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Abstract 1 

This article is focused on numerical analyses of commercially available metal-oxides as 2 

potential nano-additives for paraffin in thermal storage applications. Technical and economic 3 

prospects of metal-oxides based nano-PCMs are evaluated to help formulate selection 4 

criterion for nano-additives to achieve optimum thermal performance at acceptable cost. 5 

Numerical model based on enthalpy-porosity technique is developed which incorporates 6 

natural convection and transient variations in thermo-physical properties of nano-PCM. 7 

Numerical model is simulated for charging and discharging cycles of nano-PCMs in shell and 8 

tube heat exchanger at controlled temperatures. Transient simulations help in analysing heat 9 

transfer categorisation and isotherms distributions, solid–liquid interfaces propagations, 10 

charging and discharging rates, and overall thermal enthalpy. Inclusion of nano-particles 11 

increase the effective thermal conductivity and surface area for heat transfer, which results 12 

in enhanced charging and discharging rates. The conductive heat transfer, peak heat flux, 13 

charging and discharging rates are significantly enhanced by increasing volume 14 

concentration of nano-particles. The percentage enhancement in charging rates of SiO2 15 

based nano-PCM samples with 1% and 5% are 29.45% and 41.04%, respectively. Likewise, 16 

the discharging rates are improved by 21.09% and 30.08%, respectively. However, an 17 

increase in volume concentration reduces natural convection and overall thermal enthalpy, 18 

and increases total cost of nano-PCM. For instance, the percentage reductions in total 19 

enthalpy of CuO based nano-PCM samples with 1% and 5% volume concentrations are 20 

8.01% and 32.14%, respectively. Likewise, the total costs are increased from 14.26 €/kg for 21 

base paraffin to 70.89 – 309.33 €/kg, respectively. Hence, the significance and originality of 22 

this research lies within evaluation and identification of preferable metal-oxides with higher 23 

potential for improving thermal performance at reasonable cost. This article will help bring 24 

significant impact to large-scale utilisation of low-carbon and clean energy technology in 25 

domestic and commercial applications.   26 

 27 
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Nomenclature 

  mushy zone constant   density (kg/m3) 

   specific heat capacity (kJ/kg.K)   dynamic viscosity (kg/m.s) 

  diameter (m)     
volume concentration of nano-

particles 

  liquid fraction of nano-PCM Subscripts 

 ⃗  gravitational acceleration (m/s2)   initial 

  total enthalpy (kJ)   liquefied phase  

  thermal conductivity (W/m.K)   solidified phase  

   Boltzmann constant    phase change 

  latent heat capacity (kJ/kg)    nano-particles 

   molecular weight     base paraffin 

   Avogadro number      nano-PCM 

  pressure (N/m2)     reference 

  heat source term (W/m3) Acronyms 

  temperature (oC) Nu Nusselt number 

  time (s) Pr Prandtl number  

 ⃗  velocity (m/s) Ra Rayleigh number 

  volume (m3) HTF heat transfer fluid 

  weight of nano-particles (g) LHS latent heat storage 

Greek  PCM phase change material 

  small constant value TES thermal energy storage 

  thermal expansion coefficient (1/oC)   

 31 

 32 
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1. Introduction 33 

The global socio-economic developments are associated with higher demands of primary 34 

energy supply. Since the industrial revolution, the ever increasing worldwide demands for 35 

primary energy supply have been escalated by 150%. Fossil fuels have remained the main 36 

sources to provide primary energy supply (about 80%) at the cost of energy security due to 37 

depleting natural resources and climate change due to emission of hazardous gases [1, 2]. 38 

To alleviate climate change and energy security challenges, the provision and development 39 

of effective and reliable technologies for renewable energy sources are vitally important. 40 

However, the intermittent and unpredictable nature of renewable energy sources are 41 

detrimental to wide-spread implementations. Thermal energy storage (TES) systems are 42 

determined as crucial technology to eradicate the energy supply and demand imbalance. 43 

Latent heat storage (LHS) utilises phase change materials (PCM) to capture and liberate 44 

thermal energy during phase transitions between solid–liquid at almost isothermal 45 

conditions. PCMs are available at broad range of phase transition temperatures with higher 46 

thermal storage capacity, lower vapour pressure and insignificant environmental hazards [3-47 

5]. Despite being considered a promising approach, the wide-spread implementation of LHS 48 

systems are hindered by weaker charging and discharging rates caused by low thermal 49 

conductivity of PCMs (0.1–0.7 W/m.K). Hence, to minimise the impact of low thermal 50 

conductivity, several performance enhancement techniques have been recently devised and 51 

implemented such as: geometrical orientation of heat exchanger and inclusion of extended 52 

surfaces, inclusion of thermal conductive nano-additives and micro or nano encapsulations 53 

[6-9].  54 

In case of geometrical configurations, the shell and tube heat exchanger coupled with 55 

extended surfaces are preferred due to their strengths in heat transfer, design simplicity and 56 

easier integration to applications. Rathod and Banerjee [10] reported that both charging and 57 

discharging rates of stearic acid in vertical shell and tube, with and without three longitudinal 58 

fins, were increased by 24.52% and 43.6%, respectively. Likewise, the inclusion of extended 59 

surfaces significantly increase thermal penetration in PCM. Lohrasbi et al. [11] noticed that 60 

the addition of longitudinal, circular and v-shaped fins improved the charging rates in vertical 61 

shell and tube by 3.26, 3.55 and 4.28 times as compared to no-fins configurations. 62 

Rabienataj Darzi et al. [12] concluded that both charging and discharging rates of n-eicosane 63 

were influenced by increasing number of longitudinal fins in shell and tube. It was observed 64 

from numerical simulation that as compared to no-fins, the charging and discharging times 65 

were reduced by 39–82% and 28–85% by increasing longitudinal fins from 4–20. Moreover, 66 

a novel geometrical configuration of shell and tube with multiple passes and longitudinal fins 67 

for large-scale applications was proposed in [13]. It was noticed that the optimised design 68 

under increasing inlet temperature from 50–70 oC significantly improved the phase transition 69 

rate and total enthalpy by 68.8% and 18.06%, respectively. Later on, the proposed novel 70 

design was experimented for series of charging and discharging cycles with connection to 71 

solar collector [14-16]. It was reported that the proposed design was capable of charging 72 

14.35 MJ in 3 h and discharging 13.63 MJ in 1.5 h. Also, the mean charging and discharging 73 

powers were augmented by 69.71% and 36.05% with increasing temperature gradient.  74 

Despite the excellent thermal enhancement, the extended surfaces significantly increase the 75 

overall weight of LHS system. Hence, the inclusion of nano-additives to improve the effective 76 

thermal conductivity is another promising approach with comparatively slighter increase in 77 
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overall weight. Nano-additives are classified into two main groups: a) carbon allotropes and 78 

b) metals or metal-oxides, nitrides and carbides [17].  79 

Xia et al. [18] conducted experimental investigations on expanded graphite (EG) based PCM 80 

composite in heat recovery condenser. In case of optimum mass ratio of 10:1, the charging 81 

and discharging rates were increased by 81.7% and 55.3%, respectively. Likewise, Sharshir 82 

et al. [19] reported that the solar still productivity was increased by 73.8% with inclusion of 83 

graphite flakes based nano-PCM. Moreover, Yu et al. [20] reported that graphene nano-84 

platelets have better thermal enhancement potential than carbon nano-tubes and carbon 85 

nano-fibres with relatively higher thermal conductivity and lower dynamic viscosity. Qian and 86 

Li [21] developed n-octadecane and diatomite decorated with carbon nano-particles based 87 

composite, which increased the thermal conductivity of composite from 0.24–0.73 W/m.K. 88 

Kant et al. [22] reported that inclusion of graphene nano-particles in capric acid, calcium 89 

chloride hexahydrate and n-octadecane increased the phase transition rates. However, the 90 

augmented dynamic viscosity of composites hindered the influence of natural convection. 91 

Moreover, Yuan et al. [23] reported significant reduction in latent heat capacity of graphene 92 

nano-platelets and expanded graphite based composite PCMs by 20.90% and 25.17%. 93 

Tang et al. [24] conducted experimental investigation on performance enhancement of 94 

MA/HDPE composite with Al2O3 and graphite nano-additives. It was reported that the 95 

effective thermal conductivity was significantly enhanced by 95.56% and 121.67%, 96 

respectively. Warzoha and Fleischer [25] experimentally investigated the thermal 97 

enhancement in base paraffin with inclusion of graphene, carbon nano-tubes, Al and TiO2 98 

nano-particles. It was reported that the total charging and discharging time for paraffin 99 

composites were reduced by 29.82%, 27.19%, 16.67% and 12.28%, respectively. Moreover, 100 

the thermal energy release was boosted by 11% for graphene based composite, whereas 101 

reductions in the range of 15–17% were noticed for other nano-additives. Alizadeh et al. [26] 102 

informed through numerical investigations that the solidification rates for TiO2–Cu based 103 

composites were influenced by shape factors of nano-particles. Hexahedron, platelets and 104 

lamina nano-particles based composites were studied. It was noticed that due to relatively 105 

higher shape factor, the solidification rate for lamina nano-particles were higher as compared 106 

to hexahedron and platelets. However, the total thermal energy was inversely related to 107 

shape factor. Hosseinzadeh et al. [27] reported that the solidification rates for Al2O3–Go 108 

based composites with volume concentration of 2.5% and 5% were 1.74 and 2.69 times 109 

higher as compared to no nano-additives case. Likewise, as reported in [28], the 110 

charging/discharging rates and overall thermal enthalpy capture/release of base paraffin in 111 

shell and tube were significantly augmented with inclusion of Al2O3, AlN and graphene nano-112 

additives. It was noticed that with inclusion of 1 vol% of nano-particles, the charging rates 113 

were augmented by 28.01%, 36.47% and 44.57%, and discharging rate by 14.63%, 34.95% 114 

and 41.46%, respectively. Owolabi et al. [29] reported an increase in effective thermal 115 

conductivity of paraffin from 0.25 W/m.K to 0.29, 0.33, 0.35 and 0.54 W/m.K for Al, Cu, Zn 116 

and Fe based nano-PCM composites with 1.5 wt%. However, Lin and Al-Kayiem [30] 117 

reported that with an increase in concentration from 0.5–2 wt% for Cu based paraffin 118 

composites, the latent heat was reduced from 184.2 kJ/kg for base paraffin to 172.2–157.3 119 

kJ/kg, respectively.  120 

Said and Hassan [31] examined the power saving potential of air-conditioning unit coupled 121 

with nano-PCM based heat exchanger instead of conventional condenser unit. It was 122 

reported that the power saving was increased from 7.18% for pure paraffin to 7.28%, 7.35% 123 



6 
 

and 7.41% for Al2O3, CuO and Cu based nano-PCM samples with 5 vol%. Harikrishnan et al. 124 

[32] reported that thermal conductivity of LA/SA was significantly increased by 34.85%, 125 

46.97% and 62.12% with inclusion of TiO2, ZnO and CuO with 1 wt%. Thus, the melting 126 

rates were improved by 11.39%, 15.54% and 21.24%, and solidification rates by 5.56%, 127 

13.89% and 19.84%, respectively. Babapoor et al. [33-35] examined the impact of Al2O3, 128 

Fe2O3, SiO2, and ZnO nano-additives with different concentrations on thermal performance 129 

of paraffin, polyethylene glycol and eutectics fatty acids. For all cases, thermal conductivity 130 

was significantly enhanced and noticeable reduction in latent heat was reported. Al2O3 and 131 

SiO2 were suggested as preferable nano-additives due to their reasonable reduction in latent 132 

heat. It was also noticed that nano-additives response to thermal enhancement is dependent 133 

on base materials. However, the higher potentials of thermal performance enhancement by 134 

inclusion of nano-additives to base materials are usually undermined by weaker dispersion 135 

and long-term suspension stability [36, 37]. Therefore, the agglomeration and sedimentation 136 

problems in nano-PCMs should be minimised by ultrasonication and inclusion of compatible 137 

surfactants [38, 39]. Moreover, the higher volume concentration of nano-additives aggravate 138 

the agglomeration and sedimentation issues [40, 41], which results in weaker thermo-139 

physical stability, uniform thermal distribution and natural convection. Hence, it is imperative 140 

to identify the optimum volume concentration and to investigate the thermo-physical stability 141 

by conducting accelerated charging and discharging cycles [42, 43].  142 

In recent years, a significant body literature is published on synthesis and characterisations 143 

of various metal oxides, nitrides and carbides based nano-PCMs with different 144 

concentrations to achieve thermal enhancement [44-47]. However, the majority of literature 145 

is focused on synthesis of nano-PCMs and there is lack of investigations on optimum 146 

concentration for nano-additives and respective thermo-physical analyses of nano-PCMs in 147 

actual heat exchanger. Literature also lacks comparative and all-inclusive thermal analyses 148 

of commercially available metal-oxides based nano-PCMs with varied volume concentrations 149 

in heat exchanger. Moreover, the literature lacks to provide a detailed insight into economic 150 

assessment of metal-oxides enhanced nano-PCMs and a holistic selection criterion for 151 

nano-additives to achieve optimum thermal enhancement at reasonable price.  152 

This article aims to conduct a comprehensive numerical analyses on fourteen commercial 153 

metal-oxides based nano-PCM samples with three volume concentrations to evaluate their 154 

thermo-economic performance in shell and tube heat exchanger, which are neither 155 

considered in [13-15, 28] nor reported in previous literature. Numerical model for nano-PCM 156 

include the effects of thermo-physical properties of base material and metal-oxides, nano-157 

particles size and volume concentrations, and operating temperature. Transient numerical 158 

simulations are conducted for both charging and discharging cycles for all nano-PCM 159 

samples. Thermal performance evaluations include charging/discharging rates, total 160 

enthalpy capture/release, heat transfer characterisation and natural convection assessment, 161 

temperature/enthalpy distribution and solid-liquid interfaces propagation in shell container. 162 

Numerical simulation results are validated with experimental results for both charging and 163 

discharging cycles. Furthermore, the economic valuation of nano-PCM samples help 164 

distinguish appropriate metal-oxides for wide-ranging domestic and commercial applications. 165 
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2. Numerical Model 166 

2.1. Physical model and computational domain 167 

The schematic of physical model and cross-sectional geometrical dimensions of shell and 168 

tube heat exchanger and nano-PCM based LHS unit is illustrated in Fig. 1. The horizontal 169 

shell and tube heat exchanger is made of acrylic plastic shell container and seven stainless 170 

steel tubes. The length, inner and outer diameter of shell container are 185 mm, 50 mm and 171 

60 mm, respectively. Exterior boundary of shell container is insulated with glass wool. 172 

Similarly, the inner and outer diameter of tubes are 4 mm and 6 mm, respectively. Water is 173 

utilised as heat transfer fluid (HTF), which is regulated to flow through tubes and transfer 174 

thermal energy with nano-PCM in shell container. Paraffin (RT44HC) is considered as base 175 

material and metal-oxides as nano-additives. Table 1 provides the thermal and physical 176 

characteristics of base paraffin. The materials specifications, thermal and physical properties 177 

and cost of commercially available metal-oxides nano–particles are listed in Table 2. For 178 

each metal–oxide, three nano-PCM samples are investigated with volume concentration of 179 

1%, 3% and 5%. Hence, this article provide holistic charging and discharging cycles’ 180 

performance of 42 nano-PCM samples.  181 

185 mm

HTF Inlet HTF Outlet

HTF tubes Nano-PCMNano-PCM 
Inlet

Side view+

Cross-Sectional Geometry

Physical Model

Shell container 

OD: 60 mm ID: 50 mm

Computational Domain

Insulated 

Exterior Boundary

Adaptive Mesh - Grid Structure

HTF tubes 

OD: 6 mm ID: 4 mm

Inlet Temperature 

Boundary

Nano-PCM

 182 

Fig. 1 Schematic of physical model, cross-sectional geometry, computational domain and grid 183 
structure of shell and tube HX with nano-PCM based LHS unit.  184 
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Table 1 

Thermal and physical specifications of paraffin (RT44HC) [48] 

Phase change temperature (
o
C) 41-44  

Latent heat of fusion (kJ/kg) 255  

Density (kg/m
3
) 800 (s) 700 (l) 

Thermal conductivity (W/m.K) 0.2 (s) 0.2 (l) 

Specific heat capacity (kJ/kg.K) 2 (s) 2 (l) 

Volumetric heat capacity (kJ/m
3
.K) 1600 (s) 1400 (l) 

 185 
Table 2  

Thermal and physical properties of nano-particles along with suppliers and prices [49, 50] 

Nano-particle Materials 

Density 

(kg/m
3
) 

Thermal 

Conductivity 

(W/m.K) 

Specific 

Heat 

Capacity 

(kJ/kg.K) 

Volumetric 

Heat 

Capacity 

(kJ/m
3
.K) 

Suppliers and Prices 

IoLiTec 

nanomaterials 

weight 

(g) 

Sigma - 

Aldrich 

weight 

(g) 

Aluminum oxide (Al2O3), 20 nm 3980 38.493 0.778 3096.44 € 49.00 100 £61.50 50 

Cerium (IV) Oxide (CeO2), 15-30 nm 6100 11.715 0.352 2147.20 - - £80.20 25 

Cobalt Oxide (CoO), 30 nm 6460 10.042 0.703 4541.38 € 49.00 100 £47.70 25 

Copper Oxide (CuO), 40-80 nm 6500 17.991 0.536 3484.00 € 69.00 100 £62.00 25 

Gadolinium Oxide (Gd2O3), 20-80 nm 7640 10.042 0.290 2215.60 - - £184.50 10 

Iron Oxide (Fe2O3), 20-40 nm 5240 12.552 0.628 3290.72 € 89.00 100 £86.10 25 

Magnesium Oxide (MgO), 35 nm 3580 61.923 0.921 3297.18 € 49.00 100 £290.00 25 

Nickel Oxide (NiO), 20 nm 6400 12.970 0.603 3859.20 € 89.00 100 £37.00 25 

Silicon Oxide (SiO2), 10-20 nm 2650 11.715 0.753 1995.45 € 49.00 100 £74.80 50 

Strontium Titanate (SrO.TiO3), 100 nm 5110 05.858 0.536 2738.96 € 45.00 100 £106.50 50 

Tin Oxide (SnO2), 100 nm 5560 31.380 0.343 1907.08 € 79.00 100 £176.50 25 

Titanium Oxide (TiO2), 100 nm 4250 08.954 0.686 2915.50 € 59.00 100 £55.90 25 

Yttrium Oxide (Y2O3), 30-50 nm 5000 14.226 0.448 2240.00 € 59.00 100 £110.50 25 

Zinc Oxide (ZnO), 100 nm 5630 27.196 0.494 2781.22 € 59.00 50 £63.00 50 

 186 

2.2. Governing equations 187 

To conduct numerical investigations on charging and discharging cycles of nano-PCM 188 

samples in proposed computational domain, the following assumptions are considered to 189 

reduce computational time and complexity:  190 

(i) Liquid phase of nano-PCM samples and their movement in shell container are laminar, 191 

incompressible and Newtonian in nature.  192 

(ii) Volumetric expansion or contraction of samples associated with phase transition in 193 

shell container are neglected.  194 

(iii) Due to low thermal conductivity of shell container material and exterior boundary 195 

insulation, the shell material is not considered in computational domain and adiabatic 196 

conditions are applied to outer boundary to avoid heat transfer with surrounding.  197 

(iv) Due to relatively higher thermal conductivity of tubes material, the thickness of tubes 198 

are neglected and temperature variations of HTF are also ignored.  199 

(v) Boussinesq approximation is implemented to compute for variation in density and 200 

respective buoyancy driven natural convection.   201 

The governing equations for evaluating charging and discharging rate, thermal energy 202 

capture and retrieval, liquid phase propagation and temperature distribution in shell 203 
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container, transient heat flux and dimensionless numbers for nano-PCM samples are given 204 

below [51-53]:  205 

Mass conservation:  206 

      

  
   (      ⃗ )    (1) 

Momentum conservation: 207 

 (      ⃗ )

  
       ⃗  (   ⃗ )

                  ⃗             ⃗             
       

      
 ⃗  

(2) 

Energy conservation: 208 

 (          )

  
   (            ⃗ )                  (3) 

In momentum conservation Eq. (2), the second term on left hand side represent the 209 

convective term. Similarly, the terms on right hand side symbolise the pressure gradient, 210 

viscous diffusion, buoyant forces and momentum source terms [53]. Boussinesq 211 

approximation [54] is implemented to compute the buoyancy driven natural convection. The 212 

buoyant forces regulate upward movement of higher temperature and lower density nano-213 

PCM molecules. Natural convection has significant influence on melting process of nano-214 

PCM. Moreover, enthalpy–porosity method is considered for modelling solid–liquid phase 215 

transitions. Darcy law for porous medium [55] is implemented for momentum source term, 216 

which evaluates the porosity in mushy zone.   represents the morphological constant to 217 

control damping effects in mushy zone due to variations in velocity with phase transitions. In 218 

current study, the numerical results are in good agreement with experimental results 219 

for      . Likewise,   represents liquid fraction, which ranges between 0–1 as 220 

temperature of nano-PCM varies between solidus and liquidus phase, as follow [51, 52]: 221 

  

{
 
 

 
                                     
        

     
                         

                                    

 (4) 

In energy conservation Eq. (3), the second term on left hand side denote the thermal 222 

convection due to rotational and transitional motions of nano-PCM. Likewise, the right hand 223 

side represent the heat conduction and volumetric heat source terms.       represents the 224 

total enthalpy of nano-PCM which includes both sensible and latent portions, as given below 225 

[51, 52]:  226 

           ∫     
     

    

    (5) 

where      and   represent reference enthalpy (at        ) and latent heat capacity of 227 

nano-PCM, respectively.  228 
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2.3. Nano-PCM thermo-physical properties relations 229 

Thermo-physical properties of base material (RT44HC) and metal-oxides nano–particles are 230 

listed in Table 1 and Table 2, respectively. Inclusion of metal-oxides nano–particles have 231 

presented significant influence on thermo–physical properties of nano-PCM [24, 32, 56, 57]. 232 

Therefore, the relations for mixture of two components are implemented to estimate the 233 

corresponding thermo-physical properties of nano-PCM [28, 37]: 234 

                         (6) 

        
                             

     
 (7) 

      
               

     
 (8) 

      
                         

     
 (9) 

where     represents the volume concentration of metal-oxides nano–particles. Likewise, 235 

the dynamic viscosity of nano-PCM varies with volume concentration and material 236 

specifications of nano-particles. Hence, the transient modifications in effective dynamic 237 

viscosity of nano-PCM are estimated by semi-empirical model proposed by Corcione [58], as 238 

follow:  239 

      
    

       (       ⁄ )
    

   
    

 (10) 

where      represents the dynamic viscosity of base paraffin and is determined as follow 240 

[59]:  241 

              (      
    

    
) (11) 

     shows the equivalent diameter of base paraffin and is calculated as follow [58]: 242 

        (
   

         
)

 

 
      (12) 

where         represents the density of base paraffin at          .  243 

Moreover, the transient variations in effective thermal conductivity of nano-PCM are 244 

approximated by employing the proposed model by Vajjha and Das [60], as follow: 245 

      
           (        )   

          (        )   

      

                  √
       

      
         

(13) 
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where the correction factor          is defined as: 246 

                                    (
     

    
)                  

               

(14) 

Vajjha and Das [60] model for evaluating the effective thermal conductivity of nano-PCM 247 

accounts for the effects of nano–particles size, volume concentration, operating temperature, 248 

thermo–physical properties of both base paraffin and nano-particles, and the effects of 249 

Brownian motion of nano-particles in liquid phase. Whereas, the earlier models proposed by 250 

Maxwell [61], Bruggeman [62], Hamilton and Crosser [63] and Xuan et al. [64] were 251 

significantly dependent on volume fractions of nano-additives. Therefore, the effective 252 

thermal conductivity values were either not influenced or were under/over predicted at 253 

varying operating temperatures. However, the implemented proposed model by Vajjha and 254 

Das [60] was validated with experimental thermal conductivity values for Al2O3, CuO and 255 

ZnO nano-additives enhanced composites, with average percentage deviations of 0.23%, 256 

5.74% and 1.97%, respectively. Hence, Eq. (13) and Eq. (14) are utilised to calculate the 257 

effective thermal conductivity of all fourteen metal-oxides nano–particles listed in Table 2, 258 

with volume concentration of 1%, 3% and 5%. Fig. 2 illustrates the transient variation in 259 

effective thermal conductivity of nano-PCM samples with respect to temperature. It is noticed 260 

that the effective thermal conductivity of nano-PCM samples are higher for metal-oxides with 261 

smaller density. For instance, due to relatively smaller density of SiO2 nano–particles, the 262 

effective thermal conductivity of respective nano-PCM samples with all three volume 263 

concentrations are significantly higher as compared to other metal-oxides. 264 
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(A) 

 
(B) 

 
(C) 

Fig. 2 Effective thermal conductivity of nano-PCMs with three different volume concentrations: (A) 265 
1%, (B) 3% and (C) 5%. 266 

Volume Concentration: 1% 

Volume Concentration: 3% 

Volume Concentration: 5% 
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2.4. Initial and boundary conditions 267 

In case of charging cycles, the nano-PCM in shell container is set to initial temperature of 15 268 
oC which confirms a complete initial solid phase. Moreover, the inlet temperature boundaries 269 

in computational domain, representing the HTF tubes, are given a constant temperature of 270 

52 oC. Similarly, in case of discharging cycles, the initial temperature of nano-PCM are set to 271 

52 oC to ensure complete liquid state and the inlet temperature boundaries are kept constant 272 

at 15 oC. The initial velocity  ⃗  of nano-PCM in shell container is kept at zero in both charging 273 

and discharging cycles. The outer boundary of shell container in computational domain is set 274 

to adiabatic conditions.  275 

2.5. Numerical simulation technique 276 

Finite volume method is implemented to discretise the governing equations for complex flow 277 

nature of nano-PCM in computational domain [65]. Pressure–based solver is selected for 278 

solving the transient problem for charging and discharging cycles. Pressure–implicit with 279 

splitting of operators (PISO) scheme is preferred for solving transient pressure–velocity 280 

coupling in momentum conservation equation. Further, the spatial discretisation of pressure, 281 

momentum and energy conservation equations are conducted by pressure staggering option 282 

(PRESTO) and second order upwind algorithms. Absolute convergence criterion is adopted 283 

for residual monitoring of continuity, momentum, energy and     equations with residual 284 

values of     , respectively. Moreover, the first order implicit formulation for fixed time-285 

stepping iterative advancement is selected to achieve stable solutions in both charging and 286 

discharging cycles.   287 

2.6. Time step and grid independency tests 288 

To ensure accuracy of simulation results, the time-step and grid resolution independency for 289 

computational domain are evaluated. Three time-steps of 0.1, 0.5 and 1 s are simulated for 290 

MgO – 1 vol% nano-PCM sample in computational domain, with fixed grid resolution of 291 

27420, as presented in Fig. 3 (A). The liquid fraction curves for all three time steps are 292 

almost identical throughout the charging cycle. Therefore, the time step of 0.1 s is chosen to 293 

secure higher accuracy. Similarly, three grid resolutions of 6930, 27420 and 78675 are 294 

examined with fixed time step of 0.1 s, as shown in Fig. 3 (B). It can be noticed that the 295 

liquid fraction curves for grid resolution of 27420 and 78675 are matching. Therefore, to 296 

reduce computational time, the grid size of 27420 is chosen. 297 

 298 
Fig. 3 Time step and mesh size independency tests with 1% volume concentration of MgO based 299 
nano-PCMs: (A) liquid fraction of different time steps and (B) liquid fraction of different mesh sizes.  300 

  

(A) (B) 
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2.7. Experimental Validation  301 

To validate numerical simulation results with experimental data, an experimental setup is 302 

designed which is comprised of shell and tube heat exchanger with identical geometry to the 303 

computational domain, preparation of nano-PCM sample through ultrasonic emulsification 304 

technique and experimental investigation of nano-PCM sample in heat exchanger, as 305 

presented in Fig. 4 [28]. Calculated quantity of Al2O3 nano–particles is loaded in pre–melted 306 

base paraffin and a good suspension is achieved by magnetic stirring for 1 h with intensive 307 

ultrasonication for another 2 h for preparing nano-PCM sample. Further details related to 308 

ultrasonic emulsification of nano–particles in base paraffin and experimental tests of nano-309 

PCM samples in heat exchanger can be found in [28]. Nano-PCM sample in heat exchanger 310 

is subjected to charging and discharging cycles at inlet temperatures of 52 oC and 15 oC, 311 

respectively. Two K–type thermocouples (K1 and K2) are installed at top and bottom position 312 

in shell container to register transient temperature response of nano-PCM sample during 313 

charging and discharging cycles, as shown in Fig. 5. It can be noticed that during charging 314 

cycles, the transient temperature curves for numerical and experimental tests are in good 315 

agreement, with mean absolute error of 1.31% (for K1) and 2.17% (for K2), respectively. 316 

During discharging cycles, the transient temperature curves represent excellent agreement 317 

within latent heat discharge region. However, the temperature drop during sensible heat 318 

discharge region is rapid for numerical simulation as compared to experimental tests. Due to 319 

which, the mean absolute error is slightly increased to 9.51% (for K1) and 8.67% (for K2) for 320 

discharging cycles. Despite that, the numerical model has demonstrated acceptable 321 

validation with experimental results.  322 

 

 
(I) 

 
(II) (III) 

Fig. 4 Experimental steps involving formation of Al2O3 based nano-PCM sample and its charging in 323 
shell container: (I) shell and tube heat exchanger, (II) ultrasonic emulsification to develop nano-PCM 324 
sample and (III) filling the shell container with nano-PCM sample.  325 
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(A) 

 
(B) 

Fig. 5 Numerical results validation with experimental results by comparing temperature profiles at two 326 
positions in shell container (K1: Top and K2: Bottom): (A) charging cycles at 52 

o
C and (B) 327 

discharging cycles at 15 
o
C [28]. 328 
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3. Results and Discussion  329 

To provide a detailed insight into thermal performance of nano-PCM sample in heat 330 

exchanger and to reduce numerical simulation data, the thermal behaviour for MgO based 331 

nano-PCM samples are discussed. In later stages, the comparative thermal behaviour for all 332 

fourteen nano-particles materials are presented and discussed.  333 

3.1. Charging/Melting Cycles 334 

3.1.1. Thermal behaviour of MgO based nano-PCM 335 

In case of charging cycles, the nano-PCM sample in heat exchanger is subjected to fixed 336 

inlet temperature of 52 oC. Liquid fraction of nano-PCM in shell container during the course 337 

of charging cycle is illustrated in Fig. 6. It is noticed that during the onset of charging cycle, 338 

thermal energy from inlet temperature boundaries are transferred to low temperature nano-339 

PCM in shell container. Nano-PCM captures thermal energy and consequently increases the 340 

temperature. Melting process initiates as the latent portion of thermal energy is absorbed by 341 

nano-PCM. Liquefied nano-PCM surrounds the solid inlet temperature boundaries and takes 342 

their shape. During this stage, conduction is driving mode of heat transfer between inlet 343 

temperature boundaries and nano-PCM. In second stage, the quantity of liquefied nano-344 

PCM increases and thus, the upward movement of high temperature and low density liquid 345 

molecules occurs due to buoyance induced natural convection. Increased upward movement 346 

of high temperature liquefied molecules promote higher charging rate in top portion of shell 347 

container as compared to lower portion, as shown in Fig. 6 (A) and (B). During this stage, 348 

natural convection is the dominant mode of heat transfer. In final stage, the congestion of 349 

high temperature liquefied molecules at top portion of shell container results in re–circulation 350 

towards solid nano-PCM in lower portion. However, the high temperature liquefied molecule 351 

loses thermal energy to surrounding liquid molecules as it reaches the solid nano-PCM in 352 

lower portion. Hence, the phase transition rate is very slow in lower region of shell container, 353 

as shown in Fig. 6 (C) and (D). During this stage, natural convection is controlling the heat 354 

transfer between liquefied and solid nano-PCM in lower portion of shell container. Moreover, 355 

the average liquid fraction of nano-PCM in shell container after charging for 10, 20, 30 and 356 

40 min are 0.32, 0.66, 0.83 and 0.92, respectively. It confirms that the charging rate is higher 357 

at first and second stages, whereas it is relatively slower during final stage.  358 

 359 
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 360 

Fig. 6 Liquid fraction contours of nano-PCM sample with 1% volume concentration of MgO at different 361 
time intervals while charging at constant inlet temperature of 52 

o
C: (A) 10 min, (B) 20 min, (C) 30 min 362 

and (D) 40 min. 363 

In similar manner, the velocity streamlines of nano-PCM in shell container during charging 364 

cycle are illustrated in Fig. 7. It can be noticed that after charging for 10 min, the liquefied 365 

nano-PCM forms high velocity vortex above the inlet temperature boundaries. As charging 366 

cycle progress, the melted quantity of nano-PCM increases and consequently the velocity 367 

streamlines develop and expand towards top portion of shell container, as shown in Fig. 7 368 

(B). The liquid fraction of nano-PCM increases which results in stratified liquid layers in top 369 

portion of shell container, as shown in Fig. 7 (C). In final stages, the velocity streamlines are 370 

weak and almost identical, as shown in Fig. 7 (D). The stratified liquid layers at top portion 371 

are reason for weaker heat transfer at lower portion of shell container. The average velocity 372 

of liquefied nano-PCM in shell container after charging for 10, 20, 30 and 40 min are 0.31, 373 

0.67, 0.28 and 0.08 mm/s, respectively. 374 

 375 
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 376 

Fig. 7 Velocity streamlines of nano-PCM sample with 1% volume concentration of MgO at different 377 
time intervals while charging at 52 

o
C: (A) 10 min, (B) 20 min, (C) 30 min and (D) 40 min. 378 

Natural convection has demonstrated significant impact on melting behaviour of nano-PCM 379 

in shell container. Non-dimensional numbers (i.e. Nu, Pr and Ra) are computed to quantify 380 

and help analyse natural convection effects on nano-PCM, as shown in Fig. 8. During 381 

charging process, the temperature of nano-PCM increases which causes reduction in 382 

dynamic viscosity and enhancement in effective thermal conductivity (see Fig. 2). The effect 383 

of viscous forces are quieten by improved thermal forces. In other words, Pr is reduced with 384 

the progression of charging cycle. Likewise, Ra is augmented with an increase in buoyancy 385 

driven natural convection. Also, Ra provides a criterion to evaluate the convectional 386 

instabilities during phase transition. Ra undergoes an irregular increase between        387 

          because natural convection controls the heat transfer between inlet temperature 388 

boundaries and solid nano-PCM. However, the upward rise of liquefied nano-PCM is still 389 

obstructed by solid nano-PCM. Therefore, the high velocity vortex above inlet temperature 390 

boundaries are generated (see Fig. 7) and consequently, Ra increases until entire mass of 391 

nano-PCM in top portion of shell container is melted, as shown in Fig. 8 (A). As the liquefied 392 

nano-PCM layers stratify in top portion of shell container, a relatively stable reduction in 393 

natural convection is noticed. Furthermore, Nu increases with augmented Ra, due to 394 
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improved natural convection as compared to conduction heat transfer. Non-linear regression 395 

technique is adopted to generate correlation between Nu–Ra, as given in Fig. 8 (B). The 396 

constant           and exponent           of generated correlation are in close 397 

congruence with the results produced by Morgan [66] for horizontal cylinder.  398 

 
(A) 

 
(B) 

Fig. 8 Non-dimensional Ra, Nu and Pr numbers for MgO – 1% VC based nano-PCM sample in shell 399 
container during charging cycle: (A) Ra and Pr versus time and (B) Nu and Pr versus Ra.  400 

Heat flux and liquid fraction response to melting process of nano-PCM samples with different 401 

volume concentration are plotted in Fig. 9. As discussed earlier, the melting process is 402 

divided into three different stages. In earlier stages, the heat flux ascends until it reaches the 403 

peak value and then follows by a rapid decline. The peak heat flux is slightly increased with 404 

an increase in volume concentration. Inclusion of higher concentration of nano-particles 405 

increases the effective thermal conductivity, which results in higher peak heat flux. This 406 

stage is mainly dominated by conduction heat transfer. In second stage, the earlier decline in 407 
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heat flux from previous stage is followed by a moderate increase until it reaches the second 408 

peak value. The earlier decline in heat flux is due to thermal resistance offered by liquefied 409 

nano-PCM around inlet temperature boundaries. Heat flux reaches to second peak due to 410 

perpetual escalation of natural convection in liquefied nano-PCM. In this stage, the liquid 411 

fraction curves illustrate a relatively moderate enhancement with increasing concentration of 412 

nano-particles. Also, until the end of second stage, the liquid fraction curves for all samples 413 

have presented a rapid and almost linear increase. In third stage, the heat flux sustains a 414 

gradual decline due to reduction of temperature gradient, stratification of liquefied layers in 415 

top portion and weaker thermal and momentum diffusion. As a result, the liquid fraction 416 

undergoes a relatively slower increase, which is depicted by logarithmic nature of liquid 417 

fraction curve. Heat flux value approaches zero after achieving thermal equilibrium between 418 

inlet temperature boundaries and nano-PCM. Inclusion of higher volume concentration of 419 

nano-particles has demonstrated improved melting rate. For instance, the total melting time 420 

is reduced from 1.36 h to 1.21 h with an increase in volume concentration from 1% – 5%, 421 

respectively. Furthermore, the impact of increasing volume concentration of nano-particles 422 

on non-dimensional Nu and heat transfer coefficient is evident from Fig. 10. It can be noticed 423 

that with inclusion of higher concentration, both Nu and heat transfer coefficient decrease 424 

which represents that conductive heat transfer relatively strengthens with higher 425 

concentration.  426 

 427 

Fig. 9 Heat flux and liquid fraction of MgO based nano-PCM samples during charging process.  428 
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 429 

Fig. 10 Heat transfer coefficient and Nusselt number of MgO based nano-PCM samples during 430 
charging process. 431 

3.1.2. Thermal behaviour of all nano-PCM samples  432 

In this section, the impact of all nano-particles materials with three different volume 433 

concentrations on charging rate, total enthalpy and heat transfer performance of nano-PCM 434 

are discussed. Inlet temperature for all charging cycles are kept constant at 52 oC. Inclusion 435 

of metal-oxides nano–particles increase the effective thermal conductivity and surface area 436 

for heat transfer. Hence, the charging rate of nano-PCM in shell container can be enhanced. 437 

The average melting time for all nano-PCM samples and their respective percentage 438 

enhancement in charging rate as compared to base paraffin are illustrated in Fig. 11. In case 439 

of 1% volume concentration, the average melting time is significantly reduced from 1.58 h to 440 

1.22 h for SiO2 based nano-PCM as compared to base paraffin. Thus, the charging rate is 441 

significantly augmented by 29.45% for SiO2 based nano-PCM as compared to base paraffin, 442 

as shown in Fig. 11 (A). Similarly, Al2O3, MgO and NiO based nano-PCM samples have 443 

exhibited consecutively higher charging rate as compared to other metal-oxides. In case of 444 

3% volume concentration, the respective enhancement in charging rates for SiO2 and Al2O3 445 

based nano-PCM samples are standout with 35% and 26%, as shown in Fig. 11 (B). In case 446 

of 5% volume concentration, the average melting time for SiO2, Al2O3 and MgO based nano-447 

PCM samples are significantly reduced to 1.12 h, 1.18 h and 1.20 h, respectively. Similarly, 448 

the respective charging rates are enhanced by 41.04%, 33.10% and 31.25% as compared to 449 

base paraffin, as shown in Fig. 11 (C). Irrespective of higher thermal conductivity of Al2O3, 450 

MgO and ZnO nano-particles as compared to SiO2 (refer to Table 2), the effective thermal 451 

conductivity and charging rates of SiO2 based nano-PCM are higher. The reason behind is 452 

the lower density of SiO2 nano-particles, which allows to accommodate more nano-particles 453 

in base paraffin for a given volume concentration. As a result, the effective surface area and 454 

Brownian motion for heat transfer are significantly improved, which can generate higher 455 

charging rates [65].  456 
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(C) 

Fig. 11 Average melting time of nano-PCM samples with three volume concentrations and respective 457 
percentage enhancement in charging rate as compared to base paraffin: (A) 1%, (B) 3% and (C) 5%. 458 

Heat transfer between inlet temperature boundaries and nano-PCM increases the overall 459 

thermal enthalpy of nano-PCM. Transient behaviour of total enthalpy for all nano-PCM 460 

samples are illustrated in Fig. 12. Due to higher heat flux at earlier stages of charging 461 

cycles, the nano-PCM samples capture thermal energy at higher rate as illustrated by linear 462 

increment in overall enthalpy. However, as the heat flux weakens due to accumulation of 463 

liquefied layers in top portion of shell container, the thermal diffusion also reduces which 464 

effects the rate of thermal energy storage. Therefore, the overall enthalpy curve illustrates a 465 

logarithmic increase until a thermal equilibrium is achieved between inlet temperature and 466 

nano-PCM. Moreover, the volume for base paraffin in heat exchanger with control volume is 467 

compromised with the inclusion of nano-particles, which results in reduced thermal enthalpy 468 

as compared to pure paraffin. Hence, there is trade-off between optimum charging rate 469 

enhancement and overall enthalpy reduction. In case of 1% volume concentration, SiO2, 470 

Al2O3, MgO and TiO2 based nano-PCM samples have presented consecutively higher 471 

overall thermal enthalpy as compared to other metal-oxides, ranging from 297.8 – 291.2 472 

kJ/kg. Percentage reduction in overall enthalpy, as compared to base paraffin, range from 473 

3.12% – 5.27%. In contrast, the inclusion of Gd2O3 nano-particles have illustrated the lowest 474 

overall enthalpy, with percent reduction of 9.34%, as shown in Fig. 12 (A). Likewise, in case 475 

of 3% and 5% volume concentration, SiO2, Al2O3 and MgO based nano-PCM samples have 476 

remained the suitable candidates, with overall enthalpy ranging from 277.1 – 267.4 kJ/kg 477 

and 258.3 – 244.3 kJ/kg, respectively. However, the total enthalpy for Gd2O3 based nano-478 

PCM samples with 3% and 5% volume concentrations have significantly reduced by 24.53% 479 

and 35.78%, respectively (see Fig. 12 (B) and (C)). Furthermore, the enthalpy distributions 480 

in shell container for nano-PCM samples with 5% volume concentrations after charging at 481 

constant 52 oC for 25 min are illustrated in Fig. 13. It is construed that the thermo-physical 482 

characteristics of nano-particles such as density, heat capacity and thermal conductivity 483 

have shown significant influence on overall thermal enthalpy of nano-PCM. Hence, the 484 

metal-oxides with smaller density and higher thermal conductivity and heat capacity are 485 

preferable due to their tendency of generating significant enhancement in charging rate with 486 
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acceptable reduction in overall enthalpy. Table 3 lists the time average of enthalpy, heat 487 

flux, velocity and non-dimensional Pr and Nu for all three volume concentrations based 488 

nano-PCM samples.   489 

 490 

Fig. 12 Total enthalpy of nano-PCM samples during charging cycles with different volume 491 
concentrations: (A) 1%, (B) 3% and (C) 5%. 492 

 

 
 

(A) 

 
(B) 

 
(C) 

 



25 
 

 493 

Fig. 13 Enthalpy contours of nano-PCM samples with 5% volume concentration after charging for 25 494 
min.  495 
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Table 3  

Average values derived from charging cycles of nano-PCM samples with three volume concentrations. 

Nano-

PCM 

Enthalpy (kJ/kg) Heat flux (W/m
2
) 

Heat Transfer 

Coefficient (W/m
2 
K) Velocity (mm/s) Prandtl Number Nusselt Number 

1% 3% 5% 1%  3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5% 

Al2O3 295.8 271.9 250.8 561.92 551.53 539.54 15.19 14.91 14.59 0.179 0.171 0.160 32.16 32.60 34.09 62.74 58.68 54.43 

CeO2 284.3 244.2 212.9 559.40 543.39 526.20 15.12 14.69 14.23 0.184 0.169 0.160 32.74 30.67 29.75 66.30 61.27 56.28 

CoO 282.9 241.2 209.0 559.07 542.48 525.86 15.11 14.67 14.22 0.181 0.170 0.160 32.69 30.41 29.34 66.46 61.36 56.45 

CuO 282.8 240.9 208.6 558.01 543.04 524.90 15.09 14.68 14.19 0.179 0.170 0.161 33.08 30.02 28.09 67.76 62.58 57.30 

Gd2O3 278.7 232.0 197.4 557.95 541.77 523.97 15.08 14.65 14.17 0.179 0.170 0.159 32.46 29.54 27.95 66.84 61.74 56.64 

Fe2O3 287.5 251.6 222.6 559.23 543.61 527.43 15.12 14.70 14.26 0.178 0.171 0.162 32.84 31.33 30.84 65.76 60.83 55.99 

MgO 294.0 267.4 244.3 559.52 545.02 527.43 15.13 14.73 14.32 0.181 0.172 0.162 33.01 32.41 32.55 64.92 60.10 55.31 

NiO 283.2 241.7 209.7 556.07 541.66 525.99 15.09 14.64 14.22 0.180 0.167 0.158 32.26 30.67 30.46 64.90 59.97 55.24 

SiO2 297.8 277.1 258.3 559.64 542.48 527.08 15.13 14.67 14.25 0.175 0.165 0.151 30.27 32.86 37.46 57.19 53.15 49.12 

SrO.TiO3 286.2 248.8 218.9 558.65 543.08 527.35 15.10 14.68 14.26 0.179 0.172 0.166 33.72 30.43 28.04 69.03 63.58 58.42 

SnO2 287.9 252.8 224.2 558.48 543.06 527.99 15.10 14.68 14.27 0.181 0.173 0.167 33.91 31.04 28.95 68.99 63.84 58.97 

TiO2 291.2 260.8 235.1 558.46 545.40 528.99 15.10 14.74 14.30 0.182 0.171 0.165 34.05 31.71 30.00 68.52 63.59 58.51 

Y2O3 288.4 253.8 225.5 558.71 543.47 527.47 15.10 14.69 14.26 0.179 0.170 0.161 32.85 31.50 31.13 65.52 60.65 55.82 

ZnO 285.9 248.2 218.1 558.37 543.16 527.57 15.10 14.68 14.26 0.181 0.170 0.166 33.71 30.37 27.97 69.03 63.63 58.48 
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3.2. Discharging/Solidification Cycles 496 

3.2.1. Thermal behaviour of MgO based nano-PCM 497 

Thermal performance enhancement of discharging cycles are equally essential for promising 498 

large-scale practical utilisation. During discharging cycles, the high temperature liquid nano-499 

PCM in shell container release thermal energy to low temperature water in tubes, which are 500 

set to constant 15 oC. As a result, the phase transition of nano-PCM from liquid to solid 501 

begins. Liquid fraction of nano-PCM in shell container reduces with the formation of solidified 502 

layers, as illustrated in Fig. 14. At earlier stages, the liquid nano-PCM in close proximity to 503 

inlet boundaries release latent portion of thermal energy and forms a symmetrical thin solid 504 

layer around the tubes boundaries. Thickness of solidified layers increase with the course of 505 

discharging cycle, which yields an improved thermal resistance to discharging process. 506 

Moreover, as the discharging cycle progress, the temperature gradient between inlet 507 

boundaries and nano-PCM decreases which is another reason for slower discharging rate at 508 

later stages. The reduction in average liquid fraction of nano-PCM after discharging for 5, 10, 509 

15 and 20 min are noticed to be 0.30, 0.15, 0.07 and 0.02, respectively. It confirms that the 510 

discharging rate is higher at earlier stages and weaker at later stages due to formation of low 511 

thermal conductive solidified layers around the inlet boundaries. Furthermore, the liquid 512 

fraction contours indicate an insignificant impact of natural convection, whereas conduction 513 

remained the dominant mode of heat transfer at both earlier and later stages of discharging 514 

cycle.  515 

Likewise, the temperature contours of nano-PCM in shell container for discharging cycle are 516 

illustrated in Fig. 15. It can be noticed that due to cluster of inlet temperature boundaries, the 517 

liquid nano-PCM in centre of shell container experience rapid thermal energy discharge as 518 

compared to nano-PCM closer to exterior boundary of shell container. The symmetrical 519 

temperature contours in both lower and top portion of shell container confirms the 520 

insignificant natural convection and dominant conduction heat transfer throughout the 521 

discharging cycle. Although, the velocity contours illustrated a slight upward movement of 522 

relatively higher temperature liquid nano-PCM, however the impact on solidification rate is 523 

insignificant due to geometrical distribution of tubes in shell container. The earlier formation 524 

of solidified layers around the tubes in centre of shell container confines the upward 525 

propagation of higher temperature liquid nano-PCM. Hence, the liquid nano-PCM is trapped 526 

in areas adjacent to exterior boundary of shell container and it requires more time to release 527 

thermal energy and undergo phase transition. As illustrated in Fig. 15 (D), the nano-PCM in 528 

centre of shell container is completely solidified and records temperature at 15 oC, whereas 529 

the nano-PCM areas adjacent to exterior boundary are in mushy zone and records 530 

temperature ranging from 42 – 45 oC. 531 
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 532 

Fig. 14 Liquid fraction contours of nano-PCM sample with 1% volume concentration of MgO at 533 
different time intervals while discharging at constant inlet temperature of 15 

o
C: (A) 5 min, (B) 10 min, 534 

(C) 15 min and (D) 20 min. 535 
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 536 

Fig. 15 Temperature contours of nano-PCM sample with 1% volume concentration of MgO at different 537 
time intervals while discharging at 15 

o
C: (A) 5 min, (B) 10 min, (C) 15 min and (D) 20 min. 538 

Heat flux and liquid fraction response to discharging cycles of nano-PCM samples with 539 

different volume concentration are illustrated in Fig. 16. To indicate discharging process, the 540 

heat flux is plotted in negative. As previously described, the discharging cycle is divided into 541 

three main stages. In earlier stages, the discharging heat flux increases until a peak value is 542 

reached and then a rapid declination in follow-up. It can be noticed that the peak discharging 543 

heat flux is significantly increased with an increase in volume concentration. The reasons 544 

behind are the relatively higher effective thermal conductivity with an increase in volume 545 

concentration and conduction dominant heat transfer. Increase in effective thermal 546 

conductivity improves the conduction heat transfer rate and as a result, a significant 547 

enhancement in peak discharging heat flux is achieved. Likewise, the liquid fraction plots 548 

have shown an abrupt linear declination from 1 to almost 0.5, which indicates that almost 549 

half mass of nano-PCM has undergone phase transition from liquid to solid. In second stage, 550 

the discharging heat flux appears to follow a moderate declination ranging from 4500 – 2000 551 

W/m2. During this stage, the temperature gradient between nano-PCM and inlet temperature 552 

decreases and the formation of solidified nano-PCM around inlet boundaries weakens the 553 
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heat flux. Liquid fraction also illustrate a similar moderate reduction due to weakened heat 554 

flux. In third stage, the discharging heat flux endure a gradual reduction due to smaller 555 

temperature gradient and continuous growth in thickness of solidified nano-PCM around inlet 556 

temperature boundaries. Due to which, the liquid fraction indicates a slower logarithmic 557 

reduction until solidification is completed.  558 

 559 

Fig. 16 Heat flux and liquid fraction of MgO based nano-PCM samples during discharging cycles. 560 

3.2.2. Thermal behaviour of all nano-PCM samples:  561 

In this section, the comparative enhancement in discharging rates of metal-oxides based 562 

nano-PCM with three volume concentrations are examined. The adiabatic exterior boundary 563 

of shell container ensures no thermal losses to surrounding and therefore, the total enthalpy 564 

charged by nano-PCM is available for discharge to low temperature water. Total enthalpy of 565 

all nano-PCM samples with varied volume concentrations are listed in Table 3. As previously 566 

discussed, the inclusion of nano-particles to base paraffin in a control volume is a trade-off 567 

between an enhancement in discharging rate and reduction in total enthalpy. 568 

Average solidification time and percentage enhancement in discharging rate of nano-PCMs 569 

with three volume concentrations are compared to base paraffin, as shown in Fig. 17. For 570 

1% volume concentration, the average solidification time is reduced from 27.75 min for base 571 

paraffin to 22.92, 24.0 and 24.5 min for SiO2, Al2O3 and MgO based nano-PCM samples, 572 

respectively. Hence, the discharging rate is significantly enhanced by 21.09%, 15.63% and 573 

13.27%, respectively. Likewise, for 3% and 5% volume concentrations, SiO2 based nano-574 

PCM samples have illustrated exceptional discharging performance, with enhancement in 575 

discharging rate of 26.62% and 30.08%, respectively. Whereas, the percentage 576 

enhancement for Al2O3 and MgO based nano-PCM samples seem inferior to Gd2O3 based 577 

nano-PCM. The reason behind is that due to inclusion of higher density nano-particles, the 578 

total enthalpy of nano-PCM reduces (see Fig. 12). Therefore, it requires relatively lesser 579 

solidification time to discharge the comparatively smaller total enthalpy. For instance, in case 580 

of 5% volume concentration, the Gd2O3 based nano-PCM requires 21.67 min to discharge 581 

197.4 kJ/kg of thermal enthalpy, whereas, Al2O3 based nano-PCM requires 22.67 min to 582 
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discharge 250.8 kJ/kg of thermal enthalpy. In other words, to discharge equal amount of 583 

thermal energy (195 kJ/kg), the discharge time required for SiO2, Al2O3, MgO, TiO2 and 584 

Gd2O3 based nano-PCM samples with 5% volume concentrations are 7.34, 8.5, 9.42, 10.08 585 

and 18.58 min, respectively. Therefore, the significance of discharging higher capacity of 586 

thermal enthalpy at higher discharging rate identifies SiO2, Al2O3, MgO and TiO2 as 587 

preferable candidates. 588 
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(C) 

Fig. 17 Average solidification time of nano-PCM samples and percentage enhancement in 589 
discharging rate as compared to base paraffin: (A) 1% VC, (B) 3% VC and (C) 5% VC.  590 

3.3. Economic evaluation of nano-PCM 591 

It is construed from numerical simulations that the charging and discharging rates of base 592 

paraffin can be significantly enhanced with inclusion of nano-particles at the cost of reduction 593 

in total enthalpy. Likewise, the inclusion of expensive metal-oxides nano-particles will 594 

increase the total cost of nano-PCM. Table 4 provides a comparison between all fourteen 595 

metal-oxides based nano-PCM in terms of required weight of nano-particles and respective 596 

elevation in price of nano-PCM with three volume concentrations. The required weight of 597 

nano-particles for respective metal-oxides and volume concentration is evaluated as:  598 

    (
   

       
) (        )      

(15) 

Base paraffin (RT44HC) and metal-oxides prices are taken from Rubitherm [48] and IoLiTec 599 

nanomaterials [50], as listed in Table 2. In cost calculations, the price of nano-particles per 600 

gram is multiplied with the required weight of nano-particles for respective volume fraction. 601 

The calculated cost of nano-particles is then added to cost of base paraffin to evaluate total 602 

price of nano-PCMs (per kg).  603 

It can be noticed that the total cost of nano-PCM elevates significantly with inclusion of nano-604 

particles. For instance, the percent increase in total cost of nano-PCM ranges from 115% – 605 

14085% for 1% volume concentration, 350% – 43125% for 3% volume concentration and 606 

599% – 73386% for 5% volume concentration, respectively. In addition to significant 607 

enhancement in charging/discharging rates and minimal reduction in total enthalpy by SiO2, 608 

Al2O3, MgO and TiO2 based nano-PCMs, the price-performance ratios for all three volume 609 

concentrations are lower as compared to other listed metal-oxides. Therefore, these four 610 

metal-oxides can be recommended for utilisation as nano-additives in LHS systems. 611 
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Table 4 

Price valuation of nano-PCMs with three volume concentrations and price-performance ratio for 5% - nano-PCMs. 

Nano-

PCM 

Price of 

nano-

particles 

(€/g) 

1% Volume Concentration 3% Volume Concentration 5% Volume Concentration 
Price 

performance 

ratio (€/kJ) ** 

Weight of 

nano-particles 

(g) 

Price of 

nano-PCM 

(€/kg) 

Weight of 

nano-particles 

(g) 

Price of 

nano-PCM 

(€/kg) 

Weight of 

nano-particles 

(g) 

Price of 

nano-PCM 

(€/kg) 

Al2O3 € 0.49 44.19 € 35.91 135.31 € 80.56 230.26 € 127.09 0.51 

CeO2 € 3.62 77.02 € 293.07 235.82 € 867.95 401.32 € 1,467.02 6.89 

CoO € 0.49 81.57 € 54.23 249.74 € 136.63 425.00 € 222.51 1.06 

CuO € 0.69 82.07 € 70.89 251.29 € 187.65 427.63 € 309.33 1.48 

Gd2O3 € 20.82 96.46 € 2,022.65 295.36 € 6,163.67 502.63 € 10,479.05 53.09 

Fe2O3 € 0.89 66.16 € 73.14 202.58 € 194.55 344.74 € 321.08 1.44 

MgO € 0.49 45.20 € 36.41 138.40 € 82.08 235.53 € 129.67 0.53 

NiO € 0.89 80.81 € 86.18 247.42 € 234.47 421.05 € 389.00 1.86 

SiO2 € 0.49 33.46 € 30.66 102.45 € 64.46 174.34 € 99.69 0.39 

SrO.TiO3 € 0.45 64.52 € 43.29 197.55 € 103.16 336.18 € 165.54 0.76 

SnO2 € 0.79 70.20 € 69.72 214.95 € 184.07 365.79 € 303.23 1.35 

TiO2 € 0.59 53.66 € 45.92 164.30 € 111.20 279.61 € 179.23 0.76 

Y2O3 € 0.59 63.13 € 51.51 193.30 € 128.31 328.95 € 208.34 0.92 

ZnO € 1.18 71.09 € 98.14 217.65 € 271.09 370.39 € 451.33 2.07 

* Paraffin (RT44HC) price is 14.26 €/kg 

**                             ⁄   
                      ⁄  

                                ⁄  
   

 

4. Conclusions 613 

This article is focused on numerical analyses of fourteen metal-oxides based nano-PCMs to 614 

establish a holistic approach for selecting nano-additives for optimal thermal enhancement. 615 

The simulated numerical model includes the impact of material thermo-physical properties, 616 

nano-particles size and volume concentration, and operating temperature while evaluating 617 

thermal performance enhancement in terms of charging and discharging rates, overall 618 

thermal enthalpy, heat transfer categorisation and respective temperature distribution, 619 

velocity response to natural convection and non-dimensional Nu, Pr and Ra numbers. 620 

Moreover, the economic evaluations of nano-PCM samples assist in identification of 621 

preferable metal-oxides candidates as thermal additives. The following conclusions are 622 

obtained from these numerical analyses:  623 

 Inclusion of metal-oxides nano-particles significantly enhances the effective thermal 624 

conductivity and surface area for heat transfer. However, the dynamic viscosity also 625 

improves and overall enthalpy reduces. Hence, an increase in volume concentration of 626 

nano-particles increase the conductive heat transfer and curtail the buoyancy driven 627 

natural convection. 628 

 In charging cycles, the heat transfer is mainly divided into three stages: an earlier 629 

conduction dominant period of rapidly charging nano-PCM around tube boundaries, 630 

followed by natural convection dominant upward rise of high temperature liquefied 631 

nano-PCM and final stage of weaker and gradually reducing natural convection 632 

dominant heat transfer between solid and liquefied nano-PCM at lower section of shell 633 

container. The reason behind weaker and depleting natural convection is the 634 

stratification of liquefied nano-PCM in upper section.  635 
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 In discharging cycles, heat transfer is dominated by conduction with symmetrical 636 

temperature contours in both lower and upper section of shell container. In earlier 637 

stages, a rapid formation of thin solid layers around tubes boundaries are noticed. In 638 

next stages, the thickness of solidified layers increase which results in augmented 639 

thermal resistance and consequently, the heat flux is rapidly reduced. In final stages, 640 

the continued increase in thickness of solidified layers and reduction in temperature 641 

gradient results in weakened and gradually depleting heat flux. 642 

 Increase in volume concentration can augment peak heat flux and phase transition 643 

rate. However, the convective heat transfer coefficient and Nu are reduced due to 644 

relative increase in effective dynamic viscosity. For instance, the percentage 645 

enhancement in charging rate of SiO2 based nano-PCM samples with 1% and 5% 646 

volume concentrations are 29.45% and 41.04%, respectively. Likewise, the 647 

discharging rates are improved by 21.09% and 30.08%, respectively.  648 

 Metal-oxides with lower density can accommodate more nano-particles in base 649 

paraffin for given volume concentration and therefore, the specific surface area for 650 

heat transfer can be increased. In consequence, a higher phase transition rate can be 651 

achieved. For instance, SiO2, Al2O3, MgO and TiO2 based nano-PCMs demonstrate 652 

relatively higher charging/discharging rates and reasonable reduction in total enthalpy. 653 

 Inclusion of nano-particles can significantly enhance charging/discharging rates at the 654 

cost of reduction in overall enthalpy and increase in total cost. Hence, there is trade-off 655 

between optimum thermal performance and higher cost of nano-PCM. It is identified 656 

from price-performance ratios that SiO2, Al2O3, MgO and TiO2 are preferable nano-657 

additives due to their relatively lower cost and excellent thermal enhancement.  658 
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