

Aepyceros? (Impala) 
Additional investigation was therefore carried out. One fossil springbok, A. bondi, was 

originally identified as being morphologically similar in dentition to Aepyceros. 

Justifications were made as to why this species aligned more with Antidorcas than with 

Aepyceros, despite its many similarities (Vrba 1973). To investigate the Antidorcas 

dentition more fully, this morphologically (dentition) similar species (Aepyceros) was used 

for comparisons with all Antidorcas fossil species. 
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Figure 6.14: Upper image: An example of Aepyceros melampus lower dentition. BP1/C 110 
BPI comparative collection, University of the Witwatersrand. Lower image: (original 
photograph taken by L. Crété) AZ 751 left mandible, Ditsong Museum of Natural History, 
Pretoria (Mammology department). Scale bar represents 10mm. 
 

 
Figure 6.15: An example of Aepyceros melampus upper dentition. AZ 532 female impala 
from Ditsong Museum of Natural History, Pretoria (Mammology department). Original 
photograph taken by L. Crété. 
 A collection of modern Aepyceros melampus  (Figure 6.14-Figure 6.15) upper second 

molar measurements (measured by Lucile Crété in South Africa in 2017) were added to the 

dataset of modern and fossil Antidorcas upper second molars. A discriminant function 

analysis was carried out using MDL and BLW as predictor variables. 47% of cases were 

correctly identified and of those correctly identified, the impala specimens were identified 

with 71% accuracy.  
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From this model 7 fossil specimens were predicted as Aepyceros, 5 of which were 

identified previously by other researchers as A. australis [SK 3055, SKX 35327, SKX 

30334, SKX 35320, SKX 30332], plus SK 3012 (A. marsupialis) and KW 8769 (A. 

marsupialis). From visual assessment of these fossil assemblages, there is the possibility of 

impala being present. However, modern Antidorcas and Aepyceros also have some 

inaccuracy in their taxonomic assignments from this model, which appears to be due to an 

overlap of dental size, based on sexual dimorphism. 31 modern Aepyceros melampus 

specimens were added, of these, 22 are accurately classified as Aepyceros. Of the 9 

inaccurately classified, 8 are female and 1 is male. 21 modern Antidorcas marsupialis 

specimens are classified as Aepyceros. Of these, 5 are female, 11 are male and 4 of 

unknown sex. Aepyceros is larger than Antidorcas.  Female individuals are typically 

smaller, thus it is unsurprising that most inaccuracy comes from smaller individuals of the 

larger species and vice versa.  

Given these findings and because the exact degree of sexual dimorphism and the range of 

inter- and intra-specific size variation of the fossil species is unknown; the chances of 

accurately differentially identifying A. australis from the measurements alone is rendered 

unfeasible. 

6.2.2 Niche Separation and Character Displacement 

Diet of A. australis 
Although not a definitive species identification method, behavioural differences (visible 

through dietary differences) could hint at potential species differences via ecological 

separation. These differences can be used in conjunction with morphological information 

gained here to more holistically inform on taxonomic identifications. The diets of each 

potential Antidorcas specimen will therefore be considered. Diet is inferred from the 

methods used for this research (mesowear, microwear and isotope analysis). Within each 

site stratigraphic member, there is the assumption that a temporal overlap between species’ 

populations exists, yet this may not be the case due to time-averaging of deposits. A certain 

degree of character displacement and niche partitioning would be expected for a separate 

species living alongside another belonging to the same genus. If the populations of 

Antidorcas are the sole Antidorcas species at any one time, competition is likely to be 

reduced and no niche partitioning is necessary. Differential diets could indicate potential 

species differences, with each species consuming diets representative of their preferred 

habitat and vegetation. Behavioural changes (visible via dietary indicators) could also be a 

precursor to evolutionary change (Lister 2013).  

If A. australis warrants a separate species classification here, behavioural factors, such as 

niche partitioning, visible via dietary indicators should be present. If they are present and 

these individuals also appear morphologically distinct (as indicated in section 6.2.1), an 

argument can be made in support of identifying A. australis as taxonomically distinct from 

A. marsupialis. Each method used to assess dietary behaviour is considered in turn in the 

following text.  
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Table 6.23: Antidorcas dietary categories based on each method implemented. Dietary preferences according to microwear, mesowear and carbon isotope indications for each 
specimen identified as potential Antidorcas australis. 

Site and Member Specimen Number Mesowear Microwear 
Carbon isotopes 

δ
13

C (‰) 

Oxygen isotopes δ
18

O 

(‰)SMOW 

Swartkrans Member 1 LB 

SKX 5821 [HS (juvenile*)] Browser x x x 
SKX 12067 [HS;HS;H-MS-R] Browser Mixed x x 
SKX 12068 [HS;LS;MS-R] Browser Mixed x x 

SKX 14250 [HS;LR;L-MR-S] Browser-Mixed Mixed x x 

SKX 11602 [HR;LR;MR] Mixed x 

Seasonal mixed  
-7.45 Mixed +29.63 
-9.19 Variable 
Browser +31.34 
-9.43 Variable 
Browser +30.77 
-9.73 Browser +31.21 
-9.66 Browser +29.73 
-9.85 Browser +31.01 

SKX 8455a [HS;H-MS-R] Browser x x x 
SKX 6331 [LR;LR] Grazer x x x 
SKX 6432 [HR;HR-S] Mixed x x x 
SKX 7066 [HR;LS;MS-R] Mixed Mixed x x 

Swartkrans Member 2 

SK 1055 [HR;LR;LR-S] Grazer-Mixed Mixed -1.6 variable grazer 31.07 

SK 3055 [HS;LR;MR-S] Browser-Mixed 
Grazer-
Mixed -11.0 Browser 33.02 

SK 12056 [LR;LR;LR-B] Grazer x x x 

SK 5958 
[LR;LR;LR-S] Grazer-Mixed 
 

Mixed 
-9.1 variable browser 30.04 

SK 3116 [LR;LR-S] Grazer-Mixed x x x 

SK 2366 [HS;LS;L-MR-S;HS;M-HS-R]  Variable Browser Browser -5.2 Mixed +28.59 
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Site and Member Specimen Number Mesowear Microwear 
Carbon isotopes 

δ
13

C (‰) 

Oxygen isotopes δ
18

O 

(‰)SMOW 

SK 2115 [LR;MR-S] Mixed x x x 

SK 2953 [LR;LR;LR-B] Grazer x -15 Browser 28.70 
SK 14070 [HR;LS;LS-R] Mixed  x -12.9 Browser +28.90 
SK 2664 [LB;LB-R] Grazer 

 
x x x 

Swartkrans Member 3 

SKX 32176 [LB;LB;LB-R] Grazer x x x 
SKX 21826+21834+21835 [HR;HR;HR-B] Mixed x x x 

SKX 28008 [HS;HR;MR-S] Variable Browser x 
-9.27 Variable 
browser +34.60 
-8.92 Mixed +37.91 

SKX 29147 [LB] Grazer x x x 

SKX 29278 [LB;LB;LB-R] Grazer x x x 

SKX 46244 [LB;LB] Grazer x x x 

SKX 37809 [HS;HS;HS-R] Browser x x x 

SKX 36347 [HR;LR;LR-S] Mixed x x x 

SKX 32887 [LB;LB-R] Grazer x x x 

SKX 27876 [LR;LB;LB] Grazer x x x 

SKX 27717 [LB;L-MB] Grazer x x x 

SKX 35320 [HR;LS;MR-S] Mixed Mixed x x 

SKX 30334 [HS;HS;H-MS-R] Browser Mixed x x 

SKX 30332 [HS;LR;LR-S] Mixed x x x 
SKX 20143 [HR;HR;MR] Mixed x x x 
SKX 37716 [HR;HR;H-MR-B] Mixed x x x 
SKX 35066 [HS;LS;MS-R]  Browser-Mixed x x x 

SKX 35326 [LR;LB;LB] Grazer x -10.82 Browser +31.29 
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Site and Member Specimen Number Mesowear Microwear 
Carbon isotopes 

δ
13

C (‰) 

Oxygen isotopes δ
18

O 

(‰)SMOW 

SKX 25562 [HS;MS-R] Browser x x x 

SKX 36545 [LR] Grazer x -8.11 Mixed +29.13 
SKX 35327 [HR;LR;LR-S] Mixed Mixed x x 

SKX 33839 [HS;HS;MS-R] Browser x 
-9.08 Variable 
browser +30.83 

SKX 28381 [LR;LR] Grazer x x x 
SKX 35388 [HS;HR;HR-S] Browser-Mixed x x x 
SKX 35384 [LR;HR;HR-B] Mixed x x x 

SKX 37102 [HS;HS;HS] Browser x x x 

SKX 32624 [HS] Browser x x x 
SKX 22287 [LB] Grazer x x x 

Swartkrans Member 3 

SKX 25040 [HS;HR;HR-S] Browser-Mixed Mixed x x 
SKX 39103 [LR;LR] Grazer Mixed x x 
SKX 39611 [LR;LR] Grazer x x x 

SKX 39719 [HS;LR;L-MR] Mixed x x x 

SKX 28491 [HR;M-HR-B] Grazer-Mixed x x x 
SKX 30875 [LR;LR-B] Grazer x x x 
SKX 29771 [LR;LR-B] Grazer x x x 
SKX 26844 [LB;LB;MB] Grazer x x x 
SKX 28999 [LB] Grazer x x x 

SKX 37821 [LB] Grazer x x x 
SKX 28393 [LR;LS;LS-R] Mixed x x x 
SKX 39908 [LR;LR-S] Mixed Mixed x x 
SKX 38594 [LS;LS-R] Mixed Mixed x x 
SKX 37198 [HS;HS;HS-R] Browser x x x 
SKX 35038 [LR;LR-S] Mixed x x x 
SKX 34250 [LR;LR-B] Grazer x x x 
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Site and Member Specimen Number Mesowear Microwear 
Carbon isotopes 

δ
13

C (‰) 

Oxygen isotopes δ
18

O 

(‰)SMOW 

SKX 30878 [HR;LS;L-MS-R] Mixed x x x 

SKX 29420 [LR;LR-S] Mixed x x x 

SKX 30806 [HS;HS;HS]* Browser x x x 

SKX 22254 [LB;LB-R] Grazer x x x 

SKX 27338 [LR;LR;LR-B] Grazer x x x 

Swartkrans Member 3 SKX 36803b [LB;LR;LR-S] Variable grazer Mixed x x 

 
     

Kromdraai A 

KA 901 [LB;LB;LB-R] Grazer x x x 

KA 964b&c 
b [LS;LS-R] 
c [LR;LR-S] 

x 
x x 

KA 925 [LR;LR-B] Grazer Mixed x x 
KA 765 [LS;L-MS-R] Mixed x x 

KA 1111 [LS;LS-R] Mixed Mixed x x 

KA 1310 [LR;LB-R] Grazer x x x 

KA 2474 [LS;MS-R] Mixed x x x 

KA 1002 [LR;L-MR-B] Grazer x x x 

      

Sterkfontein Member 4 

STS 1325 A [LR;LR-B] Grazer x 
-13.21A; -13.30B 
Browser 

+25.80879A 

STS 2369 [HR;HS-R] x -10.46A Browser +30.75691A 

STS 2076 [HS;HS] Browser Mixed x x 

STS 1944 [LS;LS] Mixed x 
-13.97A; -14.00B 

Browser 
+23.02546A 
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Figure 6.16: SK 2366 buccal, occlusal and lingual views. SK2366 displays hyper-
hypsodonty infindibular are between U-shaped (as A. recki) and centrally constricted (as A. 
bondi), pronounced styles without obvious concavity (as present in A. recki), relatively 
thick enamel, and the squaring of the posterior loph, predominantly characteristic of A. 
bondi. 
The only individual that had distinctive microwear variables indicative of any feeding type, 

is SK 2366 (Figure 6.16). This individual had a definite browsing signal from all microwear 

variables and a probable browsing signal from mesowear. This specimen was noted as 

potentially being A. bondi in this study and previous analysis (e.g. Sewell et al. 2019; 

deRuiter 2003) predominantly because of the extreme hypsodonty displayed. Carbon 

isotope values show a mix of C3 and C4 plants in the diet of SK 2366, i.e. a mixed-feeder.  

Mesowear 
Mann-Whitney U tests performed on each species group, against the potential A. australis 

specimens, for all mesowear variables on ranked data, showed significant differences. 

Species were compared in a pairwise fashion with a Bonferroni adjustment, significance 

level p>0.0125. 

Table 6.24: Pairwise comparison of species for mesowear variables, showing where 
significant differences are found and their significance (p-value). 
Pairwise species comparisons Dentition 

(upper/lower) 

Mesowear 

variable 

Significance  



195 

 

Pairwise species comparisons Dentition 

(upper/lower) 

Mesowear 

variable 

Significance  

recki and potential australis Upper Relief 0.000 
Lower x x 

bondi and potential australis Upper Relief 0.001 
Mesowear III 0.000 

Lower x x 
Fossil marsupialis and potential 
australis 

Upper x x 
Lower New mesowear 

score 
0.005 

Modern marsupialis and 
potential australis 

Upper New mesowear 
score 

0.000 

New relief 0.000 
Mesowear III 0.006 

Lower New mesowear 
score 

0.002 

New relief 0.000 
The same mesowear variables showed significant differences for modern and fossil 

marsupialis for upper dentition (new mesowear score, p=0.001; new relief, p<0.000; 

Mesowear III p=0.001).  See chapter 4 (‘mesowear) for a full explanation of these 

measurements. 

As shown in Table 6.24, fossil marsupialis and potential australis had no significant 

differences for maxillary dentition. This suggests A. australis is not sufficiently different 

from fossil marsupialis to differentiate these two as separate species. No significant 

differences were found between fossil and modern marsupialis for lower dentition either. 

However, significant differences were found between both fossil marsupialis and potential 

australis and modern marsupialis and potential australis, for the expanded mesowear 

categories. These new mesowear categories allow a greater degree of variation to be 

included (see chapter 8). There is the potential that this creates an inflated sense of variation 

within mixed feeding categories, making a distinction based on minimal differences.  Yet 

the difference could point to species distinction for A. australis. It is of note that this falls 

on the lower dentition, which is often overlooked for mesowear because of its tendency 

towards blunting of the cusps, thereby giving an overemphasized grazing signal. This result 

could be an artefact of using lower dentition, or be the result of differential 

grazing/browsing (or abrasiveness of diet) for A. marsupialis and A. australis.  

 

Mesowear Discriminant function analysis 
In the DFA created to predict species according to mesowear variables (diet), for upper 

molars (Figure 6.17-Figure 6.18), the predictor model had only 44% accuracy (Table 6.25). 

However, for lower molars, the predictor model had 91.7% accuracy (Table 6.26).  

Table 6.25: Discriminant function analysis results for Antidorcas species upper molar 
mesowear dietary indicators. A. Summary of canonical discriminant functions: eigenvalues 
(* first 3 canonical discriminant functions were used in the analysis), B. Wilks’ Lambda, C. 
Classification function coefficients, D. Standardised canonical discriminant function 
coefficients. 
A) Summary of canonical discriminant functions: Eigenvalues  
Function Eigenvalue % of 

Variance 

Cumulative % Canonical 

correlation 

1 .485* 73.7 73.7 .571 
2 .102* 15.5 89.2 .304 
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3 .071* 10.8 100.0 .258 
B) Wilks’ Lambda  
Test of 

Function(s) 

Wilks’ 

Lambda 

Chi-Square df Significance 

1 through 3 .571 65.663 18 .000 
2 through 3 .847 19.406 10 .035 
3 .933 8.067 4 .089 
C) Classification function coefficients. Fisher’s linear discriminant functions.  
 Species 

A. recki A. bondi Fossil A. 

marsupialis 

Modern A. 

marsupialis 

Mesowear 0-4 -15.224 -15.129 -15.270 -16.173 
Relief 96.071 94.693 95.088 99.742 
New Mesowear 

score 
4.619 4.489 4.592 4.611 

New relief 69.446 66.186 67.974 67.575 
New cusp shape 11.031 10.753 10.875 11.824 
Mesowear III -.808 .707 -.248 -2.556 
(constant) -208.925 -200.760 -204.198 -206.777 
D) Standardised canonical discriminant function coefficients. 

 
Function 

1 2 3 

Mesowear 0-4 -.490 .233 .421 
Relief .856 .207 -.767 
New Mesowear 

score 
.696 .903 1.550 

New relief .353 1.660 1.669 
New cusp shape .746 .093 -.591 
Mesowear III -1.147 -.488 .078 
 

Table 6.26: Discriminant function analysis results for Antidorcas species lower molar 
mesowear dietary indicators. A. Summary of canonical discriminant functions: eigenvalues 
(* first 3 canonical discriminant functions were used in the analysis), B. Wilks’ Lambda, C. 
Classification function coefficients, D. Standardised canonical discriminant function 
coefficients. 
A) Summary of canonical discriminant functions: Eigenvalues  
Function Eigenvalue % of 

Variance 

Cumulative 

% 

Canonical correlation 

1 77.606* 95.7 95.7 .994 
2 3.308* 4.1 99.8 .876 
3 .156* .2 100.0 .368 
B) Wilks’ Lambda  
Test of 

Function(s) 

Wilks’ 

Lambda 

Chi-Square df Significance 

1 through 3 .003 38.806 15 .001 
2 through 3 .201 10.437 8 .236 
3 .865 .945 3 .815 
C) Classification function coefficients. Fisher’s linear discriminant functions.  

 Species 

A. recki A. bondi Fossil A. 

marsupialis 

Modern A. 

marsupialis 

Mesowear 0-4 481.791 484.814 389.721 481.047 
Relief 1640.209 1649.186 1334.279 1648.953 
New Mesowear 

score 
195.698 196.953 158.930 195.512 

New relief 4424.674 4454.488 3588.233 4414.628 
Mesowear III -63.442 -60.837 -47.256 -66.791 
(constant) -9299.708 -9430.235 -6138.921 -9279.096 
D) Standardised canonical discriminant function coefficients. 

 Function 
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1 2 3 

Mesowear 0-4 3.558 .339 -.057 
Relief 3.845 -.734 1.406 
New Mesowear 

score 
20.339 1.537 .922 

New relief 15.378 2.041 -.195 
Mesowear III -.478 .933 .428 
 

Figure 6.17: Discriminant Function Analysis according to species using all mesowear 
variables for lower dentition with 91.7% accuracy. ‘marsupialis’ is modern springbok, 
‘australis/marsupialis’ is fossil A. australis or A. marsupialis (i.e. Antidorcas that is not A. 
recki or A. bondi). Red triangle shows A. recki, green circle A. bondi, full purple star fossil 
A. marsupialis, stencil purple star modern A. marsupialis and the group centroid is 
represented by a blue square. Interestingly, the group that potentially contains A. australis 
is discriminated separately, indicating a greater degree of variation for this category and 
possibly showing a mixture of dietary signals from 2 species.  
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Figure 6.18: DFA for upper dentition according to species with 48% accuracy. Mesowear 
variables used in the analysis were based on their accuracy as predictor variables. Cusp 
shape and mesowear scores (1-6) were not used in the analysis as they were not good 
predictors of species.  
 

DMTA 
Potential A. australis specimens were considered as individuals (rather than together, taking 

means as a group representative) when considering the microwear scores, to allow for 

individual animal preference. Dietary inferences are presented in Table 6.23, DMTA 

variables are shown here (Table 6.27) to provide more specific detail. Only SK 2366 gave 

an obvious dietary signal from all microwear variables, of browsing. No niche separation 

for potential A. australis is apparent from these microwear variables (considered in 

isolation, or when compared to the full dataset; see chapter 9 ‘DMTA’).  
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Table 6.27: Microwear variables for potential A. australis specimens.  Filename shows the 
specimen number, followed by tooth, side (dex=right, sin=left) and facet 
(ptc_ml=protocone mesio-lingual facet). Numbers after the filename show if multiple scans 
were made. ‘Molar’ denotes where dental facets scanned came from maxillary (upper) or 
mandibular (lower) dentition. Variables as detailed in chapter 4. The diet column presents 
the suggested diet based on the previous microwear categories. G=Grazer; MF=Mixed 
Feeder; B=Browser. Values given to 2 decimal places.  

Specimen filename Molar Asfc Smc 

 

StdDev  

epLsar 

(x103) 

HAsfc 

9 

HAsfc 

81 TFV 

Diet 

SKX12067-UM2-dex-ptc-ml Upper 2.52 0.07 11.73 4.38 0.21 0.45 46466.08 MF 

SKX12068-UM1-dex-ptc-ml Upper 4.62 0.07 20.85 2.69 0.75 2.18 38816.92 MF 

SKX14250-UM2-dex-ptc-ml Upper 1.40 0.07 11.66 4.28 0.65 0.77 54199.07 MF 

SKX7066-lm3-dex-ptcd-db lower 1.99 0.13 11.86 5.41 1.05 1.49 46129.29 MF 

SK3055_UM2_Ptc_ml-1 Upper 20.27 73.52 17.51 6.14 1.06 1.74 57461.24 MF 

SK3055_UM2_Ptc_ml-2 Upper 10.12 0.07 12.46 0.93 0.26 0.39 48498.82 
G-
MF 

SK5958.LM2_ptcd_db-1 lower 4.49 0.07 11.92 0.43 0.58 0.75 42455.98 MF 

SK2366_UM2_Ptc_ml Upper 10.91 0.07 16.08 2.53 0.52 0.87 28503.63 B 

SK2366_UM2_Ptc_ml-2 Upper 10.37 0.07 16.06 2.58 0.45 0.92 32378.39 B 

SK2366_UM2_Ptc_ml-1 Upper 8.86 0.21 34.50 0.42 0.47 0.86 26586.16 B 

SK35320_UM2_Ptc_ml-1 Upper 1.51 0.07 11.67 3.61 0.51 0.68 27793.88 MF 

SKX30334_UM2_Ptc_ml-1 Upper 12.00 0.07 13.26 7.51 0.54 1.05 31743.41 MF 

SK35320_UM2_Ptc_ml-2 Upper 1.42 0.13 11.68 3.67 0.41 0.50 46978.96 MF 

SKX30334_UM2_Ptc_ml-1 Upper 12.00 0.07 13.26 7.51 0.54 1.05 31743.41 MF 

SKX30334_UM2_Ptc_ml-2 Upper 1.46 0.13 11.71 2.32 0.19 0.40 32352.47 MF 

SKX35327_UM2_Ptc_ml-1 Upper 1.18 0.07 11.67 1.85 0.59 0.64 32446.34 MF 

SKX25040_UM2_Ptc_ml-1 Upper 2.78 0.07 11.77 2.33 0.41 0.67 46675.23 MF 

SK39103-UM2-dex-ptc-ml Upper 1.16 7.49 11.70 4.22 0.41 0.69 43756.58 MF 

SKX39908-lm2-dex-ptcd-db lower 0.82 0.41 11.66 3.59 0.21 0.48 54705.95 MF 

SKX38594-lm3-dex-hypd-db lower 1.01 13.31 11.69 5.77 1.39 1.38 39198 MF 

SKX368036_ptcd_db-1 lower 4.29 0.07 12.28 2.97 0.63 1.07 48553.06 MF 

KA925-UM3-dex-ptc-ml Upper 3.64 0.07 11.89 5.53 0.20 0.63 64082.91 MF 

KA765-UM2-sin-ptc-dl Upper 5.23 0.07 12.05 1.20 0.94 1.34 41754.29 MF 

KA111-UM2-sin-ptc-ml Upper 1.71 26.09 11.81 4.83 0.72 1.70 40833.99 MF 

STS2076_LM2_ptcd_db-1 lower 8.93 0.07 13.21 0.15 0.29 0.61 52101.07 MF 

STS2076_LM2_ptcd_db-2 lower 12.68 0.13 16.80 2.18 0.52 0.74 47841.7 MF 

STS2076.2_LM2_ptcd_db-1 lower 10.23 0.07 29.99 1.65 1.03 1.94 38711.05 MF 
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6.3 Fossil taxonomic identification and Antidorcas australis 

CONCLUSIONS 

The ‘A. australis’ and ‘Antidorcas sp.’ dental specimen results outlined in this chapter are 

considered in isolation and alongside those for all Antidorcas species, fossil and modern. 

Specimens assigned to ‘A. australis’ fall within the range of variation for Antidorcas (see 

subsequent methods chapters). From the results presented in this chapter, I conclude that 

there is insufficient evidence to warrant a distinct A. australis species category for the 

Cradle of Humankind specimens studied here.  

Morphologically and behaviourally (via dietary evidence and consequent habitat 

inferences), A. australis does not stand out as a sufficiently distinct grouping.  That is not to 

say that A. australis does not exist as a distinct species elsewhere (geographically), or that 

these specimens could not represent a sub-species of A. marsupialis, or a chronospecies, 

transitionary between A. recki and A. marsupialis, (as Vrba 1976) but simply that sufficient 

difference is not found here to warrant separation at the species level. Although an 

assessment of the Cradle of Humankind potential A. australis specimens is made, based on 

the evidence available from this research, the debate regarding the taxonomic identity of A. 

australis in Africa remains unresolved until direct and detailed comparisons are made 

between at least the Cape and Cradle forms. Only mesowear results indicate the potential 

separation of A. australis, perhaps indicating niche partitioning, via behavioural (dietary) 

displacement. Unfortunately, the level of time-averaging of the assemblages is unknown 

within these deposits. The potential exists that the fossil A. marsupialis and suggested A. 

australis mesowear differences arise from non-contemporary populations and are not 

therefore, directly comparative in a mixed feeding lineage. I.e. they could represent two or 

more A. marsupialis populations from different seasons or different years.  

Certain specimens were taxonomically re-assigned to A. recki, A. bondi or A. marsupialis 

from ‘A. australis/marsupialis’. These identifications were supported by evidence 

evaluated here and will stand for future chapters. These individuals are listed in the 

appendices data tables (Appendix A10). Based on the evidence presented in this chapter, 

the ‘A. australis’ specimens not alternatively assigned (as above), will henceforth be 

synonymised with (fossil) ‘A. marsupialis’. Based on morphology, there is overlap between 

all Antidorcas species, as shown in the scatter plots in this chapter. As a genus with mixed-

feeding tendencies, it is also unreliable to assign species based on dietary indicators alone. 

Therefore, those only identifiable to genus level from visual identification, termed 

‘Antidorcas sp.’ will remain described as such throughout this research. ‘Antidorcas sp.’ is 

included as a category indicative of the genus but with the knowledge that species is 

uncertain, and results could be skewed for this category as a consequence.  
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CHAPTER 7 

Dental Morphological Measurements 
7.1 INTRODUCTION 

Dental morphology is a reflection of the longer-term adaptive history of the lineage, as such 

dental morphology can assist in reflecting dietary behaviour. This chapter explores the 

dental molar morphology of the Antidorcas species and how this morphology may have 

adapted through time. More specific dietary methods (mesowear, microwear and isotopic 

analysis) are then applied to the same individuals in subsequent chapters.  

Herbivore dental morphology reflects what an animal is capable of eating, via ancestral 

adaptive forces (and by extension, their ancestral dietary behaviour and habitats) acting 

upon the dentition during mastication to meet the physical demands of their diet. Adopting 

a particular diet requires the dentition to be able to withstand forces required to open 

cellular walls of the plants, in order to benefit from their nutritional contents (Sanson 2006), 

as well as being able to have the longevity to withstand lifetime dietary pressures, e.g. from 

an abrasive diet. Due to these extensive masticatory demands, the functional durability of 

dentition is reflective of the limiting factors impacting upon the animal (Janis & Fortelius 

1988). Consequently, herbivore craniodental morphology is a result of evolutionary 

adaptations to long-term dietary strategies and convergence (e.g. Janis 1988, 1995; 

Mendoza et al. 2002; Sanson 2006, 2007; Damuth and Janis 2011). For instance, both 

hypsodonty (tall crown height, usually associated with grazing ungulates as a functional 

adaptation to withstand a highly abrasive diet) (Janis 1988) and lophodonty (ridging) of 

molars is related to the fibre-content of the diet (Janis 1988, Sanson et al. 1991). Diet as 

well as habitat and feeding-style are important factors in determining the level of 

hypsodonty.  The same is likely true for other means of increasing molar durability, such as 

increased enamel thickness. Selection pressure to evolve more durable dentition is likely to 

arise from consistently feeding on a diet that is too abrasive for their dental morphology. In 

addition to dietary adaptations, environmentally-driven exogenous factors can result in 

dental adaptations.  For example, Damuth and Janis (2011) reaffirm the impact of dust and 

grit as influential factors placing evolutionary demands on the dentition of herbivores. The 

increased dust/grit content ingested when grazing at a low level in dry environments were 

shown to be at least as likely to catalyse wear-resistance in teeth, as was the impact of silica 

(phytoliths) in grasses.  

Vrba (1980) suggests that there is a suite of dental characteristics for bovids that should 

indicate feeding behaviour. However, these include premolar length, buccolingual molar 

expansion and diastema length. Solounias and Moelleken (1993) and Solounias et al. 

(1998) for example, show pre-maxillary shape can be used to determine an animals’ dietary 

category (i.e. grazer, browser or mixed feeder). Unfortunately, there are a limited supply of 

complete cranial remains or toothrows. The majority of dental specimens available for this 

study come from isolated teeth.  

Here, dental measurements are primarily used to identify Antidorcas lineage changes and to 

make inferences regarding the catalysts of dental morphological adaptations. Enamel is less 
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plastic than bone, requiring substantial selective pressure for adaptation to occur. 

Population-level and temporary influences would very rarely result in dental morphological 

change. Therefore, any dental morphological changes apparent can be inferred to be the 

result of substantial selective pressure and unidirectional change through time are 

potentially indicative of speciation events.  

There are a limited number of ways dentition can adapt to withstand these pressures to 

enable survival. Adaptations, such as those seen in the extinct springbok, Antidorcas bondi, 

of extreme hypsodonty (see Janis 1998) are believed to be a response to prolonged 

exposure to a highly abrasive (grazing) diet (Vrba 1970, 1973). Coupled with the extreme 

hypsodonty feature of tall overall crown height, is the relatively small occlusal dimensions. 

A. bondi is suggested to have the smallest occlusal dimensions when compared to the other 

Antidorcas species (Vrba 1973). Discussion of A. recki progressively increasing 

hypsodonty through time has been addressed by Vrba (1973) with reference to Olduvai 

specimens and suggestion that overlap in these type of measurements between Antidorcas 

species may become apparent in later deposits. A progression which may reflect increasing 

grasslands and aridity (Vrba 1970).  

Yet Janis (1995) found that mixed-feeders in open habitats were not readily distinguished 

from catholic grazers; and mixed-feeders in closed habitats were not readily distinguished 

from faithful browsers. As such, information gained using a primarily mixed-feeding proxy 

such as Antidorcas would benefit from multiple avenues of research to enable more 

accurate palaeoenvironmental interpretations. Using simple dental metrics in conjunction 

with palaeodietary indicators (such as the use-wear and isotope methods also implemented 

in this study) has been proven to be a useful tool for inferring palaeoenvironments (Louys 

et al. 2015).  

7.2 RESULTS 

7.2.1 Establishing intra-specific variation and basic descriptive 

statistics 
Siding 
No significant differences were found for fossil Antidorcas specimens between left- and 

right- sided dentition of the same tooth position (i.e. left upper second molar showed no 

significant difference to right upper second molar). Therefore, left and right-sided molars of 

the same tooth type were combined for analysis.  

Sexual dimorphism 
Modern Antidorcas molar measurements were tested for sexual dimorphism (see chapter 6), 

as Antidorcas are known to display sexual dimorphism in their horncores and to a lesser 

extent, in their body size (e.g. Reynolds 2005).  

Modern Antidorcas showed significant differences between males and females for BLW, 

CH and enamel thickness (points B and D).  

Following Cope’s rule and Vrba’s (1973, 1974) identification of Antidorcas dentition, the 

ancestral A. recki displays smaller dentition than descendant A. marsupialis.  Similar issues 

(to those for A. australis/ marsupialis, see chapter 6) exist therefore, for differentiating 
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between larger A. recki and smaller A. marsupialis, to allow delineation of speciation from 

the ancestral A. recki to the descendant A. marsupialis.  

Although Antidorcas species could not be combined here as this would prevent 

identification of species dental morphology change through time Table 7.2 is included to 

allow comparison with published sources that may have combined Antidorcas by genus/ 

only been identified to genus level.  

Sub-specific differences 
No significant differences in linear measurements were found for modern sub-species of 

Antidorcas (data was normally distributed and assed via a one-way ANOVA). This was 

repeated, separating by sex; again no significant differences were found. Although the 

postcranial skeleton suggests there may be differences in sub-specific individuals (e.g. 

Castelló 2016), this is not the case for the dentition (Table 7.1). This supports earlier 

statements regarding the plasticity of bone over dentition and enables more robust 

conclusions regarding species evolution (rather than population or sub-species differences) 

from dentition.  

Table 7.1: Descriptive statistics [Mean and range] for modern Antidorcas sub-species 
occlusal dimensions, separated by tooth type. Only teeth for which there is data are 
displayed. All values to 2 decimal places. 
Sub-species Tooth N Mean 

MDL 
Range 
MDL 

Mean 
BLW 

Range 
BLW 

Mean 
CH 

Range 
CH 

A. marsupialis UM1 25 13.58 4.80 11.15 2.40 10.08 9.80 
UM2 31 16.09 6.30 11.61 3.90 11.71 11.30 

UM3 6 16.98 4.00 9.78 2.40 12.03 4.70 
lm1 16 12.54 3.50 8.11 5.60 9.79 5.40 
lm2 21 14.97 3.90 8.29 5.90 11.21 9.10 
lm3 4 22.65 7.10 7.58 1.80 11.25 6.50 

A.m.hofmeyri UM1 7 14.51 3.70 11.23 2.40 11.91 4.40 
UM2 8 17.35 2.10 11.84 2.20 11.63 2.60 

lm1 3 13.43 0.80 7.47 0.20 10.10 0.80 
lm2 3 15.10 0.70 7.50 0.50 10.53 0.10 

A.m.angolensis UM1 5 12.84 1.10 11.42 1.00 6.60 4.40 
UM2 5 16.18 0.90 11.72 1.30 7.10 10.00 

UM3 1 17.40 0.00 10.10 0.00 10.50 0.00 

7.2.2 Descriptive Statistics for Antidorcas UM2 Measurements 
Table 7.2: Basics descriptive statistics for the genus Antidorcas (fossil and modern) M2. All 
values to 2 decimal places. 

 MDL BLW CH OH TH EA EB EC ED 

N 343 343 242 339 253 227 219 227 207 
Mean 14.82 10.47 10.10 2.51 27.35 1.07 0.81 0.71 1.55 

Median 14.70 10.5 9.8 2.2 28.5 1.1 0.8 0.7 1.5 
Mode 14.7 10.1 9.5 2.2a 31.2a 1.2 0.8 0.7 1.5 
Range 11.3 12.8 20.2 9.5 50.4 1.1 1.0 0.9 2.4 
Minimum 8.3 2.2 1.8 0.0 7.3 0.5 0.3 0.4 0.5 
Maximum 19.6 15.0 22.0 9.5 57.7 1.6 1.3 1.3 2.9 
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Antidorcas Lineage 
Table 7.3: Number of specimens per species (‘N’) alongside basic descriptive statistics (mean, mode, median, minimum, maximum and range) for all maxillary second molars (M2) 
for Antidorcas specimens measured. All measurements in mm. Mean is given to 2 decimal places, all other values given to 1 decimal place. MDL= Mesio-distal length, BLW= 
Bucco-lingual width, CH=Crown height, CPH=Cusp height, OH=Overall Height, A-D=Enamel Thickness measurements. 
Species  MDL BLW CH OH TH A B C D 

Antidorcas sp. N 16 16 15 16 14 3 3 3 3 
Mean 13.88 9.81 9.63 3.15 33.15 1.17 0.63 0.67 1.37 

Mode 13.4 8.5 12.1 2.3 35.6 x 0.7 0.7 x 
Median 13.7 9.7 9.6 3.0 32.8 1.2 0.7 0.7 1.6 
Minimum 12.2 7.4 6.5 0.7 20.5 1.0 0.5 0.6 0.7 
Maximum 15.4 12.6 12.7 5.3 57.7 1.3 0.7 0.7 1.8 
Range 3.2 5.2 6.2 4.6 37.2 0.3 0.2 0.1 1.1 

Antidorcas marsupialis 

(fossil) 

N 28 28 19 36 33 23 23 23 22 
Mean 15.35 11.25 11.92 2.83 23.59 1.13 0.81 0.70 1.49 

Mode 15.4 13.1 x 2.7 31.2 1.2 0.8 0.5 1.5 
Median 15.4 11.3 11.8 2.35 23.2 1.2 0.8 0.7 1.6 
Minimum 10.9 7.6 6.1 0.8 10.9 0.5 0.4 0.4 0.5 
Maximum 18.1 14.7 17.7 6.0 38.4 1.6 1.3 1.1 2.6 
Range 7.2 7.1 11.6 5.2 27.5 1.1 0.9 0.7 2.1 

Antidorcas recki N 18 18 8 18 15 19 18 19 14 
Mean 13.61 10.05 7.29 1.56 15.70 0.99 0.76 0.63 1.28 

Mode 13.8 10.1 x 1.7 x 1.1 0.8 0.7 1.5 
Median 13.8 10.1 7.55 1.6 11.0 1.1 0.8 0.6 1.3 
Minimum 10.0 5.7 3.8 1.2 7.3 0.5 0.3 0.4 0.5 
Maximum 16.3 15 9.5 1.7 29.6 1.3 1.3 0.6 1.9 
Range 6.3 9.3 5.7 0.5 22.3 0.8 1.0 0.2 1.4 

Antidorcas bondi N 25 25 10 25 23 21 20 21 20 
Mean 14.65 9.52 9.34 2.16 34.81 1.07 0.89 0.81 1.72 
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 Mode 14.8 9.0 x 1.3 34.3 1.1 0.8 0.7 1.5 
Median 14.7 9.6 8.5 1.9 35.6 1.1 0.9 0.8 1.6 
Minimum 12.6 6.6 7.3 0.0 24.1 0.5 0.4 0.5 1.1 
Maximum 16.6 11.2 13.8 6.1 42.7 1.4 1.3 1.3 2.9 
Range 4.0 4.6 6.5 6.1 18.6 0.9 0.9 0.8 1.8 

Antidorcas marsupialis (modern) N 64 64 64 44 x 20 20 20 20 
Mean 16.0 11.4 10.8 2.9 x 1.1 0.8 0.71 1.8 

Mode 16.4 11.1 11.5 2.7 x 1.0 0.6 0.6 2.1 
Median 16.4 11.6 11.2 2.7 x 1.1 0.7 0.7 1.7 
Minimum 8.3 2.2 1.8 1.4 x 0.9 0.4 0.6 1.2 
Maximum 19.6 14.2 22.0 9.5 x 1.3 1.1 0.9 2.4 
Range 11.3 12.0 20.2 8.1 x 0.4 0.7 0.3 1.2 

 

Table 7.4: Descriptive statistics for Antidorcas second maxillary molars separated by species and provenance (site and member). All measurements in mm. Mean is given to 2 
decimal places, all other values given to 1 decimal place. MDL= Mesio-distal length, BLW= Bucco-lingual width, CH=Crown height, OH=Occlusal (cusp) height, TH=Total 
Height, A-D=Enamel Thickness measurements. Where N=1 for all measurements, ‘All’ denotes all descriptive statistics and the individual measurement is given. Enamel thickness 
mean measurements are rounded up to 1 decimal place. 
Species Provenance  MDL BLW CH OH TH A B C D 
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Sterkfontein Member 5 N 1 1 0 1 1 1 1 1 1 
All 14.8 13.71 x 1.8 12.8 1.5 0.8 1.1 1.5 

Kromdraai (W) N 3 3 0 3 3 3 3 3 3 
Mean 15.73 11.43 x 2.37 19.07 1.3 0.7 0.6 1.3 

Mode x x x x x x 0.8 0.5 x 
Median 16.4 11.5 x 2.4 18.0 1.4 0.8 0.5 1.7 
Minimum 13.6 10.3 x 1.2 17.2 1.0 0.4 0.5 0.9 
Maximum 17.2 12.5 x 3.5 22.0 1.6 0.8 0.9 1.7 
Range 3.6 2.2 x 2.3 4.8 0.6 0.4 0.4 0.8 

Swartkrans Member 1 N 2 2 1 2 2 1 1 1 1 
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  Mean 16.3 8.95 12.1 3.45 20.05 1.0 0.7 0.5 1.0 

Mode x x 12.1 x x 1.0 0.7 0.5 1.0 
Median 16.3 8.95 12.1 3.45 20.05 1.0 0.7 0.5 1.0 
Minimum 14.5 7.6 12.1 1.5 16.9 1.0 0.7 0.5 1.0 
Maximum 18.1 10.3 12.1 5.4 23.2 1.0 0.7 0.5 1.0 
Range 3.6 2.7 0 3.9 6.3 0 0 0 0 

Swartkrans Member 2 N 4 4 4 4 4 3 3 3 3 
Mean 16.13 10.93 8.45 2.80 26.93 0.9 0.6 0.6 0.6 

Mode x x x x x 0.8 0.6 x x 
Median 16.3 10.9 9.1 2.6 29.4 0.8 0.6 0.5 1.8 
Minimum 14.7 10.2 6.1 1.5 20.2 0.8 0.6 0.4 0.8 
Maximum 17.3 11.7 9.5 4.5 31.2 1.2 0.6 0.8 2.1 
Range 2.6 1.5 3.4 3.0 11.0 0.4 0 0.4 1.3 

Swartkrans Member 3 N 8 8 8 16 16 8 7 8 8 
Mean 15.84 10.55 14.86 3.03 24.21 1.0 0.7 0.7 1.5 

Mode x 11.3 x 5.5 x 0.9 0.8 0.7 1.6 
Median 16.2 11.0 15.1 2.7 25.1 1.1 0.8 0.7 1.6 
Minimum 13.2 8.5 11.8 0.8 14.0 0.5 0.4 0.5 0.5 
Maximum 17.9 13.1 17.7 6.0 32.7 1.3 1.1 0.8 2.1 
Range 4.7 4.6 5.9 5.2 18.7 0.8 0.7 0.3 1.6 

Plovers Lake N 4 4 0 4 4 4 4 4 4 
Mean 13.48 12.13 x 1.43 17.55 1.2 0.8 0.9 1.5 

Mode x x x 1.1 x 1.2 x 0.9 x 
Median 13.4 11.7 x 1.2 17.9 1.2 1.2 0.9 1.5 
Minimum 10.9 10.5 x 1.1 10.9 0.9 0.9 0.5 0.5 
Maximum 16.2 14.7 x 2.3 23.6 1.4 1.3 1.0 2.6 
Range 5.3 4.2 x 1.2 12.7 0.5 0.4 0.5 2.1 

Cave of Hearths N 6 7 8 9 3 3 3 3 3 
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  Mean 15.02 12.1 10.27 3.43 35.5 1.3 0.9 0.7 1.7 

Mode 15.7 x x x x x x x x 
Median 15.0 12.1 10.4 3.1 38.0 1.2 1.0 0.8 1.7 
Minimum 14.1 11.1 7.8 1.0 30.1 1.1 0.6 0.5 1.5 
Maximum 15.7 13.1 12.4 5.9 38.4 1.5 1.2 0.9 1.8 
Range 1.6 2.0 4 4.9 8.3 0.4 0.6 0.4 0.3 

A
n

ti
d

o
rc

a
s 

re
ck

i 

  

Sterkfontein Member 4 N 2 2 1 2 0 2 2 2 1 
Mean 13.8 8.2 7.6 1.65 x 0.9 0.6 0.7 1.2 

Mode x x 7.6 x x x x x 1.2 
Median 13.8 8.2 7.6 1.65 x 0.9 0.6 0.7 1.2 
Minimum 13.7 5.7 7.6 1.0 x 0.8 0.4 0.5 1.2 
Maximum 13.9 10.7 7.6 2.3 x 1.0 0.8 0.8 1.2 
Range 0.2 5.0 0 1.3 0 0.2 0.4 0.3 0 

Kromdraai A N 10 10 6 9 8 10 10 10 9 
Mean 13.92 9.56 7.82 1.71 20.45 1.0 0.7 0.6 1.3 

Mode 13.8 10.1 x 1.2 x 1.0 0.8 0.7 1.6 
Median 13.8 10.0 7.7 1.7 22.1 1.1 0.8 0.6 1.4 
Minimum 10.0 7.5 6.3 1.1 9.7 0.6 0.3 0.4 0.5 
Maximum 16.3 11.0 9.5 2.7 29.6 1.3 1.2 0.7 1.6 
Range 6.3 3.0 3.2 1.6 19.9 0.7 0.9 0.3 1.1 

Kromdraai E N 1 1 0 1 1 1 1 1 0 
All 14.3 8.3 x 1.6 8.8 1.2 0.8 0.7 x 

Kromdraai W N 1 1 0 1 1 1 1 1 1 
All 13.5 11.5 x 2.1 9.3 1.1 0.9 0.7 1.1 

Swartkrans Member 2 N 1 1 1 1 1 1 1 1 0 
All 12.4 10.1 3.8 0.5 16.5 1.1 1.2 0.4 x 

Swartkrans Member 3 N 2 2 0 3 3 3 2 3 2 
Mean 12.11 12.0 x 1.53 9.4 0.9 0.9 0.8 1.4 
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  Mode x x x x x x x x x 
Median 12.1 12.0 x 1.6 9.9 1.0 0.9 0.7 1.4 
Minimum 10.6 11.6 x 1.3 7.3 0.5 0.4 0.4 0.8 
Maximum 13.6 12.4 x 1.7 11.0 1.2 1.3 1.2 1.9 
Range 3.0 0.8 x 0.4 3.7 0.7 0.9 0.8 1.1 

Plovers Lake N 1 1 0 1 1 1 1 1 1 
All 13.8 15.0 x 0.5 9.1 1.1 0.5 0.6 1.5 

A
n

ti
d

o
rc

a
s 

sp
. 

 

Sterkfontein Member 5 
(W) 

N 1 1 0 1 0 1 1 1 1 

All 15.3 12.5 x 0.7 x 1.0 0.7 0.7 1.8 

Swartkrans Member 2 N 15 15 15 15 14 2 2 2 2 

Mean 13.8 9.6 9.6 3.3 33.15 1.3 0.6 0.7 1.2 

Mode 13.4 8.5 12.1 2.3 35.6 x x x x 

Median 13.6 9.7 9.6 3.1 32.8 1.3 0.6 0.7 1.2 

Minimum 12.2 7.4 6.5 1.7 20.5 1.2 0.5 0.6 0.7 

Maximum 15.4 12.6 12.7 5.3 57.7 1.3 0.7 0.7 1.6 

Range 3.2 5.2 6.2 3.6 37.2 0.1 0.2 0.1 0.9 

A
n

ti
d

o
rc

a
s 

b
o

n
d

i 

Sterkfontein 
Member 5  

N 7 7 2 7 6 7 7 7 6 

Mean 14.46 9.29 8.6 1.76 36.03 1.2 0.9 0.9 1.7 

Mode x 10.5 x 1.8 34.3 1.1 0.8 0.9 1.5 

Median 14.5 9.6 8.6 1.8 35.2 1.2 0.9 0.9 1.6 

Minimum 12.6 6.6 7.4 1.0 31.1 1.0 0.7 0.7 1.2 

Maximum 16.6 10.5 9.8 2.2 42.7 1.4 1.2 1.0 2.3 

Range 4.0 3.9 2.4 1.2 11.6 0.4 0.5 0.3 1.1 
Sterkfontein 
unstratified 

N 1 1 1 1 1 1 1 1 1 

All 13.7 11.2 9.3 0.0 37.3 1.2 1.1 1.3 2.4 

Kromdraai A N 2 2 1 2 2 2 2 2 2 

Mean 15.3 10.25 8.1 1.3 33.2 1.4 0.8 0.7 1.7 
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  Mode x x 8.1 x x x x 0.7 x 

Median 15.3 10.3 8.1 1.4 36.2 1.1 0.8 0.7 1.6 

Minimum 14.8 10.1 8.1 1.3 33.2 0.8 0.7 0.7 1.5 

Maximum 15.8 10.4 8.1 1.5 39.1 1.4 0.8 0.7 1.7 

Range 1.0 0.3 0 0.2 5.9 0.6 0.1 0 0.2 
Swartkrans Member 2 N 5 5 1 5 5 4 4 4 4 

Mean 14.56 9.28 13.80 1.92 34.98 0.8 0.7 0.6 1.6 

Mode 14.7 x 13.8 1.3 x x x 0.5 x 

Median 14.7 9.1 13.8 2.2 35.7 0.8 0.7 0.6 1.6 

Minimum 13.9 8.2 13.8 1.3 28.9 0.5 0.4 0.5 1.3 

Maximum 15.1 10.2 13.8 2.5 40.0 1.1 1.0 0.8 1.9 

Range 1.2 2.0 0 1.2 11.1 0.6 0.6 0.3 0.6 
Swartkrans Member 3 N 1 1 0 1 1 1 0 1 1 

All 16 8.9 x 3.2 24.1 0.9 x 0.9 1.5 

Plovers Lake N 5 5 1 5 5 5 5 5 5 

Mean 14.18 9.92 8.0 1.82 31.7 1.2 1.0 0.9 1.9 

Mode x x 8 1.9 x x 0.9 0.7 x 

Median 14.3 9.8 8 1.9 31.5 1.2 1.0 0.8 1.6 

Minimum 13.4 9.2 8 1.3 29.5 0.9 0.9 0.7 1.4 

Maximum 15.2 10.9 8 2.5 35.6 1.4 1.3 1.2 2.9 

Range 1.8 1.7 0 1.2 6.1 0.5 0.4 0.5 1.5 
Cave of Hearths N 4 4 4 4 3 1 1 1 1 

Mean 15.25 9.08 9.25 4.23 39.13 0.7 0.8 0.6 1.1 

Mode x x x x x 0.7 0.8 0.6 1.1 

Median 15.3 8.9 8.5 4.3 39.9 0.7 0.8 0.6 1.1 

Minimum 14.7 7.8 7.3 2.3 36.5 0.7 0.8 0.6 1.1 
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Maximum 15.8 10.7 12.7 6.1 41.0 0.7 0.8 0.6 1.1 

Range 1.1 2.9 5.4 3.8 4.5 0 0 0 0 

 

7.2.3 ENAMEL THICKNESS across the toothrow 
Enamel thickness variation across the toothrow (M2 is excluded as it is evaluated above alongside other dental measurements) for each species is given in the tables (Table 7.5, Table 

7.6) below. Enamel thickness is rarely considered in studies of bovid palaeodiets but is a key indicator of dietary abrasiveness.  

Table 7.5: Descriptive statistics for Antidorcas enamel thickness according to species for maxillary molars. All measurements are in millimetres (mm). Standard deviation and 
median values are given to 2 decimal places. 
Upper M1 

Species N Measurement location Mean Standard 

Deviation 

Minimum Maximum Range Median 

A. recki 13 A 1.18 0.18 0.9 1.4 0.5 1.20 
B 0.85 0.21 0.5 1.2 0.7 0.80 
C 0.76 0.16 0.5 1.0 0.5 0.70 
D 1.29 0.34 0.8 1.9 1.1 1.20 

A. bondi 4 A 1.13 0.28 0.8 1.4 0.6 1.15 
B 1.10 0.29 0.8 1.5 0.7 1.05 
C 0.83 0.10 0.7 0.9 0.2 0.85 
D 1.68 0.56 1.0 2.3 1.3 1.70 

Fossil A. marsupialis 10 A 1.20 0.18 0.8 1.5 0.7 1.20 
B 0.81 0.22 0.5 1.2 0.7 0.80 
C 0.71 0.17 0.5 1.0 0.5 0.70 
D 1.11 0.34 0.9 2.0 1.1 1.30 

Upper M3 

Species N Measurement location Mean Standard 

Deviation 

Minimum Maximum Range Median 

A. recki 6 A 0.933 0.47 0.0 1.3 1.3 1.10 
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Upper M1 

Species N Measurement location Mean Standard 

Deviation 

Minimum Maximum Range Median 

B 0.750 0.28 0.3 1.1 0.8 0.80 
C 0.700 0.23 0.4 1.0 0.6 0.70 
D 1.267 0.20 1.1 1.6 0.5 1.20 

A. bondi 9 A 1.133 0.44 0.0 1.4 1.4 1.30 
B 1.067 0.19 0.7 1.3 0.6 1.10 
C 0.900 0.13 0.7 1.1 0.4 0.90 
D 1.578 0.25 1.2 2.0 0.8 1.60 

Fossil A. marsupialis 7 A 1.014 0.18 0.8 1.3 0.5 1.00 
B 0.771 0.16 0.6 1.1 0.5 0.70 
C 0.700 0.14 0.7 1.1 0.4 0.70 
D 1.086 0.23 0.9 1.4 0.5 0.90 

 

Table 7.6: Descriptive statistics for Antidorcas enamel thickness according to species for mandibular dentition. All measurements are in millimetres (mm). Mean, standard deviation 
and median values are given to 2 decimal places. 
Lower M1 

Species N Measurement location Mean Standard 

Deviation 

Minimum Maximum Range Median 

A. recki 5 A 0.96 0.21 0.70 1.20 0.5 1.00 
B 0.62 0.18 0.40 0.80 0.4 0.60 
C 0.66 0.11 0.50 0.80 0.3 0.70 

A. bondi 3 A 0.97 0.15 0.80 1.10 0.3 1.00 
B 0.60 0.30 0.30 0.90 0.6 0.60 
C 1.10 0.00 1.10 1.10 0.0 1.10 

Fossil A. marsupialis 7 A 1.07 0.46 0.70 1.60 0.9 1.00 
2 B 0.55 0.00 0.20 0.90 0.7 0.55 
5 C 0.82 0.14 0.50 1.10 x 0.90 



212 

 

Lower M1 

Species N Measurement location Mean Standard 

Deviation 

Minimum Maximum Range Median 

Lower M2 

Species N Measurement location Mean Standard 

Deviation 

Minimum Maximum Range Median 

A. recki 10 A 0.99 0.25 0.60 1.50 0.9 1.00 
B 0.34 0.22 0.10 0.70 0.6 0.30 
C 0.70 0.16 0.50 1.0 0.5 0.70 

A. bondi 18 A 1.13 0.23 0.60 1.50 0.9 1.10 
B 0.58 0.29 0.10 1.10 1.0 0.65 
C 0.76 0.22 0.30 1.10 0.8 0.75 

Fossil A. marsupialis 10 A 1.20 0.12 1.00 1.40 0.4 1.20 
B 0.45 0.20 0.10 0.70 0.6 0.50 
C 0.74 0.23 0.30 1.10 0.80 0.75 

Lower M3 

Species N Measurement location Mean Standard 

Deviation 

Minimum Maximum Range Median 

A. recki 10 A 1.05 0.14 0.80 1.20 0.4 1.05 
B 0.49 0.20 0.20 0.80 0.6 0.50 
C 0.64 0.15 0.40 0.90 0.5 0.65 

A. bondi 5 A 1.34 0.15 1.20 1.50 0.3 1.30 
B 0.78 0.22 0.50 1.10 0.6 0.80 
C 0.82 0.47 0.00 1.20 1.2 1.00 

Fossil A. marsupialis 3 A 1.00 0.10 0.90 1.10 0.2 1.00 
B 0.70 0.20 0.50 0.90 0.4 0.70 
C 0.70 0.10 0.60 0.80 0.2 0.70 
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7.2.4 Further statistical analysis for Antidorcas measurements 
Maxillary Second Molar (UM2) 
 

Provenance Significant differences 
• A. bondi occlusal (cusp) height across provenance (p=0.031 Independent samples 

Kruskal Wallis Test). 

Table 7.7: Antidorcas bondi significant differences in upper second molar measurements 
through time. ‘N’ = number of specimens, ‘P’ = p-value. The top row states the 
measurement that shows significant difference through time. The underlined value shows 
the larger measurement.  

Species Member N Mean P 

A. bondi Occlusal (cusp) height across provenance 0.031 

A. bondi 

Sterkfontein Member 5 7 1.76 mm 
0.011 

Swartkrans Member 3 1 3.22 mm 
Swartkrans Member 2 5 1.92 mm 

0.019 
Cave of Hearths 4 4.23 mm 
Plovers Lake 5 1.82 mm 

0.014 
Cave of Hearths 4 4.23 mm 

 

• Fossil A. marsupialis crown height (p=0.003 Independent samples Kruskal Wallis 

Test).  

Table 7.8: Antidorcas marsupialis significant differences in upper second molar 
measurements through time. ‘N’ = number of specimens, ‘P’ = p-value. The top row states 
the measurement that shows significant difference through time. The underlined value 
shows the larger measurement. 

Species Member N Mean P 

A. marsupialis Crown height across provenance 0.003 

A. marsupialis 

Swartkrans Member 2 4 8.45 mm 
0.001 

Swartkrans Member 3 8 14.86 mm 
Swartkrans Member 3 8 14.86 mm 

0.000 
Cave of Hearths 6 10.27 mm 

 

Species significant differences 
All measurements were significantly different across species p<.000 when analysed by an 

independent-samples kruskal-Wallis test for all measurements (MDL, BLW, OH, CH, TH). 

Post-hoc Mann-Whitney U pairwise tests with Bonferroni adjusted significance-levels 

revealed where these differences were found and are detailed below (Table 7.9).  

Interestingly, enamel thickness significantly differed between tooth position only at point B 

(central enamel band) (see Figure 4.15) for all Antidorcas species, including modern 

springbok. A. recki also showed a significant difference (Independent samples Mann 

Whitney U Test) of enamel thickness at point B between left and right sided upper second 

molars (p=0.008).  

Table 7.9: Post-hoc Pairwise comparisons of dental morphological measurements for each 
Antidorcas species. Significant differences are indicated by their abbreviation. 

A.bondi A.recki A.aus/mars. modern

A.bondi MDL,CH,TH,EC,ED BLW,CH,TH MDL,BLW,OH,EC

A.recki MDL,BLW,H,OH,TH MDL,BLW,CH,TH,ED

A.aus/mars ED

modern  
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Table 7.10: Significant dental size differences between Antidorcas bondi and recki. P=p-
value. ‘Direction’ simply denotes which species yielded the larger/smaller measurement. 

Measurement Species Mean (in mm) P Direction 

MDL 
A. bondi 14.65 

0.009 
longer 

A. recki 13.61 shorter 

CH 
A. bondi 9.34 

0.046 
higher 

A. recki 7.29 lower 

TH 
A. bondi 34.81 

<0.000 
higher 

A. recki 15.70 lower 

EC 
A. bondi 0.81 

0.005 
thicker 

A. recki 0.63 thinner 

ED 
A. bondi 1.72 

0.005 
thicker 

A. recki 1.28 thinner 

 

Table 7.11: Significant dental size differences between Antidorcas recki and marsupialis. 
P=p-value. ‘Direction’ simply denotes which species yielded the larger/smaller 
measurement. 

Measurement Species Mean (in mm) P Direction 

MDL 
A. recki 13.61 

0.001 
shorter 

A. marsupialis 15.35 longer 

BLW 
A. recki 10.05 

0.043 
shorter 

A. marsupialis 11.25 longer 

CH 
A. recki 7.29 

<0.000 
lower 

A. marsupialis 11.93 higher 

OH 
A. recki 1.56 

<0.000 
lower 

A. marsupialis 2.83 higher 

TH 
A. recki 15.70 

0.001 
lower 

A. marsupialis 23.59 higher 

As shown in Table 7.11, A. recki had significantly smaller dentition than fossil A. 

marsupialis, supporting previous studies (e.g. Vrba 1970; Gentry 1978; Reynolds 2005). 

Table 7.12: Significant dental size differences between Antidorcas bondi and marsupialis. 
P=p-value. ‘Direction’ simply denotes which species yielded the larger/smaller 
measurement. 

Measurement Species Mean (in mm) P Direction 

BLW 
A. bondi 9.52 

<0.000 
shorter 

A. marsupialis 11.25 longer 

CH 
A. bondi 9.34 

0.028 
lower 

A. marsupialis 11.92 higher 

TH 
A. bondi 34.81 

<0.000 
higher 

A. marsupialis 23.59 lower 
Table 7.13: Significant dental size differences between fossil Antidorcas species and 
modern springbok. P=p-value. ‘Direction’ simply denotes which species yielded the 
larger/smaller measurement. 

Measurement Species Mean (in mm) P Direction 

MDL 

A. bondi 14.65 
0.001 

shorter 
Modern A. 
marsupialis 

16.00 longer 

A. recki 13.61 
<0.000 

shorter 
Modern A. 
marsupialis 

16.00 longer 

BLW 

A. bondi 9.52 
<0.000 

shorter 
Modern A. 
marsupialis 

11.4 longer 

A. recki 10.05 
0.011 

shorter 
Modern A. 
marsupialis 

11.4 longer 
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Measurement Species Mean (in mm) P Direction 

OH 

A. bondi 2.16 
0.046 

lower 
Modern A. 
marsupialis 

2.90 higher 

A. recki 1.56 
<0.000 

lower 
Modern A. 
marsupialis 

2.90 higher 

CH 

A. recki 7.29 
0.001 

lower 
Modern A. 
marsupialis 

10.80 higher 

EC 

A. bondi 0.81 
0.037 

thicker 
Modern A. 
marsupialis 

0.71 thinner 

ED 

A. recki 1.28 
<0.000 

 

thinner 
Modern A. 
marsupialis 

1.80 thicker 

Fossil A. 
marsupialis 

1.49 
0.043 

thinner 

Modern A. 
marsupialis 

1.80 thicker 

UM2 has been used as the primary molar across all methods in this research. However, to 

more definitively assess species differences and species adaptations through time, the other 

molar teeth (upper 1st and 3rd molars and lower 1st, 2nd and 3rd molars) were statistically 

analysed. Basic descriptive statistics are included in Appendices (Appendix A6).  

The following results include all molars, as identified in each reporting of results.  

Significant Difference Through Time (all tooth types) 
 
Antidorcas recki  
Table 7.14: Antidorcas recki significant differences in mandibular dental measurements 
through time. ‘N’=number of specimens, ‘P’=p-value / significance. ‘Direction’ simply 
denotes which species yielded the larger/smaller measurement. 

Measurement Provenance N 
Mean (in 

mm) 
P Direction 

OH across 
mandibular 
toothrow 

Cooper’s Cave 7 3.54 
<0.000 

higher 
Sterkfontein 
Member 5 

14 1.81 lower 

Cooper’s Cave 7 3.54 
<0.000 

higher 
Kromdraai A 7 1.69 lower 

Cooper’s Cave 7 3.54 
0.001 

higher 
Swartkrans 
Member 3 

11 1.63 lower 

TH across the 
mandibular 
toothrow 

Cooper’s Cave 7 26.94 
0.001 

higher 
Swartkrans 
Member 3 

11 10.82 lower 

Maxillary dentition TH showed significant differences for Swartkrans Member 3 (n=12, 

mean=10.93mm), being smaller than those from Kromdraai A (n=12, mean=21.81mm). 

The lower second molar (lm2) of A. recki displayed significant differences through time for 

mesio-distal length (p=.044), occlusal height (p=.024) and total height (p=.013). Post-hoc 

Mann Whitney U with Bonferroni adjusted alpha levels (significance above 0.003) showed 

these differences to be between Kromdraai W and Cooper’s Cave (p=.001) for MDL; 

Kromdraai A and Cooper’s Cave (p=.001) for OH and (p=.002) for TH. Cooper’s Cave A. 

recki displayed larger MDL, OH and TH than either Kromdraai A. recki assemblage. 
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Table 7.15: A. recki LM2 mean and standard error of the mean (SEM) for each statistically 
significant measurement. Only provenance with A. recki LM2 included. All measurements 
given in millimetres to 2 decimal places. 
Provenance N 

MDL 

Mean 

MDL 

OH 

SEM 

N 

OH 

Mean 

OH 

OH 

SEM 

N 

TH 

Mean 

TH 

TH  

SEM 

Sterkfontein 

Member 4 

3 13.67 0.94 3 2.30 0.42 3 18.27 2.43 

Swartkrans 

Member 1 

LB 

2 
 

11.50 0.60 2 1.65 0.03 1 6.50 X 

Swartkrans 

Member 2 

2 12.45 0.25 2 1.80 0.30 2 22.50 3.80 

Kromdraai 

A 

6 13.12 0.43 6 1.73 0.23 6 20.00 2.85 

Kromdraai 

W 

2 11.30 0.30 2 0.80 0.80 2 6.90 0.70 

Plovers Lake 1 12.60 X 1 2.00 X 1 11.50 X 
Cooper’s 

Cave 

6 13.38 0.19 6 3.52 0.19 6 27.88 0.94 

Table 7.15 highlights that Kromdraai W shows consistently smaller dentition for these 

measurements, most similar to those from Swartkrans Member 1 LB. In contrast, Cooper’s 

cave shows consistently larger dentition.  

A. bondi Maxillary dentition occlusal height differed significantly from the smaller 

Sterkfontein Member 5 specimens (n=14, mean=1.64mm) compared to the later Cave of 

Hearths A. bondi (n=4, mean=4.23mm).  All other measurements showed no significant 

change.  

A. marsupialis (fossil)  

The bucco-lingual width (BLW) of lower first molars (lm1) varied significantly through 

time (p=0.036). A. marsupialis lm1 BLW increased from Swartkrans Member 1 to 

Swartkrans Member 3 (Table 7.17) 

Additional significant differences were found for maxillary dentition crown height, bucco-

lingual width and total height. Swartkrans Member 3 A. marsupialis (n=26, 

mean=13.67mm) had significantly higher crowned maxillary dentition than was evident in 

the earlier deposits of Swartkrans Member 2 (n=6, mean=9.43mm) (p=.001) yet were 

significantly shorter in total height (SKX M3 mean=26.20mm) and narrower bucco-

lingually (mean=9.77mm) (p=.001), for Swartkrans Member 3 than was evident at the Cave 

of Hearths (n=5, mean BLW=11.30mm, mean TH=36.60mm) (TH p=<.000).   

Table 7.16: Fossil A. marsupialis total heights (TH) for lower dentition. Only provenance 
deposits with A. marsupialis present are shown. All measurements in mm and shown to 
2decimal places. 
Provenance N Mean TH TH SEM 

Sterkfontein 

Member 5 

1 12.80 X 

Swartkrans 

Member 1 

8 25.03 1.74 

Swartkrans 

Member 1 LB 

3 32.53 2.64 

Swartkrans 

Member 2 

27 22.18 1.04 

Swartkrans 

Member 3 

4 29.06 1.71 

Plovers Lake 2 22.40 4.50 
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Cave of Hearths 2 12.65 4.85 

Table 7.16 shows a large jump in total height from smaller dentition ~1.8/1.7 Ma 

(Sterkfontein Member 5 and Plovers Lake) to more than double by the later dates evidenced 

by the Cave of Hearth samples ~0.8 Ma. However, earlier deposits have extremely small 

sample sizes (n=1 or 2), making any conclusions based on this jump tentative at best.  

Table 7.17: Mean bucco-lingual width (BLW) measurements for fossil A. marsupialis LM1. 
Only provenance with A. marsupialis lm1 present are shown. All measurements in mm and 
shown to 2 decimal places.  
Provenance N Mean BLW BLW SEM 

Sterkfontein 

Member 5 

2 7.60 0.40 

Swartkrans Member 

1 

3 6.13 0.33 

Swartkrans Member 

1 LB 

1 6.80 X 

Swartkrans Member 

3 

8 7.36 0.11 

Lower third molars show more variation across species mesio-distally than bucco-lingually 

(Appendix A6).  

Species Significant Differences 
Table 7.18: Significant differences between species for molars other than M1s and M3s. 
The top row states the overall significance across species, with the detail regarding where 
the differences lie, and their individual significance in the rows below.  ‘N’=number of 
specimens, ‘P’=p-value / significance. ‘Direction’ simply denotes which species yielded the 
larger/smaller measurement. 

Tooth type Measurement Species N 
Mean 

(in mm) 
P Direction 

UM1 

MDL 

Across species p=0.049 
A. recki 5 13.62 

0.008 
shorter 

Modern A. 
marsupialis 

37 13.66 longer 

TH 

Across species p <0.000 
A. recki 21 13.89 

<0.000 
Lower 

Fossil A. 
marsupialis 

27 23.04 Higher 

A. recki 21 13.89 
0.001 

Lower 
A. bondi 4 32.08 higher 

OH 

Across species p=0.010 
A. recki 5 3.50 

0.004 
Higher 

Fossil A. 
marsupialis 

20 3.17 lower 

UM3 

MDL 

Across species p=0.001 
A. bondi 6 14.37 

0.018 
shorter 

Fossil A. 
marsupialis 

9 16.10 longer 

A. bondi 6 14.37 
0.012 

shorter 
Modern A. 
marsupialis 

7 17.04 longer 

A. recki 8 14.38 
0.045 

shorter 
Modern A. 
marsupialis 

7 17.04 longer 

TH 
Across species p <0.000 

A. recki 8 20.55 
<0.000 

lower 
A. bondi 12 37.11 higher 

OH 
A. recki 8 1.39 

0.004 
lower 

Fossil A. 
marsupialis 

9 3.18 higher 
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Tooth type Measurement Species N 
Mean 

(in mm) 
P Direction 

A. recki 8 1.39 
0.001 

lower 
Modern A. 
marsupialis 

7 3.60 higher 

lm1 

MDL 

Across species p=0.002 
A. bondi 6 11.12 

0.047 
shorter 

Modern A. 
marsupialis 

19 12.68 longer 

A. recki 8 11.48 
0.010 

shorter 
Modern A. 
marsupialis 

19 12.68 longer 

BLW 

Across species p=0.004 
A. bondi 6 6.12 

0.001 
Shorter 

Modern A. 
marsupialis 

19 8.01 longer 

TH 

Across species p <0.000 
A. recki 15 11.42 

0.007 
lower 

Fossil A. 
marsupialis 

15 21.89 higher 

CH 

Across species p=0.005 
A. recki 8 7.30 

0.050 
lower 

Fossil A. 
marsupialis 

10 11.52 higher 

lm2 

MDL 

Across species p <0.000 
A. recki 22 13.02 

0.035 
shorter 

Fossil A. 
marsupialis 

11 13.97 longer 

A. recki 22 13.02 
<0.000 

shorter 
Modern A. 
marsupialis 

24 14.99 longer 

A. bondi 31 13.34 
<0.000 

shorter 
Modern A. 
marsupialis 

24 14.99 longer 

BLW 

Across species p <0.000 
A. bondi 31 6.52 

<0.000 
shorter 

Fossil A. 
marsupialis 

11 8.21 longer 

A. bondi 31 6.52 
<0.000 

shorter 
Modern A. 
marsupialis 

24 8.19 longer 

A. recki 22 6.39 
0.002 

shorter 
Fossil A. 

marsupialis 
11 8.21 longer 

A. recki 22 6.39 
<0.000 

shorter 
Modern A. 
marsupialis 

24 8.19 longer 

TH 

Across species p <0.000 
A. recki 25 19.03 

<0.000 
lower 

A. bondi 28 32.51 higher 
A. bondi 28 32.51 

0.003 
higher 

Fossil A. 
marsupialis 

21 22.17 lower 

CH 

Across species p <0.000 
A. recki 22 8.34 

<0.000 
lower 

Modern A. 
marsupialis 

24 11.13 higher 

A. bondi 31 8.93 
<0.000 

lower 
Modern A. 
marsupialis 

24 11.13 higher 

lm3 MDL Across species p=0.002 
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Tooth type Measurement Species N 
Mean 

(in mm) 
P Direction 

A. bondi 16 20.04 
0.050 

shorter 
Modern A. 
marsupialis 

4 22.65 longer 

A. recki 9 19.14 
0.001 

shorter 
Modern A. 
marsupialis 

4 22.65 longer 

TH 

Across species p <0.000 
A. recki 14 20.21 

0.022 
lower 

Fossil A. 
marsupialis 

10 28.55 higher 

A. recki 14 20.21 
0.001 

lower 
A. bondi 22 31.18 higher 

OH 

Across species p=0.001 
A. bondi 16 1.63 

0.016 
lower 

Modern A. 
marsupialis 

4 4.43 higher 

A. recki 9 1.72 
0.008 

lower 
Modern A. 
marsupialis 

4 4.43 higher 
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Figure 7.1: Scatter plot comparing dental morphology area (BLW x MDL) of all Antidorcas species UM2 dentition. All measurements in mm. Two clusters appear to form for all 
Antidorcas species. Most individuals from all species fall within the range of variation for modern species.  
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The two distinct groupings identifiable in Figure 7.1 could be indicative of sexual 

dimorphism for all Antidorcas species. Modern and fossil Antidorcas display sexual 

dimorphism in their horncores (see Appendix A4), and may be expected to show likewise, 

albeit to a lesser extent, in their dentition. Unfortunately, a greater number of methods, 

incorporating more dental landmarks would be required to say this conclusively.  

Moreover, these plots (Figure 7.2, and to a lesser extent, Figure 7.8) represent time-

averaged species dental morphologies, as such, these apparent groupings could also be 

indicative of adapting populations of Antidorcas incorporated through time within the 

collection of deposits.  

When considering each Member individually (Figure 7.2), sexual dimorphism or species 

niche partitioning typically becomes more prevalent as sample size increases. These 

groupings are not due to species differentiations.  
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Figure 7.2: Measurement dimensions (BLW x MDL) scatter plots for all species of Antidorcas, separated according to site and member (provenance).  
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Further Statistical Analysis for Antidorcas Dental Enamel Thickness 
As enamel thickness may reflect dietary abrasiveness and has been considered relatively 

sparingly in the past, special attention will be given to these measurements here.  

Dentition is separated according to tooth type for analysis as significant differences in 

enamel thickness were found across the tooth row. For maxillary second molars (UM2), 

enamel thickness C is found to be significantly different across provenance categories via 

an Independent samples Kruskal-Wallis Test (p=0.013). For all other molars considered 

and for UM2 (locations A, B and D) no significant differences were found across 

provenance categories for any Antidorcas species.  

Post-hoc Antidorcas enamel thickness difference through time 
An independent samples Mann-Whitney U-test allowed for direct comparisons of each 

provenance, showing significant differences for the following: Sterkfontein Member 5 

(n=8) Antidorcas enamel is thicker (mean=0.89mm) than at Swartkrans Member 1 (n=1) 

(mean=0.50mm) p=0.022;  Sterkfontein Member 5 Antidorcas enamel is thicker than at 

Swartkrans Member 2 (n=10) (mean=0.59mm) p= 0.000; Sterkfontein Member 5 

Antidorcas enamel is thicker than at Swartkrans Member 3 (n=12) (mean=0.71mm) p= 

0.045; Sterkfontein Member 5 Antidorcas enamel is thicker than at Kromdraai A (n= 12) 

(mean=0.61mm) p=0.000; Sterkfontein Member 5 Antidorcas enamel is thicker than at 

Kromdraai W (n=4) (mean=0.65mm) p= 0.025; Sterkfontein Member 5 Antidorcas enamel 

is thicker than modern A. marsupialis (n=20) (mean=0.71mm) p=0.001; Swartkrans 

Member 2 (n=10) Antidorcas enamel is thinner than at Plovers Lake (n=10) 

(mean=0.82mm) p=0.011; Swartkrans Member 2 Antidorcas enamel is thinner than modern 

A. marsupialis (n=20) p=0.021; Kromdraai A (n=12) Antidorcas enamel is thinner than at 

Plovers Lake (n=10) p=0.006; Kromdraai A Antidorcas enamel is thinner than modern A. 

marsupialis (20) p=0.020. 

It is possible that this difference across provenance is due to the morphological enamel 

thickness between species as discussed below. For example, Sterkfontein Member 5 yields 

Antidorcas with significantly thicker enamel compared to other sites, such as Swartkrans 

Member 3. However, the Antidorcas specimens measured from Sterkfontein Member 5 are 

dominated by Antidorcas bondi, whereas the Swartkrans Member 3 measurements are 

predominantly from fossil Antidorcas marsupialis.  

Antidorcas Species Enamel Thickness Differences 
Testing the variance in enamel thickness between species showed significant differences, 

with variations across tooth types (see Table 7.19 and Table 7.20). Post-hoc Mann-Whitney 

U tests with Bonferroni adjusted significant levels were used to show where these 

significant differences between species were, these are detailed in Table 7.20 below. 

Table 7.19: Significance levels (P values) from an Independent samples Kruskal-Wallis test 
comparing the difference between enamel thickness at 4 points across Antidorcas species, 
with significance level below 0.05. lm1, lm2 etc. denote the tooth type, A, B, C, D denote 
the location of the enamel thickness measurements taken.  
 lm1 lm2 lm3 UM1 UM2 UM3 

A 0.429 0.043 0.021 0.982 0.141 0.083 
B 0.903 0.306 0.033 0.204 0.298 0.049 

C 0.086 0.539 0.087 0.825 0.018 0.021 

D n/p n/p n/p 0.076 0.010 0.026 
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Table 7.20: Significant differences in enamel thickness, for each molar, between Antidorcas species, exact values given below table. 
Measurement location lm1 

 

lm2 lm3  UM1 UM2 UM3 

 

A No significant 
differences 

recki and fossil  
marsupialis1; fossil 
marsupialis and modern 
marsupials2 

recki and modern 
marsupialis3 

bondi and modern 
marsupialis4 

 

No significant 
differences 

No significant differences 

 

B No significant differences sp. and bondi5 
sp. and fossil 
marsupialiss6 
recki and bondi7 

 

No significant 
differences 

bondi and fossil 
marsupialis9 

 

 

C No significant differences 

 

recki and bondi8 recki and bondi10 
bondi and fossil 
marsupialis11 

 D Not present 

 

sp. and modern 
marsupialis12 
recki and bondi13 
recki and fossil 
marsupialis14 
fossil marsupilias and 
modern marsupialis15 
 

recki and bondi16 
bondi and fossil 
marsupialis17 
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Table 10.20 values: 1p=0.022 A. recki n=24, fossil A. marsupialis n=17. 2p=0.008 fossil A. 
marsupialis n=17, modern A. marsupialis n=13. 3p=0.008 A. recki n=19, modern A. 
marsupialis n=13. 4p=0.002 A. bondi n=15, modern A. marsupialis n=13. 5p=0.010 
Antidorcas sp. n=3, A. bondi n=5. 6p=0.031 Antidorcas sp. n=3, fossil A. marsupialis n=3. 
7p=0.022 A. recki n=10, A. bondi n=5. 8p=0.005 A. recki n=19, A. bondi n=22. 9p=0.004 A. 
bondi n=9, fossil A. marsupialis n=8.  10p=0.024 A. recki n=8, A. bondi n=9.  11p=0.002 A. 
bondi n =9, fossil A. marsupialis n=9.  12p=0.033 Antidorcas sp.  n=3, modern   A. 
marsupialis n=19. 13p=0.004 A. recki n=14, A. bondi n=21.  14p=0.000 A. recki n=14, 
modern A. marsupialis n=19. 15p=0.045 fossil A. marsupialis n=22, modern A. marsupialis 
n=19.  16p=0.016 A. recki n=7, A. bondi n=9. 17p=0.005 A. bondi n=9, fossil A. marsupialis 
n=9. 
 

Antidorcas bondi had significantly thicker dental enamel at locations ‘C’ (mean=0.900mm) 

and ‘D’ (mean=1.578mm) than either A. recki (C mean=0.700mm; D mean=1.267mm) or 

fossil A. marsupialis (C mean=0.700mm; D mean=1.086mm) and at location ‘B’ 

(mean=1.067mm), significantly thicker than fossil A. marsupialis (mean=0.771mm). The 

thicker location ‘D’ reflects a larger mesostyle.  

Enamel thickness on the internal enamel facet of the paracone of M2 shows directional 

increase in thickness in Swartkrans from Member 1 to the younger, Member 3, with 

Member 3 being similar to the thickness of modern A. marsupialis paracone enamel. The 

thickest enamel is evident in Sterkfontein Member 5 (mean=0.89mm). There is quite 

considerable variation in enamel thickness (C) from members that fall into similar temporal 

ranges, Sterkfontein Member 5(all) (mean=0.89mm-thickest enamel), Swartkrans Member 

2 (mean=0.59mm-thinnest enamel), Kromdraai A (mean=0.61mm) and Plovers Lake 

(mean=0.82mm). 

7.2.4 Principal Component Analysis 
Following from an initial Principal component analysis (PCA) attempt, small coefficients 

and unsuitable variables were removed from the factor analysis. Variables used in the PCA 

were MDL, BLW and all enamel thickness locations (EA, EB, EC and ED). The KMO test 

(Table 7.21) shows the data to be mediocre, and suitable for factor analysis (p=0.000). 

From this analysis (Figure 7.4, Figure 7.5), ‘enamel thickness’ and ‘occlusal area’ grouped 

as components. Initially the prevailing trend through time is given, this can highlight 

aspects such as increased dietary abrasion with greater enamel thickness. To ensure this 

‘enamel thickness’ and ‘occlusal area’ are representative of change through time (Figure 

7.5-Figure 7.6), rather than differential Antidorcas species presence, the following graphs 

are separated according to species (Figure 7.7-Figure 7.8).  

Table 7.21: PCA results for UM2. A)KMO and Bartlett’s Test for UM2 measurements with 
only suitable variables kept (MDL, BLW and enamel thickness at all locations measured). 
Data is shown to be mediocre (upper blue rectangle) and acceptable for factor analysis 
(lower blue rectangle). B) Data left in the factor analysis. Extraction method: Principal 
component analysis. C) Variance captured on each component (variables are kept on a 
component when the eigen value is higher than ‘1’). 
A) KMO and Bartlett’s test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .698 
Bartlett’s Test of 

Sphericity Approx. Chi-Square 255.674 
df 15 

Sig. .000 
B) Communalities 
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 Initial Extraction 
Mesio-distal length 1.000 .749 
Bucco-lingual width 1.000 .455 
Enamel Thickness A 1.000 .603 
Enamel Thickness B 1.000 .673 
Enamel Thickness C 1.000 .770 
Enamel Thickness D 1.000 .413 
C) Total Variance 

C
o

m
p

o
n

en
t 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

variance 

Cumulative 

% Total 

% of 

variance 

Cumulative 

% Total 

% of 

variance 

Cumulative 

% 

1 2.490 41.506 41.506 2.490 41.506 41.506 2.475 41.245 41.245 
2 1.171 19.509 61.015 1.171 19.509 61.015 1.186 19.770 61.015 
3 .908 15.127 76.142 

  

4 .674 11.235 87.377 
5 .454 7.562 94.939 
6 .304 5.061 100.00 

 

 
Figure 7.3: Principal component analysis on UM2 scree plot, visually displaying the 
components to keep in the analysis. 
 

Table 7 22: Component matrix showing the loading of the variables with each component. 
Extraction method: Principal component analysis. 2 components extracted.  
 Component 

1 2 
Enamel Thickness C .875  
Enamel Thickness B .796 
Enamel Thickness A .776 
Enamel Thickness D .613 
Mesio-distal length  .861 
Bucco-lingual width .590 
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Figure 7.4: Principal component analysis results for Antidorcas dental molar (UM2) 
occlusal measurements 
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Figure 7.5: Mean enamel thickness (PCA component) through time c. 3Ma – 0.5 Ma and 
Modern, (chronologically ordered by provenance) for all Antidorcas (UM2). Breaks in the 
interpolation line show only where no data was collected.  

 
Figure 7.6: Mean occlusal area (PCA component, original measurements in mm, values 
not indicative of actual occlusal area) through time from c. 3.0-0.5 Ma and Modern, 
(chronologically ordered by provenance) for all Antidorcas (UM2). Breaks in the 
interpolation line show only where no data was collected. 
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Figure 7.7: Mean enamel thickness (as a component, values not indicative of enamel 
thickness) through time (chronologically ordered provenance), as shown by each 
Antidorcas species. 

 
Figure 7.8:: Mean (UM2) occlusal area (as a component, original measurements in mm, 
values not indicative of actual occlusal area) through time (chronologically ordered 
provenance), as shown by each Antidorcas species.  
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Figure 7.9: Enamel thickness (as a component, values are not representative of enamel 
thickness) through time (chronologically ordered provenance) for individuals within each 
Antidorcas species.  

 

Figure 7.10: UM2 Occlusal area (as a component, values not indicative of actual occlusal 
area) through time (chronologically ordered provenance), as shown by each Antidorcas 
individual within a species. 
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Question: Do any of the Antidorcas species change dental size/shape through 

time/differ in any member? Does the genus as a whole change at all? What are 

the patterns of change? 

Data Reduction: Dimension reduction was achieved via a principal component analysis 

(PCA). The derived components were sought to be reflective of overall tooth dimensions 

(incorporating all valid measurements taken), see Figure 7.4. ‘Enamel thickness’ was 

grouped in the principal component, with MDL and BLW converging on the second 

component as ‘occlusal area’ with 61% data captured. Enamel thickness measurements 

converged sufficiently to be seen as a reasonable component to take forward for analysis 

without considerable data loss.  

An ANOVA considering ‘enamel thickness’ through time for all Antidorcas species was 

attempted but could not be run as this would break the assumption of homogeneity of 

variance. Therefore, a non-parametric independent samples kruskal-wallis test was carried 

out and showed significant differences for both enamel thickness (p=<.000) and occlusal 

area (p=<.000) through time for all Antidorcas species.  

Post-hoc tests (conservative and non-conservative) were carried out to show where the 

significant differences were for each component (enamel thickness and occlusal area), and 

are detailed in Table 7.23 below.  

Antidorcas morphology through time 
When assessed at genus level, Antidorcas showed significant differences across provenance 

for enamel thickness and occlusal area, as detailed in Table 7.23. 

Antidorcas species morphological differences through time 
When split to consider Antidorcas species separately, Antidorcas recki did not show 

significant change in either component across provenance (site and stratigraphic site 

Member). However, A. bondi did show significant differences across provenance for 

enamel thickness (p=<.000) and occlusal area (p=<.000), as did fossil A. marsupialis for 

enamel thickness (p=<.000) and occlusal area (p=.003). Details of these significant 

differences are detailed in Table 7.23-Table 7.25. To reduce the impact of averaging, the 

trend for individuals within each species category was considered (see Figure 7.5-Figure 

7.10).  
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Table 7.23: Antidorcas ET (enamel thickness component) P=<.0.00 and OV (occlusal area component) P=<.0.00, pairwise comparisons between provenance as evidenced by 
Tukeys HSD and Fishers LSD post-hoc tests. ET is shown above the line, OV below the line. Conservative significant differences are indicated in bold text. Significance is indicated 
below .05, with p values given in the table. 

SK M4 KW SK M5 SK M5W SKX M1 KA SKX M2 SKX M3 PL SK un. COH MDRN

SK M4 0.048 <.000; .016 .001; .048 <.000; .006 0.014 0.026

KW 0.017 0.026 0.006

SK M5 <.000; .032 <.000; <.000 <.000; <.000 <.000; .005 0.03 0.004

SK M5 W 0.02 0.022

SKX M1 0.026 0.005 0.001 <.000; .011 0.023 0.041

KA 0.004 0.001 <.000; <.000 <.000; .003 0.016 0.05

SKX M2 0.024 0.007 <.000; <.000 <.000; .001 0.008 0.024

SKX M3 <.000; .017 <.000; .002 0.006 0.013

PL 0.01 0.002 0.02

SK un. 0.045 0.01 0.004

COH 0.004 <.000; .002 0.004 <.000; .029

MDRN 0.04 0.037 <.000; .011 <.000; <.000 <.000; .009 <.000; <.000  
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Table 7.24: Antidorcas bondi ET (enamel thickness component) P=<.0.00, and OV (occlusal area component) P=<.0.00, pairwise comparisons between provenance as evidenced 
by Tukeys HSD and Fishers LSD post-hoc tests. ET is shown above the line, OV below the line. Conservative significant differences are indicated in bold text. 

SK M4 KW SK M5 SK M5W SKX M1 KA SKX M2 SKX M3 PL SK un. COH

SK M4

KW

SK M5 0.041 0.041 <.000; .005 .001; .037

SK M5 W 0.003 0.05 0.003

SKX M1

KA 0.006 0.002

SKX M2 <.000; .012 .001; .015 <.000; .013 <.000; .001

SKX M3

PL .001; .026 .001; .034 0.002

SK un. <.000; .003

COH 0.009 .001; .032 0.002  
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Table 7.25: Antidorcas marsupialis OV (occlusal area component) P=<.0.00, and OV (occlusal area component) P=<.0.00, pairwise comparisons between provenance as 
evidenced by Tukeys HSD and Fishers LSD post-hoc tests. ET is shown above the line, OV below the line. Conservative significant differences are indicated in bold 

text.

SK M4 KW SK M5 SK M5W SKX M1 KA SKX M2 SKX M3 PL SK un. COH

SK M4

KW 0.038

SK M5 0.014 0.007

SK M5 W

SKX M1 0.005 0.025

KA

SKX M2 <.000; .003 0.004

SKX M3

PL 0.029 0.006 .001; .014 0.009

SK un. 

COH 0.044 0.027  
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7.3 DISCUSSION 

Dental morphology is a reflection of the ancestral selection pressures exerted on the 

masticatory surfaces used to process vegetation to obtain sufficient nutrition and ensure 

species success. This chapter analysed the molar dimensions of Antidorcas species through 

time to attempt to see if, and when, any environmental stressors caused sufficient selective 

pressure to result in dental morphological adaptive evolution, and thereby potentially 

indicate palaeoenvironmental change being causally linked to faunal (Antidorcas) 

evolution.  

The most likely explanation for the distinct groupings on both scatter plots (Figure 7.1-

Figure 7.2) is sexual dimorphism. This dimorphic pattern is evident for the sites with 

greater sample sizes (Sterkfontein M5, Swartkrans M1, Swartkrans M2, Swartkrans M3, 

Kromdraai A and Plovers Lake) and cannot therefore be explained as difference through 

time or according to locality. This difference has been shown for modern springbok (see 

chapter 6) of known sex, which grouped reliably, according to sex. However, that the 

groupings are distinct across species, with little overlap between species (e.g. from large 

females of A. recki and small males of A. marsupialis) is unusual, it is possible that these 

groupings may represent populations of differing temporal range. Further exploration of 

this separation is an avenue for future work.  

Antidorcas Species/Lineage Debate 
As morphological measurements typically overlap for Antidorcas species, identifying 

speciation from morphological dimensions alone would be too unreliable.  

Antidorcas bondi has significantly thicker enamel than either fossil A. marsupialis or A. 

recki, corroborating what would be expected of a highly abrasive diet (similar to that found 

for fossil camels studied by Semprebon and Rivals 2010). 

Cusp height (occlusal height) is related to mesowear relief measurements. That these 

measurements remain similar across species suggests a strong phylogenetic influence, 

rather than occlusal relief simply being indicative of diet (as found by Janis 1995; 

Semprebon and Rivals 2010; Williams and Kay 2001).  

That each measurement is significantly different at some point between species (within the 

Antidorcas genus), supports not using Antidorcas as a bioproxy for faunal adaptation and 

evolutionary change without prior knowledge of Antidorcas taxonomic identification to 

species level with any assemblage.  

Change through time 
Horizontal movement during mastication for herbivores is in the bucco-lingual direction. 

Therefore, the apparent increase in bucco-lingual width (BLW) for lm1 from Swartkrans 

Member 1 to Swartkrans Member 3 may be an indication of dietary adaptation for A. 

marsupialis, which relates to an increased surface for grinding vegetation to maximise cell 

wall destruction and nutrient acquirement.  

Antidorcas bondi shows increased occlusal (cusp) height through time for all molars from 

Sterkfontein Member 5 (c 1.8-1.1 Ma based on Herries and Shaw 2011, ESR for all 

Sterkfontein Member 5 units combined) to Cave of Hearths (c. 0.6-0.4 Ma, Wadley and 

McNabb 2009). Whilst only some members show significant differences, occlusal height is 



 

236 

 

evidentially progressively getting slightly higher through time. This suggests there may 

have been selection acting upon A. bondi at a low but continuous level, reaching a threshold 

at the points where significant differences are apparent, at least by c. 0.6 Ma (Cave of 

Hearths). Occlusal height is related to mesowear occlusal relief measurements and may 

reflect dietary behavioural or phylogenetic morphology advancements incrementally 

through time. Where the durability (hypsodonty and enamel thickness) of A. bondi is 

retained, cusp height is believed to relate more to tooth function than tooth durability 

(Damuth & Janis 2011). Further, A. bondi is believed to be a low-level feeder, consuming 

the new grass shoots close to the ground (Brink & Lee-Thorp 1992). It is probable that this 

led to increased grit in the diet, assisting in the development of molars adapted to resist 

high rates of tooth wear.  

Low tooth crown height limits the amount of abrasive material that can be consumed on a 

long term; yet it may also limit the individuals’ ability to effectively process large 

quantities of browse (Damuth & Janis 2011).  

The exponential increase in crown height in A. marsupialis is likely to be indicative of 

increased open grasslands (e.g. Janis & Fortelius 1988; Janis 1988, 1995; Damuth & Janis 

2011). Antidorcas marsupialis crown height increases from c.1.7Ma (at Swartkrans 

Member 2) to c. 1.0 Ma (at Swartkrans Member 3) but decreases again by ca. 0.8-0.6 Ma 

(at Cave of Hearths). Although Cave of Hearths is geographically distanced from 

Swartkrans, measurements are comparable and fall within the range of variation of A. 

marsupialis.   

The greatest diversity for all linear measurements and enamel thicknesses appears in 

Sterkfontein Member 5 (all) [c. 1.7-0.8 Ma], Swartkrans Member 2 [c. 1.7-1.07 Ma], 

Kromdraai A (all) [c. 2.0-1.6 Ma] and Plovers Lake [c. 1 Ma]. These Members cover a 

temporal range of c. 2.0-1.5 Ma. The possibility exists that this time period reflects one of 

environmental instability with dietary (vegetation) stressors acting upon the dentition, 

catalysing adaptation in Antidorcas.   

Where significant differences in enamel thickness are noted, these do not appear to prevail 

through time for fossil Antidorcas. Rather, these differences appear to be due to inter-

specific variations within the Antidorcas genus. Although a small sample size, A. 

marsupialis enamel thickness as a component (see  

Figure 7.9 and Table 7.24) indicates an increasing enamel thickness trend through time. 

However, considering individual measurements of enamel thickness (individually from 

each location measured), for A. marsupialis, this trend is by no means conclusive. Modern 

sub-species measurements can range between 0.01 mm to 5 mm variation (Table 7.1), 

therefore where fossil change does not appear continuously directional, it may be more 

likely to reflect only sub-specific level variations.  

To contribute assessment on theories such as Vrba’s (1985) turnover pulse hypothesis, 

evidence of Antidorcas turnover would need to be apparent and able to be precisely 

pinpointed to a specific time period for the Antidorcas lineage, as evidenced by dental 

metrics. There are no obvious definitive turnover delineations. By c. 0.8-0.5 Ma, A. recki is 

extinct or absent from the Cradle of Humankind, with A. bondi and A. marsupialis 
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dominating the assemblages. However, there is no clear transition to A. marsupialis evident 

from these dental assemblages. Gradual speciation (as opposed to a punctuated/ turnover 

event) is inferred from the dental evidence.  

Palaeoenvironment indicators 
Antidorcas bondi cusp height increases through time from Sterkfontein M5. This may be 

representative of increasing grasslands, if a more abrasive diet selects for the development 

of increased cusp height to withstand the excessive wear associated with abrasive diets.  

Hypsodonty palaeoenvironmental implications 
Mixed-feeders in open habitats were found to have significantly higher crowned teeth than 

mixed-feeders in closed habitats (Janis 1988). This concept is supported by the Antidorcas 

data presented here. Antidorcas marsupialis crown height increase for Swartkrans Member 

3 supports the notion of more open grassland prevalence during this temporal period. 

Increased abrasion in the diet could be caused by an increase in grazing. However, abrasion 

could come from an increase in soil intake due to feeding close to the ground. This is more 

likely for grazers in open habitats and has therefore been associated as a grazing ungulate 

trait. Yet higher durable molar adaptation such as increased crown height, or hypsodonty, 

can also occur in low-level browsers (Damuth & Janis 2011).  

Modern A. marsupialis have been witnessed using natural ‘licks’ (e.g. Nagy & Knight 

1994). This is alternatively known as geophagy and is often practiced to counteract the 

effects of toxic secondary compounds in browse (e.g. Ayotte et al. 2006). Therefore, 

increased soil consumption, and consequentially increased crown height, in this instance 

may be reflective of closed woodland dominance/ low-level browse presence. The 

possibility exists that fossil A. marsupialis were increasingly subject to seasonal mixed-

feeding fluctuations between graze and browse, both grazing and browsing at low levels 

and both dietary practices making A. marsupialis subject to a highly abrasive diet.  

Fossil Antidorcas marsupialis crown height significantly, albeit temporarily, increased 

from Swartkrans Member 2 (mean 8.45mm) to Swartkrans Member 3 (mean 14.86mm). By 

c. 0.6Ma (Cave of Hearths), crown height significantly reduced again (mean 10.27 mm) but 

not to the low crown heights evident in Swartkrans Member 2.  

Corroboration with modern Antidorcas 
Modern A. marsupialis falls within these (fossil intra-genera and -specific) ranges for 

crown height, with the sub-specific A. m. angolensis displaying characteristically lower 

crown heights than A. m. marsupialis (see chapter 6).  The vegetation in Angola typically 

includes more woodland and forest-type habitats compared to that of the ranges occupied 

by A. m. marsupialis in South Africa, Namibia and Botswana (see Figure 7.11). Whilst A. 

m. angolensis’ preferred habitat is likely to be the western semi-desert region, as a mixed-

feeder, they are able to move around the landscape in search of fresh vegetation as the need 

arises. 
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Figure 7.11: Modern vegetation map of southern Africa, edited from: 
https://www.mydigitalchalkboard.org/cognoti/content/file/resources/images/ee/eefd605d/ee
fd605dd966beedd655ba3e8cf1a828e872509a/downloadedfile_4257935605498713594_afri
ca-veg.gif [accessed 04/06/2018: 10.01] to indicate differential modern vegetation cover 
for Angola (inhabited by A. m . angolensis) compared to South Africa, Botswana and 
Namibia.  

7.4 SUMMARY 

A relationship exists between diet and dental morphology. Change in this morphology is 

used here to inform on lineage change within the Antidorcas genus, as well as to infer 

palaeoenvironmental indicators from morphological changes inter- and intra- specifically 

for Antidorcas through time.  

• Antidorcas through time: no definitive turnover event is apparent.  

• A. recki shows no clear morphological change through time.  

• A. bondi occlusal relief increases gradually through time, likely to withstand an 

increase in dietary abrasiveness (which supports Gailer and Kaiser 2014). 

• A. marsupialis crown height gradually increases through time and BLW of lower 

first molar (lm1) increased from Swartkrans Member 1 (c. 2.0-1.4 Ma) to 

Swartkrans Member 3 (c. 1.5-0.61 Ma). 

 

 

CHAPTER 8 

MESOWEAR 
This chapter will introduce the concept of mesowear and the current use of mesowear to 

infer palaeodiets and, by inference, palaeovegetation present in the landscape. The method 

is reviewed and tested (see Appendix A7) before the Antidorcas data is analysed and 

discussed in regard to palaeodiet of the Antidorcas species and implications for 

paleoevegetation and changes therein through time.  
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8.1 INTRODUCTION 

Building on discussions in previous chapters, animals mechanically process plants via 

mastication to rupture the cell walls in order to gain the essential nutrients from the plants 

(Sanson 2006). The properties of the plant (the cell walls of each plant type and plant part 

within) exert differing forces upon the surfaces chewing/grinding/shearing against them. 

The type of plant consumed on a regular basis, its abrasiveness to enamel and the extent to 

which the upper and lower dentition come into contact during this process results in wear of 

the dental occlusal surface. This level of wear is reflective of the averaged lifetime diet of 

an individual and is termed ‘mesowear’(Fortelius and Solounias 2000, see chapter 4). 

Notwithstanding the various taphonomic issues associated with assemblage formations, 

higher numbers of browsers in an assemblage is believed to be indicative of more closed 

environments and woodland-type habitats, and more grazers of grasslands and savanna; and 

mixed feeders indicative of either seasonal or mixed environments (e.g. Vrba 1980; Janis 

1995).  

Mesowear is best used in conjunction with other methods, as a broad dietary indicator 

(Davis and Pineda-Munoz 2016; Louys et al. 2015) of an individual animal over its 

lifetime.  

8.2 RESULTS 

Tooth type and variation across the tooth row 

Every mesowear variable showed significant differences across species and provenance 

before separating samples according to their tooth types. These apparent differences could 

be due to relative numbers of each dentition type within each sample. Therefore, all 

variables were checked for variation caused by the tooth measured (if causes of variation 

were due to the tooth being a 1st, 2nd or 3rd molar; being an upper or lower tooth; being left 

or right-sided and any combination of these, i.e. was mesowear likely to be different across 

the toothrow or within an individual). The following factors significantly impacted on 

mesowear variables (Table 8.1). 

Table 8.1: Significant differences (Kruskal-Wallis test) in mesowear variables according to 
tooth type to assess which specimens can be analysed together. No significant differences 
were found to be dependent on whether the tooth was a 1st, 2nd or 3rd molar (upper and 
lower combined). Key: UM1= upper 1st molar, lm1=lower 1st molar; RUM1=right upper 
1st molar, llm1=left lower first molar. 
Dentition factor Mesowear variable Significance (p value) 
Tooth (UM1, UM2, UM3, 
lm1, lm2, lm3) 

Cusp shape 0.032 
New Mesowear 1-49 0.011 
New Relief  0.004 

Maxillary/Mandibular Mesowear 0-4 0.046 
Cusp shape 0.009 
Mesowear 1-6 0.038 
New Mesowear 1-49 0.007 
New Relief 0.001 
New cusp shape 0.029 
Mesowear III 0.047 

Side (left/right) Cusp shape 0.019 
New cusp shape 0.032 

Tooth type (RUM1, RUM2, RUM3, 
LUM1, LUM2, LUM3, rlm1, rlm2, 
rlm3, llm1, llm2, llm3) 

Cusp shape 0.022 
Mesowear 1-6 0.038 
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8.2.1 MODERN 

Modern A. marsupialis shows typical mixed feeding signals with reasonably equal 

proportions of high and low relief. Blunt cusps appear relatively rarely (12%) for 

Antidorcas, however, the grazing, Damaliscus pygargus also yields relatively low 

percentage of blunt cusps and slightly higher percentages of high relief. This is perhaps 

unusual as grazing species would be expected to exhibit mesowear characteristics of low 

relief, blunt cusps predominantly, although rounded cusps can also be created from an 

abrasive (likely including a grazing element) diet.  

Mesowear variables from modern specimens were tested for significance to establish 

firstly, the likely dietary parameters for grazers (Damaliscus pygargus), browsers 

(Tragelaphus strepsiceros) and mixed feeders (Antidorcas marsupialis), to better 

understand the mesowear dietary signals obtained from the fossil specimens (Table 8.2; see 

chapter 6). Secondly, modern mesowear variables were assessed for significant differences 

between tooth types to establish which fossil specimens could be grouped together to 

increase sample sizes (Table 8.1). No significant differences were found in mesowear 

variables along the toothrow, enabling all upper dentition to be grouped and all lower 

dentition to be grouped for analysis. Although this type of analysis of tooth type has been 

done before for other species (e.g. Kaiser and Solounias 2003), it had not been done for 

these particular taxa.  
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Table 8.2: Mesowear descriptive statistics (N= number of specimens; % of those scored in each category) for modern specimens (Antidorcas marsupialis and Damaliscus pygargus 
and Tragelaphus strepsiceros). 
Species Tooth type N (total) N (low 

relief) 

% Low 

Relief 

N (High 

relief) 

% High 

Relief 

N (Blunt 

cusps) 

% Blunt 

cusps 

N (Rounded 

cusps) 

% Rounded 

cusps 

N (Sharp 

cusps) 

% Sharp 

cusps 

Antidorcas 
marsupialis 

UM1 39 22 56.4 17 43.6 4 10.3 19 48.7 16 41.0 
UM2 65 32 49.2 33 50.8 7 10.8 34 52.3 24 36.9 
UM3 7 0 0 7 100 1 14.3 1 14.3 5 71.4 
LM1 17 12 70.6 5 29.4 4 23.5 12 70.6 1 5.9 
LM2 32 18 56.3 14 43.8 4 12.5 16 50 12 37.5 
LM3 14 8 57.1 6 42.9 0 0 0 71.4 4 28.6 
M1 56 34 60.7 22 39.3 8 14.3 31 55.4 17 30.4 
M2 99 51 51.5 48 48.5 12 12.1 51 51.5 36 36.4 
M3 21 8 38.1 13 61.9 1 4.8 11 52.4 9 42.9 
Right 85 43 50.6 42 49.4 7 8.21 52 61.2 26 30.6 
Left 91 50 54.9 41 45.1 14 15.4 36 39.6 41 45.1 
Uppers 112 55 49.1 57 50.9 12 10.7 55 49.1 45 40.2 

Lowers 64 38 59.4 26 40.6 9 14.1 38 59.4 17 26.6 

RUM1 20 11 55 9 45 1 5 11 55 8 40 
RUM2 29 12 41.4 17 58.6 2 6.9 17 58.6 10 34.5 
RUM3 4 0 0 4 100 0 0 1 25 3 75 
LUM1 20 12 60 8 40 3 15 9 45 8 40 
LUM2 33 18 54.5 15 45.5 5 15.2 15 45.5 13 39.4 
LUM3 3 0 0 3 100 1 33.3 0 0 2 66.7 
RLM1 8 5 62.5 3 37.5 2 25 6. 75 0 0 
RLM2 15 9 60 6 40 2 13.3 9 60 4 26.7 
RLM3 6 4 66.7 2 33.3 0 0 6 100 4 26.7 
LLM1 9 7 77.8 2 22.2 2 22.2 6 66.7 1 11.1 
LLM2 17 9 52.9 8 47.1 3 17.6 6 35.3 8 47.1 
LLM3 9 4 44.4 5 55.6 0 0 5 55.6 4 44.4 

Damaliscus UM1 15 8 53.3 7 46.7 6 40 4 26.7 5 33.3 
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Species Tooth type N (total) N (low % Low N (High % High N (Blunt % Blunt N (Rounded % Rounded N (Sharp % Sharp 
pygargus UM2 37 26 70.3 11 29.7 22 59.5 11 29.7 4 10.8 

UM3 2 0 0 2 100 0 0 0 0 2 100 
LM1 11 2 18.2 19 81.8 2 18.2 9 81.8 0 0 
LM2 18 7 38.8 11 61.1 7 38.8 9 50 2 11.1 
LM3 
 

5 1 20 4 80 1 20 3 60 1 20 
M1 26 10 38.5 16 61.5 8 30.8 13 50 5 19.2 
M2 57 35 61.4 22 38.6 29 50.9 23 40.4 5 8.8 
M3 7 1 14.3 6 85.7 1 14.3 3 42.9 3 42.9 
Right 46 26 56.5 20 43.5 20 43.5 20 43.5 6 13.0 
Left 44 20 45.5 24 54.5 18 41 19 43.18 7 15.9 
Uppers 56 35 62.5 21 37.5 28 50 18 32.1 10 17.9 

Lowers 35 12 34.3 23 65.7 10 28.6 22 62.9 3 8.6 

RUM1 8 5 62.5 3 37.5 3 37.5 3 37.5 2 25 
RUM2 19 4 21.1 15 78.9 11 57.9 7 36.8 1 5.3 
RUM3 1 0 0 1 100 0 0 0 0 1 100 
LUM1 8 3 37.5 5 62.5 3 37.5 2 25 3 37.5 
LUM2 17 11 64.7 6 35.3 10 58.8 6 35.3 1 5.9 
LUM3 1 0 0 1 100 0 0 0 0 1 100 
RLM1 5 1 20 4 80 1 20 4 80 0 0 
RLM2 9 4 44.4 5 55.6 4 44.4 4 44.4 1 11.1 
RLM3 3 1 33.3 2 66.7 1 33.3 1 33.3 1 33.3 
LLM1 5 1 20 4 80 1 20 4 80 0 0 
LLM2 9 4 44.4 5 55.6 3 33.3 5 55.6 1 11.1 
LLM3 2 0 0 2 100 0 0 2 100 0 0 

Tragelaphus 
strepsiceros 

UM2 20 2 10 18 90 1 5 11 55 8 40 
LM2 17 1 5.9 16 94.1 1 5.9 14 41.2 9 52.9 
LM3 
 

6 0 0 6 100 0 0 1 16.7 5 83.3 
Right 22 1 4.5 21 95.5 1 4.5 11 50 10 45.5 
Left 21 2 9.5 19 90.1 1 4.8 8 38.1 12 57.1 
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Species Tooth type N (total) N (low % Low N (High % High N (Blunt % Blunt N (Rounded % Rounded N (Sharp % Sharp 
Uppers 20 2 10 18 90 1 5 11 55 8 40 

Lowers 23 1 4.35 22 95.65 1 4.35 8 34.78 14 60.87 

RUM2 10 1 10 9 90 1 10 6 60 3 30 
LUM2 10 1 10 9 90 0 0 5 50 5 50 
RLM2 9 0 0 9 100 0 0 4 44.4 5 55.6 
LLM2 8 1 12.5 7 87.5 1 12.5 3 37.5 4 50 
RLM3 3 0 0 3 100 0 0 1 33.3 2 66.7 
LLM3 3 0 0 3 100 0 0 0 0 3 100 
M2 37 3 8.1 34 91.9 2 5.4 18 48.6 17 45.9 
M3 6 6 100 0 0 0 0 1 16.7 5 83.3 

 

8.2.1 FOSSIL 

8.2.1.1 LOWER / MANDIBULAR DENTITION 
Mesowear New Relief-table is provided in Appendices A7 as there were too many categories, creating false heightened levels of variation. All other results are presented here.  

 

Antidorcas lineage (mandible) 
All Members grouped together to analyse mesowear variables on mandibular dentition according to species to address the palaeoecology of species.  

 Table 8.3: Antidorcas species mandibular mesowear occlusal relief (left) and cusp shape (right). Percentages are rounded to 2 decimal places. LEFT: Number of individuals with 
high/low relief and their relevant percentages within the Antidorcas assemblage. RIGHT: Number of individuals with sharp/rounded/blunt cusps and their relevant percentages 
within the Antidorcas assemblage.  
Antidorcas species Total N High % High Low % Low 

sp. 42 8 19 34 80.95 

recki 74 18 24 56 75.68 

bondi 107 39 36 68 63.55 
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Antidorcas species Total N High % High Low % Low 

fossil marsupialis 52 22 42 30 57.69 

Modern marsupialis 68 28 41 40 58.82 

 

Table 8.4: Antidorcas species mandibular mesowear score (1-6), 1=LB, 2=LR,3=LS,4=HB,5=HR,6=HS. Percentages are rounded to 2 decimal places, Percentages are rounded to 
2 decimal places where necessary. 

Antidorcas species Total N LB %LB LR %LR LS %LS HB %HB HR %HR HS %HS 

sp. 42 9 21 16 38 9 21 0 0 6 14 2 4.76 

recki 74 12 16 24 32 20 27 0 0 5 7 13 17.57 

bondi 107 16 15 36 34 16 15 0 0 29 27 10 9.35 

fossil marsupialis 52 7 13 13 25 10 19 0 0 12 23 10 19.23 

Modern marsupialis 68 9 13 23 34 8 12 0 0 19 28 9 13.24 

Table 8.5: Antidorcas species mandibular new mesowear relief. Number of individuals with high/medium/low relief and their relevant percentages within the Antidorcas 
assemblage. Percentages are rounded to 2 decimal places where necessary. 

Antidorcas Species Total N High % High Medium % Medium Low %Low 

sp. 27 0 0 5 19 22 81.48 

recki 65 4 6 15 23 46 70.77 

bondi 58 5 9 20 34 33 56.90 

fossil marsupialis 29 4 14 13 45 12 41.38 

Modern marsupialis 69 11 16 38 55 20 28.99 

Table 8.6: Antidorcas species mandibular new mesowear cusp shape. Number of individuals with each cusp shape category and their relevant percentages within the Antidorcas 
assemblage. Percentages are rounded to 2 decimal places where necessary. 

Antidorcas species Total N Sharp 
% 

Sharp 

Sharp-
Rounded 

% 

S-

Rounded-
Sharp 

%R-

S 
Rounded %Rounded 

Rounded-
Blunt 

%R-

B 

Blunt-
Rounded 

%B-

R 
Blunt %Blunt 

Antidorcas species Total N Blunt % B Rounded % R Sharp % S 

sp. 42 9 21 22 52 11 26.19 

recki 74 12 16 29 39 33 44.59 

bondi 107 17 16 63 59 27 25.23 

fossil marsupialis 52 7 13 25 48 20 38.46 

Modern marsupialis 68 9 13 42 62 17 25.00 
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R 

sp. 27 3 11 5 19 4 15 4 15 5 19 2 7 4 14.81 

recki 65 7 11 20 31 5 8 10 15 12 18 6 9 5 7.69 

bondi 57 2 4 8 14 9 16 20 35 10 18 4 7 4 7.02 

fossil marsupialis 28 3 11 11 39 5 18 7 25 2 7 0 0 0 0.00 

Modern 
marsupialis 

69 10 14 8 12 16 23 14 20 10 14 5 7 6 8.70 

Palaeoenvironment (mandible) 
Although tables 8.7 and 8.8 provide similar results, they highlight subtle differences. Most studies compare relative percentage of occlusal relief, and percentage of each cusp shape, 

as per Table 8.7. However, fewer researchers include the results combined, which appears more informative in providing additional palaeoecological subtleties (Table 8.8).  

Table 8.7:Mesowear trend through time via Antidorcas lower mesowear relief and cusp shape. Number of individuals (N) with high/low relief and sharp/rounded/blunt cusps and 
their relevant percentages (%) within the Antidorcas assemblage. Percentages are rounded to 2 decimal places where applicable. SK=Sterkfontein, SKX=Swartkrans, 
K=Kromdraai, GL=Gladysvale, PL=Plovers Lake, CC=Cooper’s Cave, CoH=Cave of Hearths, each provenance is listed with its relevant Member number/letter. 
‘unstrat’=unstratified.  

Provenance Total N High % High Low % Low Total N Blunt % Blunt Rounded % Rounded Sharp % Sharp 

SK M4 10 4 40 6 60 10 0 0.00 4 40 6 60 

SK M5 29 4 13.79 25 86.21 29 5 17.24 15 51.72 9 31.03 

SK M5 East 6 1 16.67 5 83.33 6 2 33.33 3 50 1 16.67 

SK M5 West 12 0 0 12 100 12 3 25 8 66.67 1 8.33 

SKX M1 10 6 60 4 40 10 3 30 5 50 2 20 

SKX M1 LB 7 2 28.57 5 71.43 7 0 0 5 71.43 2 28.57 

SKX M1 HR 3 0 0 3 100 3 0 0 2 66.67 1 33.33 

SKX M2 63 27 42.86 36 57.14 63 9 14.29 40 63.49 14 22.22 

SKX M 3 46 18 39.13 28 60.87 46 13 28.26 22 47.83 11 23.91 
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Provenance Total N High % High Low % Low Total N Blunt % Blunt Rounded % Rounded Sharp % Sharp 

KA 19 2 10.53 17 89.47 19 1 5.26 6 31.58 12 63.16 

KB 1 0 0 1 100 1 0 0 1 100 0 0 

KE/D 2 0 0 2 100 2 0 0 0 0 2 100 

KW 5 0 0 5 100 5 3 60 2 40 0 0 

GL 2 0 0 2 100 2 0 0 1 50 1 50 

SK LC 1 0 0 1 100 1 1 100 0 0 0 0 

PL 13 2 15.38 11 84.62 13 2 15.38 4 30.77 7 53.85 

CoH 33 17 51.52 16 48.48 33 1 3.03 19 57.58 13 39.39 

SK Name Chamber 1 0 0 1 100 1 0 0 1 100 0 0 

SK PM6 Infill 1 0 0 1 100 1 1 100 0 0 0 0 

CC 7 4 57.14 3 42.86 7 1 14.29 1 14.29 5 71.43 

SK unstrat 4 0 0 4 100 4 0 0 0 0 4 100 

Modern 68 28 41.18 40 58.82 68 9 13.24 42 61.76 17 25 
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Table 8.8: Mesowear trend through time via Antidorcas lower mesowear scores 1-6. 
N=Total number of individuals. Number of individuals with high/low relief and 
sharp/rounded/blunt cusps and their relevant percentages within the Antidorcas 
assemblage. Percentages are rounded to 2 decimal places where applicable. 
SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, GL=Gladysvale, PL=Plovers Lake, 
CC=Cooper’s Cave, CoH=Cave of Hearths, each provenance is listed with its relevant 
Member number/letter. ‘unstrat’=unstratified. ‘NC’=Name Chamber 

Table 8.9: Mesowear trend through time via Antidorcas lower new relief. N= Total number 
of individuals. Number of individuals with high/medium/low occlusal relief and their 
relevant percentages within the Antidorcas assemblage. Percentages are rounded to 2 
decimal places where applicable. SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, 
GL=Gladysvale, PL=Plovers Lake, CC=Cooper’s Cave, CoH=Cave of Hearths, each 
provenance is listed with its relevant Member number/letter. ‘unstrat’=unstratified.  

Provenance N High % High Medium % Medium Low % Low 

SK M4 9 2 22.22 3 33.33 4 44.44 

SK M5 29 3 10.34 5 17.24 21 72.41 

SK M5 E 6 0 0 1 16.67 5 83.33 

SK M5 W 11 0 0 2 18.18 9 81.81 

SKX M1 4 1 25 1 25 2 50 

SKX M1 LB 6 0 0 2 33.33 4 66.67 

Provenance 

N

  

L
B 

% 

L

B 

L
R 

% 

LR 

L
S 

% 

LS 

H
B 

% 

H

B HR 
% 

HR 

H
S 

% 

HS 

SK M4 
1
0 0 0 3 30 3 30 0 0 1 10 3 30 

SK M5 
2
9 5 

17.

24 12 41.38 8 
27.5

9 0 0 3 10.34 1 3.45 

SK M5 East 6 2 
33.

33 2 33.33 1 
16.6

7 0 0 1 16.67 0 0 

SK M5 West 
1
2 3 25 8 66.67 1 8.33 0 0 0 0 0 0 

SKX M1 
1
0 3 30 1 10 0 0 0 0 4 40 2 20 

SKX M1 LB 7 0 0 4 57.14 1 
14.2

9 0 0 1 14.29 1 
14.2

9 

SKX M1 HR 3 0 0 2 66.67 1 
33.3

3 0 0 0 0 0 0 

SKX M2 
6
3 8 

12.

70 21 33.33 7 
11.1

1 0 0 21 33.33 6 9.52 

SKX M3 
4
6 13 

28.

26 12 26.09 3 6.52 0 0 10 21.74 8 
17.3

9 

KA 
1
9 1 

5.2

6 6 31.58 10 
52.6

3 0 0 0 0 2 
10.5

3 

KB 1 0 0 1 100 0 0 0 0 0 0 0 0 

KE/D 2 0 0 0 0 2 100 0 0 0 0 0 0 

KW 5 3 60 2 40 0 0 0 0 0 0 0 0 

GL 2 0 0 1 50 1 50 0 0 0 0 0 0 

SK LC 1 1 
10

0 0 0 0 0 0 0 0 0 0 0 

PL 
1
3 2 

15.

38 4 30.77 5 
38.4

6 0 0 0 0 2 
15.3

8 

CoH 
3
3 1 

3.0

3 8 24.24 7 
21.2

1 0 0 11 33.33 6 
18.1

8 

SK NC 1 0 0 1 100 0 0 0 0 0 0 0 0 

SK PM6 
Infill 1 1 

10

0 0 0 0 0 0 0 0 0 0 0 

CC 7 1 
14.

29 1 14.29 1 
14.2

9 0 0 0 0 4 
57.1

4 

SK unstrat. 4 0 0 0 0 4 100 0 0 0 0 0 0 

Modern 
6
8 9 

13.

24 23 33.82 8 
11.7

6 0 0 19 27.94 9 
13.2

4 
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Provenance N High % High Medium % Medium Low % Low 

SKX M1 HR 3 0 0 2 66.67 1 33.33 

SKX M2 32 3 9.38 11 34.38 18 56.25 

SKX M3 29 4 13.79 10 34.48 15 51.72 

KA 19 0 0 10 52.63 9 47.37 

KB 1 0 0 0 0 1 100 

KE/D 2 0 0 0 0 2 100 

KW 5 0 0 0 0 5 100 

GL 2 0 0 0 0 2 100 

SK LC 1 0 0 0 0 1 100 

PL 13 0 0 5 38.46 8 61.54 

CoH 3 0 0 0 0 3 100 

SK Name Chamber 1 0 0 0 0 1 100 

SK PM6 Infill 1 0 0 0 0 1 100 

SK unstrat. 2 0 0 1 50 1 50 

Modern 69 11 15.93 38 55.07 20 28.99 

 
Table 8.10: Mesowear trend through time via Antidorcas lower new cusp shape. N=Total 
number of individuals. ‘S’=Sharp, ‘R’=Rounded, ‘B’=Blunt. Number of individuals with 
sharp/rounded/blunt cusps as divided by the new mesowear categories established here, 
and their relevant percentages within the Antidorcas assemblage. Percentages are rounded 
to 2 decimal places. SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, GL=Gladysvale, 
PL=Plovers Lake, CC=Cooper’s Cave, CoH=Cave of Hearths, each provenance is listed 
with its relevant Member number/letter. ‘unstrat’=unstratified.  

Provenance N S 
% 

S 

S
-
R 

%

S-

R 

R
-
S 

%

R-

S 

R 
%

R 

R
-
B 

%

R-

B 

B
-
R 

%

B-

R 

B %B 

SK M4 9 3 33 3 33 1 11 1 11 1 11 0 0 0 0 

SK M5 
2
9 

1 3 8 28 1 3 7 24 7 24 1 3 4 
13.

79 

SK M5 E 6 0 0 1 17 2 33 1 17 0 0 0 0 2 
33.

33 

SK M 5 W 
1
1 

0 0 1 9 2 18 3 27 2 18 0 0 3 
27.

27 

SKX M1 4 0 0 1 25 1 25 1 25 0 0 1 25 0 0 

SKX M1 LB 6 0 0 2 33 0 0 4 67 0 0 0 0 0 0 

SKX M1 HR 3 0 0 1 33 0 0 1 33 1 33 0 0 0 0 

SKX M2 
3
2 

3 9 5 16 7 22 
1
0 

31 6 19 1 3 0 0 

SKX M3 
2
8 

2 7 4 14 7 25 5 18 6 21 3 11 1 
3.5

7 

KA 
1
9 

2 11 
1
0 

53 0 0 3 16 3 16 1 5 0 0 

KB 1 0 0 0 0 0 0 0 0 1 100 0 0 0 0 

KE/D 2 1 50 1 50 0 0 0 0 0 0 0 0 0 0 

KW 5 0 0 0 0 0 0 0 0 2 40 2 40 1 20 

GL 2 0 0 1 50 1 50 0 0 0 0 0 0 0 0 

SK LC 1 0 0 0 0 0 0 0 0 0 0 1 
10

0 
0 0 

PL 
1
3 

2 15 5 38 1 8 3 23 0 0 1 8 1 
7.6

9 

Cave of 
Hearths 

3 0 0 1 33 0 0 1 33 0 0 1 33 0 0 
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Provenance N S % 

S 

S
-
R 

%

S-

R 

R
-
S 

%

R-

S 

R %

R 

R
-
B 

%

R-

B 

B
-
R 

%

B-

R 

B %B 

SK Name 
Chamber 

1 0 0 0 0 0 0 1 
10

0 
0 0 0 0 0 0 

SK PM6 
Infill 

1 0 0 0 0 0 0 0 0 0 0 0 0 1 100 

SK unstrat. 1 1 
10

0 
0 0 0 0 0 0 0 0 0 0 0 0 

Modern 
6
9 

1
0 

14 8 12 
1
6 

23 
1
4 

20 
1
0 

14 5 7 6 
8.7

0 
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Mesowear through time (Member), separated by species for mandibular molars 
Table 8.11: Antidorcas mandibular dentition occlusal relief and cusp shape through time (per Member), shown in number of specimens per category and their respective 
percentages. Percentages rounded to two decimal places. Modern A. marsupialis given for comparison. 
Antidorcas species Provenance Total N High % High Low  % Low Blunt % B Rounded % R Sharp % S 

sp. Sterkfontein Member 5 East 3 0 0 3 100 2 67 1 33 0 0 

Sterkfontein Member 5 West 6 0 0 6 100 1 17 4 67 1 16.67 

Swartkrans Member 1 LB 1 1 100 0 0 0 0 1 100 0 0 

Swartkrans Member 1 HR 1 0 0 1 100 0 0 0 0 1 100 

Swartkrans Member 2 13 3 23.08 10 76.92 1 8 7 54 5 38.46 

Swartkrans Member 3 5 2 40 3 60 3 60 1 20 1 20 

Kromdraai B 1 0 0 1 100 0 0 1 100 0 0 

Cave of Hearths 8 2 25 6 75 1 13 7 88 0 0 

Sterkfontein PM6 Infill 1 0 0 1 100 1 100 0 0 0 0 

 Sterkfontein unstratified 3 0 0 3 100 0 0 0 0 3 100 

             

recki Sterkfontein Member 4 8 4 50 4 50 0 0 2 25 6 75 

Sterkfontein Member 5 14 2 14.29 12 85.71 2 14.29 6 42.86 6 42.86 

Sterkfontein Member 5 East 1 0 0 1 100 0 0 1 100 0 0 

Sterkfontein Member 5 West 2 0 0 2 100 1 50 1 50 0 0 

Swartkrans Member 1 1 0 0 1 100 1 100 0 0 0 0 

Swartkrans Member 1 LB 3 0 0 3 100 0 0 3 100 0 0 
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Antidorcas species Provenance Total N High % High Low  % Low Blunt % B Rounded % R Sharp % S 

Swartkrans Member 2 5 2 40 3 60 0 0 4 80 1 20 

Swartkrans Member 3 12 4 33.33 8 66.67 4 33.33 6 50 2 16.67 

Kromdraai A 10 2 20 8 80 0 0 2 20 8 80 

Kromdraai E/D 2 0 0 2 100 0 0 0 0 2 100 

Kromdraai W 5 0 0 5 100 3 60 2 40 0 0 

Gladysvale 2 0 0 2 100 0 0 1 50 1 50 

Plovers Lake 2 0 0 2 100 0 0 0 0 2 100 

Cooper's Cave 7 4 57.14 3 42.86 1 14.29 1 14.29 5 71.43 

             

bondi Sterkfontein Member 4 2 0 0 2 100 0 0 2 100 0 0 

Sterkfontein Member 5 12 1 8.33 11 91.67 3 25 8 66.67 1 8.33 

Sterkfontein Member 5 East 2 1 50 1 50 0 0 1 50 1 50 

Sterkfontein Member 5 West 4 0 0 4 100 1 25 3 75 0 0 

Swartkrans Member 1 3 2 66.67 1 33.33 1 33.33 2 66.67 0 0 

Swartkrans Member 1 LB 1 0 0 1 100 0 0 1 100 0 0 

Swartkrans Member 1 HR 2 0 0 2 100 0 0 2 100 0 0 

Swartkrans Member 2 42 21 50 21 50 8 19.05 26 61.90 8 19.05 

Swartkrans Member 3 2 1 50 1 50 0 0 2 100 0 0 

Kromdraai A 9 0 0 9 100 1 11.11 4 44.44 4 44.44 
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Antidorcas species Provenance Total N High % High Low  % Low Blunt % B Rounded % R Sharp % S 

Sterkfontein LC 1 0 0 1 100 1 100 0 0 0 0 

Plovers Lake 6 0 0 6 100 2 33.33 2 33.33 2 33.33 

Cave of Hearths 20 13 65 7 35 0 0 9 45 11 55 

Sterkfontein Name Chamber 1 0 0 1 100 0 0 1 100 0 0 

             

fossil marsupialis Sterkfontein Member 5 3 1 33.33 2 66.67 0 0 1 33.33 2 66.67 

Swartkrans Member 1 6 4 66.67 2 33.33 1 17 3 50 2 33.33 

Swartkrans Member 1 LB 2 1 50 1 50 0 0 0 0 2 100 

Swartkrans Member 2 3 1 33.33 2 66.67 0 0 3 100 0 0 

Swartkrans Member 3 27 11 40.74 16 59.26 6 22 13 48.15 8 29.63 

Plovers Lake 5 2 40 3 60 0 0 2 40 3 60 

Cave of Hearths 5 2 40 3 60 0 0 3 60 2 40 

Sterkfontein unstratified 1 0 0 1 100 0 0 0 0 1 100 

Modern Antidorcas marsupialis 68 28 41.18 40 58.82 9 13 42 61.76 17 25 

 

Table 8.12: Antidorcas mandibular dentition mesowear scores through time (per Member), shown in number of specimens per category and their respective percentages. 
Percentages rounded to two decimal places. Modern A. marsupialis given for comparison. 

Antidorcas species Provenance Total N LB % LB LR % LR LS % LS HB % HB HR % HR HS % HS 

sp. Sterkfontein Member 5 East 3 2 67 1 33 0 0 0 0 0 0 0 0 

Sterkfontein Member 5 West 6 1 17 4 67 1 17 0 0 0 0 0 0 
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Antidorcas species Provenance Total N LB % LB LR % LR LS % LS HB % HB HR % HR HS % HS 

Swartkrans Member 1 LB 1 0 0 0 0 0 0 0 0 1 100 0 0 

Swartkrans Member 1 HR 1 0 0 0 0 1 100 0 0 0 0 0 0 

Swartkrans Member 2 13 1 8 5 38 4 31 0 0 2 15 1 7.69 

Swartkrans Member 3 5 3 60 0 0 0 0 0 0 1 20 1 20 

Kromdraai B 1 0 0 1 100 0 0 0 0 0 0 0 0 

Cave of Hearths 8 1 13 5 63 0 0 0 0 2 25 0 0 

Sterkfontein PM6 Infill 1 1 100 0 0 0 0 0 0 0 0 0 0 

Sterkfontein unstratified 3 0 0 0 0 3 100 0 0 0 0 0 0 

               

recki Sterkfontein Member 4 8 0 0 1 12.5 3 37.5 0 0 1 12.5 3 37.5 

Sterkfontein Member 5 14 2 14.29 5 35.71 5 35.71 0 0 1 7.14 1 7.14 

Sterkfontein Member 5 East 1 0 0 1 100 0 0 0 0 0 0 0 0 

Sterkfontein Member 5 West 2 1 50 1 50 0 0 0 0 0 0 0 0 

Swartkrans Member 1 1 1 100 0 0 0 0 0 0 0 0 0 0 

Swartkrans Member 1 LB 3 0 0 3 100 0 0 0 0 0 0 0 0 

Swartkrans Member 2 5 0 0 3 60 0 0 0 0 1 20 1 20 

Swartkrans Member 3 12 4 33.33 4 33.33 0 0 0 0 2 16.67 2 16.67 

Kromdraai A 10 0 0 2 20 6 60 0 0 0 0 2 20 

Kromdraai E/D 2 0 0 0 0 2 100 0 0 0 0 0 0 
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Antidorcas species Provenance Total N LB % LB LR % LR LS % LS HB % HB HR % HR HS % HS 

Kromdraai W 5 3 60 2 40 0 0 0 0 0 0 0 0 

Gladysvale 2 0 0 1 50 1 50 0 0 0 0 0 0 

Plovers Lake 2 0 0 0 0 2 100 0 0 0 0 0 0 

Cooper's Cave 7 1 14.29 1 14.29 1 14.29 0 0 0 0 4 57.14 

               

bondi Sterkfontein Member 4 2 0 0 2 100 0 0 0 0 0 0 0 0 

Sterkfontein Member 5 12 3 25 7 58.33 1 8.33 0 0 1 8.33 0 0 

Sterkfontein Member 5 East 2 0 0 0 0 1 50 0 0 1 50 0 0 

Sterkfontein Member 5 West 4 1 25 3 75 0 0 0 0 0 0 0 0 

Swartkrans Member 1 3 1 33.33 0 0 0 0 0 0 2 66.67 0 0 

Swartkrans Member 1 LB 1 0 0 1 100 0 0 0 0 0 0 0 0 

Swartkrans Member 1 HR 2 0 0 2 100 0 0 0 0 0 0 0 0 

Swartkrans Member 2 42 7 16.67 11 26.19 3 7.14 0 0 17 40.48 4 9.52 

Swartkrans Member 3 2 0 0 1 50 0 0 0 0 1 50 0 0 

Kromdraai A 9 1 11.11 4 44.44 4 44.44 0 0 0 0 0 0 

Sterkfontein LC 1 1 100 0 0 0 0 0 0 0 0 0 0 

Plovers Lake 6 2 33.33 2 33.33 2 33.33 0 0 0 0 0 0 

Cave of Hearths 20 0 0 2 10 5 25 0 0 7 35 6 30 

Sterkfontein Name Chamber 1 0 0 1 100 0 0 0 0 0 0 0 0 
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Antidorcas species Provenance Total N LB % LB LR % LR LS % LS HB % HB HR % HR HS % HS 

               

fossil marsupialis Sterkfontein Member 5 3 0 0 0 0 2 66.67 0 0 1 33.33 0 0 

Swartkrans Member 1 6 1 16.67 1 16.67 0 0 0 0 2 33.33 2 33.33 

Swartkrans Member 1 LB 2 0 0 0 0 1 50 0 0 0 0 1 50 

Swartkrans Member 2 3 0 0 2 66.67 0 0 0 0 1 33.33 0 0 

Swartkrans Member 3 27 6 22.22 7 25.93 3 11.11 0 0 6 22.22 5 18.52 

Plovers Lake 5 0 0 2 40 1 20 0 0 0 0 2 40 

Cave of Hearths 5 0 0 1 20 2 40 0 0 2 40 0 0 

Sterkfontein unstratified 1 0 0 0 0 1 100 0 0 0 0 0 0 

Modern Antidorcas marsupialis 68 9 13.24 23 33.82 8 11.76 0 0 19 27.94 9 13.24 

 

Table 8.13: Antidorcas sp. mandibular dentition new occlusal relief categories through time (per Member), shown in number of specimens per category and their respective 
percentages. Percentages rounded to two decimal places. Modern A. marsupialis given for comparison. 

Antidorcas species Provenance Total N High % H Medium % M Low % L 

sp. Sterkfontein Member 5 East 3 0 0 0 0 3 100 

Sterkfontein Member 5 West 6 0 0 1 16.67 5 83.33 

Swartkrans Member 1 HR 1 0 0 1 100 0 0 

Swartkrans Member 2 11 0 0 2 18.18 9 81.82 

Swartkrans Member 3 1 0 0 1 100 0 0 

Kromdraai B 1 0 0 0 0 1 100 

Cave of Hearths 2 0 0 0 0 2 100 
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Antidorcas species Provenance Total N High % H Medium % M Low % L 

Sterkfontein PM6 Infill 1 0 0 0 0 1 100 

Sterkfontein unstratified 1 0 0 0 0 1 100 

         

recki Sterkfontein Member 4 7 2 28.57 2 28.57 3 42.86 

Sterkfontein Member 5 14 1 7.14 3 21.43 10 71.43 

Sterkfontein Member 5 East 1 0 0 0 0 1 100 

Sterkfontein Member 5 West 2 0 0 0 0 2 100 

Swartkrans Member 1 1 0 0 0 0 1 100 

Swartkrans Member 1 LB 3 0 0 0 0 3 100 

Swartkrans Member 2 5 0 0 2 40 3 60 

Swartkrans Member 3 11 1 9.09 3 27.27 7 63.64 

Kromdraai A 10 0 0 5 50 5 50 

Kromdraai E/D 2 0 0 0 0 2 100 

Kromdraai W 5 0 0 0 0 5 100 

Gladysvale 2 0 0 0 0 2 100 

Plovers Lake 2 0 0 0 0 2 100 

         

bondi Sterkfontein Member 4 2 0 0 1 50 1 50 

Sterkfontein Member 5 12 1 8.33 1 8.33 10 83.33 

Sterkfontein Member 5 East 2 0 0 1 50 1 50 

Sterkfontein Member 5 West 3 0 0 1 33.33 2 66.67 

Swartkrans Member 1 1 1 100 0 0 0 0 
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Antidorcas species Provenance Total N High % H Medium % M Low % L 

Swartkrans Member 1 LB 1 0 0 0 0 1 100 

Swartkrans Member 1 HR 2 0 0 1 50 1 50 

Swartkrans Member 2 16 3 18.75 7 43.75 6 37.5 

Swartkrans Member 3 2 0 0 1 50 1 50 

Kromdraai A 9 0 0 5 55.56 4 44.44 

Sterkfontein LC 1 0 0 0 0 1 100 

Plovers Lake 6 0 0 2 33.33 4 66.67 

Sterkfontein Name Chamber 1 0 0 0 0 1 100 

         

fossil marsupialis Sterkfontein Member 5 3 1 33.33 1 33.33 1 33.33 

Swartkrans Member 1 2 0 0 1 50 1 50 

Swartkrans Member 3 15 3 20 5 33.33 7 46.67 

Plovers Lake 5 0 0 3 60 2 40 

Cave of Hearths 1 0 0 0 0 1 100 

Modern Antidorcas marsupialis 69 11 15.94 38 55.07 20 28.99 

 

Table 8.14: Antidorcas sp. mandibular dentition new occlusal cusp shape categories through time (per Member), shown in number of specimens per category and their respective 
percentages. Percentages rounded to two decimal places where necessary. Normal text shows number of individuals (‘N’) displaying each mesowear type where, ‘S’ = sharp, ‘S-
R’=sharp-rounded, ‘R-S’ = Rounded-sharp, ‘R’ = Rounded, ‘R-B’= Rounded-Blunt, ‘B-R’= Blunt-Rounded, ‘B’ = Blunt. Bold text shows the percentage of each mesowear type. 
SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, GL=Gladysvale, PL=Plovers Lake, CC=Cooper’s Cave, CoH=Cave of Hearths, each provenance is listed with its relevant 
Member number/letter. ‘unstrat’=unstratified.  

Species Provenance Total N S % S S-R % S-R R-S % R-S R % R R-B % R-B B-R % B-R B % B 

sp. SK M5 E 3 0 0 0 0 0 0 1 33 0 0 0 0 2 66.67 
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Species Provenance Total N S % S S-R % S-R R-S % R-S R % R R-B % R-B B-R % B-R B % B 

SK M5 W 6 0 0 1 17 2 33 1 17 1 17 0 0 1 16.67 

SKX M1 HR 1 0 0 1 100 0 0 0 0 0 0 0 0 0 0 

SKX M2 11 2 18 3 27 1 9 1 9 3 27 1 9 0 0 

SKX M3 1 0 0 0 0 1 100 0 0 0 0 0 0 0 0 

KB 1 0 0 0 0 0 0 0 0 1 100 0 0 0 0 

CoH 2 0 0 0 0 0 0 1 50 0 0 1 50 0 0 

SK PM6 Infill 1 0 0 0 0 0 0 0 0 0 0 0 0 1 100 

SK unstrat. 1 1 100 0 0 0 0 0 0 0 0 0 0 0 0 

recki 

SK M4 7 3 42.86 3 42.86 0 0 1 14.29 0 0 0 0 0 0 

SK M5 14 1 7.14 5 35.71 1 7.14 4 28.57 1 7.14 0 0 2 14.29 

SK M5 E 1 0 0 0 0 1 100 0 0 0 0 0 0 0 0 

SK M5 W 2 0 0 0 0 0 0 0 0 1 50 0 0 1 50 

SKX M1 1 0 0 0 0 0 0 0 0 0 0 1 100 0 0 

SKX M1 LB 3 0 0 0 0 0 0 3 100 0 0 0 0 0 0 

SKX M2 5 0 0 1 20 1 20 1 20 2 40 0 0 0 0 

SKX M3 11 1 9.09 0 0 1 9.09 1 9.09 4 36.36 3 27.27 1 9.09 

KA 10 1 10 7 70 0 0 0 0 2 20 0 0 0 0 

KE/D 2 1 50 1 50 0 0 0 0 0 0 0 0 0 0 

recki 

K W 5 0 0 0 0 0 0 0 0 2 40 2 40 1 20 

GL 2 0 0 1 50 1 50 0 0 0 0 0 0 0 0 

PL 2 0 0 2 100 0 0 0 0 0 0 0 0 0 0 

bondi SK M4 2 0 0 0 0 1 50 0 0 1 50 0 0 0 0 
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Species Provenance Total N S % S S-R % S-R R-S % R-S R % R R-B % R-B B-R % B-R B % B 

SK M5 12 0 0 1 8.33 0 0 2 16.67 6 50 1 8.33 2 16.67 

SK M5 E 2 0 0 1 50 1 50 0 0 0 0 0 0 0 0 

SK M5 W 3 0 0 0 0 0 0 2 66.67 0 0 0 0 1 33.33 

SKS M1 1 0 0 0 0 1 100 0 0 0 0 0 0 0 0 

SKX M1 LB 1 0 0 0 0 0 0 1 100 0 0 0 0 0 0 

SKX M1 HR 2 0 0 0 0 0 0 1 50 1 50 0 0 0 0 

SKX M2 16 1 6.25 1 6.25 5 31.25 8 50 1 6.25 0 0 0 0 

SKX M3 1 0 0 0 0 1 100 0 0 0 0 0 0 0 0 

KA 9 1 11.11 3 33.33 0 0 3 33.33 1 11.11 1 11.11 0 0 

SK LC 1 0 0 0 0 0 0 0 0 0 0 1 100 0 0 

PL 6 0 0 2 33.33 0 0 2 33.33 0 0 1 16.67 1 16.67 

SK Name Chamber 1 0 0 0 0 0 0 1 100 0 0 0 0 0 0 

fossil marsupialis 

SK M5 3 0 0 2 66.67 0 0 1 33.33 0 0 0 0 0 0 

SKX M1 2 0 0 1 50 0 0 1 50 0 0 0 0 0 0 

SKX M1 LB 2 0 0 2 100 0 0 0 0 0 0 0 0 0 0 

SKX M3 15 1 6.67 4 26.67 4 26.67 4 26.67 2 13.33 0 0 0 0 

PL 5 2 40 1 20 1 20 1 20 0 0 0 0 0 0 

CoH 1 0 0 1 100 0 0 0 0 0 0 0 0 0 0 

Modern A. marsupialis 69 10 14.49 8 11.59 16 23.19 14 20.29 10 14.49 5 7.25 6 8.70 
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8.2.1.2 UPPER / MAXILLARY DENTITION 
Antidorcas lineage (maxilla) 
All Members are grouped together to analyse mesowear variables on maxillary dentition according to species, to address the palaeoecology of each Antidorcas species.  

Table 8.15: Antidorcas species maxillary mesowear occlusal relief and cusp shape and percentages of each category. Percentages given to 2 decimal places where necessary.  
Species Total N High % High Low % Low Blunt % B Rounded % R Sharp % S 

sp. 124 14 11.29 110 88.71 39 31 47 38 38 30.65 

recki 63 7 11.11 56 88.89 19 30 18 29 26 41.27 

bondi 97 20 20.62 77 79.38 11 11 52 54 34 35.05 

fossil marsupialis 96 43 44.79 53 55.21 10 10 35 36 51 53.13 

marsupialis (modern) 107 53 49.53 54 50.47 12 11 50 47 45 42.06 

Table 8.16: Antidorcas species maxillary mesowear score (1-6). Percentages given to 2 decimal places where necessary. 
Species Total N LB % LB LR % LR LS % LS HB % HB HR % HR HS % HS 

sp. 124 39 31 42 34 29 23 0 0 5 4 9 7.26 

recki 63 19 30 15 24 22 35 0 0 3 5 4 6.35 

bondi 97 11 11 37 38 29 30 0 0 15 15 5 5.15 

fossil marsupialis 96 10 10 24 25 19 20 0 0 11 11 32 33.33 

marsupialis (modern) 107 10 9 31 29 13 12 2 2 19 18 32 29.91 

Table 8.17: Antidorcas species maxillary new mesowear relief. Percentages given to 2 decimal places where necessary. 
Species Total N High % High Medium  % Medium Low % Low 

sp. 97 0 0 19 19.59 78 80.41 

recki 62 3 4.84 14 22.58 45 72.58 

bondi 71 3 4.23 19 26.76 49 69.01 

fossil marsupialis 59 9 15.25 15 25.42 35 59.32 
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marsupialis (modern) 105 30 28.57 54 51.43 21 20 

Table 8.18: Antidorcas species maxillary new mesowear cusp shape. Percentages given to 2 decimal places where necessary. 
Species Total 

N Sharp 
% 

S 

Sharp-
Rounded 

% S-

R 

Rounded-
Sharp 

% R-

S Rounded 
% 

R 

Rounded-
Blunt 

% R-

B 

Blunt-
Rounded 

% B-

R Blunt % B 

sp. 97 4 4 22 23 17 18 14 14 6 6 20 21 14 14.43 

recki 62 5 8 19 31 8 13 4 6 7 11 11 18 8 12.90 

bondi 71 5 7 22 31 15 21 12 17 8 11 5 7 4 5.63 

fossil marsupialis 59 7 12 22 37 11 19 6 10 7 12 2 3 4 6.78 

marsupialis 
(modern) 

105 
27 26 17 16 13 12 23 22 14 13 5 5 6 

5.71 

Table 8.19. Antidorcas species Mesowear III scores. Percentages given to 2 decimal places where necessary. 

Species Total N 1 %1 2 %2 3 %3 4 %4 

sp. 5 1 20 0 0 3 60 1 20 

recki 37 1 2.70 7 18.92 15 40.54 14 37.84 

bondi 29 0 0 1 3.45 6 20.69 22 75.86 

fossil marsupialis 40 2 5 9 22.5 15 37.5 14 35 

marsupialis (modern) 19 6 31.58 6 31.58 6 31.58 1 5.26 
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Palaeoenvironment (maxilla) 
Table 8.20: Mesowear trend through time via Antidorcas upper mesowear relief and cusp 
shape. Number of individuals with each category and their relevant percentages within the 
Antidorcas assemblage. Percentages are rounded to 2 decimal places where necessary . 
‘N’ = total number of individuals.’H’=High, ‘L’=Low, ‘B’=Blunt, ‘R’=Rounded, 
‘S’=Sharp. SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, GL=Gladysvale, 
PL=Plovers Lake, G=Gondolin, CC=Cooper’s Cave, CoH=Cave of Hearths, each 
provenance is listed with its relevant Member number/letter. ‘unstrat’=unstratified. 

Provenance  N H 
% 

H 
L  

% 

L 
B  % B R  

% 

R 
S % S 

SK M4 3 1 
33.3

3 
2 

66.6

7 
0 0 2 67 1 

33.3

3 

SK M5 21 1 4.76 20 95.2

4 
2 9.52 13 62 6 28.5

7 

SK M5 E 2 0 0 2 100 0 0 0 0 2 100 

SK M5 W 8 0 0 8 100 3 37.5 2 25 3 37.5 

SKX M1 9 2 
22.2

2 
7 

77.7

8 
2 22.22 2 22 5 

55.5

6 

SKX M1 
LB 

5 4 80 1 20 0 0 0 0 5 100 

SKX M2 191 25 
13.0

9 
166 

86.9

1 
56 29.32 71 37 64 

33.5

1 

SKX M3 58 30 
51.7

2 
28 

48.2

8 
9 15.52 26 45 23 

39.6

6 

GA 2 0 0 2 100 0 0 1 50 1 50 

KA 16 1 6.25 15 
93.7

5 
0 0 8 50 8 50 

KE/D 1 1 100 0 0 0 0 1 100 0 0 

KW 11 5 
45.4

5 
6 

54.5

5 
1 9.09 3 27 7 

63.6

4 

PL 17 0 0 17 100 2 11.76 6 35 9 
52.9

4 

CoH 30 13 
43.3

3 
17 

56.6

7 
3 10 16 53 11 

36.6

7 

SK PM6 
Infill 

1 0 0 1 100 0 0 0 0 1 100 

CC 1 0 0 1 100 0 0 0 0 1 100 

SK unstrat. 4 1 25 3 75 1 25 1 25 2 50 

Modern 107 53 
49.5

3 
54 

50.4

7 
12 11.21 50 47 45 

42.0

6 

Table 8.21: Mesowear trend through time via Antidorcas upper mesowear scores 1-6. 
Number of individuals with each category and their relevant percentages within the 
Antidorcas assemblage. ‘N’ = total number of individuals. Percentages are rounded to 2 
decimal places where applicable. SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, 
GL=Gladysvale, PL=Plovers Lake, G=Gondolin, CC=Cooper’s Cave, CoH=Cave of 
Hearths, each provenance is listed with its relevant Member number/letter. 
‘unstrat’=unstratified.  

Provenance N 
L
B 

% 

L

B 

L
R 

% 

L

R 

L
S 

% 

LS 

H
B 

% 

H

B 

H
R 

% 

H

R 

H
S 

% 

HS 

SK M4 3 0 0 2 67 0 0 0 0 0 0 1 33.33 

SK M5 21 2 10 12 57 6 29 0 0 1 5 0 0 

SK M-5 E- 2 0 0 0 0 2 
10

0 
0 0 0 0 0 0 

SK M5 W 8 3 38 2 25 3 38 0 0 0 0 0 0 

SKX M1 9 2 22 1 11 4 44 0 0 1 11 1 11.11 
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Provenance N 
L
B 

% 

L

B 

L
R 

% 

L

R 

L
S 

% 

LS 

H
B 

% 

H

B 

H
R 

% 

H

R 

H
S 

% 

HS 

SKX M1 LB 5 0 0 0 0 1 20 0 0 0 0 4 80 

SKX M2 
19
1 

56 29 58 30 52 27 0 0 13 7 12 6.28 

SKX M3 58 9 16 15 26 4 7 0 0 11 19 19 32.76 

GA 2 0 0 1 50 1 50 0 0 0 0 0 0 

KA 16 0 0 8 50 7 44 0 0 0 0 1 6.25 

KE/D 1 0 0 0 0 0 0 0 0 1 
10

0 
0 0 

KW 11 1 9 3 27 2 18 0 0 0 0 5 45.45 

PL 17 2 12 6 35 9 53 0 0 0 0 0 0 

CoH 30 3 10 9 30 5 17 0 0 7 23 6 20 

SK PM6 Infill 1 0 0 0 0 1 
10

0 
0 0 0 0 0 0 

CC 1 0 0 0 0 1 
10

0 
0 0 0 0 0 0 

SK unstrat. 4 1 25 1 25 1 25 0 0 0 0 1 25 

Modern 
10
7 

10 9 31 29 13 12 2 2 19 18 32 29.91 

Table 8.22: Mesowear trend through time via Antidorcas upper new relief. Number of 
individuals with each category and their relevant percentages within the Antidorcas 
assemblage. Percentages are rounded to 2 decimal places where necessary. 
SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, GL=Gladysvale, PL=Plovers Lake, 
G=Gondolin, CC=Cooper’s Cave, CoH=Cave of Hearths, each provenance is listed with 
its relevant Member number/letter. ‘unstrat’=unstratified. 

Provenance Total N High % H Medium % M Low % L 

SK M4 3 0 0 1 33.33 2 66.67 

SK M5 21 0 0 5 23.81 16 76.19 

SK M5 E 
2 

0 
0 

0 
0 

2 
100 

SK M5 W 
8 

1 
12.5 

2 
25 

5 
62.5 

SKX M1 6 0 0 3 50 3 50 

SKX M1 LB 2 0 0 1 50 1 50 

SKX M2 161 4 2.48 32 19.88 125 77.64 

SKX M3 32 6 18.75 10 31.25 16 50 

GA 2 0 0 0 0 2 100 

KA 16 0 0 4 25 12 75 

KE/D 1 0 0 1 100 0 0 

KW 11 4 36.36 3 27.27 4 36.36 

PL 17 0 0 3 17.65 14 82.35 

CoH 4 0 0 2 50 2 50 

SK PM6 Infill 1 0 0 0 0 1 100 

SK unstrat. 2 0 0 0 0 2 100 

Modern 105 30 28.57 54 51.43 21 20 
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Table 8.23: Mesowear trend through time via Antidorcas upper new cusp shape. Number of individuals with each category and their relevant percentages within the Antidorcas 
assemblage. Percentages are rounded to 2 decimal places where necessary. SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, GL=Gladysvale, PL=Plovers Lake, G=Gondolin, 
CC=Cooper’s Cave, CoH=Cave of Hearths, each provenance is listed with its relevant Member number/letter. ‘unstrat’=unstratified. 

 Provenance Total N Sharp 
% 

S 

Sharp-
Rounded 

% S-

R 

Rounded-
Sharp 

% R-

S Rounded 
% 

R 

Rounded-
Blunt 

% R-

B 

Blunt-
Rounded 

% B-

R Blunt % B 

SK M4 3 0 0 1 33 1 33 0 0 1 33 0 0 0 0 

SK M5 21 1 5 5 24 5 24 4 19 4 19 1 5 1 4.76 

SK M5 E 2 
1 50 1 50 0 0 0 0 0 0 0 0 0 

0 

SK M5 W 8 
1 13 2 25 0 0 2 25 0 0 3 38 0 

0 

SKX M1 6 1 17 3 50 1 17 0 0 0 0 1 17 0 0 

SKX M1 LB 2 0 0 2 100 0 0 0 0 0 0 0 0 0 0 

SKX M2 161 7 4 44 27 23 14 22 14 13 8 29 18 23 14.29 

SKX M3 32 1 3 9 28 10 31 4 13 2 6 2 6 4 12.50 

GA 2 0 0 1 50 0 0 0 0 1 50 0 0 0 0 

KA 16 3 19 5 31 5 31 1 6 1 6 1 6 0 0 

KE/D 1 0 0 0 0 0 0 1 100 0 0 0 0 0 0 

KW 11 1 9 6 55 0 0 0 0 3 27 1 9 0 0 

PL 17 3 18 6 35 4 24 0 0 3 18 0 0 1 5.88 

CoH 4 1 25 0 0 1 25 2 50 0 0 0 0 0 0 

SK PM6 
Infill 

1 
1 100 0 0 0 0 0 0 0 0 0 0 0 

0 

SK unstrat. 2 0 0 0 0 1 50 0 0 0 0 0 0 1 50 

Modern 105 27 26 17 16 13 12 23 22 14 13 5 5 6 5.71 
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Table 8.24: Mesowear trend through time via Antidorcas Mesowear III scores. Number of individuals with each category and their relevant percentages within the Antidorcas 
assemblage. Percentages are rounded to 2 decimal places where necessary. SK=Sterkfontein, SKX=Swartkrans, K=Kromdraai, GL=Gladysvale, PL=Plovers Lake, G=Gondolin, 
CC=Cooper’s Cave, CoH=Cave of Hearths, each provenance is listed with its relevant Member number/letter. ‘unstrat’=unstratified. 

  Mesowear III score  

Provenance Total N 1 1% 2 2% 3 3% 4 4% 

SK M4 1 0 0 0 0 1 100 0 0 

SK M5 17 0 0 0 0 2 12 15 88.24 

SK M5 E 2 
1 50 0 0 0 0 1 

50 

SK M5 W 1 
0 0 0 0 0 0 1 

100 

SKX M1 4 0 0 0 0 3 75 1 25 

SKX M1 LB 2 0 0 0 0 2 100 0 0 

SKX M2 12 1 8 3 25 4 33 4 33.33 

SKX M3 25 0 0 4 16 12 48 9 36 

GA 1 0 0 1 100 0 0 0 0 

KA 16 1 6 7 44 6 38 2 12.5 

KE/D 1 0 0 0 0 1 100 0 0 

KW 6 1 17 1 17 3 50 1 16.67 

PL 17 0 0 1 6 3 18 13 76.47 

CoH 4 0 0 0 0 2 50 2 50 

SK unstrat. 2 0 0 0 0 0 0 2 100 

Modern 19 6 32 6 32 6 32 1 5.26 
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Mesowear through time (Member), separated by species for maxillary molars 
Only Members where mesowear measurements were taken are shown in each table.  

Table 8.25: Antidorcas occlusal relief and cusp shape through time (per Member), with modern A. marsupialis maxillary molars for comparison, shown in number of specimens per 
category and their respective percentages. Percentages rounded to two decimal places where necessary. 
Antidorcas species Provenance Total N High % High Low  % Low Blunt % B Rounded % R Sharp %S 

sp. Sterkfontein Member 5 East 2 0 0 2 100 0 0.00 0 0.00 2 100.00 

Sterkfontein Member 5 West 3 0 0 3 100 1 33.33 2 66.67 0 0.00 

Swartkrans Member 1 1 1 100 0 0 0 0.00 1 100.00 0 0.00 

Swartkrans Member 1 LB 1 1 100 0 0 0 0.00 0 0.00 1 100.00 

Swartkrans Member 2 114 11 9.65 103 90.35 38 33.33 43 37.72 33 28.95 

Kromdraai W 1 0 0 1 100 0 0.00 1 100.00 0 0.00 

Sterkfontein unstratified 2 1 50 1 50 0 0.00 0 0.00 2 100.00 

             

recki Sterkfontein Member 4 3 1 33.33 2 66.67 0 0.00 2 66.67 1 33.33 

Sterkfontein Member 5 6 0 0.00 6 100.00 1 16.67 3 50.00 2 33.33 

Sterkfontein Member 5 West 3 0 0.00 3 100.00 1 33.33 0 0.00 2 66.67 

Swartkrans Member 1 3 0 0.00 3 100.00 1 33.33 0 0.00 2 66.67 

Swartkrans Member 2 14 1 7.14 13 92.86 9 64.29 2 14.29 3 21.43 

Swartkrans Member 3 12 2 16.67 10 83.33 5 41.67 4 33.33 3 25.00 

Kromdraai A 13 1 7.69 12 92.31 0 0.00 5 38.46 8 61.54 

Kromdraai E/D 1 1 100.00 0 0.00 0 0.00 1 100.00 0 0.00 

Kromdraai W 5 1 20.00 4 80.00 1 20.00 1 20.00 3 60.00 

Plovers Lake 2 0 0.00 2 100.00 1 50.00 0 0.00 1 50.00 
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Antidorcas species Provenance Total N High % High Low  % Low Blunt % B Rounded % R Sharp %S 

Cooper's Cave 1 0 0.00 1 100.00 0 0.00 0 0.00 1 100.00 

             

bondi Sterkfontein Member 5 14 1 7.14 13 92.86 1 7.14 10 71.43 3 21.43 

Sterkfontein Member 5 West 2 0 0.00 2 100.00 1 50.00 0 0.00 1 50.00 

Swartkrans Member 2 42 8 19.05 34 80.95 5 11.90 21 50.00 16 38.10 

Swartkrans Member 3 2 2 100.00 0 0.00 0 0.00 1 50.00 1 50.00 

Kromdraai A 3 0 0.00 3 100.00 0 0.00 3 100.00 0 0.00 

Plovers Lake 9 0 0.00 9 100.00 0 0.00 3 33.33 6 66.67 

Cave of Hearths 22 9 40.91 13 59.09 3 13.64 13 59.09 6 27.27 

Sterkfontein PM6 Infill 1 0 0.00 1 100.00 0 0.00 0 0.00 1 100.00 

Sterkfontein unstratified 2 0 0.00 2 100.00 1 50.00 1 50.00 0 0.00 

             

fossil marsupialis Sterkfontein Member 5 1 0 0.00 1 100.00 0 0.00 0 0.00 1 100.00 

Swartkrans Member 1 5 1 20.00 4 80.00 1 20.00 1 20.00 3 60.00 

Swartkrans Member 1 LB 4 3 75.00 1 25.00 0 0.00 0 0.00 4 100.00 

Swartkrans Member 2 21 5 23.81 16 76.19 4 19.05 5 23.81 12 57.14 

Swartkrans Member 3 44 26 59.09 18 40.91 4 9.09 21 47.73 19 43.18 

Gondolin A 2 0 0.00 2 100.00 0 0.00 1 50.00 1 50.00 

Kromdraai W 5 4 80.00 1 20.00 0 0.00 1 20.00 4 80.00 

Plovers Lake 6 0 0.00 6 100.00 1 16.67 3 50.00 2 33.33 

Cave of Hearths 8 4 50.00 4 50.00 0 0.00 3 37.50 5 62.50 

Modern Antidorcas marsupialis 107 53 49.53 54 50.47 12 11.21 50 46.73 45 42.06 
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Table 8.26: Antidorcas mesowear scores through time (per Member), with modern A. marsupialis for comparison, shown in number of specimens per category and their respective 
percentages. Percentages rounded to two decimal places where necessary. 
Antidorcas species Provenance N 

Total LB %LB LR %LR LS %LS HB %HB HR % HR HS % HS 

sp.  Sterkfontein Member 5 East 2 0 0 0 0 2 100 0 0 0 0 0 0 

Sterkfontein Member 5 West 3 1 33 2 67 0 0 0 0 0 0 0 0 

Swartkrans Member 1 1 0 0 0 0 0 0 0 0 1 100 0 0 

Swartkrans Member 1 LB 1 0 0 0 0 0 0 0 0 0 0 1 100 

Swartkrans Member 2 114 38 33 39 34 26 23 0 0 4 3.51 7 6.14 

Kromdraai W 1 0 0 1 100 0 0 0 0 0 0 0 0 

Sterkfontein unstratified 2 0 0 0 0 1 50 0 0 0 0 1 50 

               

recki Sterkfontein Member 4 3 0 0 2 66.67 0 0 0 0 0 0 1 33.33 

Sterkfontein Member 5 6 1 16.67 3 50 2 33.33 0 0 0 0 0 0 

Sterkfontein Member 5 West 3 1 33.33 0 0 2 66.67 0 0 0 0 0 0 

Swartkrans Member 1 3 1 33.33 0 0 2 66.67 0 0 0 0 0 0 

Swartkrans Member 2 14 9 64.29 1 7.14 3 21.43 0 0 1 7.14 0 0 

Swartkrans Member 3 12 5 41.67 3 25 2 16.67 0 0 1 8.33 1 8.33 

Kromdraai A 13 0 0 5 38.46 7 53.85 0 0 0 0 1 7.69 

Kromdraai E/D 1 0 0 0 0 0 0 0 0 1 100 0 0 

Kromdraai W 5 1 20 1 20 2 40 0 0 0 0 1 20 

Plovers Lake 2 1 50 0 0 1 50 0 0 0 0 0 0 

Cooper's Cave 1 0 0 0 0 1 100 0 0 0 0 0 0 
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Antidorcas species Provenance N 
Total LB %LB LR %LR LS %LS HB %HB HR % HR HS % HS 

               

bondi Sterkfontein Member 5 14 1 7.14 9 64.29 3 21.43 0 0 1 7.14 0 0 

Sterkfontein Member 5 
West 2 

1 
50 

0 
0 

1 
50 

0 
0 

0 
0 

0 
0 

Swartkrans Member 2 42 5 11.90 14 33.33 15 35.71 0 0 7 16.67 1 2.38 

Swartkrans Member 3 2 0 0 0 0 0 0 0 0 1 50 1 50 

Kromdraai A 3 0 0 3 100 0 0 0 0 0 0 0 0 

Plovers Lake 9 0 0 3 33.33 6 66.67 0 0 0 0 0 0 

Cave of Hearths 22 3 13.64 7 31.82 3 13.64 0 0 6 27.27 3 13.64 

Sterkfontein PM6 Infill 1 0 0 0 0 1 100 0 0 0 0 0 0 

Sterkfontein unstratified 2 1 50 1 50 0 0 0 0 0 0 0 0 

Provenance N Total LB %LB LR %LR LS %LS HB %HB HR % HR HS % HS 

Sterkfontein Member 5 14 1 7.14 9 64.29 3 21.43 0 0 1 7.14 0 0 

Sterkfontein Member 5 
West 2 

1 
50 

0 
0 

1 
50 

0 
0 

0 
0 

0 
0 

Swartkrans Member 2 42 5 11.90 14 33.33 15 35.71 0 0 7 16.67 1 2.38 

Swartkrans Member 3 2 0 0 0 0 0 0 0 0 1 50 1 50 

Kromdraai A 3 0 0 3 100 0 0 0 0 0 0 0 0 

Plovers Lake 9 0 0 3 33.33 6 66.67 0 0 0 0 0 0 

Cave of Hearths 22 3 13.64 7 31.82 3 13.64 0 0 6 27.27 3 13.64 

Sterkfontein PM6 Infill 1 0 0 0 0 1 100 0 0 0 0 0 0 

Sterkfontein unstratified 2 1 50 1 50 0 0 0 0 0 0 0 0 
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Antidorcas species Provenance N 
Total LB %LB LR %LR LS %LS HB %HB HR % HR HS % HS 

fossil marsupialis Sterkfontein Member 5 1 0 0 0 0 1 100 0 0 0 0 0 0 

Swartkrans Member 1 5 1 20 1 20 2 40 0 0 0 0 1 20 

Swartkrans Member 1 LB 4 0 0 0 0 1 25 0 0 0 0 3 75 

Swartkrans Member 2 21 4 19.05 4 19.05 8 38.10 0 0 1 4.76 4 19.05 

Swartkrans Member 3 44 4 9.09 12 27.27 2 4.55 0 0 9 20.45 17 38.64 

Gondolin A 2 0 0 1 50 1 50 0 0 0 0 0 0 

Kromdraai W 5 0 0 1 20 0 0 0 0 0 0 4 80 

Plovers Lake 6 1 16.67 3 50 2 33.33 0 0 0 0 0 0 

Cave of Hearths 8 0 0 2 25 2 25 0 0 1 12.50 3 37.50 

Modern Antidorcas marsupialis 107 10 9.35 31 28.97 13 12.15 2 1.87 19 17.76 32 29.91 

 

Table 8.27: Antidorcas sp. new occlusal relief categories through time (per Member),with modern A. marsupialis for comparison, shown in number of specimens per category and 
their respective percentages. Percentages rounded to two decimal places where necessary. 
Antidorcas species Provenance Total N High % High Medium % Medium Low % Low 

sp. Sterkfontein Member 5 East 2 0 0 0 0 2 100 

Sterkfontein Member 5 West 3 0 0 1 33 2 66.67 

Swartkrans Member 2 91 0 0 17 19 74 81.32 

Kromdraai W 1 0 0 1 100 0 0 

         

recki Sterkfontein Member 4 3 0 0 1 33.33 2 66.67 

Sterkfontein Member 5 6 0 0 0 0 6 100 

Sterkfontein Member 5 West 3 1 33.33 0 0 2 66.67 
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Antidorcas species Provenance Total N High % High Medium % Medium Low % Low 

Swartkrans Member 1 3 0 0 1 33.33 2 66.67 

Swartkrans Member 2 14 0 0 5 35.71 9 64.29 

Swartkrans Member 3 12 2 16.67 2 16.67 8 66.67 

Kromdraai A 13 0 0 2 15.38 11 84.62 

Kromdraai E/D 1 0 0 1 100 0 0 

Kromdraai W 5 0 0 2 40 3 60 

Plovers Lake 2 0 0 0 0 2 100 

         

bondi Sterkfontein Member 5 14 0 0 5 35.71 9 64.29 

Sterkfontein Member 5 West 2 0 0 1 50 1 50 

Swartkrans Member 2 37 1 2.70 8 21.62 28 75.68 

Swartkrans Member 3 2 2 100 0 0 0 0 

Kromdraai A 3 0 0 2 66.67 1 33.33 

Plovers Lake 9 0 0 2 22.22 7 77.78 

Cave of Hearths 1 0 0 1 100 0 0 

Sterkfontein PM6 Infill 1 0 0 0 0 1 100 

Sterkfontein unstratified 2 0 0 0 0 2 100 

         

fossil marsupialis Sterkfontein Member 5 1 0 0 0 0 1 100 

Swartkrans Member 1 3 0 0 2 66.67 1 33.33 

Swartkrans Member 1 LB 2 0 0 1 50 1 50 

Swartkrans Member 2 19 3 15.79 2 10.53 14 73.68 
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Antidorcas species Provenance Total N High % High Medium % Medium Low % Low 

Swartkrans Member 3 18 2 11.11 8 44.44 8 44.44 

Gondolin A 2 0 0 0 0 2 100 

Kromdraai W 5 4 80 0 0 1 20 

Plovers Lake 6 0 0 1 16.67 5 83.33 

Cave of Hearths 3 0 0 1 33.33 2 66.67 

Modern Antidorcas marsupialis 105 30 28.57 54 51.43 21 20.00 

 
Table 8.28: Antidorcas sp. new occlusal cusp shape categories through time (per Member), with modern A. marsupialis for comparison, shown in number of specimens per category 
and their respective percentages. Percentages rounded to two decimal places where necessary. 

Antidorcas species Provenance Total N Sharp  % S S-R % S-R R-S % R-S Rounded  % R R-B %R-B B-R %B-R Blunt %B 

sp. 

Sterkfontein 
Member 5 East 

2 1 50 1 50 0 0 0 0 0 0 0 0 0 0 

Sterkfontein 
Member 5 West 

3 0 0 0 0 0 0 2 66.67 0 0 1 33.33 0 0 

Swartkrans Member 
2 

91 3 3.30 21 23.08 17 18.68 12 13.19 5 5.49 19 20.88 14 15.38 

Kromdraai W 1 0 0 0 0 0 0 0 0 1 100 0 0 0 0 

                 

recki 

Sterkfontein 
Member 4 

3 0 0 1 33.33 1 33.33 0 0 1 33.33 0 0 0 0 

Sterkfontein 
Member 5 

6 0 0 2 33.33 0 0 0 0 3 50 1 16.67 0 0 

Sterkfontein 
Member 5 West 

3 1 33.33 1 33.33 0 0 0 0 0 0 1 33.33 0 0 

Swartkrans Member 
1 

3 0 0 2 66.67 0 0 0 0 0 0 1 33.33 0 0 
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Antidorcas species Provenance Total N Sharp  % S S-R % S-R R-S % R-S Rounded  % R R-B %R-B B-R %B-R Blunt %B 

Swartkrans Member 
2 

14 0 0 2 14.29 1 7.14 2 14.29 0 0 4 28.57 5 35.71 

Swartkrans Member 
3 

12 0 0 3 25 3 25 1 8.33 0 0 2 16.67 3 25 

Kromdraai A 13 3 23.08 5 38.46 3 23.08 0 0 1 7.69 1 7.69 0 0 

Kromdraai E/D 1 0 0 0 0 0 0 1 100 0 0 0 0 0 0 

Kromdraai W 5 0 0 3 60 0 0 0 0 1 20 1 20 0 0 

Plovers Lake 2 1 50 0 0 0 0 0 0 1 50 0 0 0 0 

                 

bondi 

Sterkfontein 
Member 5 

14 0 0 3 21.43 5 35.71 4 28.57 1 7.14 0 0 1 7.14 

Sterkfontein 
Member 5 West 

2 0 0 1 50 0 0 0 0 0 0 1 50 0 0 

Swartkrans Member 
2 

37 3 8.11 12 32.43 3 8.11 6 16.22 7 18.92 4 10.81 2 5.41 

Swartkrans Member 
3 

2 0 0 1 50 1 50 0 0 0 0 0 0 0 0 

Kromdraai A 3 0 0 0 0 2 66.67 1 33.33 0 0 0 0 0 0 

Plovers Lake 9 1 11.11 5 55.56 3 33.33 0 0 0 0 0 0 0 0 

Cave of Hearths 1 0 0 0 0 0 0 1 100 0 0 0 0 0 0 

Sterkfontein PM6 
Infill 

1 1 100 0 0 0 0 0 0 0 0 0 0 0 0 

Sterkfontein 
unstratified 

2 0 0 0 0 1 50 0 0 0 0 0 0 1 50 

                 

fossil marsupialis 
Sterkfontein 
Member 5 

1 1 100 0 0 0 0 0 0 0 0 0 0 0 0 
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Antidorcas species Provenance Total N Sharp  % S S-R % S-R R-S % R-S Rounded  % R R-B %R-B B-R %B-R Blunt %B 

Swartkrans Member 
1 

3 1 33.33 1 33.33 1 33.33 0 0 0 0 0 0 0 0 

Swartkrans Member 
1 LB 

2 0 0 2 100 0 0 0 0 0 0 0 0 0 0 

Swartkrans Member 
2 

19 1 5.26 9 47.37 2 10.53 2 10.53 1 5.26 2 10.53 2 10.53 

Swartkrans Member 
3 

18 1 5.56 5 27.78 6 33.33 3 16.67 2 11.11 0 0 1 5.56 

Gondolin A 2 0 0 1 50 0 0 0 0 1 50 0 0 0 0 

Kromdraai W 5 1 20 3 60 0 0 0 0 1 20 0 0 0 0 

Plovers Lake 6 1 16.67 1 16.67 1 16.67 0 0 2 33.33 0 0 1 16.67 

Cave of Hearths 3 1 33.33 0 0 1 33.33 1 33.33 0 0 0 0 0 0 

Modern Antidorcas marsupialis 105 27 25.71 17 16.19 13 12.38 23 21.90 14 13.33 5 4.76 6 5.71 
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8.3 STATISTICAL ANALYSIS 
By using a continuous scale variable (new mesowear score), a greater number of statistical 

tests are compatible. Pairwise comparisons of Antidorcas as a genus for each provenance 

were conducted (Table 8.29) and for each Antidorcas species, to consider their relative 

palaeoecology, were created (Table 8.30). Antidorcas, as a genus, showed significant 

differences in new mesowear scores through time (across provenance) [maxillary molars 

(N=394):  p<.000; mandibular molars (N=249): p<.000]. 

 

Sterkfontein Member 5 and Modern Antidorcas are the only provenances consistently 

significantly different in new mesowear scores for maxillary and mandibular dentition.  

Sterkfontein Member 5 West and modern; Kromdraai W and Swartkrans Member 2 show 

difference via LSD (less conservative) post-hoc tests for both maxillary and mandibular 

dentition (Table 8.29).  

 

A. recki and A. marsupialis showed no significant differences in new mesowear score 

through time (via non-parametric independent samples kruskal-wallis analysis or 

parametric ANOVAs) so were not subject to post-hoc analyses.  

 

Maxillary new mesowear scores differ significantly through time (across provenance) 

p=.035 for A. bondi. Mandibular new mesowear scores also differ significantly through 

time (across provenance) p=.013 for A. bondi. A. bondi pairwise comparisons are detailed 

in Table 8.30.  
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Table 8.29: Pairwise comparison of provenance for Antidorcas as a genus, for mesowear (new mesowear score), showing where significant differences between provenance exists.  
Values above the line are from the more conservative, Tukey’s HSD post-hoc test, and those below the lines from the less conservative, LSD post-hoc test (with associated p values, 
significance level p=.05); maxillary molars are represented by bold text and mandibular in normal text. 

SK M4 KW SK M5 SK M5E SK M5W SKX M1 SKX M1 LB SKX M1 HR KA GD SKX M2 CC SKX M3 SK LC SK PM6 PL COH GV MDN

SK M4

KW p=.031

SK M5 p=.023 p=.032 p=.007; p=.038

SK M5E p=.046

SK M5W p=.026

SKX M1 p=.025

SKX M1 LB

SKX M1 HR

KA p=.005

GD

SKX M2 p=.004; p=.001 p=.013 p=.004 p<.000

CC

SKX M3 p=.003 p=.002

SK LC

SK PM6 p=.049

PL p=.019

COH

GV

MDN p<.000 p<.000; p<.000 p=.017 p=.003; p=.006 p<.000 p=.017 p=.043 p<.000 p=.036



 

277 

 

Table 8.30: Pairwise comparison of provenance for Antidorcas bondi, for mesowear (new mesowear score), showing where significant differences between provenance exists.  
Values in bold above the line are from the more conservative, Tukey’s HSD post-hoc test, and those below the lines from the less conservative, LSD post-hoc test (with associated p 
values, significance level p=.05); maxillary molars are represented by bold text and mandibular in normal text. 

SK M4 KW SK M5 SK M5E SK M5W SKX M1 SKX M1 LB SKX M1 HR KA GD SKX M2 CC SKX M3 SK LC SK PM6 PL COH GV

SK M4 p=.028

KW p<.000

SK M5 p=.014 p=.006

SK M5E

SK M5W p=.007

SKX M1 p=.038 p=.023 p=.043

SKX M1 LB p=.043

SKX M1 HR

KA p=.002 p=.022

GD

SKX M2 p=.036

CC

SKX M3 p=.040 p=.038

SK LC p=.030 p=.032

SK PM6

PL p=.042 p=.005

COH

GV
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8.3.1. Data reduction 
A principal component analysis was run on mesowear variables for all Antidorcas species’ 

upper second molars, from all provenances to reduce the number of variables. Mesowear 

score (0-4 and 1-6) were too closely correlated (shown via a Pearson’s correlation) and 

were removed from this factor analysis. The data taken forward were middling 

(KMO=0.708) and were appropriate to use in a factor reduction (p=.000) (Table 8.31-Table 

8.32; Figure 8.1). 

Table 8.31: PCA results for Antidorcas UM2 Mesowear variables. KMO and Bartlett’s Test 
to show data is suitable for factor analysis (see blue boxes).  
A) KMO and Bartlett’s Test 
Kaiser-Meyer-Olkin Measure of Sampling Adequacy .708 
Bartlett’s Test of Sphericity Approx. Chi-Square 483.878 

df 15 
significance .000 

B) Communalities 
 Initial Extraction 
Relief 1.000 .808 
Cusp Shape 1.000 .923 
New Mesowear Score 1.000 .946 
New Relief 1.000 .873 
New Cusp Shape 1.000 .917 
Mesowear III 1.000 .599 
Extraction Method: Principal Component Analysis.  
C) Total Variance 

C
om

po
ne

nt
 Initial Eigenvalues Extraction Sums of 

Squared Loadings 
Rotation Sums of Squared 
Loadings 

Total % of 
Variance 

Cumulative 
% 

Total % of 
Variance 

Cumula
tive % 

Total % of 
Variance 

Cumulative 
% 

1 3.8
44 

64.072 64.072 3.8
44 

64.072 64.07
2 

3.079 51.311 51.311 

2 1.2
23 

20.378 84.450 1.2
23 

20.378 84.45
0 

1.988 33.140 84.450 

3 .49
9 

8.312 92.762  

4 .25
3 

4.216 96.978 

5 .14
0 

2.339 99.317 

6 .04
1 

.683 100.000 
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Figure 8.1:  PCA scree plot for Antidorcas UM2 Mesowear variables.  
 

Table 8.32: PCA results for Antidorcas UM2 mesowear variables: A) component matrix 
Extraction Method: Principal component analysis. 2 components extracted. B) rotated 
component matrix copied from SPSS output to show loadings of each variable on the 
relevant component. Rotation Method: Varimax with Kaiser normalisation. Rotation 
converged in 3 iterations.  
A) Component Matrix    

 Component 

1 2 

Relief .786  

Cusp shape -.643 .713 

New mesowear 

score 

-.937  

New relief .892  

New cusp shape .740 -.607 

Mesowear III .768  

B) Rotated Component Matrix      

 Component 
1 2 

Relief .897  
Cusp shape  -.948 
New mesowear score -.929  
New relief .901  
New cusp shape  .911 
Mesowear III .698  
 
Cusp shape, regardless of number of discrete categories, separates out from the other 

mesowear variables. The other mesowear variables account for the majority of the variation 

seen in the dataset, grouping on the principal component, and therefore, would appear 

better dietary indicators. From the principal component analysis, two components can be 

used in the multi-method analysis. ‘Mesowear score’ as component 1, (new mesowear 
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score, relief and new relief and mesowear III) and ‘cusp shape’ as component 2 (cusp 

shape).  

Discriminant Function Analysis (DFA): 
The DFA for upper second molars according to provenance predictor model has 44.4% 

accuracy, suggesting Antidorcas lifetime diet (as evidenced by mesowear) cannot be 

accurately predicted according to provenance.  No obvious clusters emerge to indicate 

mesowear (dietary/palaeovegetation) change through time (see Appendix A7). Mesowear 

score 1-6 was not an accurate enough predictor variable and was removed from the 

analysis. As this DFA could not be used to answer the central research questions, the results 

of the DFA are not included here but can be found in Appendix A7.  

8.3.2 Mesowear III by Species: 

 

Figure 8.2: Scatter plot showing the modal Mesowear III score given according to species. 
Mesowear III is applied to the second upper molar. No species yielded an average score of 
‘2’ therefore, this score was removed from this plot. 
Based on this Antidorcas dataset, Mesowear III shows promise as a palaeodietary indicator 

(Figure 8.2). A. bondi displays a distinct grazing signal. Contrastingly, the modern 

springbok shows a browsing signal. Larger sample sizes would be beneficial to extrapolate 

more from this method.   

8.3.3 Statistical Analysis Explanation 
Kruskal-Wallis and post-hoc Mann-Whitney U pairwise comparison tests with Bonferroni 

adjustment were carried out for all mesowear variables for all Antidorcas species combined 

to assess differences between members; and for all members combined to assess species 

differences for Antidorcas and for each Antidorcas species within each member.  

Maxillary dentition showed significant differences across Antidorcas species for 

Swartkrans Member 2 between A. recki (n=14) and A. bondi (n=42) for cusp shape 

(p=0.005) and between Antidorcas sp. (n=114) and A. bondi (p=0.003) and A. recki and A. 

bondi (p=0.005) for mesowear scores (scale 1-6).  
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The variation shown by the different Antidorcas species within Swartkrans Member 2 is 

interesting. This member has larger sample sizes and could have encapsulated the range of 

variation representative of living populations. This could only be shown by comparisons 

with similar size datasets, where available. A. bondi tends towards rounded cusps and low 

relief, as may be expected, albeit with higher numbers of sharp cusps and lower of blunt 

cusps than may be expected of a catholic grazer. Surprisingly, A. recki has very low 

incidence of sharp cusps and often shows blunt cusps (64%) and consistently low relief (LB 

33%, LR 34%, LS 23%).  Swartkrans Member 2 has been shown by others (e.g. Steininger 

2012) to be against the increased grassland trend, with a higher incidence of browsing 

signals. This is not the case from the Antidorcas dataset here, which shows a more abrasive 

diet for Swartkrans Member 2 (a dominance of low relief and rounded to blunt cusps) and 

may be indicative of the palaeoecology of Antidorcas of the time or likely of habitat 

heterogeneity for Swartkrans Member 2 (c.1.7-1.07 Ma).  

Mandibular dentition showed significant differences for mesowear scores (scale 1-6) for 

A. bondi between Sterkfontein Member 5 (n=12) and Cave of Hearths (n=20) (p<0.0005). 

A. bondi in Sterkfontein Member 5 has more occurrences of lower relief and blunt cusps, 

and is dominated by low relief, rounded cusps (58%). Conversely, Cave of Hearths has 

consistently higher relief and sharper cusps (0% low, blunt; low sharp 25%, high, rounded 

35% and high, sharp 35%). This suggests that A. bondi was eating more browse at Cave of 

Hearths than earlier, in Sterkfontein Member 5. Cave of Hearths is close to the LAD for the 

species and the change in diet could suggest nutritional stress leading to their demise, yet 

this cannot be proven with mesowear and this dataset alone. Cave of Hearths is also 

geographically separated from the Sterkfontein valley and could simply represent a local 

population.  

Fossil specimens were analysed, testing for differences in mesowear variables as outlined 

above, across species, provenance (site and member-assemblage) and per species within 

each provenance. Basic descriptive statistics were calculated, followed by testing for 

significant differences with Independent samples Kruskal-Wallis tests and relevant post-hoc 

tests (Table 8.29 and Table 8.30). 

There were no significant differences across genera for mesowear values when using the 0-

4 scoring system (Louys et al. 2012; Kaiser et al. 2009). As differences in wear patterns 

would be expected between genera with differing diets, the mesowear scoring system of 1-6 

values was taken forward to be used for further analysis in this research.  No significant 

difference across genera for the mesowear III method (Solounias et al. 2014) was found. 

Yet the basic descriptive statistics had appeared to establish dietary categories as might be 

expected (i.e. A. recki as a browser and A. bondi and D.pygragus as grazers) based on the 

mesowear III (or inner mesowear) scores. Mesowear III scores totalled a small sample size, 

particularly for supplementary species so any patterns may simply not emerge under 

statistical scrutiny.  
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8.4 DISCUSSION 

Following protocol established by Fortelius and Solounias (2000), mesowear was 

conducted on fossil Antidorcas. Limitations to this method quickly became apparent and 

further categories were included to tailor the method to these particular research questions 

posed here and ensure that the range of variation typical of mixed-feeding herbivores was 

captured.  

Should mixed feeders/Antidorcas have more discrete mesowear 
categories to better understand their dietary signal?  
A recent experiment found that at least 6 months is required to impart a mesowear signal on 

dentition (Ackermans et al. 2018). This may explain why mixed feeders do not tend to 

provide any one typical mesowear category (but a range that are not reflective of either 

habitual grazing or habitual browsing diets), this would be especially pertinent of mixed 

feeding of individuals on a seasonal scale.  

‘Medium relief’ tends to take away more often from the high relief category (reducing the 

browsing element) but not exclusively, suggesting it is a worthwhile addition for mixed 

feeding antelopes to capture the maximum amount of variation. Additional cusp shape 

categories show greater distinction between species, for example, Antidorcas recki has no 

specimens with blunt cusps. In contrast, Antidorcas bondi has substantially fewer 

specimens with sharp cusps (Table 8.17, Table 8.18 and Table 8.27) and, more surprisingly, 

fewer with blunt cusps, in favour of rounded-blunt cusps when additional categories are 

available. The addition of more mesowear categories thereby increases the distinction in the 

dietary preferences of these fossil Antidorcas species but also perhaps shows Antidorcas 

bondi have a less graze/abrasion-dominated diet than may be anticipated (e.g. Brink and 

Lee-Thorp 1992). Currently, rounded cusps are implied to be a result of less abrasive diets 

than complete blunting of cusps. The distinction between the causes of rounded or blunted 

cusps may require further clarity to extrapolate the grazing/ abrasion ratios acting on 

Antidorcas. A scale of 1-49 LB (low blunt) to HS (high sharp) creates false distinctions and 

hides mesowear patterns and is extremely time consuming to process so is not a practical 

application to a method that is known for being relatively quick and simple. The results 

from this method are given in appendices (Appendix A7). 

One of the main mesowear variables, cusp shape, was not a good predictor of diet within 

Antidorcas (see DFA).  

Increasing and adjusting the number of variables and categories therefore, for mesowear 

analysis appears fruitful by allowing a greater degree of differential dietary separation. On 

balance, the most effective method to achieve a balance between simplicity of use as well 

as gaining sufficient distinction of dietary preferences, is to include a ‘medium’ relief 

category for mixed-feeding herbivores, alongside the traditional ‘high’ and ‘low’ 

categories.  

Reflecting on mesowear as a method 
Mesowear reflects the cumulative effects of items masticated on throughout the lifetime, 

both food items (vegetation) and exogenous particles (dust and grit), on the dental 
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morphology of the animal as a direct indicator of diet and abrasion (Fortelius and Solounias 

2000; Semprebon and Rivals 2010). As mesowear variables give a generalised lifetime 

signal and are impacted by numerous factors, substantially large sample sizes are required 

to say anything of note. The sample sizes obtained in this research meet these requirements 

but at other sites, with substantial taphonomic impact and the like, this may not always be 

possible. 

 

Mixed-feeding species are not as readily differentiated from obligate grazers / browsers or 

between seasonal / lifetime mixed feeders, based on mesowear variables (e.g. Janis 1995). 

It became apparent early on in this research that the typical mesowear variables used for 

this type of study were over simplified and that additional categories may be beneficial. It is 

possible that the consumption of succulents that could utilise the CAM pathway add 

another element to this. The phytolith content of these plants, and therefore the baseline 

abrasiveness, is little studied. Combining the results from this mesowear study with those 

from the other methods implemented here will shed light on whether the mesowear patterns 

seen are more reflective of a grazing, or of an alternative, abrasive element.  

Taylor et al. (2013), for instance, when Rhinoceros unicornis displayed higher attrition-

dominated mesowear patterns than anticipated, considering its grazing diet, inferred a low 

intake of environmental abrasives. Furthermore, they suggested heterogeneous cusps across 

the toothrow could be reflective of heterogeneous browse, whilst more uniform mesowear 

across the toothrow would reflect physically more homogeneous vegetation, (inclusive of 

browse vegetation). Antidorcas species showed more homogenous wear patterns than might 

be anticipated given their differential anticipated diets for species. Unfortunately, here most 

of the specimens considered for mesowear were isolated molars, so little comparison of 

homogeneity across the toothrow was possible.  

Similarly, the differential mesowear signals from upper and lower dentition can confuse the 

palaeovegetation signal. An example of this is Swartkrans Member 1 lower bank (see Table 

8.33), in which Antidorcas upper molars yield a strong browsing signal (80% high relief, 

100% sharp cusps), which is contrasted by the lower molars, yielding a mixed-feeding, 

tending towards grazing/ high abrasion (71% low relief, 71% rounded cusps).  

Low relief has unexpectedly been found to increase along with an increase in C4 vegetation 

in the diet elsewhere due to frugivory (Louys et al. 2012). Here, perhaps frugivory, or 

similar confounding factors (e.g. feeding on succulents during water scarce times, as 

practised by the modern springbok) could be impacting on mesowear variables. This would 

help to explain mesowear variables that are not readily explained by strictly grass versus 

browse categorical parameters, and aid in the understanding of why greater proportions of 

low relief arise than may be expected. Alternatively, low relief could be an artefact of the 

subjectivity of the method being implemented visually. The relatively small dentition of 

Antidorcas can tend towards favouring a ‘low relief’ assessment, compared to the 

substantially larger overall dentition of Tragelaphus strepsiceros for example. Occlusal 

relief can be calculated via the measurements taken in this study to reduce subjectivity, 

dividing occlusal height by occlusal length (Louys et al. 2011). However, this was not 
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implemented here due to the inconsistency in the completeness of the specimens (often 

eliminating one or other of the accurate measurements but a relative mesowear score 

remained achievable visually).  

Mesowear has been used as a palaeoenvironmental indicator for aridity (e.g. temperature 

and precipitation (Kasier and Schulz 2006; Kaiser et al. 2013; Kubo and Yamada 2014)) 

and vegetation cover. Yet, most found mesowear to be most efficient in showcasing dietary 

behaviour but unrelated to aridity levels (DeSantis et al. 2018).   

Finally, Table 8.34 highlights an issue with the mesowear methodology. Obligate grazers 

are said to have an abrasion dominated diet, opposed by browsers who have an attrition-

dominated diet (Fortelius and Solounias 2000). Yet from this research, it would seem that 

this method requires further refinement. The categorical placement of grazing-abrasion and 

browsing-attrition appears a little too simplistic, particularly when considering fossil taxa. 

Figure 8.3 shows the dentition of a modern grazer, Damaliscus pygargus. Whilst an 

abrasive diet is evident based on the low relief and rounded- blunt cusps apparent on the 

dentition here, there is also obviously an influence of tooth-on tooth contact, i.e. attrition. 

Image A shows extreme attrition causing high relief for the maxillary third molar. If found 

as an isolated molar in a fossil assemblage, the ‘sharpest’ cusp might score this individual 

as having high relief, with rounded cusps.  
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Figure 8.3: Modern Damaliscus pygargus mesowear to show the combined influence of 
abrasion and attrition despite being an obligate grazer. Image A: NHM 1857.12.21.7, 
Image B: NHM.8.12.1.  
It is suggested that the mesowear method requires more parameters beyond those of 

occlusal relief and cusp shape to untangle the subtleties of fossil palaeodietary ecologies 

enabling more accurate palaeoenvironmental reconstructions. Parameters may include 

factors such as relative cusp height and shape between cusps on the same tooth and along 

the toothrow.  

8.4.1 Antidorcas Dietary Palaeoecology  
Antidorcas is also separated to species level to extrapolate clearer dietary versus 

palaeoenvironmental signals, i.e. to ensure that any dietary signal is not averaged or skewed 

by combining a grazing species and a browsing species.  

Interestingly, A. recki and A. bondi maxillary dentition show no significant differences for 

any mesowear variable (Kruskal-Wallis independent samples test followed by post-hoc 

Mann-Whitney U pairwise tests) other than Mesowear III (p=0.001). A. recki (n=37) has a 

significantly lower mean rank than A. bondi (n=29). No A. bondi specimens displayed a 

score of 1 (representative of a typical browser) (Solounias et al. 2014). A. bondi’s modal 

score of 4 is typical of a grazing species.  

All individual species had significantly different mesowear variables, when compared to 

Antidorcas sp. (Antidorcas individuals only identifiable to genus level) Antidorcas ‘sp.’ 

could represent one species, or a combination of any Antidorcas species and is viewed as a 

mixed Antidorcas genus signal.  This perhaps suggests that more significant differences 
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emerge when many species are combined, due to averaging of the grazing, browsing and 

mixed-feeding groups.  

Mesowear signal for each species -Antidorcas lineage paleoecology 
summary 
Mesowear III (Solounias et al. 2014) was the most reliable indicator of species dietary 

preferences, with A. recki consistently scoring in line with typical browsing and A. bondi 

consistently scoring in line with typical grazers. A. marsupialis mesowear scores align with 

mixed-feeding diets.  

From traditional mesowear scoring systems, (See Table 8.3 and Table 8.15), the following 

dietary categories prevailed for each species. A. recki was mixed-feeding to browsing (low 

relief, sharp cusps dominate); A. bondi was grazing to mixed-feeding (low relief, rounded 

cusps dominate); Fossil A. marsupialis was mixed-feeding (showing an equal weighting of 

high and low relief, with sharp cusps dominating for upper molars and rounded cusps 

dominating for lower molars). 

8.4.2 Mesowear signal through time – palaeoenvironment 
When taxa are combined, relative proportions of each dietary type (along the grazer-

browser spectrum, as indicated by mesowear scores) are indicative of palaeoenvironments 

(Fortelius and Solounias 2000; Vrba 1975, 1980). By ordering each member 

chronologically, mesowear is indicative of palaeoenvironmental change through time. No 

obvious directional (i.e. browse-dominated to graze-dominated) dietary transition is 

apparent within this temporal range from mesowear results.  

Table 8.33: Summary of Antidorcas mesowear trend through time, to indicate the likely 
palaeoenvironment for each Member. The dominant mesowear type is highlighted in purple 
with Antidorcas diet predicted based on dominant mesowear attributes. Members are 
organised in relative chronological order. 
Provenance Dentition High 

relief 

(%) 

Low 

Relief 

(%) 

Sharp 

cusps 

(%) 

Round 

cusps 

(%) 

Blunt 

cusps 

(%) 

Antidorcas 

diet 

Sterkfontein 
M4 

Upper 33 67 33 67 0 G-MF 
Lower 40 60 60 40 0 MF 

Kromdraai 
W 

Upper 45 55 64 27 9 MF 
Lower 0 100 0 40 60 G 

Kromdraai B Upper X X X X X X 
Lower 0 100 0 100 0 G-MF 

Kromdraai 
E/D 

Upper 100 0 0 100 0 B-MF 
Lower 0 100 100 0 0 MF 

Sterkfontein 
M5 

Upper 5 95 29 62 10 G-MF 
Lower 14 86 31 52 17 G-MF 

Sterkfontein 
M5E 

Upper 0 100 100 0 0 MF 
Lower 17 83 17 50 33 G-MF 

Sterkfontein 
M5W 

Upper 0 100 38 25 38 MF* 
Lower 0 100 8 67 25 G-MF 

Swartkrans 
M1 

Upper 22 78 56 22 22 MF 
Lower 60 40 20 50 30 B-MF 

Swartkrans 
M1LB 

Upper 80 20 100 0 0 B 
Lower 29 71 29 71 0 G-MF 

Swartkrans 
M1HR 

Upper X X X X X X 
Lower 0 100 33 67 0 G-MF 

Kromdraai A Upper 6 94 50 50 0 MF* 
Lower 11 89 63 32 5 MF 

Gondolin A Upper 0 100 50 50 0 MF* 
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Provenance Dentition High 

relief 

(%) 

Low 

Relief 

(%) 

Sharp 

cusps 

(%) 

Round 

cusps 

(%) 

Blunt 

cusps 

(%) 

Antidorcas 

diet 

Lower X X X X X X 
Swartkrans 
M2 

Upper 13 87 34 37 29 G-MF 
Lower 43 57 22 63 14 G-MF 

Coopers 
Cave 

Upper 0 100 100 0 0 MF 
Lower 57 43 71 14 14 B 

Swartkrans 
M3 

Upper 52 48 40 45 16 B-MF 
Lower 39 61 24 48 28 G-MF 

Sterkfontein 
LC 

Upper X X X X X X 
Lower 0 100 0 0 100 G 

Sterkfontein 
PM6 

Upper 0 100 100 0 0 MF 
Lower 0 100 0 0 100 G 

Plovers Lake Upper 0 100 53 35 12 MF 
Lower 15 85 54 31 15 MF 

Cave of 
Hearths 

Upper 43 57 37 53 10 G-MF 
Lower 52 48 39 58 3 B-MF 

Gladysvale Upper X X X X X X 
Lower 0 100 0 0 100 G 

Modern Upper 50 50 42 47 11 MF* 
Lower 41 59 25 62 13 G-MF 

*Mixed-feeding assemblage diets are apparent, with even mesowear percentages between 
for a particular variable within the Antidorcas assemblage.  

Table 8.33 summarises the prevailing trend through time, as predicted via Antidorcas 

dominant mesowear attributes. A mixed-feeding diet dominates throughout this temporal 

range for Antidorcas, with Low relief and sharp cusps or rounded cusps occurring most 

regularly. Although occasionally differentially recorded on upper and lower dentition, no 

member shows Antidorcas to be consistently (upper and lower dentition) exclusively 

grazing or browsing.  

Low relief dominates for both upper and lower dentition, which could be reflective of an 

abrasive diet. Sharper cusps are evident for upper molars than for lower molars. It was 

hypothesised that lower molars tend towards blunting (Kaiser and Fortelius 2003). 

However, although for the entire duration of geological time (i.e. when combining 

members), lower molars display blunter cusps, lower molars are not consistently blunter 

than upper molars in each member, when compared to upper molars.  

From these deposits, it is not possible to determine if the upper and lower molars are from 

the same animal. Therefore, the capacity to assess how mesowear manifests in response to 

differential dietary influence on uppers versus lowers is beyond the remit of this research.  

Yet it is possible to speculate on the reasoning behind low relief prevalence. The first 

possibility is that Antidorcas have a phylogenetic predisposition towards low relief (e.g. 

Fraser et al. 2018). Alternatively, researcher subjectivity, promotes low relief. This 

alternative seems unlikely when considering 90% of the dentition scored belonged to 

Antidorcas, and the scores were given relative to each other (e.g. rather than relative to taxa 

with larger dentition). The remaining alternative is that the low relief dominance is a true 

reflection of dietary preference and vegetation cover, showing Antidorcas to be subject to a 

highly abrasive diet throughout this temporal range. As low-level feeders, Antidorcas are 

likely to ingest higher levels of grit than animals feeding at higher levels, the inclusion of 
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grit during mastication has been linked to lower occlusal relief in herbivores (Kaiser et al. 

2013).  

Assuming mesowear is reflective of dietary preference and, therefore, vegetation cover, 

local variation is evident from the differential percentages of mesowear variables in 

members. Sterkfontein Member 5 and Swartkrans Member 1 are considered roughly 

contemporary but appear to display contrasting mesowear signals from Antidorcas. This 

could be highlighting local vegetation differences or be a reflection of biotic interactions 

and niche separation of Antidorcas populations (intra- or inter-specifically) at Sterkfontein 

and Swartkrans differentially. However, ‘Swartkrans Member 1’ contains material of 

unknown exact provenance (mixed from the lower bank and hanging remnant). When 

stratigraphically separated, Swartkrans Member 1 hanging remnant and Sterkfontein 

Member 5 West (c. 1.7-1.5 Ma) Antidorcas yields 100% low relief and rounded cusp 

dominance. Further, the slightly older Sterkfontein Member 5 East and Swartkrans Member 

1 lower bank Antidorcas, show low relief, rounded cusp dominance. This trend is evident 

from both upper and lower molars, apart from for Swartkrans Member 1 lower bank. 

Swartkrans Member 1 lower bank Antidorcas is dominated by high relief, sharp cusps from 

upper molars, reflective of a browse-dominated diet. The low relief and rounding of cusps 

suggests high abrasion, whilst the lower molars are more prone to blunting than upper 

molars, it only appears to be the case for Swartkrans Member 1 Lower Bank. This may 

suggest that Swartkrans M1 LB Antidorcas had a slightly greater browse component in the 

diet, with more woodland present during deposition of this Member.  

Mesowear signal through time when split by species 
The results here highlight the possibility of an averaged signal if using multiple species and 

the importance of accurate taxonomic identification prior to mesowear analysis, to prevent 

species/ dietary averaging skewing the palaeoenvironmental signal.  

Although species differences are apparent in mesowear variables, these differences are only 

significant for Swartkrans Member 2. If the species were indeed present at the same time, 

this may be reflective of increased character displacement of species, forcing species to 

specialise. Niche separation strategies of potential competitors emerge to ensure survival 

where resources are less readily available. Similar has been found in modern springbok, 

when compared to potentially competing gemsbok (Oryx gazella) in semi-desert conditions 

(Lehmann 2015). It is likely that each Antidorcas species adopts a slightly differing diet 

within a heterogeneous habitat landscape, such as is suggested for Swartkrans Member 2. 

However, the different Antidorcas species may not be contemporaneous but rather reflect 

different temporal populations, perhaps indicative of seasonal occupation according to 

preferred vegetation presence.  

Both A. recki and A. bondi show increased dietary abrasiveness for Swartkrans Member 2. 

Although they differ significantly from each other, both display rounded cusp shape and 

low occlusal relief, which is particularly unusual for the typically- browsing A. recki. 

Mesowear, as an averaged lifetime dietary signal here, may reflect the incorporation of a 

slightly greater grass/other abrasive component in the diet throughout the lifetime of the A. 
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recki and A. bondi individuals. This is reflective of the temporal range on a regional scale 

(rather than a local reflection of Swartkrans palaeoevegetation).  

Although often predominantly browsing within their mixed-feeding diet (as A. recki), 

modern Antidorcas will feed on fresh grasses following the rains, prior to grass lignification 

(Skinner and Louw 1996). If true also for the ancestral springbok (A. recki), this potential 

increase in grazing could reflect increased moisture during the temporal period of 

Swartkrans Member 2 accumulation, with the opportunistic increase in grass consumption.   

High occlusal relief and rounded cusps have been positively correlated with mean annual 

precipitation, water balance and humidity in a study by Kaiser and Schulz (2006), whilst 

low relief and blunt cusps were negatively correlated, implying that mesowear can be 

indicative of more than simply diet but also making the picture obtainable more complex to 

interpret.  

Table 8.34: Dominant (most frequently occurring) mesowear trait for each Antidorcas 
species through time. Abbreviations as follows: Provenance: SK= Sterkfontein, 
M=Member (with corresponding number or letter), K=Kromdraai, SKX=Swartkrans, 
G=Gondolin, CC=Cooper’s Cave, PL=Plovers Lake, CoH= Cave of Hearths, 
GL=Gladysvale. Mesowear categories: L=Low relief, H= High relief, S= Sharp cusps, 
R=Rounded cusps, B=Blunt cusps. Where mesowear variables have equal weighting, both 
are given here. Upper and lower refers to maxillary and mandibular dentition respectively. 
Green cells highlight abrasive diets, orange highlights attrition-dominated diets.  

Provenance 
A. recki A. bondi A. marsupialis 

Upper Lower Upper Lower Upper Lower 
SK M4 LR H/LS X LR X X 
KW LB LB X X HB X 
KE/D HR LS X X X X 
SK M5 LR LS/R LR LR LB LS 
SK M5E X LR X H/L R/S X X 
SK M5W LB LB/R LS/B LR X X 
SKX M1 LB LB X HR LB HR 
SKX M1 LB X LR X LR HB H/LS 
SKX M1 HR X X X LR X X 
KA LB LS LR LR/S X X 
GA X X X X LR/B X 
SKX M2 LS LR LR H/LR LB LR 
CC LB HS X X X X 
SKX M3 LS LR LR/B H/LR HR LR 
SK LC X X X LB X X 
SK PM6 X X LB X X X 
PL LB/S LS LB LB/R/S LR LS 
CoH X X LR HS H/LB LR 
GL X LR/S X X X X 

 

8.5 SUMMARY 

Problems with using the mesowear method to accurately reflect diet and 

palaeoenvironmental factors were found and many apparent contradictions in dietary signal 

arose. The method was tested further with a few small experiments (Appendix A7)  and 

creating additional categories to incorporate the range of variation indicative of mixed-

feeding practices as far as possible and to seek the source of error. Further mesowear 

categories would be beneficial for future studies, including a ‘medium relief’ category as 

well as categories beyond relief and cusp shape.  
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In spite of the issues found, the following palaeodietary indicators were apparent: 

- Consistent with previous studies (e.g. Fortelius and Solounias 2000; Kaiser and Schulz 

2006; Blondel et al. 2010), upper molars presented a greater browsing signal than lower 

molars, lower molars tended towards blunting.  

-Swartkrans Member 2 (c. 1.7 Ma) shows dietary deviation from typical Antidorcas 

palaeoecology.  

-Swartkrans Member 2 shows more grazing/ abrasion dominated diets than indicated by 

other methods (e.g. microwear, see chapter 9), which emphasise a stronger browsing 

component. This may reflect the grazing diet of A. bondi (mesowear) which dominates the 

Swartkrans Member 2 assemblage, yet A. bondi may become reliant on fallback foods of 

increased browse prior to death (DMTA, see next chapter).  

-A. bondi displays more variation in new mesowear scores through time than any other 

Antidorcas species. This is unexpected from morphological indicators that would suggest 

stronger selection pressure towards grazing for A. bondi than for the other, mixed feeding 

Antidorcas species.  

- By Cave of Hearths deposition (c. 0.6 Ma), A. bondi displays fewer incidences of grazing, 

with a greater prevalence of high occlusal relief and sharp cusps. This result may be slightly 

skewed by the increased incidence of younger individuals (in spite of very young and very 

old being excluded from the analysis). 

- Antidorcas shows a tendency towards low relief, possibly indicative of low-level feeding 

and the inclusion of grit during mastication, and/or a highly abrasive diet. No directional 

dietary transition through time is apparent for the Antidorcas genus as a whole or when 

considered as separate species (Table 8.11; Table 8.25; Table 8.33). 

- A. recki (maxillary and mandibular dentition alike) display low relief and sharp cusps as 

the dominant mesowear signal, indicating a mixed-feeding to browsing diet.  

- A. bondi (maxillary and mandibular dentition alike) display low relief and rounded cusps 

as the dominant mesowear signal, indicating a grazing to mixed-feeding diet. 

- Fossil A. marsupialis (maxillary and mandibular dentition alike) display almost equal high 

and low relief, with a slight dominance of low relief. Sharp cusps prevail for maxillary 

molars, while mandibular molars tend towards rounding.  

 

 

 

CHAPTER 9 

DMTA: Microwear 
9.1 INTRODUCTION 

Microscopic use-wear scars left on Antidorcas dental enamel surfaces, by vegetation 

consumed during the last few days/weeks of the animals’ life, are explored in this chapter. 

Microwear initially indicates the animals’ ecological position along a grazing to browsing 

dietary spectrum. This is achieved via the microscopic wear patterns caused by food 



 

291 

 

particles (grass/browse) dragged across the occlusal surface of the tooth during mastication 

(Solounias et al. 1988; Teaford 1988; Solounias and Moelleken 1993; Grine et al. 2002; 

Figure 4.19). As with mesowear, exogenous particles, such as dust and grit undoubtedly 

play a part (e.g. Wood 2013), although the impact of such particles appear relatively minor 

(Merceron et al. 2016). The dental microwear texture analysis (DMTA) approach used here 

enables a deeper insight into the feeding habits of Antidorcas, beyond that of simply 

grazing versus browsing diets (see chapter 4).  

In this chapter, the development of the DMTA method, and its use in palaeoenvironmental 

reconstruction and palaeoecological contexts will be discussed. Subsequently, this 

method’s application to South African Antidorcas is analysed and evaluated. The impact of 

individual animal preference is considered initially to explore how the method can inform 

on diet; and subsequently ensure conclusions regarding Antidorcas palaeoecology, 

palaeovegetation and palaeoenvironment are as reflective of these factors as possible. 

Antidorcas, as a genus, is then used to evaluate palaeovegetation change through time (with 

cave deposit members ordered chronologically; relative chronology is outlined in chapters 2 

(Table 2.2) as evidenced by DMTA. The Antidorcas dataset is then split specifically to 

assess Antidorcas species palaeoecology and any species-level dietary change through time. 

These trends are contrasted against the supplementary obligate-grazing and obligate-

browsing species from modern contexts and from each member (where present) to establish 

the grazing-browsing parameters for each DMTA variable.   

9.2 RESULTS 

DMTA data was initially subject to non-parametric statistical analysis tests due to being not 

normally distributed and having only small sample sizes for each species in each member 

(Francisco et al. 2018). To correlate with published microwear results more closely 

parametric tests (one-way ANOVA with post-hoc Tukey’s HSD and Fisher’s LSD tests) 

were also performed on rank-transformed microwear variables. This is done once to 

establish species dietary differences and a second time to understand dietary differences 

(for all Antidorcas species combined) between members. The method and its analysis are 

continually being tested and refined (e.g. Francisco et al. 2018; Ramdarshan et al. 2016, 

2017; Merceron et al. 2010, 2018) and it is worth using multiple statistical approaches in 

this instance to ensure sufficient accuracy and repeatability. 

The sample of ‘A. australis’ (see chapter 4 ‘DMTA’) has considerable intra-specific 

variation (standard deviation) and much higher Smc values than the other species (Table 

9.2). Standard deviation (SD) in Smc shows great variability for Swartkrans Member 2 

(Table 9.4). 

In the following Tables and Figures, provenance member deposits are separated as far as 

possible based on the information available, for instance, Swartkrans Member 1 material 

unable to be distinguished to either Member 1 lower breccia or hanging remnant, was 

combined as ‘Member 1’. This was due to the ongoing curation of the material and lack of 

time to personally investigate this specific provenance data further whilst in South Africa. It 

is acknowledged that this is likely to average and confuse the signal for this time period, 

with future work advised to seek this provenance information where available. 
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9.2.1 Modern Antidorcas 
In order to accurately interpret results of the fossil enamel surfaces it is useful to establish 

expected parameters from a known modern subset.  

Tables giving the descriptive statistics for modern A. marsupialis DMTA and summary 

DMTA statistics for A. marsupialis according to known sex, separated to assess dietary 

sexual dimorphism is included in Antidorcas summary chapter (Chapter 6, Table 6.13 and 

6.14).  

Table 9.1 summarises the mean values for each DMTA variable for taxa belonging to the 

major feeding categories. Modern Antidorcas marsupialis mean values are indicative of 

browse-dominated mixed-feeding dietary parameters. Minimal dietary sexual dimorphism 

is apparent from DMTA variables. High Tfv values and a wide range of Tfv values are 

shown by modern A. marsupialis, indicative of mixed-feeding diets.  

The browsing component of modern A. marsupialis’ diet may be vulnerable to being 

overemphasised via DMTA variables. This is because although springbok do browse, they 

do so primarily following the rains, feeding on new shoots prior to lignification (Skinner 

and Louw 1996). Newer grasses have been shown to leave only trace microwear signals, 

compared to mature grasses (Massey et al. 2008; Francisco et al. 2018).  

When extrapolating back to fossil Antidorcas, C3 grasses (indicative of closed habitats) are 

believed to leave finer scratches on the dental enamel surface than C4 grasses (indicative of 

more open habitats). This is due to the high phytolith content and comparative coarseness 

of C4 grasses compared to C3 grasses. As introduced earlier (see chapter 4), the possibility 

exists that the finer C3-induced scratches will be overwritten more easily and regularly 

(Solounias and Semprebon 2002) for fossil Antidorcas than would be true for obligate 

grazers (who would typically favour C4 grasses), masking the grazing element of 

Antidorcas’ palaeodiet.  

However, as Antidorcas palaeoecology is not the primary research objective here, but rather 

used as an indication of palaeovegetation and palaeoenvironmental conditions, the 

difference between C3 (closed habitats, wetter conditions) and C4 (open habitats, more arid 

conditions) dominance should still be apparent via fossil Antidorcas diet. The difference 

would be visible through a divergence of browsing (indicative of more closed C3 habitats) 

and grazing (indicative of more open C4 habitats), irrespective of whether Antidorcas 

consumes grasses growing in closed habitats.  
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Table 9.1: Microwear values for modern species of known diet. Data for Alcelaphus buselaphus, Cephalophus sylvicultor, Giraffa Camelopardalis and Syncerus caffer supplied by 
Dr Gildas Merceron from the data set owned by the Laboratoire du Paléontologie, Évolution, Paléoécosystems, Paléoprimatologie (PALEVOPRIM), Université de Poitiers (2018). 

Species Diet N Mean Asfc(1om) 
Mean epLsar 

(1.80µmx10
-3

) 
Mean HAsfc 9cell Mean HAsfc 81cell Mean Tfv (µm³) Mean Smc 

 Alcelaphus buselaphus   Grazer 27 1.58 6.04 0.33 0.58 41469.52 0.52 

 Syncerus caffer   Grazer 35 1.56 5.26 0.32 0.58 35647.17 0.39 

 Cephalophus sylvicultor   Fruit browser 28 3.84 3.11 0.34 0.61 34675.67 0.49 

 Giraffa camelopardalis   Leaf browser 15 2.03 1.81 0.40 0.68 24860.20 0.49 
 

9.2.2 Fossil Antidorcas 
Table 9.2: Summary dental microwear texture parameter statistics. Mean (M), standard deviation (SD) and standard error of the mean (SEM) for each Antidorcas species. 
Antidorcas sp. refers to those identifiable only to genus level. F=Fossil, M=Male.  

Species N 
  Asfc   epLsar (x10

-3
)   HAsfc 9  HAsfc 81   Tfv2   Smc 

M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM 

Fossil 
  Antidorcas sp. 24 7.25 6.73 1.37 2.24 1.68 3.42 0.53 0.33 0.07 0.83 0.44 0.09 40494.50 10197.97 2081.65 0.14 0.19 0.04 
  A. recki 26 5.81 3.85 0.75 2.68 1.80 3.53 0.49 0.47 0.09 0.86 0.57 0.11 43549.07 7086.40 1389.76 0.17 0.12 0.02 
  A. bondi 44 5.51 4.07 0.61 2.86 1.77 2.67 0.47 0.32 0.05 0.83 0.44 0.07 40880.83 9408.36 1418.36 0.21 0.45 0.07 
  A. marsupialis 30 5.15 4.35 0.79 2.89 1.64 0.30 0.44 0.26 0.05 0.73 0.34 0.06 38808.41 9916.63 1810.52 0.13 0.07 0.01 
  ‘A. australis’ 10 5.48 5.84 1.85 3.40 2.00 6.34 0.56 0.32 0.10 1.04 0.64 0.20 48927.53 8373.22 2647.85 10.05 23.75 7.51 

Modern 
  A. marsupialis 43 4.10 3.94 0.60 3.43 1.70 2.59 0.54 0.33 0.05 1.02 0.62 0.09 42010.27 11510.90 1755.40 0.19 0.23 0.04 
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Table 9.3: DMTA descriptive statistics (N=number of individuals; M=mean; SD=standard deviation; SEM=standard error of the mean) for the Antidorcas genus for each time 
period, as represented by the provenance cave deposit Member. SK=Sterkfontein (*unstrat=unstratified); K=Kromdraai; SKX=Swarkrans; GD=Gondolin; CC=Cooper’s Cave; 
CoH=Cave of Hearths. Variables measured in µm. 

Provenance N 
  Asfc epLsar (x10

-3
) HAsfc 9     HAsfc 81   Tfv2   Smc 

M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM M SD SEM 

  Sk M 4 8 9.22 2.28 0.8 1.57 1.06 0.38 0.43 0.25 0.09 0.89 0.44 0.16 43417.93 6282.11 2221.06 0.16 0.11 0.04 

  Sk M5 6 2.15 0.82 0.34 2.83 1.74 0.71 0.23 0.08 0.03 0.55 0.2 0.08 44286.88 7285.16 2974.15 0.47 0.37 0.15 

  Sk unstrat. 2 2.09 0.49 0.35 4.48 1.71 0.90 1.11 0.85 0.60 1.71 1.22 0.86 43041.72 3335.89 2358.83 0.13 0.00 0.00 

  KA 11 5.49 5.05 1.52 3.67 2.49 0.75 0.42 0.26 0.08 0.77 0.41 0.12 44897.53 10831.12 3265.71 2.49 7.83 2.36 

  KW 7 2.32 1.01 0.38 4.12 1.85 0.70 0.36 0.13 0.05 0.6 0.13 0.05 42725.21 4445.80 1680.35 0.18 0.08 0.03 

  KE 2 3.42 2.31 1.64 3.02 0.84 0.59 0.55 0.02 0.01 1.35 0.82 0.58 43157.25 4950.41 3500.47 0.14 0.09 0.07 

  SKX M1 9 2.52 1.07 0.36 3.48 1.28 0.43 0.61 0.29 0.10 0.92 0.56 0.19 39596.73 8653.96 2884.65 0.08 0.02 0.01 

  SKX M2 48 7.17 5.82 0.84 2.08 1.37 0.20 0.45 0.21 0.03 0.74 0.26 0.04   4.956.74 10199.82 1472.22 1.65 10.59 1.53 

  SKX M3 12 3.79 3.44 0.99 2.96 1.76 0.51 0.41 0.14 0.04 0.7 0.23 0.07 40147.62 8847.75 2554.13 0.36 0.84 0.24 

  GDA 1 3.7   x   x 1.87   x   x 0.15   x   x 0.52   x   x 45289.08   x   x 0.74   x   x 

  CC 3 3.76 1.19 0.69 3.76 2.87 1.20 0.98 1.36 0.79 1.21 1.48 0.85 47510.96 14611.90 8436.18 0.09 0.03 0.02 

  CoH 24 6.96 4.23 0.86 2.98 1.83 0.37 0.61 0.42 0.09 1.03 0.57 0.12 38984.13 10553.30 2154.18 0.14 0.11 0.02 
Table 9.4: Descriptive statistics (M=mean, SD=standard deviation, SEM=standard error of the mean) for dental microwear variables for each species (Antidorcas and 
supplementary) in each deposit. Modern data for Alcelaphus buselaphus, Cephalophus sylvicultor, Giraffa Camelopardalis and Syncerus caffer supplied by Dr Gildas Merceron 
from the data set owned by the Laboratoire du Paléontologie, Évolution, Paléoécosystems, Paléoprimatologie (PALEVOPRIM), Université de Poitiers (2018). Variables measured 
in µm. 

Provenance and 

Species  
N 

  Asfc epLsar (x10-3)   HAsfc 9   HAsfc 81 Tfv2   Smc   

  M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M   SD   SEM   M   SD 

  

SEM 

 Sterkfontein Member 4 
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Provenance and 

Species  
N 

  Asfc epLsar (x10-3)   HAsfc 9   HAsfc 81 Tfv2   Smc   

  M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M   SD   SEM   M   SD 

  

SEM 

 A. recki 8 9.22 

2.2
8 0.80 

1.5

7 

1.0
6 0.38 

0.4

3 

0.2
5 0.09 

0.8

9 

0.4
4 0.16 

43417.9

3 6282.11 2221.06 0.16 0.11 0.04 

 T.strepsiceros 1 2.03   x   x 
3.3

3   x   x 
0.3

9   x   x 
0.6

0   x   x 
37559.1

3   x   x 0.13   x   x 

 D.pygargus 1 1.90   x   x 
3.2

1   x   x 
0.2

7   x   x 
0.6

0   x   x 
34761.5

5   x   x 0.21   x   x 

 M.broomi 2 1.44 

0.5
8 0.41 

2.0

8 

1.5
9 1.12 

0.4

3 

0.1
7 0.12 

0.6

9 

0.2
5 0.17 

45141.5

6 2247.15 1588.97 0.60 0.10 0.07 

 Sterkfontein Member 5 

 A.bondi 5 2.34 

0.7
5 0.33 

2.3

5 

1.4
2 0.64 

0.2

5 

0.0
7 0.03 

0.5

9 

0.1
8 0.08 

45912.4

4 6820.81 3050.36 0.36 0.28 0.13 

 D.pygargus 2 4.89 

3.4
3 2.43 

3.7

3 

3.5
5 2.51 

0.5

4 

0.1
9 0.14 

0.6

8 

0.1
6 0.12 

47498.6

2 6947.57 4912.68 0.14 0.09 0.07 

 Sterkfontein unstratified 

 D.pygargus 6 3.52 

1.2
2 0.50 

2.6

3 

0.9
0 0.37 

0.5

3 

0.1
8 0.07 

0.7

9 

0.2
1 0.09 

37618.8

4 6969.76 2845.39 0.14 0.07 0.06 

 Kromdraai A 

 A.recki 3 7.21 

7.6
4 4.41 

1.0

8 

0.0
6 0.37 

0.2

8 

0.0
4 0.02 

0.5

6 

0.1
7 0.17 

44950.5

5 8058.52 4652.59 0.22 0.13 0.07 

 A.bondi 5 5.63 

5.2
8 2.36 

5.1

1 

2.2
3 1.00 

0.3

9 

0.2
2 0.10 

0.6

3 

0.2
0 0.09 

42470.0

0 

12442.9
6 5564.66 0.09 0.03 0.01 

 ‘A.australis’ 3 3.53 

1.7
7 1.02 

3.8

5 

2.3
2 1.34 

0.6

2 

0.3
8 0.22 

1.2

2 

0.5
4 0.31 

48890.4

0 

13165.1
5 7600.9 8.75 

15.0
2 8.67 

 Kromdraai W 

 A.recki 6 2.35 

1.1
0 0.45 

4.6

0 

1.4
7 0.60 

0.3

5 

0.1
4 0.06 

0.6

2 

0.1
4 0.06 

43660.1

5 4046.67 1652.04 0.19 0.09 0.04 



 

296 

 

Provenance and 

Species  
N 

  Asfc epLsar (x10-3)   HAsfc 9   HAsfc 81 Tfv2   Smc   

  M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M   SD   SEM   M   SD 

  

SEM 

 A.marsupialis 1 2.14   x   x 
1.2

2   x   x 
0.4

6   x   x 
0.4

8   x   x 
37115.5

4   x   x 0.13   x   x 

 D.pygargus 3 2.89 

0.6
1 0.35 

4.2

5 

0.7
2 0.42 

0.3

4 

0.0
8 0.04 

0.5

3 

0.1
9 0.11 

37028.6

5 

16880.8
9 9746.19 0.35 0.30 0.17 

 T.strepsiceros 1 0.75   x   x 
2.5

6   x   x 
0.1

1   x   x 
0.2

7   x   x 1598.83   x   x 0.53   x   x 

 Kromdraai E 

 A.recki 1 5.06   x   x 
3.6

1   x   x 
0.5

7   x   x 
1.9

4   x   x 
39656.7

8   x   x 0.07   x   x 

 A.marsupialis 1 1.79   x   x 
2.4

3   x   x 
0.5

4   x   x 
0.7

7   x   x 
46657.7

1   x   x 0.21   x   x 

 D.pygargus 1 2.33   x   x 
2.1

5   x   x 
0.6

3   x   x 
0.6

0   x   x 
41787.7

0   x   x 0.07   x   x 

 Swartkrans Member 1 

 A.recki 2 2.71 

0.6
8 0.48 

3.2

4 

1.1
1 0.79 

0.8

1 

0.1
5 0.11 

0.7

8 

0.1
3 0.09 

32937.6

5 2796.05 1977.11 0.07 0.00 0.00 

 A.marsupialis 3 2.11 

1.0
9 0.63 

3.2

2 

2.1
6 1.25 

0.6

6 

0.3
8 0.22 

0.9

3 

0.5
0 0.29 

39288.0

6 9993.49 5769.74 0.09 0.03 0.02 

 ‘A.australis’ 3 2.85 

1.6
4 0.95 

3.7

8 

0.9
5 0.55 

0.5

4 

0.2
9 0.17 

1.1

3 

0.9
2 0.53 

46494.0

2 7691.11 4440.47 0.07 0.00 0.00 

 D.pygargus 2 2.75 

0.9
9 0.70 

3.5

1 

0.3
8 0.27 

0.7

5 

0.1
5 0.11 

1.9

9 

0.7
0 0.49 

50324.2

4 

15067.0
2 

11035.8
3 0.17 0.05 0.04 

 Swartkrans Member 2 

 A.bondi 
2
3 5.91 

4.2
7 0.89 

2.2

6 

1.1
7 0.24 

0.3

9 

0.1
6 0.03 

0.7

2 

0.2
0 0.04 

40835.7

4 

10252.3
2 2137.76 0.13 0.08 0.02 

 A.marsupialis 3 3.98 

2.0
2 1.16 

2.5

3 

0.9
3 0.54 

0.2

7 

0.0
6 0.04 

0.5

2 

0.1
0 0.06 

36061.4

5 3539.12 2043.31 0.17 0.12 0.07 
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Provenance and 

Species  
N 

  Asfc epLsar (x10-3)   HAsfc 9   HAsfc 81 Tfv2   Smc   

  M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M   SD   SEM   M   SD 

  

SEM 

 ‘A.australis’ 3 
11.6

3 

8.0
0 4.62 

2.5

0 

3.1
6 1.83 

0.6

3 

0.4
1 0.23 

0.9

6 

0.7
0 0.40 

49472.0

2 7549.82 4358.89 
24.5

6 

42.4
0 24.48 

 Swartkrans Member 3 

 A.recki 2 7.28 

0.0
7 0.05 

1.2

0 

1.5
6 1.10 

0.4

0 0 0 
0.7

6 

0.1
9 0.13 

45978.7

7 2557.37 1808.33 0.07 0.00 0.00 

 A.bondi 1 1.44   x   x 
3.3

9   x   x 
0.2

7   x   x 
0.4

4   x   x 
33149.0

2   x   x 3.00   x   x 

 A.marsupialis 7 3.52 

3.9
0 1.47 

3.4

6 

1.9
1 0.72 

0.4

7 

0.1
5 0.06 

0.7

2 

0.2
6 0.10 

38077.6

2 8881.2 3356.78 0.09 0.03 0.01 

 ‘A.australis’ 1 0.82   x   x 
3.5

9   x   x 
0.2

1   x   x 
0.4

8   x   x 
54705.9

5   x   x 0.41   x   x 

 D.pygargus 3 1.46 

0.0
4 0.02 

2.3

4 

0.6
0 0.35 

0.2

3 

0.0
3 0.02 

0.5

2 

0.0
6 0.03 

35044.7

5 8309.96 4797.76 0.31 0.31 0.18 

 Cave of Hearths 

 A.bondi 9 7.06 

3.3
6 1.12 

3.2

8 

2.1
9 0.73 

0.8

8 

0.4
7 0.16 

1.4

0 

0.6
5 0.22 

38198.9

7 7285.32 2428.44 0.09 0.03 0.01 

 A.marsupialis 
1
3 7.33 

4.9
9 1.39 

2.6

8 

1.6
8 0.47 

0.4

5 

0.3
1 0.09 

0.7

9 

0.4
1 0.11 

37852.9

7 

12488.2
6 3463.62 0.14 0.08 0.02 

 Gondolin GDA 

 A. marsupialis 1 3.70   x   x 
1.8

7   x   x 
0.1

5   x   x 
0.5

2   x   x 
45289.0

8   x   x 0.75   x   x 

 D. pygargus 2 2.15 

0.4
0 0.28 

6.8

1 

1.2
0 0.85 

0.3

2 

0.1
1 0.08 

0.5

5 

0.0
6 0.04 

30466.4

3 4800.97 3394.8 0.35 0.08 0.05 

 Cooper’s Cave 

 A.recki 3 3.76 

1.1
9 0.69 

3.7

6 

2.0
9 1.20 

0.9

8 

1.3
6 0.79 

1.2

1 

1.4
8 0.85 

47510.9

6 14611.9 8436.18 0.09 0.03 0.02 
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Provenance and 

Species  
N 

  Asfc epLsar (x10-3)   HAsfc 9   HAsfc 81 Tfv2   Smc   

  M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M 

  

SD 

  

SEM   M   SD   SEM   M   SD 

  

SEM 

 Modern 

 Alcelaphus buselaphus 
2
7 1.58 

0.7
4 0.14 

6.0

4 

1.7
9 0.34 

0.3

3 

0.2
1 0.04 

0.5

8 

0.2
3 0.04 

41469.5

2 11525.5 2218.08 0.52 0.40 0.08 
 Cephalophus 
sylvicultor 

2
8 3.84 

3.1
1 0.59 

3.1

1 

1.7
6 0.33 

0.3

4 

0.1
3 0.02 

0.6

1 

0.2
0 0.04 

34675.6

7 

10382.2
4 1962.06 0.49 0.58 0.11 

 Giraffa camelopardalis 
1
5 2.03 

0.9
1 0.24 

1.8

1 

1.2
5 0.32 

0.4

0 

0.0
9 0.34 

0.6

8 

0.5
1 0.13 24860.2 

17714.5
2 4573.87 0.49 0.55 0.14 

 Syncerus caffer 
3
5 1.56 

0.8
6 0.15 

5.2

6 

2.3
7 0.40 

0.3

2 

0.1
9 0.03 

0.5

8 

0.2
9 0.05 

35647.1

7 

12739.7
7 2153.41 0.39 0.20 0.03 

 Damaliscus pygargus 
1
4 2.99 

1.8
0 0.48 

3.8

0 

2.0
0 0.53 

0.5

3 

0.3
7 0.10 

1.0

3 

0.5
8 0.15 

40671.1

3 9849.84 2632.48 0.16 0.11 0.03 

 Antidorcas marsupialis 
4
2 3.99 

3.9
1 0.60 

3.4

0 

1.7
0 0.26 

0.5

5 

0.3
3 0.05 

1.0

3 

0.6
2 0.10 

41807.9

1 

11572.7
5 1785.71 0.19 0.23 0.04 



 

299 

 

 
Figure 9.1: Biplots (Asfc on X axis vs epLsar on Y axis) of modern ruminants (obligate grazers and obligate browsers) and extinct species of Antidorcas from South African Cradle 
of Humankind sites (Figure adapted from Sewell et al. 2019).   
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As found via traditional microwear methods by Solounias and Semprebon (2002), browse-

dominated mixed feeders plot within the browsing eco-space and graze-dominated mixed-

feeders within the grazing eco-space (Figure 9.1). Mixed-feeding may be identified via a 

biplot such as Figure 9.1, considering these two textural parameters (Asfc and EpLsar) but 

need to be explored further to understand the nature of the ‘mixed-feeding’ dietary 

practices.  

The sampled modern ‘mixed-feeding’ species of A. marsupialis is actually shown to be 

more reliant on browse (Figure 9.1). As this biplot is an oversimplification, individuals that 

fall into this eco-space between grazers and browsers but within modern ranges of 

either/both, require consideration of all DMTA parameters (beyond Asfc versus epLsar) to 

accurately assess their palaeoecology.  

9.2.2.1 Individual Animal Variation 
DMTA signals from a few selected individuals are evaluated here to assess the degree of 

individual animal variation within the sample. Figure 9.1 highlights how individual 

variation can skew the overall species dietary signal. A mixed-feeding species may be a 

collection of grazers and browsers, or a group of mixed-feeding individuals, alternating 

between graze (old/new grass shoots of varying heights) and browse (fruit and/or leaf 

browsers) on a daily or seasonal basis.  

Sterkfontein Member 5 [c. 1.7-0.8 Ma] 
Two individuals with ‘clear microwear signals’ (‘clear’ from the photosimulations 

produced via the LeicaMap microwear analysis software) are evaluated here to understand 

the detail available from DMTA. 

SF992: Antidorcas bondi ‘grazer’ 

 
Figure 9.2: Typical grazing signal photosimulation and textural scale for SF 992, right M2 

paracone. Sterkfontein Member 5 Antidorcas bondi. 
The paracone of SF 992 (Figure 9.2) shows low complexity (2.31µm Asfc), within the 

range of grazing bovids but also low anisotropy (2.90 x 10-3 µm epLsar), and relatively high 

heterogeneity (9 cell= 0.41µm; 81 cell=0.59µm HAsfc) (at a relatively fine scale, 

Smc=0.30µm), showing SF 992 to be within the range of a mixed feeder.  
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Figure 9.3: Photosimulation and textural scale for SF 992 right M2 protocone. Sterkfontein 
Member 5 Antidorcas bondi. 
The protocone of SF 992 however, shows a clear grazing signal, with low complexity 

(1.67µm Asfc) and high anisotropy (7.80 x10-3µm epLsar) but with relatively high 

heterogeneity (9 cell= 0.49µm; 81 cell=0.83µm HAsfc) (at a mid-range scale, 

Smc=0.41µm). Consideration of the facets used has been addressed by Ramdarshan et al. 

(2016, 2017), which underpinned the choice of facets used in this study. Only protocones 

(upper molars) and protoconids (lower molars) were combined for analysis, paracones from 

the same individuals were scanned but their values were not taken forward for analysis at 

this point (due to the combined protocone/protoconid samples yielding a larger dataset). 

The paracone is perhaps reflective of a slightly longer timeframe (days-weeks) than the 

protocone (hours-days) (Danowitz et al. 2016). For the paracone, throughout subsequent 

mastication on food particles, the browsing signals (e.g. deep pits) tend to preserve longer 

than the grazing (e.g. fine scratches) because they leave a greater scar on the enamel 

surface. That the paracone shows a mixed feeding signal and the protocone a grazing signal 

perhaps indicates the inclusion of browse in the diet less recently than grass consumption. 

This highlights the merits of using DMTA rather than simple microwear (2D) analysis, 

which would categorise this individual as a grazer, based on the scratches in this image, 

without fully examining the intricacies that dental microwear variables can inform on for 

intra-specific and individual animal palaeoecology.  

As discussed in the introduction to DMTA (chapter 4), the concept of overwriting links to 

the abrasiveness of the diet. More abrasive diets are more regularly overwritten (Schulz et 

al. 2013), further making grazing signal more susceptible to overwriting.  

SF 890: Antidorcas bondi ‘mixed-feeder’ 
Zinv-SF890-lm2-dex-ptcd-db
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Figure 9.4: Typical browsing signal photosimulation and textural scale for SF 890 right 
M2. Sterkfontein Member 5, Antidorcas bondi.  
SF 890 shows low complexity (1.564µm) and low anisotropy (1.87x10-3µm), placing it 

within the bottom left corner of a biplot of Asfc against epLsar (Figure 9.4) Taken together 
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with the heterogeneity values (9 cell= 0.19µm, 81 cell=0.47µm) at a relatively coarse scale 

(Smc 0.83µm), this is a typical mixed-feeding DMTA signal.  

Swartkrans Member 1 [c. 2.0-1.4 Ma] 
SKX 12067: Antidorcas bondi ‘Variable grazer’ 

 

 
Figure 9.5: Photosimulation and textural scale for SKX 12067 paracone (top image) and 
protocone (lower image). 
SKX12067 protocone has low complexity (2.52µm) but also low anisotropy (4.38x10-3µm). 

Heterogeneity values are moderately low (9 cell= 0.28µm, 81 cell=0.45µm) at a fine scale 

(Smc 0.07µm), SKX12067 has mixed-feeding DMTA values, tending towards grazing.  

Swartkrans Member 2 [c. 1.7-1.07 Ma] 
SK 10555: Antidorcas sp. ‘mixed feeder’. 

 
Figure 9.6: Photosimulation and textural scale for SK 105555 protocone. 
SK 10555 shows low complexity (2.36µm) but also low anisotropy (1.62x10-3µm). 

Heterogeneity values are relatively high (9 cell= 0.49µm, 81 cell=0.74µm) at a fine scale 

(Smc 0.07µm), SK 11073 displays mixed-feeding DMTA values.  
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Figure 9.7: Photosimulation and textural scale for SK 10555 paracone. 
 

SK 11073: Antidorcas recki ‘browser’ 

 
Figure 9.8: Photosimulation and surface image of SK 11073 protocone. 
SK 11073 shows fairly high complexity (4.21µm) and low anisotropy (3.52x10-3µm). 

Taken with moderate heterogeneity values (9 cell= 0.34µm, 81 cell=0.56µm) at a relatively 

fine scale (Smc 0.13µm), SK 11073 yields a browsing DMTA signal.  

 

9.2.2.2 Change Through Time 
Having established the level of detail achievable for individual animals from DMTA, 

specimens are grouped together to establish trends through time where possible, to inform 

on Antidorcas species palaeoecology and palaeoenvironmental patterns for the South 

African Plio-Pleistocene.  

Interestingly, no significant differences were found between Antidorcas species (comparing 

each species, averaged, for the entire time period) for any microwear variable. This enabled 

them to be grouped as a genus to evaluate change through time. All Antidorcas species 

microwear variables were evaluated through time with non-parametric statistical analysis, 

using a kruskal-Wallis test (significance set to <0.05) with post-hoc Mann-Whitney U and 

Bonferroni adjustment (significance set at <0.001). Significant differences between 

provenance were found for Asfc (p<0.000), epLsar (p=0.003), HAsfc (9cell) (p=0.038) and 

Smc (p=0.012). No significant differences through time were found for any microwear 

variables for the extreme grazers (Damaliscus pygargus) or browsers (Tragelaphus 

strepsiceros). Although the data is not normally distributed for all microwear variables, 

data was rank transformed and parametric tests were calculated for comparison (see chapter 
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4 ‘DMTA’). The same significant differences were found using parametric ANOVA and 

post-hoc LSD and HSD tests. 
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Figure 9.9: Dental microwear texture variables (A-F) through time (based on relative 
dates, given in chapter 3) for Antidorcas (combined as a genus). The horizontal line 
demarcates the relevant modern A. marsupialis value to visualise the past variation 
compared to modern values. 



 

307 

 

Direction of change 
Post-hoc Mann-Whitney U tests revealed significance for Asfc between Sterkfontein 

Member 4 (N=8; rank mean=9.22 µm and Swartkrans Member 1 (N=9; rank 

mean=2.52µm) (p=0.001), Sterkfontein Member 4 and Kromdraai W (N=7; mean=2.31µm) 

(p=0.001) and Modern (N=43; mean=4.10µm) (p<0.000). Significant differences were also 

found for Asfc between Swartkrans Member 1 (N=9; mean=2.52µm) and Cave of Hearths 

(N=24; mean=6.96µm) (p=0.001); between Cave of Hearths and moderns (p=0.000) and 

between Swartkrans Member 2 (N=48; mean=7.17µm) and Modern (p=0.001). The only 

significant difference for epLsar was found between Swartkrans Member 2 (n=48, 

mean=2.08µm) and Moderns (n=43, mean=3.43µm) (p<0.000).  

Although Antidorcas species combined through time showed no inter-specific differences, 

when considering each Antidorcas species separately through time (by provenance), A. 

recki (Asfc (p=0.013) and epLsar (p=0.036)) and A.bondi (Asfc (p=0.043), HAsfc (9cell) 

(p=0.018) and (81cell) (p=0.031) and Smc (p=0.004)) showed significant differences. No 

significant differences were found for A. marsupialis microwear variables through time.  

Antidorcas species differences 
A. recki had significantly different Asfc values from Sterkfontein Member 4 (N=8, 

mean=9.22 µm) to Kromdraai W (N=6, mean=2.35µm) (p=.003). Significant differences 

are further detailed in Table 9.5. A. bondi showed significant differences through time for 

Asfc (p=.043), HAsfc (9 cell (p=.018) and 81 cell (p=.03)) and Smc (p=.004).  
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Figure 9.10: Mean complexity (Asfc) (upper image) and mean anisotropy (epLsar) (lower 
image) through time (by provenance with oldest deposits on the left, to the youngest on the 
right) for A. recki. 
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Table 9.5: DMTA variable pairwise comparisons significant differences for A. bondi (green text) and A. recki (red text) according to provenance member. The more conservative 
(HSD) appear in bold text above the diagonal and the least conservative (LSD) in regular text below the diagonal. 
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Figure 9.11: Mean ranks for Asfc (left) and Smc (right) for A. bondi through time (by 
provenance along the Y axis from the oldest deposits on the left, to the youngest deposits on 
the right) to show the general trend through time. Values are not indicative of variables, 
only the trend line is of importance. 

 

Figure 9. 12: Mean ranks of heterogeneity of dental microwear scarring (HAsfc) for A. 
bondi through time (provenance) along the Y axis, at differing scales (9cell (left) and 81cell 
(right)) to show the general trend through time. Values are not indicative of variables, only 
the trend line is of importance. 
 
Only Swartkrans Member 2 showed significant differences in microwear variable HAsfc 

(9cell) between Antidorcas species (p=0.031). This difference in heterogeneity could lend 

support to some degree of increased habitat heterogeneity in Swartkrans Member 2. A. 

bondi shows significantly more complex surface wear (Asfc) in Swartkrans Member 2 

(mean=2.34µm) than in the earlier, Sterkfontein Member 5 (mean=5.91µm) deposits.  

To examine the extent to which individual animal preference may be impacting upon the 

mean signal, a selection of individuals that have been analysed on an individual animal 

basis were included. These individuals were the ‘potential Antidorcas australis’ individuals 

detailed in chapter 4 and analysed in chapter 6, used here as a convenient subset from 

which to test individual animal DMTA signals. The difference found for Swartkrans 

Member 2 was between A. marsupialis and Antidorcas sp. (p=0.017); A. marsupialis and 

‘A. australis’ (p=0.044); A. bondi and Antidorcas sp. (p=0.036).  

Although ‘A. australis’ appears to group here, when considering these specimens as 

individuals (rather than the collective mean values), there is considerable variability and 

overlap between fossil A. marsupialis and ‘A. australis’. Moreover, only one (and at only 

one scale) of many microwear variables shows any significant difference. This suggests 

perhaps a population (with the possibility of no temporal overlap), dietary difference within 

the assemblage at Swartkrans Member 2, rather than a major dietary indicator warranting 
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the need to revisit species identification. The range of variation shown here is reflective of 

‘A. australis’ consisting of a combination of the other fossil Antidorcas species, as outlined 

in chapter 6.  

 
Figure 9.13: Box and whisker plot showing the range of variation for heterogeneity (HAsfc 
3x3; 9 cell) for Antidorcas species present in Swartkrans Member 2. Although fossil A. 
marsupialis has a very small range, it falls within the range of ‘A. australis’. ‘A. australis’ 
overlaps in range with all other Antidorcas species present. 
 

Comparison to Supplementary Species 
Supplementary fossil species were subject to DMTA for comparative purposes with the 

Antidorcas specimens. Believed grazers, Damaliscus (pygragus) and browsers, 

Tragelaphus (strepsiceros) were used to establish the expected grazing and browsing 

parameters for each deposit (e.g. Lee-Thorp et al. 1994; Luyt 2001). The results for these 

supplementary species, compared to results for Antidorcas, are considered here.  
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Figure 9.14: A series of line graphs showing mean dental facet surface texture variables 
for Antidorcas, Damaliscus and Tragelaphus (where present) through time (relative 
chronology as detailed in chapter 2, Table 2.2). Gaps in the line show an absence of data 
collected. The horizontal lines delineate grazing (Asfc values below the line; epLsar above 
the line) from browsing (Asfc values above the line; epLsar below the line) dominance. Smc 
for Sterkfontein unstratified is much higher than the stratified deposits (c. 40 µm) and is not 
included to ensure the detail of the stratified deposits is shown. HAsfc 3x3 corresponds to 
9cell; 9x9 to 81 cell. 
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Comparative Antidorcas palaeoecology 
Fossil Antidorcas species were assessed against modern species of known diet to establish 

the dietary indicators from a range of species of differing dietary niches. Both fossil (all 

species) and modern Antidorcas anisotropy (epLsar) values differ significantly from the 

modern grazing species; Syncerus caffer and Alcelaphus buselaphus.  

Comparison of Antidorcas with other species through time 
Unfortunately, small sample sizes for each site prevented these patterns being explored for 

Tragelaphus (as the believed browsing supplementary species) through time. Sterkfontein 

Member 4 appears more heterogeneous in dietary patterns, and by inference, in vegetation 

available for consumption. From the graph (Figure 9.14) of dental facet surface complexity 

(Asfc), Antidorcas shows extreme complexity, indicative of low occlusal surface abrasion 

and a dominance of browsing, as may be expected for Sterkfontein Member 4 (c. 2.8-2.5 

Ma) and for periods where A. recki dominates. However, Damaliscus shows a faithful 

grazing signal (primarily via low complexity), indicating the presence of at least some 

grassland habitats. The opposite occurs in Sterkfontein Member 5 (c. 1.7 Ma), whereby 

Antidorcas has a stronger grazing signal than Damaliscus but both still show an inclusion 

of grazing in the diet (relatively low surface complexity, Asfc). This could indicate 

palaeoenvironmental change through time (increase in grasslands and homogeneity of 

habitats from Sterkfontein Member 4 to Member 5) in isolation or with the addition of 

increased biotic competition. All species show low anisotropy (epLsar) throughout this 

temporal range. Although epLsar values are variable through time, they remain within the 

mixed-feeding / browsing range. Only Damaliscus in Gondolin (GDA) displays a typical 

grazing epLsar value.  
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Table 9.6: Pairwise comparison of species DMTA values. Significant differences are showen, these significant differences were obtained via an ANOVA and post-hoc Fishers LSD 
(above the diagonal) and Tukey’s HSD (below the diagonal). P values are given in brackets next to the significant variable. Abbreviations used for taxa are as follows: Ar=A. recki, 
Ab=A.bondi, Am=A.marsupialis, Dp=D. pygargus, Abs=A.buselaphus, Sc=S.caffer, Gc=G.camelopardalis, Cs=C. sylvicultor. 

  Fossil Modern 

 
 

Ar Ab Am Am Dp Abs Sc Gc Cs 

F
o

ssil 

A

r      

Asfc(<.000); 
epLsar(<.000); 

Smc(.001) 

Asfc(<.000); 
epLsar(.003); 

Smc(.001) 

Asfc(.
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Tfv(.0

07) 
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001) 

A

b      
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038) 

Smc(<
.000) 

A

m      
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m 
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epLsar(.002); 
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HAsfc81(.010); 
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Smc(<.000) 
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Asfc(.014) Smc(.049) 
  

epLsar(.017); 
Smc(.009) 
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Smc(.
010) 

A

b

s 

Asfc(<.000); 
epLsar(<.000); 
HAsfc81(.018); 

Smc(<.000) 

Asfc(<.000); 
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HAsfc81(.006); 
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Asfc(<.000); 
epLsar(<.000); 
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  Fossil Modern 

 
 

Ar Ab Am Am Dp Abs Sc Gc Cs 

S

c 

Asfc(<.000); 
epLsar(<.000); 
HAsfc81(.005); 

Tfv(.014); 
Smc(<.000) 

Asfc(<.000); 
epLsar(<.000); 
HAsfc9(.012); 
HAsfc81(.001); 

Smc(<.000) 

Asfc(<.000); 
epLsar(<.001); 
HAsfc9(.025); 
HAsfc81(.036); 

Smc(<.000) 
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9.3 DISCUSSION 

It is important to consider the individual diets rather than simply the mean for any given 

member or species. This is particularly true for mixed-feeding herbivores, such as the 

springbok. Although a ‘mixed-feeding’ signal may be inferred from comparing averaged 

values and signals, individuals within each population can be specialized grazers/browsers 

on an individual animal scale, but making them a mixed feeder at the species level (e.g. 

Lehmann et al. 2015). Antidorcas, as a mixed-feeding taxon, is nevertheless, an appropriate 

bioproxy from which to track palaeovegetation changes (e.g. Berlioz et al. 2018).  

9.3.1 Antidorcas palaeoecology 
DMTA variables inform on the palaeodietary signals of fossil Antidorcas, establishing what 

these Antidorcas ate, at least for the last few days-months prior to death.  

A. recki 
A. recki is evidenced to have a largely faithful browsing-dominated diet but showed a shift 

from browsing during Sterkfontein Member 4 to significantly increased inclusion of grass, 

to a grazing level of surface complexity, in Kromdraai W. All other Members show A. recki 

to be predominantly browsing.  

A. bondi  
A. bondi displays more mixed-feeding and browsing microscopic wear throughout this 

temporal range than may be anticipated based on stable carbon isotope analysis from Brink 

& Lee-Thorp (1992). However, considering what DMTA results can add to the debate on 

A. bondi grazing succession, if A. bondi fed close to the ground, grazing on the smallest 

grass shoots, HAsfc might be expected to be elevated, along with higher than anticipated 

epsLar values due to the inclusion of exogenous grit associated with ground-level feeding. 

It is possible that these increased ‘browsing’ signals are actually due to an inclusion of grit. 

In spite of testing of the impact of dust and other exogenous particle influence on 

microwear signals having shown diet is the dominant signal obtained (e.g. Merceron et al. 

2016), it is possible grit inclusion is visible here. Further, feeding on fresh grasses is less 

likely to leave scarring than mature grasses (Massey et al. 2008). Therefore, A. bondi 

feeding on new shoots preferentially is less likely to leave a trace of this dietary practice on 

its dentition, reducing the lasting grazing signal. Untangling this possibility from one of an 

A. bondi dietary shift prior to death (from grazing in the earlier years as evidenced by stable 

carbon isotope analysis, to increased inclusion of browse via DMTA) is complicated.  

As Merceron et al. (2016) show, diet is the prevalent signal achievable via DMTA, with 

exogenous particles having far less impact on the DMTA variables in comparison. 

Therefore, to assess the reasoning behind A. bondi’s apparent increased browse component 

of diet versus grit consumption, DMTA variables of Tfv and Smc are useful. A 

predominantly grazing diet with some influence of exogenous particles is likely to have the 

wear concentrated at a much finer scale (Smc) than a typical browsing wear pattern may 

exhibit. Smc and Tfv were not significantly different from either the mixed-feeding modern 

A. marsupialis or the browsing A. recki when combined as a species through time or 

between species for any individual member. Significant differences were however apparent 
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for Smc (scale of maximum complexity) for A. bondi between Sterkfontein Member 5 

(coarser scale) and Kromdraai A, and Cave of Hearths (finer scale) (and a weaker 

difference between Sterkfontein Member 5 and Swartkrans Member 2 (finer scale), and 

between Swartkrans Member 3 (coarse scale) and Cave of Hearths). This suggests that A. 

bondi from Sterkfontein Member 5 (and Swartkrans Member 3) included more browse in 

its diet, or at least vegetation which produced different sized pit-scarring. Coarser scale 

complexity is likely to be more indicative of larger, more irregular shaped particle-induced 

pitting. 

Modern Antidorcas marsupialis differs significantly in Smc values from Syncerus caffer 

(African buffalo; grazes on long grass), Alcelaphus buselaphus (hartebeest; grazes on all 

parts of the grass) and Cephalophus sylvicultor (yellow-backed duiker; fruit browser) 

(Kingdon 1997). Therefore, one might expect A. bondi to differ significantly from A. recki 

if the causality of the increased ‘browsing’ signal for A. bondi was due to diet. However, 

Damaliscus pygargus (bontebok; diurnal grazers consuming mainly short grasses) also 

differs significantly from the same species as A. marsupialis. For Tfv values, only the leaf-

browsing Giraffa camelopardalis (giraffe) differ significantly from the mixed-feeding A. 

marsupialis. These findings for modern species of known dietary intake may support using 

Smc values to identify the impact of exogenous particles on overall DMTA. Collectively as 

a species, A. bondi differs significantly from the same species as the modern mixed-feeding 

A. marsupialis. Additionally, A. recki and A. bondi differ significantly from the same 

modern (grazing) species (Table 9.6). This evidence suggests on balance, that A. bondi’s 

DMTA more accurately reflects mixed feeding to browsing at the end of life, rather than 

the inclusion of exogenous grit in a graze-dominated diet.  

The possibility exists that A. bondi still consumed grasses but perhaps shifted to C3 grasses 

that leave finer imprints on the enamel surface that therefore were more vulnerable to 

overwriting (Solounias and Semprebon 2002).  

A. marsupialis 
DMTA shows fossil A. marsupialis to have a browse-dominated mixed feeding diet 

throughout. A. marsupialis shows no directional change through time and no evidence of 

significantly changing its diet between any particular time period (member).  

9.3.2 Dietary abrasion 
Schulz et al. (2013) suggest the importance of an abrasive diet in the microwear patterning 

evident on dental surfaces. Their experiment on rabbits showed that an abrasive diet, linked 

to hypsodonty (as also shown to be correlated to dietary abrasiveness) is more susceptible 

to overprinting, making microwear signals from animals with a highly abrasive diet 

representative of a shorter time period. Higher heterogeneity would suggest lower levels of 

overwriting as the surface isn’t being routinely abraded, which would also show up in Tfv 

values. An abrasive diet is more likely to create a planar surface (lower Tfv values).  

The need for the adaptation of the methodological approach of DMTA software analysis to 

subtract the polynomical surface implies a highly abrasive diet for both the mixed-feeding 
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A. marsupialis and A. bondi. A. recki did not appear to share this issue, and by inference, 

did not have such an abrasive diet. 

A less abrasive diet is likely to result in slower overwriting of previous microscopic wear 

scars, thereby increasing the complexity of the enamel surface texture. Lower abrasion may 

be due in part to fewer exogenous particles impacted on the enamel surfaces, and not 

always due to ingested food particles, i.e. reduced abrasive grass silicas, and therefore, 

abrasion could perhaps falsely emphasise the browsing component on the diet. As 

discussed in previous chapters, Antidorcas, particularly Antidorcas bondi, appear to have 

had a relatively abrasive diet. Although this abrasion may be due, at least in part, to an 

inclusion of dietary grasses, the browsing scarring is likely to be an overstated dietary 

constituent from microwear variables, in contrast to the finer grazing striations that are 

more vulnerable to overwriting. Thus, due to the high level of abrasion, the grazing signal 

is more likely to be consistently abraded, with deeper browsing-induced pitting skewing the 

microwear signal towards a mixed-feeding or browsing diet.  Low Asfc, wth low HAsfc 

can also be indicative of leaf browsing. This is taken further in the subsequent ‘Multi-

Method’ chapter.  

9.3.3 DMTA as an indicator of palaeoenvironments through time 
Whilst bearing in mind individual specialisations and preferences, mean signals and ranges 

compared between members can give an idea of the prevailing vegetation shifts through 

time. As well as an idea of the dietary variability through time, which in itself can give 

insight into the vegetation type abundance in any given time period. More variation, 

coupled with greater species abundance, may indicate greater variability in vegetation 

available.  

In addition to dietary information, DMTA signals can highlight palaeoenvironmental 

conditions. Exogenous dust particles (e.g. an increase in eolian dust) or grit taken in with 

the food particles will inevitably produce similar scarring on the enamel surface (e.g. Wood 

2013), although the impact of exogenous particles, such as dust, appears to be far less than 

from the intrinsic food particles (Merceron et al. 2016). 

DMTA variability for Sterkfontein Member 5 and Swartkrans Member 2 perhaps indicate a 

more changeable palaeoenvironment, with mosaic habitats and probable increased 

seasonality (indicated via individual animal assessment and the dietary variability prevalent 

for an individual). Higher heterogeneity (HAsfc) suggests a more variable diet (e.g. 

Hofman-Kamińska et al. 2018), yet Swartrkrans Member 2, and particularly Sterkfontein 

Member 5 Antidorcas, show more homogenous dietary wear patters. Kromdraai E and 

Sterkfontein unstratified Antidorcas specimens show the greatest mean heterogeneity of 

diet.  

However, when considering individuals within each assemblage, many of those from 

Swartkrans Member 2 and Sterkfontein Member 5 have high heterogeneity and some high 

homogeneity. Thereby supporting the suggestion of these members being deposited during 

a period of palaeoenvironmental instability and/ or high habitat heterogeneity. This 

diametric differentiation is more prevalent for Swartkrans Member 2. This may be an 
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artefact of sample size or suggest the palaeoenvironmental/ palaeohabitat variability in 

Swartkrans Member 2 was stronger than for Sterkfontein Member 5.   

If the browse-dominated signal shown here incorporates the inclusion of CAM plants (see 

glossary and chapter 4) in the diet, this could provide a key insight into 

palaeoenvironmental conditions. Modern springbok are known to consume succulents 

(typically CAM) for their high moisture content. CAM plants, as an anti-herbivory defence, 

invest heavily in features such as thorns (e.g. acacia plants). As such, CAM plant 

consumption may be expected to manifest on the dental enamel in a similar way to a 

browsing diet. Yet the inclusion of CAM would showcase increased aridity levels as they 

typically inhabit and thrive under arid conditions. Untangling the CAM signal from the 

normal browse signal is an avenue for future research.  

9.4 SUMMARY 

. Antidorcas species showed differential change through time. Antidorcas recki 

showed a shift from browsing during Sterkfontein Member 4 to significantly 

increased inclusion of grass, to a grazing level of surface complexity, in 

Kromdraai W. All other members show A. recki to be predominantly browsing. 

Antidorcas bondi has unexpected mixed-feeding to browsing microwear patterns 

throughout the temporal range, significantly, from the grazing level of enamel 

surface complexity in Sterkfontein Member 5 compared to a browsing-range of 

complexity in Swartkrans Member 2.   

. Antidorcas bondi’s unexpected mixed-feeding to browsing diet shown may either 

indicate an increase in browse in these members, or shortly before death. 

However, it is possible that this could be a false indicator due to the high level of 

dietary abrasiveness, skewing the signal in favour of longer-lasting microscopic 

scars left by browse particles (varying depth and size of pits from 

seeds/twigs/leaves), compared to the fine scratches imparted by mastication on 

grasses which are more-readily abraded. Alternatively, exogenous grit from being 

a low-level feeder could mimic or exaggerate more browse-dominated dietary 

signals. 

. No major dietary change through time was evident for Antidorcas marsupialis.  

. A temporally variable mosaic habitat landscape is inferred from Antidorcas 

DMTA variables, with a shift from predominantly browsing from Sterkfontein 

Member 4 towards more mixed-feeding habits of Antidorcas. Swartkrans Member 

2 (Asfc and epLsar) and perhaps Cave of Hearths (Asfc) show significantly 

increased browsing signals compared to other temporal periods.  

. DMTA variability for Sterkfontein Member 5 and Swartkrans Member 2 perhaps 

indicate a more changeable palaeoenvironment, with mosaic habitats and possible 

increased seasonality.  

. Although individual animals within each species had varying diets, taking the 

overall species signal, all Antidorcas were mixed-feeders/ browsers from the late 

Plio-early Pleistocene in South Africa.  
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CHAPTER 10 

Stable Isotope Analysis 
Landscape vegetation and plant growth is dictated primarily by climate and regional 

topography (Vogel 1978). The isotopic composition of the plants that animals consume 

determines the isotopic signature found in the animal’s bones or teeth.  The type and part of 

plant ingested dictates the quantity and distribution of these chemical compounds found via 

isotopic analysis of herbivore dental enamel (DeNiro and Epstein 1978).  

Today, most of the South African subcontinent, including the Cradle of Humankind, falls 

into the summer rainfall zone, with C4 taxa dominating (Vogel et al. 1978). In order to 

understand palaeoenvironmental factors, such as the vegetation cover, aridity and 

palaeodiets, isotopic analysis (carbon and oxygen) is conducted, using Antidorcas dental 

enamel.  

This chapter introduces the use of stable isotope analysis (carbon and oxygen) as a method 

for inferring palaeoenvironmental conditions, before being applied to a selection of the 

Antidorcas dental enamel samples. The dental enamel sampled here (chapter 4, section 

4.6.4; this chapter, section 10.2) is compared to stable isotope values of Antidorcas (and a 

few other supplementary species where appropriate) dental enamel from published sources, 

as detailed below (and see Appendix A8).  

10.1. BACKGROUND 

Stable isotopes preserved within the teeth and bones of animals can be used to infer 

palaeovegetation cover through tracing the animals’ diet (Vogel 1978). At the base of the 

food chain, the growth of plants is directly influenced by the climate (temperature and 

hydrological influences) and topography (altitude, soil matrix and geochemistry) of the area 

(Vogel 1978). Plants contain differing levels of certain stable isotopes, according to the 

way they fractionate chemical compounds (Vogel 1983; Cerling et al. 1997). The isotopic 

signatures of the plants are passed on through the trophic levels upon consumption. In turn, 

these isotopes are integrated into the animal’s body tissues as they consume and digest 

these plants (Pollard & Heron 2008).  

The distribution and concentration of these stable isotopes (based on their mass-to-charge 

ratio as preserved within the animals’ bone and dental enamel in teeth) can be measured 

using mass spectrometry (e.g. Hopley et al. 2006; Bernard et al. 2009; Lehmann et al. 

2016). Enamel is used primarily to look for the isotopic signature largely due to its 

longevity, being sufficiently hard a substance to resist many diagenetic processes (Wang 

and Cerling 1994; Luyt 2001) that other skeletal material is more susceptible to.  
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Carbon and oxygen isotopes are often studied together for dietary reconstructions as they 

are directly related to the type of plants and the meteoric water ingested by individuals. 

These isotope values are therefore, indicative of the vegetation cover, available habitat 

types and aridity levels of their inhabited landscape. For the purposes of 

palaeoenvironmental reconstructions, carbon and oxygen isotopes are often used and used 

in conjunction with use-wear analysis (microwear/mesowear) to provide a long-term 

picture of diet throughout the animal’s lifetime (Hopley et al. 2006; Louys et al. 2012).  

Carbon isotopes are suggestive of the relative availability of C3/C4/CAM plants. The 

relative percentage of C3/C4-plant-consuming animals provides information about the local 

environment. Thereby, indicating how open/closed an environment was.  

As alluded to in the previous chapters, vegetation changes only go so far in informing us of 

the climate and any climatic changes. Oxygen isotopes, however, are indicative of the 

moisture content of an area, thus should be more directly related to climate. This is 

especially true when methods are then used in conjunction with one another to indicate 

vegetation and hydrological trends.  

Known isotope signals (published data trend) 
CARBON ISOTOPES 
δ13C values of C3 plants globally range from ~-31.7‰ to -23.1‰ (Kohn 2010) and C4 

plants between ~-14.0‰ and -10.0‰ (Hattersley 1982). A dietary enrichment of +14.1‰ 

of δ13C values exists between the plants ingested by large (>6kg) herbivores and that 

preserved in their enamel (Cerling & Harris 1999) see   (chapter 4). The browsing (C3-

dominated) and grazing (C4-dominated) dietary categories are indicative of individuals with 

diets dominated by C3 and C4 vegetation respectively. Pure browsing taxa have δ13C values 

around -12 to -14‰, whereas pure grazers have values between around 0 to +2‰ (Lee-

Thorp et al. 2000) see Figure 4.22. Based on the ranges of δ13C data for modern herbivores 

in South Africa (Sponheimer et al., 2003), dietary carbon isotope values are taken as 

follows:  δ13C enamel values below -9‰ indicate C3 dietary dominance (browsing); above -

3‰ indicate C4 dietary dominance (grazing) with values between -9‰ and -3‰ being taken 

as mixed feeders (Sponheimer et al. 2003; Lee-Thorp et al. 2007). Browsing to mixed-

feeding δ13C values typically arise for modern springbok, which are considered to be 

seasonal mixed-feeders, consuming more browse in winter and grazing in summer 

(Kingdon 1997; Gagnon & Chew 2000).  

Previous studies using Antidorcas, suggest that A.marsupialis should be depleted in δ13C, as 

a mixed feeder, whilst, as a believed grazing springbok, A. bondi would be expected to have 

more enriched values nearer 0% (Brink & Lee-Thorp 1992). In contrast, A. recki would be 

expected to show levels depleted in δ13C (e.g. Lee-Thorp et al. 2007). 

Little has been published on the impact of CAM plants but it is likely that an inclusion of 

CAM plants in Antidorcas diet will give an inflated range (more enriched in δ13C) of δ13C 

signals (Wang et al. 2008), in a similar way to that of C4 plants, as discussed above.   
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OXYGEN ISOTOPES 
Research into Plio-Pleistocene environments has often used δ18O isotope values to indicate 

aridity levels. For instance, a shift from Sterkfontein Member 4, to more positive δ18O 

values for Sterkfontein Member 5 lends further support for a landscape with more open 

environments (e.g. Luyt 2001). The published data of δ18O isotope values for South African 

sites is considered here, and coupled with the data obtained from this study alongside the 

carbon isotope values, to indicate South African Plio-Pleistocene environmental trends and 

variability.  

For Antidorcas, increased sweating due to a lack of tree cover and shade (Luyt 2001) 

associated with a spread of open grassland habitats would presumably add to the isotopic 

values found. Indeed, Lehmann et al. (2016) concluded that beyond regional aridity 

increase and global cooling, other factors, such as spring-fed local areas must have played a 

part in the increased δ18O values witnessed across the early Pliocene to mid-Pleistocene, i.e. 

the animal’s individual or species differential behavioural response to changing 

environments must be considered. Although the overall increasing aridity trend prevails, 

buffers such as thermoregulatory adaptation and water resource usage will differ species to 

species and knowledge of their likely palaeoecology will aid in inferring their isotopic 

signatures. Luyt’s (2017) study on African mammal light isotope signatures highlighted 

crucial differences in values for the mixed-feeding modern Antidorcas marsupialis, 

depending upon the vegetation biome inhabited.  

Table 10.1: Modern Antidorcas marsupialis carbon (δ13C) and oxygen (δ18O) isotope value 
differences depending on vegetation biome inhabited. All values given to 1 decimal place. 
Values from Luyt (2017).  
Biome* Isotope 

(PDB) 

(‰) 

N Median Minimum Maximum Mean S.D. 

Nama 

Karoo 

δ13C 23 -11.7 -14.5 -7.8 -11.4 1.5 
δ18O  4.8 2.6 10.1 4.9 1.5 

Savanna δ13C 4 -10.8 -11.9 -10.1 -10.9 0.7 
δ18O  4.4 3.3 5.2 4.3 0.8 

Succulent 

Karoo 

δ13C 14 -11.9 -16.6 -7.0 -11.7 2.1 
δ18O  4.9 -0.5 6.1 4.0 2.0 

*Succulent karoo is a semi-desert biome with a high diversity of succulent plants and low 
but seasonal mean annual precipitation, around 170mm (Mucina and Rutherford 2006). 
Nama karoo is very arid with dwarf open scrubland, and a mean annual precipitation of 
between 40-400mm falling mainly in the summer months (Mucina and Rutherford 2006). 
Savanna is characterised by a hot climate with wet summers and warm, dry winters 
(Scholes 1997) supporting tropical vegetation with a mix of woody plants and grasses. 
Savanna is less arid than the karoo biomes. 

It is an avenue for future work to apply algorithms to the data to offset these values to make 

them exactly comparable to fossil Antidorcas values. However, all modern Antidorcas 

sampled in Luyt’s (2017) study show mixed-feeding to browsing preference with relatively 

enriched δ18O values, indicative of inhabiting semi-arid to arid environments.  
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10.2 RESULTS 

Table 10.2: Modern isotope values (δ13C ‰ and δ18O ‰) for species of known diet, for 
comparison with fossil taxa. 

Species 
δ

13
C 

(‰) 

PDB 

δ
18

O (‰) 

SMOW 

δ
18

O 

(‰) 

PDB 
Diet Reference 

A. marsupialis -18.10 N/A N/A Mixed Browser Vogel 1978 

A. marsupialis -10.10 N/A N/A Mixed Browser 
Sponheimer et 

al. 2003 

A. marsupialis N/A 37.2 6.15 Mixed 
Sponheimer & 

Lee-Thorp 
1999 

A. melampus -3.3±3.3 34.5±1.2 3.52 Mixed 
Sponheimer & 

Lee-Thorp 
2001 

D. pygargus 0.5 x x Grazer 
Sponheimer et 

al. 2003 
D. pygargus -2.7 30.14 -0.7 Grazer Luyt 2017 

C. taurinus +2.8±0.5 30.7±1.2 
-

0.16 
Grazer 

Sponheimer & 
Lee-Thorp 

2001 

D. lunatus +2.3±0.6 32.0±0.9 
1.10 

 
Grazer 

Sponheimer & 
Lee-Thorp 

2001 

K. elliprymnus +1.6±1.1 29.7±1.6 
-

1.13 
 

Grazer (water-
dependent) 

Sponheimer & 
Lee-Thorp 

2001 

T. strepsiceros -13.0 N/A N/A Browser 
Sponheimer et 

al. 2003 
T. strepsiceros -12.7 35.50 4.5 Browesr Luyt 2017 

G. camelopardalis 
-

16.8±0.6 
29.4±2.1 

-
1.42 

Browser 
Sponheimer & 

Lee-Thorp 
2001 

Sample analysed as part of this research 
Table 10.3: This study carbon and oxygen (δ13C (‰) & δ18O (‰)SMOW) for Swartkrans 
(SKX) Antidorcas dental enamel. Diet is based on carbon isotope values typical of modern 
South African herbivores (Sponheimer et al. 2003), where values are close to the 
boundaries (>-3‰ C4 consumers and -9‰ C3 consumers), they are seen to be less catholic 
in their dietary habits. Those in red highlight the individuals with the highest and lowest 
δ

13C values for each Member. Diets: ‘B’=Browser, ‘M’=Mixed feeder, ‘G’=Grazer. 
Specimen # Prove

nance 

Species δ
13

C 

(‰) 

δ
18

O 

(‰)SMO

W 

δ
18

O 

(‰) 

PDB 

Di

et 

Samplin

g 

method 

SKX10697 SKX 
M1 

A. marsupialis -7.19 +26.24 -4.48 M Bulk 

SKX4842 SKX 
M1 

A. marsupialis -7.01 +31.50 0.62 
 

M Bulk 

SKX10703 SKX 
M1 

A. marsupialis -4.66 +43.97 12.72 
 

M Bulk 

SKX11602

A 

SKX 
M1 

A. marsupialis -7.45 +29.63 -1.20 M Serial 

SKX11602

B 

SKX 
M1 

A. marsupialis -9.19 +31.34 0.46 B Serial 

SKX11602

C 

SKX 
M1 

A. marsupialis -9.43 +30.77 -0.09 B Serial 

SKX11602

D 

SKX 
M1 

A. marsupialis -9.73 +31.21 0.34 B Serial 

SKX11602

E 

SKX 
M1 

A. marsupialis -9.66 +29.73 -1.10 B Serial 
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Specimen # Prove

nance 

Species δ
13

C 

(‰) 

δ
18

O 

(‰)SMO

W 

δ
18

O 

(‰) 

PDB 

Di

et 

Samplin

g 

method 

SKX11602

F 

SKX 
M1 

A. marsupialis -9.85 +31.01 0.14 B Serial 

SKX36545 SKX 
M3 

A. marsupialis -8.11 +29.13 -1.69 M Bulk 

SKX34249

X 

SKX 
M3 

A. marsupialis -4.10 +36.00 4.98 M Bulk 

SKX34249

X (REP) 

SKX 
M3 

A. marsupialis -6.24 +34.43 3.46 M Bulk 
(repeat) 

SKX33839 SKX 
M3 

A. marsupialis -9.08 +30.83 -0.03 B Bulk 

SKX28999 SKX 
M3 

A. marsupialis -5.20 +34.46 3.49 M Bulk 

SKX28008

B 

SKX 
M3 

A. marsupialis -9.27 +34.60 3.63 B Serial 

SKX28008

C 

SKX 
M3 

A. marsupialis -8.92 +37.91 6.83 M Serial 

SKX35326 SKX 
M3 

Antidorcas sp. -
10.82 

+31.29 0.41 B Bulk 

SKX34249

A 

SKX 
M3 

Antidorcas sp. -8.26 +31.36 0.48 M Serial 

SKX34249

B 

SKX 
M3 

Antidorcas sp. -7.63 +31.40 0.52 M Serial 

SKX34249

C 

SKX 
M3 

Antidorcas sp. -7.56 +32.30 1.40 M Serial 

SKX34249

D 

SKX 
M3 

Antidorcas sp. -8.44 +34.21 3.25 M Serial 

SKX34249

E 

SKX 
M3 

Antidorcas sp. -7.62 +38.09 7.01 M Serial 

SKX34249

F 

SKX 
M3 

Antidorcas sp. -7.63 +39.40 8.28 M Serial 

7.5MG 

ENAMEL 

Moder
n 

Bovid +0.04 +32.58 1.67 G Standard 

13.6MG 

ENAMEL 

Moder
n 

Bovid -0.96 +31.67 0.78 G Standard 

13.6MG 

ENAMEL 

 

Moder
n 

Bovid -0.90 +31.65 0.76 G Standard 
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This study results: serial sampling  
The carbon isotopes from this select study of Antidorcas for Swartkrans Member 1 and 3 

show browsing-dominance, with no obvious seasonality in dietary behaviour. However, the 

oxygen isotopes from the same individuals show a substantial shift (c. 4 per mil ‰). The 

higher values presumably represent the dry season when increased evapotranspiration leads 

to higher leaf δ18O values. As Antidorcas (at least, modern Antidorcas) obtain the majority 

of their water from leaf water rather than by drinking standing water, these δ18O values are 

most likely reflective of browse consumed. The two individuals analysed by serial 

sampling show consistency with animals born in the wet season (Hopley, pers comm.) (see 

Figure 10.1 Table 10.5).  
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Figure 10.1: Oxygen isotope δ18O values from serial sampled Antidorcas dental enamel. SKX 11602 is Antidorcas sp.  from Swartkrans Member 1 LB. SKX 34249 is Antidorcas sp. 
from Swartkrans Member 3. The upper graphs (A) shows oxygen isotope values (SMOW) according to sample position from 1 (nearest root) to 6 (nearest cusp), the lower graphs (B) 
shows oxygen isotope values (PDB) according to relative age of the Antidorcas individual (Hopley pers.comm.). 

A 

B 
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Published sources isotope data 
Published isotope data is combined with isotope data obtained during this research (above) 

to increase sample sizes and give a more complete picture, as can be gained from isotope 

analysis, for South African vegetation during this temporal period and comparative modern 

samples. These sources are used again when considering what the results from all methods 

combined can show us. This data is provided in Appendices A8, where specific references 

for each value used here are detailed. Published sources used here are: Luyt 2001; van der 

Merwe et al. 2003; Lee-Thorp et al., 1989, 1994, 2000, 2007; Sewell et al. 2019; Hare & 

Sealy 2013 (Hoedjiespunt c. 350-200 Ka, included for comparison of Antidorcas within 

southern Africa, whilst geographically and temporally separated from the Cradle of 

Humankind sites); Ecker et al. 2018; Sponheimer et al. 2003; Vogel 1978; Luyt & Sealy 

2018; van der Merwe et al. 2013; Bocherens et al. 1996 (Djibouti c. 1.6 Ma, included for 

comparison of Antidorcas from a similar temporal period but geographically removed from 

the southern African Antidorcas).  

The majority of published isotope data from South Africa used for comparative purposes 

here, quotes the oxygen isotope PDB scale. This study’s data was calibrated using the 

SMOW scale and must be converted to allow comparisons between datasets. The scales are 

converted using the following formulae (Allen 1993): 

δ18O PDB = (0.97006 x δ18 SMOW) -29.94 
δ18O SMOW = (δ18O PDB x 1.03086) + 30.86 

 

Table 10.4: Descriptive statistics for carbon (δ13C‰) and oxygen (δ18O‰) isotope values, 
mean, standard deviation (SD) and standard error (SEM) for each provenance, split by 
Antidorcas species. 
Provenance Species δ13C (PDB)‰ δ18O (SMOW)‰ 

N Mean SD SEM N Mean SD SEM 
Sterkfontein 
Member 4 

A.recki 9 -
11.93 

3.12 1.04 5 26.55 2.77 1.24 

A.bondi 2 -1.28 0.03 0.02 1 1.17 x x 
Swartkrans 
Member 1 

A.marsupialis 9 -8.24 1.77 0.59 9 31.71 4.88 1.63 

Sterkfontein 
Member 5 

Antidorcas 
sp. 

3 -6.02 5.85 3.38 3 31.03 3.59 2.07 

A.recki 5 -
10.86 

2.17 0.97 3 28.52 1.97 1.14 

Swartkrans A.bondi 9 -3.27 1.00 0.33 0 x x x 
Swartkrans 
Member 2 

Antidorcas 
sp. 

5 -4.06 4.95 2.21 5 30.74 0.70 0.31 

A.recki 1 -
12.90 

x x 0 x x x 

A.bondi 9 -1.09 2.77 0.92 9 30.74 1.42 0.47 
A.marsupialis 11 -7.82 5.92 1.79 11 30.54 1.40 0.42 

Swartkrans 
Member 3 

Antidorcas 
sp. 

7 -8.28 1.17 0.44 7 34.01 3.41 1.29 

A.marsupialis 7 -7.27 2.09 0.79 7 33.91 2.99 1.13 
Wonderwerk A.bondi 1 -2.50 x x 1 31.40 x x 

A.marsupialis 6 -7.70 1.84 0.75 6 32.55 1.42 0.58 
Djibouti, 
E.Africa 

A.recki 1 3.00 x x 1 28.60 x x 

Hoedjiespunt A.marsupialis 5 -9.64 1.14 0.51 5 31.11 2.06 0.92 
Modern A.marsupialis 9 -

12.42 
2.41 0.80 7 35.41 0.80 0.30 
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Table 10.5: Descriptive statistics for carbon (δ13C‰) and oxygen (δ18O‰) isotope values, 
mean, standard deviation (SD) and standard error (SEM) for each fossil Antidorcas 
species. 

Species δ13C (PDB)‰ δ18O (SMOW)‰ 
N Mean SD SEM N Mean SD SEM 

Antidorcas sp. 15 -6.42 4.03 1.04 15 32.32 3.10 0.80 
A.recki 9 -9.30 5.58 1.86 9 27.44 2.43 0.81 
A.bondi 11 -1.23 2.52 0.76 11 30.84 1.29 0.39 
A.marsupialis 45 -8.65 3.50 0.52 45 32.39 3.11 0.46 

 

Figure 10.2: Scatterplot of mean carbon isotope values (δ13C ‰) for each Antidorcas 
species through time (separated according to relative date of Member) before taxonomic 
re-assessment of Antidorcas dentition. 
 

An increase in browsing is apparent for Swartkrans Member 2 prior to taxonomic re-

assessment (Figure 10.2). However, when species are split, this apparent dietary divergence 

is not present, showing it to be an artefact of species averaging. This highlights the 

importance of taxonomic identification of species prior to analysis (Figure 10.3). 
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Figure 10.3: Scatter plot of mean carbon isotopes values (δ13C ‰) through time for each species post-taxonomic identification reassessment of Antidorcas dentition (to highlight the 
value of taxonomic identification to as fine a level as possible) with supplementary species (along the grazing-browsing dietary spectrum) included for comparison to Antidorcas.  
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Figure 10.4: Left image: Scatterplot of stable isotope values, carbon (δ13C ‰) against oxygen (δ18O ‰), for Antidorcas and the supplementary species, used here to establish dietary 
parameters. Only individuals with both carbon and oxygen isotope values are displayed here. Right image: Scatterplot of Antidorcas only isotope values (to show more clearly 
without supplementary species being included). Only specimens with both carbon (δ13C ‰) and oxygen isotope (δ18O ‰) values are represented. 
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Figure 10.5: Published carbon isotope values (δ13C ‰) for individual Antidorcas specimens. Upper third delimits predominantly browsing diets, lower third, predominantly 
browsing diets, mixed-feeding diets in the centre. Dietary category values taken from Hare & Sealy (2013). Individual variation is apparent from this figure. 
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From this visual representation (Figure 10.5), Sterkfontein Member 4 and Swartkrans 

Member 2 appear to show population/character displacement and niche separation. 

Sterkfontein Member 4 shows a predominantly browsing group of A. recki and a mixed-

grazing group, including A. bondi. Swartkrans Member 2 shows three groups, a browsing 

group, a mixed-feeding group and a grazing group, which Figure 10.3 highlights is likely 

character displacement by Antidorcas species.  

Antidorcas marsupialis appear to gradually adopt a more consistently (intra-specific) 

browsing diet, from a more varied, mixed-feeding diet for individuals. Although some 

mixed-feeding is observed, Antidorcas bondi is typically grazing throughout. Antidorcas 

recki is consistently browsing in South Africa. The Dijbouti comparison comes from ca. 1.6 

Ma A. recki 

(

Figure 10.2 and Figure 10.3) and shows either that A. recki had the ability to consume 

predominantly grasses or that the East African A. recki is taxonomically different from 

those identified as A. recki in South Africa.  

Table 10.6: Mean stable carbon and oxygen values and ranges for each Antidorcas species, 
for each Member (in chronological order). 
Provenance Species N Mean 

δ13C (‰) 

Range 

(‰) 

Mean δ18O 

(‰SMOW) 

Range 

(‰) 

Sterkfontein 
Member 4 

Antidorcas 
recki 

5 -11.17 1.78 26.55 7.73 

Antidorcas 
bondi 

1 -1.3 x 31.17 x 

Sterkfontein 
Member 5 

Antidorcas 
recki 

3 -10.28 5.31 28.52 3.81 

Antidorcas sp. 3 -6.02 10.3 31.03 7.01 
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Provenance Species N Mean 

δ13C (‰) 

Range 

(‰) 

Mean δ18O 

(‰SMOW) 

Range 

(‰) 

Swartkrans 
Member 1 

Antidorcas 
marsupialis 

9 -8.24 5.19 31.71 17.73 

Swartkrans 
Member 2 

Antidorcas sp. 5 -4.06 11.59 30.74 1.66 

Antidorcas 
bondi 

9 -1.09 7.69 30.74 4.08 

Antidorcas 
marsupialis 

1
1 

-7.82 17.12 30.54 4.36 

Swartkrans 
Member 3 

Antidorcas sp. 7 -8.28 3.26 34.01 8.11 

Antidorcas 
marsupialis 

7 -7.27 5.17 33.91 8.78 

Wonderwerk Antidorcas 
bondi 

1 -2.50 x 31.40 x 

Antidorcas 
marsupialis 

6 -7.70 4.70 32.55 4.00 

Hoedjiespunt Antidorcas 
marsupialis 

5 -9.64 2.60 31.11 4.64 

Djibouti Antidorcas 
recki 

1 3.00 x 28.60 x 

Modern Antidorcas 
marsupialis 

7 -11.94 2.60 35.41 1.96 
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Figure 10.6: Antidorcas oxygen isotope values (δ18O ‰) through time (according to provenance), separated by species. 
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When looking at the individual values, Antidorcas is consistently showing mixed feeding 

patterns through time. This may represent the differing species dietary and habitat 

preferences. This is certainly the case for the difference observed in Sterkfontein Member 

4. The individuals with more depleted carbon isotopes are A. recki and those with higher 

carbon isotope values represent A. bondi. Alternatively, perhaps differentiated (as observed 

in the modern springbok by e.g. Bigalke 1972; David 1978), that male and female herds, 

which live separately for the majority of the year, will occupy different habitats.  That being 

said, dental enamel isotope values represent the time period in the individual’s life of 

enamel formation and mineralization, i.e. when they are young. The values may still 

represent young males and females differentially finding their adult place in the landscape. 

Or perhaps, rather than a sexual dimorphism in diet, represent slightly differing lifetime 

gaps, indicting a dietary shift ontogenetically.  The only real mixed-feeding signal for the 

genus, rather than for individuals, is seen in Swartkrans Member 3, where A. marsupialis 

dominates. A similar trend is seen for oxygen isotopes (Figure 10.56). However, there is the 

potential that these trends are affected by sampling bias, with larger sample sizes for the 

younger time periods.  

10.2.1 Statistical Analysis 
Only Antidorcas marsupialis, as a species, showed variation through time for either carbon 

or oxygen isotopes. Antidorcas recki and Antidorcas bondi, as species did not significantly 

alter isotope values through time. An independent samples Kruskal-Wallis test showed A. 

marsupialis to have significantly different carbon (p=.001) and oxygen (p=.009) values 

through time (according to member). Antidorcas sp. also showed variations in oxygen 

(p=.002) isotopes through time but this likely due to mixing Antidorcas species.  

Those identified as ‘Antidorcas sp’ from Swartkrans Member 2 (Sewell et al. 2019) were 

re-examined to establish species identification. This was done by cross-referencing to the 

dataset created here and looking at the photographs taken of the individual teeth. The 

majority were Antidorcas bondi, yet this had no bearing on significant differences through 

time. This suggests that Antidorcas species’ diet in Swartkrans Member 2, as reflected by 

stable isotope values were not significantly different to other deposits for A. bondi or A. 

recki.  

Carbon 
Kruskal-Wallis independent samples test show significant differences for through time for 

δ13C for Antidorcas marsupialis (p<.000).  

The same test showed significant differences between species only for Sterkfontein 

Member 4 (p=.036).  

Mann Whitney-U pairwise comparisons with Bonferroni adjusted significance levels for A. 

marsupialis through time showed Swartkrans Member 1 (mean= -8.24‰) had significantly 

higher (less depleted in carbon) δ13C values (p<.000) than modern A. marsupialis (mean= -

12.42‰). Swartkrans Member 3 had significantly less depleted δ13C values than modern 

specimens (p<.000) and Wonderwerk (mean = -7.70‰) had significantly higher δ13C 

values than Modern (p<.000).  
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In Sterkfontein Member 4, A. recki (mean=-1.93‰) had significantly more depleted δ13C 

than A. bondi (mean= -1.28‰) when comparing only Antidorcas species (p=.036). A. recki 

had significantly more depleted δ13C values than Damaliscus sp. (mean= -0.22‰) when all 

species were included (p<.000). 

Oxygen 
Kruskal-Wallis independent samples test show significant differences through time for δ18O 

for both Antidorcas sp. (p=0.042) and for Antidorcas marsupialis (p=0.004). 

No significant differences were found across species for any provenance.  

Mann Whitney-U pairwise comparisons with Bonferroni adjusted significance levels for A. 

marsupialis, this significant difference was found (p<.000) to be significantly lower for 

Swartkrans Member 2 (mean= 30.54‰) than for modern specimens (mean = 35.41‰).  

For Antidorcas sp., significantly lower δ18O values (p=.009) for Swartkrans Member 2 

(mean= 30.74‰) were found compared to Swartkrans Member 3 (mean= 34.01‰).  

However, as ‘Antidorcas sp.’ represents individuals only identified to genus level, these 

samples may represent differential Antidorcas species compositions.  

10.3.2 Individual variation 
‘Outliers’ exist within the dataset that highlight the degree of individual variability evident 

from stable isotope analysis. For instance, SKX 10703, A. marsupialis from Swartkrans 

Member 1 displays the highest carbon δ13C value (-4.66‰) and highest oxygen δ18O (43.97 

‰ SMOW), where other A. marsupialis from Swartkrans Member 1 have values in the 

range of -9.85 to -7.01‰ and +26.24 to 31.50‰, for carbon and oxygen respectively.  

Sterkfontein Member 5, (considered roughly contemporary with Swartkrans Member 1) 

individual highest carbon δ13C value is S94-7314, at +0.74‰, with the other individuals 

ranging from -7.37 to -12.68‰. The same individual yields the highest oxygen δ18O 

content, at 34.98‰, where the other individuals in the assemblage range between 26.32 and 

30.14‰ SMOW. The isotope values from this assemblage come from A. recki or 

Antidorcas sp.  

Sterkfontein Member 4, all Antidorcas (here, Antidorcas recki) range within the obligate 

browsing, with depleted carbon isotope values below -10‰ δ13C, other than one individual- 

STS 1596, which displays mixed-feeding values (-4.50‰ δ13C). 

Swartkrans Member 2 displays 4 dietary groupings from individual variation, indicative 

perhaps of greater habitat heterogeneity. Swartkrans Member 2 displays 4 dietary groupings 

from individual variation (Figure 10.7). This cannot be explained by species dietary 

differentiation. Habitat heterogeneity is suggested. Antidorcas sp. and A. marsupialis are 

predominantly browsing, with some mixed-feeding, or within the range of obligate grazing. 

A. bondi ranges from obligate grazing, as would be expected for the species, to mixed-

feeding. Individual variation appears to only be noteworthy for Swartkrans Member 2.  

Swartkrans Member 3 Antidorcas, predominantly A. marsupialis fall within the mixed-

feeding to browsing δ13C range.  
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Figure 10.7: Individual variation in stable carbon isotope values (δ13C ‰) for Swartkrans 
Member 2. Dietary groupings are shown in blue (from top to bottom: grazing, mixed-
feeding, browsing).  

10.3 DISCUSSION 

Results are discussed at a local scale initially, before being placed into a wider southern 

African context. It has been argued for both modern (e.g. Kohn et al. 1996; Luyt 2017) and 

South African fossil (e.g. Sponheimer & Lee-Thorp 1999a) bovids that browsers are more 

enriched in δ18O compared to grazing taxa. This is a result of evaporatively enriched (δ18O) 

leaves being consumed by browsers in arid environments. However, the opposite is found 

here, supporting that found in East African bovids (Bocherens et al. 1996), which was 

postulated to be due to arid conditions requiring the closure of C3 plant stomata, reducing 

evapotranspiration water loss. The complexities of the modern savanna ecosystem and the 

seasonal variability, particularly in rainfall, impacting upon the water retention in C3 (with 

deep roots) and C4 plants (with shallow roots) differentially has been argued to play a part. 

With increased seasonality, C3 plants have the capability to continue constant 

evapotranspiration levels, where C4 plants do not. That opposing results have been found 

here for Antidorcas may invoke either a discussion on the role of CAM plants, such as 

succulents, within the ecosystem as a known constituent of modern Antidorcas diet. 

Consuming CAM plants is likely to provide enriched δ13C values, in a similar way to C4 

grass inclusion. Alternatively, these patterns are opposing because of the water-

independence of Antidorcas. Again though, consuming leaves that are enriched in δ18O 

compared to grasses, would suggest browsing Antidorcas should display enriched δ18O 

values.  
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Sponheimer & Lee-Thorp (1999a) suggest the slight enrichment in A. bondi δ18O compared 

to obligate grazers (such as Equus) was due to feeding on fresh, new grass shoots 

(Sponheimer and Lee-Thorp 1999a; Brink & Lee-Thorp 1992) and was therefore, less 

dependent on standing water. Coupled with the use-wear evidence, it is suggested that 

although feeding on new shoots may play a part, A. bondi’s slight enrichment is likely due 

also to an inclusion of C3 vegetation to a greater extent than more habitual grazers. This 

feeding difference is also likely to impact on water consumption, again altering the δ18O 

value obtained.  

Adaptations to heat stress also impact upon δ18O levels. For example, nocturnal herbivores 

consume plants when they are less enriched in δ18O (which peaks during the midday heat), 

and by not exposing themselves to the midday heat, they do not have to reduce their body 

temperature by sweating or panting (Sponheimer & Lee-Thorp 1999a). Modern Antidorcas 

typically feed during the cooler periods of the day, seeking shade where necessary. 

Consequently, isotope values would be expected to be reflective of consuming perhaps C3 

vegetation, which is typically in greater abundance in shady areas and of increased plant 

moisture compared to herbivores feeding continually throughout the day. This would likely 

manifest as depleted δ13C values and enriched δ18O values. Values for Swartkrans Member 

1 and Member 3 Antidorcas often (but not exclusively) follow this pattern. Swartkrans 

Member 3 serial sampled individuals hint at seasonality, alternating between carbon and 

oxygen acting in opposition (i.e. when δ13C is depleted, δ18O is enriched) and acting 

together (both δ13C and δ18O enriched/depleted together). When this is not the case for 

fossil Antidorcas, different palaeoenvironmental conditions to those seen today must be 

inferred, possibly along with differing behavioural reactions of fossil Antidorcas.  

It is suggested that the depleted δ18O witnessed for the browsing Antidorcas in this dataset 

are due to environmental conditions. Wetter palaeoenvironmental conditions allow 

Antidorcas to be more reliant on drinking water (opportunistically when there is more water 

availability), resulting in less enrichment of δ18O. Variations within each member may 

reflect seasonality, particularly in the members representative of the later time periods, or 

reflect individual animal dietary fluctuations. Where the δ18O values do not appear to 

correlate to the δ13C values, palaeoenvironmental factors are suggested to be playing a 

greater role than diet.  

Decoupling palaeoenvironmental signals from dietary signals can be complex (as seen by a 

lack of consistently correlating δ13C and δ18O values). Using the mixed-feeding Antidorcas 

marsupialis, fluctuations in palaeoenvironmental conditions can be more reliably inferred, 

(rather than a reflection of dietary ecology). In a mixed-feeder, δ13C values are indicative of 

palaeovegetation availability (C3/C4) and δ18O values reflective of palaeohydrological 

factors (depleted δ18O indicative of reduced evapotranspiration and therefore, of wetter 

palaeoenvironments).  

Mean values for modern A. marsupialis indicate browse-dominance (δ13C -12.42‰) in arid 

environments (δ18O 35.41‰). Fossil A. marsupialis indicates mixed-feeding in Swartkrans 

(Members 1-3) (δ13C -8.24‰ SKX M1, -7.82‰ SKX M2, -7.27‰ SKX M3) with 

gradually increased inclusion of C4 vegetation apparent. This trend of slight δ13C 
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enrichment indicates, via fossil A. marsupialis, a very marginal increase in grasslands. 

Alongside A. marsupialis oxygen values, a marginal increase in aridity from Swartkrans 

Member 1 (δ18O ,31.71‰) to Swartkrans Member 3 (δ18O 33.91‰) with a temporary 

slightly less arid period during Swartkrans Member 2 (δ18O 30.54‰) is inferred. 

Seasonality 
A correlation, showing increased browse consumption (depleted δ13C values) with depleted 

δ18O values, may suggest wetter conditions. Whereas during the dry season, browse 

(leaves) would be expected to have enriched δ18O values due to increased 

evapotranspiration. Where seasonality increases during the Pleistocene, this may be 

reflected in the Antidorcas isotope values. Further sampling would be required to identify 

this pattern conclusively.  

Antidorcas palaeoecology 
The two serial samples gained from this study, SKX 11602 and SKX 34249 are consistent 

with animals being born at the start of the wet (rainy) season. Modern Antidorcas will 

adjust their lambing season according to environmental conditions, timing the mating and 

lambing behaviour to coincide with times of greater resources abundance (Estes 1991; 

Skinner and Louw 1996).  The possibility exists that this was not the case for all temporal 

periods represented by this fossil record. Periods of environmental instability would make 

lambing less predictable with the potential that lambs are born throughout the year. The 

season of birth can be shown via serial isotope sampling of dental enamel but would require 

much greater sample sizes to show this.  

Review of method 
Due to the destructive nature of isotope sampling, research is always subject to limited 

sample sizes. Here, permission was granted on already broken specimens and none of the 

specimens sampled for isotope analysis were viable for microwear analysis to allow a direct 

comparison.  

One major positive of this technique is its lack of assumptions. Other than the assumption 

of the specimens’ autochthonous character (i.e. indigenous); isotopes enable the use of 

bovids, which are abundant and dependent on the local and available vegetation, to provide 

an environmental signal that has not relied upon assumptions about the behaviour of fossil 

taxa (Luyt 2001). Caution should be taken to ensure that the species was not migratory, yet 

this would likely be shown up in a skewed population demographic. For example, a lack of 

females and juveniles may be indicative of a migrating bachelor herd. Yet in this instance, 

the research question is concerned about the palaeoenvironment on a regional scale (i.e. not 

site-specific), that would still be captured even by a migratory species 

Perhaps bulk sampling has a tendency to favour grazing signals, with less depletion in δ13C 

within enamel samples. SKX34249 was analysed with both serial and bulk sampling. The 

serial sample shows clear mixed feeding values, with the bulk sample showing mixed 

feeding but with a greater C4 component (Table 10.3).  
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Local scale (Cradle of Humankind) 
Oxygen isotopes can vary between regions, as animals alter their drinking habits according 

to the local environment.  

δ13C results show an increase in grazing through time for Antidorcas. As a species, greater 

grazing signals (δ13C enrichment indicating more C4 grass consumption) are obtained from 

Antidorcas bondi, supporting Brink and Lee-Thorp (1992). Contrastingly, more browsing 

(δ13C depletion and C3-vegetation dominance) is yielded for Antidorcas recki, supporting 

Lee-Thorp et al. (2007).  

However, Swartkrans Member 2 (c.1.7 Ma) appears to show slightly less aridity (δ18O) than 

surrounding Members, supporting the increased browsing signals suggested via DMTA, 

and perhaps the increased variability pattern evidenced by mesowear for Swartkrans 

Member 2. 

 ‘Micro’-habitats 
Similar to Cuthbert et al (2017)’s finding in East Africa, that persistent groundwater acted 

as hydro-refugia to buffer climatic variability, ‘micro’ habitats (‘micro’ here is used to 

mean an area inhabitable by Antidorcas/medium-sized animals) could provide these refugia 

in southern Africa. On the smallest scale in which Antidorcas and hominins could be 

affected, areas closest to water sources are likely to retain trees and other moisture 

dependent vegetation through more arid conditions (compared to open landscapes further 

away from an immediate water body, such as a river), providing more shelter and keeping a 

‘micro’ climate within the immediate vicinity of the water source. The shelter of the trees 

provides an area of shelter for thermoregulation, away from the direct sunlight exposure, as 

well as more protection from predators than open landscapes and vegetation with increased 

moisture content to eat; all of which would be appealing to Antidorcas. For these types of 

habitats to prevail, aridity would need to remain under a threshold aridity level (where the 

river is still viable), in order to maintain some degree of mosaic habitat landscape. 

For example, Swartkrans is situated closer to the Blaubank river than Sterkfontein and in a 

modern context, can be seen to support more C3 vegetation (trees and water-dependent 

floral taxa) in the immediate vicinity than the nearby (<2km) exposed Sterkfontein area 

(see chapter 2). However, no significant differences in the mean stable isotope values were 

apparent between Sterkfontein Member 5 and Swartkrans Member 1, which are considered 

to have been deposited during roughly contemporary temporal ranges (and might indicate 

the impact of local factors if significant differences were apparent).  

Palaeoecology of Antidorcas: Carbon and Oxygen Isotopes 
Antidorcas bondi δ13C values reflect typical grazing signals and Antidorcas recki reflects 

typical browsing signals. Antidorcas marsupialis appears to show a gradual trend towards 

increased C3 composition in diet, perhaps at odds with the spread of grasslands and aridity. 

This implies that mixed habitats and resources were available throughout, and the sample 

Antidorcas represent either a mix of seasonal signals, or reflect the individuals’ preference 

that happen to be in the assemblage. Alternatively, the increase in A. marsupialis C3 

consumption could be indicating an increase in competition from more specialised grazers 

as grasslands increase, forcing the springbok to increase browsing. The oxygen isotope 
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signals are more varied and it is likely that within these values, the catalyst of the shift in 

diet can be extrapolated.   

When attempting to reflect any changes in vegetation, using a mixed feeding antelope 

appears to be of greater benefit than using species with more specialist diets. The more 

specialised species tend to reflect only their palaeoecology, whereas the mixed feeder is 

more faithfully reflective of the fluctuating palaeovegetation.  

Palaeoenvironment of South Africa through time: Carbon 

isotopes 
Using published isotope records, Antidorcas marsupialis originally showed mixed-feeding 

preferences through carbon isotope values for Swartkrans Member 1 and 3, but Swartkrans 

Member 2 showed values more similar to the modern signals of predominantly browsing 

dietary signals.  

Swartkrans Member 2 appears to differ from surrounding temporal periods, with the 

decreased oxygen content suggesting increased precipitation compared to the earlier 

Member 1 and later Member 3. Although the carbon isotope values are not statistically 

significant, the depleted carbon δ13C values for Swartkrans Member 2 support this 

suggestion. That Antidorcas bondi maintains a predominantly grazing signal, albeit with 

depleted carbon δ13C values for this temporal range (c.1.7-1.07 Ma), along with elevated 

individual variation, suggests an element of habitat heterogeneity was supported (likely a 

higher degree of habitat heterogeneity across the landscape).  

After inputting my taxonomic identifications to specimens whose isotope values were 

gained from published data, more individuals were assigned to species level. Following 

this, analysis showed that Swartkrans Member 2 A. marsupialis had only slightly depleted 

carbon isotope values compared to Swartkrans Member 3 A. marsupialis and slightly more 

enriched for Swartkrans Member 2 A. marsupialis, than in Swartkrans Member 1. This 

indicates a steady increase in C4 plants from Swartkrans Member 1 through to Member 3 

but with a consistently mixed feeding signal throughout. Oxygen isotope values however, 

maintain significant depletion in Swartkrans Member 2, in spite of the tighter species 

classification. This therefore still suggests increased precipitation c.1.7-107 Ma (Swartkrans 

Member 2).  

More significant differences were found before species identification was tightened. The 

prevailing discussion rests on the correct taxonomic classification of specimens, lending 

justification to the need for palaeoecological investigation into fossil species prior to further 

investigative analysis to reconstruct palaeohabitats.  

As found by Maxwell et al. (2018), sampling and taphonomic bias can produce false 

indications. A ‘pulse’ of environmental instability was suspected for Swartkrans Member 2 

prior to reconsideration of taxonomic classification, where Swartkrans Member 2 A. bondi, 

the faithful grazer (Brink & Lee-Thorp 1992; Brink 2016) showed mixed feeding signals. 

Although A. bondi shows some signs of not necessarily being as faithful a grazer as was 

originally hypothesized (Brink & Lee-Thorp 1992), this may have been somewhat 

exaggerated. Adopting a more generalist dietary behaviour during times of environmental 

instability would make evolutionary sense, as could have been inferred from the misleading 
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isotope mean signal gained from A. bondi in Swartkrans Member 2 prior to further analysis 

(Figure 10.2, Figure 10.3, Figure 10.7). This distinction shows that considering the 

individual diets as well as the mean values is of importance, as well as then considering 

factors such as seasonality and sexual dimorphism to explain any apparent shift in dietary 

behaviour, especially from small sample sizes. Environmental instability and temporally 

increased habitat heterogeneity for c.1.7-1.078 Ma (Swartkrans Member 2) is suggested 

(Figure 10.7). 

However, when considering the Antidorcas individual specializations (Lehmann et al. 

2015), Sterkfontein Member 4 and Swartkrans Member 2 show the most variability in 

carbon isotope values, with 2 or 3 groups respectively, forming, reflecting the grazing-

browsing dietary preferences and population displacement, which is likely to reflect the 

dietary preference of each Antidorcas species rather than intra-specific differential dietary 

specialization. 

During times of resource scarcity, increased partitioning of food resources to form 

isotopically distinct dietary niches for each of the Antidorcas species can increase the 

likelihood of survival. As was found (Lehmann et al. 2015) for the modern springbok, co-

existing alongside the gemsbok (Oryx gazella) in a desert ecosystem. 

Palaeoenvironment of South Africa through time: Oxygen 

isotopes 
Depleted δ18O evidenced in Swartkrans Member 2 suggests increased precipitation levels 

during deposition of this Member.  

An initiation of the seasonality experienced today with the onset of the Walker circulation 

ca. 1.7 Ma, would explain why we see dietary changes and more discord between methods 

(representative of differing ontogeny stages of an individual), according to seasonal 

availability of resources.  

Physiological adaptations to heat stress differentially impact the levels of δ18O lost via the 

nose, mouth or skin (water vapour is depleted in δ18O) during thermoregulation (Wong et 

al. 1998; Lee-Thorp and Sponheimer 2000; Sponheimer and Lee-Thorp 2001; Luyt 2001). 

In this way, Oxygen isotope values can be indicative of fossil species thermoregulatory 

mechanisms when compared with other species. When looking at many species with the 

same response, the δ18O values can indicate aridity levels (via group response to heat stress, 

or a lack thereof). Antidorcas, as a combined genus, indicates a gradual enhancement in 

δ18O through time, suggesting a trend of gradually increasing aridity through time (Figure 

10.6).  

With an increased sample size, the advised screening process (Faith 2018) to ensure fossil 

taxa follow their modern counterparts in being evaporation sensitive/insensitive would be 

worthwhile. The screening process requires the consideration of carbon δ13C levels to infer 

grass consumption and the application of use-wear analysis to interpret the relative C3/C4 

grass composition of such diets. Following this process, aridity levels can be accurately 

deduced (Faith 2018).  
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10.4 SUMMARY 

- Antidorcas bondi δ13C values reflect typical grazing signals and Antidorcas recki 

reflects typical browsing signals.  

- Antidorcas marsupialis indicates a marginal increase in aridity and grasslands 

from Swartkrans Member 1 (2.0-1.4 Ma) to Member 3 (1.5-0.61 Ma), with a 

temporarily less arid phase during Swartkrans Member 2 (1.7-1.07 Ma). 

- Swartkrans Member 2 appears to markedly differ from surrounding temporal 

periods, with increased individual animal dietary variation evident for Antidorcas, 

and lower oxygen values, suggesting lower aridity than earlier, or later, temporal 

periods. A period of increased habitat heterogeneity and environmental instability 

c. 1.7-1.07 Ma (Swartkrans Member 2) is suggested.  

- As a genus, Antidorcas stable isotope values (carbon and oxygen) reflect the 

gradual trend towards increased aridity, with open habitats and C4 grasslands by a 

weak positive correlation of isotope values with time. Yet A. marsupialis are 

incorporating progressively more browse in the diet through time (potentially due 

to biotic competition but still reflective of browse presence in the landscape). 

 

 

 

CHAPTER 11  

 Multi-Method Analyses 
The novelty of this research lies in the use of multiple complementary methodologies, 

combined to provide a holistic palaeovegetational signal, via the bioproxy of the Antidorcas 

taxa, through time. In this chapter, the results obtained from each method are compared and 

combined statistical analyses and interpretations are presented. Initially, individual 

specimens that were subjected to multiple methods are analysed to understand the 

differential signals obtainable for an individual, via each method. Equipped with the 

knowledge of how the signal from each method may appear from one individual, the whole 

dataset is then considered. This chapter is intended as a summary chapter. 

11.1 INTRODUCTION 

Using multiple complementary methods has been shown to provide a more complete 

palaeoenvironmental reconstruction than would be viable from a single method approach 

(e.g. Rivals et al. 2015; González-Guarda et al. 2018; Sewell et al. 2019; Strani et al. 2018). 

Schubert et al.’s (2006) multi-method (stable carbon isotopes, microwear and mesowear) 

analysis of Makapansgat Limeworks (South Africa) bovids and Blondel et al.’s (2018) 

study on fossil Tragelaphines also highlight the importance of using a multi-method 

approach, in order to understand the palaeoecological data as an holistic picture. Thus, 

allowing for more accurately determined inferences and reconstructions from the 

differential information and perspective each method yields for fossil bovids.    
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Particularly if the bioproxy used is a mixed-feeder, capable of reflecting multiple smaller 

habitats available across the landscape (e.g. Jones and DeSantis 2017; Ecker et al. 2018; 

Sewell et al. 2019; Strani et al. 2018), multi-method approaches are beneficial.  Yet 

presently, there remains relatively few multi-method analyses of diet in the literature, 

particularly so, those which concentrate on the palaeoecology and inferred palaeovegetation 

indicators from fossil antelope. One such study, by Louys et al. (2012), compares the 

significance of correlations between data obtained from isotope values, raw molar 

measurements and mesowear values. Their study, which highlights the validity of 

mesowear as a method for determining antelope diets, shows a positive correlation between 

stable carbon isotope values and mesowear variables (occlusal relief and cusp shape). The 

expected pattern of cusp sharpness and δ13C was shown to be consistent with the rationale 

that an increase in C4 grass consumption (evidenced via carbon isotopes) is correlated to a 

decrease in cusp shape (due to the abrasive nature of grass particles). Yet unexpectedly, low 

relief was found to increase as the consumption of C4 decreased. This study also found that 

species-averaged mesowear variables did not correlate as well with stable carbon isotope 

values, as their individual specimen-by-specimen values did (Louys et al. 2012), lending 

support for the implementation of such a dual approach here.  

Moreover, mesowear variables [high dental occlusal relief and rounded cusps] are believed 

to be positively correlated with mean annual precipitation, water balance and humidity 

(Kaiser and Schulz 2006), and palaeoenvironmental reconstructions could therefore benefit 

from being complemented by oxygen isotope analysis.  

Each method reflects a slightly differing temporal scale from the Antidorcas’ lifetime. A 

multi-method approach can be used to mitigate for the limitations inherent in each method. 

Although each method has its merits, they can only inform so far for each palaeodietary or 

palaeoenvironmental research question, each offering different degrees of temporal lag and 

operating at slightly conflicting geographical ranges (e.g. Meadows 2015; Stewart and 

Mitchell 2018). A combined methods approach can hope to buffer some of the issues with 

the assemblages used, such as time-averaging, by capturing differing lifetime scales from 

the combination of dietary proxies. For example, seasonality within the assemblage may be 

obscured by time-averaging of deposits. However, by applying many dietary methods to 

individual specimens, seasonal-feeding and seasonal palaeoenvironmental changes become 

more visible.  

The complexity of site stratigraphy and the potential confounding factors of averaging of 

the deposits and/or the episodic deposition of assemblages are well known (see Appendix 

A3; chapter 2). However, a multi-method approach allows evaluation of exactly what each 

method is informing on, how these methods can be complementarily combined, and 

understanding why differential palaeovegetation signals may arise. Thereby, allowing these 

issues to be overcome and more robust conclusions to be drawn, allowing even a small 

dataset to inform at a greater resolution. By considering a select few individuals for which 

all methods were used, one can pick apart the individual ecology to form a lifetime 

palaeodietary, and by inference, palaeovegetation, signal. The benefit of this is to highlight 

the reasoning behind differential signals, i.e. whether they are due to the presence of 
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different populations across a long time-span or that the methods implemented are 

reflective of different individual animal lifetime dietary changes.  

Scale 
Another aspect worth considering is the scale reflected by each methodological approach 

(e.g. Davis & Pineda-Munoz 2016).  

When used in conjunction, methods complement one another to provide a holistic lifetime 

and evolutionary reconstruction of diet. When used in isolation, methods may yield 

perceived incongruences, by recording diet over different timescales (Davis & Pineda-

Munoz 2016). Dental morphology reflects the lifespan of the individual, as well as deeper 

evolutionary phylogenetic history of the species, genus and lineage. Mesowear represents 

the lifetime diet but takes at least 6 months to establish (Ackermans et al. 2018). In contrast 

isotopes and microwear signals reflect much shorter timescales. Isotopes reflect the early 

years dietary signal, laid down over a period of months-years,  and the microwear signal is 

immediately established on the dentition but can be quickly overwritten, therefore reflects 

on the items consumed over the last few days/ weeks of life.  

Indeed, methods such as mesowear are more fruitful when used in conjunction with other 

methodologies, as a broad dietary indicator (i.e. ‘herbivore vs. grazer’). For example, Jones 

& DeSantis’s (2017) multi-method approach to determining the dietary ecology of the La 

Brea herbivores analysed the degree to which each proxy method correlates with one 

another. They found that anisotropy (DMTA: epLsar) negatively correlated to dental 

occlusal relief values (mesowear) but positively with mesowear scores (scores of 0-6, 6 

representing low relief, blunt cusps). This would be expected of a grazer, to have a more 

anisotropic dental facet and low relief with blunt cusps but the negative correlation of relief 

would be unexpected. Yet the higher relief could reflect lower abrasion and, or higher 

precipitation (e.g. Kaiser and Schulz 2006). DMTA heterogeneity was also found to have a 

negative correlation with mesowear scores (Jones and DeSantis 2017).  

11.2 MATERIALS 

Further to the materials and methods outlined for each individual method in chapter 4, the 

following specimens (for which more 2 or more methods were implemented) were used for 

the first part of this analysis (individual analysis): 

Swartkrans: SKX 10697, SKX 4842, SKX 10703, SKX 11602, SK 5882, SK 5990, SK 
10555, SK4064, SK 6118, SK 4083, SK 4080, SK 2292, SK 4633, SK 11899, SK 6106, 
SK11073, SK14070, SK 5958, SK 2953, SK 3055, SK 2366, SK 2264, SK 3014, SK 
14123, SK 4054, SK 4081, SKX36545/36544, SKX 35326, SKX 33839, SKX 28999, SKX 
34249, SKX 28008. 
 
With the addition of published isotope results for Antidorcas, the following specimens were 

able to be added to the multivariate statistics, analysed for individual lifetime variation. 

From these individuals, only SKX 12067 also had corresponding microwear data from this 

study.  

Sterkfontein Member 4: STS 1125, STS 1435, STS 2369, STS 1944, STS 1325A; 
Sterkfontein Member 5 East: S94-6124, BP/3/16974; Sterkfontein Member 5 West: S94-
7314, S94-7958; Swartkrans Member 1 LB: SKX 12067. 
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Subsequently, the entire dataset (trends obtained via each species, per Member, ordered 

chronologically through time) was evaluated by combining results from all methods, as 

analysed in the preceding chapters.  

11.3 METHODS 

Scatter plots of all variable pairwise combinations were made for a visual assessment of the 

variables and their relationships to one another. This was done for all Antidorcas species 

for all provenance to see the general correlations between variables. Subsequently, the data 

was broken down by provenance (site and member) and again by species. From this 

assessment, visible trends could be investigated further for selected statistical analyses. 

Spearman’s rho correlations were made, pairwise, for each variable used to assess the 

contribution of variables to one another. Where correlations exist, further analysis is 

conducted to test if this correlation persists through time (i.e. if the correlation is apparent 

in each member) and for each species.  

11.4 RESULTS 

11.4.1 Individual Antidorcas comparison across methods 
A selection of Antidorcas individuals with at least two methodological data results 

available are presented here to evaluate the dietary signal achievable from one individual 

and to test if that signal prevails regardless of method applied and throughout the lifetime 

of the individual animal. I.e. are they mixed feeding individuals, seasonal mixed-feeding 

individuals or mixed-feeders collectively as a species, with the species supporting habitual 

grazers and habitual browsers.  

Correlations 

Variables from different methods showing correlations (Table 11.1: ) are explored further 

here and see Appendix A9. 
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Spearman’s rho correlation of all variables 
Table 11.1: Spearman’s rho pairwise correlations of all variables used. Positive correlations are shown above the line and negative correlations are shown below the 
line. Strong correlation=bold text (+1 to+0.5/-0.5 to -1), weak correlation=normal text (+0.5 to 0/ 0 to –0.5). Significance is indicated here by the number in the box 
(‘0’ shows p<.000). Acronyms are described in detail in chapter 4, for each method used. Measurements: ‘MDL’=mesio-distal length, ‘BLW’=bucco-lingual width, 
‘CH’=crown height, ‘OH’=occlusal height, ‘TH’=total height, ‘EA/EB/EC/ED’=enamel thickness at locations A,B,C, and D. Mesowear: ‘MS 1-6’=Mesowear score (1-
6), ‘RLF’=occlusal relief, ‘CS’=cusp shape, ‘NMWS’=new mesowear score (1-49). DMTA: ‘Asfc’= area scale fractal analysis, ‘R2’=angle of the slope, ‘Smc’=scale of 
maximum complexity ‘StDvn’= standard deviation, ‘epLsar’= length-scale anisotropy of relief; ‘HAsfc’=heterogeneity of area scale fractal complexity (at scales 9 and 
81), ‘TfV’=textural fill volume. Isotopes: ‘δ13C’=carbon isotopes, ‘δ18O’=oxygen isotopes.  

MDL BLW CH OH TH EA EB EC ED MS 1-6 RLF CS NMWS Asfc R
2 Smc StDvn epLsar HAsfc 9 HAsfc 81 TFV δ13C δ18O

MDL 0.012 0.13 0.004 0.035
BLW 0.02 0.009

CH 0.048 0.005 0.031 0.006 0.001 0
OH 0.002 0.014 0.001 0 0 0.003 0 0.021 0.022 0.023
TH 0.026 0.016 0.042 0.003 0.02
EA 0.02 0 0.001 0.011 0.047
EB 0.022 0 0.002 0.007

EC 0.029 0.024 0.016 0.001
ED 0.023 0.039 0.008

MS 1-6 0 0 0 0.007 0.009 0.032
RLF 0 0 0.011
CS 0 0.016 0.002 0.023
NMWS 0.047 0.033 0.002
Asfc 0 0.05

R
2 0.008 0.002

Smc 0.025 0.038
StDvn

epLsar

HAsfc 9 0 0.003 0.017 0 0 0 0 0 0.036 0.009 0

HAsfc 81 0.042 0.001 0.002 0.006 0.001 0.038
TFV 0.006 0.001 0.036 0.017 0.014 0.009 0.018
δ13C 0.011 0.02
δ18O 0.013  



 

350 

 

Stable isotopes and enamel thickness  
 

 

 
 

 
Figure 11.1: Scatter plot showing individual Antidorcas specimens carbon isotope δ13C (‰) 
values on the Y axis (left side plots) and oxygen isotope δ18O (‰) values on the Y axis (right 
side plots), compared to enamel thickness at measured locales (A-C) (in mm) on the X axis. The 
overall correlation (rather than specific values) are important here. 
A positive correlation was observed for both carbon and oxygen isotopes against enamel 

thickness (weak positive for enamel thickness at locations ‘A’, ‘C’ and ‘D’ and a strong 

positive correlation at location ‘B’). This was investigated further, separating the dataset by 

tooth type to determine if the trend between enamel thickness and isotopes varied across the 

toothrow (see Appendix A9). When separated out, sample sizes were very small, typically 

lower than n=10. Due to small sample sizes, caution is exercised for any observed patterns (i.e. 

these patterns should only be used in support of studies with similar findings, rather than stand-
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alone evidence, hence these graphs are included only in the appendices). To attempt to 

corroborate this trend, further analysis was carried out.  

Further Analysis 
From a spearman’s rho correlation for only the Antidorcas with both enamel thickness 

measurements and stable oxygen isotope values (n=14), a correlation exists between δ18O and 

enamel thickness (p=.049). However, when the dataset is split by member (Time), no 

correlation exists. The same is true for splitting the dataset by species. This trend is also 

observed for carbon isotope value against enamel thickness (p=.015), again this trend is not 

seen when split but member, or by species. Carbon isotope values are more species (dietary)-

dependent, making this correlation of relatively little value.  

When broken down by tooth type, this trend was only prevalent for the lower second molar for 

enamel thickness A. [For lm2, enamel thickness A represents the buccal enamel surface, B the 

interior facet and C the lingual enamel surface (D is not present)]. The opposite trend exists for 

the upper second molar than is true for the other molars. The same is true for enamel thickness 

D (mesostyle) (Table 11.1).  

The significant findings here are summarised below, however, larger sample sizes are required 

taking this further and is an avenue for future research.  

Enamel thickness, taken as a mean from all locations (see chapters 4 & 7) produces these 

significant correlations, as does enamel thickness at locations A and B (but at locations C and 

D, these correlations are not present). A Spearman’s rho correlation revealed strong, positive 

correlations for the following:  

Table 11.2: Significant correlations for enamel thickness and stable isotopes. ‘N’ = number of 
individuals, ‘EA’ is representative of the buccal enamel band, ‘EB’ of the central enamel band, 
p=significance value. 

Molar N 
Correlating variables 

P Correlation coefficient 
Enamel Thickness Isotope  

Lower 8 EA δ13C .014 +0.814 
Lower 8 EA δ18O .020 +0.790 
Lower 7 EB δ18O .025 +0.815 
Upper 6 EB δ13C .036 +0.841 

If this trend prevails with larger sample sizes, climate could be correlated as an evolutionary 

driver of dentition. This trend could reflect aridity as an evolutionary driver for dentition, to 

withstand adaptive forces potentially caused by climate-induced vegetation changes (enamel 

thickness) and linked to aridity levels (δ18O). Although yet another step removed, as an ongoing 

debate exists regarding the adaptive drivers of differential dentition and their implications for 

Paranthropus and Australopithecus (e.g. Grine 1986; Skinner et al. 2008, 2009; Rabenold and 

Pearson 2011), climatically-driven dental adaptations could provide key insights into 

evolutionary drivers in many species, even hominins. Especially if, as Antidorcas, both species 

were dietary, habitat and ecological generalists (e.g. de Ruiter 2008b; Wood and Strait 2004).   

DMTA and Mesowear 
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Figure 11.2: Scatterplot showing individual Antidorcas specimens dental occlusal relief 
(mesowear) on the x-axis (left) and cusps shape (mesowear, blunt on the left nearest the origin, 
to rounded and sharp to the right) on the x-axis (right) against heterogeneity (HAsfc 9cell) (µm) 
on the y-axis. The overall correlation is of importance (rather than individual values).  
A negative correlation exists between HAsfc9 and occlusal relief, i.e. as relief increases, 

heterogeneity decreases. Figure 11.2 shows the negative correlation between heterogeneity 

(DMTA) and occlusal relief (mesowear) on the left and between heterogeneity (DMTA) and 

cusp shape (mesowear) on the right, for Antidorcas for all members combined. The opposite 

would be expected, with browsing species typically displaying high relief and greater 

heterogeneity, whilst grazers tend towards lower occlusal relief with more homogeneity in their 

wear patterns. The same is true for cusp shape, displaying a negative correlation to 

heterogeneity.  

When the dataset is split by provenance, this trend is only computable (due to requiring a 

sufficient sample size), and prevalent for Swartkrans Member 2. When split by species, within 

Swartkrans Member 2, this negative correlation between heterogeneity and occlusal relief exists 

moderately for A. marsupialis (significance=.043; correlation coefficient=-.547 (; n=14) and 

strongly for Antidorcas sp. (significance=.000; correlation coefficient=-.869; n=15). No 

correlation exists for A. bondi (n=9). The negative correlation between heterogeneity and cusp 

shape exists only for Antidorcas sp. (significance=.000; correlation coefficient=-.815; n=15) 

this correlation is strong, yet A. marsupialis and A. bondi do not display the same correlation 

between heterogeneity and cusp shape.  

This correlation exists for both M2 (significance=.024; correlation coefficient=-.671; n=11) and 

M3 (significance=.012; correlation coefficient=-.514; n=23) unfortunately, sample sizes were 

too small to assess this correlation for other tooth types.  

This unexpected correlation suggests that the mesowear variables are not as clearly defined as 

the current literature suggests. There are more factors to consider than simply a ‘grazing’ and 

‘browsing’ expected mesowear signal and the parameters of the mesowear method require 

reassessment. 

If accepting the current mesowear parameters, it is possible that a high level of abrasion, 

(inflicting long term selection pressure, such as increased crown height) is also responsible for 

high levels of overwriting of microwear signals. Higher levels of abrasion increase overwriting 
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of previous microwear scars, reducing the timeframe represented by microwear. This may 

produce a ‘false’ low heterogeneity for the browsing individuals due to only short-term 

preservation of wear from masticated vegetation. As these individuals display high relief and 

sharp cusps and tend to show browsing isotope signals, it is likely that they were not wearing 

their teeth down (which should result in lower relief and rounded-blunted cusps) from grass 

phytoliths, instead it is possible that this suspected abrasion come from exogenous particles, 

such as dust.  

A weak positive correlation was observed between oxygen isotope values and Tfv values 

(Figure 11.3), supporting dietary flexibility (high Tfv) in relation to increased aridity and / or 

increased leaf consumption (δ18O).  

 

 
Figure 11.3: Scatter plot showing Oxygen isotope δ18O (‰) values on the Y axis, against Tfv 
(DMTA) values (µm) on the X axis.  
There was no correlation observed between carbon isotope values and mesowear cusp shape 

(Figure 11.4) for Antidorcas. This scatter plot does however, show the dominance of rounded 

cusps (suggesting an abrasive element is common in the diet) and a hint of clustering of δ13C 

values as mixed-feeding (-5 to -9‰), to browsing (below -9‰) and grazing (above -2‰) 

groups. Those individuals with carbon isotope values (δ1313) closer to the grazing / browsing 

boundary being perceived as having more variable diets, these clustering are indicated in 

(Figure 11.4). There is a marginal tendency for mixed-feeders-grazers (above -9‰) and grazers 

(above-2‰) to display blunt cusps and for mixed-feeders-browsers (below -5‰) and browsers 

(below -9‰) to tend towards sharp cusps.  
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Figure 11.4: Scatter plot showing individual Antidorcas specimens molar cusp shape 
(mesowear) on the x-axis against carbon isotope value δ13C (‰) on the Y-axis. Above the green 
line on the left indicates predominantly grazing diets, below the red line on the right indicates 
predominantly browsing diets. Mixed feeding diets are those that fall within the other areas, 
particularly central to grazing/browsing.  
DMTA, isotopes and enamel thickness 
No correlation was seen for microwear and enamel thickness, which may be expected as 

microwear may not reflect lifetime dietary preferences and therefore does not represent the 

adaptive force acting on the dentition. The idea that the animals may not have been eating their 

preferred diet leading up to their death is supported by a lack of correlation between most 

microwear values and carbon or oxygen isotopes. The only, albeit weak, trend observed is 

between oxygen isotopes and Tfv. Of all the microwear variables, Tfv is likely to show longer 

term dietary preferences, if overwriting from the most recent meals does not mask the signal. 

Deeper and /or larger pits and scratches are less likely to be overwritten where the last few 

meals are of softer food particles (e.g. fine grasses with few silica bodies or phytoliths).   

Looking at the individual values: Tfv compared to Smc (the scale at which the wear signal is 

obtained and shows the most complexity), the higher Tfv values are often taken at a higher 

scale.  The very highest values for Tfv are also for Smc but there are not always consistently 

high Tfv and high Smc values.  
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Figure 11.5: Scatter plot showing individual Antidorcas specimens dental crown height in mm 
(x axis) against carbon isotope value δ13C (‰) on the Y-axis. A weak positive correlation was 
found for all tooth types (individually and combined), all tooth types are shown on this graph. 

A weak positive correlation was found between crown height and carbon isotope δ13C (‰) 

values (Figure 11.5) and oxygen isotope δ18O (‰) values (Figure 11.6). As expected, 

individuals with a browsing isotope signal (low δ13C), have lower crown heights. More abrasive 

diets (typically grazing) are likely to result in selection for taller crowns as a structural 

mechanism to withstand the abrasive pressure. Although a weak positive trend was also shown 

for crown height against oxygen isotope values, considerable variation was apparent between 

tooth types (Figure 11.6). This is possibly due to oxygen isotope values reflecting 

palaeoenvironmental complexities beyond dietary parameters. The same is true for occlusal 

height and isotope values. A weak positive correlation was also found for occlusal height and 

carbon δ13C (‰) (Figure 11.7) and oxygen δ18O (‰) ( 

Figure 11.8:) isotope values.  
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Figure 11.6: Scatter plot showing individual Antidorcas specimens dental crown height in mm 
(x axis) against oxygen isotope value δ18O (‰) on the Y-axis. A weak positive correlation was 
found for all tooth types (individually and combined), all tooth types are shown on this graph. 

 
Figure 11.7: Scatter plot showing individual Antidorcas specimens dental occlusal height in 
mm (x axis) against carbon isotope value δ13C (‰) on the Y-axis.  
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Figure 11.8: Scatter plot showing individual Antidorcas specimens dental crown height in mm 
(x axis) against oxygen isotope value δ18O (‰) on the Y-axis. 

 
Figure 11.9: Scatter plot of Antidorcas dental occlusal height (in mm) on the x axis against 
Mesowear score on the y axis. Mesowear scores from LB (score 1, low relief and blunt cusps) 
to HS (score 6) are stated on the axis. 
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A strong positive correlation between occlusal height and mesowear score was found for 

Antidorcas dentition (Figure 11.9). This correlation was expected as lower occlusal heights 

(physical measurements of cusps) are associated with an abrasive diet, as are lower mesowear 

scores (which includes the relative cusp relief, inherently linked to occlusal heights). Figure 

11.9 may hint at a possible plasticity to teeth beyond what would be expected. However, the 

impact of time-averaging is probable here. That is, it is not possible to determine the impact on 

individuals’ lifetime scale to assess response (to abrasion versus attrition of diet as represented 

by mesowear) plasticity.   

 

 
Figure 11.10: Individual Antidorcas new mesowear scores (continuous scale 1-49) on the x axis 
showing a strong negative correlation against dietary heterogeneity HAsfc 9cell (µm).  

A strong negative correlation exists between heterogeneity (HAsfc) of diet and continuous 

mesowear scores ( 

Figure 11.10 and Figure 11.11). This is opposite to what may be anticipated, as browsers are 

thought to have high relief and sharp cusps (higher mesowear score HS=49 (new mesowear 

scores) or HS=6 (mesowear score), see chapter 8 ‘Mesowear’) and relatively high heterogeneity 

evidenced via microwear analysis. Mixed feeders typically have the highest microwear 

heterogeneity. This may be skewed by age of individuals. Younger individuals, with lower 

levels of lifetime wear (and less time to display mesowear signatures, see Ackermans et al. 

2018) are also less likely to have high microwear heterogeneity. Although microwear primarily 

indicates the last few meals, these are being imprinted on top of existing microwear patterns. 
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Where fewer microwear scars have been impressed on the dental enamel in younger 

individuals, their heterogeneity is likely to present as lower. This correlation could also/ 

alternatively represent abrasive mixed feeding dietary practices.  

 
Figure 11.11: Scatterplot showing Individual Antidorcas mesowear scores (continuous scale 1-
6) on the x axis showing a strong negative correlation against dietary heterogeneity HAsfc 9cell 
(µm).  
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Figure 11.12: Scatterplot showing Individual Antidorcas enamel thickness A (in mm) correlated 
against heterogeneity of microwear (HAsfc9cell, in µm). 
 

The strong negative correlations between heterogeneity (HAsfc9) and enamel thickness 

(location A and B, see chapter 7 ‘Measurements’) (Figure 11.12-Figure 11.13) supports a 

selective pressure on the molars due to an abrasive diet. Homogenous (typically grazing) diets 

are more abrasive, selecting for structural reinforcements for greater enamel thickness. That 

these correlations exist, suggest that the microwear signals are not indicative of fall-back foods 

primarily but those that are often consumed for a sufficiently long duration within the life to 

select for masticatory adaptations to support these dietary practices.  

 

In contrast to heterogeneity (Figure 11.13), a strong positive correlation between inner enamel 

thickness (‘EB’ see chapter 7 ‘Measurements’) and occlusal relief (see chapter 8 ‘Mesowear’) 

was found (Figure 11.14). The opposite may be expected, however, this correlation could be a 

sampling artefact, either due to sample size or, reflect younger individuals. Younger individuals 

would display higher relief due to the shortage of duration of life within which to wear the relief 

down by vegetation consumed. The inner enamel is also thicker due to lack of wear. Care was 

taken to avoid obviously very young or very old individuals but this possibility cannot be 

completely ruled out. Alternatively, the inner enamel and outer tooth edge (relief is measured 

on the outer tooth edge) could be interacting with the vegetation and wider environmental 

influences in slightly differing ways. Further analysis with larger sample sizes would be 

required to test this.  
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Figure 11.13: Scatter plot for Antidorcas inner enamel thickness (in mm, location B, see 
chapter 9, ‘Measurements’) on the x axis against diet heterogeneity (HAsfc9 

µm) on the y axis.  

 
Figure 11.14: Scatter plot showing the correlation between Antidorcas dental enamel thickness 
of the molar infundibulum (inner enamel band) (in mm) and occlusal relief (high / low). 
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Figure 11.15: Scatter plot showing the correlation between Antidorcas dental enamel thickness 
of the molar infundibulum (inner enamel band) (in mm) and carbon isotope δ13C (‰) values.  
 

Figure 11.15 and Figure 11.16 ‘s correlations, introduced earlier (and see Appendix A9) explore 

inner enamel thickness correlations in one combined plot, whilst still differentiating between 

tooth type. This is to place this correlation with the sequence of considering the inner enamel, 

which appears to show many correlations to other dietary variables (Figure 11.13-Figure 11.16). 

Figure 11.15 displays the potential relationship between diet (δ13C) and the selection pressure 

this diet may exert on inner enamel thickness.  

 

These correlations (Figure 11.13-Figure 11.16) can be linked to the inner mesowear scores 

(Mesowear III). Exploring these correlations further with the input of the mesowear III scores 

with larger sample sizes is an avenue for future research. Here, the correlations support 

increased inner enamel thickness to withstand abrasive, homogenous (HAsfc) diets. Abrasive 

mixed feeding diets are suggested due to the strong negative correlation between carbon 

isotopes (δ13C) and enamel thickness.  
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Figure 11.16: Scatter plot showing the correlation between Antidorcas dental enamel thickness 
of the molar infundibulum (inner enamel band) (in mm) and oxygen isotope δ18O (‰) values.  

 

A strong positive correlation between bucco-lingual width and textural fill volume of 

microwear scarring may implicate the material properties of the vegetation consumed. This 

trend (Figure 11.17) is not an artefact of species molar size differences as it prevailed for A. 

bondi, A. marsupialis and Antidorcas sp. (specimens only identified to genus level), no A. recki 

specimens with both variables were present in the dataset, so the correlation for A. recki could 

not be established.  
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Figure 11.17: Scatter plot showing the correlation between Antidorcas bucco-lingual width 
(BLW, in mm) against Textural fill volume (Tfv) of dental microwear (in µm).  
The strong positive correlations between enamel thickness on molar mesostyles (enamel 

thickness D, see chapters 4 &7) and complexity (epLsar) and textural fill volume (Tfv) (Table 

11.1) supports an interpretation of mixed feeding, yet abrasive diets. The enamel thickness 

responds on a longer time scale through selective pressure, the microwear (epLsar and Tfv) 

reflect the last few days/ weeks dietary indications. The selection could therefore, be a result of 

seasonal mixed feeding.  

Use-wear and Stable isotopes 
Data chapters 7-10 (Measurements, Mesowear, Microwear and Isotopes) suggest heightened 

inter- and intra-specific variability for Swartkrans Member 2. This Member is therefore 

explored further here by directly comparing signals from each method of dietary inference.  
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Figure 11.18: Scatter plot showing individual Antidorcas upper molars from Swartkrans 
Member 2 early years signal (carbon isotope δ13C (‰)values) along the left hand side y-axis 
and indicated by blue dots, lifetime dietary signal (mesowear score) along the x-axis (indicated 
by green dots) and last few weeks of life (Asfc (µm) microwear signal). The green dots 
represent the microwear enamel surface complexity (right Y axis only) and correspond to the X 
axis for mesowear score. The blue dots represent carbon δ13C (‰) (left Y axis only) and 
correspond to the X axis for mesowear score.  

Low complexity 

C4 plant dominance 
High complexity 

C3 plant dominance 
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Figure 11.19: Scatter plot showing individual Antidorcas upper molars from Swartkrans 
Member 2 early years signal (carbon isotope δ13C (‰) values) along the left hand side y-axis, 
lifetime dietary signal (mesowear score 1-6) along the x-axis and last few weeks of life (epLsar 
microwear signal). Only epLsar (µm) values (green) typical of browsing (below 0.006 µm) were 
present from these Antidorcas individuals in Swartkrans Member 2. The carbon isotope values 
(blue) show a more mixed-feeding to grazing signal. The green box indicates graze-dominated 
diets, the red box, browse-dominated diets.  
This (Figure 11.19) is likely to show a dominance of A. bondi within the SKX M2 assemblage, 

reflecting typically grazing dietary habits, but perhaps relying on fallback foods during the 

temporal period of Swartkrans Member 2. Or of herd demographics, young graze, mixed-

feeding diet through life and browsing due to (perhaps seasonal) availability. Antidorcas inter- 

and intra-specific variation is evident for Swartkrans Member 2. Individuals appear to be 

typically browsing-mixed-feeding early and late in life but not exclusively throughout their 

lifetime. These individual Antidorcas were potentially including abrasive grasses in the diet 

seasonally, or else incorporated other abrasive elements impacting on use-wear signatures.  

C4 plant dominance 

C3 plant dominance 
Low anisotropy 

High anisotropy 

Early 

life 

Late 

life 

Averaged lifetime 
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Figure 11.20: Scatter plot showing individual Antidorcas from Swartkrans Member 2 early years signal (carbon isotope δ13C values) along the left hand side y-axis, 
lifetime dietary signal (mesowear score) along the x-axis and last few weeks of life (epLsar (in µm) microwear signal). Only epLsar values (green) typical of browsing 
(below 0.006 µm) were present from these Antidorcas individuals in Swartkrans Member 2. The carbon isotope values (blue) show a more mixed-feeding to grazing 
signal. Values are split according to tooth type (upper second molar on the left and upper third molar on the right).  
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Differential dietary signals along the toothrow could represent time-averaging or species-

averaging rather than different teeth reflecting a conflicting dietary signal along the toothrow of 

the same individual i.e. tooth types being represented differentially in deposits.   

From the upper second molar (left), carbon isotopes and microwear show mostly browsing 

signals. The dominance of HS (high relief and sharp cusps, typical of a browsing individual) 

support the overall browsing dominance, with some mixed-feeding. The rounding of cusps 

(mesowear LR/HR) suggests some degree of abrasion to the molar cusps. More C4 vegetation 

inclusion is shown in the upper third molar (right) by the carbon isotopes and mesowear signal 

but browse-dominance is still reflected via microwear (anisotropy epLsar). 

It is possible that M3 is more susceptible to abrasive diets than M2, however, these teeth are 

most likely represented by different individual animals (rather than from the same animal along 

the tooth row) so this cannot be conclusively tested here. (Only these two tooth types are 

represented by all of these methods in this dataset).  

To consider signal discrepancies apparent from different tooth types, the M3 was examined 

further and contrasted to the M2 signal.  As indicated in Figure 11.21 carbon isotopes show the 

dominance of grazing in early life (blue circles showing enriched δ13C values), mixed-feeding 

with a relatively abrasive diet (rounding to blunted molar cusps seen via mesowear) but 

browsing dominates their end of life diet (green circles indicative of isotropic enamel surfaces 

via microwear).  

This evidence indicates that more than one tooth type should be evaluated to capture the most 

accurate palaeoenvironmental signal possible.  
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Figure 11.21: Individual Antidorcas from all members M3 dietary signals from early lifetime 
(enamel formation) carbon isotopes (left y-axis), last few months of life (anisotropy (epLsar, (in 
µm)) of enamel facet surface wear) from microwear (right y-axis) and averaged lifetime signal 
from mesowear (x-axis). Mesowear (x-axis) is displayed from a typical grazing signal on the 
left (G) on a scale through mixed feeding (MG=mixed/variable grazer; MB=mixed/variable 
browser) to the right side (B) of grazing to browsing.  
 

Seasonality and Lifetime Dietary Signal 
The scale represented by each method informs on slightly differing aspects of the diet. 

Ackermans et al.’s (2018) mesowear trials on goats found mesowear required at least 6 months 

to develop to be truly representative of diet. This supports that age of individuals needs to be 

considered before grouping individuals together for mesowear analysis. Further, seasonal diet is 

unlikely to differentially manifest as obligate grazing / browsing signals (through cusp shape 

and occlusal relief) but would presumably display a generalised mixed-feeding signal along 

with subtle indicators based on the material properties of the vegetation consumed. Microwear 

and stable isotope dietary signals can inform better on the seasonal discrepancies within 

deposits.

GRAZING 

BROWSING 

G MG B MB 
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Table 11.3: Individual Antidorcas comparisons of dietary inferences from all methods, to assess dietary change through individual animal lifetime and attempt to see 
seasonal change.  MDL=mesio-distal length; BLW=bucco-lingual width; CH=crown height; OH=occlusal height; MET=mean enamel thickness. An expanded 
description is given below the table. 
Provenance  Species Specimen 

Number 
Tooth Measurements (mm) Diet Aridity 

MDL BLW CH OH MET Mesowear Microwear δ
13

C δ
18

O 

SK M4 A.cf.recki STS1435 RM2 13.9 10.7 x 1.0 0.73 Variable 
grazer 

x Browser wet 

A.recki STS2369 Rm3 23.1 8.1 x 2.1 0.80 Mixed x Browser moderate 
A.recki STS1944 Lm2 13. 1 7.2 7.3 1.6 0.70 Variable 

browser 
x Browser wet 

A.recki STS1325A RM3 16.6 11.9 x 1.0 0.75 Grazer* x Browser wet 
A.bondi STS1125 Lm2 12.3 7.0 8.5 2.1 0.90 Grazer  x Grazer moderate 

SK M5E sp. S94-6124 M2 14.5 11.4 x 1.7 0.85 Variable 
grazer 

x Variable 
browser 

moderate 

sp. BP/3/16974 M2 14.8 11.2 x 1.3 0.83 Variable 
grazer 

x Variable 
browser 

wet 

SK M5W A.bondi S94-7314 Lm2 12.2 7.9 7.3 0.4 1.07 Grazer x Grazer dry 
sp. S94-7958 LM2 15.3 12.5 x 0.7 1.05 Grazer x Mixed moderate 

SKX M1 A.cf recki SKX10697 LM1 12.7 13.6 x 0.3 0.65 Grazer  x Mixed wet 
A.recki SKX4842 M1 x 6.5 9.1 1.6 0.80 Variable 

grazer 
x Mixed moderate 

A.bondi SKX12067 RM1 14.9 12.2 x 2.7 1.08 Variable 
browser 

Variable 
grazer 

Grazer x 

A.bondi SKX11602 Lm1 9.8 5.8 19.1 1.6 0.65 Mixed x Mixed** wet-moderate** 
A.marsupialis SKX10703 RM3 10.2 9.2 15.3 1.5 0.83 Mixed x Mixed dry 

SKX M2 A.recki SK11073 RM2 x x x x x Browser Browser Browser wet 
A.bondi SK5882 RM3 13.7 8.9 12.5 2.1 x Variable 

grazer 
x Grazer wet-moderate 

A.bondi SK4064 RM3 12.9 6.9 17.0 4.5 x Mixed Browser Grazer moderate 
A.bondi SK4083 RM2 13.9 9.0 15.0 2.9 x Grazer Browser Grazer dry 
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A.bondi SK4080 RM2 14.7 10.0 13.8 2.5 x Mixed Mixed Grazer moderate 
A.bondi SK2292 LM3 14.6 8.9 9.8 2.1 x Mixed x Mixed wet 
A.bondi SK2366 RM2 15.3 7.8 10.3 3.6 0.93 Browser Browser Mixed wet 
A.bondi SK11899 RM3 15.9 10.1 13.3 2.0 x Grazer Variable 

browser 
Grazer moderate 

sp. SK5958 Rm2 15.3 7.8 12.5 2.3 0.57 Variable 
grazer 

Browser Mixed-variable 
browser 

moderate 

 
sp. SK10555 LM3 15.1 9.2 13.0 2.4 x Mixed* Mixed Grazer moderate 
sp. SK6118 RM3 13.7 8.8 14.2 3.3 x Browser Browser Grazer moderate 
sp. SK4633 RM3 16.1 10.3 12.8 1.9 x Grazer Browser Grazer wet 
A.marsupialis SK6106 RM3 14.7 9.4 12.9 4.6 x Mixed Mixed Grazer moderate 
A.marsupialis SK14070 Lm3 22.3 8.3 11.7 2.2 0.67 Variable 

browser 
x Browser wet 

A.marsupialis SK2953 Rm3 21.9 7.5 9.7 2.7 0.30 Grazer x Browser wet 
A.marsupialis SK3055 RM2 17.2 11.5 9.2 3.3 1.00 Mixed Browser Browser dry 
A.marsupialis SK5990 LM3 15.3 8.9 13.3 2.0 x Mixed Mixed Mixed dry 

SKX M3 A.recki SKX35326 LM1 12.7 11.7 9.7 2.5 0.93 Grazer x Browser moderate 
A.bondi SKX34249 Lm3 21.7 7.2 23.4 3.3 0.95 Mixed x (seasonal) 

Mixed** 
dry (to moderate 
seasonally)**  

A.marsupialis SKX33839 LM2 16.6 8.6 15.9 2.2 0.80 Browser  x Mixed-variable 
browser 

moderate 

A.marsupialis SKX28999 Lm2 13.95 6.0 8.3 0.5 1.1 Grazer x Mixed dry 
A.marsupialis SKX28008 LM2 12.8 11.0 13.1 2.2 1.3 Variable 

browser 
x Mixed dry 

A.marsupialis SKX36545 LM2 13.2 11.3 15.0 4.3 x Grazer x Mixed wet 
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Expanded table information (Table 11.3) Stable isotope data are compiled from published 
sources (see Isotope chapter for specific references) and data collected for this research by 
L. Sewell. All other methods were obtained by L. Sewell for this research. Measurements 
and mean enamel thickness (MET) are included to see the range of variation associated 
with each species for each time period alongside their dietary indicators.  ‘sp.’ as a species 
assignment is given where there have been differential identifications by different 
researchers or if identification was possible only to genus level. Dietary categories are 
explained fully in each methods’ chapter [Mesowear: low relief and blunt-rounded cusps 
shows an abrasive diet typical of grazing, high relief and sharp cusps suggests a browsing-
dominated diet, a combination of these is stated as a variable , e.g. of low relief and sharp 
cusps is stated as a variable grazer, multiple mesowear variables with conflicting dietary 
indicators yield a ‘mixed’ result; microwear: low complexity and high anisotropy suggest 
grazing-dominance; Stable carbon isotopes: values above -3.0‰ are indicative of C4 
dominance and obligate grazing, below -9‰ are indicative of C3 dominance and obligate 
browsing, values between suggest mixed-feeding practices, individuals with δ13C values 
close to these boundaries are identified as ‘variable’ grazer/browser]. δ18O are taken to be 
wet if below -1 δ18O PDB and dry if above +1 δ18O PDB. Between -1 and 1 δ18O PDB is 
classified as ‘moderate’. A combination is used if differential signals occur from separate 
sources.  
 *’Grazer’ or ‘mixed’ may actually be indicative of an abrasive diet, typically more 
prevalent amongst grazers. This is true for all ‘grazers’ identified via mesowear variables as 
the rounding or blunting of cusps is primarily due to dietary abrasives.   
** Serial sampled stable isotopes provide serial results, with categories in this table 
assigned according to all values.  
 

From the table (Table 11.3) above, Antidorcas appear to be individual mixed feeders, 

varying their diet throughout their lifetime and with individual animal preference within the 

species. As such, larger sample sizes may be required and in-depth multi-method analyses 

used to extrapolate palaeovegetation information from their dietary signals.  From 

microwear signals (DMTA), Swartkrans Member 2 shows a relatively strong browsing 

signal from all Antidorcas species present, suggestive of less grassland presence. A more 

heterogeneous palaeoenvironmental picture emerges however when considering all 

methods, which may be indicative of Antidorcas migratory patterns or herd demographics. 

Stable carbon isotope values support A. bondi being a grazer (Brink & Lee-Thorp 1992).  

However, A. bondi during Swartkrans Member 2 appear to substitute graze in their diet as 

mixed feeding patterns are evident from lifetime use-wear (mesowear) and end of life 

(microwear) both for individual animals and intra-specifically; i.e. A. bondi from SKX M2 

incorporates the dietary spectrum, with some individuals habitually grazing, some 

habitually browsing and others mixed-feeding. 

Antidorcas species life-time dietary signals:  
Early life: A. recki browsing; A. bondi grazing-mixed; A. marsupialis mixed (stable carbon 
isotope values). 

Lifetime average: All species are mixed-feeders, individual variations exist through time, 
within each member for each species (mesowear) 

End of life: Mixed-feeding to browsing (DMTA). 

The dental enamel of South African browsing herbivores is said to be more enriched in 

δ18O than in grazing herbivores. As indicated in the chapter 10, the oxygen isotope 

composition of the Antidorcas dental enamel does not necessarily correlate with the carbon 

isotope values. In these instances, palaeoenvironmental reasons are deemed greater 

influential factors than dietary variables. Surprisingly depleted δ18O values are apparent in 
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Sterkfontein Member 4 A. recki for example. In cooler, wetter environments, there is more 

standing water. Modern springbok drink opportunistically, so where more is available, they 

will drink and would therefore have less enriched δ18O values.  

Seasonality of the springbok, along with differential migratory origins (the oxygen content 

reflecting the local environment during the first year of the springbok’s life, whilst carbon 

allows insight into the diet for the first year) may be achievable from studying the stable 

isotope values further. This is an avenue for future research.  

Individuals Comparisons Review 
To extrapolate meaning from each method and understand the timescale it reflects, 

individual specimens were selected for comparison of all methods (where applicable). 

Although this yielded small sample sizes, patterns were sought in the data to understand 

various aspects, particularly, if discrepancies between results from the different methods 

were due to dynamics such as time averaging of assemblages or lifetime variation of diet 

within the individual (due to factors such as individual preference, seasonality, migration or 

ontogeny). Knowledge of these elements, help inform on the palaeoenvironmental context 

one can infer.  

In this instance, observations of potential correlations were hindered by small sample sizes, 

particularly from the same tooth type, reducing any indication of morphological influence. 

Differential enamel thickness and isotope correlations across the tooth row highlight how 

the tooth is used during mastication, with differential exposure to abrasive food particles 

and pressure exerted on each tooth when chewing. This may also be related to enamel 

mineralization. Interestingly M1s, which mineralize first, often display the weakest trends. 

This could be indicative of juveniles feeding differentially to adults within a herd. To 

rationalize this observation from this starting point, similar studies could be repeated with a 

larger, exactly comparative dataset. 
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Table 11.4: Mean results summaries from each method used for A. recki upper second molars, through time. Values are given to 2 decimal places. 
Provenance MDL (M

2
) 

(mm) 

BLW (M
2
) 

(mm) 

CH (M
2
) 

(mm) 

ET (M
2
) 

(mm) 

Asfc (µm) epLsarx10
-3 

(µm) 

HAsfc (3x3) 

(µm) 

MS (1-6) mode Carbon 

δ
13

C (‰) 

Oxygen 

δ
18

O (‰) 

        upper lower   
SK M4 13.8 8.2 10.27 0.73 9.22 1.57 0.43 MS LR -11.17 26.55 
KW 13.5 11.5 x 0.9 2.35 4.60 0.65 LB LS   
KB            
KE 14.3 8.3 x 0.9 5.06 3.61 0.57 LS HR   
SK M5        LRS LR -10.28 28.52 
SK Stw 53            
SK M5E        LR    
SK M5W        LRB LS   
SKX M1     2.71 3.24 0.81 LB LS   
SKX M1LB        LR    
SKX M1HR            
KA 13.92 9.56 7.82 0.76 7.21 1.08 0.28 LS LS   
GD2            
GD1            
SKX M2 12.4 10.1 3.8 0.9    LR LB -12.9 x 
CC     3.76 3.76 0.98 HS LS   
SKX M3 12.11 12.0 x 0.87 7.28 1.20 0.40 LR LB   
PL 13.8 15.0 x 0.73    LS LSB   
SK LC            
SK PM6            
COH            
GV        LRS    



 

375 

 

 
Table 11.5: Mean results summaries from each method used for A. bondi upper second molars, through time. Values are given to 2 decimal places. 
Provenance MDL (M

2
) 

(mm) 

BLW 

(M
2
) (mm) 

CH 

(M
2
) (mm) 

ET 

(M
2
) (mm) 

Asfc (µm) epLsarx10
-3 

(µm) 

HAsfc (3x3) 

(µm) 

MS (1-6) mode Carbon 

δ
13

C (‰) 

Oxygen 

δ
18

O (‰) upper lower 
SK M4        LR  -1.3 31.17 
KW            
KB     2.34 2.35 0.25     
KE            
SK M5 14.46 9.29 8.6 1.0    LR LR   
SK Stw 53            
SK East        MRS    
SK West        LR LBS   
SKX M1        HR    
SKX M1LB        LR    
SKX M1HR        LR    
KA 15.3 10.25 8.1 0.97 5.63 5.11 0.39 LRS LR   
GD2            
GD1            
SKX M2 14.56 9.28 13.8 0.7 5.91 2.26 0.39 MR LR -1.09 30.74 
CC            
SKX M3 16.0 8.9 x 0.9 1.44 3.39 0.27 MR HRS   
PL 14.18 9.92 8.0 1.03    LBRS LS   
SK LC        LB    
SK PM6         LS   
COH 15.25 9.08 9.25 0.7 7.06 3.28 0.88 HS LR   
GV            
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Table 11.6: Mean results summaries from each method used for fossil A. marsupialis upper second molars, through time. Values are given to 2 decimal places.  
Provenance MDL (M

2
) 

(mm) 

BLW (M
2
) 

(mm) 

CH (M
2
) 

(mm) 

ET (M
2
) 

(mm) 

Asfc (µm) epLsarx10
-3 

(µm) 

HAsfc (3x3) 

(µm) 

MS (1-6) mode Carbon 

δ
13

C (‰) 

Oxygen 

δ
18

O (‰) 
upper lower 

SK M4            
KW 15.73 11.43 x 0.87 2.14 1.22 0.46  HS   
KB            
KE     1.79 2.43 0.54     
SK M5 14.8 13.71 x 1.13    LS LR   
SK Stw 53            
SK East            
SK West         LBS   
SKX M1 16.3 8.95 12.1 0.73 2.11 3.22 0.66 HR  -8.24 31.71 
SKX M1LB        MS    
SKX M1HR            
KA            
GD2     3.70 1.87 0.15  LRS   
GD1            
SKX M2 16.13 10.93 8.45 0.7 3.98 2.53 0.27 LR LR -7.82 30.54 
CC            
SKX M3 15.84 10.55 14.86 0.8 3.52 3.46 0.47 LR HRS -7.27 33.91 
PL 13.48 12.13 x 0.97    LS LR   
SK LC            
SK PM6            
COH 15.02 12.1 10.27 0.97 7.33 2.68 0.45 LS MS   
GV            
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11.4.2 Trends Through Time 
Trends through time for Antidorcas only are provided in each data chapter (chapters 7-10) for 

the relevant method. For the following trend through time graphs (Figure 11.22-Figure 11.45), 

chronology (x axis) runs from c. 2.8 Ma (closest to the graph origin) to Modern (as indicated in 

Table 2.2), [larger formats with detail of each deposit available on request]. All species used for 

each method are included on each graph for comparison to the Antidorcas data, to better 

highlight Antidorcas’ relative diet. Only fossil Antidorcas, Damaliscus pygargus and 

Tragelaphus strepsiceros are included on any of the graphs within the fossil deposits. All other 

species only show modern values.  

Stable Isotopes  

 
Figure 11.22: Carbon isotope δ13C values (‰) (Antidorcas dental enamel) through time from 1 
Sterkfontein Member 4 (c. 2.8 Ma), through to Swartkrans Member 3 (c. 0.8 Ma) and modern 
for comparison. Values according to chapter 10 (‘Isotopes’). ‘Swartkrans’ individuals are from 
published data where this was the only distinction given for provenance.  
Chapter 10, Figure 10.6 suggests an increase in aridity through time. The oxygen isotope values 

δ18O do not directly correlate with the carbon δ13C values (Figure 10.4), which would be more 

indicative of increased browse if they correlated. In Figure 10.4, Figure 10.7 and Figure 11.22 

greater dietary variability for A. bondi and A. marsupialis is shown, ranging across the dietary 

spectrum from obligate grazing (enrichment in 13C), mixed feeding, to obligate browsing 

(depleted in 13C). In spite of this, oxygen δ18O continue to be progressively increasing through 

time.  
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DMTA  

 
Figure 11.23: Scatter plot showing DMTA complexity (Asfc (in µm)) values through time (arranged in relative chronological order) for all Antidorcas and 
supplementary species. Higher values are indicative of browsing and closed, woodland-type habitat dominance in the landscape.  Data points on the graph have been 
jittered to more clearly differentiate between individuals.  
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Figure 11.24: Scatter plot showing DMTA anisotropy (epLsar (in µm)) values through time (arranged in relative chronological order) for all Antidorcas and 
supplementary species. Higher values are indicative of grazing and open, grassland-dominated landscapes. Data points on the graph have been jittered to more clearly 
differentiate between individuals.  
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Figure 11.25: Scatter plot showing DMTA heterogeneity (HAsfc 9cell (3x3 scale ) (in µm)) values through time (arranged in relative chronological order) for all 
Antidorcas and supplementary species. Higher values are indicative of mixed-feeding and browsing. Data points on the graph have been jittered to more clearly 
differentiate between individuals.  
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Figure 11.26: Scatterplot showing DMTA heterogeneity (HAsfc 81cell (9x9 scale ) (in µm)) values through time (arranged in relative chronological order) for all 
Antidorcas and supplementary species. Higher values are indicative of mixed-feeding and browsing. Data points on the graph have been jittered to more clearly 
differentiate between individuals.  
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Figure 11.27: Scatterplot showing DMTA textural fill volume (Tfv in (µm)) values through time (arranged in relative chronological order) for all Antidorcas and 
supplementary species. Higher values are indicative of mixed-feeding and greater habitat heterogeneity. Data points on the graph have been jittered to more clearly 
differentiate between individuals.  
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Mesowear  

 
Figure 11.28: Scatterplot showing median Mesowear value for all Antidorcas and supplementary species through time (arranged in relative chronological order). 
1=low relief, blunt cusps, 2=low relief, rounded cusps, 3=low relief, sharp cusps, 4=high relief, blunt cusps, 5= high relief, rounded cusps, 6=high relief, sharp cusps. 
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Figure 11.29: Scatterplot showing modal (most frequently occurring) mesowear value for all Antidorcas and supplementary species upper dentition through time 
(arranged in relative chronological order). 1=low relief, blunt cusps, 2=low relief, rounded cusps, 3=low relief, sharp cusps, 4=high relief, blunt cusps, 5= high relief, 
rounded cusps, 6=high relief, sharp cusps.  
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Figure 11.30: Scatterplot showing modal (most frequently occurring) mesowear value for all Antidorcas and supplementary species lower dentition through time 
(arranged in relative chronological order). 1=low relief, blunt cusps, 2=low relief, rounded cusps, 3=low relief, sharp cusps, 4=high relief, blunt cusps, 5= high relief, 
rounded cusps, 6=high relief, sharp cusps.  
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Figure 11.31: Scatterplot showing mean new mesowear score through time (arranged in relative chronological order) for all Antidorcas and supplementary species 
(new mesowear scores represent a continuous scoring scale 1-49 based on relief and cusp shape, see ‘Mesowear’ chapter for details; 1 shows low relief, blunt cusps, 49 
shows high relief, sharp cusps).  
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Figure 11.32: Scatterplot shwoing modal (most frequently occurring) mesowear new relief value for all Antidorcas and supplementary species dentition through time 
(arranged in relative chronological order). ‘New’ relief includes a ‘medium’ relief category.  
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Figure 11.33: Scatterplot showing modal (most frequently occurring) mesowear cusp shape value for all Antidorcas and supplementary species dentition through time 
(arranged in relative chronological order). Data points on the graph have been jittered to more clearly differentiate between individuals.  
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Figure 11.34: Scatterplot showing the modal (most frequently occurring) mesowear relief value for all Antidorcas and supplementary species dentition through time 
(arranged in relative chronological order). Low relief occurs most frequently. Data points on the graph have been jittered to more clearly differentiate between 
individuals. 
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Figure 11. 35: Scatterplot showing modal (most frequently occurring) inner mesowear value (Mesowear III method) for all Antidorcas and supplementary species upper 
dentition through time (arranged in relative chronological order). 1 is indicative of browsing ‘B’, through to 4, which is indicative of grazing ‘G’.  

B 

G 
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Dental morphology  
Taking the most abundant tooth type in the dataset (maxillary second molar), dental measurements and enamel thickness trends through time are observed. 

 

Figure 11.36: Scatterplot of UM2 mesio-distal length (MDL) measurements (in mm) through time (ordered in relative chronology along the x axis from 3.0 Ma to 
modern) for all Antidorcas species. Data points on the graph have been jittered to more clearly differentiate between individuals.  
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Figure 11.37: Scatterplot of mean UM2 mesio-distal length (MDL) measurements (in mm) through time (ordered in relative chronology along the x axis) for all 
Antidorcas species. 
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Figure 11.38: Scatterplot of UM2 bucco-lingual (BLW) measurements (in mm) through time (ordered in relative chronology along the x axis) for all Antidorcas species. 
Data points on the graph have been jittered to more clearly differentiate between individuals.  
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Figure 11.39: Scatterplot of mean UM2 bucco-lingual (BLW) measurements (in mm) through time (ordered in relative chronology along the x axis) for all Antidorcas 
species. 
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Figure 11.40:: Scatterplot of UM2 crown height (CH) measurements (in mm) through time (ordered in relative chronology along the x axis from Makapansgat c. 3.0 
Ma-Modern) for all Antidorcas species. Data points on the graph have been jittered to more clearly differentiate between individuals.  
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Figure 11.41: Scatterplot of mean UM2 crown height (CH) measurements (in mm) through time (ordered in relative chronology along the x axis) for all Antidorcas 
species. 
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Enamel thickness 

 
Figure 11.42: Scatterplot of mean upper molar enamel thickness (on lingual enamel facet, location ‘A’) measurements (in mm) through time (ordered in relative 
chronology along the x axis) for all Antidorcas species. 
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Figure 11.43: Scatterplot of mean upper molar enamel thickness (on inner enamel facet location ‘B’) measurements (in mm) through time (ordered in relative 
chronology along the x axis) for all Antidorcas species. 
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Figure 11.44: Scatterplot of mean upper molar enamel thickness (on buccal enamel facet, location ‘C’) measurements (in mm) through time (ordered in relative 
chronology along the x axis) for all Antidorcas species. 



 

400 

 

 
Figure 11.45: Scatterplot of mean upper molar enamel thickness (on mesostyle, location ‘D’) measurements (in mm) through time (ordered in relative chronology along 
the x axis) for all Antidorcas species. 
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Combined Methods Mean results through time 
Table 11.7: Antidorcas recki trend through time summary values. Mean measurements are given in mm, mean DMTA values are given in µm, mesowear scores are 
modal (i.e. occurring most frequently for A. recki in the relevant deposit) and mean isotope values are given in ‰. All values given to 2 decimal places.  
 MDL (M

2
) BLW (M

2
) CH (M

2
) ET (M

2
) Asfc (µm) epLsarx10

-3 

(µm) 

HAsfc (3x3) 

(µm) 

MS (1-6) mode Carbon 

δ
13

C PDB 

Oxygen 

δ
18

O 
VSMOW 

        upper lower   
SK M4 13.8 8.2 10.27 0.73 9.22 1.57 0.43 MS LR -11.17 26.55 
KW 13.5 11.5 x 0.9 2.35 4.60 0.65 LB LS   
KB            
KE 14.3 8.3 x 0.9 5.06 3.61 0.57 LS HR   
SK M5        LRS LR -10.28 28.52 
SK Stw 53            
SK East        LR    
SK West        LRB LS   
SKX M1     2.71 3.24 0.81 LB LS   
SKX M1LB        LR    
SKX M1HR            
KA 13.92 9.56 7.82 0.76 7.21 1.08 0.28 LS LS   
GD2            
GD1            
SKX M2 12.4 10.1 3.8 0.9    LR LB   
CC     3.76 3.76 0.98 HS LS   
SKX M3 12.11 12.0 x 0.87 7.28 1.20 0.40 LR LB   
PL 13.8 15.0 x 0.73    LS LSB   
SK LC            
SK PM6            
COH            
GV        LRS    
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Table 11.8: Antidorcas bondi trend through time summary values. Mean measurements are given in mm, mean DMTA values are given in µm, mesowear scores are 
modal (i.e. occurring most frequently for A. bondi in the relevant deposit) and mean isotope values are given in ‰. All values given to 2 decimal places.  
 MDL (M

2
) BLW 

(M
2
) 

CH 

(M
2
) 

ET 

(M
2
) 

Asfc (µm) epLsarx10
-3 

(µm) 

HAsfc (3x3) 

(µm) 

MS (1-6) mode Carbon 

δ
13

C 

Oxygen 

δ
18

O upper lower 
SK M4        LR  -1.3 31.17 
KW            
KB     2.34 2.35 0.25     
KE            
SK M5 14.46 9.29 8.6 1.0    LR LR   
SK Stw 53            
SK East        MRS    
SK West        LR LBS   
SKX M1        HR    
SKX M1LB        LR    
SKX M1HR        LR    
KA 15.3 10.25 8.1 0.97 5.63 5.11 0.39 LRS LR   
GD2            
GD1            
SKX M2 14.56 9.28 13.8 0.7 5.91 2.26 0.39 MR LR -1.09 30.74 
CC            
SKX M3 16.0 8.9 x 0.9 1.44 3.39 0.27 MR HRS   
PL 14.18 9.92 8.0 1.03    LBRS LS   
SK LC        LB    
SK PM6         LS   
COH 15.25 9.08 9.25 0.7 7.06 3.28 0.88 HS LR   
GV            
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Table 11.9: Fossil Antidorcas marsupialis trend through time summary values. Mean measurements are given in mm, mean DMTA values are given in µm, mesowear 
scores are modal (i.e. occurring most frequently for A. marsupialis in the relevant deposit) and mean isotope values are given in ‰. All values given to 2 decimal places. 
 MDL (M

2
) BLW (M

2
) CH (M

2
) ET (M

2
) Asfc (µm) epLsarx10

-3 

(µm) 

HAsfc (3x3) 

(µm) 

MS (1-6) mode Carbon 

δ
13

C 

Oxygen 

δ
18

O 
upper lower 

SK M4            
KW 15.73 11.43 x 0.87 2.14 1.22 0.46  HS   
KB            
KE     1.79 2.43 0.54     
SK M5 14.8 13.71 x 1.13    LS LR   
SK Stw 53            
SK East            
SK West         LBS   
SKX M1 16.3 8.95 12.1 0.73 2.11 3.22 0.66 HR  -8.24 31.71 
SKX M1LB        MS    
SKX M1HR            
KA            
GD2     3.70 1.87 0.15  LRS   
GD1            
SKX M2 16.13 10.93 8.45 0.7 3.98 2.53 0.27 LR LR -7.82 30.54 
CC            
SKX M3 15.84 10.55 14.86 0.8 3.52 3.46 0.47 LR HRS -7.27 33.91 
PL 13.48 12.13 x 0.97    LS LR   
SK LC            
SK PM6            
COH 15.02 12.1 10.27 0.97 7.33 2.68 0.45 LS MS   
GV            
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11.5 DISCUSSION 

11.5.1 Individual Comparisons  
Table 11.3:  shows dietary variability throughout the life of Antidorcas individuals, for all 

species. More A. bondi individuals tend towards grazing and more A. recki individuals tend 

towards browsing, particularly in the earlier Members (e.g. Sterkfontein Member 4) but 

overall all species have mixed-feeding diets, supporting the range from obligate grazing 

through mixed to browsing for all Antidorcas species. A. bondi typically graze in early life 

and A. recki typically browse in early life, no Antidorcas species are habitually grazing at 

the end of life (microwear signals).  

A. bondi increasing its browse-consumption through time is a possibility, indicated by 

increased OH (occlusal height) in Cave of Hearths (c. 0.6-0.4 Ma) (see chapter 7 

‘Measurements’). This is supported by mandibular mesowear scores, which display higher 

occlusal relief with no blunt cusps and dominated by rounded to sharp cusps indicative of 

more browse-dominated diets. This is significantly different from A. bondi in Sterkfontein 

Member 5 (c. 1.8-1.1 Ma), which is dominated by lower relief with blunt and rounded 

cusps. The suggestion of A. bondi increased browse consumption also correlates with the 

DMTA results for A. bondi (see chapter 9). 

A.bondi individuals from SKX M2 
SK 2366 has carbon isotope values (early life) that are indicative of mixed-feeding.  

However, mesowear and microwear indicate a more dominant browsing diet. Although 

displaying hypsodonty, the relatively low crown height (compared to other A. bondi 

individuals) also supports inference of a browsing diet. As hypsodonty is an adaptation by 

A. bondi, being selected for over generations, the reduced hypsodonty is potentially 

reflective of reduced grazing and selection against hypsodonty [Originally identified by 

Vrba (1973, 1976) as potentially A. australis].  

SK 5882 (no microwear) and SK 10555 are both shown to be grazers from all methods. 

The range of variation in A. bondi M2 measurements and dietary indications may support 

the idea of a transitionary period, perhaps during a period of environmental instability with 

no one direction for selection pressure. However, Maxwell et al.  (2018)’s research 

encourages caution. Swartkrans Member 2 has a much higher abundance of Antidorcas, 

specifically of A. bondi compared to the other provenance (including the other members at 

Swartkrans). The Swartkrans Member 2 assemblage could be reflective of more variability 

within the living assemblage being captured in the fossil record (i.e. differential 

preservation) compared to other time periods, rather than increased variability in the living 

assemblage compared to other time periods. Yet the question remains as to why there is an 

increased abundance of Antidorcas in this Member, this may in itself point to increased 

instability. The same excavation and post-excavation team were responsible for the entire 

Swartkrans site so excavation bias is unlikely. 

There is the possibility that an increased abundance of Antidorcas could still be due to 

increased preservation. In spite of similarities in genera present (evidenced via the meta-

analysis in chapter 5), the members within the site could be subject to differential 

taphonomic and diagenetic agents.   
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11.5.2 Species Comparisons 
Antidorcas palaeoecology 
Stable carbon isotope (δ13C) values support Brink & Lee-Thorp (1992)’s suggestion of A. 

bondi as a grazer. However, this is not supported by use-wear. It is possible that A. bondi is 

made to rely on fall-back vegetation, adopting a browsing diet that they were unable to 

process in the days before death (microwear) around the Cradle of Humankind sites and 

may highlight cause of death.  However, the mesowear variables also go against catholic 

grazing for A. bondi. Therefore, it seems more likely that A. bondi herd demographics saw 

the young graze (whilst enamel formation occurred and reflected by isotopes) while the 

adults depend more on browse (as seen through use-wear). Alternatively, the difference 

could be reflective of seasonality and/or migration. Use-wear shows a dominance of mixed 

feeding, which could be seasonal and has the potential to be from various locations (along a 

migration route), culminating in microwear showing browse. Animals are more likely to die 

when preferred resources are low, which is more likely during winter months. If, as Brink 

and Lee-Thorp propose, A. bondi  was the smallest member of a grazing succession, 

feeding on the new grass shoots before they lignify, a seasonal shortage of grass would 

make A. bondi rely on fall-back browse vegetation.  

The phylogenetic extreme hypsodonty evident for A. bondi suggests prolonged selective 

pressure to protect against a highly abrasive diet, such as grazing on new grass shoots with 

high silica content. Feeding on new shoots close to the ground also increases the likelihood 

of ingesting/masticating on exogenous dust/grit particles from the soil. Either of these 

elements, or particularly if combined, contribute to a highly abrasive content of the diet and 

would be a selective force for increased crown height.  

This may explain the trend seen in A. marsupialis also. A. marsupialis’ increase in crown 

height through time is likely due to an increase in an abrasive element in the diet, possibly 

an increase in grazing. From the comparatively low crown height of A. recki, A. 

marsupialis crown height progressively increases (from ~1.8 Ma onwards). An increased 

grass component, even seasonally, with more grassland present than was available for A. 

recki in the Pliocene would place an evolutionary pressure on the molars to increase 

capabilities to process the grasses as they gradually became a staple part of the Antidorcas 

diet.  

If the preferred diet of A. recki is browse but their fall-back is to graze, and eventually more 

and more often they have to rely on their fall-back foods because of availability, the 

selective pressure acting on the molars would likely be to increase enamel thickness and 

crown height to withstand the abrasive properties of the monocotyledonous plants (If, 

ultimately, sufficiently adaptable to survive these selective pressures and changing 

environments).  

Potential Inclusion of CAM Plants 
A positive trend is apparent for carbon isotope δ13C values and dental enamel thickness 

(Table 11.1). This may be expected as an increase in grass consumption would be more 

abrasive, selecting for increased enamel thickness to withstand the abrasive pressure; and 
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enhances δ13C values with a C4 vegetation dominated diet. This is supported by a negative 

correlation with oxygen δ18O values (Table 11.1). As leaf consumption increases 

(evapotranspiration resulting in higher δ18O values for browsing herbivores consuming 

leaves rich in δ18O), enamel thickness decreases.  

However, this trend is only apparent for M2. The other molars show the opposite trend for 

δ18O, with a positive correlation between δ18O and enamel thickness. Alternative molars 

may reflect more of an interaction with the environment and δ18O representing an increase 

in aridity. The positive correlation cannot reflect an increase in browsing leading to 

increased enamel thickness because the enriched carbon isotopes δ13C values show 

increased grazing from the same individuals. This may implicate the inclusion of CAM 

plants, which mimic C4 plants in their δ13C values (Mooney et al. 1977; Codron et al. 2005; 

Sponheimer et al. 2013; Boom et al. 2014). Consuming CAM plants may be expected 

during periods of increasing aridity to obtain sufficient moisture (see Chapter 3), with the 

abrasive nature of CAM plants being unknown.  

Whilst M2 is most commonly used for analyses (e.g. Foretelius and Solounias), it would be 

more representative to conduct analysis on more than one tooth type to inform on how the 

molars differentially interact with their environmental and vegetation consumed and 

therefore, the inferences achievable from each tooth type. This is likely to vary between 

taxa.  

Micro-Habitats 
In a mosaic habitat landscape, with relative aridity that does not exceed an aridity threshold 

(so still supports C3 plants), the impact of micro-habitats may be seen. The height of canopy 

cover at any given time is unknown but may be postulated based on other environmental 

indicators. Where taller trees (C3) are present, the area underneath is more sheltered and 

less exposed to the heat of the midday sun. Typically, when these areas are close to a water 

body (e.g. river), this will be the last ground to dry up. Consequently, these areas would 

have increased moisture availability for plant evapotranspiration, sustained for a longer 

duration. If springbok seek shelter for thermoregulatory needs, they are likely to frequent 

these micro- habitats, particularly in a more arid regional environment.  

The dietary signal resulting from this type of micro-habitat may be difficult to differentiate 

from a regional wetter environment. However, as it is unlikely that the assemblages are 

formed of one herd, the assemblage springbok would have moved independently of each 

other in life, and so, frequented differing micro-habitats. Within this dataset, such micro-

habitats could be reflected in mixed feeding in individuals and across the species via the 

differing time scales shown through the dietary methods 

In contrast, regional increased moisture would see these wetter habitats independent of tree 

cover. The individual animal and intraspecific dietary information is more likely to be 

uniform in a landscape sustaining a particular dominant habitat-type, where regional aridity 

levels and palaeoenvironmental conditions are prevalent throughout. That is, a savannah 

landscape with little to no tree cover and low precipitation levels would promote less 

‘mixed-feeding’ from a variety of habitats and more uniform dietary indicators. In this 
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scenario, with exposed grassland, other than standing water, such as the river body (utilized 

more by obligate drinkers than by springbok), few wetter micro-habitat areas would be 

sustained.  

Complementary Methods 
The dietary proxies used here complement one another when all are used for one individual 

to assess lifetime dietary trajectory.  From this, migratory patterns, seasonality and herd 

demographics can be considered in the fossil record in a way that would be invisible using 

a single method approach. Particularly by applying the differing dietary proxies to 

individual animals, the lifetime diet can be gained, this picks out if individuals are mixed-

feeding at all stages of their life or switch from graze to browse. Comparing these 

individual animal signals with the signal obtained from the species and a genus as a whole, 

inferences can be made on a case by case basis as to the likely scenario, i.e. migration, 

seasonality or herd demographics.  

Further, by comparing isotopes and use-wear analysis alongside dental measurements, 

particularly crown height and enamel thickness, inferences can be made regarding dietary 

abrasiveness and the selection forces acting upon the Antidorcas populations through time 

(as indicated above, see (Figure 11.1-Figure 11.45) This enables research to move beyond 

simple inferences from considering relative grazing versus browsing diets as a means to 

infer habitat types prevalent across the landscape.  

Time-Averaging 
By considering individuals, lifetime diet can be obtained for a small number of individuals 

within a time period. With the small sample sizes achievable here, this study is still limited 

by potential averaging when attempting to provide chronological patterns. With an 

increased sample size (beyond what can be conclusively achieved by this research), 

considering many individuals, utilising the same multiple methods on each, the issue of 

time-averaging could be substantially mitigated.  

Seasonality 
Seasonality could be reasonably inferred from the conflicting results obtained by the 

proxies representative of differing lifetime scales. The dominant diets for Antidorcas recki 

(browsing) and Antidorcas bondi (grazing) apparent from stable carbon isotope analysis, 

indicative of the early years of life differ from the lifetime (mesowear for both A. recki and 

A. bondi) and end of life (DMTA for A. bondi) dietary signals. Using multiple 

complementary methods, a simple conclusion of ‘mixed-feeding’ can be avoided, and the 

subtleties of Antidorcas diets can be accurately used to reflect seasonal 

palaeoenvironments. Strani et al. (2018) using use-wear analysis on Mid-Pleistocene bovids 

(Central Italy) also found a discrepancy between mesowear and microwear results. This 

was interpreted as a temporal switch towards a sub-optimal diet, possibly reflecting the 

effects of marked seasonality. Similar could be suggested here by the discrepancy between 

carbon isotopes, mesowear (grazing to mixed-feeding) compared to microwear (mixed-

feeding to browsing) for Antidorcas bondi, particularly occurring for Swartkrans Member 

2. Increased habitat heterogeneity and a shift towards more marked seasonality is suggested 

for Swartkrans Member 2 (c. 1.7-1.07 Ma) from the combination of dietary proxies used.  



 

408 

 

Feeding Height 
The importance of determining feeding height influence, and related grit/dirt inclusion, 

shapes the accuracy of the palaeoenvironmental reconstructions achievable.  

An attempt is made to determine the reasoning behind A. bondi’s conflicting results, both 

between methods used here and compared to some published research (e.g. Brink and Lee-

Thorp 1992). A more comprehensive study, with larger sample sizes, is suggested for future 

research.  

Modern Damaliscus pygargus is a low-level grazer (albeit presumably higher than A. bondi 

due to body size and with a wider muzzle). If for the purposes of this comparison, the 

assumption is made that the same was true for fossil Damaliscus pygargus; direct 

comparison of A. bondi and D. pygargus use-wear values could shed light on the cause of 

the values seen in A. bondi.  

As both low-level feeders, the level of grit/dust inclusion should be roughly comparable 

(muzzle size and exact feeding height notwithstanding). As a known grazer (both modern 

and in the evidence here for fossil D. pygargus), any discrepancies between D. pygargus 

and A. bondi is likely a reflection of another factor other than exogenous particle inclusion. 

It may be presumed that factor is dietary, i.e. that A. bondi is not exclusively grazing, (or 

potentially the preferential plant taxa for A. bondi is developing herbivory defences 

differentially to other taxa preferred by species such as Damaliscus). Where the use-wear 

methods yield similar results, exogenous particles may be inferred as being the possible 

cause of values, such as more complex enamel facet surfaces (DMTA). Heterogeneity 

(HAsfc) and Tfv values are the most useful for inferring dietary flexibility here. High 

heterogeneity and Tfv for both Damaliscus and Antidorcas would support the inclusion of 

grit/dust. High heterogeneity for Antidorcas only would suggest Antidorcas was including 

more browse in the diet.  

Table 11.10: Comparison of supplementary species (Damaliscus pygargus and 
Tragelaphus strepsiceros) with Antidorcas bondi averaged microwear and mesowear data 
to address feeding height, dietary and dietary abrasion questions. SK=Sterkfontein, 
K=Kromdraai, SKX=Swartkrans, GD=Gondolin, COH=Cave of Hearths. All values given 
to 2 decimal places. DMTA variables (Asfc, epLsar, HASfc, Tfv and Smc are in µm). 
Taxon Provenance N Asfc epLsar 

 (x10
-3

) 

HAsfc
9
 HAsfc 

81
 

Tfv Smc 

T. 
strepsiceros 

SK M4 1 2.03 3.33 0.39 0.60 37559.13 0.13 

D. 
pygargus 

1 1.90 3.21 0.27 0.60 34761.55 0.21 

D. 
pygargus 

SK M5 2 4.89 3.73 0.54 0.68 47498.62 0.14 

A. bondi 5 2.34 2.35 0.25 0.59 45912.44 0.36 
D. 
pygargus 

KW 3 2.89 4.25 0.34 0.53 37028.65 0.35 

T. 
strepsiceros 

1 0.75 2.56 0.11 0.27 1598.83 0.53 

D. 
pygargus 

KE 1 2.33 2.15 0.63 0.60 41787.70 0.07 

D. KB 1 2.33 2.15 0.63 0.60 41787.70 0.07 
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Taxon Provenance N Asfc epLsar 

 (x10
-3

) 

HAsfc
9
 HAsfc 

81
 

Tfv Smc 

pygargus 
D. 
pygargus 

SKX M1 2 2.75 3.51 0.75 1.99 50324.24 0.17 

A. bondi KA 5 5.63 5.11 0.39 0.63 42470.00 0.09 
D. 
pygargus 

GDA 2 2.15 6.81 0.32 0.55 30466.43 0.35 

A. bondi SKX M2 23 5.91 2.26 0.39 0.72 40835.74 0.13 
D. 
pygargus 

SKX M3 3 1.46 2.34 0.23 0.52 35044.75 0.31 

A. bondi 1 1.44 3.39 0.27 0.44 33149.02 3.00 
D. 
pygargus 

SK unstrat. 6 3.52 2.63 0.53 0.79 37618.84 39.25 

A. bondi COH 9 7.06 3.28 0.88 1.40 45289.08 0.75 
 

Table 11.11: Damaliscus pygargus (left) (low-level grazer) and Antidorcas bondi (right) 
most frequently occurring (modal) mesowear scores for each deposit Member through time. 
SK=Sterkfontein, K=Kromdraai, SKX=Swartkrans, GD=Gondolin, PL= Plovers Lake, 
GL=Gladysvale, COH=Cave of Hearths. 
Provenance Upper/lower 

dentition 

D. pygargus A. bondi 

N Modal mesowear 

score  

N Modal mesowear 

score  

SK M4 upper 1 LR x x 
lower 10 HR 2 LR 

KB Lower 3 HR x x 
SK M5 upper 13 LR 14 LR 

lower 7 LR 12 LR 
SK M5 E upper 5 LR x x 

lower 9 HR 2 LS/HR 
SK M5W upper 5 LR 2 LB/LS 

lower 4 LR 4 LR 
SK 
M5stw53 

upper 1 HR  x x 
lower 1 LR x x 

SKX M1 upper 5 HR x x 
lower 1 LB 3 HR 

SKX M1 LB lower 1 LR 1 LR 
SKX M1 
HR 

lower x x 1 LR 

KA  upper 2 LR 3 LR 
lower 10 HR 9 LR/LS 

GDA upper 2 HR x x 
lower 11 HR x x 

SKX M2 upper 2 LR/LS 42 LR/LS 
lower 4 LB/LR 42 HR 

SKX M3 upper 5 LR 2 HR/HS 
lower 6 LR/HR 2 LR/HR 

PL upper x x 9 LS 
 lower x x 6 LB/LR/LS 
COH upper x x 22 LR 
 lower x x 20 HR 
GL upper 2 LR x x 

lower 7 LR x x 
SK LC Lower 1 LR 1 LB 
SK un upper 5 LR x x 

lower 5 LR 2 LB/LR 
Modern  upper 67 LB x x 

lower 56 HR x x 
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Table 11.11 shows A. bondi marginally tends towards sharper cusps and more attrition-

dominance than D. pygargus. As a low-level grazer D. pygargus typically shows abrasion 

dominated mesowear scores, characteristic of grazing bovid molars. From mesowear 

scores, A. bondi appears to include more browse vegetation in its diet, i.e. the browsing 

signal is not exaggerated due to low-level feeding- induced inclusion of grit.  

Damaliscus pygargus does show a slight deviation from its normal mesowear score for 

Swartkrans Member 2, with sharper cusps. Coupled with the increased habitat 

heterogeneity and temporarily decreased aridity suggested from the Antidorcas data, 

Damaliscus tentatively (n=1 with sharp cusps, of n=2 total maxillary molars) supports 

Swartkrans Member 2 representing a transitional phase with temporary increase of browse 

vegetation, indicative of closed habitats and decreased aridity.  

There are fewer comparative samples for microwear (DMTA) variables for Damaliscus 

pygargus and Antidorcas bondi (Table 11.10). However, where they can be directly 

compared for a member, they have very similar values, indicative of mixed-feeding to 

grazing diets. This contradicts findings from mesowear variables, showing the importance 

of considering results from multiple methodological approaches prior to making 

palaeoenvironmental assumptions. It also highlights the need for further study, with 

increased sample sizes for DMTA.  

Damaliscus pygargus consistently shows grazing (abrasion-dominated) dietary patterns via 

mesowear variables. The same is true of DMTA variables. A. bondi shows grazing 

mesowear signals (low relief and rounded cusps dominating) for all members (where 

present) other than in Swartkrans Member 1 (high relief and rounded cusps dominate), 

Swartkrans Member 2 and Member 3 (equal high and low relief weighting, rounded cusps) 

and Cave of Hearths (high relief with 55% sharp cusps, 45% rounded cusps). From DMTA, 

A. bondi in Kromdraai A, Swartkrans Member 2 and Cave of Hearths, displays more 

complex enamel wear (i.e. higher Asfc values) than fossil or modern Damaliscus pygargus. 

The complexity values for Swartkrans Member 3 are very similar (Asfc for A. bondi (n=1) 

is 1.44 µm, for D. pygargus (n=3) is 1.46 µm). The epLsar values representative of 

anisotropy are typically lower for A. bondi than D. pygargus, other than for Kromdraai A 

(higher). Heterogeneity values were typically lower for D. pygargus (i.e. they were more 

homogenous) (range of: 0.25 µm Sterkfontein Member 5 – 0.39 µm Kromdraai A and 

Swartkrans Member 2), other than in Cave of Hearths, where they were considerably higher 

for A. bondi (0.88 µm HAsfc 9cell; 1.40 µm 81 cell) than typical values for Damaliscus 

pygargus, modern (0.65 µm 9 cell; 1.18 µm 81 cell mean) or fossil (ranges of: 0.23 µm 

Swartkrans Member 3 – 0.75 µm Swartkrans Member 19 cell;  0.52 µm Swartkrans 

Member 3- 1.99 µm Swartkrans Member 1 81 cell).  

It is suggested that the apparent browsing for A. bondi is due to a combination of low-level 

feeding, incorporating exogenous particles to add to their dental use-wear signal, and of a 

more flexible diet of A. bondi (perhaps seasonally) than obligate grazing as seen in D. 

pygargus. By c. 0.5 Ma (Cave of Hearths), A. bondi exceeds the range of variation for low-
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level feeding exogenous particle inclusion and flexible mixed-feeding, to exhibit mixed-

feeding to browsing wear signals.  

A fluctuation in increased exogenous particle inclusion is perhaps indicative of eolian dust 

increase. A larger sample size, with representation of Damaliscus pygargus, Antidorcas 

bondi, and other taxa of varying feeding heights (co-existing in the same temporal period / 

within the same assemblage) would be required to test this.  

Palaeovegetation 
The fresh grass shoots (prior to lignification) preferred by modern Antidorcas and 

suggested to be preferred by A. bondi (e.g. Brink and Lee-Thorp 1992) would be prone to 

leaving only shallow scratch imprints on dental enamel, vulnerable to overwriting 

(Solounias and Semprebon 2002; Hummel et al. 2010). Microwear (DMTA variables) do 

not support graze inclusion in the diet from the late Pliocene. It is possible that grasses were 

incorporated into the diet but their impact on the dental enamel surface (and visible via 

DMTA) was less than that of browse consumed.  

That browse was consumed at all by A. bondi and apparently gradually increasingly 

through time for A. bondi, contradicts A. bondi exclusively belonging to a grazing 

succession. However, A. bondi could still have played a part in the succession, perhaps 

when grasses were seasonally available. Alternatively, A. bondi could have been involved 

typically in this grazing succession but was unable to consume preferred grasses at the end 

of life (DMTA). Where A. bondi in particular tends away from grazing signals as 

individuals (individual specimens), habitat heterogeneity can be inferred and as a species 

(overall signal from all A. bondi specimens within the assemblage), landscape-wide 

vegetation shifts can be inferred.  

Similarly, C3 grasses would leave fine scratches that are more likely to be invisible via 

DMTA. This presents an issue when questioning Antidorcas palaeoecology as grazing may 

occur but on C3 grasses preferentially. Yet by utilising a multi-proxy approach, stable 

carbon isotope values, reflective of the relative C3/C4 components of the diet enable 

circumvention of this issue.  However, the prevailing habitat (palaeoenvironmental) trend 

would prevail as mixed-feeding Antidorcas will consume the other C3 vegetation within the 

habitat. Other C3 vegetation, i.e. browse vegetation, leaves more substantial wear scarring, 

less prone to rapid overwriting, on the dental enamel, visible via DMTA. An inclusion of 

C3 grasses in the diet may help to explain an apparently highly abrasive (usually associated 

with obligate grazing), yet mixed-feeding diet. 

11.6 SUMMARY 

Samples of different tooth types (toothrows and/ or multiple collections of isolated teeth) 

within a dataset are preferential to capture the full palaeoenvironmental signal.  

Antidorcas Paleoecology 
Mesowear A. bondi shows the most variable mesowear signals, with an indication for 

increased browse consumption for later deposits (c.0.8 Ma onwards). A. recki mesowear 
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indicates mixed-feeding practices, rather than browsing, and this is true throughout the 

temporal range.  There are no obvious dietary transitions through time, for any Antidorcas 

species, apparent via mesowear alone.  

DMTA A. recki is shown to be a variable browser.  A. bondi displays a mixed-feeding to 

browsing microwear signature throughout. A. marsupialis is consistently mixed feeding, 

with no significant change through time.  

Isotopes A. bondi yields a predominantly grazing signal from stable carbon isotope 

analysis; A. recki yields a predominantly browsing signal, and A. marsupialis a mixed 

feeding signal. All stable carbon isotope values support previous studies (e.g. Brink and 

Lee-Thorp 1992, Lee-Thorp et al. 2007).  

Antidorcas recki was a predominantly browsing species; Antidorcas marsupialis was (and 

is) a variable mixed-feeding species. Dietary signals for Antidorcas bondi are conflicted, 

suggesting through time, periods of greater browse consumption than would be expected of 

this believed grazing (Brink and Lee-Thorp 1992) Antidorcas species. Mixed to browsing 

signals obtained for A. bondi for the last few days/weeks of life (via DMTA) coupled with 

the grazing early years signal (stable carbon isotope analysis), would suggest that either 

herd demographics dictate the young consume a greater amount of grasses; or that 

palaeovegetation changes resulted in consumption of non-preferred (or fall-back) foods for 

A. bondi. Assuming A. bondi was a preferential grazer (rather than ontogenically altering its 

diet), these palaeovegetation changes could result from palaeoenvironmental (abiotic) 

factors, leading to the reduction of grassland available for consumption; or an increase in 

competition (biotic factors) from more specialised grazers (although competition 

introduction could still be linked to palaeoenvironmental change).  

Alternatively, the suggestion could be made that A. bondi were migratory, with the results 

shown here reflecting their relative local dietary habits. Grazing (isotope evidence) in the 

geographic area of lambing, grazing-mixed feeding (mesowear evidence) across the 

geographic range that they covered during their migrations and the browsing (microwear/ 

DMTA) reflecting the local palaeovegetation available around the Cradle of Humankind 

sites. The same logic could be applied to seasonality or herd demographics being reflected 

in the assemblage. Modern A. marsupialis mate and lamb opportunistically, following the 

rainy season, to take advantage of abundant (fresh grassland) vegetation. Such seasonality 

could be mirrored for A. bondi, utilising the fresh grasses as a newborn lamb (C4 grazing 

dominance suggested from isotopes), variably consuming available foodstuffs throughout 

their lifetime (mesowear) but suffering in more challenging seasonal conditions, and 

therefore more likely to fall prey to predators/ death traps and the like, by having only non-

preferential browse vegetation available for consumption at the end of life (DMTA). If herd 

demographics are being represented, the same would be apparent but sexual dimorphism 

may also be implicated through the adult years of life. Modern A. marsupialis does not 

show sexual dimorphism in dietary proxies, which supports an inference of 

seasonality/migration representation over herd demographics from the fossil assemblage. 
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Through Time  
Measurements A. marsupialis crown height fluctuates through time (i.e. no directional 

increase/decrease through time), suggesting the forcing of dietary abrasives (fluctuations in 

grass (abrasive) availability and/or dust (exogenous abrasive particles). 

A. bondi cusp height increases through time, from Sterkfontein Member 5, suggesting 

either an increase in grazing (or dietary abrasiveness), with increased cusp height to 

withstand this abrasive pressure. Alternatively, this could reflect an increased browse 

component of the diet, with occlusal/ cusp height closely linked to showing higher occlusal 

relief through time (via mesowear). As there are conflicting conclusions to be drawn from 

mesowear variables (as a method rather than here specifically), it is suggested that whilst A. 

bondi may be incorporating more browse in the diet through time, a highly abrasive mixed-

feeding lifetime diet prevails.   

Fluctuations in enamel thickness show no unidirectional trend through time for any 

Antidorcas species.  

There is a high diversity of molar dimensions (occlusal aree and enamel thickness) for 

Sterkfontein Member 5, Swartkrans Member 2, Kromdraai A and Plovers Lake. These 

deposits represent c. 2.0-1.5 Ma. This diversity potentially infers a period of environmental 

instability.  

Mesowear Swartkrans Member 2 shows the most variability and the most deviation from 

expected Antidorcas species dietary predictions. A. bondi shows the most variable 

mesowear signals, with an indication for increased browse consumption for later deposits 

(c.0.8 Ma onwards). There is no directional trend for any Antidorcas species through time 

for other palaeoenvironmental indicators (e.g. high relief and rounded cusps, indicative of 

increased annual precipitation (Kaiser and Schulz 2006), does not appear for any one 

member). 

DMTA A. recki is shown to be a variable browser, with a slight increase in grass-

consumption from Sterkfontein Member 4 to Member 5 and to Kromdraai W. 

A. bondi displays an increase in browse-consumption apparent from Sterkfontein Member 5 

(grazing to mixed-feeding) to Swartkrans Member 2 (browse-dominated).  

Highly variable DMTA patterns for Sterkfontein Member 5 (1.7-0.8 Ma) and Swartkrans 

Member 2 (1.7-1.07 Ma) suggests increased habitat heterogeneity during these temporal 

periods.  

From the Antidorcas DMTA data, mosaic landscapes with relative composition of habitats 

within the landscape being temporally variable are suggested between 2.8-0.5 Ma.  

Isotopes A. marsupialis shows a gradual increase of browse consumption through time.  

Swartkrans Member 2 yields increased browsing signals for all species from stable carbon 

isotope values along with lower oxygen isotope values, potentially indicative of lower 

aridity.  

Palaeoenvironments as Inferred from Combined Antidorcas Data 
Sterkfontein Member 5 and Swartkrans Member 2 show more dietary variability, inferred 

to represent increased habitat heterogeneity and an increased woodland component 

compared to surrounding (earlier and later) deposits.  The greater extent of habitat 
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heterogeneity initiated in Swartkrans Member 2 persists for subsequent deposits. For 

example, Swartkrans Member 3 shows greater habitat variability than Swartkrans Member 

1. Whilst assemblages from ‘Sterkfontein Member 5’ could represent an extensive time 

period encompassing Member 5 Stw53 Infill, M5 East and M5 West, Swartkrans Member 2 

is believed to be a single deposit. The increase in an abrasive element that is not definitively 

dietary, but is inferred as an increase in seasonal mixed feeding and/ or an increase in 

aridity (with associated increase in grass phytoliths). That is, whilst grazing may occur less 

frequently, the grass consumed is highly abrasive, potentially with the inclusion of abrasive 

exogenous materials (e.g. wind-borne dusts) associated with increasing aridity (as 

supported by oxygen isotope δ18O values).  

 

CHAPTER 12 

DISCUSSION and CONCLUSION 
 

Antidorcas dentition from South African hominin-bearing deposits spanning the temporal 

range of c. 2.8-0.5 Ma were analysed using a multi-proxy approach to establish the 

prevailing palaeoenvironmental conditions. The pace and severity of palaeovegetation 

change, has been inferred from Antidorcas dietary indicators (mesowear, microwear and 

stable carbon isotope analysis) and the impact of such change on Antidorcas (dental 

morphology directional change and intra-specific variability) was assessed. Antidorcas was 

used as an abundant, successful bioproxy (Sewell et al. 2019), from which to infer the 

palaeoenvironmental stimuli encountered by hominins during this temporal range. This 

mixed-feeding genus provided insight into the habitats available across the landscape; a 

landscape inhabited by hominins, for which the palaeoenvironmental signal had previously 

been elusive. The role played by global climatic changes that occurred through this time 

period, as evolutionary drivers, were evaluated by assessing Antidorcas dental 

morphological and dietary behavioural response across the proposed climatic events. The 

three main global climatic events during this temporal range are the intensification of the 

Northern Hemisphere Glaciation (iNHG) c. 2.7 Ma, the onset of the Walker Circulation 

(oWC) c. 1-9-1.7 Ma and the Mid-Pleistocene Revolution (MPR) c. 1.0 Ma.  

This research has shown that across the Oldowan-Acheulean transition, and around the 

emergence of Homo erectus (senso lato) c.1.7 Ma, the global climate appears to be a 

prominent evolutionary catalyst, evidenced via increased habitat heterogeneity (high intra-

specific Antidorcas variability in dental morphology and diet). Other global climatic events 

may hint at climatic influence but show relatively little evidence in the Antidorcas record of 

being critical evolutionary drivers.  
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Figure 12.1: Results of each method through time (y axis from c. 2.8 at the origin to 0.5 Ma) compared to hominin evolution and climatic fluctuations. Stars on the 
extreme right side of the image indicate the three major global climatic events that occur during this temporal range, from oldest to youngest: the iNHG, oWC and MPR 
(see glossary and chapter 2 ‘palaeoenvironments’). Climate data from benthic foramina δ18O (‰) (deMenocal 2004; deMenocal 1995; Mix et al. 1995; Shackleton et al. 
1990).  
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Results figure expanded explanation (Figure 12.1) 

Data markers key: green = A.  bondi, red=A.  recki, blue= A. marsupialis. Upper arrow (left side 
of box) indicates larger size for measurements, lower arrow indicates smaller size. For isotopes, 
the lower arrow indicates decreased aridity (lower oxygen isotope value) on the right side of the 
box. ‘G’ indicates the grazing end of the dietary spectrum and ‘B’ the browsing end of the 
dietary spectrum. Carbon isotopes ‘B’ is indicative of C3 vegetation dominance, ‘G’ of C4 
vegetation dominance.  
 Range for each method. Measurement (in mm) variables:  MDL 12.11-16.3; BLW 8.2-13.71; 
CH 3.8-14.86; ET 0.7-1.13. Mesowear score (1-6) Grazing (G) (score 1, low relief and blunt 
cusps) to Browsing (B) (score 6, high relief and sharp cusps). DMTA variables:  Asfc 1.79-9.22 
µm; epLsar (x10-3) 1.08-5.11 µm; HAsfc (3x3) 0.15-0.66µm. Carbon (δ13C) isotopes -1.09 to -
11.17‰. Oxygen (δ18O) isotopes 26.55-33.91‰ (VSMOW).   
Vegetation: The impact of environmental stimuli can be viewed via the extent and longevity of 
Antidorcas dietary shifts that occur between 2.8-0.5 Ma. A general trend of increasing aridity 
and a movement towards more open, grassland-dominated habitats through time, with some 
habitat heterogeneity throughout (mosaic habitats). Increased habitat heterogeneity with 
increased seasonality and lower aridity is evident c. 1.7 Ma. 
Hominins show the species present. From the bottom upwards:  Australopithecus africanus, 
Paranthropus robustus, Australopithecus sediba and Homo erectus (senso lato). Arrows extend 
from each hominin image to indicate their temporal range, Australopithecus sediba (FAD of c. 
1.98 Ma) (Berger et al. 2010) has only been definitively found in one locale (Malapa Cave) and 
its range is therefore unknown. 
 
Figure 12.2 (below) depicts the prevailing palaeovegetation trend inferred from all Antidorcas 

evidence from this research.  
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Figure 12.2: My interpretation of vegetation through time, inferred from Antidorcas dietary 
change. Based on Antidorcas species mean and individual lifetime diet (combined dietary 
signal obtained from all dietary proxies). The line represents the overall vegetation trend 
interpretation through time. Longer bars represent more intra-specific variation (individuals 
are lifetime grazers, browsers and mixed-feeders). ‘Mixed feeders’ are typically shown to be 
mixed-feeding to variable via all methods; or seasonal / lifetime mixed feeders (i.e. conflicting 
isotopes and microwear with mixed feeding signals via mesowear).  
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12.1 Summary of Results 

12.1.1 MEASUREMENTS 

• A. marsupialis crown height increases through time, suggesting the forcing of dietary 
abrasives (fluctuates in grass (abrasive) availability and /or dust (exogenous) 
abrasives).  

• A. bondi occlusal height increases through time from Sterkfontein Member 5 

• Fluctuations in enamel thickness (not unidirectional) apparent through time. 

• High intra-specific diversity in Sterkfontein Member 5 (more so in M5 west), 
Swartkrans Member 2, Kromdraai A and Plovers Lake, environmental instability 
inferred.  

12.1.2 Mesowear 
• Swartkrans Member 2 shows variability and deviation from expected Antidorcas 

species dietary predictions.  

• A. bondi is the most variable through time with increase in browsing signal (sharper 
cusps and higher relief) by later deposits (0.8 Ma onwards). 

12.1.3 DMTA 
• A. recki is a variable browser, with a small increase in grazing from Sterkfontein 

Member 4 to Kromdraai W and to Sterkfontein Member 5. 

• A. bondi is mixed-feeding/ browsing throughout. Sterkfontein Member 5 (grazing to 
mixed-feeding dominates) and Swartkrans Member 2 shows browse dominated signal. 
These sites are considered roughly contemporary.  

• Antidorcas marsupialis is consistently mixed feeding with no significant change 
through time 

• Mosaic landscape with relative composition of habitats within being temporarily 
variable. Highest variability within Sterkfontein Member 5 and Swartkrans Member 2.  

• From the late Pliocene, Antidorcas species do not graze (senso stricto) but are mixed-
feeding/browsing, with any changes being marginal.  

12.1.4 Isotopes 
• A. bondi has C4 dominance, grazing (with some mixed-feeding individuals) 

• A. recki has C3 dominance, browsing (with some mixed-feeding individuals) 

• A. marsupialis shows a gradual increase of C3 consumption (browsing) through time 

• Swartkrans Member 2 shows increased browsing signals (depleted carbon) for all 
Antidorcas species, alongside lower oxygen levels, indicative of lower aridity.  

12.1.5 Multi-Method Comparisons 
• A positive correlation exists between δ18O and Tfv. 

• A positive correlation exists between δ18O both and δ13C and enamel thickness 
(indicative of dietary abrasiveness). 

• Unexpectedly, HAsfc (heterogeneity) negatively correlates with occlusal relief (linked 
to occlusal height measurements). More variable diets have lower relief and blunter 
cusps (for Antidorcas combined as a genus). 

• EpLsar (anisotropy) and δ13C positively correlate but unexpectedly, Asfc (complexity) 
and δ13C also positively correlate, with a more depleted δ13C value (associated with 
browsing) showing lower complexity (associated with grazing). This possibly 
indicates overwriting due to a highly abrasive diet, seasonal mixed feeding or DMTA 
variables reflecting fall-back foods.  



 

419 

 

12.2 ANTIDORCAS LINEAGE 

A. bondi is more abundant in Swartkrans Member 2 and yet this is a period perceived to be 

more woodland dominated than surrounding Members. If reflective of the living community, 

this could be due to increased precipitation leading to growth of short grass shoots, the 

preferred diet of A. bondi (Brink et al. 1992). However, mixed diets are prevalent which may 

invoke seasonal migration inferences. Alternatively, this high abundance could reflect increased 

die-off of A. bondi during the temporarily more wooded, wetter environments and, or 

environmental instability during Swartkrans Member 2 deposition. A. marsupialis is found in 

increasing abundance from Swartkrans Member 1 onwards.  A. recki is no longer found in 

assemblages after Swartkrans Member 3 (c. 1.5-0.61 Ma). On balance, A. bondi appears to be a 

seasonal migrant, with seasonal movements and lifetime dietary variability increases after c. 1.7 

Ma, when the influence of seasonal changes becomes stronger.  

Whilst it may appear to be semantics, identifying to species level prior to conducting dietary 

analysis has been shown to be of importance (e.g. Brophy et al. 2014; Sewell et al. 2019). A. 

marsupialis as a mixed feeder can be used to map vegetation changes where obligate grazers or 

browsers typically reflect their ecological preference. This research has shown all Antidorcas 

species to be more plastic in their diet than previous research (e.g. Brink and Lee-Thorp 1992; 

Lee-Thorp et al. 2007) suggests, with intra- and inter-specific variability ranges changing 

through time, presumably according to environmental changes. 

12.2.1 Feeding Preferences of Antidorcas Species at The Cradle of 
Humankind   
The presence of multiple Antidorcas species co-inhabiting the landscape, alongside other 

bovids of overlapping niche requirements (such as Aepyceros melampus) endorses the idea of 

high habitat diversity to support such a rich ecosystem. To conclude niche partitioning, one 

would have to determine to a greater degree of certainty that these individuals were deposited 

together, with temporal overlap of their inhabitation of the area, rather than representing 

different temporal (seasonal, glacial-interglacial, or otherwise episodic) deposition phases. Such 

clarity remains elusive at the Cradle of Humankind. Yet from this research, Antidorcas supports 

the notion of character displacement by increasing mixed-feeding through time, likely as a 

result of competition with specialists more suited to the expanding grasslands. 

The successful use of multiple methods has allowed holistic dietary inferences to be made and 

in turn, the subtle complexities of the landscape to be untangled. 

Antidorcas Paleoecology  
From the late Pliocene, Antidorcas can be inferred as not grazing (senso stricto) in the last few 

days of the animals’ lives (evidenced via microwear). Yet, A. bondi stable carbon isotope 

signals suggest otherwise and a highly abrasive diet (mesowear and dental measurements), 

particularly for A. bondi and increasingly through time for A. marsupialis appears prevalent. 

This either indicates seasonal availability of diet for all Antidorcas species, or seasonal 
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deposition, with deposition only occurring during wetter (browse-dominated vegetation) 

periods (e.g. Brain 1958, 1981, 1993, 1995; Pickering et al. 2007). Alternatively, the Cradle of 

Humankind could have fostered a local environment that was dominated by C3 vegetation that 

the fossil springbok migrated into shortly before death. The latter scenario seems unlikely 

considering the wealth of references supporting opposing palaeoenvironments for the range of 

assumed Antidorcas migration (based on modern Antidorcas and migratory antelope ranges). A 

more plausible alternative is that a highly abrasive diet masked (overprinted) any grazing signal 

from the microscopic wear evident on the dentition.  The results of this research show that all 

Antidorcas trend gradually towards an increased C3 component in their diet, the opposite of 

what may be expected from an increasing grassland trend through time. This is perhaps due to 

character displacement imparted on Antidorcas from more specialized grazers as grassland 

habitats expanded.   

This research has shown Antidorcas marsupialis increase in dental crown height through time, 

which is interpreted as an adaption towards a more abrasive diet, either due to an increase in 

eolian dust (incorporated into the mouth whilst low-level feeding) or as a response to increased 

inclusion of abrasive grasses as savanna grasslands expanded and aridity increased. This is 

supported by abrasive mixed feeding diets suggested by mesowear signals, which are indicative 

of the lifetime selective influences acting upon the individual animal and upon the species.  

Antidorcas bondi  
The results presented in this thesis (stable carbon isotopes, extreme hypsodonty) go some way 

to supporting Antidorcas bondi’s preference for grazing. Yet the signal obtained by using a 

combination of methods (mesowear, DMTA) is not as clear as may have been anticipated (e.g. 

based on Brink and Lee-Thorp 1992’s isotope study). Although primarily believed to have been 

a grazing species, as evidenced from previous stable isotope analysis (Brink and Lee-Thorp 

1992; Lee-Thorp et al. 2000; Codron et al. 2007; Sewell et al. 2019), my analyses show more 

mixed–feeding, which implies greater intraspecific dietary variability. Mixed-feeding is further 

supported by evidence from Cornelia (1.07-0.99Ma) (Brink et al. 2012), Florisbad (0295-0.225 

Ma) (Herries 2011), Haasgat (c. 2.2-2.0 Ma) (Adams et al. 2013) and from this study, which 

implicates the possibility of greater intraspecific dietary variability.  A. bondi is predominantly 

grazing but with a higher C3 component in its diet than would be anticipated based on previous 

studies (e.g. Brink and Lee-Thorp 1992), and appears to increase the browse-component 

intermittently, with a gradual trend towards increased browse. Thus, the presence of A. bondi 

should not be used as a reliable indicator of grassland presence.  

A. bondi is believed to have fed on the new grass shoots close to the ground, working 

sympatrically with other species in a grazing succession. The larger animals mow the sward at 

higher levels, leaving the smallest new growth shoots for the smallest in the succession, A. 

bondi (see chapter 3 ‘fossil Antidorcas’). The low-level feeding height would inevitably 

encourage more grit consumption. This would be particularly true of a wide-muzzled antelope. 

If a shortening in width of the incisor teeth (not measured here) occurred through time, this may 
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provide further insight into the evolutionary pressure that this type of feeding enacted on A. 

bondi.  

 A low feeding height and the incorporation of high levels of grit from feeding close to the 

ground would result in a highly abrasive diet. This would explain ‘browsing’ diets yielded via 

microwear analysis, yet abrasive microwear and mesowear signal. Taken alongside the grazing 

isotope signal and extreme hypsodonty (selected to withstand the abrasive grass phytoliths and 

grit), these combined results support A. bondi being, at least for some of the year, a low-level 

grazer as part of a grazing succession, or low mixed-feeder, including grasses.  

The signal here indicates a combination of both increased browse-consumption and increased 

grit intake. The cusp height increase apparent in A. bondi after c. 1.7 Ma-0.8 Ma (Sterkfontein 

Member 5) suggests an increase in dietary abrasiveness just prior to/ during this temporal 

period. Thereby forcing selective adaptation measures to allow A. bondi to withstand the 

abrasive pressure. An alternative scenario is supported (primarily) by mesowear results, of a 

reduction in abrasive material (grass phytoliths or exogenous particles) and a likely replacement 

with increased browse consumption on an individual lifetime scale. If the latter is true, this 

could reflect vegetation change, with a reduction in preferential grasses; this scenario is 

supported by mesowear results. If so, the environmental change caused by the onset of the 

Walker Circulation (c. 1.9-1.7 Ma) could be implicated here.  

A. bondi shows the most variable mesowear signal through this temporal period of any 

Antidorcas species. An increase in browse incorporation in the diet is evidenced via a gradually 

increasing occlusal height and associated browsing mesowear signal through time from 

Sterkfontein Member 5 [c. 1.8-1.1 Ma (based on ESR and palaeomagnetism dating 

techniques)].  

Coupled with the end of life (microwear) mixed-feeding to browsing signal, it is concluded that 

A. bondi had a highly abrasive, mixed-feeding (likely seasonal mixed feeding) diet, with a 

gradual increase in browse through time.  

Antidorcas recki  
East African A. recki c. 1.7 Ma (Olduvai Gorge, Tanzania) was interpreted (using a similar 

mixed methodology approach) as a seasonal mixed feeder (Rivals et al. 2018). Yet such a 

detailed approach for South African A. recki was previously missing.  

The results from this research (stable isotopes and use-wear) demonstrate South African 

Antidorcas recki was predominantly a variable browsing to mixed-feeding species. A slight 

increase in grass consumption is evident (via microwear) from Sterkfontein Member 4 (c. 2.8-

2.0 Ma) to Member 5 (1.8-1.1 Ma) and to Kromdraai W (between Sterkfontein Members 4 and 

5). The lifetime signal from mesowear analysis shows A. recki to have been a mixed-feeder. 

Combining this with the browsing dominance (evidenced from isotope analysis) and the 

variable browsing with steadily increasing grass consumption (evidenced via microwear), 

seasonal mixed-feeding could also be inferred here. Shortly after 1.5 Ma, A. recki disappears 
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from the fossil record. This is likely to be linked to increased environmental instability and 

character displacement (see Appendix A5 for further discussion of A. recki extirpation).  

Antidorcas australis  
This research does not support A. australis being distinguished as a separate species found in 

the Cradle of Humankind during this temporal range. A. australis could potentially be present 

as A. m. australis (i.e. a sub-specific population). Alternatively, A. australis as a distinct species 

could have existed as a Cape endemic. From dental morphology alone, the Cradle of 

Humankind specimens potentially identified as A. australis do not show enough variation from 

the other Antidorcas species, particularly A. marsupialis to warrant separate species status.   

This research therefore incorporated potential A. australis specimens, largely within A. 

marsupialis. Occasionally, some proposed A. australis specimens were reassigned as A. recki/A. 

bondi based on morphological identification criteria, and often supported by previous 

researchers (e.g. de Ruiter 2003) (see Chapter 6 ‘Taxonomic identification of species’ for 

individual specimen details). The need for taxonomic clarity has been demonstrated in this 

research.  

Antidorcas marsupialis  
These results demonstrate Antidorcas marsupialis was predominantly a mixed-feeding species, 

from all methods applied, with a gradual increase in the browse component of the diet through 

time.  

No clear FAD (first appearance date) is apparent for A. marsupialis from the dietary and habitat 

information gained through this research. Any dramatic increase in variability followed by 

morphological change may be suggestive of speciation to A. marsupialis. Yet the overlap 

between all Antidorcas species throughout the fossil record and comparatively with modern A. 

marsupialis renders the FAD of A. marsupialis difficult to determine.  

As an abundant antelope present in many hominin-bearing deposits, the ability to accurately 

interpret and utilize Antidorcas remains effectively is beneficial. Therefore, a better 

understanding of their anticipated levels of variation, as extrapolated back from their modern 

counterparts is of importance. This research has established the range of variation of modern 

and fossil Antidorcas as a genus, which could usefully be compared to other Antidorcas-bearing 

sites.  

Modern A. marsupialis have been witnessed practicing geophagy, actively consuming soils and 

natural ‘licks’(clay soils, often near waterholes) to supplement their nutrient intake, often in arid 

environments (e.g. Bigalke 1972; Stapelberg 2007; Stapelberg et al. 2008) or counteract the 

toxic effects of plant secondary compounds (Damuth and Janis 2011). If the same were 

practiced by fossil Antidorcas, this may present as an abrasive diet (due to the inclusion of 

exogenous grit from actively consuming soil/ dirt particles) and increased wear complexity 

(DMTA). An inflation therefore, in increased dietary abrasion and greater wear complexity 

(often concluded to be a browsing signal), as seen in Swartkrans Member 2 for instance, could 

reflect the dependence on such fallbacks. This could suggest Antidorcas is unable to obtain 
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required nutrient levels from vegetation consumption alone and other considerations should be 

noted when using Antidorcas materials for similar research questions.  

As mentioned, geophagy is also practiced to counteract the toxic effect of secondary 

compounds in plants (as the plants’ defence against herbivory) (e.g. Pfister 1999; Ayotte et al. 

2006). During periods of high energy demand (e.g. rutting, lactating), vegetation consumption 

would increase. Therefore, increasing the use of natural licks/ soil consumption to counteract 

the effects of toxic secondary plant compounds (e.g. Voigt et al. 2008), and hence the likely 

seasonal increase in exogenous particle inclusion. Similar behaviour was found for modern 

moose utilizing sodium licks seasonally according to salt (sodium) requirements (Fraser et al. 

1982). An increase in dental abrasion, particularly if combined with browse signals should 

consider this as a possibility. From this research, it is likely that the A. marsupialis and A. bondi 

inference of increased seasonal behaviour differentiation and dietary abrasion after Swartkrans 

Member 2 incorporated similar practices.   

12.3 PALAEOENVIRONMENT OF SOUTHERN AFRICA 

12.3.1 Regional scale 
A meta-analysis of South African hominin bearing locales (chapter 5), combined with the 

Antidorcas data suggest that varying mosaic habitats (Reynolds 2010) of shifting woodland and 

grassland components in the landscape are prevalent throughout this temporal range. The 

general trend from woodland dominance to grassland dominance is apparent and increased 

environmental instability and seasonal differentiation inferred from c. 1.7 Ma. The Antidorcas 

palaeoecology evidence discussed in the previous section is used to make this inference, with 

the implications for the palaeoenvironment discussed further here.  

The diversity that emerges in Swartkrans Member 2 (and to a lesser extent in Sterkfontein 

Member 5) via dietary evaluation of Antidorcas is not mirrored in the faunal assemblage (via 

cluster analysis of faunal assemblages, see chapter 5) across southern Africa. However, this 

meta-analysis was conducted on presence / absence data, the relative abundance of fauna may 

still reflect increased biodiversity for Swartkrans Member 2.  

A. bondi’s presence and grazing diet in Sterkfontein Member 4 supports the notion of open, 

grassland habitats to the landscape already a component of the landscape by ~2.8-2.5 Ma (e.g. 

Avery 2001; Avery et al. 2010; Elton 2001; Luyt 2001; Luyt and Lee-Thorp 2003; van der 

Merwe et al., 2003). With Antidorcas evidence supporting grassland habitats making up a lesser 

component of the mixed habitat landscape than in later time periods.  

Turner’s (1985) suggestion of seasonally deposited A. bondi specimens, restricted to the 

summer months, due in most part, to the apparent absence of juveniles is interesting. This 

scenario would corroborate with the suggested fluvial action aiding cave deposition (Brain 

1958, 1981, 1993, 1995; Pickering et al. 2007) and the inflated browsing signal obtained via 

DMTA here. The summer months have higher rainfall on average, enabling surface deposits 

(such as leopard kills) to be introduced to the cave, as well as supporting the growth of 

vegetation preferring wetter environmental conditions. However, it is suggested here that A. 
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bondi has a highly abrasive diet, as such; juveniles may be falsely mis-recorded as older 

individuals due to the excessive wear caused by their highly abrasive diet. If juveniles are not 

actually absent from this deposit, Turner’s (1985) argument loses its key evidence.  

Supposing extant A. marsupialis can be used as a reliable model for extinct A. bondi, A. 

marsupialis is traditionally a summer grazer and winter browser (Kingdon 1997). Based on the 

evidence available here (rather than on inferred assemblage demographic profiles) one might 

anticipate increased grazing DMTA signal (low complexity and high anisotropy) and/ or 

perhaps increased C4 isotope signals, to indicate deposition restricted to the summer months. 

Palaeoecology is rarely that straight forward however, and as alluded to previously, DMTA 

may confuse signals by inflating browsing signals from a ‘micro’-climate (micro on an 

Antidorcas scale), whereby a small refuge type area is sought for shelter and to find more 

moisture-rich vegetation, during the more arid months. This is also the preferred habitat type of 

A. bondi’s believed, key predator, the leopard (Panthera pardus). Thus, although DMTA does 

not conclusively indicate grazing-dominance for A. bondi (so one may be opposed to inferring 

summer months based on extant A. marsupialis seasonal dietary habits), A. bondi may actually 

have been more prone to being driven to these areas during the summer months and therefore, 

the assemblage may still be inferred as seasonally deposited during the summer months. 

Moreover, A. bondi may have been outcompeted by A. marsupialis, with niche partitioning 

forcing A. bondi to an increased browse component during the summer months when A. 

marsupialis is believed to prefer increasing the graze content of its diet (if basing fossil A. 

marsupialis dietary palaeoecology on modern A. marsupialis dietary ecology).  

Either way, the issue of seasonality of fossil Antidorcas movements (seasonal migrations) and 

of seasonal deposition is an essential consideration prior to inferences being made from the 

dataset.  

That isotope signals differ from microwear signals and that mesowear is extremely mixed in the 

majority of cases supports the notion of seasonal migrations of fossil Antidorcas. Whilst this 

restricts inferences obtainable about palaeoenvironments local to the Cradle of Humankind, 

regional observations prevail.  

The alternative inference is of feeding height. Although fossil Antidorcas differed slightly in 

body size, and modern A. marsupialis is known to occasionally feed at a higher level, 

Antidorcas is suggested to be a low-level grazer (e.g. A. bondi Brink and Lee-Thorp 1992; 

Brink 2016). The disparity in results from differing methods may actually not show different 

feeding through life but rather be indicative of a low-level feeding practice. With increased 

dust/grit consumption a likely consequence of feeding at low levels. Dust/grit has been shown 

to be a dietary abrasive, evident on dental molar wear (Lucas et al. 2013; Wood 2013; Xia et al. 

2015), although studies have shown grit/dust does not impact as much as diet on microwear 

(e.g. Merceron et al. 2016), the impact of such particles may be key in this instance. The highly 

abrasive diet known for A. bondi through mesowear, as well as perhaps the increased 
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heterogeneity and complexity of the microwear scarring could be indicative of high levels of 

grit consumption.  

Precipitation levels would need to be relatively high to sustain A. bondi in this dietary habit, to 

ensure the grasses have sufficient water to remain in a state of regrowth and fulfil the nutrient 

requirements of the antelope (Brink 2016), A. bondi. Oxygen isotope values from Swartkrans 

Member 2 suggest increased precipitation, which is when A. bondi is found in great abundance.  

However, the trend of gradually increasing aridity through time may also be responsible for 

enhanced dust prevalence, carrying and depositing increased quantities of eolian dust across the 

landscape. Increases in African wind-borne dust occur after 2.8 Ma, with peak values around 

1.9-1.6 Ma off East Africa (deMenocal 2011). The dust-rich palaeoenvironments in which 

Paranthropus lived, contemporaneously with many of the Antidorcas considered here, 

particularly Swartkrans Member 2 A. bondi (and A. marsupialis) have been causally linked to 

an increase in Paranthropus enamel thickness (Lucas et al. 2013).  Exogenous particles 

(dust/grit) were considered to be responsible for driving these abrasion-resistance adaptations 

(Madden 2014). The Antidorcas data here supports this hypothesis.   

Measurements show that dental enamel thickness and occlusal volume (see chapter 11 ‘multi-

method analysis’) for A. bondi differs significantly between Swartkrans Member 2 and 

Sterkfontein Member 5, which are considered roughly contemporary, suggesting the impact of 

micro-scale influences, such as the increased consumption of moisture-rich vegetation 

supported closer to Swartkrans (due to its proximity to the Blauubank river), compared to 

Sterkfontein. However, Sterkfontein and Swartkrans were likely within the home range of A. 

bondi and its predators, so this difference may be better interpreted as temporally distinct 

populations and, the apparent difference of ‘contemporary’ populations an artefact resulting 

from time-averaging of deposits. As stated above (section 12.2.1), A. marsupialis’ increase in 

crown height through time supports increasing aridity and expansion of grasslands.  

Lifetime diets evidenced via mesowear reflect mixed-feeding as evident for all Antidorcas 

species. A. recki reveals more inclusion of grass in the diet, or a highly abrasive lifetime diet, 

than is suggested via microwear or stable isotope analysis. A. bondi again shows mixed-feeding 

to variable grazing or a highly abrasive mixed feeding diet throughout, with a tendency towards 

increased browse by 0.5 Ma. A. marsupialis shows mixed-feeding with more intra-specific 

variation than the other Antidorcas species. Therefore, mixed, or seasonally fluctuating, habitats 

are inferred throughout. Less emphasis is placed on mesowear results compared to the other 

methods as further parameters are required to ensure accurate palaeoenvironmental and dietary 

indications.  

Microwear data shows no significant difference between Antidorcas species, other than in 

Swartkrans Member 2. All Antidorcas species from the late Pliocene are mixed-feeding to 

browsing at the end of their lives. A very small number of individuals within each species show 

grazing-dominance.  Highly variable DMTA results are gained inter- and intra- specifically for 

Antidorcas for Sterkfontein Member 5 (c. 1.7-0.8 Ma) and Swartkrans Member 2 (c. 1.7-1.07 
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Ma). Woodland habitat presence is inferred as being available throughout, with a period of 

habitat heterogeneity c.1.7-0.8 Ma.  

Carbon isotope (δ13C) values may reflect vegetation away from the Cradle of Humankind if 

Antidorcas were migratory during the Plio-Pleistocene. A. bondi has a C4 plant, graze 

dominated diet until Swartkrans Member 2, (c. 1.7 Ma), after which mixed-feeding, likely 

seasonal, dietary preference is apparent. A. recki typically shows a browsing diet, with 2 

individuals from Swartkrans Member 1 displaying a mixed-feeding (mixed C3/C4) diet.  A. 

marsupialis typically shows mixed-feeding via carbon isotope analysis, although one individual 

in Swartkrans Member 2 shows grazing (C4) dominance, three individuals show browsing (C3) 

dominance and one individual a mixed-feeding diet, supporting an inference of habitat 

heterogeneity and /or environmental instability for c. 1.7 Ma.  

Oxygen isotopes are perhaps more difficult to accurately interpret via a water-independent 

mixed feeding taxa. High oxygen δ18O values can be indicative of browsing diets, with 

browsers consuming leaves richer in oxygen than lower parts of the plant due to 

evapotranspiration. Alternatively, higher δ18O values could be indicative of increased aridity 

levels, with transpiration occurring more rapidly in C4 plants under arid conditions. Combining 

oxygen isotope values with carbon isotope values makes this differentiation more readily 

identifiable. The prevailing trend is one of gradually increasing aridity from c. 2.8 Ma to 0.5 

Ma, with a period of reduced aridity c. 1.7-1.5 Ma, alongside some evidence of enhanced 

seasonal differences in precipitation from c. 2.0-1.5 Ma onwards. The seasonal divergence is 

inferred from more frequently occurring discrepancy between carbon isotope (δ13C enrichment 

at the start of life) and microwear variables (at the end of life) for individuals, alongside intra-

specifically variable δ18O values.  

As acknowledged by Luyt (2018), Antidorcas’ mixed-feeding diet aligns more closely with that 

of habitual browsers and therefore, may represent the minimal grass component of the 

landscape.  

Fire 
A prominent part of modern savanna biomes is the repeated disturbance by fires. The likelihood 

of fire is influenced by vegetation traits, with fire being more likely in areas with high light 

(little to no canopy cover) and high productivity (Lehmann et al. 2011). A C4 grassland 

dominated landscape permits fire (due to the light exposure and higher aridity compared to C3 

closed canopy habitats). The fire then promotes C4 grasses by maintaining an open canopy, 

initiating a positive feedback system between savanna grasses and fire (Beckage et al. 2009).   

The impact of fire / wildfire would be difficult to determine from time-averaged cave deposits 

but the possibility of their impact upon the local vegetation and the fauna inhabiting it, remains. 

However, modern A. marsupialis consume Acacia species (Skinner and Louw 1996, Figure 

12.3), which are known to tolerate, and potentially benefit, from repeated burning. New acacia 

shoots regrow in the first months of the wet season but photosynthetic rates of the acacia remain 

high into the dry season months (enabling root starch replenishment) (Schutz et al. 2009). The 
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new shoots are extremely responsive to CO2 levels, which impact upon their water-use 

efficiency and photosynthesis rates (Drake et al. 1997).   

Thus, we might expect an increase in fire disturbance correlated to the expansion of savanna C4 

grasslands. C3 trees are fire resistant if a fire occurs (C3 grasses are destroyed) but C4 grasses 

promote the initiation of fire and can rapidly repopulate following the disturbance, given the 

right environmental conditions (low but seasonal rainfall) (Lehmann et al. 2011). The frequency 

of fire disturbance dictates the long-term landscape cover. Frequent fire support C4- dominated 

savanna habitats, whereas C3 vegetation is able to outcompete and re-establish in the absence of 

disturbance (e.g. Archibald et al. 2009; Lehmann et al. 2009).  

In the fossil record, the possibility that either an aridity threshold was reached that resulted in 

wildfire, or that wildfire occurred from lightning strike may be relatively invisible. In this 

instance, particularly if these fires were prolonged or rapidly repeated, C3 plants (larger trees), 

which are more fire-resistant (Bond and Midgley 2012) would temporarily prevail and/or be 

supported alongside dominant grasses in a savanna landscape. For instance, Swartkrans 

Member 2 Antidorcas appears to be depleted in carbon (interpreted as an increase in browse) 

and lower oxygen isotope values (indicative of less arid conditions). From Member 2 onwards, 

increased habitat heterogeneity (and mixed savanna landscapes, such as those encouraged by 

fire disturbance) is inferred. In the subsequently deposited Member 3, evidence of repeated 

burning is apparent, interpreted by Brain and Sillen (1988) as hominin-controlled fire.  

Modern wildfires are typically characteristic of seasonally wet savannas, with the vegetation 

present being more tolerant to fire 

(Bond and Midgley 2012). With the 

proposed increase in seasonality c.1.7 

Ma, and a likely period of 

environmental instability (c. 

Swartkrans Member 2), repeated 

wildfires could tentatively be a possible 

alternative explanation to hominin-controlled fire (Swartkrans 

Member 3).  

Antidorcas could provide more valuable insight into the impact of fire on the palaeovegetation 

around this temporal range. With further research into the dental use-wear acacia inflicts on 

dental enamel, the carbon isotope composition of Acacia and investigation into the impact of 

fire on the carbon and oxygen isotopes of these plants (and the differential seasonal signal).   

12.3.2 Local scale: Cradle of Humankind sites 
Swartkrans supports more of a continuous faunal community than Sterkfontein (see chapter 5, 

‘Meta-analysis’), this is perhaps due to local or micro-scale buffers, allowing Swartkrans to 

retain habitats whilst Sterkfontein is more vulnerable to climatic or otherwise environmental 

variability. Sterkfontein Member 5 west, (which shows high habitat diversity (from the 

Antidorcas evidence) compared to other Sterkfontein Members) support similar taxa to 

Figure 12.3: Modern
springbok eating acacia 
(Image from 
L'univers fascinant des a
nimaux, Le Springbok, 
(ISBN : 2-908306-07-7) 
©MCMXCIII IMP 
Sarl/IMP BV, Groupe 1, 
Fiche 176 ). 
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Swartkrans.  The local buffers (e.g. proximity to the Blauubank river) inferred for Swartkrans 

(see chapter 2) were perhaps sufficient to withstand typical climatic stimuli but did not dampen 

the impact of the regional environmental change evident from c. 1.7 Ma. 

12.4 POTENTIAL IMPLICATIONS FOR HOMININS 

The Antidorcas data therefore indicates the landscape was increasingly dominated by savanna 

landscapes, supporting both woodland-type habitats (C3 vegetation) and open grassland (C4 

vegetation). This would support multiple hominin species with specialized or flexible diets, as 

with Antidorcas. The environmental instability inferred around Swartkrans Member 2 would 

likely favourably have reduced numbers of dietary specialists of all taxa (Antidorcas and 

hominins).  

Although typically, the impact of climate is overshadowed in East Africa, climate variability (c. 

1.8-1.7 Ma) in West Turkana, as evidenced via leaf was biomarkers (Lupien et al. 2017, 2018) 

has been suggested to select for adaptability and drive hominin evolution. Similarly, the 

evidence from Antidorcas dentition supports this notion in South Africa also. This primarily 

supports the variability selection hypothesis (Potts 1998) and the environmental variability 

selection hypothesis (Maslin et al. 2014, 2015).  
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.   
Table 12.1: Hominin evolutionary events within this timeframe that have been casually linked to environmental or climate change catalysts, alongside whether or not 
this is supported by the environmental picture gained from the Antidorcas evidence here 
Date South African Event Hominins present in South Africa Previously proposed 

environmental catalysts 

Antidorcas support? 

c. 2.0 Ma Appearance of P. robustus P. robustus,; A. africanus, A. sediba Woodland habitats and 
wetlands. High climate 
variability. 

Little support. Mixed feeding 
diets and low indication of 
increased variability from SK 
M5.   

2.8-0.8 Ma Co-occurrence* of hominins  P. robustus, A. africanus, A. sediba, 
Homo sp. 

Habitat heterogeneity and 
proposed niche partitioning; 
adaptation to a more arid, 
varied environment. 

Support. Co-occurrence* of 
Antidorcas species with 
niche partitioning, dietary 
and habitat generalization 
evident. 

c. 2.0-1.8 Ma Disappearance of A. africanus  iNHG/oWC. High climate 
variability. 

Little support. Mixed feeding 
diets and low indication of 
increased variability from SK 
M5.   

c. 1.9-1.7 Ma Appearance of Homo erectus 
(senso lato)  

Homo sp., P. robustus, oWC, High climate 
variability.  

Support. Environmental 
variability (supporting Potts 
1996,1998; Maslin et al. 
2015) 

c. 1.7-1.6 Ma Oldowan-Acheulean tool 
technology advancements 

P. robustus,  H. habilis, H. erectus 
(senso lato) 

oWC (and consequent 
seasonal variation and 
environmental instability 
experienced). 

Support. SKX M2 and SK 
M5W (1.7-1.07 Ma) high 
intra-specific variation in 
dental morphology and 
behaviour; increased habitat 
heterogeneity from this… 
…time and (with the highest 
degree of variability 
experienced in SKX M2 
around the onset of change).  

c. 1.0 Ma Controlled use of fire H. erectus (senso lato) Behavioural advancement No support. Antidorcas 
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Date South African Event Hominins present in South Africa Previously proposed 

environmental catalysts 

Antidorcas support? 

of Homo genus due to 
above catalysts.  

evidence suggests potential 
for wildfires which could 
negate the controlled use of 
fire by hominins.  

c. 1.0Ma Disappearance of P. robustus H. erectus (senso lato) MPR, marked precessional 
variability; expansion of 
savanna grasslands 

Support. Disappearance of A. 
recki 

* Time-averaging notwithstanding.  
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12.4.1 Oldowan-Acheulean transition around the Cradle of Humankind 
In East Africa, the consideration that the palaeoenvironmental change across this transitionary 

temporal range may have more implications than simply hominin (Homo ergaster/erectus) 

emergence has been recently investigated (e.g. Uno et al. 2018; Prassack et al. 2018). Homo 

habilis and Paranthropus boisei were still present during this time and the shift in lithic 

technology may be a response to the shifting environmental conditions rather than a different 

species (H. erectus) as the manufacturer of the Acheulean, as is traditionally assumed.  

However, no large-scale environmental shifts were found in this region by either avifauna 

(Prassack et al. 2018) or mammalian fauna (Uno et al. 2018). In southern Africa, Paranthropus 

robustus and potentially H. habilis (see Clarke and Howell 1972; Kuman and Clarke 2000; 

Albarède et al. 2006; Smith and Grine 2008; Curnoe 2010; Wood 2014; McKee 2017) are also 

present during this temporal overlap.  

In the central interior of South Africa, as represented by the hominin-bearing site of 

Wonderwerk, local factors (the impact of regional rainfall seasonality and carbon dioxide (CO2) 

levels appear to dictate vegetation cover contrastingly to the East of southern Africa (Cradle of 

Humankind) and of Africa (Kenya, Ethiopia, Tanzania). The evidence from Wonderwerk 

suggests prolonged wetlands supported both C3 and C4 grasses through the Early Pleistocene 

and no definitive trend towards aridity was prevalent during the Oldowan-Acheulean transition 

as has been postulated for other hominin-bearing sites (Ecker et al. 2018).  

In the Cradle of Humankind, some degree of habitat heterogeneity is supported throughout this 

temporal range, with woodland habitats slowly declining through time. The suggested 

environmental instability and habitat heterogeneity for c. 1.7 Ma saw a mirrored temporary 

increase in woodland vegetation, and marked a transition to more variable, likely seasonal, 

vegetation cover. Although mosaic habitats would have supported habitat generalists and 

specialists alike, the inferred environmental instability for the Cradle of Humankind broadly 

coincides with the Oldowan-Acheulean transition.  

12.5 IMPACT OF CLIMATE AS AN EVOLUTIONARY 

DRIVER IN SOUTHERN AFRICA 

The southern African hominin landscapes are dynamic (Dirks and Berger 2018) but lack the 

active faulting prevalent in East African hominin contexts. It would be logical that both climate 

and geology impact upon the vegetation a landscape is capable of supporting and subsequently 

upon habitat preference for the entire faunal community. Repeated plant succession with a 

greater prevalence of pioneer species may be anticipated for more tectonically active locales, 

providing relatively little in the way of shelter. Yet slightly removed from the epicentres of 

tectonic activity, the resultant palaeolakes created and the vegetation structure supported can be 

vast, creating and maintaining preferential hominin and faunal habitat types. The vegetation 

around the hominin sites around the Cradle of humankind were undoubtedly affected by such 

landscape dynamics but arguably to a lesser extent than was the case in East Africa. It is 
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therefore suggested that other factors, including the impact of climate is likely to be a more 

influential factor in South Africa than in East Africa. Thus, research can address the impact of 

climate as an evolutionary driver with more certainty.  
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Hypothesis Proposed environmental and vegetation change according to climatic Antidorcas evidence 
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Yes the general trend towards 
increasing aridity prevails but with a 
temporary patch of environmental 
instability and habitat heterogeneity 
c. 1.7 Ma.  
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No major ‘pulses’ are evidenced in 
relation to faunal turnover but c. 1.7 
Ma, habitat heterogeneity and 
environmental instability are 
inferred. This is inferred to be 
linked to the oWC.  
Stasis is not inferred in between 
climatic events but rather, gradual 
adaptation and evolution.  
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Yes, habitat heterogeneity and 
environmental variability evidenced 
via intra and inter specific 
variability is inferred c. 1.7 Ma, 
causally linked to the oWC. The 
enhancement of seasonal changes 
impacts upon the Antidorcas diet.  
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Yes, mosaic habitats are available 
throughout for Antidorcas to utilise 
but with an underlying trend 
towards increased aridity.  
The climatic changes associated 
with the oWC lead to temporarily 
increase habitat heterogeneity.  
 
 

Figure 12.4: Antidorcas evidence compared to climate-related evolutionary theories.  
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A combination of all these evolutionary theories (Figure 12.4) can be seen throughout this 

temporal range in South Africa, with the more local scale changes acting to buffer/ enhance 

larger scale impacts for the Cradle of Humankind Antidorcas.  Antidorcas species are able 

to survive via dietary flexibility. Intra-specific dietary variability increases as a result of 

proposed climatic events and their inferred impact of environmental instability. This is 

particularly evident for the oWC (onset of the Walker Circulation) which saw increased 

seasonality and likely marks the increase in seasonal mixed feeding for Antidorcas.  

12.5.1 Global context 
This section addresses whether the trends found via Antidorcas at the Cradle of Humankind 

sites mirror those seen for hominin landscapes elsewhere during this time period. 

12.5.1.1 Contemporary Europe 
The onset of the glacial cycles and increased seasonality associated with the iNHG c. 2.6 

Ma were readily apparent via European bison intra-tooth oxygen isotopic composition 

(Bernard et al. 2009). Later, species diversity and variable environmental habitats have 

been suggested during the earliest appearance of Homo in Europe (c. 2.1-0.4 Ma) (Sardella 

et al. 2018) as well as marked seasonality (Strani et al. 2018).  

12.5.1.2 Africa 
Potts (1996, 1998, 2013) promotes a theory of high climate variability during key hominin 

evolutionary events, such as FADS/ LADS in East Africa. Leaf wax biomarkers show 

environmental variability and instability c. 1.9-1.4 Ma in West Turkana (Lupien et al. 

2018). Particularly high amplitude in hydrological variation is apparent c. 1.7 Ma, 

coincident with the emergence of H. erectus (senso lato) and the appearance of Acheulean 

technology, implicating the importance of climatically-driven hominin evolution (Lupien et 

al. 2018). Whilst the same resolution of climate in relation to hominin (or Antidorcas) 

evolution cannot yet be achieved for South Africa, environmental instability is suggested 

here across the Oldowan-Acheulean transition. This transition saw the appearance of South 

African Homo and the behavioural advancements associated with the Acheulean lithic 

technology c. 1.7 Ma. 

Across this transition in Olduvai Gorge, East Africa, avifauna supports a general opening 

and drying of the landscape, increasingly supporting grasslands and open woodland 

(Prassack et al. 2018). Similarly, c. 1.7 Ma, dietary differences in the most abundant bovids 

(including A. recki) were interpreted as seasonal differences in time of death for individuals 

but no major dietary or hydroclimatic change (Rivals et al. 2018). Rivals et al. (2018) also 

served to highlight the importance of using multiple proxies to detect both long- and short- 

term environmental change to understand the context within which hominins evolved. 

Large mammal evidence also does not support major vegetation or hydrological change but 

does show stronger seasonal dietary differences for some taxa across the Oldowan-

Acheulean transition (Uno et al. 2018).   

12.5.1.2.1 Southern Africa 
2.7 Ma: Intensification of Northern Hemisphere Glaciation (iNHG) 
A. bondi significantly altered its lifetime diet from Sterkfontein Member 4 to Kromdraai W 

(mesowear), which is likely representative of this transitional period. However, no other 
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evidence supports major palaeovegetation change resulting from the iNHG around the 

Cradle of Humankind.  

2.0-1.7 Ma: Onset of the Walker Circulation (oWC)  
The general trend through this temporal range is of increased aridity and relative 

grasslands, with increased habitat heterogeneity, temporarily wetter with an increase in 

woodland habitats c. 1.7-1.07 Ma, (Swartkrans M2 and Sterkfontein M5).  

The Antidorcas evidence supports climatically-driven behavioural (dietary) change. 

Additionally, some subtle adaptive responses in Antidorcas dentition are apparent, as a 

result of dietary changes in response to altered vegetation cover and habitat availability 

within the landscape.  

Antidorcas bondi’s increase in cusp height (measurements) and browsing (mesowear) 

evident post 1.7 Ma (Swartkrans Member 2 and Sterkfontein Member 5) supports the 

notion of vegetation change and selective pressures acting upon the faunal community as a 

response to environmental conditions of the time, implicating the oWC.  

In spite of the likely time-averaged deposition prevalent at the sites represented, unless 

significantly differentially averaged across deposits of the same site, Sterkfontein Member 

5 and Swartkrans Member 2 show considerably greater levels of intra-specific variation.  

Environmental instability, with a dominant temporary decrease in aridity and increase in C3 

browse-type vegetation, is inferred for this temporal range by high intra-specific diversity 

in dental measurements and use-wear (mesowear and microwear) signals from all 

Antidorcas species. As A. recki shows a slight increase in grazing (microwear) from 

Sterkfontein Member 4 to Kromdraai (W) and Sterkfontein Member 5, it is suggested that 

although temporarily wetter, with less grassland prevalence and habitat heterogeneity, the 

underlying general trend towards increased aridity and grassland dominance from 

Sterkfontein Member 4 still prevails.    

The Oldowan-Acheulean transitionary period within the Cradle of Humankind from this 

evidence, is inferred to have consisted of environmental instability with high habitat 

heterogeneity across the landscape.  

1.0 Ma: Mid-Pleistocene Revolution (MPR) 
A long-term aridification, with marked precessional variability, around the Cradle of 

Humankind (Limpopo catchment) between 1.0-0.6 Ma was evidenced via a multiproxy 

reconstruction of hydrological changes (Caley et al. 2018).  

Similar to hominins, Antidorcas can be inferred to have been eurytopic (capable of 

withstanding environmental variability). Yet the preferred habitats of both A. recki and P. 

robustus gradually became scarcer post 1 Ma, following the trend of increased aridity and 

grassland dominance, leading to the demise of both A. recki and P. robustus. Antidorcas is 

likely to have been subject to turnover (A. recki extinction) following this marked trend and 

the impact of precessional variability. Additionally, Plovers Lake Antidorcas supports a 

temporary increase in intra-specific variability in dental measurements. A. bondi however, 

appears to be consuming more browse post 1.0 Ma. This trend has been noted elsewhere in 

South Africa, albeit not exclusively, for A. bondi (Codron et al. 2008; Adams et al. 2013; 

Brink et al. 2012) and perhaps suggests a biological cause, being out-competed by more 
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specialized grazers; or an abiotic cause, being unable to withstand the increasing 

temperatures perhaps due to more intangible traits, seeking more sheltered, browse-

dominated habitat.  

12.6 ADDRESSING THE RESEARCH QUESTIONS 

1) What was the prevailing landscape vegetation cover and aridity like 

in southern Africa between 2.8-0.8 Ma? 
From woodland-dominated landscapes of 2.8 Ma, mixed-mosaic habitats became dominant 

and were available throughout the landscape for the rest of the duration of this temporal 

range. A gradual increase in aridity and grassland availability from 2.8 to 0.8 Ma is 

apparent with a temporary increase in woodland habitats and decrease in aridity occurred c. 

1.7 Ma (predominantly evident from Swartkrans Member 2).  

2) What was the extent and tempo of vegetation change? Do these 

changes relate to known global climatic trends and events (i.e. are 
Antidorcas affected by any of these major climatic changes?) Are there any 

major evolutionary events or dietary shifts seen in the Antidorcas 

lineage (are there obvious turnovers within the Antidorcas lineage)? 
From all of the Antidorcas evidence combined (dietary, dental morphology and aridity 

indicators), vegetation change appears to have occurred gradually, with periods of increased 

variability occurring at differing magnitudes. A marked period of instability is evident c. 

1.7 Ma, during which there was increased habitat heterogeneity, causing Antidorcas to 

display varying lifetime diets and high intra-specific dietary variability.  

The Antidorcas lineage (as defined in the glossary), does experience turnover. Antidorcas 

recki appears to speciate into Antidorcas marsupialis ~1.7 Ma. Caution is exercised before 

inferring climatic catalysts here due to the nature of cave stratigraphy with its inherent 

time-averaging. Moreover, the differential identification of early A. marsupialis from late 

A. recki is not an easily achieved. A. recki appears to co-inhabit alongside A. marsupialis 

and A. bondi until ~ 1 Ma. Character displacement between Antidorcas species is apparent 

throughout this temporal range (see Figure 12.1).  

3) Palaeoecology of the Antidorcas species 

A. bondi is found in greatest abundance in Swartkrans Member 2, which unexpectedly 

shows increased woodland dominance and decreased aridity compared to other members. 

From c. 1.7 Ma (around Swartkrans Member 2), A. bondi displays more individual 

variation within species and more lifetime (seasonal-type) mixed feeding.  Although many 

A. bondi individuals conform to the typical diet of A. bondi as a grazer, many do not. 

Overall, A. bondi is a variable mixed-feeder throughout this temporal range but this dietary 

tendency increases through time. Some individuals are obligate grazers, some obligate 

browsers and others are practicing mixed-feeding throughout their lifetime, likely 

seasonally. A. bondi typically have more variation in their lifetime diet when compared to 

the other fossil Antidorcas species.  Overall, A. bondi presents as a likely seasonally 

migrating species. 

A. recki is predominantly a browsing species but also shows evidence of mixed-feeding, 

with an increase in mixed-feeding tendencies through time.  
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A. marsupialis is a mixed-feeding species throughout with the suggestion of increasing C3 

component of its diet through time. Mixed-feeding in A. marsupialis is typically mixed-

feeding (opportunistically) throughout its lifetime with no consistent difference between 

early years, lifetime diet and end of life diet.  

From their dental remains, no evidence was found to support the Cradle of Humankind 

specimens identified as ‘A. australis’ being a separate species.  

Antidorcas, as generalists appear to be progressively pushed into more mosaic habitats, 

likely by specialist grazing species as grassland habitats become increasingly prevalent 

across the landscape through time.  

4) What can Antidorcas information gained here add to the hominin 

story? 

Antidorcas (as a bioproxy for vegetation change) evidence gained here supports the trend 

for increased aridity through time (via oxygen isotope values and inferred character 

displacement) and the suggestion of environmental change c. 1.9-1.7 Ma, in line with 

terrestrial evidence for climatic change (e.g. speleothem data- Hopley et al. 2007a, b). This 

supports the theories such as environmental variability-hypotheses (Potts 1996; Potts and 

Faith 2015; Maslin et al. 2015) and the influence of climate as an evolutionary driver across 

the Oldowan-Acheulean transition in South Africa.  

Antidorcas is a good bioproxy if the limitations of using a water-independent, mixed-

feeding genus are acknowledged and mitigated for. Its abundance in many hominin-bearing 

deposits is of use in ensuring sufficiently large sample sizes are achievable to yield 

conclusive results. Providing the research questions incorporate what is achievable from 

this mixed-feeding genus, their use as a palaeoenvironmental indicator would also be of 

benefit to inform on hominin contexts elsewhere. 

12.6.1 Assessing the role of climate as an evolutionary driver 
From the Antidorcas evidence researched here, the role of climate as an evolutionary driver 

is dependent on regional and local buffers, the degree of dietary and habitat specialism of 

the taxa under study, and the magnitude and longevity of the climatic event / change. The 

climatic catalyst needs to be sufficiently strong, with consequent prolonged environmental 

instability to initiate sufficient regional and local environmental change capable of 

percolating down to the habitat level. If so, climate is capable of causing selection pressure 

and inducing adaption and evolution upon the faunal communities, Antidorcas and 

hominins alike. From the Antidorcas evidence, the initiation of seasonal diversification 

associated with the onset of the Walker Circulation (c.1.7 Ma) had the most impact, both 

temporarily during its initiation and longer-term as a result of the directional change 

caused. 

12.7 CONCLUSION 

All Antidorcas species have variable mixed–feeding diets during this temporal range 2.8-

0.8 Ma. The underlying trend of gradually increasing aridity is evident but with mosaic 

habitats available throughout. Antidorcas, as a (generalist) flexible feeder is able to shift its 

diet to enable survival during periods of environmental instability, such as is suggested for 
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~ 1.7 Ma and likely pushed into more mosaic habitats by increasing grassland-specialists as 

grassland habitats expand. The onset of the Walker circulation (c. 1.9-7 Ma) causing 

climatic shifts (El Niño and la Niña events) marked an increase in seasonal dietary practice 

for Antidorcas, evidenced via varying lifetime diets. A temporary period of increased 

habitat heterogeneity, as a result of the onset of the Walker circulation and a shift of orbital 

forcing dominated by obliquity periodicity (40kys), is inferred from increased dietary 

variability ~ 1.7 Ma in the Cradle of Humankind. This supports the dietary flexibility 

suggested for hominins capable of withstanding and adapting to regional and local 

environmental variation. However, the larger scale global influence with associated 

environmental instability and enhanced seasonality evident around the Oldowan-Acheulean 

transition creates sufficient habitat change across the landscape to catalyse change.  

FUTURE WORK 
A selection of modern and fossil Antidorcas have been sampled for phytoliths. The analysis 

of which can be combined with the results from this research to produce a more 

comprehensive palaeovegetation picture with direct botanical evidence (if present).   

Knowledge of the migration of African fossil bovids would assist in detangling the seasonal 

resident and, or variable mixed-feeding pattern from evidence of migration, e.g. via a 

combination of stable isotope analysis (adding strontium analysis) with DMTA and 

mesowear. 

Further taxonomic investigation of the Antidorcas genus would be beneficial to establish a 

comprehensive evaluation. Geometric morphometrics of dentition, alongside postcranial 

and horncore material would provide a more holistic taxonomic identity for each species. 

This would enable researchers to better quantify taxonomic differentiation of Antidorcas 

species.  

Further to this, a direct comparison with the ‘A. australis’ specimens considered here with 

Cape specimens would provide more conclusive evidence in regards to the taxonomic 

identity and rank of this proposed species (Hendey and Hendey 1968).  

Finally, to enhance the somewhat muted story obtained from this research, a comparison of 

the same in-depth multi-method research could be conducted using obligate grazers and 

browsers from the same assemblages. They would strengthen the findings here as whilst 

these obligate dietary species may be only intermittently present, when combined with this 

Antidorcas (continuously present but mixed-feeding) signal obtained here, a complete 

palaeoenvironmental picture is achievable. 

 

 

 

 

 



 

440 

 

 

 

REFERENCES 
Acocks, J.P.H., 1953. Veld types of South Africa.  Memoirs of the  Botanical Survey of 

South Africa 28, 1-192.  
Ackermans, N.L., Winkler, D.E., Schulz-Kornas, E., Kaiser, T.M., Müller, D.W., Kircher, 

P.R., Hummel, J., Clauss, M. and Hatt, J.M., 2018. Controlled feeding 
experiments with diets of different abrasiveness reveal slow development of 
mesowear signal in goats (Capra aegagrus hircus). Journal of Experimental 
Biology, jeb-186411. 

Adams, J.W., 2006. Taphonomy and paleoecology of the Gondolin Plio- Pleistocene cave 
site, South Africa. Ph.D. Thesis, Washington University in St. Louis, USA. 

Adams, J.W., 2012a. A revised listing of fossil mammals from the Haasgat cave system ex 
situ deposits (HGD), South Africa. Palaeontologia electronica 15 (3), 1-88. 

Adams, J.W., 2012b. Stable carbon isotope analysis of fauna from the Gondolin GD 2 
fossil assemblage, South Africa. Annals of the Ditsong National Museum of 
Natural History 2(1), pp.1-5.  

Adams, J.W., Conroy, G.C., 2005. Plio-Pleistocene faunal remains from the Gondolin GD 
2 in situ assemblage, North West Province, South Africa. IN: Lieberman, D., 
Smith, R.J., Kelley, J. (Eds.), Interpreting the Past: Essays on Human, Primate 
and Mammal Evolution in Honor of David Pillbeam. Brill Academic Publishers 
Inc., Boston, pp. 243–261.  

Adams, J.W., Herries, A.I., Kuykendall, K.L. and Conroy, G.C., 2007. Taphonomy of a 
South African cave: geological and hydrological influences on the GD 1 fossil 
assemblage at Gondolin, a Plio-Pleistocene paleocave system in the Northwest 
Province, South Africa. Quaternary Science Reviews 26 (19-21), 2526-2543. 

Adams, J.W., Kegley, A.D. and Krigbaum, J., 2013. New faunal stable carbon isotope data 
from the Haasgat HGD assemblage, South Africa, including the first reported 
values for Papio angusticeps and Cercopithecoides haasgati. Journal of human 
evolution 64 (6), 693. 

Adams, J.W., Rovinsky, D.S., Herries, A.I. and Menter, C.G., 2016. Macromammalian 
faunas, biochronology and palaeoecology of the early Pleistocene Main Quarry 
hominin-bearing deposits of the Drimolen Palaeocave System, South Africa. PeerJ  
4, p.e1941. 

Albarède, F., Balter, V., Braga, J., Blichert-Toft, J., Telouk, P. and Trackeray, F., 2006. U-
Pb dating of enamel from the Swartkrans Cave hominid site (South Africa) by 
MC-ICP-MS. Geochimica et Cosmochimica Acta 70, (S1), A7. 

Aldhebiani, A.Y., 2018. Species concept and speciation. Saudi journal of biological 
sciences 25 (3), 437-440. 

Allan, J.K., and Wiggins, W.D., 1993. Appendix I. Conventions for Reporting Isotope 
Data. IN: Dolomite reservoirs: Geochemical techniques for evaluating origin and 
distribution (No. 36). American Association of Petroleum Geologists Dolomite 
Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. 53, 
1–2. Retrieved from 
http://archives.datapages.com/data/specpubs/carbona2/data/a053b/a053/0001/0000
/0001.htm 

Alroy, J., 1996. Constant extinction, constrained diversification, and uncoordinated stasis in 
North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 
127 (1-4), 285-311.  

Ambrose, S.H., 2010. Coevolution of composite-tool technology, constructive memory, and 
language: implications for the evolution of modern human behavior. Current 
Anthropology, 51 (S1), S135-S147. 

Anderson, J. M. (Ed.) 2001. Towards Gondwana Alive, Vol.1 (Assoc. eds; Berger, L., 
deWit, M., Fatti, L.P., Holm, E., Rubidge, B., Smith, G., Thackeray, F. & van 
Wyk, B.). Gondwana Alive Society, Pretoria, 140pp.  

Andrews, P. and Bamford, M., 2008. Past and Present vegetation ecology of Laetoli, 
Tanzania. Journal of Human Evolution 54 (1), 78-98.  



 

441 

 

Antón, S.C., 2003. Natural history of Homo erectus. American Journal of Physical 
Anthropology: The Official Publication of the American Association of Physical 
Anthropologists 122 (S37), 126-170. 

Antón, S.C., Potts, R. and Aiello, L.C., 2014. Evolution of early Homo: an integrated 
biological perspective. Science 345 (6192), 1236828. 

Appleby, M.C., 1980. Social rank and food access in red deer stags. Behaviour 74 (3), 294-
309. 

Archibald, S., Roy, D.P., van Wilgen, B.W. and Scholes, R.J., 2009. What limits fire? An 
examination of drivers of burnt area in Southern Africa. Global Change Biology 
15 (3), 613-630. 

Asfaw, B., White, T., Lovejoy, O., Latimer, B., Simpson, S. and Suwa, G., 1999. 
Australopithecus garhi: a new species of early hominid from Ethiopia. Science 
284 (5414), 629-635. 

Avery, D.M., 2001. The Plio-Pleistocene vegetation and climate of Sterkfontein and 
Swartkrans, South Africa, based on micromammals. Journal of Human Evolution 
41(2),113-132. 

Avery, D.M., Stratford, D.J. and Sénégas, F., 2010. Micromammals and the formation of 
the Name Chamber at Sterkfontein, South Africa. Geobios 43 (4), 379-387. 

Ayliffe, L.K. and Chivas, A.R., 1990. Oxygen isotope composition of the bone phosphate 
of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica 
et Cosmochimica Acta 54 (9), 2603-2609. 

Ayotte, J.B., Parker, K.L., Arocena, J.M. and Gillingham, M.P., 2006. Chemical 
composition of lick soils: functions of soil ingestion by four ungulate species. 
Journal of Mammalogy 87 (5), 878-888. 

Backwell, L.R. and d'Errico, F., 2001. Evidence of termite foraging by Swartkrans early 
hominids. Proceedings of the National Academy of Sciences 98 (4), 1358-1363. 

Backwell, L.R. and D'Errico, F., 2003. Additional evidence on the early hominid bone tools 
from Swartkrans with reference to spatial distribution of lithic and organic 
artefacts: research articles: human origins research in South Africa. South African 
Journal of Science 99 (5-6), 259-267. 

Backwell, L. and d'Errico, F., 2008. Early hominid bone tools from Drimolen, South 
Africa. Journal of Archaeological Science 35 (11), 2880-2894. 

Backwell, L. and d’Errico, F., 2014. Bone tools, paleolithic. In Encyclopedia of Global 
Archaeology. Springer, New York, 950-962. 

Bailey, G., Reynolds, S., & King, G., 2011. Landscapes of human evolution: models and 
methods of tectonic geomorphology and the reconstruction of hominin landscapes. 
Journal of Human Evolution 60 (3), 257-280. 

Baker, G., Jones, L.H.P. and Wardrop, I.D., 1959. Cause of wear in sheeps' 
teeth. Nature 184 (4698), 1583. 

Balasse, M., 2002., Reconstructing diet and environmental history from enamel isotopic 
analysis: time resolution of intra-tooth sequential sampling. International Journal 
of Osteoarchaeology 12 (3), 155-165. 

Balasse, M., Ambrose, S.H., Smith, A.B. and Price, T.D., 2002. The seasonal mobility 
model for prehistoric herders in the south-western Cape of South Africa assessed 
by isotopic analysis of sheep tooth enamel. Journal of Archaeological Science 29 
(9), 917-932. 

Balco, G. and Rovey, C.W., 2010. Absolute chronology for major Pleistocene advances of 
the Laurentide Ice Sheet. Geology 38 (9), 795-798. 

Balter, V., Blichert-Toft, J., Braga, J., Telouk, P., Thackeray, F. and Albarède, F., 2008. U–
Pb dating of fossil enamel from the Swartkrans Pleistocene hominid site, South 
Africa. Earth and Planetary Science Letters 267 (1-2), 236-246. 

Bamford. M. 1999. Pliocene fossil woods from an early hominid cave deposit, Sterkfontein, 
South Africa. South African Journal of Science 95, 231-237.  

Bamford, M.K., 2015. Macrobotanical remains from Wonderwerk Cave (Excavation 1), 
Oldowan to Late Pleistocene (2 Ma to 14 ka BP), South Africa. African 
Archaeological Review 32 (4), 813-838. 

Bamford, M.K., Neumann, F.H., Pereira, L.M., Scott, L., Dirks, P.H.G.M. and Berger, 
L.R., 2010. Botanical remains from a coprolite from the Pleistocene hominin site 
of Malapa, Sterkfontein Valley, South Africa. Palaeontologia Africana 45, 23-28.  

Barnosky, A.D., 1999. Does Evolution Dance to the Red Queen or The Court Jester? 
Journal of Vertebrate Paleontology 19, 31A. 



 

442 

 

Barnosky, A.D., 2001. Distinguishing the Effects of the Red Queen and Court Jester on 
Miocene Mammal Evolution in the Northern Rocky Mountains. Journal of 
Vertebrate Paleontology  21 (1), 172-185. 

Barry, J.C., Johnson, N.M., Raza, S.M. and Jacobs, L.L., 1985. Neogene mammalian faunal 
changes in southern Asia: Correlations with climatic, tectonic, and eustatic events. 
Geology. 13, 637-40.  

Barry, J.C., Flynn, L.J. and Pilbeam, D.R., 1990. Faunal diversity and turnover in a 
Miocene terrestrial sequence. P.381-421. IN: Ross, R.M. and Allmon, W.D. (Eds.) 
Causes of Evolution: A Paleontological Perspective. University of Chicago Press: 
Chicago.  

Barry, J.C., Morgan, M.E., Flynn, L.J., Pilbeam, D., Jacobs, L.L., Lindsay, H., Raza, S.M. 
and Solounais, N., 1995. Patterns of faunal turnover and diversity in the Neogene 
Siwaliks of Northern Pakistan. Palaeogeography, Palaeoclimatology, 
Palaeoecology 115, 209-226.  

Beaudet, A., Dumoncel, J., Thackeray, J.F., Bruxelles, L., Duployer, B., Tenailleau, C., 
Bam, L., Hoffman, J., De Beer, F. and Braga, J., 2016. Upper third molar internal 
structural organization and semicircular canal morphology in Plio-Pleistocene 
South African cercopithecoids. Journal of human evolution 95, 104-120. 

Baumiller, T. K., 1996. Exploring the Pattern of Co-ordinated Stasis: simulations and 
extinction scenarios. Palaeogeography, Palaeoclimatology, Palaeoecology 127, 
135-145. 

Beaumont, P.B., 2011. The edge: more on fire-making by about 1.7 million years at 
Wonderwerk Cave in South Africa. Current anthropology: A world journal of the 
sciences of man 4, 585-595. 

Beaumont, P. B., and J. C. Vogel. 2006. On a timescale for the past million years of human 
history in central South Africa. South African Journal of Science 102, 217–228. 

Beck, R.B., Black, L., Krieger, L.S., Naylor, P.C., Shabaka, D.I., 1999. World History: 
Patterns of Interaction. Evanston, IL: McDougal Littell 

Bednekoff, P.A. and Ritter, R.C., 1997. Adult sex ratio of a wild population of Springbok 
(Antidorcas marsupialis) at Nxai pan, Botswana. South African Journal of Wildlife 
Research-24-month delayed open access 27 (1), 22-24. 

Behrensmeyer, A.K., Western, D. and Boaz, D.E.D., 1979. New perspectives in vertebrate 
paleoecology from a recent bone assemblage. Paleobiology 5 (1), 12-21. 

Behrensmeyer, A.K., Todd, N.E., McBrinn, G.E., 1997. Late Pliocene Fanual Turnover in 
the Turkana Basin. Science 278, 1589-1594.  

Behrensmeyer, A.K., Kidwell, S.M. and Gastaldo, R.A., 2000. Taphonomy and 
paleobiology. Paleobiology 26 (sp4), 103-147. 

Behrensmeyer, A.K., and Bobe, R., 2003. Key issues in the analysis of faunal changes 
across the East African Pliocene. AAPA Abstracts. 64. 

Bell, R.H.V., 1971. A grazing ecosystem in the Serengeti. Sciences Americana 225, 86–93. 
Benefit, B.R. and McCrossin, M.L., 1990. Diet, species diversity and distribution of 

African fossil baboons. Kroeber Anthropological Society Papers 71(72),77-93. 
Bender, M.M., 1968. Mass spectrometric studies of carbon 13 variations in corn and other 

grasses. Radiocarbon 10 (2), 468-472. 
Bender, R., Tobias, P.V., Bender, N., 2012. The Savannah Hypothesis: Origin, Reception 

and Impact on Paleoanthropology. History and Philosophy of the Life Sciences 34 
(1-2), 147-184.  

Bennett, K.D., 1990. Milankovitch cycles and their effects on species in ecological and 
evolutionary time. Paleobiology, 16(01), 11-21 

Bennett, K.D., 1997. Evolution and ecology: the pace of life. Cambridge University Press 
Bennett, K.D., 2004. Continuing the debate on the role of Quaternary environmental 

change for macroevolution. Philosophical Transactions of the Royal Society of 
London. Series B, Biological science. 359 (1442), 295-303.  

Benton, M., 2009. The Red Queen and the Court Jester: Species Diversity and the Role of 
Biotic and Abiotic Factors Through Time. Science 323 (5915), 728-232.  

Berger, J., Cain, S.L. and Berger, K.M., 2006. Connecting the dots: an invariant migration 
corridor links the Holocene to the present. Biology Letters 2 (4), 528-531. 

Berger L.R. 1992. Early hominid fossils discov- ered at Gladysvale Cave, South Africa. 
South African Journal of  Science 88, 362. 

Berger, L.R., Keyser, A.W. and Tobias, P.V., 1993. Gladysvale: first early hominid site 
discovered in South Africa since 1948. American Journal of Physical 
Anthropology 92 (1), 107-111. 



 

443 

 

Berger L.R. and Tobias P.V., 1994. New discoveries at the early hominid site of 
Gladysvale, South Africa. South African Journal of  Science 90, 223–226. 

Berger, L.R., Menter, C.G. and Thackeray, J.F., 1994. The renewal of excavation activities 
at Kromdraai, South Africa. South African Journal of Science 90 (4), 209-210. 

Berger, L.R., Lacruz, R. and De Ruiter, D.J., 2002. Revised age estimates of 
Australopithecus‐bearing deposits at Sterkfontein, South Africa. American 
Journal of Physical Anthropology: The Official Publication of the American 
Association of Physical Anthropologists 119 (2), 192-197. 

Berger, L.R., De Ruiter, D.J., Steininger, C.M. and Hancox, J., 2003. Preliminary results of 
excavations at the newly investigated Coopers D deposit, Gauteng, South Africa: 
preliminary research reports: human origins research in South Africa. South 
African Journal of Science 99 (5-6), 276-278. 

Berger, L.R. and Brink, J., 2007. An Atlas of Southern African Mammalian Fossil Bearing 
Sites–Late Miocene to Late Pleistocene. Online at: www. profleeberger. 
com/files/An_Atlas_of_southern_African_Fossil_ Bearing_Sites. pdf. 

Berger, L.R., de Ruiter, D.J., Churchill, S.E., Schmid, P, Carlson,K.J., Dirks, P.H.G.M. and 
Kibii, J.M., 2010. Australopithecus sediba: A new species of Homo-like 
Australopith from South Africa. Science 328, 195-204.   

Berger, L.R., Hawks, J., de Ruiter, D.J., Churchill, S.E., Schmid, P., Delezene, L.K., Kivell, 
T.L., Garvin, H.M., Williams, S.A., DeSilva, J.M. and Skinner, M.M., 2015a. 
Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South 
Africa. Elife, 4, 1-35. 

Brink, J., Holt, S. and Horwitz, L.K., 2015b. Preliminary findings on macro-faunal 
taxonomy, taphonomy, biochronology and palaeoecology from the basal layers of 
Wonderwerk Cave, South Africa. Dakar: Memoires de lIFAN-CA DIOP, p.93. 

Berger, L.R., Hawks, J., Dirks, P.H., Elliott, M. and Roberts, E.M., 2017. Homo naledi and 
Pleistocene hominin evolution in subequatorial Africa. Elife, 6, p.e24234. 

Berger, W.H. and Jansen, E., 1994. Mid‐pleistocene climate shift‐the Nansen connection. 
The polar oceans and their role in shaping the global environment 85, 295-311. 

Berlioz, É., Kostopoulos, D.S., Blondel, C. and Merceron, G., 2018. Feeding ecology of 
Eucladoceros ctenoides as a proxy to track regional environmental variations in 
Europe during the early Pleistocene. Comptes Rendus Palevol 17 (4-5), 320-332. 

Bernard, A., Daux, V., Lécuyer, C., Brugal, J.P., Genty, D., Wainer, K., Gardien, V., 
Fourel, F. and Jaubert, J., 2009. Pleistocene seasonal temperature variations 
recorded in the δ18O of Bison priscus teeth. Earth and Planetary Science Letters 
283 (1-4), 133-143. 

Bibi, F., 2013. A multi-calibrated mitochondrial phylogeny of extant Bovidae 
(Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. 
BMC Evolutionary Biology 13(1),166. 

Bibi, F., 2014. Assembling the ruminant tree: combining morphology, molecules, extant 
taxa, and fossils. Zitteliana, 197-211. 

Bibi, F., & Kiessling, W., 2015. Continuous evolutionary change in the Plio-Pleistocene 
mammals of eastern Africa. Proceedings of the National Academy of Sciences 112 
(34), 10623-10628. 

Bibi, F., Pante, M., Souron, A., Stewart, K., Varela, S., Werdelin, L., Boisserie, J.R., 
Fortelius, M., Hlusko, L., Njau, J. and de la Torre, I., 2018. Paleoecology of the 
Serengeti during the Oldowan-Acheulean transition at Olduvai Gorge, Tanzania: 
The mammal and fish evidence. Journal of human evolution 120, 48-75. 

Bigalke, R. C. 1970. Observations of springbok populations. Zoologica Africana 5, 59–70.   
Bigalke, R. C. 1972. Observations on the behaviour and feeding habits of the 

springbok Antidorcas marsupialis. Zoologica Africana 7, 333–359. 
Bignon-lau, O., Catz, N., Berlioz, E., Veiberg, V., Strand, O. and Merceron, G., 2017. 

Dental microwear textural analyses to track feeding ecology of reindeer: a 
comparison of two contrasting populations in Norway. Mammal Research 62 (1), 
111-120. 

Blois, J.L., Zarnetske, P.L., Fitzpatrick, M.C. and Finnegan, S., 2013. Climate change and 
the past, present, and future of biotic interactions. Science 341 (6145), 499-504. 

Bloom, A.J. and Troughton, J.H., 1979. High productivity and photosynthetic flexibility in 
a CAM plant. Oecologia 38 (1), 35-43. 

Blondel, C.,Merceron, G., Andossa, L., Taisso, M.H., Vignaud, P. and Brunet, M., 2010. 
Dental Mesowear Analysis of the Late Miocene Bovidae from Toros-Menalla 
(Chad) and Early Hominid Habitats in Central Africa. Palaeogeography, 
Palaeoclimatology, Palaeoecology. 292, 184-191.  



 

444 

 

Blondel, C., Rowan, J., Merceron, G., Bibi, F., Negash, E., Barr, W.A. and Boisserie, J.R., 
2018. Feeding ecology of Tragelaphini (Bovidae) from the Shungura Formation, 
Omo Valley, Ethiopia: Contribution of dental wear analyses. Palaeogeography, 
Palaeoclimatology, Palaeoecology 496, 103-120. 

Blumenthal, S.A., Levin, N.E., Brown, F.H., Brugal, J-P., Chritz, K.L., Harris, J.M., Jehle, 
G.E., and Cerling, T.E., 2017. Scott A. Blumenthal, Aridity and hominin 
environments. PNAS. 114 (28), 7331-7336. 

Bobe, R. and Behrensmeyer, A.K., 2004. The expansion of grassland ecosystems in Africa 
in relation to mammalian evolution and the origin of the genus Homo. 
Palaeogeography, Palaeoclimatology, Palaeoecology 207 (3-4),399-420. 

Bobe, R., 2006. The evolution of arid ecosystems in eastern Africa. Journal of Arid 
Environments. 66, 564-584.  

Bobe, R., Behrensmeyer, A.K. and Chapman, R.E., 2002. Faunal change, environmental 
variability and late Pliocene hominin evolution. Journal of human evolution 42 
(4), 475-497. 

Bobe, R., and Behrensmeyer, A.K., 2004. The expansion of grassland ecosystems in Africa 
in relation to mammalian evolution and the origin of the genus Homo. 
Palaeogeography, Palaeoclimatology, Palaeoecology. 207, 399-420.  

Bobe, R., & Eck, G.G., 2001. Responses of African Bovids to Pliocene Climatic Change. 
Paleobiology 27 (2), 1-48.  

Bobe, R., Behrensmeyer, A.K., and Chapman, R.E., 2002. Faunal change, environmental 
variability and late Pliocene hominin evolution. Journal of Human Evolution. 42, 
475-495.  

Bocherens, H., Koch, P.L., Mariotti, A., Geraads, D. and Jaeger, J.J., 1996. Isotopic 
biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene 
hominid sites. Palaios 11, 306-318. 

Bolnick, D.I., Svanbäck, R., Fordyce, J.A., Yang, L.H., Davis, J.M., Hulsey, C.D. and 
Forister, M.L., 2002. The ecology of individuals: incidence and implications of 
individual specialization. The American Naturalist 161 (1), 1-28. 

Bolnick, D.I., Svanbäck, R., Araújo, M.S. and Persson, L., 2007. Comparative support for 
the niche variation hypothesis that more generalized populations also are more 
heterogeneous. Proceedings of the National Academy of Sciences 104 (24), 10075-
10079. 

Bolton, C.T., Gibbs, S.J. and Wilson, P.A., 2010. Evolution of nutricline dynamics in the 
equatorial Pacific during the late Pliocene. Paleoceanography 25(1) PA1207, 
doi.org/10.1029/2009PA001821. 

Bond, W.J., Midgley, G.F., Woodward, F.I., Hoffman, M.T. and Cowling, R.M., 2003. 
What controls South African vegetation—climate or fire?. South African Journal 
of Botany 69 (1), 79-91. 

Bond, W.J. and Midgley, G.F., 2012. Carbon dioxide and the uneasy interactions of trees 
and savannah grasses. Phil. Trans. R. Soc. B 367 (1588), 601-612. 

Bond, W.J., Woodward, F.I. and Midgley, G.F., 2005. The global distribution of 
ecosystems in a world without fire. New phytologist 165 (2), 525-538. 

Boom, A., Carr, A.S., Chase, B.M., Grimes, H.L. and Meadows, M.E., 2014. Leaf wax n-
alkanes and δ13C values of CAM plants from arid southwest Africa. Organic 
Geochemistry 67, 99-102. 

Bountalis, A.C. and Kuhn, B.F., 2014. Cave usage by multiple taphonomic agents: issues 
towards interpreting the fossil bearing cave deposits in South Africa. American 
Journal of Zoological Research 2 (4), 55-61. 

Braga, J., Thackeray, J.F., Dumoncel, J., Descouens, D., Bruxelles, L., Loubes, J.M., Kahn, 
J.L., Stampanoni, M., Bam, L., Hoffman, J. and de Beer, F., 2013. A new partial 
temporal bone of a juvenile hominin from the site of Kromdraai B (South 
Africa). Journal of human evolution 65 (4), 447-456. 

Braga, J., Dumoncel, J., Duployer, B., Tenailleau, C., de Beer, F. and Thackeray, J.F., 
2016a. The Kromdraai hominins revisited with an updated portrayal of differences 
between Australopithecus africanus and Paranthropus robustus. In Kromdraai. A 
birthplace of Paranthropus in the cradle of humankind (pp. 49-68). Sun Press 
Johannesburg. 

Braga, J., Fourvel, J.B., Lans, B., Bruxelles, L. and Thackeray, J.F., 2016b. Evolutionary, 
chrono-cultural and palaeoenvironmental backgrounds to the Kromdraai site: A 
regional perspective. Kromdraai: A Birthplace of Paranthropus in the Cradle of 
Humankind, p.1. 



 

445 

 

 Braga, J., Thackeray, J.F., Bruxelles, L., Dumoncel, J. and Fourvel, J.B., 2017. Stretching 
the time span of hominin evolution at Kromdraai (Gauteng, South Africa): Recent 
discoveries. Comptes Rendus Palevol 16 (1) 58-70. 

Braga, J. and Thackeray, J.F., 2018. A book regarding Kromdraai: Comments on Herries 
(2018). South African Journal of Science 114(3-4), 1-2. 

Brain, C.K., 1958. The Transvaal ape-man-bearing cave deposits. Transvaal Museum 
Memoir No. 11. Pretoria: Transvaal Museum. 

Brain, C.K., 1981. The evolution of Man in Africa: Was it a consequence of Cainozoic 
cooling? Annals of the Geological Society of South Africa 84: 1-19.  

Brain, C.K., 1982. The Swartkrans Site: Stratigraphy of the Fossil Hominds and a 
Reconstruction of the Environment of Early Homo. IN: Proceedings of the 1st 
International Congress on Human Palaeontology, Nice. Volume 2. P. 676-706.  

Brain, C.K., 1983. The hunters or the hunted? an introduction to African cave taphonomy. 
University of Chicago Press, Chicago.  

Brain, C.K., 1993a. Structure and stratigraphy of the Swartkrans Cave in the light of the 
new excavations. Swartkrans: A cave’s chronicle of early man. Transvaal Museum 
Monograph (8) Pretoria, p.23-34. 

Brain, C.K., 1993b. A taphonomic overview of the Swartkrans fossil assemblages. 
Swartkrans: A Cave’s Chronicle of Early Man. Transvaal Museum, Pretoria, 
p.257-264. 

Brain, C.K., 1993c. The occurrence of burnt bones at Swartkrans and their implications for 
the control of fire by early hominids. Swartkrans: A cave’s chronicle of early man, 
p.229-242. 

Brain, C.K., 1995. The Influence of Climatic changes on the Completeness of the early 
Hominid Record in Southern African Caves, with Particular Reference to 
Swartkrans. IN: Vrba, E.S., Denton, G. H., Partridge, T.C., & Burckle, L. H. 
(eds.). Paleoclimate and Evolution with emphasis on human origins. Yale 
University Press: New Haven. P.451-458. 

Brain, V., CK, C., Clark, J.D., Grine, F.F., Shipman, P., Susman, R.L. and Turner, A., 
1988. New evidence of early hominids, their culture and environment from the 
Swartkrans cave, South Africa. South African Journal of Science 84 (10), 828. 

Brain, C.K. and Shipman, P., 1993. The Swartkrans bone tools. IN: Brain, C.K. (ed.), 
Swartkrans: A Cave’s Chronicle of Early Man. Transvaal Museum Monograph 
No. 8. Pretoria: Transvaal Museum, p. 195–215. 

Brain, C.K. and Sillent, A., 1988. Evidence from the Swartkrans cave for the earliest use of 
fire. Nature 336 (6198), 464. 

Brain, C.K., and Watson, V.A., 1992.  guide to the Swartkrans early hominid cave site. 
Annals of the Transvaal Museum. 35 (25), 343-365.  

Breci, L., 2017. Mass Spectrometry. Chemistry LibreTexts.  At: 
https://chem.libretexts.org/Textbook_Maps/Analytical_Chemistry/Supplemental_
Modules_(Analytical_Chemistry)/Instrumental_Analysis/Mass_Spectrometry/Mas
s_Spec [accessed 05/09/2018]. 

Brett, C.E. and Baird, G.C., 1995. Coordinated stasis and evolutionary ecology of Silurian 
to Middle Devonian faunas in the Appalachian Basin.New approaches to 
speciation in the fossil record. Columbia University Press, New York, pp.285-315. 

Brink, J.S., 1987. The archaeozoology of Florisbad, Orange Free State (Doctoral 
dissertation). Stellenbosch: Stellenbosch University. 

Brink, J.S., 2005. The evolution of the black wildebeest, Connochaetes gnou, and modern 
large mammal faunas in central Southern Africa (Doctoral dissertation), 
Stellenbosch: University of Stellenbosch. 

Brink, J.S., 2016. Faunal evidence for Mid-and Late Quaternary environmental change in 
southern Africa. Quaternary environmental change in Southern Africa: Physical 
and human dimensions. Cambridge University Press: Cambridge. 

Brink, J.S. and Lee-Thorp, J.A., 1992 The feeding niche of an extinct springbok, 
Antidorcas bondi (Antelopini, Bovidae), and its palaeoenvironmental meaning. 
South African Journal of Science. 88, 227-229.  

Brink, J.S., Herries, A.I., Moggi-Cecchi, J., Gowlett, J.A., Bousman, C.B., Hancox, J.P., 
Grün, R., Eisenmann, V., Adams, J.W. and Rossouw, L., 2012. First hominine 
remains from a∼ 1.0 million year old bone bed at Cornelia-Uitzoek, Free State 
Province, South Africa. Journal of Human Evolution 63 (3), 527-535. 

Brink, J., Holt, S. and Horwitz, L.K., 2015. Preliminary findings on macro-faunal 
taxonomy, taphonomy, biochronology and palaeoecology from the basal layers of 
Wonderwerk Cave, South Africa. Dakar: Memoires de lIFAN-CA DIOP, p.93. 



 

446 

 

Brink, J., Holt, S. and Horwitz, L.K., 2016. The Oldowan and early Acheulean mammalian 
fauna of Wonderwerk cave (Northern Cape Province, South Africa). African 
Archaeological Review 33 (3), 223-250. 

Brook, G.A., Scott, L., Railsback, L.B. and Goddard, E.A., 2010. A 35 ka pollen and 
isotope record of environmental change along the southern margin of the Kalahari 
from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. 
Journal of Arid Environments 74 (7), 870-884. 

Brook, G.A., Railsback, L.B., Scott, L., Voarintsoa, N.R.G. and Liang, F., 2015. Late 
Holocene stalagmite and tufa climate records for Wonderwerk Cave: Relationships 
between archaeology and climate in southern Africa. African Archaeological 
Review 32 (4), 669-700. 

Broom, R., 1936. New fossil anthropoid skull from South Africa. Nature 138, 486-488.  
Broom, R., 1938a. The Pleistocene anthropoid apes of South Africa. Nature 142, 377-379. 
Broom, R., 1938b.1938b Further evidence on the structure of the South African Pleistocene 

anthropoids. Nature 142 (3603), 897. 
Broom, R., 1942. The hand of the ape-man, Paranthropus robustus. Nature 149, 513-514. 
Broom, R., 1943. An ankle-bone of the ape-man, Paranthropus robustus. Nature 152 

(3867), 689. 
Broom, R., 1949. Another new type of fossil ape-man. Nature 163 (4132), 57. 
Broom, R. and Robinson, J.T., 1949. A new type of fossil man. Nature 164 (4164), 322. 
Broom, R., Robinson, J.T. & Schepers, G.W.H. 1950. Sterkfontein ape-man 

Plesianthropus. Transvaal Museum Memoir 4. Transvaal Museum, Pretoria. 
Broom, R., Robinson, J.T., 1952. Swartkrans Ape-Man, Paranthropus crassidens. Transvaal 

Museum Memoir No. 6. Pretoria: Transvaal Museum 
Broom, R., Schepers, G.W.H. and Schepers, G.W.H., 1946. The South African fossil ape-

men: the Australopithecinae (No. 2). Pretoria: Transvaal Museum.  
Brophy, J.K., 2011. Reconstructing the habitat mosaic associated with Australopithecus 

robustus: evidence from quantitative morphological analysis of bovid teeth 
Doctoral dissertation, Texas A&M University. 

Brophy, J.K., de Ruiter, D.J., Athreya, S. and DeWitt, T.J., 2014. Quantitative 
morphological analysis of bovid teeth and implications for paleoenvironmental 
reconstruction of Plovers Lake, Gauteng Province, South Africa. Journal of 
Archaeological Science 41, 376-388. 

Brown, A.J.V. and Verhagen, B.T., 1985. Two Antidorcas bondi individuals from the Late 
Stone Age site of Kruger Cave 35/83, Olifantsnek, Rustenburg District, South 
Africa. South African journal of science, 81(2). 

Brown, F.H. and Feibel, C.S., 1991. Stratigraphy, depositional environments and 
palaeogeography of the Koobi Fora Formation. Koobi Fora research project 3, 1-
30. 

Brugal, Roche H., and KibunkiaM., 2003. Faunes et paleoenvironments des principaux site 
archeoologiques plio-pleistocenes de la formation de Nachukui (Ouest-Turkana, 
Kenya. Comptes Rendus-Palevol 2 (8), 675-684. 

Bruxelles, L., Maire, R., Couzens, R., Thackeray, J.F. and Braga, J., 2016. A revised 
stratigraphy of Kromdraai”. IN: Braga, J. and Thackeray, J.F. (Eds.), “Kromdraai. 
A Birthplace of Paranthropus in the Cradle of Humankind” p. 31-47 
[DOI:10.18820/9781928355076]. 

Bruxelles, L., Maire, R., Beaudet, A., Couzens, R., Duranthon, F., Fourvel, J.B., Stratford, 
D., Thackeray, F. and Braga, J., 2018. The revised stratigraphy of the hominin-
bearing site of Kromdraai (Gauteng, South Africa) and associated perspectives. 
Journal of human evolution 114, 1-19. RETRACTED. 

Bryant, J.D., Froelich, P.N., Showers, W.J., Genna, B.J., 1996. A tale of two quarries: 
biologic and taphonomic signatures in the oxygen isotope composition of tooth 
enamel phosphate from modern and Miocene equids. Palaios 11 (4), 397-408.  

Burger, J., Safina, C. and Gochfeld, M., 2000. Factors affecting vigilance in springbok: 
importance of vegetative cover, location in herd, and herd size. Acta ethologica 2 
(2), 97-104. 

Butler, P.M., 1952, February. The milk‐molars of Perissodactyla, with remarks on molar 
occlusion. In Proceedings of the zoological Society of London (Vol. 121, No. 4, p. 
777-817). Oxford, UK: Blackwell Publishing Ltd. 

Cain III, J.W., Krausman, P.R. and Germaine, H.L., 2004. Antidorcas 
marsupialis. Mammalian Species 753, 1-7. 



 

447 

 

Calandra, I., Schulz, E., Pinnow, M., Krohn, S. and Kaiser, t.M., 2012. Teasing apart the 
contributions of hard dietary items on 3D dental microtextures in primates. 
Journal of Human Evolution. 63, 85-98.  

Caley, T., Extier, T., Collins, J.A., Schefuß, E., Dupont, L., Malaizé, B., Rossignol, L., 
Souron, A., McClymont, E.L., Jimenez-Espejo, F.J. and García-Comas, C., 2018. 
A two-million-year-long hydroclimatic context for hominin evolution in 
southeastern Africa. Nature, 1 [doi:10.1038/s41586-018-0309-6]. 

Campisano, C.J. and Feibel, C.S., 2007. Connecting local environmental sequences to 
global climate patterns: evidence from the hominin-bearing Hadar Formation, 
Ethiopia. Journal of Human Evolution 53 (5), 515-527. 

Carr, A.S., Chase, B.M., Boom, A. and Medina-Sanchez, J., 2016. Stable isotope analyses 
of rock hyrax faecal pellets, hyraceum and associated vegetation in southern 
Africa: Implications for dietary ecology and palaeoenvironmental reconstructions. 
Journal of Arid Environments 134, 33-48. 

Caruana, M.V., 2017. Lithic Production Strategies in the Oldowan Assemblages from 
Sterkfontein Member 5 and Swartkrans Member 1, Gauteng Province, South 
Africa. Journal of African Archaeology 15 (1),1-19. 

Castelló, J.R., 2016. Bovids of the world: antelopes, gazelles, cattle, goats, sheep, and 
relatives. Princeton University Press. 

Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V. and 
Ehleringer, J.R., 1997. Global vegetation change through the Miocene/Pliocene 
boundary. Nature 389 (6647), 153. 

Cerling, T.E. and Harris, J.M., 1999. Carbon isotope fractionation between diet and 
bioapatite in ungulate mammals and implications for ecological and 
paleoecological studies. Oecologia 120 (3), 347-363. 

Cerling, T.E., Harris, J.M. and Passey, B.H., 2003. Diets of East African Bovidae based on 
stable isotope analysis. Journal of Mammalogy 84 (2), 456-470. 

Cerling, T.E., Wynn, J.G., Andanje, S.A., Bird, M.I., Korir, D.K., Levin, N.E., Mace, W., 
Macharia, A.N., Quade, J. and Remien, C.H., 2011. Woody cover and hominin 
environments in the past 6 million years. Nature 476 (7358), 51. 

Charles‐Dominique, T., Midgley, G.F. and Bond, W.J., 2017. Fire frequency filters 
species by bark traits in a savanna–forest mosaic. Journal of Vegetation Science 28 
(4), 728-735. 

Chase, B.M. and Meadows, M.E., 2007. Late Quaternary dynamics of southern Africa's 
winter rainfall zone. Earth-Science Reviews 84 (3-4), 103-138. 

Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., Avery, M., Sumner, 
A. and Horwitz, L.K., 2008. Radiometric dating of the Earlier Stone Age sequence 
in excavation I at Wonderwerk Cave, South Africa: preliminary results. Journal of 
Human Evolution 55(1), 1-11. 

Chazan M., Avery M. D., Bamford M. K., Berna F., Brink J., Fernandez-Jalvo Y., 
Goldberg P., Holt S., Matmon A., Porat N., Ron H., Rossouw L., Scott L., Horwitz 
L.K., 2012, The Oldowan Horizon in Wonderwerk Cave (South Africa): 
Archaeological, Geological, Paleontological and Paleoclimatic Evidence, Journal 
of Human Evolution 63, 6, 859-866. 

Chritz, K.L., Blumenthal, S.A., Cerling, T.E. and Klingel, H., 2016. Hippopotamus (H. 
amphibius) diet change indicates herbaceous plant encroachment following 
megaherbivore population collapse. Scientific reports 6, 32807. 

Churcher, C.S., Watson, V., 1993. Additional fossil Equidae from Swartkrans. IN: Brain, 
C.K. (Ed.), Swartkrans: A Cave's Chronicle of Early Man. Transvaal Museum 
Monograph No. 8. Transvaal Museum, Pretoria, p. 137–150 

Cillié, B., 2004. The Mammal Guide of southern Africa. Second edition. Briza Publications: 
Pretoria.  

Clark, J.D. 1993. Stone artefact assemblages from Members 1–3, Swartkrans Cave. IN: 
Brain, C.K. (ed.), Swartkrans: A Cave’s Chronicle of Early Man. Transvaal 
Museum Monograph No. 8. Pretoria: Transvaal Museum, p. 167–194. 

Clark, J. D. 1994. The Acheulian industrial complex in Africa and elsewhere. IN: R. S. 
Corruccini, R. L. Ciochon, & F. C. Howell (Eds.). Integrative paths to the past: 
Paleoanthropological advances in honor of F. Clark Howell Englewood Cliffs. 
Prentice-Hall, 451-469. 

Clark, J.D., 1999. Cultural continuity and change in hominid behaviour in Africa during the 
Middle to Upper Pleistocene transition. Hominid evolution: Lifestyles and survival 
strategies, 277-292. 



 

448 

 

Clark, J.D., 2001. Variability in primary and secondary technologies of the Later Acheulian 
in Africa. A very remote period indeed: papers on the palaeolithic presented to 
Derek Roe. Oxbow Books, Oxford, 1-18. 

Clarke, R.J., 1985. Australopithecus and early Homo in southern Africa. IN: E. Delson 
(Ed.), Ancestors: the Hard Evidence, Alan R. Liss, New York (1985), p. 171-
17Clarke, J.D., 1993. Stone artefact assemblages from Members 1–3, Swartkrans 
Cave. IN: Brain, C.K. (Ed.), A Cave's Chronicle of Early Man. Transvaal Museum 
Monograph, Pretoria, 167–194. 

Clarke, R.J., 1994. On some new interpretations of Sterkfontein stratigraphy. South African 
Journal of Science 90 (4), 211-214.  

Clarke, R.J., 2006. A deeper understanding of the stratigraphy of Sterkfontein fossil 
horninid site. Transactions of the Royal Society of South Africa 61 (2), 111-120. 

Clarke, R.J., 2012. A Homo habilis maxilla and other newly-discovered hominid fossils 
from Olduvai Gorge, Tanzania. Journal of human evolution 63 (2), 418-428. 

Clarke, R., 2013. Australopithecus from Sterkfontein Caves, South Africa. In The 
paleobiology of Australopithecus. Springer, Dordrecht. p. 105-123. 

Clarke, R.J., 2017. Homo habilis: the inside story. In Proceedings of the II Meeting of 
African Prehistory: Burgos 15-16 April, 2015. Actas de las II Jornadas de 
Prehistoria Africana, 23-51. 

Clarke, R.J., Howell, F.C. and Brain, C.K., 1970. New Finds at the Swartkrans 
Australopithecine Site (contd): More Evidence of an Advanced Hominid at 
Swartkrans. Nature 225 (5239), 1219. 

Clarke, R.J. and Howell, F.C., 1972. Affinities of the Swartkrans 847 hominid cranium. 
American Journal of Physical Anthropology 37 (3), 319-335. 

CLIMAP Project Members, 1976. The surface of the ice-age earth. Science, 1131-1137. 
Codron, D., 2006. The ecological and evolutionary significance of browsing and grazing in 

savanna ungulates Doctoral dissertation, University of Cape Town. 
Codron, D., Brink, J.S., Rossouw, L., Clauss, M., Codron, J., Lee-Thorp, J.A. and 

Sponheimer, M., 2008a. Functional differentiation of African grazing ruminants: 
an example of specialized adaptations to very small changes in diet. Biological 
Journal of the Linnean Society 94 (4), 755-764. 

Codron, D., Brink, J.S., Rossouw, L. and Clauss, M., 2008b. The evolution of ecological 
specialization in southern African ungulates: competition‐or physical 
environmental turnover? Oikos, 117 (3), pp.344-353. 

Codron, J., Codron, D., Lee-Thorp, J.A., Sponheimer, M., Bond, W.J., de Ruiter, D. and 
Grant, R., 2005. Taxonomic, anatomical, and spatio-temporal variations in the 
stable carbon and nitrogen isotopic compositions of plants from an African 
savanna. Journal of Archaeological Science 32 (12), 1757-1772. 

Codron, D., Codron, J., Lee-Thorp, J.A., Sponheimer, M., de Ruiter, D. and Brink, J.S., 
2007. Stable isotope characterization of mammalian predator–prey relationships in 
a South African savanna. European Journal of Wildlife Research 53(3), 161-170. 

Cohen, K.M. and Gibbard, P.L., 2010. Global chronostratigraphical correlation table for the 
last 2.7 million years. Subcommission on Quaternary Stratigraphy, International 
Commission on Stratigraphy, Cambridge, England. 

Colinvaux, P., 1986. Ecology. Wiley: New York.  
Cooke, H.B.S., 1946. The development of the Vaal River and its deposits. Transactions of 

the geological society of South Africa 49, 243-259.  
Cooke, H.B.S., 1963. Pleistocene mammal faunas of Africa, with particular reference to 

southern Africa. African ecology and human evolution 36, 65-116. 
Cooke, H.B.S., 1974. The fossil mammals of Cornelia, OFS, South Africa. Butzer, KW. 
Cooke, H.B.S.,1991. Dinofelis barlowi (Mammalia, Carnivora, Felidae) cranial material 

from Bolt’s Farm, collected by the University of California African Expedition. 
Palaeontologia Africana 28, 9–21 

Cooke, H.B.S. 1996. Sexual dimorphism in Antidorcas recki from Bolt’s Farm, South 
Africa, in the University of California collections. Palaeoecology and 
palaeoenvironments of Late Cenozoic mammals. University of Toronto Press, 
Toronto 537-553.  

Cooke, H.B.S. and Wells, L.H., 1951. Fossil remains from Chelmer, near Bulawayo, 
Southern Rhodesia. South African Journal of Science 47 (7), 205-9. 

Copeland, S.R., Sponheimer, M., Spinage, C.A., Lee‐Thorp, J.A., Codron, D. and Reed, 
K.E., 2009. Stable isotope evidence for impala Aepyceros melampus diets at 
Akagera National Park, Rwanda. African journal of ecology 47 (4), 490-501. 



 

449 

 

Côté SD (2000) Determining social rank in ungulates: a comparison of aggressive 
interactions recorded at a bait site and under natural conditions. Ethology 106, 
945–955. 

Coward, F., 2015. Becoming Human. IN: The Oxford Handbook of Archaeological Theory, 
Chapter 3.1, 57 pages.  

Coward, F., 2016. Scaling up: material culture as scaffold for the social brain. Quaternary 
International 405, 78-90. 

Coward, F. and Grove, M., 2011. Special Issue: Innovation and the Evolution of Human 
Behavior Beyond the Tools: Social Innovation and Hominin Evolution. 
PaleoAnthropology 111,129. 

Cowling, R.M. and Lombard, A.T., 2002. Heterogeneity, speciation/extinction history and 
climate: explaining regional plant diversity patterns in the Cape Floristic Region. 
Diversity and Distributions 8 (3),163-179. 

Croft, D.A. and Weinstein, D., 2008. The first application of the mesowear method to 
endemic South American ungulates (Notoungulata). Palaeogeography, 
Palaeoclimatology, Palaeoecology 269 (1-2), 103-114. 

Cronquist, A., 1978. Once again, what is a species? Biosystematics in agriculture. I/N: 
Beltsville Symposia in Agr. Res. (Vol. 2), p. 3-20. 

Cruz-Uribe, K., 1991. Distinguishing hyena from hominid bone accumulations. Journal of 
Field Archaeology 18 (4), 467-486. 

Curnoe, D., Grün, R., Taylor, L. and Thackeray, F., 2001. Direct ESR dating of a Pliocene 
hominin from Swartkrans. Journal of Human Evolution 40 (5), 379-391. 

Curnoe, D. and Tobias, P.V., 2006. Description, new reconstruction, comparative anatomy, 
and classification of the Sterkfontein Stw 53 cranium, with discussions about the 
taxonomy of other southern African early Homo remains. Journal of Human 
Evolution 50 (1), 36-77. 

Curnoe, D., 2010. A review of early Homo in southern Africa focusing on cranial, 
mandibular and dental remains, with the description of a new species (Homo 
gautengensis sp. nov.). HOMO-Journal of Comparative Human Biology 61 (3), 
151-177. 

Cuthbert, M.O., and Ashley, G.M., 2014. A spring forward for hominin evolution in East 
Africa. PloS one 9 (9), e107358. 

Gleeson, T., Reynolds, S.C., Bennett, M.R., Newton, A.C., McCormack, C.J. and Ashley, 
G.M., 2017. Modelling the role of groundwater hydro-refugia in East African 
hominin evolution and dispersal. Nature communications 8, 15696. 

Damsté, J.S.S., Verschuren, D., Ossebaar, J., Blokker, J., van Houten, R., van der Meer, 
M.T., Plessen, B. and Schouten, S., 2011. A 25,000-year record of climate-induced 
changes in lowland vegetation of eastern equatorial Africa revealed by the stable 
carbon-isotopic composition of fossil plant leaf waxes. Earth and Planetary 
Science Letters 302 (1-2), 236-246. 

Damuth, J. and Janis, C.M., 2011. On the relationship between hypsodonty and feeding 
ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews 
86(3), 733-758. 

Danowitz, M., Hou, S., Mihlbachler, M., Hastings, V. and Solounias, N., 2016. A 
combined-mesowear analysis of late Miocene giraffids from North Chinese and 
Greek localities of the Pikermian Biome. Palaeogeography, Palaeoclimatology, 
Palaeoecology 449, 194-204. 

Dart, R.A., 1925. Australopithecus africanus: the man-ape of South Africa. Nature 115, 
195-199.  

Darwin, C., 1871. The Descent of Man and Selection in Relation to Sex. London: John 
Murray.  

Darwin, C., 1874. The descent of Man, and Selection in Relation to Sex. (2nd edition). D. 
Appleton & Company: New York.  

Darwin, C., 1859. On the origins of species by means of natural selection. London: Murray, 
247, p.1859. 

David, J.H.M., 1978. Observations on social organization of springbok, Antidorcas 
marsupialis, in the Bontebok National Park, Swellendam. African Zoology 13 (1), 
115-122. 

Davies, R.A.G. and Skinner, J.D., 1986. Temporal activity patterns of springbok Antidorcas 
marsupialis and merino sheep Ovis aries during a Karoo drought. Transactions of 
the Royal Society of South Africa 46(2), 133-147. 



 

450 

 

Davies, R.A.G., Botha, P. and Skinner, J.D., 1986. Diet selected by springbok Antidorcas 
marsupialis and merino sheep Ovis aries during Karoo drought. Transactions of 
the Royal Society of South Africa 46 (2), 165-176. 

Davis, M. and Pineda‐Munoz, S., 2016. The temporal scale of diet and dietary proxies. 
Ecology and evolution 6 (6), 1883-1897. 

Dawson, C. and Woodward, A.S., 1913. On the discovery of a Palaeolithic human skull and 
mandible in a flint-bearing gravel overlying the Wealden (Hastings Beds) at 
Piltdown, Fletching (Sussex). Quarterly journal of the geological society 69 (1-4), 
117-123. 

Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer, P.H. and Tu, K.P., 2002. Stable 
isotopes in plant ecology. Annual review of ecology and systematics 33 (1), 507-
559. 

Deino, A.L., 2011. 40 Ar/39 Ar dating of Laetoli, Tanzania. IN: Harrison, T.,  Paleontology 
and geology of Laetoli: Human evolution in context. Springer, Dordrecht, 77-97. 

Deino, A.L., Kingston, J.D., Glen, J.M., Edgar, R.K. and Hill, A., 2006. Precessional 
forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central 
Kenya Rift,  

Delson, E., 1984. Cercopithecid biochronology of the African Plio-Pleistocene: correlation 
among eastern and southern hominid-bearing localities. Courier 
Forschungsinstitut Senckenberg, 69, 199-218. 

Delson, E., 1988. Chronology of South African australopith site units. Evolutionary history 
of the ‘robust’australopithecines. New York, Adline de Gruyter Press, p. 317-324. 

Delson, E., and Dean, E. 1992. Are Papio baringensis R. Leakey, 1969, and P. 
quadratirostris Iwamoto, 1982, species of Papio or Theropithecus? IN: Jablonski, 
N. (Ed.), Theropithecus, the rise and fall of a primate genus. Cambridge University 
Press, p. 125-156. 

Deino, A.L., Kingston, J.D., Glen, J.M., Edgar, R.K. and Hill, A., 2006. Precessional 
forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central 
Kenya Rift, and calibration of the Gauss/Matuyama boundary. Earth and 
Planetary Science Letters 247 (1-2), 41-60. 

Dembo, M., Radovčić, D., Garvin, H.M., Laird, M.F., Schroeder, L., Scott, J.E., Brophy, J., 
Ackermann, R.R., Musiba, C.M., de Ruiter, D.J. and Mooers, A.Ø., 2016. The 
evolutionary relationships and age of Homo naledi: An assessment using dated 
Bayesian phylogenetic methods. Journal of Human Evolution 97, 17-26. 

de la Torre, I., Albert, R.M., Macphail, R., McHenry, L.J., Pante, M.C., Rodríguez-Cintas, 
Á., Stanistreet, I.G. and Stollhofen, H., 2018. The contexts and early Acheulean 
archaeology of the EF-HR paleo-landscape (Olduvai Gorge, Tanzania). Journal of 
human evolution 120, 274-297. 

De Menocal, P. B., 1995. Plio-Pleistocene African Climate. Science 270, 53-58.  
De Menocal, P.B., & Bloemendal, J., 1995. Plio-Pleistocene Climatic Variability in 

Subtropical Africa and the Paleoenvironment of Hominid Evolution: A Combined 
Data-Model Approach. IN: Vrba, E.S., Denton, G.H., Partridge, T.C., & Burckle, 
L.H., (eds.) Paleoclimate and Evolution with emphasis on human origins. Yale 
University Press: London. P. 262-288. 

De Menocal, P.B., 2004. African climate change and faunal evolution in the Pliocene-
Pleistocene. Earth and Planetary Science Letters 220 (1), 3-24.  

De Menocal, P.B., 2011. Climate and Human Evolution: Climate change and its effects on 
African ecosystems may have played a role in human evolution. Science. 331, 
540-542. 

De Miguel, D., Azanza, B. and Morales, J., 2018. Regional impacts of global climate 
change: a local humid phase in central Iberia in a late Miocene drying world. 
Palaeontology, 1-16. 

Denison, S., Maslin, M., Boot, C., Pancost, R., and Ettwein, V., 2005. Procession-forced 
changes in South West African vegetation during Marine Isotope Stage 101-100 
(~2.56-2.51Ma). Palaeogeography, Palaeoclimatology, Palaeoecology 220 (3-4) 
375-386.  

Denton, G.H. 1985. Did the Antarctic ice sheet influence Late Cenozoic climate and 
evolution in the southern Hemisphere? South African Journal of Science 81: 224-
229.  

Dewar, G., Halkett, D., Hart, T., Orton, J. and Sealy, J., 2006. Implications of a mass kill 
site of springbok (Antidorcas marsupialis) in South Africa: hunting practices, 
gender relations, and sharing in the Later Stone Age. Journal of Archaeological 
Science 33 (9), 1266-1275. 



 

451 

 

Dirks, P.H., Kibii, J.M., Kuhn, B.F., Steininger, C., Churchill, S.E., Kramers, J.D., 
Pickering, R., Farber, D.L., Mériaux, A.S., Herries, A.I. and King, G.C., 2010. 
Geological setting and age of Australopithecus sediba from southern 
Africa. Science 328 (5975), 205-208. 

Dirks, P.H. and Berger, L.R., 2013. Hominin-bearing caves and landscape dynamics in the 
Cradle of Humankind, South Africa. Journal of African Earth Sciences 78, 109-
131. 

Dirks, P.H., Berger, L.R., Roberts, E.M., Kramers, J.D., Hawks, J., Randolph-Quinney, 
P.S., Elliott, M., Musiba, C.M., Churchill, S.E., de Ruiter, D.J. and Schmid, P., 
2015. Geological and taphonomic context for the new hominin species Homo 
naledi from the Dinaledi Chamber, South Africa. Elife, 4, p.e09561. 

Dirks, P.H., Roberts, E.M., Hilbert-Wolf, H., Kramers, J.D., Hawks, J., Dosseto, A., Duval, 
M., Elliott, M., Evans, M., Grün, R. and Hellstrom, J., 2017. The age of Homo 
naledi and associated sediments in the Rising Star Cave, South Africa. Elife 6, 
p.e24231. 

Domínguez-Rodrigo, M., Diez-Martín, F., Mabulla, A., Baquedano, E., Bunn, H.T. and 
Musiba, C., 2014. The evolution of hominin behavior during the Oldowan-
Acheulean transition: recent evidence from Olduvai Gorge and Peninj (Tanzania). 
Quaternary International 322,1-6. 

Dunham, K. M., 2009. The diet of impala (Aepyceros melampus) in the Sengwa Wildlife 
Research Area, Rhodesia. Journal of Zoology. 192 (1), 41–57.  

De Heinzelin, J., Clark, J.D., White, T., Hart, W., Renne, P., WoldeGabriel, G., Beyene, Y. 
and Vrba, E., 1999. Environment and behavior of 2.5-million-year-old Bouri 
hominids. Science 284 (5414), 625-629. 

DeNiro, M.J. and Epstein, S., 1978a. Influence of diet on the distribution of carbon isotopes 
in animals. Geochimica et cosmochimica acta 42 (5), 495-506. 

DeNiro, M.J. and Epstein, S., 1978b. Carbon isotopic evidence for different feeding 
patterns in two hyrax species occupying the same habitat. Science 201 (4359), 
906-908. 

De Ruiter, D.J., 2001. A methodological analysis of relative abundance of hominids and 
other macromammals from the site of Swartkrans, South Africa. 

De Ruiter, D.J., 2003. Revised faunal lists for Members 1-3 of Swartkrans, South 
Africa. Annals of the Transvaal Museum 40 (1), 29-41. 

DeRuiter, D.J., 2004. Undescribed hominin fossils from the Transvaal Museum hominin 
collection. Annals of the Transvaal Museum. 41, 29-40.  

de Ruiter, D.J. and Berger, L.R., 2000. Leopards as taphonomic agents in dolomitic 
caves—implications for bone accumulations in the hominid-bearing deposits of 
South Africa. Journal of Archaeological Science 27 (8), 665-684. 

de Ruiter, D.J., Brophy, J.K., Lewis, P.J., Churchill, S.E., Berger, L.R., 2008a. Faunal 
assemblage composition and paleoenvironment of Plovers Lake, a Middle Stone 
Age locality in Gauteng Province, South Africa. J. Hum. Evol. 55, 1102e1117. 

de Ruiter, D.J., Sponheimer, M., Lee-Thorp, J.A., 2008b. Indications of habitat associations 
of Australopithecus robustus in the Bloubank Valley, South Africa. Journal of 
Human Evolution 55 (6), 1015-1030. 

de Ruiter, D.J., Pickering, R., Steininger, C.M., Kramers, J.D., Hancox, P.J., Churchill, 
S.E., Berger, L.R. and Backwell, L., 2009. New australopithecus robustus fossils 
and associated U-Pb dates from Cooper's cave (Gauteng, South Africa). Journal of 
Human Evolution 56 (5), 497-513. 

DeSantis, L.R., Alexander, J., Biedron, E.M., Johnson, P.S., Frank, A.S., Martin, J.M. and 
Williams, L., 2018. Effects of climate on dental mesowear of extant koalas and 
two broadly distributed kangaroos throughout their geographic range. PloS one 13 
(8), e0201962. 

DeSilva, J.M., Steininger, C.M. and Patel, B.A., 2013. Cercopithecoid primate postcranial 
fossils from Cooper's D, South Africa. Geobios 46 (5), 381-394. 

De Villiers, I.L., Liversidge, R. and Reinecke, R.K., 1985. Arthropods and helminths in 
springbok (Antidorcas marsupialis) at Benfontein, Kimberley. Onderstepoort 
Journal of Veterinary Research 52, 1– 11. [PubMed: 4011151].  

Drake, B.G., Gonzàlez-Meler, M.A. and Long, S.P., 1997. More efficient plants: a 
consequence of rising atmospheric CO2?  Annual review of plant biology 48 (1), 
609-639. 

Dunsworth, H., Walker, A.C., 2002. Early genus Homo. IN: Hartwig, W., (Ed.), The 
Primate Fossil Record. Cambridge University Press, New York, p. 419–435. 



 

452 

 

Dupont, L.M., Caley, T., Kim, J.H., Castañeda, I., Malaizé, B. and Giraudeau, J., 2011. 
Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea 
surface temperature variations in the Western Indian Ocean. Climate of the Past 7 
(4), 1209. 

D’Ambrosia, A.R., Clyde, W.C., Fricke, H.C., Chew, A.E., 2014. Stable isotope atterns 
found in early Eocene equid tooth rows of North America: implications for 
reproductive behaviour and paleoclimate. Palaeogeography, Palaeoclimatology, 
Palaeoecology 414, 310-319.  

d'Errico, F. and Backwell, L., 2009. Assessing the function of early hominin bone tools. 
Journal of Archaeological Science 36 (8), 1764-1773. 

East, R., 1999. African antelope database 1998 (Vol. 21). IUCN. 
Ecker, M., Botha-Brink, J., Lee-Thorp, J., Piuz, A. and Horwitz, L., 2015. Ostrich eggshell 

as a source of Palaeoenvironmental information in the arid interior of South 
Africa: A case study from Wonderwerk Cave. Changing climates, ecosystems and 
environments within arid southern Africa and adjoining regions: Palaeoecology of 
Africa 33, 95-115. 

Ecker, M., Brink, J., Horwitz, L.K., Scott, L. and Lee-Thorp, J.A., 2018. A 12,000 year 
record of changes in herbivore niche separation and palaeoclimate (Wonderwerk 
Cave, South Africa). Quaternary Science Reviews 180,132-144. 

Edwards, E.J., Osborne, C.P., Strömberg, C.A., Smith, S.A. and C4 Grasses Consortium, 
2010. The origins of C4 grasslands: integrating evolutionary and ecosystem 
science. Science 328 (5978), 587-591. 

Ehleringer, J.R., Cerling, T.E. and Helliker, B.R., 1997. C4 photosynthesis, atmospheric 
CO2, and climate. Oecologia 112 (3), 285-299. 

Ehleringer, J.R. and Monson, R.K., 1993. Evolutionary and ecological aspects of 
photosynthetic pathway variation. Annual Review of Ecology and Systematics 24 
(1), 411-439. 

Eldredge, N. and Gould, S., SJ (1972) Punctuated equilibria; an alternative to phyletic 
gradualism. Models in paleobiology. Freeman Cooper and Co, 82-115.  

Eloff, P., 1959. Observations on the migration and habits of the Antelopes of the Kalahari 
Gemsbok Park-Parts I and II. Koedoe 2 (1), 1-51 

Elton, S.,2000. Ecomorphology and evolutionary biology of African cercopithecoids: 
proving an ecological context for hominin evolution. Doctoral dissertation, 
University of Cambridge. 

Elton,S., 2001. Locomotor and habitat classifications of Cercopithecoid postcranial 
material from Sterkfontein Member 4, Bolt’s Farm and Swartkrans Members 1 
and 2, South Africa. Palaeontologia Africana 37, 115-126. 

El-Zaatari, S., Grine, F.E., Teaford, M.F. and Smith, H.F., 2005. Molar microwear and 
dietary reconstructions of fossil Cercopithecoidea from the Plio-Pleistocene 
deposits of South Africa. Journal of Human Evolution 49 (2), 180-205. 

Epstein, S., Thompson, P. and Yapp, C.J., 1977. Oxygen and hydrogen isotopic ratios in 
plant cellulose. Science 198 (4323), 1209-1215. 

Esterhuysen, A. 2007. Sterkfontein: Early Hominid Site in the ‘Cradle of Humankind’. Wits 
University Press: Johannesburg.  

Estes, R., 1991. The behavior guide to African mammals (Vol. 64). Berkeley: University of 
California Press. 

Estes, R., 2017. Springbok. Encyclopaedia Britannica. Encyclopaedia Britannica, Inc. 
https://www.britannica.com/animal/springbok-mammal [accessed 27/07/2018]. 

Faith, J.T., and Behrensmeyer, A.K., 2013. Climate change and faunal turnover: testing the 
mechanics of the turnover-pulse hypothesis with South African fossil data. 
Paleobiology 39 (4) 609-627.  

Faith, J.T., 2014. Late Pleistocene and Holocene mammal extinctions on continental Africa. 
Earth-Science Reviews 128, 105-121. 

Faith, J.T., 2018. Paleodietary change and its implications for aridity indices derived from 
δ18O of herbivore tooth enamel. Palaeogeography, Palaeoclimatology, 
Palaeoecology 490, 571-578. 

Feathers, J.K. and Bush, D.A., 2000. Luminescence dating of middle stone age deposits at 
Die Kelders. Journal of Human Evolution 38 (1), 91-119. 

Fedorov, A.V., Burls, N.J., Lawrence, K.T. and Peterson, L.C., 2015. Tightly linked zonal 
and meridional sea surface temperature gradients over the past five million years. 
Nature Geoscience 8 (12), 975. 



 

453 

 

Fedorov, A.V., Dekens, P.S., McCarthy, M., Ravelo, A.C., Barreiro, M., Pacanowski, R.C. 
and Philander, S.G., 2006. The Pliocene paradox (mechanisms for a permanent El 
Niño). Science 312 (5779),1485-1489. 

Feibel, C.S., Brown, F.H. and McDougall, I., 1989. Stratigraphic context of fossil hominids 
from the Omo Group deposits: northern Turkana Basin, Kenya and Ethiopia. 
American Journal of Physical Anthropology 78 (4), 595-622. 

Feibel, C.S. and Brown, F.H., 1993. Microstratigraphy and paleoenvironments. The 
Nariokotome Homo erectus Skeleton. Harvard University Press, Cambridge MA, 
21-39. 

Feibel, C.S., 1999. Basin evolution, sedimentary dynamics, and hominid hab- itats in East 
Africa: an ecosystem approach. IN: Bromage, T.G., Schrenk, F. (Eds.), African 
Biogeography, Climate Change, and Human Evolution. Oxford University Press, 
Oxford, p. 276-281 

Field, A.S., 1999. An analytical and comparative study of the Early Stone Age archaeology 
of the Sterkfontein valley. M.Sc. Dissertation. University of the Witwatersrand. 

Foley, R., 2002. Adaptive radiations and dispersals in hominin evolutionary ecology. 
Evolutionary Anthropology: Issues, News, and Reviews 11(S1), 32-37. 

Foley, R., 2005. Species diversity in human evolution: challenges and 
opportunities. Transactions of the Royal Society of South Africa 60 (2), 67-72. 

Fornai, C., Bookstein, F.L. and Weber, G.W., 2015. Variability of Australopithecus second 
maxillary molars from Sterkfontein Member 4. Journal of human evolution 85, 
181-192. 

Forseth, I. N., 2010. The Ecology of Photosynthetic Pathways. Nature Education 
Knowledge 3 (10), 4 [https://www.nature.com/scitable/knowledge/library/the-
ecology-of-photosynthetic-pathways-15785165, accessed 31/08/2018]. 

Fortelius, M. & Solounias, N., 2000. Functional Characterization of Ungulate Molars Using 
the Abrasion-Attrition Wear Gradient: A new method for reconstructing 
Paleodiets. American Museum Noviates 3301, 1-36. 

Fourvel, J.B., Brink, J., O’Regan, H., Beaudet, A. and Pavia, M., 2016. Some preliminary 
interpretations of the oldest faunal assemblage from Kromdraai. In Kromdraai, a 
Birthplace of Paranthropus in the Cradle of Humankind. Sun Media Metro 
Johannesburg p.71-106. 

Fourvel, J.B., Thackeray, J.F., Brink, J.S., O’Regan, H. and Braga, J., 2018. Taphonomic 
interpretations of a new Plio-Pleistocene hominin-bearing assemblage at 
Kromdraai (Gauteng, South Africa). Quaternary Science Reviews 190, 81-97. 

Fox, C.L., Perez-Perez, A. and Juan, J., 1994. Dietary information through the examination 
of plant phytoliths on the enamel surface of human dentition. Journal of 
Archaeological Science 21 (1), 29-34. 

Francisco, A., Bruntière, N., and Merceron, G., 2018. Gathering and Analyzing Surface 
Parameters for Diet Identification Purposes. Technologies 6, 75  
[http://www.mdpi.com/2227-7080/6/3/75]. 

Franz-Odendaal, T.A. and Kaiser, T.M., 2003, January. Differential mesowear in the 
maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). IN: 
Annales Zoologici Fennici. Finnish Zoological and Botanical Publishing Board, p. 
395-410. 

Fraser, D., Thompson, B.K. and Arthur, D., 1982. Aquatic feeding by moose: seasonal 
variation in relation to plant chemical composition and use of mineral licks. 
Canadian Journal of Zoology 60 (12), 3121-3126. 

Fraser, D., Haupt, R.J. and Barr, W.A., 2018. Phylogenetic signal in tooth wear dietary 
niche proxies. Ecology and Evolution 8 (11), 5355-5368. 

Gabunia, L., Vekua, A., Lordkipanidze, D., Swisher, C.C., Ferring, R., Justus, A., 
Nioradze, M., Tvalchrelidze, M., Antón, S.C., Bosinski, G. and Jöris, O., 2000. 
Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: 
taxonomy, geological setting, and age. Science 288 (5468), 1019-1025. 

Gabunia, L., Antón, S.C., Lordkipanidze, D., Vekua, A., Justus, A. and Swisher III, C.C., 
2001. Dmanisi and dispersal. Evolutionary Anthropology: Issues, News, and 
Reviews: Issues, News, and Reviews 10 (5), 158-170. 

Gadbury, C., Todd, L., Jahren, A.H. and Amundson, R., 2000. Spatial and temporal 
variations in the isotopic composition of bison tooth enamel from the Early 
Holocene Hudson–Meng Bone Bed, Nebraska. Palaeogeography, 
Palaeoclimatology, Palaeoecology, 157 (1-2), 79-93. 

Gagnon, M. and Chew, A.E., 2000. Dietary preferences in extant African Bovidae. Journal 
of Mammalogy. 81(2), 490-511.  



 

454 

 

Gailer, J.P. and Kaiser, T.M., 2014. Common solutions to resolve different dietary 
challenges in the ruminant dentition: the functionality of bovid postcanine teeth as 
a masticatory unit. Journal of morphology 275 (3), 328-341. 

Gardner, M., 1960. The Annotated Alice: Alice's Adventures in Wonderland & Through the 
Looking Glass. CN Potter: New York. 

Gentry, A.W., 1966. Fossil Antilopini of East Africa. Bulletin of the British Museum of 
Natural History (Geol.) 12, 45-106. 

Gentry, A.W., 1970. The Bovidae (Mammalia) of the fort ternan fossil fauna. Fossil 
vertebrates of Africa 2, 243-323. 

Gentry A.W., 1976. Bovidae of the Omo group deposits. IN:  Coppens Y., Howell F.C., 
Isaac G.L., Leakey, R.E.F., (Eds.) Earliest man and environments in the Lake 
Rudolf Basin; stratigraphy, paleoecology, and evolution.: University. Chicago 
Press, Chicago, 197. 

Gentry, A.W., 1978. Bovidae. IN: Maglio, V.J. and Cooke, H.B.S. (Eds.) Evolution of 
African Mammals. Cambridge University Press: London. 

Gentry, A.W., and Gentry, A., 1978. Fossil Bovidae (Mammalia) of Olduvai Gorge, 
Tanzania. British Museum (Natural History).  

Gentry, A.W., 1992. The subfamilies and tribes of the family Bovidae. Mammal Review 22 
(1), 1-32. 

Gentry, A.W., 2010. Bovidae IN: Wardelin, L., and Sanders, W.J., (Eds.) Cenozoic 
mammals of Africa. University of California Press: London 741-798. 

Gentry, A.W., 2011. Bovidae. IN: Paleontology and Geology of Laetoli: Human Evolution 
in Context: Volume 2. Springer, Dordrecht, p. 363-465.  

Geraads, D., Brunet, M., Mackaye, H.T. and Vignaud, P., 2001. Pliocene Bovidae 
(Mammalia) from the Koro Toro Australopithecine sites, Chad. Journal of 
Vertebrate Paleontology 21(2), 335-346. 

 
Gibbon, R.J., Pickering, T.R., Sutton, M.B., Heaton, J.L., Kuman, K., Clarke, R.J., Brain, 

C.K. and Granger, D.E., 2014. Cosmogenic nuclide burial dating of hominin-
bearing Pleistocene cave deposits at Swartkrans, South Africa. Quaternary 
Geochronology 24, 10-15. 

Gilbert, W.H. and Asfaw, B., 2008. Homo erectus: Pleistocene Evidence from the Middle 
Awash, Ethiopia (Volume 1). University of California Press: California. 

Gilbert, C.C., Frost, S.R. and Delson, E., 2016. Reassessment of Olduvai Bed I 
cercopithecoids: A new biochronological and biogeographical link to the South 
African fossil record. Journal of human evolution 92, 50-59. 

Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B. and Robinson, G.S., 2009. 
Pleistocene megafaunal collapse, novel plant communities, and enhanced fire 
regimes in North America. Science 326 (5956), 1100-1103. 

Gilman, S.E., Urban, M.C., Tewksbury, J., Gilchrist, G.W. and Holt, R.D., 2010. A 
framework for community interactions under climate change. Trends in ecology & 
evolution 25 (6), 325-331. 

Gingerich, P.D., 1976. Paleontology and phylogeny; patterns of evolution at the species 
level in early Tertiary mammals. American Journal of Science 276(1),1-28.  

Gommery D, Senut B, Keyser AW. 2002. A fragmentary pelvis of Paranthropus robustus 
of the Plio-Pleistocene site of Drimolen (Republic of South Africa). Geobios 35, 
265–281.  

Gonfiantini, R., Gratziu, S. and Tongiorgi, E., 1965. Oxygen isotopic composition of water 
in leaves. Isotopes and Radiation in Soil-Plant Nutrition Studies, pp.405-410. 

González-Guarda, E., Petermann-Pichincura, A., Tornero, C., Domingo, L., Agustí, J., 
Pino, M., Abarzúa, A.M., Capriles, J.M., Villavicencio, N.A., Labarca, R. and 
Tolorza, V., 2018. Multiproxy evidence for leaf-browsing and closed habitats in 
extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proceedings 
of the National Academy of Sciences, p.201804642 
[www.pnas.org/cgi/doi/10.1073/pnas.1804642115]. 

Good, S.P. and Caylor, K.K., 2011. Climatological determinants of woody cover in Africa. 
Proceedings of the National Academy of Sciences 108 (12), 4902-4907. 

Gordon, K.D., 1982. A study of microwear on chimpanzee molars: implications for dental 
microwear analysis. American Journal of Physical Anthropology 59 (2), 195-215. 

Gould, S.J., 1985. The paradox of the first tier: an agenda for paleobiology.Paleobiology, 2-
12.  

Gower, J.C., and Ross, G.J.S., 1969. Minimum spanning trees and single linkage cluster 
analysis. Journal of the Royal Statistical Society, Series C 18 (1), 54-64. 



 

455 

 

Graham, R.W. and Lundelius Jr, E.L., 1984. Coevolutionary disequilibrium and 
Pleistocene extinctions. IN: Martin, P.S., & Klein, R.G. (eds.) Quaternary 
Extinctions: A Prehistoric Revolution. University of Arizona Press: Tuscon. 
P.223-249.  

Granger, D.E., Gibbon, R.J., Kuman, K., Clarke, R.J., Bruxelles, L. and Caffee, M.W., 
2015. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus 
and Member 5 oldowan. Nature 522 (7554), 85. 

Grant, P.R. and Grant, B.R., 2009. The secondary contact phase of allopatric speciation in 
Darwin's finches. Proceedings of the National Academy of Sciences, pnas-
0911761106. 

Greenwald, L.I., 1967. Water economy of the desert dwelling springbok (Antidorcas 
marsupialis) (Doctoral dissertation, Syracuse University). 

Grine, F.E., 1981. Trophic differences between'gracile'and'robust'australopithecines: a 
scanning electron microscope analysis of occlusal events. South African Journal of 
Science 77 (5), 203-230. 

Grine, F.E., 1982. A new juvenile hominid (Mammalia: Primates) from Member 3, 
Kromdraai Formation, Transvaal, South Africa. Annals of the Transvaal Museum 
33(11), 165-239. 

Grine, F., 1985. Australopithecine evolution: the deciduous dental evidence. IN: Delson, E. 
(ED). Ancestors: the hard evidence (p.153-167). Alan R Liss: New York. 

Grine, F.E., 1986. Dental evidence for dietary differences in Australopithecus and  
Paranthropus: a quantitative analysis of permanent molar microwear. Journal of Human 

Evolution 15 (8), 783-822. 
Grine, F.E., 1988. New craniodental fossils of Paranthropus from the Swartkrans Formation 

and their significance in ‘robust’australopithecine evolution. In Evolutionary 
History of the “Robust” Australopithecines (p. 223-243). Aldine de Gruyter New 
York. 

Grine, F.E., 1993. Description and preliminary analysis of new hominid craniodental fossils 
from the Swartkrans Formation. Brain CK. Swartkrans: A cave’s chronicle of 
early man. Pretoria: Transvaal Museum, p.75-116. 

Grine, F.E., Jungers, W.L., Tobias, P.V. and Pearson, O.M., 1995. Fossil homo femur from 
Berg Aukas, northern Namibia. American Journal of Physical Anthropology 97(2) 
151-185.  

Grine, F.E., Jungers, W.L. and Schultz, J., 1996. Phenetic affinities among early Homo 
crania from East and South Africa. Journal of Human Evolution 30 (3), 189-225. 

Grine, F.E., Smith, H.F., Heesy, C.P. and Smith, E.J., 2009. Phenetic affinities of Plio-
Pleistocene Homo fossils from South Africa: molar cusp proportions. In The First 
Humans–Origin and Early Evolution of the Genus Homo. Springer, Dordrecht, p. 
49-62 

Grine, F.E., Sponheimer, M., Ungar, P.S., Lee‐Thorp, J. and Teaford, M.F., 2012. Dental 
microwear and stable isotopes inform the paleoecology of extinct hominins. 
American Journal of Physical Anthropology 148 (2), 285-317. 

Groves, C.P., 1981. Subspecies and clines in the springbok (Antidorcas). Zeitschrift Fur 
Saugetierkunde-International Journal of Mammalian Biology 46 (3), 189-197. 

Groves, C.P., 2000. Phylogenetic relationships within recent Antilopini (Bovidae). IN: 
Vrba, E.S. and Schaller, G.B. (Eds.) Antelopes, Deer, and Relatives: Fossil 
Record, Behavioural Ecology, Systematics, and Conservation. Yale University 
Press: New Haven. 203-222.  

Grubb, P., 2005. Order Artiodactyla. IN: Wilson, D.E. and Reeder, D.M. (eds.) Mammal 
species of the world: a taxonomic and geographic reference (3rd edition) John 
Hopkins University Press, Pp.678. 

Hare, V. and Sealy, J., 2013. Middle Pleistocene dynamics of southern Africa's winter 
rainfall zone from δ13C and δ18O values of Hoedjiespunt faunal enamel. 
Palaeogeography, Palaeoclimatology, Palaeoecology 374, 72-80. 

Harris, J.W., 1983. Cultural beginnings: Plio-Pleistocene archaeological occurrences from 
the Afar, Ethiopia. African Archaeological Review 1 (1), 3-31. 

Harris, J.M., 1991. Koobi Fora Research Project: The Fossil Ungulates: Geology, Fossil 
Artiodactyls, and Palaeoenvironments.  

Harris, J.M., Leakey, M.G. and Brown, F.H., 1988. Stratigraphy and paleontology of 
Pliocene and Pleistocene localities west of Lake Turkana, Kenya. Natural History 
Museum of Los Angeles County. 399, 1-28.  



 

456 

 

Harmand, S., Lewis, J.E., Feibel, C.S., Lepre, C.J., Prat, S., Lenoble, A., Boës, X., Quinn, 
R.L., Brenet, M., Arroyo, A. and Taylor, N., 2015. 3.3-million-year-old stone tools 
from Lomekwi 3, West Turkana, Kenya. Nature 521 (7552), 310. 

Hattersley, P.W., 1982. δ13 values of C4 types in grasses. Functional Plant Biology 9 (2), 
139-154. 

Haug, G.H., Ganopolski, A., Sigman, D.M., Rosell-Mele, A., Swann, G.E., Tiedemann, R., 
Jaccard, S.L., Bollmann, J., Maslin, M.A., Leng, M.J. and Eglinton, G., 2005. 
North Pacific seasonality and the glaciation of North America 2.7 million years 
ago. Nature 433 (7028), 821. 

Havenga, C.F.B., Pitman, W.V. and Bailey, A.K., 2007. Hydrological and hydraulic 
modelling of the Nyl River floodplain Part 1. Background and hydrological 
modelling. Water SA, 33(1). 

Hawks, J., Elliott, M., Schmid, P., Churchill, S.E., de Ruiter, D.J., Roberts, E.M., Hilbert-
Wolf, H., Garvin, H.M., Williams, S.A., Delezene, L.K. and Feuerriegel, E.M., 
2017. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa. 
eLife, 6, p.e24232. 

Healy, W.B. and Ludwig, T.G., 1965. Wear of sheep’s teeth: I. The role of ingested 
soil. New Zealand Journal of Agricultural Research 8 (4), 737-752. 

Heaton, J.L., 2006. Taxonomy of the Sterkfontein fossil Cercopithecinae: the Papionini of 
members 2 and 4 (Gauteng, South Africa). Unpublished Ph. D. Dissertation. 
Indiana University, Bloomington. 

Hendey, Q.B., 1974. The late Cenozoic Carnivora of the south-western Cape Province. 
Annals of the South Africa Museum 63, 1-369. 

Hendey, Q.B. and Hendey, H., 1968. New Quaternary fossil sites near Swartklip, Cape 
Province. South African Museum. 

Henry, A.G., Ungar, P.S., Passey, B.H., Sponheimer, M., Rossouw, L., Bamford, M., 
Sandberg, P., de Ruiter, D.J. and Berger, L., 2012. The diet of Australopithecus 
sediba. Nature 487 (7405), 90. 

Hernandez-Fernández, M.H., 2001. Bioclimatic discriminant capacity of terrestrial mammal 
faunas. Global Ecology and Biogeography 10 (2), 189-204. 

Hernandez-Fernandez, M. and Vrba, E.S., 2006. Plio-Pleistocene climatic change in the 
Turkana Basin (East Africa): Evidence from large mammal faunas. Journal of 
Human Evolution. 50, 595-626.  

Herries, A.I.R., 2003. Magnetostratigraphic seriation of South African hominin 
palaeocaves. Doctoral dissertation, University of Liverpool. 

Herries, A.I., 2011. A chronological perspective on the Acheulian and its transition to the 
Middle Stone Age in southern Africa: the question of the Fauresmith. 
International Journal of Evolutionary Biology 2011, 25.  

Herries, A.I. and Adams, J.W., 2013. Clarifying the context, dating and age range of the 
Gondolin hominins and Paranthropus in South Africa. Journal of Human 
Evolution 65 (5),676-681. 

Herries, A. I. R., Reed, K. E., Kuykendall, K. L. and Latham, A. G. 2006. Speleology and 
magnetobiostratigraphic chronology of the Buffalo Cave fossil site, Makapansgat, 
South Africa. Quaternary Research 66 (2), 233–245 

Herries, A.I., Curnoe, D., and Adams. J.W., 2009. A multi-disciplinary seriation of early 
Homo and Paranthropus bearing palaeocaves in southern Africa. Quaternary 
International.202, 14-28. 

Herries, A., Latham, A., 2009. Archaeomagnetic studies at the Cave of Hearths. IN: 
McNabb, J., Sinclair, A. (Eds.), The Cave of Hearths: Makapan Middle 
Pleistocene Research Project. BAR International Series 1940, Oxford, p. 59-64. 

Herries, A.I. and Shaw, J., 2011. Palaeomagnetic analysis of the Sterkfontein palaeocave 
deposits: Implications for the age of the hominin fossils and stone tool industries. 
Journal of Human Evolution 60 (5), 523-539. 

Herries, A.I., Pickering, R., Adams, J.W., Curnoe, D., Warr, G., Latham, A.G. and Shaw, 
J., 2013. A multi-disciplinary perspective on the age of Australopithecus in 
southern Africa. IN: K.E. Reed, J.G. Fleagle, R. Leakey (Eds.), The paleobiology 
of Australopithecus (p. 21-40). Springer, Dordrecht. 

Hillson, S., 2005. Teeth (Second edition). Cambridge Universtiy Press: Cambridge.  
Hoffman, J.M., Fraser, D. and Clementz, M.T., 2015. Controlled feeding trials with 

ungulates: a new application of in vivo dental molding to assess the abrasive 
factors of Microwear. The Journal of Experimental Biology. 218, 1538-1547. 

Hofman-Kamińska, E., Merceron, G., Bocherens, H., Makowiecki, D., Piličiauskienė, G., 
Ramdarshan, A., Berlioz, E. and Kowalczyk, R., 2018. Foraging habitats and 



 

457 

 

niche partitioning of European large herbivores during the Holocene–Insights from 
3D dental microwear texture analysis. Palaeogeography, Palaeoclimatology, 
Palaeoecology. doi:10.1016/j.palaeo.2018.05.050 

Hofmann, R.R. and Stewart, D.R.M., 1972. Grazer or browser: a classification based on the 
stomach-structure and feeding habits of East African ruminants. Mammalia 36 (2), 
226-240. 

Hofmeyr, M.D. and Louw, G.N., 1987. Thermoregulation pelage conductance and renal 
function in the desert-adapted springbok, Antidorcas marsupialis. Journal of Arid 
Environments 13 (2), 137-151. 

Holland, S.M., 1996. Recognizing artifactually generated coordinated stasis: implications 
of numerical models and strategies for field tests. Palaeogeography, 
Palaeoclimatology, Palaeoecology, 127(1) 147-156. 

Holloway, R. L., Hurst, S. D., Garvin, H. M., Schoenemann, P. T., Vanti, W. B., Berger, L. 
R., & Hawks, J. (2018). Endocast morphology of Homo naledi from the Dinaledi 
Chamber, South Africa. Proceedings of the National Academy of Sciences of the 
United States of America, 115(22), 5738–5743. 
http://doi.org/10.1073/pnas.1720842115 

Holt, E., Dirks, P., Placzek, C. and Berger, L., 2016. The stable isotope setting of 
Australopithecus sediba at Malapa, South Africa. South African Journal of 
Science 112(7-8), 1-9. 

Hopley, P. J. 2004. Palaeoenvironmental reconstruction of South African hominin-bearing 
cave deposits using stable isotope geochemistry. PhD Thesis. University of 
Liverpool. 

Hopley, P.J., Latham, A.G. and Marshall, J.D., 2006. Palaeoenvironments and palaeodiets 
of mid-Pliocene micromammals from Makapansgat Limeworks, South Africa: a 
stable isotope and dental microwear approach. Palaeogeography, 
Palaeoclimatology, Palaeoecology 233 (3-4), 235-251. 

Hopley, P.J., Marshall, J.D., Weedon, G.P., Latham, A.G., Herries, A.I. and Kuykendall, 
K.L., 2007. Orbital forcing and the spread of C4 grasses in the late Neogene: 
stable isotope evidence from South African speleothems. Journal of Human 
Evolution 53(5), 620-634. 

Hopley, P.J., Marshall, J.D. and Latham, A.G., 2009. Speleothem preservation and 
diagenesis in South African hominin sites implications for paleoenvironments and 
geochronology. Geoarchaeology: An International Journal 24 (5), 519-547. 

Hopley, P. J. and Maslin, M.A., 2010. Climate-averaging of terrestrial faunas: an example 
from the Plio-Pleistocene of South Africa. Palaeobiology. 36 (1), 32-50.  

Hornberger, G.M., 1995. New manuscript guidelines for the reporting of stable hydrogen, 
carbon, and oxygen isotope ratio data. Water Resources Research 31 (12), 2895-
2895. 

Howell, F.C., 1978. Hominidae. Evolution of African mammals, p.154-248. 
Hughes, A.R. and Tobias, P.V., 1977. A fossil skull probably of the genus Homo from 

Sterkfontein, Transvaal. Nature 265 (5592), 310. 
Hughes, P.D., Gibbard, P.L. and Ehlers, J., 2013. Timing of glaciation during the last 

glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’(LGM). 
Earth-Science Reviews 125, 171-198. 

Hummel, J., Findeisen, E., Südekum, K.H., Ruf, I., Kaiser, T.M., Bucher, M., Clauss, M. 
and Codron, D., 2010. Another one bites the dust: faecal silica levels in large 
herbivores correlate with high-crowned teeth. Proceedings of the Royal Society of 
London B: Biological Sciences, p.rspb20101939. 

Iacumin, P., Bocherens, H., Mariotti, A. and Longinelli, A., 1996. An isotopic 
palaeoenvironmental study of human skeletal remains from the Nile Valley. 
Palaeogeography, Palaeoclimatology, Palaeoecology. 126, 15-30.  

Jablonski, N.G., 1994. New fossil cercopithecid remains from the Humpata Plateau, 
southern Angola. American journal of physical anthropology 94(4), 435-464. 

Jahn, B., Donner, B., Müller, P.J., Röhl, U., Schneider, R.R. and Wefer, G., 2003. 
Pleistocene variations in dust input and marine productivity in the northern 
Benguela Current: evidence of evolution of global glacial–interglacial cycles. 
Palaeogeography, Palaeoclimatology, Palaeoecology 193 (3), 515-533. 

Jakob, K.A., Bolton, C.T., Wilson, P.A., Bahr, A., Pross, J., Fiebig, J., Kähler, K. and 
Friedrich, O., 2017. Glacial–interglacial changes in equatorial Pacific surface-
water structure during the Plio–Pleistocene intensification of Northern Hemisphere 
Glaciation. Earth and Planetary Science Letters 463, 69-80. 



 

458 

 

Janis, C.M., 1988. An estimation of tooth volume and hypsodonty indices in ungulate 
mammals, and the correlation of these factors with dietary preferences. Mémoires 
du Museum National d'Histoire Naturelle 53, 367-387. 

Janis, C.M., 1989. A climatic explanationfor patterns of evolutionary diversity in ungulate 
mammals. Palaeontology 32, 463-481.  

Janis, C.M., 1990. Correlation of cranial and dental variables with dietary preferences in 
mammals: a comparison of macropodoids and ungulates. Memoirs of the 
Queensland Museum 28 (1), 349-366. 

Janis, C.M., 1993. Tertiary mammal evolution in the context of changing climates, 
vegetation, and tectonic events. Annual review of Ecology and Systematics 24, 
467-500.  

Janis, C.M., 1995. Correlations between craniodental morphology and feeding behavior in 
ungulates: reciprocal illumination between living and fossil taxa. IN:  Thomason, 
J.J., (Ed.) Functional morphology in vertebrate paleontology, pp.76-98. 

Janis, C.M., 1997. Ungulate teeth, diets, and climatic changes at the Eocene/Oligocene 
boundary. Zoology 100, 203-220.  

Janis, C.M. and Fortelius, M., 1988. On the means whereby mammals achieve increased 
functional durability of their dentitions, with special reference to limiting factors. 
Biological Reviews 63 (2), 197-230. 

Janis, C.M., and Wilhelm, P.B., 1993. Were there mammalian pursuit predators in the 
Tertiary? Dances with wolf avatars. Journal of Mammalian Evolution 1, 103-125.  

Janssens, S.B., Knox, E.B., Huysmans, S., Smets, E.F. and Merckx, V.S., 2009. Rapid 
radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of 
a global climate change. Molecular Phylogenetics and Evolution 52 (3), 806-824. 

Jansson, R., 2003. Global patterns in endemism explained by past climatic change. 
Proceedings of the Royal Society of London B: Biological Sciences 270 (1515), 
583-590. 

Johnson, T.C., Werne, J.P., Brown, E.T., Abbott, A., Berke, M., Steinman, B.A., Halbur, J., 
Contreras, S., Grosshuesch, S., Deino, A. and Scholz, C.A., 2016. A progressively 
wetter climate in southern East Africa over the past 1.3 million years. Nature 537 
(7619), 220. 

Jolly, C.J., 1970. The seed-eaters: a new model of hominid differentiation based on a 
baboon analogy. Man 5 (1), 5-26. 

Jones, D.B. and Desantis, L.R., 2017. Dietary ecology of ungulates from the La Brea tar 
pits in southern California: a multi-proxy approach. Palaeogeography, 
Palaeoclimatology, Palaeoecology 466, 110-127. 

Kaiser, T.M. and Fortelius, M., 2003. Differential mesowear in occluding upper and lower 
molars: opening mesowear analysis for lower molars and premolars in hypsodont 
horses. Journal of Morphology 258 (1), 67-83. 

Kaiser, T.M. and Solounias, N., 2003. Extending the tooth mesowear method to extinct and 
extant equids. Geodiversitas 25 (2), 321-345. 

Kaiser, T.M. and Schulz, E., 2006. Tooth wear gradients in zebras as an environmental 
proxy—a pilot study. Mitteilungen aus dem Hamburgischen Zoologischen 
Museum und Institut 103, 187-210. 

Kaiser, T.M., Brasch, J., Castell, J.C., Schulz, E. and Clauss, M., 2009. Tooth wear in 
captive wild ruminant species differs from that of free-ranging conspecifics. 
Mammalian Biology-Zeitschrift für Säugetierkunde 74 (6), 425-437. 

Kaiser, T.M., Müller, D.W., Fortelius, M., Schulz, E., Codron, D. and Clauss, M., 2013. 
Hypsodonty and tooth facet development in relation to diet and habitat in 
herbivorous ungulates: implications for understanding tooth wear. Mammal 
Review 43 (1), 34-46. 

Kappelman, J., Plummer, T., Bishop, L., Duncan, A., and Appleton, S., 1997. Bovids as 
indicators of Plio-Pleistocene palaeoenvironments of East Africa. Journal of 
Human Evolution 32 (2-3) 229-256.  

Kappelman, J., Ketcham, R.A., Pearce, S., Todd, L., Akins, W., Colbert, M.W., Feseha, M., 
Maisano, J.A. and Witzel, A., 2016. Perimortem fractures in Lucy suggest 
mortality from fall out of tall tree. Nature 537 (7621), 503. 

Keeley, J.E. and Rundel, P.W., 2005. Fire and the Miocene expansion of C4 grasslands. 
Ecology Letters 8 (7), 683-690. 

Kennedy, B.V.E., 1988. Variation in 13 C values of post-medieval Europeans. 
Archaeology, University of Calgary, Doctoral Thesis. 

Key, A.J. and Dunmore, C.J., 2018. Manual restrictions on Palaeolithic technological 
behaviours. PeerJ. 6, 5399; DOI 10.7717/peerj.5399 



 

459 

 

Keyser, A.W., Menter, C.G., Moggi-Cecchi, J., Pickering, T.R. and Berger, L.R., 2000. 
Drimolen: a new hominid-bearing site in Gauteng, South Africa. South African 
Journal of Science 96 (4), 193-197. 

Kibii, J.M., 2004. Comparative Taxonomic, Taphonomic and Palaeoenvironmental 
Analysis of 4–2.3 Million Year Old Australopithecine Cave Infills at Sterkfontein 
(Doctoral dissertation). 

Kimbel, W.H., 2007. The Species and Diversity of Australopiths. In Handbook of 
paleoanthropology p. 1539-1573. Springer, Berlin, Heidelberg. 

Kimura, Y., 2002. Examining time trends in the Oldowan technology at Beds I and II, 
Olduvai Gorge. Journal of Human Evolution 43 (3), 291-321. 

King, T., Andrews, P. and Boz, B., 1999. Effect of taphonomic processes on dental 
microwear. American Journal of Physical Anthropology: The Official Publication 
of the American Association of Physical Anthropologists 108 (3), 359-373. 

Kingdon, J. and Largen, M.J., 1997. The kingdom field guide to African 
mammals. Zoological Journal of the Linnean Society 120 (4), 479. 

Kingdon, J., 1997. The Kingdon field guide to African mammals. Academic Press, New 
York.  

Kingdon, J., 1984. East African mammals: an atlas of evolution in Africa, volume 3, Part 
A: Carnivores (Vol. 4). University of Chicago Press. 

Kingdon, J., 2003. Lowly Origins: Where, When and Why Our Ancestors First Stood Up. 
Princeton University Press: Oxfordshire. 

Kingdon, J. Happold, D., Butynski, T. Happold, M., Hoffmann, M., Kalina, J., 2013. 
Mammals of Africa. London, UK: Bloomsbury Publishing Plc. p. 479–84. 

Kingston, J.D., Hill, A., Marino, B.D., 1994.  Isotopic evidence for neogene hominid 
paleoenvironments in the kenya rift valley. Science 264 (5161), 955-959.  

Kingston, J.D., Deino, A.L., Edgar, R.K. and Hill, A., 2007. Astronomically forced climate 
change in the Kenyan Rift Valley 2.7–2.55 Ma: implications for the evolution of 
early hominin ecosystems. Journal of Human Evolution 53 (5), 487-503. 

Klein, R.G., 1980. Environmental and ecological implications of large mammals from 
Upper Pleistocene and Holocene sites in southern Africa. Annals of the South 
African Museum 81, 223-283. 

Klein, R.G., 1983. Palaeoenvironmental implications of Quaternary large mammals in the 
fynbos region. Fynbos palaeoecology: a preliminary synthesis 75, 116-138. 

Klein, R.G., 1988. The archaeological significance of animal bones from Acheulean sites in 
southern Africa. African Archaeological Review 6 (1), 3-25. 

Klein, R.G., 1999. The human career:human biological and cultural origins. Chicago 
University Press: Chicago.  

Klein, R.G., 2000. Archeology and the evolution of human behavior. Evolutionary 
Anthropology: Issues, News, and Reviews 9 (1), 17-36. 

Klein, R.G. and Cruz-Uribe, K., 2000. Middle and later stone age large mammal and 
tortoise remains from Die Kelders Cave 1, Western Cape Province, South Africa. 
Journal of Human Evolution 38 (1), 169-195. 

Knight, M.H., 1995. Tsama melons, Citrullus lanatus, a supplementary water supply for 
wildlife in the southern Kalahari. African Journal of Ecology 33 (1), 71-80. 

Koch, P.L., Fisher, D.C. and Dettman, D., 1989. Oxygen isotope variation in the tusks of 
extinct proboscideans: a measure of season of death and seasonality. Geology 
17(6), 515-519. 

Kohn, M.J., Schoeninger, M.J. and Valley, J.W., 1996. Herbivore tooth oxygen isotope 
compositions: effects of diet and physiology. Geochimica et Cosmochimica 
Acta 60 (20), 3889-3896. 

Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of 
(paleo) ecology and (paleo) climate. Proceedings of the National Academy of 
Sciences 107 (46), 19691-19695. 

Kraus, B.S., 1952. Morphologic relationships between enamel and dentin surfaces of lower 
first molar teeth. Journal of dental research 31 (2), 248-256. 

Kubo, M.O. and Yamada, E., 2014. The inter-relationship between dietary and 
environmental properties and tooth wear: comparisons of mesowear, molar wear 
rate, and hypsodonty index of extant sika deer populations. Plos One 9 (3), 
p.e90745. 

Kuhn, B.F., Berger, L.R. and Skinner, J.D., 2010. Examining criteria for identifying and 
differentiating fossil faunal assemblages accumulated by hyenas and hominins 
using extant hyenid accumulations. International Journal of Osteoarchaeology 20 
(1),15-35. 



 

460 

 

Kuhn, B.F., Werdelin, L. and Steininger, C., 2017. Fossil Hyaenidae from Cooper’s Cave, 
South Africa, and the palaeoenvironmental implications. Palaeobiodiversity and 
Palaeoenvironments 97(2), 355-365. 

Kuman, K., 1994a. The archaeology of Sterkfontein—past and present. Journal of Human 
Evolution 27 (6), 471-495. 

Kuman, K., 1994b. The archaeology of Sterkfontein: preliminary findings on site formation 
and cultural change. South African Journal of Science 90 (4), 215-219. 

Kuman, K., Field, A.S. and Thackeray, J.F., 1997. Discovery of new artefacts at 
Kromdraai. South African Journal of Science 93 (4), 187-193. 

Kuman, K. and Clarke, R.J., 2000. Stratigraphy, artefact industries and hominid 
associations for Sterkfontein, Member 5. Journal of Human Evolution 38(6), 827-
847. 

Kuman, K., Sutton, M.B., Pickering, T.R. and Heaton, J.L., 2018. The Oldowan industry 
from Swartkrans cave, South Africa, and its relevance for the African Oldowan. 
Journal of Human Evolution In Press. 

Kuykendall, K.L., Toich, C.A. and McKee, J.K., 1995. Preliminary analysis of the fauna 
from Buffalo Cave, northern Transvaal, South Africa. Palaeontologia Africana 32, 
27-31. 

Kuykendall, K.L. and Conroy, G.C., 1999. Description of the Gondolin teeth: hyper-robust 
hominids in South Africa? American Journal of Physical Anthropology , 176-177.  

Lacruz, R.S., Brink, J.S., Hancox, P.J., Skinner, A.R., Herries, A., Schmid, P. and Berger, 
L.R., 2002. Palaeontology and geological context of a Middle Pleistocene faunal 
assemblage from the Gladysvale Cave, South Africa. Palaeontologia Africana 38, 
99-114. 

Lacruz, R., Ungar, P., Hancox, P.J., Brink, J.S. and Berger, L.R., 2003. Gladysvale: fossils, 
strata and GIS analysis. South African journal of science 99 (5/6), 283-285. 

Lamarck, J.B.P., 1809. Philosophie zoologique. 
Lamarck, J.-B.de, 2006 [1809], Zoological Philosophy: An Exposition with Regard to the 

Natural History of Animals. Roasmond: Bill Hutch Publishers.  
Landis, M.J. and Schraiber, J.G., 2017. Pulsed evolution shaped modern vertebrate body 

sizes. Proceedings of the National Academy of Sciences 114 (50), 13224-13229. 
Larsen, C.S., 2011. Our origins: Discovering physical anthropology. (second edition). WW 

Norton & Company: London.  
Lazagabaster, I.A., Rowan, J., Kamilar, J.M., and Reed, K., 2016. Evolution of 

Craniodental Correlates of Diet in African Bovidae. Journal of Mammalian 
Evolution 1-12.  

Leader, G.M., Kuman, K., Gibbon, R.J. and Granger, D.E., 2018. Early Acheulean 
organised core knapping strategies ca. 1.3 Ma at Rietputs 15, Northern Cape 
Province, South Africa. Quaternary International 480, 16-28.  

Leakey, L.S.B., 1951. Olduvai Gorge: a Report on the Evolution of the Hand-axe Culture 
in Beds I-IV with Chapters on the geology and fauna. Cambridge University Press: 
Cambridge. 

Leakey, L. S. B., Tobias, P. V. & Napier, J. R. 1964. A new species of the genus Homo 
from Olduvai Gorge. Nature 202, 7–9. 

Leakey, L.S.B., 1965. Olduvai Gorge: 1951-61. Vol. 1, A Preliminary Report on the 
Geology and Fauna. Cambridge University Press, Cambridge. 

Leakey, M.D., 1966. A review of the Oldowan culture from Olduvai Gorge, Tanzania. 
Nature, 210 (5035), 462. 

Leakey, M.D., 1971. Olduvai Gorge, Volume 3: Excavation in Beds I and II, 1960-1963. 
Cambridge University Press. 

Leakey, M.G., and Harris, J.M., 2003. Lothagam: its significance and contributions. IN: 
Leakey, M.G., and Harris, J.M. (Eds,) Logatham: the dawn of humanity in eastern 
Africa. Columbia University Press, New York. P. 625-660.  

Lee, S.H. and Wolpoff, M.H., 2005. Habiline variation: a new approach using STET. 
Theory in Biosciences 124 (1), 25-40. 

Lee-Thorp, J.A., Sealy, J.C. and Van der Merwe, N.J., 1989. Stable carbon isotope ratio 
differences between bone collagen and bone apatite, and their relationship to diet. 
Journal of archaeological science 16 (6), 585-599. 

Lee-Thorp, J.A., van der Merwe, N.J. and Brain, C.K., 1994. Diet of Australopithecus 
robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human 
Evolution 27 (4), 361-372. 



 

461 

 

Lee-Thorp, J.A. and Beaumont, P.B., 1995. Vegetation and seasonality shifts during the 
late Quaternary deduced from 13C/12C ratios of grazers at Equus Cave, South 
Africa. Quaternary Research, 43(3), pp.426-432. 

Lee-Thorp, J.A., Manning, L. and Sponheimer, M. 1997. Exploring problems and 
opportunities offered by down-scaling sample sizes for carbon isotope analyses of 
fossils. Bulletin de la Société geologique de France 168, 767– 773. 

Lee-Thorp, J., Thackeray, J.F. and van der Merwe, N., 2000. The hunters and the hunted 
revisited. Journal of Human Evolution 39 (6), 565-576. 

Lee-Thorp, J.A., Sponheimer, M., & Luyt, J., 2007 Tracking changing environments using 
stable carbon isotopes in fossil tooth enamel: an example from the South African 
hominin sites. Journal of Human Evolution 53, 595-601.  

Lee-Thorp, J., 2011. The demise of “Nutcracker Man”. Proceedings of the National 
Academy of Sciences 108 (23), 9319-9320. 

Lieberman, D.E., 1994. The biological basis for seasonal increments in dental cementum 
and their application to archaeological research. Journal of Archaeological 
Science 21, 525-525. 

Lepre, C.J., Quinn, R.L., Joordens, J.C., Swisher III, C.C. and Feibel, C.S., 2007. Plio-
Pleistocene facies environments from the KBS Member, Koobi Fora Formation: 
implications for climate controls on the development of lake-margin hominin 
habitats in the northeast Turkana Basin (northwest Kenya). Journal of Human 
Evolution 53(5), 504-514. 

Lepre, C.J., Roche, H., Kent, D.V., Harmand, S., Quinn, R.L., Brugal, J.P., Texier, P.J., 
Lenoble, A. and Feibel, C.S., 2011. An earlier origin for the Acheulian. Nature 
477 (7362), 82. 

Loffredo, L.F. and DeSantis, L.R., 2014. Cautionary lessons from assessing dental 
mesowear observer variability and integrating paleoecological proxies of an 
extreme generalist Cormohipparion emsliei. Palaeogeography, 
Palaeoclimatology, Palaeoecology 395, 42-52. 

Lehmann, C.E., Prior, L.D. and Bowman, D.M., 2009. Fire controls population structure in 
four dominant tree species in a tropical savanna. Oecologia 161 (3), 505-515. 

Lehmann, C.E., Archibald, S.A., Hoffmann, W.A. and Bond, W.J., 2011. Deciphering the 
distribution of the savanna biome. New Phytologist 191 (1), 197-209. 

Lehmann, D., 2015. Dietary and Spatial Strategies of Gemsbok (Oryx G. Gazella) and 
Springbok (Antidorcas Marsupialis) in Response to Drought in the Desert 
Environment of the Kunene Region, Namibia (Doctoral dissertation, Freie 
Universität Berlin). 

Lehmann, D., Mfune, J.K.E., Gewers, E., Brain, C. and Voigt, C.C., 2015. Individual 
variation of isotopic niches in grazing and browsing desert ungulates. Oecologia 
179 (1), 75-88. 

Lehmann, S.B., Braun, D.R., Dennis, K.J., Patterson, D.B., Stynder, D.D., Bishop, L.C., 
Forrest, F. and Levin, N.E., 2016. Stable isotopic composition of fossil mammal 
teeth and environmental change in southwestern South Africa during the Pliocene 
and Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 457, 396-
408. 

Levin, N.E., Cerling, T.E., Passey, B.H., Harris, J.M. and Ehleringer, J.R., 2006. A stable 
isotope aridity index for terrestrial environments. Proceedings of the National 
Academy of Sciences 103 (30), 11201-11205. 

Li, H., Kuman, K., Leader, G.M. and Couzens, R., 2016. Handaxes in South Africa: Two 
case studies in the early and later Acheulean. Quaternary International 480, 29-
42. 

Lister, A.M., 1996. The morphological distinction between bones and teeth of fallow deer 
(Dama dama) and red deer (Cervus elaphus). International Journal of 
Osteoarchaeology 6 (2), 119-143. 

Lister, A.M., 2013. The role of behaviour in adaptive morphological evolution of African 
proboscideans. Nature 500 (7462), 331. 

Liversidge, R., 1972. Grasses grazed by springbok and sheep. Proceedings of the Annual 
Congresses of the Grassland Society of Southern Africa 7 (1), 32-38. 

Livingstone, D.A. and Clayton, W.D., 1980. An altitudinal cline in tropical grass floras and 
its paleoecological significance. Quaternary Research 13: 392-402.  

Lloyd, P. & David, J. 2008. Damaliscus pygargus ssp. pygargus. The IUCN Red List of 
Threatened Species 2008: e.T6236A12589894. 
http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T6236A12589894.en 



 

462 

 

Lloyd, P. & David, J. 2008. Damaliscus pygargus. The IUCN Red List of Threatened 
Species 2008: e.T30208A9530977. 
http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T30208A9530977.en. 

Lockwood, C.A. and Tobias, P.V., 1999. A large male hominin cranium from Sterkfontein, 
South Africa, and the status ofAustralopithecus africanus. Journal of Human 
Evolution 36 (6), 637-685. 

Longinelli, A., 1984. Oxygen isotopes in mammal bone phosphate: a new tool for 
paleohydrological and paleoclimatological research? Geochimica et 
Cosmochimica Acta 48 (2), 385-390. 

Lordkipanidze, D., de León, M.S.P., Margvelashvili, A., Rak, Y., Rightmire, G.P., Vekua, 
A. and Zollikofer, C.P., 2013. A complete skull from Dmanisi, Georgia, and the 
evolutionary biology of early Homo. Science 342 (6156), 326-331. 

Lorenzen, E.D., Heller, R. and Siegismund, H.R., 2012. Comparative phylogeography of 
African savannah ungulates 1. Molecular ecology 21(15), 3656-3670. 

Lorenzo, C., Pablos, A., Carretero, J.M., Huguet, R., Valverdu, J., Martinón-Torres, M., 
Arsuaga, J.L., Carbonell, E. and de Castro, J.M.B., 2015. Early Pleistocene human 
hand phalanx from the Sima del Elefante (TE) cave site in Sierra de Atapuerca 
(Spain). Journal of Human Evolution 78, 114-121. 

Louys, J., Meloro, C., Elton, S., Ditchfield, P. and Bishop, L.C., 2011. Mesowear as a 
means of determining diets in African antelopes. Journal of Archaeological 
Science 38 (7),1485-1495. 

Louys, J., Ditchfield, P., Meloro, C., Elton, S. and Bishop, L.C., 2012. Stable isotopes 
provide independent support for the use of mesowear variables for inferring diets 
in African antelopes. Proceedings of the Royal Society of London B: Biological 
Sciences, p.rspb20121473. 

Louys, J., Meloro, C., Elton, S., Ditchfield, P. and Bishop, L.C., 2015. The potential and 
pitfalls of using simple dental metrics to infer the diets of African antelopes 
(Mammalia: Bovidae). Palaeontologia Africana 48, 8-24. 

Louys, J. and Faith, J.T., 2015. Phylogenetic topology mapped onto dietary ecospace 
reveals multiple pathways in the evolution of the herbivorous niche in A frican 
Bovidae. Journal of Zoological Systematics and Evolutionary Research 53 (2), 
140-154. 

Low, A.B. and Rebelo, A.G., 1996. Vegetation of South Africa, Lesotho and Swaziland. 
Department of Environmental Affairs and Tourism, Pretoria, 85pp. ISBN 0–621–
17316–9. 

Lubinski, P.M., 2001. Estimating age and season of death of pronghorn antelope 
(Antilocapra americana Ord) by means of tooth eruption and wear. International 
Journal of Osteoarchaeology 11(3), 218-230. 

Lucas, P.W., 2004. Dental functional morphology: how teeth work. Cambridge University 
Press. 

Lucas, P. W., P. Constantino, B. Wood, and B. Lawn. 2008. Dental enamel as a dietary 
indicator in mammals. BioEssays 30, 374–385. 

Lucas, P.W., Omar, R., Al-Fadhalah, K., Almusallam, A.S., Henry, A.G., Michael, S., Thai, 
L.A., Watzke, J., Strait, D.S. and Atkins, A.G., 2013. Mechanisms and causes of 
wear in tooth enamel: implications for hominin diets. Journal of the Royal Society 
Interface 10 (80), 20120923. 

Lucas, P.W., Casteren, A.V., Al-Fadhalah, K., Almusallam, A.S., Henry, A.G., Michael, S., 
Watzke, J., Reed, D.A., Diekwisch, T.G., Strait, D.S. and Atkins, A.G., 2014, The 
role of dust, grit and phytoliths in tooth wear. Annales Zoologici Fennici 51, No. 
1-2, 143-152. Finnish Zoological and Botanical Publishing. 

Lupien, R., Russell, J.M., Campisano, C.J., Feibel, C.S., Deino, A.L., Kingston, J., Potts, R. 
and Cohen, A.S., 2017, December. A synthesis of Plio-Pleistocene leaf wax 
biomarker records of hydrological variation in East Africa and their relationship 
with hominin evolution. In AGU Fall Meeting Abstracts. 

Lupien, R.L., Russell, J.M., Feibel, C., Beck, C., Castañeda, I., Deino, A. and Cohen, A.S., 
2018. A leaf wax biomarker record of early Pleistocene hydroclimate from West 
Turkana, Kenya. Quaternary Science Reviews 186, 225-235. 

Luyt, J., 2001. Revisiting the palaeoenvironments of the South African hominid-bearing 
Plio Pleistocene sites: new isotopic evidence from Sterkfontein (Doctoral 
dissertation, University of Cape Town). 

Luyt, J., Lee-Thorp, J.A. and Avery, G., 2000. New light on Middle Pleistocene west coast 
environments from Elandsfontein, Western Cape Province, South Africa. South 
African Journal of Science 96 (7), 339-403. 



 

463 

 

Luyt, C.J. and Lee-Thorp, J.A., 2003. Carbon isotope ratios of Sterkfontein fossils indicate 
a marked shift to open environments c. 1.7 Myr ago: research articles: human 
origins research in South Africa. South African Journal of Science 99 (5-6), 271-
273. 

Luyt, C., 2017. Stable light isotopes in fauna as environmental proxies in the Southern 
African winter and year-round rainfall zones (Doctoral dissertation), University of 
Cape Town.). 

Luyt, J., and Sealy, J., 2018. Inter-tooth comparison of δ13 C and δ18O in ungulate tooth 
enamel from south-western Africa. Quaternary International: In press. 

Luz, B., Cormie, A.B. and Schwarcz, H.P., 1990. Oxygen isotope variations in phosphate 
of deer bones. Geochimica et Cosmochimica Acta 54 (6), 1723-1728. 

Lyons, R.P., Scholz, C.A., Cohen, A.S., King, J.W., Brown, E.T., Ivory, S.J., Johnson, 
T.C., Deino, A.L., Reinthal, P.N., McGlue, M.M. and Blome, M.W., 2015. 
Continuous 1.3-million-year record of East African hydroclimate, and implications 
for patterns of evolution and biodiversity. Proceedings of the National Academy of 
Sciences 112 (51), 15568-15573. 

Maguire, B., 1980a. The potential vegetable dietary of Plio-Pleistocene hominids at 
Makapansgat. Palaeontologia Africana 23, 69. 

Maguire, B., 1980b. Further observations on the nature and provenance of the lithic 
artefacts from the Makapansgat Limeworks. Palaeontologia africana 23, 127-151.  

Maguire, J., 2009. An Overview of the Physical Setting of Makapan. IN: McNabb, J., & 
Sinclair, A., (Eds.) The Cave of Hearths: Makapan Middle Pleistocene Research 
Project: Field research by Anthony Sinclair and Patrick Quinney, 1996-2001. 
Archaeopress.P. 29-48.  

Malan, B.D., 1947. Flake tools and artefacts in the Stellenbosch Fauresmith transition in the 
Vaal River Valley. South African Journal of Science 43 (7), 295-303. 

Malmgren, B.A., Berggren, W.A. and Lohmann, G.P., 1983. Evidence for punctuated 
gradualism in the Late Neogene Globorotalia tumida lineage of planktonic 
foraminifera. Paleobiology, 377-389. 

Maltby, M., 1987. The animal bones from the excavations at Owslebury, Hants. An Iron 
Age and Early Romano-British Settlement. Unpublished Ancient Monuments 
Laboratory Report 6/87.  

Maltby, M., 2014. The exploitation of animals in Roman Britain. IN: Millet, M., Revell, L., 
and Moore, A., (Eds.) The Oxford Handbook of Roman Britain. Oxford University 
Press: Oxford.  

Martin, L., 1985. Significance of enamel thickness in hominoid evolution. Nature 314 
(6008), 260. 

Maslin, M. and Christensen,B., 2007. Tectonics, orbital forcing, global climate change and 
human evolution in Africa: introduction to the African paleoclimate special 
volume. Journal of Human Evolution 53 (5) 443-464.  

Maslin, M., Brierley, C., Milner, A.M., Shultz, S., Trauth, M.H., & Wison, K.E., 2014. East 
African climate pulses and early human evolution. Quaternary Science Reviews 
101, 1-17.  

Maslin, M., Shultz, S., & Trauth, M. 2015. A synthesis of the theories and concepts of early 
human evolution. Philosophical transactions of the Royal Society of London. 
Series B, Biological Sciences. 370 (1663) 1-12.  

Mason, R.J., 1962. Prehistory of the Transvaal. Witwatersrand University Press, 
Johannesburg. 

Mason, R., 1976. Exploration archaeology of the Kaokoveld and southern Angola and the 
potential australopithecine sites in the Serra da Chela massif, southern 
Angola. Annals of the South African Museum 71, 215-223. 

Mason, R. J. 1988. Cave of Hearths, Makapansgat, Transvaal. Occasional Papers of the 
Archaeological Research Unit, University of the Witwatersrand 21:1–713. 

Massey, F.P., Smith, M.J., Lambin, X. & Hartley, S.E., 2008. Are silica defences in grasses 
driving vole population cycles? Biology Letters 4, 419–422. 

Matmon A., Ron H., Chazan M., Porat N., Horwitz L.K., 2012, Reconstructing the History 
of Sediment Deposition in Caves: A Case Study from Wonderwerk Cave, South 
Africa. Geological Society of America Bulletin, 24 (3-4) 611-625. 

Matthews, G.J., Thiruvathukal, G.K., Luetkemeier, M.P. and Brophy, J.K., 2017. 
Examining the use of Amazon’s Mechanical Turk for edge extraction of the 
occlusal surface of fossilized bovid teeth. PLOS ONE 12(7), p.e0179757. 



 

464 

 

Maxwell, S.J., Hopley, P.J., Upchurch, P. and Soligo, C., 2018. Sporadic sampling, not 
climatic forcing, drives observed early hominin diversity. Proceedings of the 
National Academy of Sciences 115 (19), 4891-4896. 

Mayr, E., 1950, January. Taxonomic categories in fossil hominids. IN: Cold Spring Harbor 
Symposia on Quantitative Biology (Vol. 15). Cold Spring Harbor Laboratory 
Press, p. 109-118 

Mayr, E., 1963. Animal species and evolution (Vol. 797). Cambridge, Massachusetts: 
Belknap Press of Harvard University Press. 

Mayr, E., 1982. The growth of biological thought: Diversity, evolution, and inheritance. 
Harvard University Press. 

McClymont, E.L., Sosdian, S.M., Rosell-Melé, A. and Rosenthal, Y., 2013. Pleistocene 
sea-surface temperature evolution: Early cooling, delayed glacial intensification, 
and implications for the mid-Pleistocene climate transition. Earth-Science Reviews 
123, 173-193. 

McHenry, L.J. and de la Torre, I., 2018. Hominin raw material procurement in the 
Oldowan-Acheulean transition at Olduvai Gorge. Journal of human evolution 120, 
378-401. 

McKee J. 1991. Palaeo-ecology of the Sterkfontein hominids: a review and synthesis. 
Palaeontologia Africana 28, 41–51. 

McKee, J.K., 1993. Faunal dating of the Taung hominid fossil deposit. Journal of Human 
Evolution 25 (5), 363-376. 

McKee, J. 1996. Faunal turnover patterns in the Pliocene and Pleis- tocene of southern 
Africa. South African Journal of Science 92, 111– 113. 

McKee, J.K., 1999. The autocatalytic nature of hominid evolution in African Plio-
Pleistocene environments. African Biogeography, Climate Change, and Human 
Evolution. Oxford, New York .57-75. 

McKee, J.K., 2017. Correlates and catalysts of hominin evolution in Africa. Theory in 
Biosciences 136 (3-4), 123-140. 

McKee, J.K., Thackeray, J.F. and Berger, L.R., 1995. Faunal assemblage seriation of 
southern African Pliocene and Pleistocene fossil deposits. American Journal of 
Physical Anthropology 96 (3), 235-250. 

McNabb, J., Sinclair, A., Wadley, L., Maguire, J., Latham, A., Herries, A., Ogola, C., 
Curnoe, D. and Underhill, D., 2009. The Cave of Hearths: Makapan Middle 
Pleistocene Research Project: Field research by Anthony Sinclair and Patrick 
Quinney, 1996-2001. Archaeopress. 

McNaughton, S.J., 1985. Ecology of a grazing ecosystem: the Serengeti. Ecological 
monographs 55 (3), 259-294. 

McNaughton, S.J., Tarrants, J.L., McNaughton, M.M. and Davis, R.D., 1985. Silica as a 
defense against herbivory and a growth promotor in African grasses. Ecology, 
66(2), pp.528-535. 

Meadows, M.E., 2015. Seven decades of Quaternary palynological studies in southern 
Africa: a historical perspective. Transactions of the Royal Society of South Africa 
70 (2), 103-108. 

Meissner, H.H.; Pieterse, E.; Potgieter, J.H.J. 1996. Seasonal food selection and intake by 
male impala Aepyceros melampus in two habitats. South African Journal of 
Wildlife Research 26 (2), 56–63. 

Mendoza, M., Janis, C.M. and Palmqvist, P., 2002. Characterizing complex craniodental 
patterns related to feeding behaviour in ungulates: a multivariate approach. 
Journal of Zoology 258 (2), 223-246. 

Menter, C.G., Kuykendall, K.L., Keyser, A.W. and Conroy, G.C., 1999. First record of 
hominid teeth from the Plio-Pleistocene site of Gondolin, South Africa. Journal of 
Human Evolution 2 (37), 299-307. 

Merceron, G., Blondel, C., Brunet, M., Sen, S., Solounias, N., Viriot, L., Heintz, E., 2004. 
The late Miocene palaeoenvionments of Afghanistan as inferred from dental 
microwear in artiodactyls. Palaeogeaogrpahy, Palaeoclimatology, Palaeoecology 
207, 143-163.  

Merceron, G. and Ungar, P., 2005. Dental microwear and palaeoecology of bovids from the 
Early Pliocene of Langebaanweg, Western Cape province, South Africa. South 
African Journal of Science, 101(7-8), pp.365-370. 

Merceron, G., Escarguel, G., Angibault, J.M. and Verheyden-Tixier, H., 2010. Can dental 
microwear textures record inter-individual dietary variations? PLoS One 5 (3), 
e9542. 



 

465 

 

Merceron, G., Novello, A. and Scott, R.S., 2016. Paleoenvironments inferred from 
phytoliths and dental microwear texture analyses of meso-herbivores. Geobios 49 
(1-2), 135-146. 

Merceron, G., Colyn, M. and Geraads, D., 2018. Browsing and non-browsing extant and 
extinct giraffids: Evidence from dental microwear textural analysis. 
Palaeogeography, Palaeoclimatology, Palaeoecology, 505, 128-139. 

Michel, A.L., and Bengis, R.G., 2012. The African buffalo: a villain for inter-species 
spread of infectious diseases in southern Africa. Onderstepoort Journal of 
Veterinary Research 79 (2) 26-30.  

Mihlbachler, M.C. and Solounias, N., 2006. Coevolution of tooth crown height and diet in 
oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically 
independent contrasts. Journal of Mammalian Evolution 13 (1), 11-36. 

Mihlbachler, M.C., Campbell, D., Ayoub, M., Chen, C. and Ghani, I., 2016. Comparative 
dental microwear of ruminant and perissodactyl molars: Implications for 
paleodietary analysis of rare and extinct ungulate clades. Paleobiology 42 (1), 98-
116. 

Milazzo, M., Mirto, S., Domenici, P. and Gristina, M., 2013. Climate change exacerbates 
interspecific interactions in sympatric coastal fishes. Journal of Animal Ecology 82 
(2), 468-477. 

Miller III, W., 1996. Ecology of coordinated stasis. Palaeogeography, Palaeoclimatology, 
Palaeoecology 127 (1-4), 177-190. 

Miller, J.A., 1991. Does brain size variability provide evidence of multiple species in Homo 
habilis? American Journal of Physical Anthropology 84 (4), 385-398. 

Miller, J.M.A., 2000. Craniofacial variation in Homo habilis: an analysis of the evidence 
for multiple species. American Journal of Physical Anthropology: The Official 
Publication of the American Association of Physical Anthropologists 112 (1), 103-
128. 

Mills, M.G.L. and Hes, L., 1997. The complete book of southern African mammals. Struik 
Publishers, Cape Town.  

Milton, S.J., Dean, W.R.J. and Marincowitz, C.P., 1992. Preferential utilization of pans by 
springbok (Antidorcas marsupialis). Journal of the Grassland Society of Southern 
Africa 9 (3), 114-118. 

Mitchell, P. 2002. The Archaeology of Southern Africa. Cambridge University Press: 
Cambridge.  

Mitchell, D., Maloney, S.K., Laburn, H.P., Knight, M.H., Kuhnen, G. and Jessen, C., 1997. 
Activity, blood temperature and brain temperature of free-ranging springbok. 
Journal of Comparative Physiology B 167 (5), 335-343. 

Mix, A.C., Pisias, N.G., Rugh, W., Wilson, J., Morey, A. and Hagelberg, T.K., 1995. 17. 
Benthic foraminifer stable isotope record from Site 849 (0-5 Ma): local and global 
climate changes.  Proceedings of the  Ocean  Drilling Programme, Scientific 
Results (138), 371-412. 

Moggi-Cecchi, J., Grine, F.E. and Tobias, P.V., 2006. Early hominid dental remains from 
Members 4 and 5 of the Sterkfontein Formation (1966–1996 excavations): 
catalogue, individual associations, morphological descriptions and initial metrical 
analysis. Journal of Human Evolution 50 (3), 239-328. 

Moggi-Cecchi, J., Menter, C., Boccone, S. and Keyser, A., 2010. Early hominin dental 
remains from the Plio-Pleistocene site of Drimolen, South Africa. Journal of 
Human Evolution 58 (5), 374-405. 

Mokokwe, D.W., 2016. Taxonomy, taphonomy and spatial distribution of the 
cercopithecoid postcranial fossils from Sterkfontein caves. (Doctoral dissertation) 
University of the Witwatersrand. 

Mooney, H.A., Troughton, J.H. and Berry, J.A., 1977. Carbon isotope ratio measurements 
of succulent plants in southern Africa. Oecologia 30 (4), 295-305. 

Moore, S.M., Azman, A.S., Zaitchik, B.F., Mintz, E.D., Brunkard, J., Legros, D., Hill, A., 
McKay, H., Luquero, F.J., Olson, D. and Lessler, J., 2017. El Niño and the shifting 
geography of cholera in Africa. Proceedings of the National Academy of Sciences 
114 (17),4436-4441. 

Mucina, L. and Rutherford, M.C., 2006. The vegetation of South Africa, Lesotho and 
Swaziland. Strelitzia 19, South African National Biodiversity Institute, Pretoria. 
Memoirs of the Botanical Survey of South Africa. 

Mudelsee, M. and Raymo, M.E., 2005. Slow dynamics of the Northern Hemisphere 
glaciation. Paleoceanography 20, PA4022, doi:10.1029/2005PA001153. 



 

466 

 

Murphy, B.P., Bowman, D.M., Gagan, M.K., 2007a. Sources of carbon isotope variation in 
kangaroo bone collagen and tooth enamel. Geochimica et Cosmochimica Acta 71 
(15), 3847-3858. 

Murphy, B.P., Bowman, D.M., Gagan, M.K., 2007b. The interative effect of temperature 
and humidity on the oxygen isotope composition of kangaroos. Functional 
Ecology 21 (4), 757-766. 

Murphy, B.P. and Bowman, D.M., 2012. What controls the distribution of tropical forest 
and savanna? Ecology letters 15 (7), 748-758. 

Nagy, K.A. and Knight, M.H., 1994. Energy, water, and food use by springbok antelope 
(Antidorcas marsupialis) in the Kalahari Desert. Journal of Mammalogy 75 (4), 
860-872. 

National Research Council, 2010. Understanding climate's influence on human evolution. 
national academies Press. 

Neitz, W.,(1944). The susceptibility of the springbuck (Antidorcas marsupialis) to 
heartwater. Onderstepoort Journal of Veterinary Science and Animal Industry 20, 
p.25. 

Nengo, I., Tafforeau, P., Gilbert, C.C., Fleagle, J.G., Miller, E.R., Feibel, C., Fox, D.L., 
Feinberg, J., Pugh, K.D., Berruyer, C. and Mana, S., 2017. New infant cranium 
from the African Miocene sheds light on ape evolution. Nature 548 (7666), 169. 

New, M., Hulme, M. and Jones, P., 1999. Representing twentieth-century space–time 
climate variability. Part I: Development of a 1961–90 mean monthly terrestrial 
climatology. Journal of climate 12 (3), 829-856. 

Newman, R. 1993. The incidence of damage marks on Swartkrans fossil bones from the 
1979–1986 excavations. IN: Brain, C.K. (ed.) Swartkrans: A Cave’s Chronicle of 
Early Man. Transvaal Museum Monograph No. 8. Pretoria: Transvaal Museum, p. 
217–228 

Nigro, J.D., Ungar, P.S., de Ruiter, D.J. and Berger, L.R., 2003. Developing a geographic 
information system (GIS) for mapping and analysing fossil deposits at Swartkrans, 
Gauteng Province, South Africa. Journal of Archaeological Science 30 (3), 317-
324. 

Ogola, C.A., 2009. The Sterkfontein western breccias: statigraphy, fauna and artefacts. 
(Doctoral dissertation) University of the Witwatersrand. 

Olejniczak, A.J., Gilbert, C.C., Martin, L.B., Smith, T.M., Ulhaas, L. and Grine, F.E., 2007. 
Morphology of the enamel-dentine junction in sections of anthropoid primate 
maxillary molars. Journal of human evolution 53 (3), 292-301. 

Orians, G.H. and Solbrig, O.T., 1977. A cost-income model of leaves and roots with special 
reference to arid and semiarid areas. The American Naturalist 111 (980), 677-690. 

Owen-Smith, N., 1987. The Pivotal Role of Megaherbivores. Paleobiology 13(4), 351-362.  
Owen-Smith, N., 2013. IUCN SSC Antelope Specialist Group. 2016. Tragelaphus 

strepsiceros. The IUCN Red List of Threatened Species 2016: 
e.T22054A50196734. http://dx.doi.org/10.2305/IUCN.UK.2016-
3.RLTS.T22054A50196734.en. [Downloaded on 26 July 2018]. 

O’Regan, H.J. and Menter, C.G., 2009. Carnivora from the Plio-Pleistocene hominin site of 
Drimolen, Gauteng, South Africa. Geobios 42 (3), 329-350. 

O'Regan, H.J. and Reynolds, S.C., 2009. An ecological reassessment of the southern 
African carnivore guild: a case study from Member 4, Sterkfontein, South 
Africa. Journal of Human Evolution 57 (3), 212-222.  

O'Regan, H.J., Turner, A., Bishop, L.C., Elton, S. and Lamb, A.L., 2011. Hominins without 
fellow travellers? First appearances and inferred dispersals of Afro-Eurasian large-
mammals in the Plio-Pleistocene. Quaternary Science Reviews 30 (11-12), 1343-
1352. 

O’Connor, T.G., Bredenkamp, G.J., 1997. Grassland. IN: Crowling, R.M., Richardson, 
D.M., Pierce, S.M. (Eds.), Vegetation of Southern Africa. Cambridge University 
Press, Cambridge, p. 215-257. 

Panagopoulou, E., Tourloukis, V., Thompson, N., Konidaris, G., Athanassiou, A., Giusti, 
D., Tsartsidou, G., Karkanas, P. and Harvati, K., 2018. The lower palaeolithic site 
of Marathousa 1, Megalopolis, Greece: overview of the evidence. Quaternary 
International, In Press. 

Pante, M.C., Njau, J.K., Hensley-Marschand, B., Keevil, T.L., Martín-Ramos, C., Peters, 
R.F. and de la Torre, I., 2018. The carnivorous feeding behavior of early Homo at 
HWK EE, Bed II, Olduvai Gorge, Tanzania. Journal of human evolution 120, 215-
235. 



 

467 

 

Partridge, T.C., 1986. Palaeoecology of the Pliocene and lower Pleistocene hominids of 
southern Africa: how good is the chronological and palaeoenvironmental 
evidence. South African Journal of Science 82 (2), 80-83. 

Partridge, T.C., 1978. Re-appraisal of lithostratigraphy of Sterkfontein hominid site. 
Nature, 275 (5678), 282. 

Partridge, T.C., 1979. Re-appraisal of lithostratigraphy of Makapansgat Limeworks 
hominid site. Nature 279 (5713), 484. 

Partridge, T.C., 1982. Some preliminary observations on the stratigraphy and 
sedimentology of the Kromdraai B hominid site. Palaeoecology of Africa and the 
surrounding islands 15, 3-12. 

Partridge, T.C., 2005. Dating of the Sterkfontein hominids: progress and 
possibilities. Transactions of the Royal Society of South Africa 60 (2), 107-109. 

Partridge, T.C. and Watt, I.B., 1991. The stratigraphy of the Sterkfontein hominid deposit 
and its relationship to the underground cave system. Palaentologia Africana 28, 
35-40. 

Passey, B.H. and Cerling, T.E., 2002. Tooth enamel mineralization in ungulates: 
implications for recovering a primary isotopic time-series. Geochimica et 
Cosmochimica Acta 66 (18), 3225-3234. 

Paterson, H.E., 1985. The recognition concept of species. IN: Vrba, E.S., Species and 
Speciation. Transvaal Museum Monograph 4, 21-29.  

Peters, J., Gautier, A., Brink, J.S. and Haenen, W., 1994. Late quaternary extinction of 
ungulates in Sub-Saharan Africa. Journal of Archaeological Science, 17-28. 

Peterson, A., Abella, E.F., Grine, F.E., Teaford, M.F. and Ungar, P.S., 2018. Microwear 
textures of Australopithecus africanus and Paranthropus robustus molars in 
relation to paleoenvironment and diet. Journal of human evolution 119, pp.42-63. 

 Pfister, J.A., 1999. Behavioral strategies for coping with poisonous plants. K. 
Launchbaugh, KL, KD Sanders, and JC Mosley [EDS.]. Grazing behavior of 
livestock and wildlife. Moscow, ID: Idaho Forest, Wildlife, and Range 
Experimental Station Bulletin 70, 45-59. 

Philander, S.G. and Fedorov, A.V., 2003. Role of tropics in changing the response to 
Milankovich forcing some three million years ago. Paleoceanography 18 (2). 

Pickering, T.R., 1999. Taphonomic interpretations of the Sterkfontein early hominid site 
(Gauteng, South Africa) reconsidered in light of recent evidence. PhD Thesis, 
University of Wisconsin.  

Pickering, T.P., 2001. Taphonomy of the Swartkrans hominid postcrania and its bearing on 
issues of meat-eating and fire management. IN: Stanford, C.B., Bunn, H.T. (Eds.), 
Meat-eating and Human Evolution. Oxford University Press, Oxford, p. 33–51 

Pickering, T.R., 2002. Reconsideration of criteria for differentiating faunal assemblages 
accumulated by hyenas and hominids. International Journal of 
Osteoarchaeology 12 (2), 127-141. 

Pickering, T.R., White, T.D. and Toth, N., 2000. Brief communication: Cutmarks on a 
Plio‐Pleistocene hominid from Sterkfontein, South Africa. American Journal of 
Physical Anthropology: The Official Publication of the American Association of 
Physical Anthropologists 111 (4), 579-584. 

Pickering, T.R., Clarke, R.J. and Heaton, J.L., 2004a. The context of Stw 573, an early 
hominid skull and skeleton from Sterkfontein Member 2: taphonomy and 
paleoenvironment. Journal of Human Evolution 46 (3), 277-295. 

Pickering, T.R., Domı́nguez-Rodrigo, M., Egeland, C.P. and Brain, C.K., 2004b. Beyond 
leopards: tooth marks and the contribution of multiple carnivore taxa to the 
accumulation of the Swartkrans Member 3 fossil assemblage. Journal of Human 
Evolution 46 (5), 595-604. 

Pickering, R., Hancox, P.J., Lee-Thorp, J.A., Grün, R., Mortimer, G.E., McCulloch, M. and 
Berger, L.R., 2007. Stratigraphy, U-Th chronology, and paleoenvironments at 
Gladysvale Cave: insights into the climatic control of South African hominin-
bearing cave deposits. Journal of Human Evolution 53 (5), 602-619. 

Pickering, R. and Kramers, J.D., 2010. Re-appraisal of the stratigraphy and determination 
of new U-Pb dates for the Sterkfontein hominin site, South Africa. Journal of 
Human Evolution 59 (1), 70-86. 

Pickering, R., Dirks, P.H., Jinnah, Z., De Ruiter, D.J., Churchill, S.E., Herries, A.I., 
Woodhead, J.D., Hellstrom, J.C. and Berger, L.R., 2011. Australopithecus sediba 
at 1.977 Ma and implications for the origins of the genus Homo. science 333 
(6048), 1421-1423. 



 

468 

 

Pickering, T.R., Heaton, J.L., Clarke, R.J., Sutton, M.B., Brain, C.K. and Kuman, K., 2012. 
New hominid fossils from Member 1 of the Swartkrans formation, South 
Africa. Journal of human evolution 62 (5), 618-628. 

Pickering, T.R., Heaton, J.L., Sutton, M.B., Clarke, R.J., Kuman, K., Senjem, J.H. and 
Brain, C.K., 2016. New early Pleistocene hominin teeth from the Swartkrans 
Formation, South Africa. Journal of human evolution 100, 1-15. 

Pickford, M., 1990. Some fossiliferous plio-pleistocene cave systems of Ngamiland, 
Botswana. Botswana Notes and Records 22, 1-15. 

Pickford, M., 2004. Southern Africa: a cradle of evolution. South African Journal of 
Science 100 (3-4), 205-214. 

Pickford, M., Mein, P. and Senut, B., 1994. Fossiliferous Neogene karst fillings in Angola, 
Botswana and Namibia. South African Journal of Science 90,227-227. 

Pickford, M. and Mein, P., 1988. The discovery of fossiliferous Plio-Pleistocene cave 
fillings in Ngamiland, Botswana. Comptes rendus de l'Académie des sciences. 
Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la 
Terre 307 (14), 1681-1686.  

Pickford, M., Mein, P. and Senut, B., 1992. Primate bearing Plio-Pleistocene cave deposits 
of Humpata, southern Angola. Human Evolution 7(1), 17-33. 

Pickford, M., Mein, P. and Senut, B., 1994. Fossiliferous Neogene karst fillings in Angola, 
Botswana and Namibia. South African Journal of Science 90, 227-227. 

Pickford, M., 2013. The diversity, age, biogeographic and phylogenetic relationships of 
Plio-Pleistocene suids from Kromdraai, South Africa. Annals of the Ditsong 
National Museum of Natural History 3 (1), p.11-32. 

Plug, I, and Peters, J., 1991. Osteomorphological Differences in the Appendicular Skeleton 
of Antidorcas Marsupialis (Zimmerman, 1780) and Antidorcas Bondi (Cooke & 
Wells, 1951)(Mammalia: Bovidae). Transvaal Museum. 

Plummer, T., 2004. Flaked stones and old bones: biological and cultural evolution at the 
dawn of technology. American journal of physical anthropology 125 (S39), 118-
164. 

Plummer, T.W. and Bishop, L.C., 1994. Hominid paleoecology at Olduvai Gorge, Tanzania 
as indicated by antelope remains. Journal of Human Evolution 27(1-3), 47-75. 

Plummer, T., Bishop, L.C., Ditchfield, P. and Hicks, J., 1999. Research on Late Pliocene 
Oldowan sites at Kanjera South, Kenya Journal of Human Evolution 36 (2), 151-
170. 

Podlesak, D.W., Torregrossa, A.M., Ehleringer, J.R., Dearing, M.D., Passey, B.H. and 
Cerling, T.E., 2008. Turnover of oxygen and hydrogen isotopes in the body water, 
CO2, hair, and enamel of a small mammal Geochimica et Cosmochimica Acta 72 
(1), 19-35. 

Pollard, A. M. and Heron, C., 2008. Archaeological Chemistry VIII [online]. second. Royal 
Society of Chemistry. Available from: http://pubs.acs.org/doi/book/10.1021/bk-
2013-1147. 

Potts, R., and Deino, A., 1995. Mid-Plesitocene change in large mammal fauna. Quaternary 
Research 43, 106-113.  

Potts, R., 1996a. Evolution and climate variability. Science 273 (5277), 922-923. 
Potts, R. 1996b. Humanity’s Descent: the Consequences of Ecological Instability. William 

Morrow & Co. Inc.: New York.  
Potts, R., 1998a. Environmental hypotheses of hominin evolution. American Journal of 

Physical Anthropology 107 (S27), 93-136. 
Potts, R., 1998b. Variability selection in hominid evolution. Evolutionary Anthropology: 

Issues, News, and Reviews: Issues, News, and Reviews 7 (3), 81-96. 
Potts, R., 2013. Hominin evolution in settings of strong environmental variability. 

Quaternary Science Reviews 73, 1-13. 
Potts, R. and Behrensmeyer, A.K., 1992. Terrestrial paleoecology in the Cenozoic. 

Terrestrial Ecosystems Through Time, University of Chicago Press, Chicago, 
p.419-541. 

Potts, R., and Faith,J., 2015. Alternating high and low climate variability: The context of 
natural selection in Plio-Pleistocene hominin evolution. Journal of Human 
Evolution 87, 5-20. 

Potts, R., Behrensmeyer, A.K., Faith, J.T., Tryon, C.A., Brooks, A.S., Yellen, J.E., Deino, 
A.L., Kinyanjui, R., Clark, J.B., Haradon, C.M. and Levin, N.E., 2018. 
Environmental dynamics during the onset of the Middle Stone Age in eastern 
Africa. Science 360 (6384), .86-90. 



 

469 

 

Prassack, K.A., Pante, M.C., Njau, J.K. and de la Torre, I., 2018. The paleoecology of 
Pleistocene birds from Middle Bed II, at Olduvai Gorge, Tanzania, and the 
environmental context of the Oldowan-Acheulean transition. Journal of human 
evolution 120, 32-47. 

Prentice, M.L. and Denton, G.H., 1988. The deep-sea oxygen isotope record, the global ice 
sheet, and hominid evolution. P383-403. IN: Grine, F.E. (Ed.) Evolutionary 
History of the Robust Australopithecines. Aldine de Gruyter. New York. 

Prothero, D.R., 1999. Does climatic change drive mammalian evolution. GSA today 9 (9), 
1-7. 

Prothero, D.R. and Heaton, T.H., 1996. Faunal stability during the early Oligocene climatic 
crash. Palaeogeography, Palaeoclimatology, Palaeoecology 127 (1-4), 257-283. 

Quinn, R., 2017. The Response of Eastern African Terrestrial Environments to the Mid-
Pleistocene Climate Transition: Paleosol Isotopic Evidence from the Turkana 
Basin, Kenya (274408). In 2017 Fall Meeting. 

Rabenold, D. and Pearson, O.M., 2011. Abrasive, silica phytoliths and the evolution of 
thick molar enamel in primates, with implications for the diet of Paranthropus 
boisei. PLoS One, 6 (12), e28379. 

Radloff, F.G.T., 2008. The ecology of large herbivores native to the coastal lowlands of the 
Fynbos Biome in the Western Cape, South Africa (Doctoral dissertation, 
Stellenbosch: Stellenbosch University). 

Ramberg, L., Hancock, P., Lindholm, M., Meyer, T., Ringrose, S., Sliva, J., Van As, J. and 
Vander Post, C., 2006. Species diversity of the Okavango delta, Botswana. 
Aquatic sciences 68 (3), 310-337. 

Ramdarshan, A., Blondel, C., Brunetière, N., Francisco, A., Gautier, D., Surault, J. and 
Merceron, G., 2016. Seeds, browse, and tooth wear: a sheep perspective. Ecology 
and evolution 6 (16), 5559-5569. 

Ramdarshan, A., Blondel, C., Gautier, D., Surault, J. and Merceron, G., 2017. Overcoming 
sampling issues in dental tribology: Insights from an experimentation on 
sheep. Palaeontologia Electronica 20 (3), 1-19. 

Ramsay, M. and Jenkins, T., 1984. α-thalassaemia in Africa: The oldest malaria protective 
trait?. The Lancet 324 (8399), 410. 

Ratnam, J., Bond, W.J., Fensham, R.J., Hoffmann, W.A., Archibald, S., Lehmann, C.E., 
Anderson, M.T., Higgins, S.I. and Sankaran, M., 2011. When is a ‘forest’a 
savanna, and why does it matter?. Global Ecology and Biogeography 20 (5), 653-
660. 

Rautenbach, I.L., 1971. Ageing Criteria in the Springbok, Antidorcas marsupialis 
(Zimmermann, 1780) (Artiodactyla: Bovidae). Annals of the Transvaal Museum 
27, 83-133.  

Ravelo, A.C., Andreasen, D.H., Lyle, M., Lyle, A.O. and Wara, M.W., 2004. Regional 
climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 
263-267.  

Raymo, M.E., Oppo, D.W. and Curry, W., 1997. The mid‐Pleistocene climate transition: 
A deep sea carbon isotopic perspective. Paleoceanography 12 (4), 546-559. 

Reade, H., Stevens, R.E., Barker, G. and O'Connell, T.C., 2015. Tooth enamel sampling 
strategies for stable isotope analysis: Potential problems in cross-method data 
comparisons. Chemical Geology 404, 126-135. 

Reed, K.E., 1996. The paleoecology of Makapansgat and other African Plio-Pleistocene 
hominid localities. 

Reed, K.E., 1997. Early hominid evolution and ecological change through the African Plio-
Pleistocene. Journal of human evolution 32 (2-3), 289-322. 

Reed, K.E., 1998. Using large mammal communities to examine ecological and taxonomic 
structure and predict vegetation in extant and extinct assemblages. Paleobiology 
24 (3), 384-408. 

Reed, K.E. and Rector, A., 2006. African Pliocene paleoecology. IN: Ungar, P. (Ed.) 
Evolution of the human diet: the known, the unknown, and the unknowable, p.262-
288. 

Reynolds, S. C. 2005. Geographic variation in selected African mammalian taxa: a 
comparison of modern and fossil conspecifics. PhD Thesis, Liverpool John 
Moores University. 

Reynolds, S.C., 2007. Mammalian body size changes and Plio-Pleistocene environmental 
shifts: implications for understanding hominin evolution in eastern and southern 
Africa. Journal of Human Evolution 53, 528-548.  



 

470 

 

Reynolds, S.C., 2010. Morphological evaluation of genetic evidence for a Pleistocene 
extirpation of eastern African impala. South African Journal of Science 106 
(11/12), 325 7pages. 

Reynolds, S.C., Clarke, R.J., Kuman, K., 2007. The view from Lincoln Cave: mid- to late 
Pleistocene fossil deposits from the Sterkfontein hominid site, South African 
Journal of Human Evolution 53, 260–271. 

Reynolds, S.C., Bailey, G.N. and King, G.C., 2011. Landscapes and their relation to 
hominin habitats: case studies from Australopithecus sites in eastern and southern 
Africa. Journal of Human Evolution 60 (3), 281-298. 

Reynolds, S. C. & Kibii, J. M., 2011. Sterkfontein at 75: review of Palaeoenvironments, 
fauna and archaeology from the hominin site of Sterkfontein (Gauteng Province, 
South Africa). Palaeontologia Africana. 46, 59-88.  

Reynolds, S.C., 2012. Nyctereutes terblanchei: The raccoon dog that never was. South 
African Journal of Science 108 (1-2), 1-10. 

Reynolds, S.C., Wilkinson, D. M., Marston, C.G., and O’Regan, H, J., 2015. The ‘mosaic 
habitat’ concept in human evolution: past and present. Transactions of the Royal 
Society of South Africa 70 (1) 57-69.  

Rice, W.R., 1987. Speciation via habitat specialization: the evolution of reproductive 
isolation as a correlated character. Evolutionary Ecology 1 (4), 301-314. 

Rivals, F. and Deniaux, B., 2005. Investigation of human hunting seasonality through 
dental microwear analysis of two Caprinae in late Pleistocene localities in 
Southern France. Journal of Archaeological Science 32 (11), 1603-1612. 

Rivals, F., Uno, K.T., Bibi, F., Pante, M.C., Njau, J. and de la Torre, I., 2018. Dietary traits 
of the ungulates from the HWK EE site at Olduvai Gorge (Tanzania): Diachronic 
changes and seasonality. Journal of human evolution 120, 203-214. 

Robinson, J.T., 1954a. The genera and species of the Australopithecinae. American Journal 
of Physical Anthropology 12(2), 181-200. 

Robinson, J.T., 1954b. Prehominid dentition and hominid evolution. Evolution 8 (4), 324-
334. 

Robinson, J.T., 1963. Adaptive radiation in the Australop- ithecines and the origin of man. 
In: Howell, F.C., Bourlière,F. (Eds.), African Ecology and Human Evolution. 
Aldine, Chicago, p. 385–416. 

Robinson, J.T., 1965. Homo ‘habilis’ and the australopithecines. Nature 205 (4967), p.121. 
Robinson, J.T. and Mason, R.J., 1962. Australopithecines and artefacts at Sterkfontein. The 

South African Archaeological Bulletin 17 (66), 87-126. 
Rockwell, R.F., Gormezano, L.J. and Koons, D.N., 2011. Trophic matches and 

mismatches: can polar bears reduce the abundance of nesting snow geese in 
western Hudson Bay? Oikos 120 (5), 696-709. 

Rosvold, J., Herfindal, I., Andersen, R. and Hufthammer, A.K., 2014. Long-term 
morphological changes in the skeleton of red deer (Artiodactyla, Cervidae) at its 
northern periphery. Journal of Mammalogy 95 (3), 626-637. 

Rutherford, M.C., 1997. Categorization of biomes. Vegetation of southern Africa, 91-98. 
Sage, R.F. and Kubien, D.S., 2003. Quo vadis C4? An ecophysiological perspective on 

global change and the future of C4 plants. Photosynthesis research 77 (2-3), 209-
225. 

Sankaran, M., Hanan, N.P., Scholes, R.J., Ratnam, J., Augustine, D.J., Cade, B.S., 
Gignoux, J., Higgins, S.I., Le Roux, X., Ludwig, F., Ardo, J., Banyikwa, F., 
Bronn, A., Bucini, G., Caylor, K.K., Coughenour, M.B., Diouf, A., Ekaya, W. 
Feral, C.J., February, E.C. Frost, P.G., Hiernaux, P., Hrabar, H.Metzger, K.L., 
Prins, H.H.T., Ringrose, S., Sea, W., Tews, J., Worden, J., Zambatis, N., 2005. 
Determinants of woody cover in African savannas. Nature 438, 846-849.  

Sanson, G., 2006. The biomechanics of browsing and grazing. American Journal of Botany 
93 (10), 1531-1545. 

Sanson, G.D., Vickers-Rich, P., Monaghan, J.M., Baird, R.F. and Rich, T.H., 1991. 
Predicting the diet of fossil mammals. Vertebrate paleontology of Australasia, 
p.203-225. 

Sanson, G.D., Kerr, S.A. and Gross, K.A., 2007. Do silica phytoliths really wear 
mammalian teeth?. Journal of Archaeological Science 34 (4), 526-531. 

Sanson, G.D., Kerr, S. and Read, J., 2017. Dietary exogenous and endogenous abrasives 
and tooth wear in African buffalo. Biosurface and Biotribology 3 (4), 211-223. 

Scheiter, S., Higgins, S.I., Osborne, C.P., Bradshaw, C., Lunt, D., Ripley, B.S., Taylor, L.L. 
and Beerling, D.J., 2012. Fire and fire‐adapted vegetation promoted C4 
expansion in the late Miocene. New Phytologist 195 (3), 653-666. 



 

471 

 

Schliewen, U.K., Tautz, D. and Pääbo, S., 1994. Sympatric speciation suggested by 
monophyly of crater lake cichlids. Nature 368 (6472), 629. 

Schmid P. and Berger L.R. 1997. Middle Pleisto- cene hominid carpal proximal phalanx 
from the Gladysvale site, South Africa. South African Journal of Science 93, 430–
411. 

Scholes, R.J., 1997. Savanna. IN: Cowling, R.M., Richardson, D.M. and Pierce, S.M., 
(eds.) Vegetation of Southern Africa. Cambridge University Press: Cambridge. 
P.215-257.   

Schoeninger, M.J., Reeser, H. and Hallin, K., 2003. Paleoenvironment of Australopithecus 
anamensis at Allia Bay, East Turkana, Kenya: evidence from mammalian 
herbivore enamel stable isotopes. Journal of Anthropological Archaeology 22 (3), 
200-207. 

Scholes, R.J., 1997. Savanna. IN: Cowling, R.M., Richardson, D.M., Pierce, S.M. (Eds.), 
Vegetation of Southern Africa. Cambridge University Press, Cambridge, p. 258–
273. 

Schubert, B., Ungar, M., Sponheimer, M., & Reed, K.E., 2006 Microwear evidence for 
Plio-Pleistocene bovid diets from Makapansgat Limeworks Cave, South Africa. 
Palaeogeography, Palaeoclimatology, Palaeoecology 241 (2), 301-319.  

Schulz, E., Calandra, I. and Kaiser, T.M., 2010. Applying tribology to teeth of hoofed 
mammals. Scanning 32 (4), 162-182. 

Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G. and Kaiser, T.M., 2013a. 
Dietary abrasiveness is associated with variability of microwear and dental surface 
texture in rabbits. PLoS One 8 (2), e56167 

Schulz, E., Calandra, I. and Kaiser, T.M., 2013b. Feeding ecology and chewing mechanics 
in hoofed mammals: 3D tribology of enamel wear. Wear 300 (1-2), 169-179. 

Schutz, A.E.N., Bond, W.J. and Cramer, M.D., 2009. Juggling carbon: allocation patterns 
of a dominant tree in a fire-prone savanna. Oecologia 160 (2), 235. 

Schwarz, E., 1932. Neue diluviale Antilopen aus Ostafrika. Zentralbl. Miner. Geol. 
Palaontol. B 1–4. 

Schwarcz, H.P., Grün, R. and Tobias, P.V., 1994. ESR dating studies of the 
australopithecine site of Sterkfontein, South Africa. Journal of Human 
Evolution 26 (3), 175-181. 

Schwarcz, H.P. and Rink, W.J., 2000. ESR dating of the Die Kelders Cave 1 site, South 
Africa. Journal of Human Evolution 38 (1), 121-128. 

Schwartz, G.T., Thackeray, J.F., Reid, C. and Van Reenan, J.F., 1998. Enamel thickness 
and the topography of the enamel–dentine junction in South African Plio-
Pleistocene hominids with special reference to the Carabelli trait. Journal of 
Human Evolution 35 (4-5), 523-542. 

Scott, R.S., Ungar, P.S., Bergstrom, T.S., Brown, C.A., Grine, F.E., Teaford, M.F. and 
Walker, A., 2005. Dental microwear texture analysis shows within-species diet 
variability in fossil hominins. Nature 436 (7051), 693. 

Scott, R.S., Ungar, P.S., Bergstrom, T.S., Brown, C.A., Childs, B.E., Teaford, M.F. and 
Walker, A., 2006. Dental microwear texture analysis: technical considerations. 
Journal of Human Evolution 51 (4), 339-349. 

Scott, R.S., Teaford, M.F. and Ungar, P.S., 2012. Dental microwear texture and anthropoid 
diets. American Journal of Physical Anthropology 147 (4), 551-579. 

Semaw, S., Rogers, M. and Stout, D., 2009. The Oldowan-Acheulian transition: is there a 
“Developed Oldowan” artifact tradition?.In Sourcebook of Paleolithic transitions. 
Springer, New York. p. 173-193 

Semprebon, G.M., Godfrey, L.R., Solounias, N., Sutherland, M.R. and Jungers, W.L., 
2004. Can low-magnification stereomicroscopy reveal diet?. Journal of Human 
Evolution 47 (3), 115-144. 

Semprebon, G.M. and Rivals, F., 2010. Trends in the paleodietary habits of fossil camels 
from the Tertiary and Quaternary of North America. Palaeogeography, 
Palaeoclimatology, Palaeoecology 295 (1-2), 131-145. 

Senut, B., Pickford, M., Mein, P., Conroy, G. and Van Couvering, J., 1992. Discovery of 12 
new Late Cainozoic fossiliferous sites in palaeokarsts of the Otavi Mountains, 
Namibia. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, 
Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 314(7), pp.727-733. 

Sewell, L., Merceron, G., Hopley, P.J., Zipfel, B. and Reynolds, S.C., 2019. Using 
springbok (Antidorcas) dietary proxies to reconstruct inferred palaeovegetational 
changes over 2 million years in Southern Africa. Journal of Archaeological 
Science: Reports 23, 1014-1028 



 

472 

 

Shackleton, N.J., Berger, A. and Peltier, W.R., 1990. An alternative astronomical 
calibration of the lower Pleistocene timescale based on ODP Site 677. Earth and 
environmental science transactions of the royal society of Edinburgh 81 (4), 251-
261. 

Shipley, L.A., 1999. Grazers and browsers: how digestive morphology affects diet 
selection. Grazing behavior of livestock and wildlife 70, 20-27. 

Shipton, C.B.K., 2013. A million years of hominin sociality and cognition: Acheulean 
bifaces in the Hunsgi-Baichbal Valley, India. Archaeopress: Oxford, 9-123. 

Shipton, C., 2018. Biface Knapping Skill in the East African Acheulean: Progressive 
Trends and Random Walks. African Archaeological Review 35(1), 107-131. 

Shortridge, G.C., 1934. The mammals of south west Africa (Vol. 1, 2). London: Heinemann. 
Shultz S. and Maslin, M., 2013. Early Human Speciation, Brain Expansion and Dispersal 

Influenced by African Climate Pulses. PLoS ONE 8(10): 
e76750.doi:10.1371/journal.pone.0076750. 

Simpson, G.G., 1950, January. Some principles of historical biology bearing on human 
origins. In Cold Spring Harbor Symposia on Quantitative Biology 15, 55-66.  

Sinclair, A.R.E. and Norton-Griffiths, M., 1982. Does competition or facilitation regulate 
migrant ungulate populations in the Serengeti? A test of hypotheses. Oecologia 53 
(3), 364-369. 

Skinner, G.N., 1996. The Springbok: Antidorcas marsupialis (Zimmermann, 1790). 
Ecology and physiology. Behaviour. Transvaal Museum Monographs, 10 (1). 

Skinner, J.D. and Louw, G.N., 1996. The Springbok: Antidorcas marsupialis 
(Zimmermann, 1780). Transvaal Museum. 

Skinner, J.D. and Chimimba, C.T., 2005. The mammals of the southern African sub-region. 
Cambridge University Press, Cambridge.  

Skinner, A.R., Churchill, S.E., Berger, L.R., 2005. Dating at Plovers Lake by electron spin 
resonance. Paper presented at the 12th Congress of the Pan-African 
Archaeological Association for Prehistory and Related Studies, Gaborone. 

Skinner, M., Gunz, P., Wood, B.A., & Hublin, J., 2008 Enamel-dentine junction (EDJ) 
morphology distinguishes the lower molars of Australopithecus africanus and 
Paranthropus robustus. Journal of Human Evolution 55 (6) 979-88.  

Skinner, J. D., and Smithers, R.U.N., 1990. The mammals of the southern African 
subregion. University of Pretoria Press, South Africa. 

Skinner, M.M., Wood, B.A. and Hublin, J.J., 2009. Protostylid expression at the enamel-
dentine junction and enamel surface of mandibular molars of Paranthropus 
robustus and Australopithecus africanus. Journal of human evolution 56 (1), 76-
85. 

Sletten, H.R., Railsback, L.B., Liang, F., Brook, G.A., Marais, E., Hardt, B.F., Cheng, H. 
and Edwards, R.L., 2013. A petrographic and geochemical record of climate 
change over the last 4600 years from a northern Namibia stalagmite, with evidence 
of abruptly wetter climate at the beginning of southern Africa's Iron Age. 
Palaeogeography, palaeoclimatology, palaeoecology 376, 149-162. 

Smith, B.H., 2000. Schultz’s rule’and the evolution of tooth emergence and replacement 
patterns in primates and ungulates. Development, function and evolution of teeth, 
Cambridge University Press: Cambridge, p.212-227. 

Smith, B.N. and Epstein, S., 1971. Two categories of 13C/12C ratios for higher plants. 
Plant physiology 47(3), 380-384. 

Smith, H.F. and Grine, F.E., 2008. Cladistic analysis of early Homo crania from Swartkrans 
and Sterkfontein, South Africa. Journal of Human Evolution 54 (5), 684-704. 

Smithers, R.H.N., 1983. The mammals of the Southern African sub-region. University of 
Pretoria, Pretoria 

Sokal, R., and Michener, C., 1958. A statistical method for evaluating systematic 
relationships. University of Kansas Science Bulletin 38, 1409-1438. 

Solounias, N., Teaford, M. and Walker, A., 1988. Interpreting the diet of extinct ruminants: 
the case of a non-browsing giraffid. Paleobiology 14 (3), 287-300. 

Solounias, N. and Moelleken, S.M., 1993. Tooth microwear and premaxillary shape of an 
archaic antelope. Lethaia 26 (3),261-268. 

Solounias, N. and Semprebon, G., 2002. Advances in the reconstruction of ungulate 
ecomorphology with application to early fossil equids. American Museum 
Novitates, p.1-49. 

Solounias, N., Teaford, M.F., & Walker, A.C., 1998. Interpretating the diet of extinct 
ruminants: the case of a non-browsing giraffid. Paleobiology 14, 287-300.  



 

473 

 

Solounias, N., Tariq, M., Hou, S., Danowitz, M., Harrison, M., 2014. A new method of 
tooth mesowear and a test of it on domestic goats. Ann. Zool. Fennici. 51, 111-
118. 

Spiess, A., 1976. Determining season of death of archaeological fauna by analysis of 
teeth. Arctic 29 (1),53-55. 

Spencer, F., 1990. Piltdown: a scientific forgery. Oxford University Press. 
Spencer, L. M. 1995. Antelopes and Grasslands: Reconstructing African Hominid 

Environments. PhD Thesis. State University of New York, Stony Brook.  
Spencer, L.M., 1997. Dietary adaptations of Plio-Pleistocene Bovidae: implications for 

hominid habitat use. Journal of Human Evolution 32(2-3), 201-228. 
Sponheimer, M., 1999. Isotopic Ecology of the Makapansgat Limeworks Fauna. PhD 

thesis. Rutgers University NJ 
Sponheimer, M. and Lee-Thorp, J.A., 1999a. Oxygen isotopes in enamel carbonate and 

their ecological significance. Journal of Archaeological Science 26 (6), 723-728. 
Sponheimer, M. and Lee-Thorp, J.A., 1999b. Alteration of Enamel Carbonate 

Environments during Fossilization. Journal of Archaeological Science 26, 143-
150.  

Sponheimer, M., Reed, K.E. and Lee-Thorp, J.A., 1999. Combining isotopic and 
ecomorphological data to refine bovid paleodietary reconstruction: a case study 
from the Makapansgat Limeworks hominin locality. Journal of Human Evolution 
36 (6), 705-718. 

Sponheimer, M., and Lee-Thorp, J.A., 2001. The oxygen isotope composition of 
mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126, 
153-157.  

Sponheimer, M., Lee-Thorp, J.A., DeRuiter, D.J., Smith, J.M., Van Der Merwe, N.J., Reed, 
K., Grant, C.C., Ayliffe, L.K., Robinson, T.F., Heidelberger, C. and Marcus, W., 
2003. Diets of southern African Bovidae: stable isotope evidence. Journal of 
Mammalogy 84 (2), 471-479. 

Sponheimer, M., Lee-Thorp, J., de Ruiter, D., Codron, D., Codron, J., Baugh, A.T. and 
Thackeray, F., 2005. Hominins, sedges, and termites: new carbon isotope data 
from the Sterkfontein valley and Kruger National Park. Journal of Human 
Evolution 48 (3), 301-312. 

Sponheimer, M., Passey, B.H., De Ruiter, D.J., Guatelli-Steinberg, D., Cerling, T.E. and 
Lee-Thorp, J.A., 2006. Isotopic evidence for dietary variability in the early 
hominin Paranthropus robustus. Science 314 (5801), 980-982. 

Sponheimer, M., Alemseged, Z., Cerling, T.E., Grine, F.E., Kimbel, W.H., Leakey, M.G., 
Lee-Thorp, J.A., Manthi, F.K., Reed, K.E., Wood, B.A. and Wynn, J.G., 2013. 
Isotopic evidence of early hominin diets. Proceedings of the National Academy of 
Sciences 110 (26), 10513-10518. 

Stapelberg, F.H., 2007. Feeding ecology of the Kalahari springbok Antidorcas marsupialis 
in the Kgalagadi Transfrontier Park, South Africa (Doctoral dissertation, 
University of Pretoria). 

Stapelberg, H., Van Rooyen, M.W., Bothma, J.D.P., Van der Linde, M.J. and Groeneveld, 
H.T., 2008. Springbok behaviour as affected by environmental conditions in the 
Kalahari. Koedoe 50 (1), 145-153. 

Stammers, R.C., Caruana, M.V. and Herries, A.I., 2018. The first bone tools from 
Kromdraai and stone tools from Drimolen, and the place of bone tools in the South 
African Earlier Stone Age. Quaternary International In Press. 

Steininger, C. M. 2011. The Dietary Behaviour of Early Pleistocene Bovids from Cooper’s 
Cave & Swartkrans, South Africa. PhD Thesis. University of Witwatersrand, 
Johannesberg, South Africa.  

Stenseth, N.C. and Maynard-Smith, J., 1984. Coevolution in ecosystems: Red Queen 
evolution or stasis?. Evolution, 38(4), 870-880.Van Valen, L., 1973. A new 
evolutionary law. Evolutionary Theory 1, 1-30.  

Sternberg, L.D.S.L., 1989. Oxygen and hydrogen isotope ratios in plant cellulose: 
mechanisms and applications. In Stable isotopes in ecological research Springer, 
New York, NY,p. 124-141. 

Stewart, B.A. and Mitchell, P.J., 2018. Late Quaternary palaeoclimates and human-
environment dynamics of the Maloti-Drakensberg region, southern Africa. 
Quaternary Science Reviews 196, 1-20. 

Stewart, J.R., 2007. An evolutionary study of some archaeologically significant avian taxa 
in the Quaternary of the western palaearctic. British Archaeological Reports 
Limited. 



 

474 

 

Stewart, J.R., 2008. The progressive effect of the individualistic response of species to 
Quaternary climate change: an analysis of British mammalian faunas. Quaternary 
Science Reviews 27, 2499-2508.  

Stewart, J.R. and Cooper, A., 2008. Ice Age refugia and Quaternary extinctions: an issue of 
Quaternary evolutionary palaeoecology. Quaternary Science Reviews 27, 2443-
2448. 

Stewart, J.R., 2009. The evolutionary consequence of the individualistic response to climate 
change. Journal of Evolutionary Biology 22 (12), 2363-2375.  

Strait, D.S. & Wood, B.A., 1999. Early hominid biogeography. PNAS. 96, 9196-9200.  
Strani, F.,DeMiguel, D., Bona, F., Sardella, R., Biddittu, I., Bruni, L., De Castro, A., 

Guadagnoli, F., Bellucci, L.,  2018. Ungulate dietary adaptations and 
palaeoecology of the Middle Pleistocene site of Fontana Ranuccio (Anagni, 
Central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 496, 238-
247. 

Stratford, D.J., 2008. A study of newly discovered lithics from Earlier Stone Age deposits at 
Sterkfontein, Gauteng Province, South Africa (Doctoral dissertation). University of 
the Witwatersrand.  

Stratford, D.J., 2012. The underground central deposits of the Sterkfontein Caves, South 
Africa (Doctoral dissertation). 

Stratford, D., 2015. The Sterkfontein Caves: Geomorphology and Hominin-Bearing 
Deposits. In Landscapes and Landforms of South Africa. Springer, Cham. p. 147-
153. 

Stratford, D., 2017. A Review of the Geomorphological Context and Stratigraphy of the 
Sterkfontein Caves, South Africa. In Hypogene Karst Regions and Caves of the 
World. Springer, Cham .p. 879-891. 

Stratford, D.J., Bruxelles, L., Clarke, R.J. and Kuman, K., 2012. New stratigraphic 
interpretations of the fossil and artefact-bearing deposits of the Name Chamber, 
Sterkfontein. The South Sfrican archaeological bulletin, 159-167. 

Stratford, D., Grab, S. and Pickering, T.R., 2014. The stratigraphy and formation history of 
fossil-and artefact-bearing sediments in the Milner Hall, Sterkfontein Cave, South 
Africa: New interpretations and implications for palaeoanthropology and 
archaeology. Journal of African Earth Sciences 96,155-167. 

Stratford, D., Heaton, J.L., Pickering, T.R., Caruana, M.V. and Shadrach, K., 2016. First 
hominin fossils from Milner Hall, Sterkfontein, South Africa. Journal of human 
evolution 91 (16), 167-73. 

Steininger, C.M., 2012. Local ecological profile for Paranthropus robustus in South Africa 
using stable carbon isotopes from associated bovid teeth. Quaternary International 
(279-280), 466. 

Steininger, C.M., 2012. The dietary behaviour of early pleistocene bovids from Cooper's 
Cave and Swartkrans, South Africa. Doctoral dissertation, University of the 
Witwatersrand.  

Steininger, C., Berger, L.R. and Kuhn, B.F., 2008. A partial skull of Paranthropus robustus 
from Cooper's Cave, South Africa. South African Journal of Science 104(3-4),143-
146. 

Strömberg, C.A., 2004. Using phytolith assemblages to reconstruct the origin and spread of 
grass-dominated habitats in the great plains of North America during the late 
Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 
207 (3-4), 239-275. 

Stuart, C., and Stuart, T., 1997. Guide to Southern African Game & Nature Reserves. 
NTC/Contemporary Publishing Company. 

Sutton, M.B., Pickering, T.R., Pickering, R., Brain, C.K., Clarke, R.J., Heaton, J.L. and 
Kuman, K., 2009. Newly discovered fossil-and artifact-bearing deposits, uranium-
series ages, and Plio-Pleistocene hominids at Swartkrans Cave, South Africa. 
Journal of Human Evolution 57 (6), 688-696. 

Suwa, G., White, T.D. and Howell, F.C., 1996. Mandibular postcanine dentition from the 
Shungura Formation, Ethiopia: crown morphology, taxonomic allocations, and 
Plio‐Pleistocene hominid evolution. American Journal of Physical Anthropology: 
The Official Publication of the American Association of Physical Anthropologists 
101 (2), 247-282. 

Suwa, G.E.N., Asfaw, B., Haile-Selassie, Y., White, T.I.M., Katoh, S., WoldeGabriel, G., 
Hart, W.K., Nakaya, H. and Beyene, Y., 2007. Early pleistocene Homo erectus 
fossils from konso, southern Ethiopia. Anthropological Science 115 (2), 133-151. 



 

475 

 

Swindler, D.R., 2002. Primate dentition: an introduction to the teeth of non-human 
primates (Vol. 32). Cambridge University Press, Cambridge. 

Taylor, L.A., Kaiser, T.M., Schwitzer, C., Müller, D.W., Codron, D., Clauss, M. and 
Schulz, E., 2013. Detecting inter-cusp and inter-tooth wear patterns in 
Rhinocerotids. PloS one 8 (12), e80921. 

Teaford, M.F., 1988. A review of dental microwear and diet in modern mammals. Scanning 
Microscopy 2 (2), 1149-1166. 

Teaford, M.F., Runestad, J.A., 1992. Dental microwear and diet in Venezuelan primates. 
American Journal of Physical Anthropology 88, 347–364. 

Teaford, M.F. and Walker, A., 1984. Quantitative differences in dental microwear between 
primate species with different diets and a comment on the presumed diet of 
Sivapithecus. American journal of physical anthropology 64 (2), 191-200. 

Teknomo, K., (2015). Similarity Measurement. 
https://people.revoledu.com/kardi/tutorial/Similarity/Jaccard.html [accessed 
24/08/2018]. 

Thackeray, F., 2001. IN: Anderson, J.M. (Ed.) Towards Gondwana Alive: Promoting 
biodiversity and stemming the sixth extinction. Volume 1 (Associated eds. Berger, 
L., de Wit, M., Fatti, L.P., Holm, E., Rubidge, B., Smith, G., Thackeray, F., and 
van Wyk, B.). Gondwana Alive Society: Pretoria p. 100-109.  

Thackeray, J.F., 2006. Darwin, South Africa and the emergence of the genus Homo. 
Transactions of the Royal Society of South Africa 61 (2), 127-130.  

Thackeray, J.F., 2016. Homo habilis and Australopithecus africanus in the context of 
chronospecies and climatic change. Palaeoecology of Africa 33, 53-58.  

Thackeray, J.F., and Watson,V., 1994. A preliminary account of faunal remains from 
Plovers Lake. South African Journal of Science 90 (4), 231-232. 

Thackeray, J.F., Bellamy, C.L., Bellars, D., Bronner, G., Bronner, L., Chimamba, C., 
Fourie, H., Kemp, A., Kruger, M., Plug, I., Prinsloo, S., Toms, R., Van Zyl, A.J. 
and Whiting, M.J., 1997. Probabilities of conspecificity: application of a 
morphometric technique to modern taxa and fossil specimens attributed to 
Australopithecus and Homo. South African Journal of Science 93, 195-196. 

Thackeray, J.F., De Ruiter, D.J., Berger, L.R. and Van Der Merwe, N.J., 2001. Hominid 
fossils from Kromdraai: a revised list of specimens discovered since 1938. Annals 
of the Transvaal Museum 38 (4), 43-56.  

Thackeray, J.F., Kirschvink, J.L. and Raub, T.D., 2002. Palaeomagnetic analyses of 
calcified deposits from the Plio-Pleistocene hominid site of Kromdraai, South 
Africa: news & views. South African Journal of Science 98 (11-12), 537-540. 

Thackeray, J.F. and Brink, J.S., 2004. Damaliscus niro horns from Wonderwerk Cave and 
other Pleistocene sites: morphological and chronological considerations. 
Palaeontologia Africana 40, 89–93. 

Thakur, M.P., Tilman, D., Purschke, O., Ciobanu, M., Cowles, J., Isbell, F., Wragg, P.D. 
and Eisenhauer, N., 2017. Climate warming promotes species diversity, but with 
greater taxonomic redundancy, in complex environments. Science Advances 3 (7), 
p.e1700866. 

Tieszen, L.L., Boutton, T.W., Tesdahl, K.G. and Slade, N.A., 1983. Fractionation and 
turnover of stable carbon isotopes in animal tissues: implications for δ 13 C 
analysis of diet. Oecologia 57 (1-2), 32-37. 

Tieszen, L.L., 1991. Natural variations in the carbon isotope values of plants: implications 
for archaeology, ecology, and paleoecology. Journal of Archaeological Science 18 
(3), 227-248. 

Tobias, P.V., 1980. Homo habilis and Homo erectus: from the Oldowan men to the 
Acheulian practitioners. Anthropologie (1962-) 18 (2/3),115-119. 

Tobias, P.V., 1991. Olduvai Gorge: Vol. 4. The Skulls, Endocasts and Teeth of Homo 
habilis. Cambridge University Press, Cambridge. 

Tobias, P.V., 2000. The fossil hominids. IN: Partridge, T.C. and Maud, R.R.M. (Eds.). The 
cenozoic of southern Africa. Oxford Monographs on Geology and Geophysics. 
Oxford University Press, Oxford, 252-276.  

Tobias, P.V., 2003. Encore Olduvai. Science 299 (5610), 1193-1194. 
Tocheri, M.W., Orr, C.M., Jacofsky, M.C. and Marzke, M.W., 2008. The evolutionary 

history of the hominin hand since the last common ancestor of Pan and Homo. 
Journal of Anatomy 212 (4), 544-562. 

Tornero, C., Balasse, M., Molist, M. and Saña, M., 2016. Seasonal reproductive patterns of 
early domestic sheep at Tell Halula (PPNB, Middle Euphrates Valley): Evidence 



 

476 

 

from sequential oxygen isotope analyses of tooth enamel. Journal of 
Archaeological Science: Reports, 6, p.810-818. 

Tornero, C., Aguilera, M., Ferrio, J.P., Arcusa, H., Moreno-García, M., Garcia-Reig, S. and 
Rojo-Guerra, M., 2018. Vertical sheep mobility along the altitudinal gradient 
through stable isotope analyses in tooth molar bioapatite, meteoric water and 
pastures: A reference from the Ebro valley to the Central Pyrenees. Quaternary 
International 484, 94-106. 

Tourloukis, V. and Harvati, K., 2018. The Palaeolithic record of Greece: a synthesis of the 
evidence and a research agenda for the future. Quaternary International 466, 48-
65. 

Trauth, M.H., Maslin, M.A., Deino, A.L., Strecker, M.R., Bergner, A.G. and Dühnforth, 
M., 2007. High-and low-latitude forcing of Plio-Pleistocene East African climate 
and human evolution. Journal of Human Evolution 53(5), 475-486. 

Trauth, M.H., Maslin, M.A., Deino, A.L., Junginger, A., Lesoloyia, M., Odada, E.O., 
Olago, D.O., Olaka, L.A., Strecker, M.R. and Tiedemann, R., 2010. Human 
evolution in a variable environment: the amplifier lakes of Eastern Africa. 
Quaternary Science Reviews 29 (23-24),2981-2988. 

Turelli, M., Barton, N.H., and Coyne, J.A., 2001. Theory and Speciation. Trends in Ecology 
and Evolution 16(7), 330-343.  

Turner, A., 1985. Preliminary evidence for seasonal deposition patterns from Member 2 of 
the Swartkrans hominid site, South Africa. Journal of Archaeological Science 12 
(3), 163-175. 

Turner, W.C. and Getz, W.M., 2010. Seasonal and demographic factors influencing 
gastrointestinal parasitism in ungulates of Etosha National Park. Journal of 
wildlife diseases 46 (4), 1108-1119. 

Turner, A. and Wood, B., 1993. Taxonomic and geographic diversity in robust 
australopithecines and other African Plio-Pleistocene larger mammals. Journal of 
Human Evolution 24 (2) 147-168 

Twiss, P.C., 1992. World distribution of C3 and C4 Grass Phytoliths. IN: Rapp Jr., G. and 
Mulholland, S.C. (Eds.) Phytolith Systematics: Emerging Issues. Advances in 
Archaeological and Museum Science 1. Plenum Press: New York.  

Twiss, P.C., Suess, E. amd Smith R.M., 1969. Morphological classification of grass 
phytoliths. Soil Science of America, Proceedings 33:109-115.  

Tyson, P.D. and Lindesay, J.A., 1992. The climate of the last 2000 years in southern Africa. 
The Holocene 2(3), 271-278. 

Underhill, D., 2007. Subjectivity inherent in by-eye symmetry judgements and the large 
cutting tools at the Cave of Hearths, Limpopo Province, South Africa. Papers from 
the Institute of Archaeology 18, 101-113. 

Ungar, P.S., Brown, C.A., Bergstrom, T.S. and Walker, A., 2003. Quantification of dental 
microwear by tandem scanning confocal microscopy and scale‐sensitive fractal 
analyses. Scanning: The Journal of Scanning Microscopies 25 (4), 185-193. 

Ungar, P.S., Grine, F.E., Teaford, M.F. and El Zaatari, S., 2006. Dental microwear and 
diets of African early Homo. Journal of Human Evolution 50 (1),78-95. 

Ungar, P.S., Merceron, G. and Scott, R.S., 2007. Dental microwear texture analysis of 
Varswater bovids and early Pliocene paleoenvironments of Langebaanweg, 
Western Cape Province, South Africa. Journal of Mammalian Evolution 14 (3), 
163-181. 

Ungar, P.S., Grine, F.E. and Teaford, M.F., 2008. Dental microwear and diet of the Plio-
Pleistocene hominin Paranthropus boisei. PLoS one 3 (4), e2044. 

Ungar, P.S. and Sponheimer, M., 2011. The diets of early hominins. Science 334 (6053), 
190-193. 

Ungar, S., Scott, J. R., and Steininger, C. M., 2016. Dental Microwear differences between 
eastern and southern African fossil bovids and hominins. South African Journal of 
Science 112 (3/4) 5 pages.  

Uno, K.T., Rivals, F., Bibi, F., Pante, M., Njau, J. and de la Torre, I., 2018. Large mammal 
diets and paleoecology across the Oldowan–Acheulean transition at Olduvai 
Gorge, Tanzania from stable isotope and tooth wear analyses. Journal of human 
evolution 120, 76-91. 

Val, A., Dirks, P.H., Backwell, L.R., d’Errico, F. and Berger, L.R., 2015. Taphonomic 
analysis of the faunal assemblage associated with the hominins (Australopithecus 
sediba) from the Early Pleistocene cave deposits of Malapa, South Africa. PloS 
one 10 (6), e0126904. 



 

477 

 

Val, A. and Stratford, D.J., 2015. The macrovertebrate fossil assemblage from the Name 
Chamber, Sterkfontein: Taxonomy, taphonomy and implications for site formation 
processes. Palaeontologia Africana 50, 1-17. 

Valentine, J.W., 1980 Determinants of diversity in higher taxonomic categories. 
Paleobiology 6, 444-450 

Van Der Merwe, N.J., Thackeray, J.F., Lee-Thorp, J.A. and Luyt, J., 2003. The carbon 
isotope ecology and diet of Australopithecus africanus at Sterkfontein, South 
Africa. Journal of Human Evolution 44 (5), 581-597. 

Van Der Merwe, N.J., 2013. Isotopic ecology of fossil fauna from Olduvai Gorge at ca 1.8 
Ma, compared with modern fauna. South African Journal of Science 109 (11-12), 
1-14. 

Van Rooyen, A.F.; Skinner, J.D. 1989. Dietary differences between the sexes in impala. 
Transactions of the Royal Society of South Africa. 47 (2), 181–5 

Van Valen, L., 1973. A new evolutionary law. Evolutionary Theory 1, 1-30.  
Van Zyl, H.M., 1965. The vegetation of the SA Lombard Nature Reserve and its utilisation 

by certain antelope. African Zoology 1 (1). 
Vasseur, D.A. and McCann, K.S., 2005. A mechanistic approach for modeling temperature-

dependent consumer-resource dynamics. The American Naturalist 166 (2), 184-
198. 

Via, S., 2001 Sympatric speciation in animals: The ugly duckling grows up. Trends in 
Ecology and Evolution 16 (7), 381-390. 

Vogel, J.C., 1978. Isotopic assessment of the dietary habits of ungulates. South African 
Journal of Science 74 (8), 298-301. 

Voigt, C.C., Capps, K.A., Dechmann, D.K., Michener, R.H. and Kunz, T.H., 2008. 
Nutrition or detoxification: why bats visit mineral licks of the Amazonian 
rainforest. PloS one 3 (4), p.e2011. 

Von den Driesch, A., 1976. A Guide to the Measurement of Animal Bones from 
Archaeological Sites. Bulletin 1.  Peabody Museum Bulletins: Harvard University. 

Vrba, E.S., 1970. Evaluation of springbok-like fossils: measurement and statistical 
treatment of the teeth of the springbok, Antidorcas marsupialis marsupialis 
Zimmerman (Artiodactyla: Bovidae). Annals of the Transvaal Museum 26 (13), 
285-299. 

Vrba, E.S., 1973. Two species of Antidorcas Sundevall at Swartkrans (Mammalia: 
Bovidae). Annals of the Transvaal Museum 28 (15), 287-352. 

Vrba, E.S., 1974. Chronological and ecological implications of the fossil Bovidae at the 
Sterkfontein australopithecine site. Nature. 250, 19-23. 

Vrba, E.S., 1975. Some evidence of chronology and palaeoecology of Sterkfontein, 
Swartkrans and Kromdraai from the fossil Bovidae. Nature 254 (5498), 301. 

Vrba, E.S., 1980. The significance of bovid remains as indicators of environment and 
predation patterns. IN: Behrensmeyer, A.K., and Hill, A.P. (Eds.) Fossils in the 
Making. The University of Chicago Press: Chicago and London.  

Vrba, E.S., 1982. Biostratigraphy and Chronology, based particularly on Bovidae, of 
southern Hominid-associated assemblages: Makapansgat, Sterkfontein, Taung, 
Kromdraii, Swartkrans, also Elandsfontein (Saldanha), Broken Hill (now Kabwe) 
and Cave of Hearths. IN: Proceedings of the 1st International Congress on Human 
Palaeontology, Nice. Volume 2. P. 707-752.  

Vrba, E. S., 1985. Environment and evolution: alternative causes of the temporal 
distribution of evolutionary events. South African Journal of Science. 81, 229-236.  

Vrba, E.S., 1987. Ecology in relation to speciation rates: Some case histories of Miocene-
Recent mammal clades. Evolutionary Ecology 1, 283-300.  

Vrba, E. S. 1992. Mammals and Evolutionary Theory. Plenary Keynote Address, 70th 
Congress of American Society of Mammalogists, June 1990, Frostburg, Maryland. 
Journal of Mammalogy 1, 1-28.  

Vrba, E.S., 1993a The Pulse that Produced Us. Natural History 102 (5) 47-51.  
Vrba, E.S., 1993b. Turnover-pulses, the Red Queen, and related topics. American Journal 

of Science 293, 418-452.  
Vrba, E. S. 1995a. The Fossil Record of African Antelopes (Mammalia, Bovidae) in 

Relation to Human Evolution and Paleoclimate. IN: Vrba, E.S., Denton, G. H., 
Partridge, T.C., & Burckle, L. H. (eds.). Paleoclimate and Evolution with 
emphasis on human origins. Yale University Press: New Haven. P.385-424. 

Vrba, E. S. 1995b. On the connections between palaeoclimateand evolution. IN: Vrba, E.S., 
Denton, G. H., Partridge, T.C., & Burckle, L. H. (eds.). Paleoclimate and 



 

478 

 

Evolution with emphasis on human origins. Yale University Press: New Haven. 
P24-45. 

Vrba, E.S., 1996. Climate, heterochrony, and human evolution. Journal of Anthropological 
Research 52 (1), 1-28. 

Vrba, E.S., Denton, G.H. and Prentice M.L., 1989. Climatic Influences on early hominid 
behaviour. Ossa 14: 127-156.  

Vrba, E.S., and Schaller, G.B., 2000. Phylogeny of Bovidae Based on Behaviour, Glands, 
Skulls, and Postcrania. IN: Vrba, E.S. and Schaller, G.B. (Eds.) Antelopes, Deer, 
and Relatives: Fossil Record, Behavioural Ecology, Systematics, and 
Conservation. Yale University Press: New Haven. 203-222. 

Wadley, L., & McNabb, J., 2009. Introduction. IN: McNabb, J., & Sinclair, A., (eds.) The 
Cave of Hearths: Makapan Middle Pleistocene Research Project. Field research by 
Anthony Sinclair and Patrick Quinney, 1996-2001. BAR International Series 
1940. P. 1-11. 

Walker, E. P. 1975. Mammals of the world (3rd edition). The Johns Hopkins University 
Press, Baltimore, Maryland. 

Walker, A., Hoeck, H.N. and Perez, L., 1978. Microwear of mammalian teeth as an 
indicator of diet. Science 201 (4359), 908-910. 

Walker, T.D., & Valentine, J.W., 1984 Equilibrium models of evolutionary species 
diversity and the number of empty niches. American Naturalist 124, 887-899. 

Wang, Y. and Cerling, T.E., 1994. A model of fossil tooth and bone diagenesis: 
implications for paleodiet reconstruction from stable isotopes. Palaeogeography, 
Palaeoclimatology, Palaeoecology 107 (3-4), 281-289. 

Wang, Y., Kromhout, E., Zhang, C., Xu, Y., Parker, W., Deng, T., Qui, Z., 2008. Stable 
isotopic variations in modern herbivore tooth enamel, plants and water on the 
Tibetan Plateau: implications for paleoclimate and paloelevation reconstructions. 
Palaeogeography, Palaeoclimatology, Palaeoecology 260 (3), 359-374.  

Wara, M.W., Ravelo, A.C. and Delaney, M.L., 2005. Permanent El Niño-like conditions 
during the Pliocene warm period. Science 309 (5735), 758-761. 

Ward, J.H., Jr., 1963. Hierarchical Grouping to Optimize Objective Function. Journal of 
the American Statistical Association 58, 36-244.  

Ward, C.V., Tocheri, M.W., Plavcan, J.M., Brown, F.H. and Manthi, F.K., 2014. Early 
Pleistocene third metacarpal from Kenya and the evolution of modern human-like 
hand morphology. Proceedings of the National Academy of Sciences 111 (1), 121-
124. 

Watson, L. 1987 Automated descriptions of grass genera. IN Soderstrom, T.R., Hilu, K.W., 
Campbell, C.S. and Barkworth, M.E. (Eds.) Grass Systematics and Evolution. 
Smithsonian Institution Press, Washington. 343-341.  

Watson, V., 1993a. Glimpses from Gondolin: a faunal analysis of a fossil site near 
Broederstroom, Transvaal, South Africa. 

Watson, V., 1993b. Composition of the Swartkrans bone accumulations, in terms of 
skeletal parts and animals represented. Swartkrans: A Cave’s Chronicle of Early 
Man. Transvaal Museum, Pretoria, p.35-73. 

Watson, V. 2004. Composition of the Swartkrans Bone Accumulations, in terms of Skeletal 
Parts and Animals Represented. IN: Brain, C. K. (Ed.) Swartkrans: A Cave’s 
Chronicle of Early Man. 35-74.  

Webb, S.D., Hulbert, R.C.Jr. and Lambert, W.D., 1995. Climatic implications of large-
herbivore distributions in the Miocene of North America. IN: Vrba, E.S., Denton, 
G. H., Partridge, T.C., & Burckle, L. H. (eds.). Paleoclimate and Evolution with 
emphasis on human origins. Yale University Press: New Haven.P.91-108. 

Webb, S.D., and Opdyke, N.D., 1995. Global climatic influence on Cenozoic land 
mammals faunas. IN: Kennett, J.P. and Stanley, S.M. (Eds.) Effects of Past Global 
Change on Life. National Academy of Sciences. Washington, D.C.P. 184-208.  

Weigelt, E., Dupont, L. and Uenzelmann-Neben, G., 2008. Late Pliocene climate changes 
documented in seismic and palynology data at the southwest African Margin. 
Global and Planetary Change 63 (1), 31-39. 

Wiener, J., 1995. The beak of the finch. Vintage, London.  
Wilcove, D.S., 2007. No Way Home: The decline of the World’s great animal migrations. 

Island Press: London.  
Williams, S.H. and Kay, R.F., 2001. A comparative test of adaptive explanations for 

hypsodonty in ungulates and rodents. Journal of Mammalian Evolution 8 (3), 207-
229. 



 

479 

 

Williams, B.A., Ross, C.F., Frost, S.R., Waddle, D.M., Gabadirwe, M. and Brook, G.A., 
2012. Fossil Papio cranium from !Ncumtsa (Koanaka) Hills, western Ngamiland, 
Botswana. American journal of physical anthropology 149 (1),1-17. 

Williams, F.L.E. and Geissler, E., 2014. Reconstructing the diet and paleoecology of Plio-
Pleistocene Cercopithecoides williamsi from Sterkfontein, South African diet and 
paleoecology in C. williamsi. Palaios, 29(9), pp.483-494. 

Winkler, D.E. and Kaiser, T.M., 2015. Structural morphology of molars in large 
mammalian herbivores: enamel content varies between tooth positions. PloS one 
10 (8), e0135716. 

Wong, W.W., Cochran, W.J., Klish, W.J., Smith, E.O., Lee, L.S. and Klein, P.D., 1988. In 
vivo isotope-fractionation factors and the measurement of deuterium-and oxygen-
18-dilution spaces from plasma, urine, saliva, respiratory water vapor, and carbon 
dioxide. The American journal of clinical nutrition 47 (1), 1-6. 

Wood, B.A., 1994. Hominid cranial remains. Koobi Fora research project, Vol. 4. 
Clarendon, Oxford. 

Wood, B., 1999. 'Homo rudolfensis' Alexeev, 1986-fact or phantom?. Journal of human 
evolution 36 (1), 115. 

Wood, B., 2010. Reconstructing human evolution: Achievements, challenges, and 
opportunities. Proceedings of the National Academy of Sciences, p.201001649. 

Wood, B., 2013. Palaeontology: Gritting their teeth. Nature 493 (7433), 486. 
 Wood, B., 2014. Human evolution: Fifty years after Homo habilis. Nature News 508 

(7494), 31. 
Wood, B. and Baker, J., 2011. Evolution in the genus Homo. Annual Review of Ecology, 

Evolution, and Systematics 42, 47-69. 
Wood, B. and K. Boyle, E., 2016. Hominin taxic diversity: Fact or fantasy? American 

journal of physical anthropology 159, 37-78. 
Wood, B. and Collard, M., 1999. The human genus. Science 284 (5411), 65-71. 
Wood, B. and Richmond, B.G., 2000. Human evolution: taxonomy and paleobiology. The 

Journal of Anatomy 197 (1), 19-60. 
Wood, B. and Strait, D., 2004. Patterns of resource use in early Homo and Paranthropus. 

Journal of Human Evolution 46 (2), 119-162. 
Wood, B. and Leakey, M., 2011. The Omo‐Turkana Basin fossil hominins and their 

contribution to our understanding of human evolution in Africa. Evolutionary 
Anthropology: Issues, News, and Reviews 20 (6), 264-292. 

Wood, B. and Lonergan, N., 2008. The hominin fossil record: taxa, grades and 
clades. Journal of Anatomy 212 (4), 354-376. 

Wynn, T., 2002. Archaeology and cognitive evolution. Behavioral and brain sciences 25 
(3), 389-402. 

Xia, J., Zheng, J., Huang, D., Tian, Z.R., Chen, L., Zhou, Z., Ungar, P.S. and Qian, L., 
2015. New model to explain tooth wear with implications for microwear formation 
and diet reconstruction. Proceedings of the National Academy of Sciences 112 
(34), 10669-10672. 

Yakir, D., 1992. Variations in the natural abundance of oxygen‐18 and deuterium in plant 
carbohydrates. Plant, Cell & Environment 15 (9), 1005-1020. 

Zazzo, A., Mariotti, A., Lecuyer, C., Heintz, E., 2002. Intra-tooth isotopic variations in late 
Miocene bovid enamel from Afghanistan: Paleobiological, taphonomic and 
climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 186 
(1), 145-161. 

Zazzo, A., Lécuyer, C. and Mariotti, A., 2004. Experimentally-controlled carbon and 
oxygen isotope exchange between bioapatites and water under inorganic and 
microbially-mediated conditions. Geochimica et Cosmochimica Acta 68 (1), 1-12. 

Zazzo, A., Bendrey, R., Vella, D., Moloney, A.P., Monahan, F.J. and Schmidt, O., 2012. A 
refined sampling strategy for intra-tooth stable isotope analysis of mammalian 
enamel. Geochimica et Cosmochimica Acta 84, 1-13. 

Zeder, M.A. and Pilaar, S.E., 2010. Assessing the reliability of criteria used to identify 
mandibles and mandibular teeth in sheep, Ovis, and goats, Capra. Journal of 
Archaeological Science 37 (2), 225-242. 

Zimmer, C., 2016. https://www.nytimes.com/2016/08/30/science/lucy-hominid-fossils-
fall.html.  

Zimmerman, E.A.W., 1780. Antidorcas marsupialis. Geographische Geschichte des 
Menschen, und der vierf ssigen Thiere. Zweiter Band. Enth It ein vollstndiges 
Verzeichniss aller bekannten Quadrupeden. 2. Weygandschen Buchhandlung, 
Leipzig, Germany, p. 427 



 

480 

 

Zipfel, B. and Berger, L.R., 2009. New Cenozoic fossil-bearing site abbreviations for 
collections of the University of the Witwatersrand. Palaeontologia Africana 44, 
77-81.  

Websites consulted 
http://www.thecradleofhumankind.net/ 
http://www.iucnredlist.org/details/classify/1676/0#habitat 
http://animaldiversity.org/accounts/Antidorcas_marsupialis/ 
https://c689cb19-a-62cb3a1a-s-sites.googlegroups.com/site/passnceabiology/biology-level-

3/human-
evolution/Hominins.jpg?attachauth=ANoY7cqC7ENrU4GbGgOiIadOe08KrtrOjS
Bh29fttvBtxHGpXq0HCtvC8vbKvwiA3NiuriReYDs3Qa9FMoThcc0GA3n8sE9
K-
EAZQmMOzXa7OXDUYqiBHp_qY0C5XvaLhYEmkE4xApiO7x6oA64i25nRg7
rjYXtPNPLULdQQlJRxN5qM4kVeSlFrji_GoFs4qKCknbEc3Cjq7IRocZJIcB1U
Uhe7ROdE0yXzGX5FKtgSi4FO0qsqedu2sMWtjZa_klqZsBHGVAgb&attredirec
ts=0 .accessed 05/06/2017, 11.50am). 

www.psychologytoday.com; (accessed 05/06/2017 11.45am GMT). 
https://www.psychologytoday.com/blog/canine-corner/201603/dogs-size-and-
head-shape-predicts-its-behavior 

IUCN 2017. IUCN Red List of Threatened Species. www.iucnredlist.org. [Downloaded on 
01/07/2017].  

IUCN SSC Antelope Specialist Group. 2008. Damaliscus pygargus ssp. phillipsi. The 
IUCN Red List of Threatened Species 2008: e.T30209A9531266. 
http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T30209A9531266.en. 

https://www.mydigitalchalkboard.org/cognoti/content/file/resources/images/ee/eefd605d/ee
fd605dd966beedd655ba3e8cf1a828e872509a/downloadedfile_4257935605498713
594_africa-veg.gif [accessed 04/06/2018: 10.01] 

https://whc.unesco.org/en/tentativelists/5558/[accessed 30/07/2018]. 
 
 
 
 

 


