
Exploring the Gap between the Student Expectations
and the Reality of Teamwork in Undergraduate

Software Engineering Group Projects

Claudia Iacob

University of Portsmouth, UK

Shamal Faily

Bournemouth University, UK

Abstract

Software engineering group projects aim to provide a nurturing environment for

learning about teamwork in software engineering. Since social and teamwork

issues have been consistently identified as serious problems in such projects, we

aim to better understand the breakdown between the expectations teams have

at the start of a group project and their experiences at the end of the project.

In this paper, we investigate how 35 teams of undergraduate students approach

software engineering group project courses, and how their previous experience

with collaborative software development matches their expectations for group

work. We then analyse the retrospective documents delivered by the same teams

at the end of a 27-week software engineering group project course, mirroring the

expectations at the start of the project with the realities described by the end

of it.

Keywords: Software engineering, project, group project, engineering

education

Email addresses: iacob@port.ac.uk (Claudia Iacob), sfaily@bournemouth.ac.uk
(Shamal Faily)

Preprint submitted to Journal of Systems and Software August 13, 2019



1. Introduction

Software Engineering group projects entail students working as a team to

build a software system. Typically, this might be a product for a client, but the

teams might also work on a product or Minimum Viable Product they wish to

bring to market. Group projects provide invaluable exposure to the teamwork5

and project management challenges they will face as practitioners. However,

such projects are delivered late in students’ education programme (eg. second

year at university), or in parallel with several other courses. The structure of

such projects mostly focuses on the delivery of the software system, and may

not always give teams the chance to reflect and learn from their experiences.10

Introducing teamwork in undergraduate software engineering projects can

be a double edged sword. Teaching software engineering without group work

fails to achieve a fundamental teaching objective of any software engineering

course - exposing students to the technical and non-technical work needed to

develop software as a team. However, due to the challenges assessing group15

work, students can be skeptical about embarking on such a task, and critical of

their experience with teamwork; few undergraduates have experience of collab-

orative software development, and a student project does not provide the same

level of career recognition as a “real-world” development project.

Teamwork management and group work typically cause serious problems20

that affect student experience [1], particularly as student non-engagement is

more detrimental to other students than it is for typical taught courses [2].

To help students prepare for software engineering group work, it’s important

to better understand the breakdown between expectations before a project and

their experiences afterwards; this has the potential to improve the group project25

experience for both students and instructors. To this end, this paper investigates

student experience and expectations with respect to teamwork by analysing

retrospective accounts teams make as a result of working on a collaborative

software development project for an academic year. These retrospectives are

discussed in the context of an analysis of the same teams’ expectations for the30

2



group project at the beginning of the academic year.

We consider related work in Section 2, before discussing the background for

the group project course we evaluated in Section 3. In Section 4 we describe the

research methodology we employed, before detailing the results in Section 5. As

part of Section 5, we identify the expectations students have in terms of team-35

work at the beginning of the year, and mirror these expectations to the reality

they describe when discussing a retrospective account of the group project. We

conclude by proposing strategies to narrow or bridge the gap between students’

expectations and the reality they describe in Section 6.

2. Related Work40

2.1. Collaborative learning and group projects

Group projects are a form of collaborative learning, where two or more peo-

ple learn or attempt to learn something together [3]. They have been used in a

range of contexts in Computing courses, ranging from training in collaborative

software tools [4] to showing groups how persuasion might be incorporated in45

interaction design [5]. Group projects also provide students with a visceral expe-

rience of the patterns of group-work associated with successful and unsuccessful

projects [6].

As the speed of software development has increased, group project teaching

has similarly evolved to meet it. For example, “hackathons” have been used to50

demonstrate how groups can quickly prototype IoT systems [7]. However, while

the experience of building a complete, tangible system is important, students

also need time to develop their ability to reflect, self-assess and self-evaluate [8].

As Software Engineering is concerned with the application of engineering prin-

ciples to the production of software, software engineering projects give students55

the time necessary to develop this relevant expertise. Moreover, Software Engi-

neering group projects are flexible enough to expose students to a wider range

of challenges, such as learning how software is developed across organisational

and cultural boundaries [9].

3



2.2. Delivering Group Projects60

The problems faced by comparatively senior students (eg. final year stu-

dents) completing Software Engineering group projects has been the subject of

much work. Dugan’s [10] review of approximately 200 computer science group

courses identified some of the challenges, such as the difficulty students have

valuing group work over individual work, and difficulties addressing role alloca-65

tion. More recent reviews of group projects such as [11], [25], and [12] report

similar experiences. However, such reviews provide an instructor perspective of

group projects; they do not take into account the student perspective of courses.

Briggs [13] discusses the delivery of a second year Software Engineering group

project, and reinforces the difficulty that students experience both engineering70

software and working in groups. This course is, however, atypical from more re-

cent software engineering group projects in two ways. First, the course’s primary

objective is imparting the experience of software engineering group work; the

teaching of software engineering techniques is a secondary objective. As such,

although groups produce deliverables, group members are assessed solely on a75

personal review of their particular contribution. Second, the burden of learning

and delivery is comparatively light. The course described ran for a nine-week

period, and was explicitly timetabled during teaching periods conducive for

students completing the project, and instructors who are given ample time for

marking.80

Briggs summarises the difficulties faced by second year students without

detailing specific challenges faced. Schilling & Sebern[14] describe some of

these challenges while considering how a senior software engineering course was

adapted for a sophomore audience (i.e. second year undergraduate level) over

multiple course deliveries. They found that minor gaps in knowledge can be85

overwhelming to sophomore students given the other material they are also ex-

pected to pick up over course delivery. While the timetable issues reported are

typically a problem found in group projects undertaken by more senior students,

Schilling & Sebern claim that – as a result – sophomore students may not have

the ability to accurately assess their own learning needs, but the basis of this90

4



claim is not made clear.

Assessing learning needs might be carried out using retrospectives. Their use

in software engineering project courses was recently considered by Sedelmaier

& Landes [15], who described several approaches for teaching soft skills rele-

vant to more senior software engineering students. Students were free to choose95

their own proposed system, team mates, and process models. They found that

students found it difficult to juggle technology and project management. How-

ever, they also found that the self-reflection resulting from completing the ret-

rospectives helped students better understand how well they were achieving the

course’s learning outcomes. A critical analysis on the impact of retrospectives100

on subsequent performance is outside the scope of our work. We note, however,

that examining the relationship between retrospectives and future performance

would be an interesting avenue for further investigation, particularly if differ-

ences were noted between second and final year students.

2.3. Student perceptions of Undergraduate Group Projects105

Doctoral research by Wiggberg [2] contrasted expectations that instructors

have around group projects with student expectations. His work found that as-

sessing a produced artifact leads to less collaboration, increased stress and fewer

learning opportunities, and perceived stress can hold back learning. He suggests

making students more aware of the desired learning and learning outcomes at110

the outset of any project.

Peters et al. [16] examined the perception of students by analysing the

student evaluations both before and after the completion of an open ended group

project unit [17]. They found that the root cause of frustrations experienced by

students was a lack of appreciation of the role they, as individuals, were making115

to the broader software engineering context. As such, while students appreciated

the opportunity to improve their professional skills, Peters et al. propose that

group projects should be framed as an opportunity for students – as problem

solvers – to develop their problem solving experience using complex, open-ended

problems. These results are consistent with a more recent qualitative study by120

5



Isomöttönen et al. [18] on the student perceptions of group projects as enabled

learning environments. They highlight that problems experienced by students

alternating attention between group projects and other courses should be framed

as an opportunity for complex learning in a professional work environment, and

that students should be made aware of this and the importance of student125

commitment before commencing the group project.

Raibulet & Fontana [19] report on the experiences of student project teams

using software tools to foster team collaboration. Although the feedback indi-

cated that many students found tools like GitHub and Microsoft Project useful

for managing tasks and communicating with team members, there is no explana-130

tion about why this might be the case. The feedback also indicated that student

teams treat project management and software quality only as a secondary con-

cerns, and despite the apparent utility of the collaboration tools teams largely

relied on informal meetings and chat applications for collaboration.

Holmes et al. [20] surveyed students both before, during, and after par-135

ticipating on a group project to understand the perceptions held by students.

Students appreciated the teamwork and collaboration opportunities afforded by

projects compared to other courses, and the particular role of collaborative pro-

cesses and tools. They also found the novelty of the tasks they were undertaking

make time management and estimation difficult. However, while the authors140

collected feedback before and after the project, the results are predominantly

based on feedback obtained post-project, so the results do not consider the

evolution of student perceptions.

Delgado et al. [21] consider student perceptions of agile practices when de-

scribing the evolution of a project-based course over several semesters. While145

development-centered practices like simple design, continuous delivery and con-

tinuous integration were popular and commonly adopted, students reported

problems associated with task estimation, work distribution, and intra-team

communication.

6



3. Group project background150

As part of an annual second year undergraduate course, we ask students to

work in teams of 5-6 students to design and develop a medium size software

system of their choice. We define medium complexity as a system including

an element of storage, one or more software component encapsulating some

application logic, and a graphical user interface component. The course is run155

for 27 weeks, from September to March, and students are asked to submit

deliverables throughout the year. The deliverables include: 1) Project plan

and proposal (Plan) worth 10% of the final mark for the project, 2) System

requirements specification document (SRS) worth 25% of the final mark for the

project, 3) Design documentation (Design) worth 25% of the final mark for the160

project, 4) Prototype (Proto) which includes a demonstration of the prototype,

the source code, and the test cases written for the system. The Prototype is

worth 30% of the final mark for the project, 5) Retrospective account of the

project (Final) worth 10% of the final mark for the project.

O
ct.

Nov.

Dec.

Jan.

Feb.

M
ar.

Apr.

Figure 1: Group Project Timeline

The deliverable deadlines are spread out throughout the 27 weeks as depicted165

in Figure 1. Teams are given 3 weeks to write a project proposal and plan for

a software solution of a medium complexity problem of their choice. Once the

project proposal is approved by the course coordinator, teams have 4 weeks to

gather, specify, and validate an initial set of requirements for the system they

7



are developing. Because they do not have allocated clients, teams are required170

to conduct their own research to elicit their software requirements. The results

of this process are submitted as the requirements specification document.

As part of the design documentation, teams are required to provide models

of the software solution under development that reflect its architectural design,

data and interface structure, and additional logic layer modelling such as com-175

ponents interaction or behavioural model. We mandate this to help students

appreciate how these documentation artifacts are linked, together with their

role in supporting and communicating their thought processes [22]. The writ-

ing process of each of the documents also helps students practice diverse and

complementary software engineering skills - interviewing end users, analysing180

requirements, abstracting software solutions, and drafting a plan.

Irrespective of the software development process put in place, teams are

expected to submit a video demonstration of the current state of they systems

they develop by the end of February. This demonstration should not be longer

than 5 minutes, and it should showcase all the features developed for the system185

and how they work. The source code and the test cases written for the system

must be under version control and access to these repositories should be provided

by all teams. The final 4 weeks of the year are dedicated to writing a 3-page

retrospective account of the project, where teams are required to answer the

following questions:190

1) What was the software development process followed?

2) How did the process followed match the initial plan set out for the project?

3) What were the main challenges faced as a team, and how were these

overcome?

4) What would you do differently if you had to carry out the project again?195

Teams are encouraged to write these retrospective documents to accurately

reflect the challenges and the struggles they faced throughout the development

process. The questions the retrospectives need to answer provide a common

template for all documents. However, teams are encouraged to provide truthful

representations of their own experience with the project. While all teams are200

8



free to put in place any process for writing these documents, we recommend

they have an initial team discussion around the four questions before deciding

on the process to put in place to answer them. As all team members need to

contribute to the writing of the retrospective account, this initial discussion is

designed to help the team get on the same page with respect to the overall team205

experience with the project.

All the deliverables are group submissions. In terms of assessment, the five

deliverables are categorised as: documentation (i.e. the project plan and pro-

posal, the requirements specification document, the design documentation, and

the retrospective account), code (source code and tests), or demonstration. For210

all the documentation deliverables, students have the option of identifying indi-

vidual contributions to the work, either by naming the authors of each section

in the deliverable, or evaluating individual contributions in terms of percent-

ages. The mark assigned to the deliverable is assigned to all team members who

have been identified as contributors. The code submission is marked based on215

individual commits as part of the version control system used. When students

adopt pair programming as a technique, they are instructed to commit the code

written before switching roles during the coding process. The demonstration

mark is assigned based on both the individual code commits authored by each

team members and the individually identified contributions to the creation of220

the demonstration. Team members who have either only contributed code or

only create the demonstration will be awarded half of the marks assigned to the

demonstration.

Methods, tools, and techniques for tackling common software development

problems are introduced during the lectures. However, students are free to select225

which ones to apply in their work on the project. For example, in terms of ver-

sion control management, the lecture describes and demonstrates GitHub. How-

ever, in recent years, some teams have chosen version control systems, e.g. Bit-

Bucket. Similarly, while the lectures describe interviews, focus groups, ethnog-

raphy as methods for requirements elicitation, teams are free to choose the230

method(s) they want to use for eliciting the requirements for the systems they

9



are developing. Teams are provided with two constraints. First, the problem

chosen needs to be of medium complexity and approved by the course coordina-

tor. Second, each team is expected to submit the five deliverables throughout

the year.235

The number of teams enrolled on the course varied from year to year, with

32 teams taking the course in 2016/2017, and 35 teams taking the course in

2017/2018. The software systems developed varied, but all were designed around

storage components, a set of minimum five features, and graphical user inter-

faces. Some examples of systems develop include educational quizzes, product240

reviewing systems, and finance management systems. Real-world examples are

provided for each deliverable; these expose students to the structure and con-

tent of such documents. Although their complexity is high, the examples are

intended to help students develop the analytical skills required for critically

evaluating software documentation.245

4. Research method

4.1. Research Questions

Our research goal is to better understand the gap between the expectations

students have at the start of a software development group project in terms of

the teamwork dynamics and the way they perceive the reality of the process at250

the end of the project. We ask the following research questions:

• RQ1: What expectations do students have in terms of teamwork at the

start of a software development group project?

– RQ1.1: How do undergraduate students perceive their past experi-

ence with teamwork?255

– RQ1.2: How do undergraduate students perceive the likelihood of

recurring breakdown scenarios reported for group projects to occur

as part of a group project they are part of?

10



– RQ1.3: How is the students experience with collaborative software

development linked to how they perceive the likelihood of recurring260

breakdown scenarios reported for group projects to occur in a project

they are part of?

• RQ2: How do undergraduate students perceive the reality of teamwork

after completing a software development group project?

– RQ2.1: What are the most recurring issues students face during a265

software development group project?

• RQ3: How do the expectations match the reality students face when de-

veloping software as a team?

4.2. Research Background

At the end of each year, we collect anonymous student feedback for this270

course. This allows students to comment on the elements of the course that

they appreciated and those they found challenging or thought less of. Among

the questions students answer is Q1: “What is the area of this course that needs

improving?”. For the 2016-2017 academic year, we collected answers from 44

(23%) of the students enrolled on the course. The qualitative feedback collected275

from Q1 was coded by the first author with each comment being summarised in a

few words (i.e. a code) to reflect the core message of the comment. For example,

“A lot of people are being held back due to group members not participating”

was associated with ”lack of engagement from team members”.

We extracted all the responses commenting on the teamwork element of the280

course (representing 70% of all the available comments) and the codes assigned

to them, and looked at recurring codes pointing to recurring comments students

provided. We define a recurring comment as one provided by at least three dif-

ferent students. We identified 9 such codes, namely the one-man team, project

and work management, lack of leadership, no democratic approach, miscommu-285

nication within team, poor time management, lack of engagement from team

11



members, personal conflicts, and lack of expertise. For each code, we extracted

all the responses associated with the particular code, and summarised them into

the following recurring scenarios:

S1: “I felt like I was the only one doing any work” - the one-man team. This290

describes a situation where one of the team members ended up contributing dis-

proportionately more work than all the other members of the team. In extreme

cases, the student submitted an entire deliverable under single authorship.

S2: “As a team, we couldn’t agree on how to split the work” - project and

work management. The situation relates to arguments and miscommunication295

around decisions that involve the division of work. Some teams struggled with

identifying and defining development roles during the group project.

S3: “No one wanted to act as a team leader” - lack of leadership. This

situation identifies cases where none of the team members volunteered to act

as a team leader. In some cases no team member felt comfortable with making300

decision that would involve the entire team, in others no team member was

willing to solely take the initiative with respect to part of the process.

S4: “The team leader dictated what we all should do and I didn’t agree

with his/her decision” - no democratic approach. This scenario refers to teams

where decisions were taken by the team leader without much deliberation and305

consensus. Further down the line, this led to frustration on the part of the team

with some team members being stuck in roles they did not feel comfortable

with.

S5: “Someone in the team misunderstood his/her task and submitted dupli-

cate work at the last minute” - miscommunication within team. The scenario310

describes situations where the lack of continuous communication among team

members led to misunderstandings with respect to agreements on work divi-

sion. In most of these cases, such misunderstandings only became apparent in

the hours leading to the deadline.

S6: “We left the work to the last minute and we didn’t have any time to315

check each other’s contributions to the deliverable” - poor time management.

The scenario was associated with situations where the work on a given deliver-

12



able was split amongst the team members with the aim of all the parts being

assembled in one coherent document. In some situations, due to poor time man-

agement, the teams did not have the chance to read the document as a whole320

and ensure there are no contradictions once all the individual contributions were

assembled in one submission.

S7: “We have not heard from a team member for a long time” - lack of

engagement from team members. This scenario was associated with situations

where team members would stop attending meetings and responding to messages325

without any notice.

S8: “Conflict arose often among members of the team” - personal conflicts.

The scenario refers to personal conflicts amongst members of teams. Such con-

flicts included misunderstandings about individual contributions, miscommu-

nication around milestones set by the team, or disagreements about decisions330

made with respect to the development process.

S9: “The team leader/a member of the team decided we should use a specific

method or language and then s/he stopped attending the team meetings.No one

else knew the method or language and it was too late to change it.” - lack of

expertise. This scenario was associated with situations where one team member335

confidently supported the adoption of a specific technology reassuring the rest

of the team that s/he will play a supportive role throughout the development

process. Later on during the development process, s/he either withdrew from

the course or stopped attending team meetings.

To answer this paper’s research questions, we designed and ran two studies340

during the following academic year (i.e. 2017/2018). At the start of the aca-

demic year, we collected data from individual students enrolled on the course

aiming to identify their experience and expectation with teamwork. Through-

out the academic year, the students were split into 35 teams, and each team

was asked to work on the group project described in Section 3. At the end345

of the same year, we collected data from each team to better understand their

perceptions of the group exercise. We describe the methodology for designing

and running each study below.

13



4.3. Study 1 - Teamwork Expectations

4.3.1. Data Collection and Data Analysis350

At the start of the 2017-2018 academic year, we asked each student to anony-

mously answer a set of questions to identify their teamwork expectations. Stu-

dents were asked to both rate their experience with teamwork on a scale from 1

(very limited) to 5 (very strong) (Q1) and identify the number of collaborative

software development projects they were involved in (Q2). Additionally, they355

were asked to: a) identify what, in their opinion, are the benefits (Q3) and the

challenges (Q4) of developing software as a team, and b) rate on a scale from 1

(not likely at all) to 5 (very likely) the likelihood of the 9 scenarios reported on

by students during the previous year (see Section 4.2) happening in their own

team (Q5). Out of the 189 students enrolled on the course, 128 (68%) answered360

the survey.

All qualitative data collected, namely from Q3 and Q4, was coded by the

first author in order to identify recurring themes in the responses provided; these

codes were reviewed for consistency by the second author. For Q3, students pro-

vided a set of descriptions of what they perceived the benefits of teamwork to365

be. Each such description was associated with a code which summarised its

meaning. For example, “We can get a lot more work done as a team” was

associated with “getting more work done”. Some responses included multiple

descriptions, and were associated with multiple codes. For each code, we cal-

culate its recurrence rate as the number of responses that were associated with370

that particular code.

Similarly, for Q4, students provided a set of descriptions of what they per-

ceived the challenges of teamwork to be. Each such description was associated

with a code which captured its meaning. For example, “It is difficult to find

time to meet when everybody has different timetables” was associated with375

“scheduling meetings”. Some responses included multiple descriptions, and were

associated with multiple codes. For each code, we calculate its recurrence rate

as the number of responses that were associated with that particular code. All

14



quantitative data, namely from Q1, Q2, and Q5, was analysed using IBM SPSS.

4.3.2. Limitations380

We asked students to rate a limited number of scenarios, and we did not

ask them to foresee any other additional breakdown scenarios. We did not

follow up the survey with interviews, so we did not get the chance to clarify the

quantitative data gathered. Additionally, this was the first course offered by the

programme where this group of students were asked to collaboratively develop385

a software system. As such, some of the scenarios students had to rate might

have been perceived as accidental occurrences, or possibly explained by factors

that were independent to the previous year’s course delivery.

4.4. Study 2 - Teamwork Reality

4.4.1. Data Collection and Data Analysis390

At the end of the same 2017-2018 academic year, the 35 teams of 5-6 students

enrolled on the course were asked to submit a 3-page retrospective account of

the process they followed as a team. As part of this retrospective, the teams

discussed four topics: details of the software development process they put in

place (T1), the way their initial plan matched this process (T2), the issues395

they encountered and how they overcame them (T3), and the lessons learned

throughout the design and development process (T4). All the retrospectives

were submitted as team deliverables, and they were anonymised. All teams

used the same structure to write the retrospectives, dedicating a section to each

of the four topics above (T1-T4).400

We carried out thematic analysis of the 35 retrospective documents based

on Straussian Grounded Theory[23] in three stages. First, we tokenised these

submissions into small snippets of text, i.e. quotations, ensuring that each quo-

tation reports on a single issue. These quotations were often restricted to one

or two sentences, for example “The beginning of the project started off excep-405

tionally. The whole team met and planned how they would proceed”. Second, we

coded each quotation with a short summary of the issue reported. Such codes

15



were restricted to a few words, for example “great start of the project”. One code

was often associated with multiple quotations, and each quotation was associ-

ated with one code. Finally, we axially and selectively coded these quotations410

into themes, eg. “attitude towards the project”. In summary, 151 codes were

used to categorise the 435 quotations elicited, and subsequently grouped into

21 themes. These themes were clustered around the following areas: People,

Skills, Process, and Environment.

4.4.2. Limitations415

All retrospectives were limited to 3 pages. As a result, teams discussed

issues which they felt mostly affected their teamwork possibly ignoring chal-

lenges they faced which affected them less or were easily managed. While each

team member contributed to the retrospective account, the submission was a

group submission. Therefore, we are not analysing individual reflections on the420

project, but the challenges and lessons learned by the team as a whole. We did

not follow up the retrospectives with interviews or focus groups, our analysis

being solely based on the written documents.

5. Results

5.1. RQ1 - Teamwork Expectations425

In RQ1 we studied what students expect in terms of teamwork at the start

of a software development group project. We looked at how students perceive

their experience with teamwork in general, and how this matched their specific

experience with collaborative software development. Additionally, we explored

students expectations for breakdown scenarios in teamwork, and how these ex-430

pectations matched their own experience with teamwork and collaborative soft-

ware development.

5.1.1. Perceived experience with teamwork

Out of the 189 students enrolled on the course, 128 (68%) answered the sur-

vey. 40% of the respondents rated their experience with teamwork either ‘very435

16



1

1

1

1 3 1

5 4

1 1 12 2

2 14 41 34 4

Students’	perception	of	their	teamwork	experience

No
.	o
f	t
ea
m
	p
ro
je
ct
s	t
he

y	
w
er
e	
in
vo
lv
ed

	in

52 3 41

0

1

2

3

8

9

10

Figure 2: Each cell represents the no. of students corresponding to the respective a) perceived

teamwork experience where 1 and 5 represent very poor and very strong respectively (X-axis)

and b) no. of team projects they were involved prior to this project course in (Y-axis))

strong’ or ‘strong’, with 15.6% of the respondents considering their experience

with teamwork ‘poor’ or ‘very poor’. The mean of the perceived experience with

teamwork across responses was 3.24 (st.dev. 0.83). In terms of number of collab-

orative software development projects involved with, 74.2% of the respondents

had not been involved in any such projects, and only 6.3% of the respondents440

had been involved in more than two such projects. The average number of col-

laborative software development projects respondents were involved in was 0.59

(st.dev. 1.52).

Out of the 50 respondents who rated their experience with teamwork as ei-

ther ‘strong’ or ‘very strong’, 51% had never been involved in a collaborative445

software development project. We represent this in the heatmap depicted in

(Figure 2), where the X-axis represents on a scale from 1 (very poor) to 5 (very

strong) the students’ perception of their teamwork experience, and the Y-axis

indicates the number of team projects students were involved in. The blue and

green cells in the heatmap indicate a small number of students reporting to450

match the corresponding criteria in X and Y-axis, whereas orange and red in-

17



Table 1: Student’s perception of the benefits and the challenges of teamwork - Codes identified

and their respective recurrence rates in percentages

Benefits Challenges

Broader perspective and skill set (22%) Communication (35%)

Getting more work done (22%) Conflicting opinions (15%)

Delivering work faster (22%) Unreliable team members (11%)

Sharing the workload (18%) Scheduling meetings (11%)

Helping each other (15%) Coordination (7%)

dicate a large number of students reporting to match the corresponding X and

Y-axis criteria. For example, 41 students reported being involved in no team

projects while at the same time rating their experience with teamwork as 3 on

the 1 to 5 scale. Out of those who perceived their experience with teamwork455

as ‘moderate’, 59% have never been involved in a collaborative software de-

velopment project. We conclude that, while students relate to teamwork and

recognise it as part of their own previous experiences, they do not necessarily

relate teamwork to software development. A lack of experience with developing

software collaboratively does not necessarily lead students to reassess their own460

experience with teamwork. This leads to the false expectation that the skills

acquired having worked as part of a team in any other circumstance will easily

transfer to the context of software development.

We asked students to identify top benefits and challenges they perceive for

developing software as a team. We looked at recurring responses and their465

corresponding recurrence rates, and identified them in Table 1. While the re-

sponses often met benefits and challenges of teamwork, they are neither specific

to software development nor concretely pointing to particular scenarios.

5.1.2. Perceived likelihood of breakdown scenarios

We provided the students with the description of the scenarios identified in470

4.2 and asked them to rate on a scale from 1 (very unlikely) to 5 (very likely) the

18



likelihood of these scenarios occurring as part of their group project (Figures 3

- 7).

19



	

	
	

- The one man team

- Project management

Figure 3: Students’ rate the likelihood of the breakdown scenarios S1-S2 happening as part

of their group project: X axis represents the likelihood code (1-very unlikely, 5-very likely),

Y axis represents the frequency of code occurrence in responses

20



	

	
	

- Lack of leadership

- No democratic approach

Figure 4: Students’ rate the likelihood of the breakdown scenarios S3-S4 happening as part

of their group project: X axis represents the likelihood code (1-very unlikely, 5-very likely),

Y axis represents the frequency of code occurrence in responses

21



	

	
	

- Miscommunication within team

- Poor time management

Figure 5: Students’ rate the likelihood of the breakdown scenarios S5-S6 happening as part

of their group project: X axis represents the likelihood code (1-very unlikely, 5-very likely),

Y axis represents the frequency of code occurrence in responses

22



	

	
	

- Lack of engagement from team members

- Personal conflicts

Figure 6: Students’ rate the likelihood of the breakdown scenarios S7-S8 happening as part

of their group project: X axis represents the likelihood code (1-very unlikely, 5-very likely),

Y axis represents the frequency of code occurrence in responses

23



	
- Lack of expertise

Figure 7: Students’ rate the likelihood of the breakdown scenarios S9 happening as part of

their group project: X axis represents the likelihood code (1-very unlikely, 5-very likely), Y

axis represents the frequency of code occurrence in responses

24



	
	

	

	
	

	

	
	

	

0123456

0
1

2
3

4
5

6

S1
	-
Th
e	
on

e	
m
an
	te

am

0123456

0
1

2
3

4
5

6

S2
-P

ro
je
ct
	m
an
ag
em

en
t

0123456

0
1

2
3

4
5

6

S3
	-
La
ck
	o
f	l
ea
de

rs
hi
p

0123456

0
1

2
3

4
5

6

S4
	-
N
o	
de

m
oc
ra
ti
c	
ap
pr
oa
ch

0123456

0
1

2
3

4
5

6

S5
	-
M
is
co
m
m
un

ic
at
io
n	
w
it
hi
n	
te
am

0123456

0
1

2
3

4
5

6

S6
	-
Po

or
	ti
m
e	
m
an
ag
em

en
t

0123456

0
1

2
3

4
5

6

S7
	-
La
ck
	o
f	e

ng
ag
em

en
t	f
ro
m
	te

am
	m

em
be

rs

0123456

0
1

2
3

4
5

6

S8
	-
Pe

rs
on

al
	c
on

fli
ct
s

0123456

0
1

2
3

4
5

6

S9
	-
La
ck
	o
f	e

xp
er
ti
se

F
ig
u
re

8
:
D
is
tr
ib
u
ti
o
n

o
f
th

e
im

p
a
ct

o
f
st
u
d
en

ts
’
se
lf
-a
ss
es
se
d

ex
p
er
ie
n
ce

(Y
-a
x
is
;
1
-v
er
y

p
o
o
r,

5
-v
er
y

st
ro
n
g
)
o
n

th
e
p
er
ce
iv
ed

li
k
el
ih
o
o
d

o
f
th

e

b
re
a
k
d
o
w
n
sc
en

a
ri
o
s
(X

-a
x
is
;
1
-v
er
y
u
n
li
k
el
y,

5
-v
er
y
li
k
el
y
)

25



	
	

	

	
	

	

	
	

	

-1
 0123456

0
1

2
3

4
5

6

S1
	-
Th
e	
on

e	
m
an
	te

am

-1
 0123456

0
1

2
3

4
5

6

S2
	-
Pr
oj
ec
t	m

an
ag
em

en
t

-1
 0123456

0
1

2
3

4
5

6

S3
	-
La
ck
	o
f	l
ea
de

rs
hi
p

-1
 0123456

0
1

2
3

4
5

6

S4
	-
N
o	
de

m
oc
ra
ti
c	
ap
pr
oa
ch
	

-1
 0123456

0
1

2
3

4
5

6

S5
	-
M
is
co
m
m
un

ic
at
io
n	
w
it
hi
n	
te
am

-1
 0123456

0
1

2
3

4
5

6

S6
	-
Po

or
	ti
m
e	
m
an
ag
em

en
t

-1
 0123456

0
1

2
3

4
5

6

S7
	-
La
ck
	o
f	e

ng
ag
em

en
t	f
ro
m
	te

am
	m

em
be

rs

-1
 0123456

0
1

2
3

4
5

6

S8
	-
Pe

rs
on

al
	c
on

fli
ct
s

-1
 0123456

0
1

2
3

4
5

6

S9
	-
La
ck
	o
f	e

xp
er
ti
se

F
ig
u
re

9
:
D
is
tr
ib
u
ti
o
n
o
f
th

e
im

p
a
ct

o
f
th

e
n
u
m
b
er

o
f
co

ll
a
b
o
ra
ti
v
e
so
ft
w
a
re

d
ev

el
o
p
m
en

t
p
ro

je
ct
s
st
u
d
en

ts
w
er
e
in
v
o
lv
ed

in
(Y

-a
x
is
;
v
a
lu
e
5
re
p
re
se
n
ts

5
+
)
o
n
th

e
p
er
ce
iv
ed

li
k
el
ih
o
o
d
o
f
th

e
b
re
a
k
d
o
w
n
sc
en

a
ri
o
s
(X

-a
x
is
;
1
-v
er
y
u
n
li
k
el
y,

5
-v
er
y
li
k
el
y
)

26



S1 (“I felt like I was the only one doing any work”) was rated ‘very likely’ or

‘likely’ by only 17.2% of the respondents, with the highest number of respondents475

(38.3%) finding it ’moderately likely’. S2 (“As a team, we couldn’t agree on how

to split the work”) was perceived as ‘very unlikely’ or ‘unlikely’ by 46.1% of the

respondents, while S3 (“No one wanted to act as a team leader”) was found

‘very likely’ by only 5.5% of the respondents. S4 (“The team leader dictated

what we all should do and I didn’t agree with his/her decision”) was seen as480

particularly unlikely with only 1.6% of the respondents rating is as ‘very likely’.

S5 (“Someone in the team misunderstood his/her task and submitted duplicate

work at thelast minute”) was rated as either ‘very unlikely’ or ‘unlikely’ by 46.8%

of the respondents, while S6 (“We left the work to the last minute and we didn’t

have any time to check each other’s contributions to the deliverable”) was rated485

as ‘very likely’ by only 3.9% of the respondents. The scenario considered most

likely was S7 (“We have not heard from a team member for a long time”),

with 6.3% of the respondents rating it ‘very likely’. S8 (“Conflict arose often

among members of the team”) was rated as ‘very likely’ by the lowest number of

respondents, namely 0.8%, while S9 (“The team leader/a member of the team490

decided we should use a specific method orlanguage and then s/he stopped

attending the team meetings. No one else knew the method or language and it

was too late to change it”) was rated as particularly unlikely with 57.8% of the

respondents finding it either ‘very unlikely’ or ‘unlikely’.

Overall, none of the scenarios were seen as particularly likely to occur as495

part of the group projects students were embarking on, ‘likely’ and ‘very likely’

having the lowest response rate for all the nine scenarios. Students were not told

that these scenarios were the nine most recurring breakdown scenarios reported

for the previous year. The fact they did not perceive them as real risks for

their own projects reflects the students’ expectations and overall optimism they500

project on a teamwork exercise in software development.

27



Table 2: Correlation between students’ experience claimed/no. of projects students claim

they were involved in and the rate they assign for the likelihood of the breakdown scenarios

(Spearman coefficient value and p-value, respectively)

S1 S2 S3 S4 S5 S6 S7 S8 S9

Level of

experience

-.178

.023

-.311

.000

.087

.166

.022

.407

-.248

.004

-.215

.012

-.188

.026

-.109

.134

-.173

.044

No. of

projects

involved in

.002

.493

.040

.328

-.030

.369

.069

.230

-.015

.439

-.014

.444

-.144

.069

.144

.123

.-75

.229

5.1.3. Experience and perceived likelihood of breakdown scenarios

We explored the impact students’ experience with teamwork has on how they

rate the likelihood of common breakdown scenarios to occur as part of their own

group project. The bubble chart in Figure 8 show the distribution of responses505

based on the level of experience students claim to have (Y-axis) with respect to

the likelihood of breakdown scenario (X-axis). In comparison, Figure 9 shows

the number of collaborative software development projects students claim they

were involved in (Y-axis) with respect to the likelihood of breakdown scenario

(X-axis).510

As Table 2 shows, we found no significant correlation between the way stu-

dents rated the likelihood of the breakdown scenarios and the number of software

development projects they claim to have been involved in. We also observed

no significant correlation between the way students rated the likelihood of the

breakdown scenarios and the way they rate their experience with teamwork. The515

only exception was Scenario 2 (“As a team, we couldn’t agree on how to split

the work”), which was moderately negatively correlated with the self-assessed

teamwork experience (rs = -.311, p=.000).

5.2. RQ2 - Teamwork Reality

In RQ2, we studied how students describe the reality they face through-520

out the development process of a software system when working as a team.

28



Analysing the 35 retrospective accounts introduced in Section 3, we identified

four topics, namely Team (T), Skills (S), Process (Pr), and Environment (E)

which cover the 21 recurring themes reported by the teams and depicted in Ta-

ble 3. The themes in Table 3 are ordered by topic - team (T), skills (S), process525

(P), and environment (E).

The two most discussed themes across the retrospectives were team exper-

tise and meetings, with almost 3 quarters of the teams reflecting on the role

of meetings in their group project and on how the collective team expertise

was identified and exploited throughout the duration of the project. The de-530

velopment process and time management were themes discussed by more than

a half of the retrospectives. While some phases of the development process

were dominant (eg. implementation and version control), the teams reflected

on other aspects of the development process such as requirements engineering

and quality assurance. Other themes discussed by a large number of teams535

included team members, role allocation, communication across team, and the

project plan. In terms of team members, the retrospectives discussed some of

the recurring breakdown scenarios related to team membership throughout the

project. Role allocation discussions included descriptions of strategies followed

for assigning roles for the main tasks identified for the project. In terms of540

communication across team, the retrospectives identified breakdown scenarios

in communication and some of the consequences of these scenarios. Teams dis-

cussed their strategies for drafting a project plan and following it throughout

the duration of the project.

40% of the retrospectives discussed aspects related to leadership and the545

product delivered. Discussions around leadership revolve around the strategies

teams put in place for deciding on team leadership, while all the 14 teams

which reflected on the product delivered discussed how the software system de-

veloped matched the initially planned one. A third of the retrospectives dis-

cussed themes such as coordination and team environment. When discussing550

coordination, teams reflected on breakdown scenarios revolving around the lack

of team coordination. In terms of team environment, teams reflected on the

29



Table 3: Themes discussed by teams for each topic (Team (T), Skills (S), Process (P), and

Environment (E)) with the number and percentage of teams reporting on each theme, and

the number of sub-themes (codes) associated with each theme

Topic Theme
No. of

codes

No. of

teams

% of

teams

T

Team members 5 17 49

Leadership 6 14 40

Role allocation 11 16 46

Individual contributions 2 4 11

Shared understanding 4 7 20

S

Development process 7 20 57

Languages and tools used 10 8 23

Team expertise 14 25 71

P

Risk management 3 4 11

Meetings 16 24 69

Meeting deadlines 7 9 26

Monitoring progress 3 3 9

Product delivered 1 14 40

Time management 8 20 57

Work breakdown 5 8 23

The plan 5 15 43

E

Attitude towards project 12 8 23

Communication 11 15 43

Coordination 7 11 31

Conflict resolution 3 3 9

Team spirit 13 11 31

30



impact the attitude of the team towards the project and the overall mood of

the team impacted the success of the project.

About a quarter of the retrospectives discussed deadlines and meeting them,555

teams’ attitude towards the project, the choice of languages and tools used in the

development process, and strategies for work breakdown. Less discussed themes

included the shared understanding across the team and strategies to ensure it, in-

dividual contributions to the team deliverables and breakdown scenarios around

identifying them, and elements of risk management. The least discussed themes560

included strategies for conflict resolution and progress monitoring. Below, we

discussed each theme in more details.

5.2.1. Team

Team members. A recurring issue across the retrospectives was the lack of com-

mitment of one or more members of the team, with 12 (35%) teams reporting565

this as an issue. This manifested in poor attendance in team meetings, not

delivering work on time, delays in responding to messages sent across the team,

or misleading fellow team members. Opportunistic behaviour was also observed

by students with team members being absent for long periods of time and only

engaging with the project in the days leading to the deadline. The responses to570

these situations varied. Some team members took it upon themselves to ensure

that such situations did not jeopardise the success of the team (“I have learnt

that you can’t always rely on other team members to do parts of the coursework

on time so I should be more prepared in future team projects to do all I can to

ensure I can carry on with my part regardless of what other members have done575

so far”). Other teams felt that one member’s lack of commitment had ripple

effects for the entire team, and decided to react by excluding the team member

from the team after repeated warnings. Other teams decided to redistribute

the work to the remaining team members and readjust the scope of the entire

project to better match the number of students actively involved in the devel-580

opment process. Members leaving the team was another recurring issue, with 9

(26%) of the team reporting that one member of the team withdrew from the

31



project altogether.

Leadership. The attitude towards leadership varied across teams. While 20% of

the teams reported a lack of leadership and its consequences (“This particular585

project did not have a team leader, but it has been made apparent that there needs

to be a figure who is responsible for overseeing the progress of the project and

ensuring that tasks are on scheduling and finding solutions if they are not.”),

others took an active approach in deciding the leadership roles early in the

process. Two main strategies were identified for appointing team leaders. 20%590

of the teams decided to rotate the leadership role amongst team members so

that every member of the team ends up leading a particular development phase

(“At the beginning of the project, we allocated leaders for each submission, this

allowed for the coordination and responsibility of each piece of work to be passed

from one member to another”). Taking turns in acting as a team leader has both595

advantages and disadvantages. On the one hand, it helped all team members

build leaderships skills; on the other hand, students felt that some of their peers

were more comfortable with the role than others and this had a direct impact

on the team as a whole. In 6% of the cases, the team as a whole appointed one

team leader for the entire development process, usually as a consequence of a600

breakdown such as not meeting a deadline, no one showing initiative to start

working on a task or the project as a whole (“Often, when starting a piece of

the project, it would take someone to initially start and get the ball rolling before

the whole group began contributing.”).

Role allocation. Teams reported several strategies for assigning roles within the605

team, such strategies being employed either at the start of the project or before

the start of each development phase. Some teams used a bidding process where

roles were assigned based on individual preference. Others decided to assign

roles based on each others expertise, while others split the team into sub-teams

and assigned larger tasks to each of the sub-teams. In most of the cases, teams610

reported that such roles were flexible with students helping each other when

in need “Work allocation was never really dead-set on one person, therefore

32



whoever had finished their part was more than happy to help out other members

which had not finished theirs”. Other teams, however, lacked a clear strategy for

assigning roles or did not consider a back up plan if any of the team members615

did not deliver the work assigned to them. This had a significant impact on

the team environment - “As a team we lacked a clear system of distribution of

work and this really took a toll on the less motivated members, which led to a

clear difference of involvement and contribution when it came to dealing with

the workload”.620

Individual contributions. While the contributions to each of the submissions of

the coursework were individual, they were not always even with 10% of the

teams reporting opportunistic behaviour on the part of some of their members

- “While some people helped with some parts of the code, others did not write

a single line of the software and only showed initiative a couple days before the625

deadline.”.

Shared understanding across the team. . Several teams reported difficulties in

reaching a common vision for the project in areas such as requirements elicita-

tion & specification, design, or even implementation - “I believe however that we

as a team, had conflicting visions on how implementation was to be done which630

can be seen in the SRS and Design Documentation”. 10% of the teams found

it difficult to ensure that all members of the team are on the same page at all

times in terms of the progress made and what is left to be done. As response

to this, they developed strategies for ensuring shared understanding across the

team, including maintaining a shared Q&A document or relying heavily on635

communication tools such as Slack.

5.2.2. Skills

Development process. The discussion around the development process focused

mostly on the software development process put in place (15% of the teams),

version control (30% of the teams), implementation (43% of the teams), require-640

ments (15% of the teams), QA (6% of the teams). The lack of experience in

33



using version control systems left a mark as reported by a number of teams and

led to time being lost recovering code accidentally deleted or frustration on the

part of some team members. Gradually, however, each team chose a strategy

to manage such issues, including keeping one branch and increasing commu-645

nication, assigning different branches to different tasks, or team members and

merging these branches collectively or using a simpler tool for version control.

Requirements were also discussed either as a constant reminder of what is left

to be done, as a way to ensure shared understanding and vision across the team,

or to facilitate decision making at later stages during the process. Other sce-650

narios teams reported on included changing the design of the system half way

through the process, reusing code to speed up the implementation phase, em-

ploying peer-review as a means of checking the final version of each deliverable,

and deciding on name conventions to be used across the team.

Language and tools used. With teams being allowed to choose their tools and655

programming languages, a lot of discussion justifying their choices was in-

evitable. Overall, we noted two strategies. The first strategy was to give this

a lot of thought from the very beginning, and review the languages and tools

all team members were familiar with. Some teams took a rigorous approach

by asking all members to complete a questionnaire and rate their level of ex-660

perience with various popular languages and tools. Based on these results, a

decision was made to ensure that all team members were comfortable with the

choice. The second strategy was to invest a lot less effort at the beginning

and choose a popular language, usually one that at least some team members

were comfortable with. However, in most such cases, teams ended up switching665

to another language half way through the process due to unexpected technical

difficulties or the realisation that the time and effort required for learning the

language to the level needed was unsustainable.

Team expertise. Teams dedicated time at the start of the project to get to know

each others technical strengths and weaknesses - “We started the process by go-670

ing over our experiences, what we were good at and what we could bring to the

34



project. We looked at some of our past projects and how we could use the skills

and experiences we gained in this new project”. Some used this understanding to

correctly estimate their collective technical abilities and, if needed, acknowledge

the need for more time and effort to be dedicated to improving their program-675

ming skills. Others (17%), however, overestimated the technical abilities of the

team and only realised this later in the process, costing them time and marks.

In extreme cases, the scope of the project needed to be changed to better fit the

skills and expertise of the team - “We realised that we gave ourselves too many

tasks with limited knowledge of how to successfully create them”. Another issue680

raised by teams (18% of the teams) was the diverse skillset of their team mem-

bers. This diversity ensured that even the most complex tasks can be achieved

using the collective expertise. This is important given the mastery of complex

tasks as a team is an important outcome of a group project unit [2]. However,

this diversity also led to lack of motivation on the side of the team members685

less proficient in the various languages and tools used by the team.

5.2.3. Process

The plan. All teams started with an initial project plan. Several scenarios were

identified with respect to these plans. Some teams (23%) provided an elaborate

plan with little consideration for the resources the team had available in terms690

of time and expertise - “Some of the functionality defined in the earlier stages

of the project were out of reach and impossible to develop by the time of the

submission date”. Other teams provided a simplistic plan with little connection

to the system to be developed, leading to underestimating the work that needed

to be done and leading to rushed work in the days before the deadlined. Finally,695

a number of 4 teams submitted an initial plan as a requirement for the course,

before subsequently ignoring it completely throughout the design & development

process - “The project plan defined in the first coursework deliverable was not

referred to by the team while coding the prototype, as team members prioritised

a recently created task list in the short-term over the plan”.700

35



Meetings. Team meetings were a recurring theme across all retrospectives, and

played a crucial role in all projects. Teams reported on the regularity of the

meetings, with some appreciating the positive role regular meetings played in

the team’s progress. In extreme cases, little work was done outside of these

meetings - “While team meetings were held frequently, not much work were done705

afterwards”. Other teams identified their irregular meetings as the element with

the highest negative impact on the progress made by the team. Most teams

recognised that logistics matter, so they put in place strategies to ensure the

success of their meetings. Such strategies included planning meetings ahead and

defining an agenda for every meeting, keeping track of minutes of each meeting,710

setting a day and a time when to meet every week, or using a register to track

attendance.

Meeting deadlines. Meeting deadlines was a strong consideration for all teams.

Most teams acknowledged the necessity of putting in place their own milestones,

and some teams enforced them for every submission. However, this was not the715

case for all teams, many of them reporting leaving work to the last minute and

struggling to ensure that deadlines were met.

Monitoring progress. Monitoring progress did not feature as a common concern

for the teams. While this was unexpected, a couple of exceptions were identi-

fied. One team in particular defined and maintained a timetable of the project,720

allowing the team to “determine whether we were behind schedule or ahead of

it”. Another team attempted to enforce a progress monitoring mechanism via

GitHub, but most team members did not adopt it, leading to situations where

“tasks were being tracked and completed with some members unaware of it, re-

ducing the team productivity and making it difficult to understand where the725

project development was at in our overall project plan”.

Product delivered. Fourteen teams (40%) reported delivering a final product

significantly different from the one initially planned. The reasons for this var-

ied. Some teams reported difficulties with getting everybody to engage with

36



the project and eventually leading to a reduced team, limited time, and the730

impossibility of meeting all the requirements initially specified for the system.

Other teams blamed an overestimation of the time they had available, and plan-

ning features infeasible to implement with the resources available. Still other

teams preferred to deliver a working system even if less complex than to risk

developing more complex features but not have the time to test them properly.735

Time management. The group project was part of six other courses students

had to take during their second year. As a result, the main cause reported for

poor time management in 32% of the retrospectives was the need to manage

multiple commitments at the same time. Some teams felt that this did not give

them enough time to learn new technologies or contribute as much as they would740

have wanted to the work of the team. Some tasks were sacrificed as a result

of poor time management and skewed time estimates; these included code doc-

umentation, testing, and system evaluation - “Unfortunately, the latter stages

of unit testing, integration and system testing, and operation and maintenance

were not reached due to the difficulties of time and amount of work completed745

described below”.

Work breakdown. Decisions on how to breakdown work into manageable tasks

were discussed by seven teams, and several strategies were identified. Some

teams mirrored the work breakdown during the implementation phase to the

system architecture designed for the system - “The development process was750

split into sections to model our architecture. Modules allowed us to split our

work load up evenly and allowed for minimal code/commit clashes as everyone

was working on a different module”. Other teams applied a divide and conquer

approach - “Most of the deliverables were shared between the group members,

every member was given a specific task to do. Then we would complete our tasks755

individually and meet up at the library or other workspace to share the work and

make fixes and help those that could not achieve their task since it was group

work”. In some cases, however, teams felt that this particular approach did not

encourage idea sharing and collaboration.

37



Risk management. Only two teams discussed elements of risk management in760

their retrospectives. They reported on extensively researching potential risks at

the beginning of the project, but then ignoring their analysis throughout the

project - “Extensive research into risk analysis was also done but we failed to

follow through on some of the strategies laid out”.

5.2.4. Environment765

Attitude towards project. It was common for teams to begin with a highly pos-

itive mood with enthusiasm gradually decreasing throughout the duration of

the project - “We were all enthusiastic about our project at the beginning just

like New Year’s resolutions to get fit but as time passed our interests in the

project development subsided, hence our attitude towards our work and each770

other wasn’t always positive nevertheless our team always focused on finishing

the work”. This, coupled with the fact that students worked with colleagues

they have not worked with before, caused significant stress. The reactions to

stress varied. Some teams (5 teams) reported a disorganised end, and in extreme

cases, complete abandonment of the project (2 teams). Other teams, however,775

remained focused on the end result and turned the challenge into an opportu-

nity - “This group was formed outside of our circle of friends, therefore it helped

us to learn to work with new people, of different backgrounds and experiences,

it pushed us out of our comfort zone but eventually, everyone coalesced to work

even through disagreement at times”.780

Communication. All teams were required to use one communication platform

for remote communication, with many teams opting for Slack. However, not all

teams were comfortable with this, and 10% of the teams decided to use addi-

tional communication platforms (eg. Whatsapp). Instead of helping, this ap-

proach made remote communication more challenging - “Other members would785

then be unclear on who was attending the meeting and when the meeting was tak-

ing place due to the organisation taking place on more than one communication

platform”. Teams reported various scenarios for communication breakdowns,

including delays in replying to messages or forgetting to update the rest of the

38



team of someone’s actions. Remote communication was found to be difficult790

and face-to-face meetings were generally preferred. To manage poor attendance

in meetings, students used communication platforms to update the absent team

members on the discussions held during the meeting.

Coordination. Coordinating efforts were discussed in 11 retrospectives, the fo-

cus being on breakdowns scenarios. These ranged from time wasted due to poor795

task synchronisation and some tasks accidentally ending up being completed by

two team members with inconsistencies resulting when individual contributions

were merged into a single deliverable. In one case, two different systems were

developed in parallel - “We ended up developing two systems, one that was a

mobile application and one that was a web application. When the systems had800

been finished it was made clear that they did not link well with each other”.

Conflict resolution. While conflicts were not a common theme across the ret-

rospectives, teams mostly discussed the strategies they used to overcome them.

Such strategies included voting and debates - “Seeing each other in person also

meant that we could discuss issues that we encountered and talk it through and805

agree upon the best possible course of action”.

Team spirit. The team spirit was reported by several teams as being the make-

or-break element of the entire project. For some teams, a “friendly atmosphere

accommodated with a balance of work ethic within the group” was the key

to the success of the project overall. Team members learned from each other810

and supported each other - “Since we weren’t working by ourselves we could

motivate each other to stay on topic and produce work at an efficient rate”. A

well working team, however, was often the result of a conscious effort to build

one - “To effectively build a functioning team, we learned the need to maintain

discipline, set standards, appoint roles, encourage communication within the815

team, inspire motivation and encourage a sense of purpose”. For other teams,

however, the lack of synergy made the teamwork experience stressful and led

39



to irregular meetings, work done at the last minute, and a general attempt to

postpone or even ignore the work that was required to complete the project.

5.3. RQ3 - Expectations meet Reality820

To answer RQ3, we analysed how the expectations students had at the be-

ginning of the year match the realities they described in the retrospective ac-

counts. For this, we identified the top 15% most recurring codes (Table 4) used

in the thematic analysis of the retrospectives. These codes are summaries of

the tokenised quotations depicted from the retrospective documents. While each825

quotation was associated with a code, a code was usually used to summarise

quotations referring to the same issue. We then match the most recurring codes

to the nine scenarios whose likelihood students rated at the beginning of the

year.

Out of the nine scenarios students were presented with at the beginning of830

the year, only S7 (“We have not heard from a team member for a long time”)

was rated with an average higher than 3 (3.04) on a scale of 1 (very unlikely)

to 5 (very likely). The scenario rated the least likely was S9 (“A member of

the team decided we should use a specific method orlanguage and then s/he

stopped attending the team meetings”), with an average rating of 1.94. Based835

on the thematic analysis of the retrospective accounts, however, all scenarios

but one were identified in the top 15% of the most recurring codes used. Lack

of commitment from team members (S7) was reported by 35% of the teams,

while a third of the teams reported leaving work to the last minute and rushing

deliverables (S6). Nine of the teams mentioned team members leaving the team840

half way through the project (S9), and 20% of the teams discussed the lack

of leadership in their team (S3). Lack of coordination which led to the same

task being done by two team members (S5) was reported by 15% of the teams.

Conflicting visions for the project (S8) and team members feeling burdened by

the sole responsibility of the project or parts of the work (S1) were reported by845

9% of the teams.

Additional breakdown scenarios teams reported included experiencing diffi-

40



Code Theme
No. (%) of

teams
Sc.

Delivered a different software system than

initially planned
Product delivered 14 (40%)

Lack of commitment from team members Team members 12 (35%) S7

Difficulty in managing other course deadlines

at the same time
Time management 11 (32%)

Version control management strategies Development process 10 (30%)

Work left to the last minute and rushed Time management 10 (30%) S6

Organising regular meetings Meetings 9 (26%)

Role allocation based on experience or

preference
Role allocation 9 (26%)

Team members leaving the team half way

through the project
Team members 9 (26%) S9

Elaborate and unrealistic initial plan The plan 8 (23%)

No clear leader/lack of leadership Leadership 7 (20%) S3

Strategies around documenting meetings Meeting 6 (18%)

Early realised that more expertise is needed

to complete project
Team expertise 6 (18%)

Disorganised/intense end of project Communication 5 (15%)

Same task done by two people Coordination 5 (15%) S5

Setting own milestones Meeting deadlines 5 (15%)

Tracking minutes of meetings Meetings 5 (15%)

Teams explore collective experience & expertise Team expertise 5 (15%)

Initial project plan ignored The plan 4 (12%)

Split team into sub-groups Role allocation 4 (12%)

Conflicting visions for the project Shared understanding 3 (9%) S8

I am the only one organising meetings Meetings 3 (9%) S1

Uneven contributions from team members Individual contributions 3 (9%)

Overestimating technical ability of team Team expertise 3 (9%)

Table 4: Top recurring codes reported in the retrospective documents and the map between

the codes and the scenarios students rated at the beginning of the project41



culties in managing other course deadlines scheduled at the same time, drafting

elaborate and unrealistic initial plans which became useless or required signifi-

cant overhaul as the project developed, facing difficulties in managing an intense850

or disorganised end of the project, and having to manage uneven contributions

from team members with some team members contributing the bulk of the work.

We note that while some of these scenarios seem to stem to the sequential soft-

ware development put in place (eg. “Initial project plan ignored” or “Elaborate

and unrealistic initial plan”), most of the scenarios have the potential to occur855

irrespective of the software development process put in place.

6. Discussion and Practical Implications

We investigate the expectations students have when embarking on an un-

dergraduate software engineering team project and the realities they face. We

discuss some of the breakdown scenarios students experience and the strategies860

they put in place to overcome them. We found a gap between the students’

expectations and the reality they face with respect to teamwork, and propose

four guidelines to narrow or bridge this gap.

Focus on the start of the project. The teams met the start of the project

with great enthusiasm and with the expectation that none of the breakdown865

scenarios identified in past years are likely to happen to them. However, this

expectation is often skewed, and the initial enthusiasm gradually fades when

they face teamwork breakdown challenges. While it might appear the change

was due to students feeling overwhelmed by the scale of the project or due

to team members leaving the team or showing a gradually declining lack of870

commitment, we believe the issues arose due to little or no focus on key aspects

at the start of the project. The first deliverable students submitted was a project

plan. In most cases, the initial project plan focused only on scheduling the tasks

required to complete the project, without due consideration of aspects such as

logistics, getting to know the collaborative expertise of the team, the preferences875

and experience of each individual team member with software development, or

42



the overall team environment. This led to most plans being infeasible, or ignored

throughout the project. An additional consequence of not focusing on creating

and maintaining a team environment from the outset was the gradual erosion

of the level of engagement amongst the students. The start of the project880

should focus more on building trust, a shared understanding within the team,

and the implications of non-engagement - both in terms of software engineering

motivations [24] and the impact that non-engagement has on the learning of

other team members.

Make informal meetings part of the course. While scheduling meetings was885

one of the challenges students associated with teamwork before the start of

the project, regular face-to-face meetings proved to be a predictor of success.

However, not all teams took advantage of this, and they either met irregularly

or simply gave up meeting all together or held their meetings online. We argue

that informal team meetings need to be brought to the heart of the project by890

emphasising their importance and incentivising students to organise and attend

such meetings. The teams which enforced registers to track attendance in team

meetings found them useful, but due to their optional character they were at

times ignored. Turning such mechanisms into requirements for the project and

incentivising teams to keep track of attendance and document their meetings895

via minutes can potentially encourage teams to meet regularly, and take a more

strategic approach to monitoring progress and individual contributions.

Emphasise the importance of leadership. Teams initially paid little attention

to the concept of Leadership; it did not arise as a theme when analysing the

student’s expectations with respect to teamwork and the prospect of a lack of900

leadership seemed unlikely before the project began. In most cases, external fac-

tors such as deadlines or critical decisions, led the teams to turn their attention

to this concept. Nonetheless, few teams took a strategic approach to appoint-

ing a leader. In hindsight, however, most teams saw the merit of focusing on

assigning leadership roles and responsibilities early and strategically. Due to905

the gap between students’ expectations in terms of teamwork and the realities

of such an exercise, this realisation was the result of trial-and-error and not a

43



initial consideration. It is, therefore, necessary to support teams in exploring

the concept of leadership early in the process via leadership training, mentoring,

or specifically tailored leadership exercises.910

Develop strategies for dealing with opportunistic behaviour. A recurring

source of frustration among teams was opportunistic behaviour on the part

of one or more of the team members. This included limited contributions at

the last minute, sporadic attendance in group meetings, or submitting unnec-

essary or poor quality work. The level of frustration is also explained by the915

gap between the expectations students had at the start of the project and the

realities they faced throughout the project. While at the start of the project the

prospect of team members leaving work to the last minute or someone in the

team misunderstanding their tasks were seen as an unlikely scenario, this proved

to be one the most recurring events students experienced during the project.920

We argue that more assessed milestones need to be enforced throughout the

year. These can be organised as informal as peer review assessment or, if the

resources are available, as periodic monitoring.

7. Conclusions

The aim of this article is to provide a better understanding of the gap be-925

tween the expectations students have from teamwork at the start of a software

development group project and the realities they describe at the end of the

project. For this, we present the results of two studies we ran as part of a 27

week software engineering group project course involving 35 teams. As part of

the first study, we analyse the results of a questionnaire delivered individually930

to students at the start of the project, and aiming to assess their experience

and expectations in terms of teamwork. As part of the second study, we analyse

the retrospective accounts submitted by the 35 teams at the end of the projects

aiming to better understand the recurring issues teams struggled with through-

out the project. In addition to the limitations described in Section 4.3.2 and935

Section 4.4.2, we also note that the data was collected from students by the first

44



author who also delivered the unit. As indicated by [18], this can be a cause of

bias.

Our work addresses three research questions. Below, we summarise our

answers to each of them.940

RQ1: What are the expectations students have in terms of teamwork at the

start of a software development group project?

Students approach group projects on a positive note and with enthusiasm,

not considering any of the common teamwork breakdown scenarios likely to hap-

pen as part of their project. They recognise teamwork as being a significant part945

of their previous experiences; however, they do not necessarily relate teamwork

to software development. At the start of the project, students associate the

benefits and challenges of teamwork with generic statements, none specifically

related to collaborative software development.

RQ2: How do undergraduate students perceive the reality of teamwork after950

completing a software development group project?

Teams report issues in four areas of teamwork, namely the team and its

members, the skills required to complete the project, the process put in place,

and the team environment overall. The key predictors for success identified in

the retrospectives are regular meetings, good work ethic on the part of all the955

team members, and an overall friendly team environment. Some of the recurring

issues reported in the retrospectives include lack of commitment of one or more

members of the team, difficulty in managing other course deadlines at the same

time, work left to the last minute, and investing time in coming up with an

elaborate and unrealistic plan at the start of the project.960

RQ3: How do the expectations match the reality students face when develop-

ing software as a team?

While none of the scenarios presented to students at the start of the project

were perceived as particularly likely to occur to their team, all but one scenario

were identified in the top 15% of the most recurring issues reported in the965

retrospective accounts at the end of the project. The significant gap between

the initial expectations and the realities described at the end of the project

45



explains some of the breakdown scenarios identified as answer to RQ2.

We include several guidelines we believe can narrow or bridge this gap in

software engineering group projects. First, set realistic expectations at the start970

of the project, and focus more on initial team setup. Second, bring informal

meetings to the core of the project. Third, emphasise the role leadership plays

in group projects, and support teams in exploring this concept early on in the

process. Fourth, put in place strategies for dealing with opportunistic behaviour.

References975

[1] J. Vanhanen, T. O. Lehtinen, C. Lassenius, Software engineering problems

and their relationship to perceived learning and customer satisfaction on a

software capstone project, Journal of Systems and Software 137 (2018) 50

– 66, DOI = 10.1016/j.jss.2017.11.021.

[2] M. Wiggberg, Computer science project courses: Contrasting students’980

experiences with teachers’ expectations, Ph.D. thesis, Uppsala Universitet

(2010).

[3] P. Dillenbourg, What do you mean by collaborative learning?, in: P. Dil-

lenbourg (Ed.), Collaborative-learning: Cognitive and Computational Ap-

proaches, Emerald Group Publishing, 1999, p. 119.985

[4] C. Steeples, C. Unsworth, M. Bryson, P. Goodyear, P. Riding, S. Fow-

ell, P. Levy, C. Duffy, Technological support for teaching and learn-

ing: computer-mediated communications in higher education (CMC in

HE), Computers & Education 26 (1) (1996) 71–80, DOI = 10.1016/0360-

1315(95)00082-8.990

[5] R. A. Ashaikh, S. Wilson, S. Jones, A persuasive social actor for ac-

tivity awareness in learning groups, in: Proceedings of the 30th Inter-

national BCS Human Computer Interaction Conference: Fusion!, HCI

’16, BCS Learning & Development Ltd., 2016, pp. 45:1–45:12, DOI =

10.14236/ewic/HCI2016.45.995

46



[6] I. Oliveira, L. Tinoca, A. Pereira, Online group work patterns: How to

promote a successful collaboration, Computers & Education 57 (1) (2011)

1348 – 1357, DOI = 10.1016/j.compedu.2011.01.017.

[7] G. T. Richard, Y. B. Kafai, B. Adleberg, O. Telhan, StitchFest: Diver-

sifying a College Hackathon to Broaden Participation and Perceptions in1000

Computing, in: Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, SIGCSE ’15, ACM, 2015, pp. 114–119, DOI

= 10.1145/2676723.2677310.

[8] A. M. R. Daniels, M. Cajander, B. von Konsky, Assessing professional skills

in engineering education, in: J. Hamer, M. de Raadt (Eds.), Australasian1005

Computing Education Conference (ACE 2011), Vol. 114 of CRPIT, ACS,

2011, pp. 145–154.

[9] T. Clear, S. Beecham, J. Barr, M. Daniels, R. McDermott, M. Oudshoorn,

A. Savickaite, J. Noll, Challenges and Recommendations for the Design and

Conduct of Global Software Engineering Courses: A Systematic Review,1010

in: Proceedings of the 2015 ITiCSE on Working Group Reports, ITICSE-

WGR ’15, ACM, 2015, pp. 1–39, DOI = 10.1145/2858796.2858797.

[10] R. F. Dugan Jr., A survey of computer science capstone course literature,

Computer Science Education 21 (3), DOI = 10.1080/08993408.2011.606118.

[11] M. C. Bastarrica, D. Perovich, M. M. Samary, What can students get from a1015

software engineering capstone course?, in: Proceedings of the 39th Interna-

tional Conference on Software Engineering: Software Engineering and Ed-

ucation Track, ICSE-SEET ’17, IEEE Press, 2017, DOI = 10.1109/ICSE-

SEET.2017.15.

[12] J. S. Molléri, J. Gonzalez-Huerta, K. Henningsson, A legacy game for1020

project management in software engineering courses, in: Proceedings of the

3rd European Conference of Software Engineering Education, ECSEE’18,

2018, pp. 72–76, DOI = 10.1145/3209087.3209094.

47



[13] J. Briggs, Group projects in software engineering at York, SIGCSE Bull.

23 (4) (1991) 48–50, DOI = 10.1145/122697.122705.1025

[14] W. W. Schilling Jr., M. J. Sebern, Teaching Software Engineering: An

Active Learning Approach, Computers in Education Journal 23 (1) (2013)

13–24.

[15] Y. Sedelmaier, D. Landes, Practicing soft skills in software engineering:

A project-based didactical approach, Computer Systems and Software En-1030

gineering: Concepts, Methodologies, Tools, and Applications, 2017, pp.

232–252, DOI = 10.4018/978-1-5225-3923-0.ch011.

[16] A. Peters, W. Hussain, A. Cajander, T. Clear, M. Daniels, Prepar-

ing the global software engineer, in: 2015 IEEE 10th International

Conference on Global Software Engineering, 2015, pp. 61–70, DOI =1035

10.1109/ICGSE.2015.20.

[17] M. Daniels, The contribution of open ended group projects to interna-

tional student collaborations, ACM Inroads 1 (3) (2011) 79–84, DOI =

10.1145/1835428.1835446.

[18] V. Isomöttönen, M. Daniels, A. Cajander, A. Pears, R. Mcdermott, Search-1040

ing for global employability: Can students capitalize on enabling learning

environments?, ACM Trans. Comput. Educ. 19 (2) (2019) 11:1–11:29, DOI

= 10.1145/3277568.

[19] C. Raibulet, F. A. Fontana, Collaborative and teamwork software develop-

ment in an undergraduate software engineering course, Journal of Systems1045

and Software 144 (2018) 409 – 422, DOI = 10.1016/j.jss.2018.07.010.

[20] R. Holmes, M. Allen, M. Craig, Dimensions of experientialism for software

engineering education, in: Proceedings of the 40th International Conference

on Software Engineering: Software Engineering Education and Training,

ICSE-SEET ’18, ACM, 2018, pp. 31–39, DOI = 10.1145/3183377.3183380.1050

48



[21] D. Delgado, A. Velasco, J. Aponte, A. Marcus, Evolving a Project-Based

Software Engineering Course: A Case Study, in: 2017 IEEE 30th Confer-

ence on Software Engineering Education and Training (CSEE&T), 2017,

pp. 77–86, DOI = 10.1109/CSEET.2017.22.

[22] T. Clear, Documentation and agile methods: Striking a balance, SIGCSE1055

Bull. 35 (2) (2003) 12–13, DOI = 10.1.1.596.7811.

[23] K.-J. Stol, P. Ralph, B. Fitzgerald, Grounded theory in software engineer-

ing research: A critical review and guidelines, in: Proceedings of the 38th

International Conference on Software Engineering, ICSE ’16, ACM, 2016,

pp. 120–131, DOI = 10.1145/2884781.2884833.1060

[24] H. Sharp, N. Baddoo, S. Beecham, T. Hall, H. Robinson, Models of moti-

vation in software engineering, Information and Software Technology 51 (1)

(2009) 219 – 233, DOI = 10.1016/j.infsof.2008.05.009.

[25] B. Bruegge, S. Krusche, L. Alperowitz, Software Engineering Project

Courses with Industrial Clients, ACM Transactions on Computing Edu-1065

cation (TOCE) - Special Issue on Team Projects in Computing Education,

15 (4) (2015), DOI = 10.1145/2732155.

49


