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UNDERSTANDING DYSLEXIA BY MEASURING EYE-

MOVEMENTS DURING READING 

Rhiannon Sara Barrington      

Dyslexia has been causally linked to both phonological deficits (Snowling, 2000) and 

difficulties in allocating attention (Valdois, Bosse, & Tainturier, 2004; Vidyasagar, 

1999; Whitney & Cornelissen, 2005), both of which are utilised during parafoveal 

processing (Schotter, Angele, & Rayner, 2012). Whilst dyslexic readers have been 

found to display disruption in oculomotor control relative to skilled readers (Kirkby, 

Webster, Blythe, & Liversedge, 2008), there is a lack of research examining dyslexic 

parafoveal processing during reading. The experiments presented throughout this 

thesis examined whether parafoveal processing is less efficient for dyslexic readers 

compared to non-dyslexic readers (Jones, Ashby, & Branigan, 2013), and, explored 

the nature of dyslexic eye movement behaviour by including both a chronological-

age and a reading-age matched control group. In three silent sentence-reading 

experiments, eye movements were recorded from dyslexic and non-dyslexic readers. 

Using the boundary paradigm (Rayner, 1975), parafoveal previews were either 

manipulated orthographically or phonologically. The results of these experiments 

indicated that readers with dyslexia gain parafoveal preview benefit during reading. 

Dyslexic children and adults demonstrated orthographic parafoveal preview benefits 

and encoded letter identity independently of letter position. Dyslexic readers did, 

however, show a specific dyslexic deficit in which they required a greater 

dependence on letter position information for lexical activation. When examining 

phonological preview benefits, neither dyslexic nor non-dyslexic readers showed a 

significant benefit for phonological pre-processing. All three experiments provided 

evidence that dyslexic readers demonstrated differential eye movement patterns to 

non-dyslexic readers. Dyslexic readers required additional fixations, longer gaze 

durations and total reading times even when compared to non-dyslexic readers 

matched on reading age. Taken together, the results indicate that dyslexic eye 

movement behaviour is not purely indicative of their reduced reading skill and is due 

to a specific dyslexic reading deficit. These findings are consistent with both 

phonological and attention deficit theories of dyslexia and indicate that dyslexic 

readers rely upon a serial sublexical grapheme–phoneme conversion method of 

reading (Hawelka, Gagl, & Wimmer, 2010).  
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Chapter One: Introduction  
1.0 Chapter overview   

This chapter provides an overview of the literature in relation to developmental 

dyslexia and theories of dyslexia. The focus then shifts to explaining eye movement 

behaviour during reading, providing an overview of both foveal and parafoveal 

processing for skilled readers, developing readers, and readers with dyslexia. The 

aims of the thesis are then outlined within a summary of the chapter.  

1.1 What is dyslexia?  

Reading plays a vital role in modern society; much of the teaching provided at school 

requires children to read and approximately 90% of all careers require literacy skills 

(Lenhard, Lenhard, & Breitenbach, 2005). As such, reading difficulties can have a 

considerable impact on a child’s development as well as their future prospects 

(Peterson & Pennington 2015). Developmental dyslexia, one of the most common 

learning disabilities, is a lifelong reading disability suggested to affect between 5 and 

17% of children (Shaywitz, 1998). Developmental dyslexia (from here on in referred 

to as dyslexia) is typically diagnosed when a child shows a persistent difficulty in 

learning to read that cannot be explained by a lack of general intelligence, 

motivation, sensory deficits or inadequate schooling (Shaywitz, 1998); dyslexia 

typically manifests as difficulties in learning to read accurately and with adequate 

speed. In fact, the fifth version of the American Psychiatric Association’s Diagnostic 

and Statistical Manual (5th ed.; DSM-5; American Psychiatric Association [APA], 

2013) refers to dyslexia as “a pattern of learning difficulties characterised by 

problems with accurate or fluent word recognition, poor decoding and poor spelling 

abilities” (p. 67). Indeed, dyslexia is specifically characterised by impaired decoding 

skills - the ability to map phonology (speech sounds) to orthography (printed letters; 

Snowling & Hulme, 2012).  

In order to receive a diagnosis of dyslexia an individual must not only show 

difficulties with accurate or fluent word recognition, poor decoding and poor 

spelling, but must also demonstrate that “the affected academic skills are 

substantially and quantifiably below those expected for the individual’s 

chronological age” (American Psychiatric Association, 2013, p. 67). This is usually 

determined through standardised achievement measures and comprehensive clinical 
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assessment. In addition, it needs to be determined that “the learning difficulties are 

not better accounted for by intellectual disabilities, uncorrected visual or auditory 

acuity, other mental or neurological disorders, psychosocial adversity, lack of 

proficiency in the language of academic instruction, or inadequate educational 

instruction” (American Psychiatric Association, 2013, p. 67). Due to the above 

diagnostic criteria, dyslexia is typically diagnosed after children have had some 

formal education (approximately around the age of 9 years old). There are, however, 

a range of precursors for dyslexia that can be seen in children much younger than 9 

years old, and also occasions where dyslexic difficulties only manifest later in an 

individual’s academic career.   

Children can start to show dyslexic tendencies as young as preschool age 

(Boets et al., 2011; Pennington & Lefly, 2001; Scarborough, 1990; Snowling, 

Gallagher, & Frith, 2003). These tendencies may be delayed speech, speech 

problems such as mispronunciations, struggling to remember the right words and put 

words together correctly, problems with rhyming, and difficulties in learning letters 

of the alphabet. As children get slightly older and start learning literacy skills at 

school they often present difficulties such as: problems learning the names and 

sounds of letters, accidental reversing of letters and numbers, slow and poor reading 

and writing, difficulty spelling and copying written text, visual disturbances (such as 

letters moving or appearing blurred), problems with sequencing (such as following 

directions or learning days of the week) and also poor phonological skills. Finally, as 

teenagers and adults, dyslexia tends to manifest as poor organisation within their 

written work, difficulties in taking notes or copying, poor spelling, memory 

difficulties and poor reading fluency. In fact, even when sufficient word reading 

accuracy is achieved, adults with dyslexia often still struggle with fluency deficits 

(Fletcher, Lyon, Fuchs, & Barnes, 2007). Indeed, it is possible for dyslexia to go 

undiagnosed during childhood, as difficulties may not fully manifest until the 

demands on reading surpass the individuals limited abilities. As such, dyslexic 

readers can go unnoticed during school, but be diagnosed later in life when academic 

demands are increased (for example, at university). Due to the changes in dyslexic 

characteristics, it is important to understand whether similar behaviours are present 

throughout the life span. To this end, the current thesis explores both adult and child 

dyslexic readers, in order to further understand how dyslexia may impact reading 

throughout development.  
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Whilst behavioural indicators of dyslexia may change throughout 

development, diagnosis of dyslexia largely relies upon the presence of difficulties in 

decoding and accurate or fluent reading. Dyslexia is, however, considered a 

heterogeneous condition in which individuals show a range of difficulties and 

variability within these difficulties (e.g. Hynd & Cohen, 1983). In fact, although a 

wide range of behavioural studies have reported dyslexic difficulties synonymous 

with the diagnostic criteria of dyslexia (such as decoding or phonological difficulties, 

and difficulties in accurate or fluent reading: Blachman, 2000; Fletcher et al., 1994; 

Shankweiler, Liberman, Mark, Fowler, & Fischer, 1979; Share & Stanovich, 1995; 

Stanovich & Siegel, 1994; Snowling, 2000; Torgesen, Wagner, & Rashotte, 1994; 

Vellutino, 1979, 1987; Vellutino, Fletcher, Snowling, & Scanlon, 2004; Vellutino & 

Scanlon, 1987a, 1987b; Vellutino, Scanlon, & Chen, 1995; Vellutino, Scanlon, & 

Spearing, 1995; Vellutino, Scanlon, & Tanzman, 1994; Vellutino et al., 1996; 

Wagner & Torgesen, 1987; Wagner, Torgesen, & Rashotte, 1994), there is also a 

body of research to support additional visual, attentional, auditory, and motor deficits 

within dyslexia. Specifically, dyslexic readers are reported to show deficits in rapid 

naming (Jones, Ashby, & Branigan, 2013; Jones, Branigan, Hatzidaki, & Obregon, 

2010; Jones, Obregon, Kelly, & Branigan, 2008; Lervåg & Hulme, 2009; Moll & 

Jones, 2013; Parrila, Kirby, & McQuarrie, 2004; Powell, Stainthorp, Stuart, 

Garwood, & Quinlan, 2007; Wolf & Bowers, 1999), poor short-term memory or 

working memory (Ackerman & Dykman, 1993; Cohen, Netley, & Clarke, 1984; 

Gould & Glencross, 1990; Griffiths & Snowling, 2002; Jorm, 1983; McLoughlin, 

Fitzgibbon, & Young, 1994; Miles, 1993; Nelson & Warrington, 1980; Palmer, 

2000; Rack, 1985; Roodenrys & Stokes, 2001; Rose, Feldman, Jankowski, & 

Futterweit, 1999; Smith-Spark, Fisk, Fawcett, & Nicolson, 2003; Swanson, 

Ashbaker, & Lee, 1996), slower visual search (Buchholz & McKone, 2004; Casco & 

Prunetti, 1996; de Boer-Schellekens & Vroomen, 2012; Iles, Walsh, & Richardson, 

2000; Lallier, Donnadieu, & Valdois, 2013; Vidyasagar & Pammer, 1999), a reduced 

visual attentional span (Bosse, Tainturier, & Valdois, 2007; Valdois, Bosse, & 

Tainturier, 2004), poor coherent motion detection (Cornelissen, Richardson, Mason, 

Fowler, & Stein, 1995; Cornelissen et al., 1998; Pammer & Wheatley, 2001), 

contrast sensitivity (Borsting et al., 1996; Lovegrove, Bowling, Badcock, & 

Blackwood, 1980; Lovegrove et al., 1982; Martin & Lovegrove, 1984,1988), poor 

frequency discrimination (Ahissar, Protopapas, Reid, & Merzenich, 2000; McAnally 

& Stein, 1997), and clumsiness (Fawcett & Nicolson, 1995, 1999; Orton, 1937; 
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Snowling, 2000). Furthermore, and in line with the heterogeneity of dyslexic 

characteristics, there are a number of alternative theories of dyslexia. The most 

widely accepted and researched theories will be discussed in further detail below. 

1.2 Theories of dyslexia  

1.2.1 The Phonological Deficit Hypothesis  

To date, the most widely accepted theory of dyslexia is the Phonological Deficit 

Hypothesis (Liberman, 1973; Snowling, 1995, 2000; Stanovich, 1988). This theory 

purports that dyslexia occurs as a consequence of cognitive deficits in accessing, 

manipulating, and storing phonological representations. Consequently, individuals 

with dyslexia are often shown to have difficulties in tasks that require phonological 

awareness. Such tasks include: associating letters with the correct speech sounds 

(grapheme-phoneme correspondence; Snowling, 1995, 2000; Stanovich, 1988), 

detecting and discriminating differences in phonemes, and breaking words down into 

their constituent sounds (i.e. phoneme deletion tasks; Bruce, 1964; McDougall, 

Hulme, Ellis, & Monk, 1994). Phonological awareness deficits cause difficulties in 

sound segmentation and blending, both of which are critical in the development of 

reading and spelling (Bradley & Bryant, 1983). In addition, deficits in accessing 

phonological representations may impair the ability to store high-quality 

representations of word spellings, which, consequently, affects rapid word 

identification and reading fluency (Hulme & Snowling, 2013; Lervåg & Hulme, 

2009). The Phonological Deficit Hypothesis (Liberman, 1973; Snowling, 1995, 

2000; Stanovich, 1988) postulates a straightforward link between a cognitive level 

deficit and the observed behavioural characteristics; however, this argument has been 

described as circular (Vidyasagar & Pammer, 2010; Stein, 2018a, 2018b) as 

phonological deficits are used as a defining characteristic of dyslexia as well as a 

cause to explain their reading difficulties. 

There has, nevertheless, been much research to support the Phonological 

Deficit Hypothesis of dyslexia (Vellutino et al., 2004). Firstly, there are numerous 

studies which report that dyslexic readers perform poorly on phonological awareness 

and letter-sound decoding tasks compared to skilled readers (e.g. Blachman, 2000; 

Fletcher et al., 1994; Shankweiler et al., 1979; Share & Stanovich, 1995; Stanovich 

& Siegel, 1994; Snowling, 2000a; Torgesen et al., 1994; Vellutino, 1979, 1987; 

Vellutino & Scanlon, 1987a, 1987b; Vellutino et al., 1994; 1995a; 1995b, 1996, 
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2004; Wagner & Torgesen, 1987; Wagner et al., 1994). Secondly, phonological 

awareness is crucial for accurate and fluent reading for typically developing readers. 

Thirdly, phonological awareness in young children has been shown to predict their 

future reading ability (Bradley & Bryant, 1983) and is a stronger predictor than 

deficits in rime awareness, verbal short-term memory and word reading skill (Melby-

Lervåg, Lyster, & Hulme, 2012). Finally, although many of the studies that link 

phonological deficits with reading difficulties have been correlational or cross-

sectional studies (Melby-Lervåg et al., 2012), intervention studies have also provided 

evidence to support a causal role of phonological deficits in reading difficulties 

(Bradley & Bryant, 1985). When beginning readers are given phonological training, 

they show marked improvements in word identification, spelling and general reading 

ability (Bradley & Bryant, 1985), regardless of their general intelligence (intelligence 

quotient, IQ; Hatcher & Hulme, 1999). Consequently, it is largely accepted that 

phonological skills play a key role in the development of reading skills for all child 

readers (Vellutino et al., 2004). It is, however, important to note that phonological 

skills appear to be a stronger predictor of reading ability in general than of reading 

disability specifically (Scarborough, 1998).   

Additional evidence for a causal role of phonological deficits in dyslexia has 

been provided by behavioural, genetic and neuroimaging studies (see Pennington & 

Olson, 2005, for a review; Snowling, 2000). Furthermore, a growing body of 

evidence supports phonological deficits in alphabetic languages, but, also in different 

orthographies such as Chinese, a logographic language (Ho, Chan, Lee, Tsang, & 

Luan, 2004; McBride-Chang et al., 2008). Thus, there is a large amount of data to 

support the role of phonological deficits in dyslexia.  

As described above phonological deficits are generally considered to play a 

considerable role in causing dyslexia, however, it must be noted that not all readers 

with dyslexia exhibit phonological deficits. Some dyslexic readers can perform 

within normal parameters on tasks where the Phonological Deficit Hypothesis would 

predict poor performance (Ramus & Ahissar, 2012). Furthermore, individuals with 

dyslexia do not always demonstrate phonological deficits (e.g. Castles & Coltheart, 

1996; Frederickson & Frith, 1998; Pennington et al., 2012; Valdois et al., 2011) and 

not all individuals with phonological deficits have dyslexia (e.g., Catts & Adlof, 

2011; Howard & Best, 1996; Snowling, 2008). For the reasons discussed above, 

theories based upon the notion of a single phonological deficit have often been 
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regarded as incapable of explaining the entire phenotype of this highly heterogenic 

learning disability (Pennington, 2006; Ramus & Ahissar, 2012).  

In fact, much of the research into phonological deficits has focused upon the 

phonological aspects of decoding. Decoding is, however, the ability to map 

phonology to orthography (Snowling & Hulme, 2012); as such, some researchers 

have considered the role of orthographic encoding in reading difficulties (Castles & 

Coltheart, 2004) rather than solely focusing upon the phonologic aspects. Indeed, 

there is evidence to show that phoneme awareness tasks are influenced by the 

properties of the corresponding orthographic representation (Castles, Holmes, Neath, 

& Kinoshita, 2003; Stuart, 1990; Treiman & Cassar, 1997). Deficits in phonological 

tasks may, therefore, be influenced by difficulties with both letter-based orthographic 

information as well as sound-based phonological information. In which case, Castles 

and Coltheart (2004) propose it may be more accurate to consider dyslexia as a 

deficit that occurs from a failure to form satisfactory grapheme-phoneme 

correspondences. Such a deficit may arise from difficulties with processing 

graphemes - the visual counterpart of the word, specifically, or from problems in 

forming the correct visual-auditory associations between the graphemes and the 

phonology. Phonological decoding is an attention-demanding process (Reynolds & 

Besner, 2006) and requires both phonological skills (Ramus, 2003; Ziegler & 

Goswami, 2005) and efficient allocation of visual attention (Cestnick & Coltheart, 

1999; Facoetti et al., 2006; Perry, Ziegler, & Zorzi, 2007). There are, therefore, a 

range of skills such as visual attention and orthographic encoding that also play an 

important role in decoding. 

Finally, one of the major weaknesses of the Phonological Deficit Hypothesis 

has been its inability to explain the occurrence of subtle sensory and motor deficits 

often characteristic of dyslexia (Stein, 2018a; Stein, 2018b). Those who support the 

theory typically dismiss sensory and motor deficits as features that are not part of the 

core profile of dyslexia (e.g. Snowling, 2000). There are, however, other theories that 

consider the sensory and motor deficits in readers with dyslexia to be core and 

therefore endeavour to explain such deficits (Hari & Renvall, 2001; Vidyasagar, 

1999). As such, the following section will explore theories of dyslexia that attempt to 

explain the broader dyslexic profile.  
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1.2.2 The Magnocellular Theory  

The magnocellular theory, an alternative and somewhat more controversial theory of 

dyslexia, considers dyslexia to occur as a result of impairment within the visual 

pathways, rather than a phonological or linguistic difficulty (Stein, 2001; Stein, 

2018a). In this proposal, dyslexic readers have abnormalities within the 

magnocellular stream of the visual system and this, in turn, causes a range of visual, 

auditory, attentional and motor difficulties that casually impact on reading ability 

(Stein, 2018b). Although an in-depth review of the physiology of the visual system is 

beyond the scope of the current research, a brief explanation of the visual systems 

and in particular the magnocellular stream, is provided below in order to explain how 

deficits within magnocellular functioning may impact reading. See Figure 1.1 for an 

overview of the anatomy of the visual pathways in the visual system (Boden & 

Giaschi, 2007).  

The subcortical human visual system is thought to consist of at least two 

parallel pathways, the parvocellular (P stream) and the magnocellular (M stream; for 

a review see Milner & Goodale, 1995). These streams begin at the retina (a light 

sensitive layer at the back of the eye which is built up of photosensitive cells that 

convert light energy into signals) where both magnocellular neuron and parvocellular 

neuron ganglion cells are present. Magnocellular neurons respond and conduct 

signals more rapidly than parvocellular neurons, they are more sensitive to temporal 

change within the environment (such as flickers of movements) and are particularly 

important in capturing attention. Magnocellular neurons provide the main signal for 

visual guidance of both attention and eye and limb movements. In addition, 

magnocellular neurons are known to direct the parvocellular neurons to each letter, 

in order to identify it and its position within a word. Parvocellular neurons define 

colour and detail, are key for reading and provide the main input into the visual word 

form area (VWFA) where letters are identified. It is generally accepted that the 

magnocellular system is involved in the processing of temporal change and low-

contrast information and is tuned to low spatial frequencies, whereas the 

parvocellular system is involved in the processing of chromatic information and is 

tuned to low temporal and high spatial frequencies. 

Magnocellular and parvocellular neurons project to separate layers in the 

primary visual cortex, V1 (See Figure 1.1; Baizer, Ungerleider, & Desimone, 1991; 
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Livingstone & Hubel, 1988; Maunsell, Nealey, & De Priest, 1990). Therefore, the 

two streams are processed separately up until this point. From V1, there is a mingling 

of the magnocellular and parvocellular streams, but the anatomical segregation is at 

least partially maintained in the next visual area, V2 (DeYoe & Van Essen, 1988; 

Ferrera, Nealey, & Maunsell, 1992; Lennie, Trevarthen, Van Essen, & Wassle, 1990; 

Shapley, 1990). From then on, there are two streams that project the visual 

information to the rest of the brain, the dorsal stream and the ventral stream.  

The magnocellular neurons provide the main visual input to the dorsal 

pathway (considered to process “where” and “when” information), which connects 

V1 to the posterior parietal lobe. The dorsal stream comprises several cortical areas 

such the medial temporal area (MT or V5), media superior temporal area (MST) and 

 

 

 

 

 

 

 

 

 

Figure 1.1. Anatomy of parallel pathways in the visual system of a monkey. LGN, 

lateral geniculate nucleus of the thalamus; V1, cortical visual area 1; V2, cortical 

visual area 2; V4, cortical visual area 4; M, magnocellular; P, parvocellular; MT, 

medial temporal area; VIP, ventral intraparietal lobe; MST, medial superior temporal 

area; LIP, lateral intraparietal cortex; IT, inferior temporal cortex; 7a, area 7a of the 

parietal cortex. Reprinted from “M-stream deficits and reading-related visual 

processes in developmental dyslexia”, by C. Boden and D. Giaschi, 2007, 

Psychological bulletin, 133(2), p. 348. Copyright 2007 by the American 

Psychological Association. 
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the ventral and lateral intraparietal areas (VIP; LIP). This stream mediates the visual 

guidance of attention and eye and limb movements and has also been implicated in 

object localization, motion perception, goal-directed movements and appears to 

mediate selective visual attention (Posner, 1995). Parvocellular neurons provide the 

main input to the ventral (“what”) pathway, which connects V1 to the inferotemporal 

region. The ventral pathway continues from V1 and V2 into V3 and V4 and is known 

for detecting texture, form and colour of objects. The VWFA lies within the 

parvocellular pathway, which passes ventrally underneath the occipitotemporal 

cortex.  

The above description of the magnocellular stream is useful in order to 

understand that deficits within the M stream may occur at any point between the 

retina and the dorsal stream, and, consistent with Boden and Giaschi (2007), this 

document will discuss the magnocellular and parvocellular systems as the M stream 

and P stream, as deficits may occur anywhere throughout these systems. The above 

description is also useful in order to consider how deficits in the magnocellular 

stream may impact more specifically upon reading, eye movements and visual 

attention.  

The magnocellular theory of dyslexia has been proposed based upon 

neuroscientific evidence that shows that many people with developmental dyslexia 

also show low-level problems in visual processing (see Farmer & Klein, 1995; Klein, 

2002, for reviews) and that these low-level visual difficulties (such as perception of 

flicker and motion) are considered to arise from abnormalities in a part of the M 

stream (reviewed in Stein, 2001). Therefore, the theory purports that dyslexic readers 

have difficulties in reading that occur because of their M stream deficits (Stein, 

2018a, 2018b). Indeed, this theory has been adapted and extended to include 

auditory, motor, and the phonological deficits characteristic of dyslexia. There has, 

however, been much debate about the role of the magnocellular system in dyslexia 

(Blythe, Kirkby, & Liversedge, 2018; Skottun, 2000, 200). Specifically, Skottun 

(2000; 2001) questioned the magnocellular theory on two counts: (a) it is unclear 

whether the M stream is important to reading and (b) M-stream deficits, if they exist, 

may not be the cause of the reading difficulties seen in dyslexia. These issues have 

been somewhat addressed by Boden and Giaschi (2007) who identified and 

investigated possible roles for the M stream in reading, with focus upon the visual 

modality.  
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Although deficits in motion perception tests are often used to determine poor 

magnocellular functioning (Boden & Giaschi, 2007; Skottun & Skoyles, 2007; Stein, 

2001), other characteristics of the M stream, such as good contrast sensitivity and 

fast neural transmission speeds, are potentially more relevant to reading. 

Furthermore, deficits in the subcortical M-stream function may lead to altered dorsal 

stream processes, which can cause problems with visual selective attention and eye 

movements. It is these latter functions that are an integral part of reading and of great 

interest in this thesis. Consequently, Boden and Giaschi (2007) proposed the 

following hypothesis to explain how magnocellular dysfunction may cause reading 

difficulties: 1) reduced contrast sensitivity at low spatial frequencies may interfere 

with the visual analysis of the features that make up the word; 2) poor spatial 

localisation may cause problems with position encoding of letters within a word; 3) 

an unstable reference (dominant) eye or poor vergence control may result in unstable 

binocular coordination; 4) deficient posterior parietal lobe functioning may cause 

attentional difficulties when focusing on the fixated word and/or orienting to the next 

word; 5) temporal precedence of global information about parafoveal words may be 

disrupted; 6) deficits in the processing of location information may lead to problems 

programming saccadic eye movements; 7) the inability to adequately suppress visual 

information during a saccade could create smearing during reading.  

It is, understandable that all the above deficits may lead to reading 

difficulties. However, as discussed within their paper (Boden & Giaschi, 2007), 

several of these hypotheses have been already been addressed (e.g., Kirkby, Blythe, 

Drieghe, & Liversegde, 2011). Furthermore, a number of these hypotheses are in fact 

closely related and largely rely upon efficient attention. As discussed in Boden and 

Giaschi (2007), Cornelissen, Hanson, Hutton, Evangelinou and Stein (1998) 

proposed that an M-stream deficit might create confusion about the where letters are 

positioned within words (spatial localization). Poor spatial localisation may occur as 

a result of M stream deficits because the posterior parietal lobe is important for 

attentional processes such as encoding spatial position (Husain, 1991). Indeed the 

ability to encode spatial position is dependent on efficient attention allocation (e.g. 

Cornelissen, Hansen, Gilchrist, et al., 1998; Vidyasagar, 2001, 2004) and can be 

considered as a micro-level effect of an attention deficit. In contrast, deficient 

posterior parietal lobe functioning may cause attention difficulties when focusing on 

the fixated word and/or orienting to the next word, can be considered a macro-level 
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effect of an attention deficit affecting attentional distribution across words. Such 

deficits would impact a reader’s ability to adequately encode letter position 

information within a word and also to encode useful information from the next word. 

There is rising interest in attentional deficits associated with dyslexia and a number 

of attentional theories have been proposed. Some of these theories are in line with 

the magnocellular theory, whereas others like to dissociate from deficits in 

magnocellular functioning. The following section will discuss attention deficit 

theories.   

1.2.3 Attentional Theories  

There are a number of different accounts of how dyslexia is caused by attention 

deficits, one such account is the Sluggish Attentional Shifting (SAS) Hypothesis 

(Hari & Renvall, 2001; Lallier, Donnadieu, Berger & Valdois, 2010). The SAS 

Hypothesis was developed to explain the subtle sensory and motor deficits that occur 

in dyslexia synonymous with the magnocellular deficit theory (Stein, 2001). SAS 

builds upon the magnocellular proposal that deficits in parietal lobe functioning may 

result in deficient attention and thus cause temporal processing impairments in 

dyslexia (Stein & Walsh, 1997). According to this hypothesis, individuals with 

dyslexia struggle to disengage attention when visual or auditory stimuli are presented 

within a rapid sequence; attention is ‘sluggish’ and engaging and disengaging 

attention takes longer for a dyslexic reader than a typical reader (Hari & Renvall, 

2001). This Sluggish Attentional Shifting then results in readers with dyslexia having 

a prolonged ‘cognitive window’, ‘time’ or ‘input chunk’ (i.e. time it takes the readers 

to process information; Hari, & Kiesilä, 1996; Helenius, Uutela, & Hari, 1999; 

Merzenich, Schreiner, Jenkins, & Wang, 1993). These increased processing 

durations are said to cause confusion with the temporal order of successive items 

(Hari & Renvall, 2001) and distort the development of correct phonological 

representations required for reading acquisition.   

The SAS hypothesis considers deficits in attention to fall specifically within 

serial attention allocation; whereby serial identification of letters is more challenging 

for those with dyslexia than for typical readers. This is supported by studies showing 

impaired serial visual identification (Ruffino et al., 2010) and slower spatial cuing 

(Facoetti et al., 2010) among dyslexic children. Indeed, evidence for the SAS 

hypothesis has been found separately in both the auditory (e.g., Hari, 1995; Hari & 
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Kiesilä, 1996; Helenius et al., 1999) and the visual modality (e.g., Hari, Renvall, & 

Tanskanen, 2001; Hari, Valta, & Uutela, 1999). More specifically, research by 

Facoetti and colleagues (Facoetti, Lorusso, Cattaneo, Galli, & Molteni, 2005; 

Facoetti et al., 2010) provides behavioural data to support the suggestion that 

dyslexic readers have a decreased pace of covert attentional orienting in both 

auditory and visual modalities; these findings support the proposed magnocellular 

deficits in which dyslexic readers may struggle with efficient attention allocation 

across words.   

In addition to explaining visual and auditory processing difficulties, the SAS 

hypothesis can also be used to generate predictions for phonological processing in 

dyslexic reading. Sluggish attentional shifting disrupts the mapping of orthography 

with phonology, which, in turn, impedes the development of phonological 

representations and orthographic-phonological binding (Blomert, 2011; Hari & 

Renvall, 2001). There is, however, little empirical data that supports the suggested 

causal relationship between SAS and developmental dyslexia, and no strong 

evidence linking SAS difficulties to phonological deficits (see Krause, 2015, for a 

more in depth review of SAS).  

In a similar manner to the predictions based on the SAS hypothesis, the 

SERIOL model (Sequential Encoding Regulated by Inputs to Oscillations within 

Letter units; Whitney, 2001; Whitney & Cornelissen, 2005) has also been used to 

propose that visual attention deficits, due to deficient magnocellular functioning, 

might be a core deficit in developmental dyslexia. Based on their SERIOL model of 

letter position encoding, Whitney and Cornelissen (2005) purport that dyslexic 

reading difficulties are associated with visual attention deficits, in which dyslexic 

readers are unable to adequately allocate attention to individual letters or grapheme 

clusters. Therefore, readers with dyslexia struggle to activate a single visual letter 

representation alongside the corresponding letter sound and, as such, a single 

phoneme may be incorrectly mapped to a number of graphemes. As grapheme-to-

phoneme correspondences are poorly developed and unreliable, readers are less 

likely to access the correct phonological codes through mapping sounds to the 

written form. This means that, for dyslexic readers, there is less of a requirement to 

encode the correct left-to-right position of individual letters since the phonological 

information is not correctly mapped to the graphemes. As such, a lack of grapheme-

to-phoneme associations disrupts the formation of an attentional location gradient 
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required to localise the position of letters within a string. Consequently, reading 

deficits occur due to poor grapheme-to-phoneme mappings as well as problems with 

encoding letter position information. Whitney and Cornelissen (2005) claim that, in 

extreme cases, such difficulties may, in fact, cause readers with dyslexia to use an 

object style recognition method in which each word is encoded as a whole visual 

object rather than developing string specific encoding of letter position information.   

In a similar proposal, Vidyasagar and Pammer (2010) argue that attention 

mechanisms, controlled by the magnocellular stream, aid serial scanning of letters. 

As such, magnocellular dysfunction is seen to cause disruption in the allocation of 

serial attention during reading. This is considered to cause the cascade of difficulties 

discussed above, such as: impairments in the visual processing of graphemes, 

developing grapheme-phoneme correspondences, and the development of phoneme 

awareness. Such proposals have been supported by evidence that sensitivity to the 

spatial order of symbol strings can explain a unique proportion of variability in later 

reading skill in both children (Pammer, Lavis, Hansen, & Cornelissen, 2004) and 

adults (Pammer, Lavis, Cooper, Hansen, & Cornelissen, 2005).  

In contrast to the accounts discussed above that propose deficits in serial 

attention allocation explain both phonological difficulties and attentional difficulties 

in dyslexia, the Visual Attentional (VA) Span Deficit Hypothesis (Bosse et al., 2007; 

Valdois et al., 2004) postulates a deficit in parallel identification that can be 

dissociated from phonological deficits in dyslexia. The VA Span Deficit Hypothesis 

does not align itself with magnocellular dysfunction hypothesis, rather it hinges on 

the assumption that individuals with dyslexia have a reduced area in which they can 

allocate attention, which, in turn, limits the number of letters that can be processed in 

parallel. Bosse et al. (2007) showed that VA span accounts for a substantial amount 

of unique variance in reading ability in both French and English children with 

dyslexia. Moreover, through additional analysis, they found that the VA span of 

English children with dyslexia contributed to reading performance even after 

controlling for IQ, verbal fluency, vocabulary, single letter identification skills and 

phoneme awareness; therefore, providing evidence for a causal link between VA 

span and dyslexia. It is, however, important to note that, the authors of the VA Span 

Deficit Hypothesis propose dyslexia is caused by multiple cognitive deficits in which 

both VA span and a phonological disorder play large, yet independent, roles (Bosse 

et al., 2007). Several studies have shown that deficits in visual attention span are 
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independent of a phonological disorder for a significant number of poor readers 

(Bosse et al., 2007; Prado, Dubois & Valdois, 2007); however, some individuals may 

struggle with both visual span and a phonological disorder (Bosse et al., 2007). 

VA span deficits have also been reported in Chinese dyslexic readers (Chen, 

Zheng, & Ho, 2018; Zhao, Liu, Liu, & Huang, 2018). Zhao et al. (2018) 

demonstrated a reduced VA span for Chinese children with dyslexia in grades 5 and 

6 but not in younger children (grades 2, 3, 4). Although they did not find significant 

difference in the VA span for the younger dyslexic children, they did find a 

difference in the developmental trajectory of the VA span in Chinese dyslexics 

compared to typically developing children. Dyslexic children showed a different 

trajectory in their VA span development which was not representative of a 

developmental delay but indicated atypical development of the VA span. This is 

further supported by the work of Chen et al. (2018). Chen et al. found that Chinese 

dyslexic children performed significantly worse than chronological age matched 

children on visual attention span, reading, and reading-related cognitive tasks and 

also performed less well than reading level matched typically developing children in 

the VA span task. In addition, the results also showed that VA span significantly 

predicted Chinese word reading accuracy, word and text reading fluency even after 

controlling for age, IQ, orthographic skills, and rapid naming. This research provides 

further evidence for the VA Span Deficit Hypothesis (Bosse et al., 2007) and 

demonstrates a VA span deficit irrespective of language transparency.  

Although there is a growing body of research that supports attention deficits 

within dyslexic populations, there is still a lack of studies that provide evidence for a 

causal relationship between attention deficits and developmental dyslexia. 

Furthermore, it is possible that such a deficit may co-occur alongside dyslexia, rather 

than play any causal role in the aetiology of the reading disability (Pennington, 

2009). Interestingly, although a causal link between dyslexia and visual attention has 

not been formally specified, there are intervention programs based on attention 

training methods which have demonstrated improved reading in dyslexic readers (see 

Franceschini et al., 2013). In addition, studies that aim to address the causal link 

between visual attention deficits and dyslexia typically have a number of limitations. 

For example, much of the research has been conducted with children who are already 

learning to read and, consequently, it is hard to form conclusions as to the 

independent contribution of attention. Certainly, it is possible that children with 
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dyslexia may have developed attentional deficits due to their poorer reading skills 

and less reading experience. Moreover, many studies have tested children with 

dyslexia who are at an age where they may have already begun to compensate for 

any difficulties in low level visual processing (Snowling, 2000). As such, it is 

difficult to assess the role of attention deficits in causing reading difficulties. 

Furthermore, attention deficits may manifest in a number of ways; this makes it hard 

to fully explore and understand the attentional deficits that may impact upon the 

reading difficulties characteristic of dyslexia. In summary, research into attention 

deficits in dyslexia provides an interesting line of enquiry; however further empirical 

research is required in order to draw solid conclusions from the competing theories 

and to further determine how attention deficits impact upon reading.   

1.2.4 Interim summary 

Based upon the extensive supporting evidence, it is widely accepted that 

phonological deficits occur in readers with dyslexia: there is, however, still debate 

about the general aetiology of dyslexia and to what extent phonological deficits play 

a causal role in dyslexia. Researchers are proposing theories that aim to further 

explain the wide range of deficits that occur for readers with dyslexia (not only 

focusing upon phonological deficits, but also addressing subtle sensory deficits). As 

such, there has been increasing interest in the role of visual attention in dyslexia and 

multiple visual attention theories have been suggested (Bosse et al., 2007; Hari & 

Renvall, 2001; Vidyasagar, 1999; Whitney & Cornelissen, 2005). Although these 

theories differ in regard to whether the proposed deficits in attention occur within 

serial attention allocation (whereby dyslexic readers struggle with serial 

identification of letters and letter position encoding, e.g. Hari & Renvall, 2001; 

Vidyasagar & Pammer, 2010; Whitney & Cornelissen, 2005) or parallel attention 

allocation (in which dyslexic readers are limited in the number of letters that can be 

simultaneously processed, e.g. Bosse et al., 2007), evidence for these proposals is 

still in its infancy. Furthermore, although some researchers have considered covert 

spatial attention (Buchholz & Davies, 2005; Corbetta et al., 1998; Rosen et al., 

1999), there is a lack of studies fully examining how attention allocation across 

words may impact dyslexic readers (however, see studies by Hawelka and colleagues 

that have explored attentional allocation for strings of letters or numbers; Hawelka, 

Huber, & Wimmer, 2006; Hawelka & Wimmer, 2005).  
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It is somewhat unsurprising that there are now a range of attentional deficit 

theories of dyslexia, given the importance of attention and attention allocation during 

reading (Bellocchi, Muneaux, Bastien-Toniazzo, & Ducrot, 2013; Blythe, 2014). 

One particular use for attention is parafoveal processing; in order to read effectively, 

readers have to learn to rapidly shift their attention from one word to the next during 

sentence reading. Indeed both covert attention and saccadic control rely upon 

activation within the parietal lobe (Corbetta et al., 1998), therefore visual attentional 

deficits, due to magnocellular dysfunction, may affect a readers ability to efficiently 

preprocess visual information in the parafovea. The ability to allocate attention to the 

next word is key to skilled reading (see Schotter, Angele, & Rayner, 2012 for a 

review) and, within the eye movement literature, there is a body of work 

demonstrating the importance of parafoveal processing.  

Eye movements provide great insight into the moment-to-moment cognitive 

processes that occur during reading and, because of this, eye movement research has 

been highly influential in developing our understanding of skilled adult reading 

(Liversedge, Gilchrist, & Everling, 2011; Radach & Kennedy, 2013; Rayner, 1998). 

There is now a large body of research providing evidence for the basic characteristics 

of eye movements in skilled adult readers (for reviews, see Kirkby, Webster, Blythe, 

& Liversedge, 2008; Rayner, 1998, 2009), and a number of well-developed models 

of eye movements for skilled adult readers (e.g. the SWIFT model, Engbert, Longtin, 

& Kliegl, 2002, and the E-Z Reader model, Pollatsek, Reichle, & Rayner, 2006; 

Reichle, Pollatsek, Fisher, & Rayner, 1998). Furthermore, as eye movements are 

closely coupled with attention during reading, eye movements provide us with a 

great opportunity to examine deficits in dyslexia.  

To date there is a paucity of eye movement research into dyslexia and, for 

this reason, the current thesis aims to extend what is known about eye movements 

during reading in adults and children with dyslexia, in order to further inform 

theoretical accounts of dyslexia. The following sections will briefly explain the basic 

eye movement characteristics, and eye movement control of skilled adult readers 

before discussing eye movement development and eye movements of readers with 

dyslexia. 
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1.3 Eye movements during reading 

1.3.1 Basic characteristics of eye movements during reading  

Eye movement behaviour is characterised by two defining features: saccades and 

fixations (Liversedge & Findley, 2000; Rayner, 1998). Saccades are rapid, ballistic 

eye movements with velocities up to 500 degrees per second. Fixations are the 

periods between saccades in which the eyes are relatively still. It is during fixations 

that visual information is extracted from the text; readers do not gain any new visual 

information during a saccade as saccadic suppression reduces the sensitivity to visual 

input whilst the eye is moving (Liversedge & Findley, 2000; Matin, 1974). The 

purpose of saccadic eye movements is to rotate the eye such that light from new and 

additional information falls onto the fovea during fixation (Rayner, 1998).  

The fovea corresponds to the central 2 degrees around fixation and is the area 

in which our visual acuity is highest. Visual acuity rapidly decreases into the 

parafoveal region, which extends an additional 5 degrees beyond the fovea. 

Peripheral vision extends beyond the parafovea and has least visual acuity. Foveal 

information is extremely important for reading; indeed, it is nearly impossible to read 

if text is only visible in the parafovea (Rayner & Bertera, 1979; Rayner, Inhoff, 

Morrison, Slowiaczek, & Bertera, 1981; Rayner, Liversedge, White, & Vergilino-

Perez, 2003). Readers do, however, extract useful information from the parafovea in 

order to facilitate foveal reading (see Schotter et al., 2012 for a review). Recording 

eye movements allows us to explore foveal and parafoveal processing during 

reading, both of which are key to skilled adult reading. Successful reading relies 

upon a reader deciding on when to allocate visual attention from the foveal word to 

the parafoveal word. Because of the importance of parafoveal, as well as foveal 

information during reading, paradigms have been designed specifically to test 

parafoveal processing (McConkie & Rayner, 1975; Rayner, 1975) and these will be 

discussed later in the chapter.  

During silent reading skilled adult readers typically make fixations of 200-

250 ms, although there is considerable variability across readers (Rayner, 1978, 

1998, 2009), and saccades that occur across 7-9 character spaces with less 

variability. Skilled adult readers do not fixate all words within a sentence, with 

readers directly fixating upon approximately 70% of the words in a text. As such, the 

other 30% of words are skipped. Saccades primarily occur in the direction of reading 
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(left to right in English), however, 10-15% of saccades are regressive saccades that 

occur in the opposite direction to reading (right to left in English). Regressive 

saccades, or regressions, are typically made due to disruptions in lexical, syntactic or 

semantic processing and allow the reader to refixate material that has already been 

fixated. Regressions are not particularly well understood as it is difficult to control 

them experimentally (though see Inhoff & Weger, 2005; Murray & Kennedy, 1988; 

Rayner, Juhasz, Ashby, & Clifton, 2003; Weger & Inhoff, 2006, 2007; for an 

interesting discussion of regressions due to sentence parsing difficulties, see 

Mitchell, Shen, Green, & Hodgson, 2008). Many regressions result in fixations upon 

the immediately preceding word, however, long-range regressions are also made to 

words that are earlier in the text. These long-range regressions usually occur when 

comprehension is not going well or the text is particularly difficult. Return sweeps 

are also right-to-left saccades however these differ to regressions in that return 

sweeps occur from the end of one line to the beginning of the next; therefore, 

allowing new text to be read.  

It is generally accepted that decisions of when to move the eyes are made 

independently of decisions of where to move the eyes (Rayner & McConkie, 1976; 

Rayner & Pollatsek, 1981; Findlay, 1981). Decisions regarding where to move the 

eyes are largely driven by low-level properties of the text while the decision of when 

to move the eyes is largely driven by lexical properties of the fixated word (Rayner, 

1998). Where we move our eyes is closely related to allocation of visual attention 

and we shift our attention to a new location before moving our eyes (Deubel & 

Schneider, 1996; Rayner, McConkie, & Ehrlich, 1978; Shepherd, Findlay, & 

Hockey, 1986). In order to have efficient foveal and parafoveal processing, and 

consequently efficient reading, attention, therefore, needs to be adequately allocated 

during reading.   

In reading, the location upon which we fixate is largely determined by the 

writing system. For alphabetic languages where to move the eyes is strongly 

influenced by parafoveal information about word length and space information 

(Sereno & Rayner, 2000). Saccade length is influenced by the combined length of 

the word N and word N+1 (Inhoff, Radach, Eiter, & Juhasz, 2003; Juhasz, White, 

Liversedge, & Rayner, 2008; O’Regan, 1979, 1980; Rayner, 1979; White, Rayner, & 

Liversedge, 2005a). If word N+1 is a particularly long word, then the saccade made 

from word N will be longer than a saccade made from word N if N+1 was a medium 
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sized word (Juhasz et al., 2008; Rayner, 1979; White et al., 2005a). A similar pattern 

follows for saccades made from word N if N+1 is a particularly short word; because 

word N+1 is a short word, it is likely to be skipped; saccades are, therefore, longer 

than if word N+1 is a medium sized word. Furthermore, spaces between words allow 

us to determine word length and are used to help target the next saccade. In fact, 

when spaces are removed from text, reading is negatively affected (Morris, Rayner, 

& Pollatsek, 1990; Perea & Acha, 2009; Pollatsek & Rayner, 1982; Rayner, Fischer, 

& Pollatsek, 1998; Rayner & Pollatsek, 1996; Spragins, Lefton, & Fisher, 1976).  

Parafoveal information about the spaces between words help readers 

determine where to target their saccades within a word. Typically, readers land 

slightly to the left of the centre of the word, known as the preferred viewing location 

(PVL; Rayner 1979) and when readers’ eyes land at a non-optimal position within a 

word, then they are more likely to refixate that word (O’Regan, 1990; Rayner, 

Sereno, & Raney, 1996). This is further supported by evidence that when readers 

receive an incorrect word length parafoveal preview (an incorrect preview during a 

boundary paradigm experiment), they land in a non-optimal location and, thus, 

require longer viewing durations once they fixate upon the actual word (Inhoff et al., 

2003; Juhasz et al., 2008; White et al., 2005a). Furthermore, parafoveal previews 

with unusual letter information influence landing positions. A number of studies 

(Radach, Inhoff, & Heller, 2004; White & Liversedge, 2004, 2006a, 2006b) have 

found that unusual orthographic word properties affect landing position, and when 

the initial letters within a word are unusual, landing positions are closer to the 

beginning (Hyönä, 1995; White & Liversedge, 2006b). This may somehow be due to 

attention being attracted to the usual letter combinations.   

Landing positions also vary as a function of launch sites (McConkie, Kerr, 

Reddix, & Zola, 1988; Rayner et al., 1996). The position in which you land on a 

word, then serves as the launch site for the saccade to the next word. If the targeted 

landing position is far (8-10 letter spaces for example) from the current landing 

position (i.e. the launch site), then the landing position will shift to the left, whereas, 

if the distance is small (2-3 letter spaces) then the landing position will be shifted to 

the right.  

Another key issue related to eye movement behaviour is word skipping. 

Word skipping occurs when words can be processed and identified in parafoveal 
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vision; as such they are not directly fixated (Fisher & Shebilske, 1985; Rayner, 

White, Kambe, Miller, & Liversedge, 2003). There is evidence that suggests that 

skipped words are processed during the prior fixation or the fixation after the skip 

(Kliegl & Engbert, 2005; Pollatsek, Rayner, & Balota, 1986; Rayner et al., 2003; 

Reichle, Rayner, & Pollatsek, 2003). The likelihood of the word being fixated is 

somewhat determined by the properties of that word (for example, word length, 

Rayner & McConkie, 1976; and word type i.e. content or function word, Just & 

Carpenter, 1980). In fact, there are two key factors, which determine whether a word 

is skipped: word length and contextual constraint. Short words are skipped more 

often than long words (Brysbaert, Drieghe, & Vitu, 2005; Drieghe, Brysbaert, 

Desmet, & De Baecke, 2004; Drieghe, Desmet, & Brysbaert, 2007; Rayner, 1998); 

2-3 letter words are fixated approximately 25% of the time compared to 8 letters 

words which are almost always fixated. Content words are usually fixated 

(approximately 85% of the time) and function words often skipped (usually fixated 

about 35% of the time; it must be noted that function words are usually short words). 

Furthermore, words that are highly constrained based upon the preceding context 

will have higher skipping rates than words that are not predicable (Balota, Pollatsek, 

& Rayner.,1985; Binder, Pollatsek, & Rayner, 1999; Ehrlich & Rayner, 1981; 

Rayner & Well, 1996; Schustack, Ehrlich, & Rayner, 1987; Vitu, 1991). It has also 

been found that words with higher frequencies increase the likelihood that a word 

will be skipped; frequency, however, plays a much smaller role in predicting 

skipping rate than that of predictability (Rayner et al., 1996). Although word 

predictability influences word skipping and fixation duration, it does not influence 

the landing position (Rayner, Binder, Ashby, & Pollatsek, 2001; Vainio, Hyönä, & 

Pajunen, 2009).   

Word skipping is largely driven by semantic processing (Blanchard, 

Pollatsek, & Rayner, 1989; White, Warren, & Reichle, 2011; Yen, Tsai, Tzeng, & 

Hung, 2008), but this may be somewhat dependent on the properties of the word 

(Schotter et al., 2012) and some skips may be due to oculomotor error resulting in 

mislocated fixations, particularly for shorter words (Nuthmann, Engbert, & Kliegl, 

2005). In addition to some words being skipped, there are also occasions when words 

receive multiple fixations before the reader leaves the word (see McConkie, Kerr, 

Reddix, Zola, & Jacobs, 1989; McDonald & Shillcock, 2004; Vergilino & 

Beauvillain, 2000, 2001; Vergilino-Perez, Collins, & Dore-Mazars, 2004). These 
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refixations tend to occur when reading long words (such as 8 letter words) and when 

reading difficult text. 

How long the eyes stay fixated upon a word seems to be predominantly 

determined by how easy or difficult it is to identify the word. Therefore, the decision 

of when the eyes move is influenced by a range of lexical and linguistic word 

properties such as word frequency (how often the word is encountered in the 

language), word predictability (how predictable the word is, given the prior context), 

age of acquisition (the age at which the word is learned), and so on (for reviews, see 

Hyönä, 2011; Rayner, 1998, 2009). In fact, two of the most frequently reported 

effects in the eye movement literature are word length and word frequency; longer 

words require longer fixation durations than shorter words (Just & Carpenter, 1980; 

Rayner et al., 1996); and low frequency words require longer fixations than high 

frequency words (e.g., Henderson & Ferreira, 1990; Inhoff, 1984; Inhoff & Rayner, 

1986; Just & Carpenter, 1980; Rayner, 1977; Rayner & Duffy, 1986; Rayner et al., 

2003; Rayner & Raney, 1996). We know that cognitive processing influences when 

our eyes move; this has been shown in studies in which the fixated word either 

disappears or is masked after 50-60ms (Ishida & Ikeda, 1989; Liversedge et al., 

2004; Rayner et al., 1981; Rayner, Liversedge, & White, 2006; Rayner et al., 2003). 

When the fixated word disappears after 50-60ms, the eyes do not instantly move, in 

fact patterns of eye movement behaviour do not differ to those found during normal 

presentations where the word does not disappear. Fixation durations are not 

impacted, and reading continues normally. Rather, the duration of the fixation is 

determined by the frequency of the fixated word, with fixations lasting longer for 

low frequency words (Rayner et al., 2003a, 2006), even though the word is no longer 

visible to the reader. Such findings are a clear indication that cognitive processing 

drives the duration of fixations during silent reading.  

In addition to the basic characteristics of eye movements during reading, 

research has also determined much about skilled adult parafoveal processing and 

perceptual span (see Schotter et al., 2012 for a review); the following section will 

discuss parafoveal processing in more detail.  
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1.3.2 Parafoveal processing during reading  

Parafoveal processing is the ability to pre-process information before directly 

fixating upon it. During sentence reading, readers extract information from the words 

they are fixating (i.e., foveal processing) but also from words to the right of fixation 

(i.e., parafoveal processing; see Rayner, 1998, for a review and Schotter et al., 2012, 

for a more recent review). The parafovea is the region of the visual field, which 

extends 2-5 degrees from the centre of vision, however during studies of reading, 

parafoveal processing is typically tested through the word to the right of fixation (the 

parafoveal word). The fixated word (word N) is processed foveally, whilst the word 

to the right of fixation (word N+1), even though it may not begin exactly 2 degrees 

from foveal vision, is considered to be processed parafoveally prior to being directly 

fixated. In fact, a number of paradigms have been developed to test parafoveal 

processing (McConkie & Rayner, 1975; Rayner, 1975). 

The moving window paradigm (McConkie & Rayner, 1975; see Figure 1.2) 

was developed to determine how far into the parafovea readers can obtain useful 

information (i.e. the region of effective vision known as the perceptual span) during 

sentence reading. Within this paradigm the readers’ eye movements are monitored 

and parafoveal vision is purposely restricted so the reader can only see the word in 

foveal vision and a particular area surrounding it. Accurate information is presented 

within the moving window (the area in which the information is not restricted), while 

the information that falls outside the window is masked (usually replaced by other 

letters or Xs). Using this paradigm, researchers have determined the perceptual span 

for both adults and children. In English and other alphabetic writing systems, skilled 

adult readers obtain useful information from an asymmetric region in the direction of 

reading; the perceptual span extends from 3-4 letters to the left of the fixation (or the 

beginning of the currently fixated word) to 14-15 letter spaces to the right of fixation 

(McConkie & Rayner, 1975). The asymmetry of the perceptual span has been 

suggested to occur as a consequence of covert spatial attention preceding the next 

eye movement (e.g., Bryden, 1961; Crovitz & Daves, 1962; Greene, Pollatsek, 

Masserang, Lee, & Rayner, 2010; Henderson, Pollatsek, & Rayner, 1989; Jordan, 

McGowan, & Paterson, 2014; Klein, 1980; McConkie, 1979; Morrison, 1984; 

Rayner, Murphy, Henderson, & Pollatsek, 1989; Remington, 1980; Shepherd et al., 

1986; Inhoff, Pollatsek, Posner, & Rayner, 1989; Paterson et al., 2014; Pollatsek, 

Bolozky, Well, & Rayner, 1981; Henderson et al., 1989) rather than due to practice 
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effects. Thus, parafoveal information is primarily acquired from the position that is 

about to be fixated next.  

The moving window paradigm has also been used to explore the letter 

identity span. The letter identity span is slightly different to the perceptual span as 

the letter identity span is the number of letters that can be identified during reading 

and does not usually exceed 8-9 letter spaces to the right of fixation (Häikiö, 

Bertram, Hyönä, & Niemi, 2009; Morrison & Rayner, 1981; Rayner, 1998). 

In addition to using the moving window paradigm, the gaze-contingent 

boundary paradigm (Rayner, 1975; See Figure 1.3) has been used to determine the 

extent and nature of the information processed in the parafovea during sentence 

reading. In the boundary paradigm (Rayner, 1975), an invisible boundary is placed 

after a pre-target word and to the left of a target word. Whilst the readers’ gaze is to 

the left of the boundary, the target word is manipulated for parafoveal preview. The 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Example of the moving window paradigm with a two-word window. On 

each fixation, the fixated word and one word to the right are revealed, while all other 

letters are replaced with Xs. 

xx xxx xxxxxxxx xxxxx school and xxx xx xxx xxxxxxx xx. 

 
* 

xx xxx xxxxxxxx about school xxx xxx xx xxx xxxxxxx xx. 

* 
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preview may be identical to the target word (sometimes called the identity condition) 

or may have specific manipulations of orthography or phonology for example. Once 

the reader’s eyes cross the invisible boundary, the manipulated preview changes to 

the correct target word. The display change occurs during a saccade, when vision is 

adequately suppressed (Matin, 1974), therefore, readers do not usually notice the 

change (but see Angele, Slattery, & Rayner, 2016; Slattery, Angele, & Rayner, 

2011).  

Parafoveal information is used to facilitate the processing of word N+1 when 

it is then foveally processed. This facilitation is termed parafoveal preview benefit 

and has been reported in numerous studies where shorter fixations are made on the 

target word when the parafoveal preview is identical to the target, compared to when	

	

	

	

	

	

	

 

 

 

 

Figure 1.3. Example of the gaze-contingent boundary paradigm. When the subject’s 

eyes cross an invisible boundary before a target word in a sentence, it changes from 

the manipulated preview to the correct preview. 

 

He was thinking about school and how he had enjoyed it. 

* 

He was thinking about erhool and how he had enjoyed it. 

* 
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the preview is non-identical (Schotter et al., 2012). For preview benefit effects in 

which the identical preview is compared to a non-word or random string of letters, 

the size of this preview benefit is usually around 30 – 50 ms (Rayner, 2009). Preview 

effects occur as information, such as beginning and ending letters of words (Briihl & 

Inhoff, 1995; Inhoff, 1989; Johnson, Perea, & Rayner, 2007; Lima & Inhoff, 1985; 

Rayner, Well, Pollatsek, & Bertera, 1982) orthographic codes (Balota et al., 1985; 

Drieghe, Rayner, & Pollatsek, 2005; Rayner, 1975; White et al., 2005a; Williams, 

Perea, Pollatsek, & Rayner, 2006), semantic information (e.g., Hohenstein & Kliegl, 

2014; Rayner & Schotter, 2014; Schotter, 2013; Schotter, Lee, Reiderman, & 

Rayner, 2015; Tsai, Kliegl, & Yan, 2012; Veldre & Andrews, 2016; White, Bertram, 

& Hyönä, 2008; Yan, Richter, Shu, & Kliegl, 2009), syntactic information (Drieghe 

et al., 2017; Veldre & Andrews, 2018),  abstract letter codes and phonological 

information (Ashby & Rayner, 2004; Ashby, Treiman, Kessler, & Rayner, 2006; 

Blythe, Dickins, Kennedy, & Liversedge, 2018; Chace, Rayner, & Well, 2005; 

Miellet & Sparrow, 2004; Pollatsek, Lesch, Morris, & Rayner, 1992; Rayner, 

McConkie, & Zola, 1980; Sparrow & Miellet, 2002) are integrated across saccades. 

For a review of evidence for orthographic (such as letter identity and letter position), 

phonological and, to some degree, morphological and semantic preview effects for 

skilled adult readers see Schotter et al. (2012).  

An interesting consideration when exploring parafoveal processing is whether 

the amount of information we can process within the parafovea is determined by 

visual acuity or attention constraints. Indeed, perceptual span is asymmetric in the 

direction of attention allocation, however, Miellet, O’Donnell, and Sereno (2009) 

developed a variation of the moving window paradigm (parafoveal magnification) to 

explore whether it is visual acuity or attentional processing that restricts how far into 

the parafovea readers can gain useful information. Parafoveal magnification 

magnifies parafoveal text to equalise its perceptual impact with the foveal text, 

therefore reducing the usual impact of visual acuity. Miellet et al. (2009) 

demonstrated that parafoveal magnification did not increase the amount of text that 

was processed. As such, they concluded that parafoveal processing is dependent on 

attention rather than visual acuity and the amount of information that is processed 

parafoveally depends on the resources available after foveal processing. This has 

been supported by research that has found differences in the amount of preview 

benefit due to manipulations of foveal load; if the fixated word is difficult to process, 
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then readers obtain less preview benefit from the parafoveal word (Henderson & 

Ferreira, 1990; Kennison & Clifton, 1995; White et al., 2005a; Balota et al., 1985; 

Drieghe et al., 2005; Vignali, Hawelka, Hutzler, & Richlan, 2019). Therefore, 

parafoveal processing is restricted by attentional constraints.  

From the research discussed thus far, it is clear that skilled adult reading 

relies greatly upon both foveal and parafoveal processing and the ability to shift 

attention from the currently fixated to the upcoming word. It is important however to 

note that skilled adult reading is at the end point of development when both reading 

skills and oculomotor control are well established. The following section will now 

explore the eye movement behaviour of children during reading.  

1.3.3 Eye movements and reading development 

Eye movement research has been extremely useful in developing our understanding 

of skilled adult reading. Furthermore, in more recent years, researchers have started 

to use eye movement technology to explore reading development by collecting eye 

movement data with child participants (for reviews see, Blythe, 2014; Blythe & 

Joseph, 2011; Rayner, Ardoin, & Binder, 2013). Efforts are now being made to 

extend models of eye movements to explain reading development (Reichle et al., 

2013). Although collecting eye movement data with children is a somewhat 

challenging process (Blythe & Joseph, 2011), eye movements are a particularly 

useful measure of reading development as they allow researchers to gain insight into 

how cognitive processing, visual, and oculomotor systems develop and interact with 

each other during reading and the process of learning to read (Blythe & Joseph, 

2011; Reichle et al., 2013). 

In comparison to the research conducted with adults, there is a limited 

amount of research into children’s eye movements during reading. There are, 

however, some well-designed studies that provide detail about children’s eye 

movements during reading. In an article by Rayner et al. (2013) developmental 

trends in eye movement behaviour were reported; at the age of 6-7 years old children 

made 1.9 fixations per word, the average fixation duration was 355 ms and 

regressions comprised 28% of all fixations. By the age of 8-9 children made 1.3 

fixations per word with the average fixation duration being 286 ms and regressions 

forming 25% of fixations. As children reach 11-12 years old, 1.1 fixations are made 

per word, on average fixations are 249 ms and regressions had reduced to 22%. In 
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fact, by 11-12 years old children’s eye movement patterns are much more similar to 

adults (who require 0.9 fixations per word, average fixation duration of 233 ms and 

14% of all fixations were regressive; see Blythe & Joseph, 2011 for a review). Such 

evidence was reported by Buswell (1922), Taylor (1966), McConkie et al., (1991), 

and Rayner (1985a), and these findings suggest that as both chronological age and 

reading skill increase, the number of fixations (both forward and regressive) and 

duration of fixations decreases. In addition to the characteristics reported above, a 

number of studies have also shown that sentence reading times and fixation durations 

decrease, saccade amplitudes increase, fewer fixations and regressions are made, 

refixation probability decreases and word skipping probability increases along with 

increased chronological age and reading skill (Blythe, Häikiö, Bertam, Liversedge, & 

Hyönä, 2011; Blythe et al., 2006; Blythe, Liversedge, Joseph, White, & Rayner, 

2009; Buswell, 1922; Häikiö et al., 2009; Huestegge, Radach,, Corbic, & Huestegge, 

2009; Joseph, Liversedge, Blythe, White, & Rayner, 2009; McConkie et al., 1991; 

Rayner, 1986; Taylor, 1965; Taylor, Frackenpohl, & Pettee, 1960). Such 

developmental changes in eye movement patterns are considered to predominantly 

reflect improvements in reading ability, rather than changes in the oculomotor 

system more generally. Indeed, developmental models of eye movement behaviour 

suggests children’s eye movements result from slower lexical access and lexical 

processing in children (Reichle et al., 2013).  

Similarly to adults, children’s decisions on where to move their eyes during 

reading are driven by low-level properties of the text. Children as young as 7 years 

old are able to gain sufficient parafoveal information in order to target their saccades 

toward the word center (McConkie et al., 1991; Vitu, McConkie, Kerr, & O’Regan, 

2001). In fact research has shown that, not only do children have similar initial 

landing position to adults (Aghababian & Nazir, 2000), but children are also more 

likely to refixate a word if the initial fixation is positioned at the beginning or end of 

a word (Joseph et al., 2009; McConkie et al., 1991; Vitu et al., 2001). Such findings 

show that at a young age, child readers are able use low-level parafoveal information 

to effectively guide their eye movements to improve reading efficiency in a similar 

manner to skilled adult readers (however, please note that Joseph et al., 2009, did 

find that children are less efficient when targeting refixation saccades). Furthermore, 

similarly to adults, children are more likely to skip short words than long words 

(Hyönä & Olson, 1995; Joseph et al., 2009). 
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Again, in a similar manner to adult readers, how long children stay fixated 

upon a word is largely determined by how easy or difficult it is to process the word. 

Indeed both word length and word frequency effects have been found for children. 

Joseph et al. (2009) found that word length effects were more pronounced in children 

compared to adults, suggesting that increased word length has a more substantial 

effect on children’s lexical processing than on that of adults. Such a result is likely 

due to the demands of visually encoding longer words and therefore children require 

more and longer visual sampling for long words in order to identify them. In addition 

to word length effects, word frequency has been found to influence the eye 

movement patterns of children as young as 7-years of age (Blythe et al., 2006; Hyönä 

& Olson, 1995). Furthermore, using the disappearing text paradigm, Blythe et al. 

(2009) found that children as young as 7-years old showed minimal impact of the 

disappearing text manipulation for manipulations as short as 40ms, and, similarly to 

adults, effects of word frequency were apparent in measures of single and first 

fixation duration. Such results provide evidence that even with short presentation 

times, children as young as 7 years old are able to efficiently encode visual 

information in order to begin normal lexical identification. This research provides 

evidence that linguistic processing of the fixated word determines when children 

move their eyes during reading, thus indicating that children as young as 7 years old 

display cognitive control of their eye movements during reading. It must, however, 

be noted that, up until the age of approximately 9 years old, children are slower and 

less efficient at processing words; they require longer fixations and need additional 

visual sampling particularly for longer words compared to short words (Blythe et al., 

2009; Huestegge et al., 2009; Hyönä & Olson, 1995; Joseph et al., 2009). Therefore, 

although children’s eye movements are controlled by the same mechanisms as adults, 

children eye movements are affected by their lesser reading skill.  

1.3.4 Parafoveal processing in reading development 

Parafoveal processing in children is a relatively new line of enquiry; however, the 

moving window paradigm (McConkie & Rayner, 1975) has been used to identify the 

perceptual span of both adults and children during reading. Children have a smaller 

perceptual span than adults; children aged 7 – 9 exhibit a perceptual span which 

extends 3-4 letter spaces to the left of fixation but only 11 letters to the right of 

fixation, whereas, 11 year old children have a perceptual span similar to adults, in 

which the number of letters to the right of fixation extends to 14 letters (Häikiö et al., 
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2009; Marx, Hutzler, Schuster, & Hawelka, 2016; Rayner, 1986; Sperlich, Schad, & 

Laubrock, 2015; but also see Both-De Vries, De Jong, Shaul, & Bus, 2016) for a 

discussion of the perceptual span in pre-readers). Such findings demonstrate that 

child readers extract less information from the parafovea than skilled adult readers. 

Indeed, the perceptual span increases with age until 11 years old. It is important to 

note, however, that these changes have been largely assigned to differences in 

linguistic processing difficulty (i.e. reading skills; Häikiö et al., 2009; Rayner, 1986) 

rather than increased visual acuity (Blythe, 2014).  

Within their sample of German children (from grades 1, 2 and 3), Sperlich et 

al. (2015) found that the greatest increase in perceptual span occurs between 2nd 

grade and 3rd grade. They suggested that the development of parafoveal processing 

largely relies upon a reader having learnt basic letter and word identification 

processes such as phonological and lexical decoding. Accordingly, once children 

reach third grade they are more likely to have established their basic reading skills 

and are then able to make further use of parafoveal information. This suggestion is 

further supported by similar longitudinal data (Sperlich, Meixner, & Laubrock, 

2016). Furthermore, such results are in support of the proposal that increased foveal 

demand reduces attentional resources available for parafoveal processing. Sperlich et 

al. (2015) suggest that the younger readers in grade 1 and 2 rely more upon decoding 

orthographic information from individual letters into their phonological counterpart, 

and once this process becomes more automatic (by using graphemes and words for 

orthographic processing), readers then show more efficient use of parafoveal 

information as less attention is required for effortful decoding. Again, this proposal is 

further supported by Marx et al. (2016), who provide evidence for phonological 

decoding skills as the best predictor of larger parafoveal preview benefits in children 

learning to read German.  

Interestingly, whilst the asymmetry of the perceptual span (where the span is 

greater to the right of fixation than the left) is present in English readers as young as 

7 years old (Rayner, 1986), pre-readers also show a bias to left-to-right processing 

regardless of reading direction (Both-De Vries et al., 2016). This pre-reading bias is 

said to be due to the hemispheric set-up of the brain (information presented in the 

right visual field is perhaps easier to recognise, as it is more directly linked to the left 

hemisphere which allows for contour-recognition; Both-De Vries et al., 2016; 

Cabeza & Nyberg, 2000), thus children learning to read in a right-to-left 
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orthography, may be somewhat at a disadvantage when learning to shift their 

attention in the direction of reading. However, for children learning to read in a left-

to-right orthography, only a small amount of reading experience is required, for 

readers to learn to further allocate their attention in the direction of reading (Rayner, 

1986).  

Recent research has also started to use the boundary paradigm to determine 

what information can be parafoveally processed by child readers. To date, there is 

evidence of orthographic and phonological parafoveal processing in typically 

developing child readers as young as 8 years old (Hӓikiӧ, Bertram & Hyӧnӓ, 2010; 

Marx, Hawelka, Schuster & Hutzler, 2015; Pagán, Blythe, & Liversedge, 2016; 

Tiffin-Richards & Schroeder, 2015). This indicates that children are able to 

sufficiently allocate their attention to the parafoveal word in order to extract useful 

orthographic and/or phonological information thereby facilitating foveal processing 

of the word once it is then fixated. Currently, it is, however, less clear whether 

children rely more on phonological or on orthographic encoding within the parafovea 

(Pagán et al., 2016; Tiffin-Richards & Schroeder, 2015); there have been suggestions 

that during reading development, children rely more on phonological encoding 

during parafoveal processing and, in contrast, adults rely on orthographic parafoveal 

encoding (Tiffin-Richards & Schroeder, 2015).  

Whilst the research into parafoveal processing for developing readers is still 

in its infancy, there is increasing evidence demonstrating that children show similar 

foveal and parafoveal processing to that of adults at a very young age. In fact, the 

differences in eye movement patterns, and the patterns occurring within eye 

movement development, appear to largely reflect children’s difficulties in processing 

the text, rather than the differences in eye movement control. It is their lower reading 

ability and reduced attentional resources, which drive the longer fixation durations, 

additional fixations, longer reading times and reduced parafoveal processing. 

Therefore, this is particularly interesting in relation to the current thesis; dyslexic 

readers have a lower level reading skill compared to their peers and, in particular, it 

appears that parafoveal processing may be closely linked to phonological decoding 

skills of which we know are disrupted in dyslexia. The following section will discuss 

eye movements during reading for readers with dyslexia.  
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1.3.5 Eye movements and dyslexic reading  

Although there is a growing body of research into children’s eye movements during 

reading, there is still a paucity of eye movement research conducted with readers 

with developmental dyslexia (although, for a reviews, see Kirkby et al., 2011; 

Bellocchi et al., 2013). Since we have a basic understanding of developmental eye 

movement patterns, we can now explore the development of eye movements and 

reading skill in those with dyslexia. This can help us understand how reading 

development differs in dyslexic compared to non-dyslexic readers. In addition, 

dyslexia is often linked to visual or visual attention deficits (Bosse et al., 2007; Hari 

& Renvall, 2001; Vidyasagar, 1999; Whitney & Cornelissen, 2005), therefore, by 

recording eye movements in children with dyslexia, we can determine whether 

differences between typical and dyslexic reading may be due to a cognitive level 

deficit, reflecting language processing, a visual attentional deficit or an oculomotor 

deficit.  

To date, research has found that, compared non-dyslexic readers, those with 

dyslexia make more and longer fixations, shorter saccades, and more regressions 

(Biscaldi, Gezeck, & Stuhr, 1998; De Luca, Borrelli, Judica, Spinelli, & Zoccolotti, 

2002; Hatzidaki, Gianneli, Petrakis, Makaronas, & Aslanides, 2011; Hawelka & 

Wimmer, 2005; Hawelka, Gagl, & Wimmer, 2010; Hutzler & Wimmer, 2004; 

McConkie et al., 1991; Rayner, 1986). Furthermore, readers with dyslexia skip fewer 

words and make fewer single fixations; in fact, they often require multiple fixations 

on the same word (De Luca et al., 2002; De Luca, Di Pace, Judica, Spinelli, 

Zoccolotti, 1999; Hawelka et al., 2010; Hutzler & Wimmer, 2004; Zoccolotti et al., 

1999). However, research has found a similar pattern of eye movements for children 

with dyslexia compared to typically developing children, matched for reading ability 

(Hyönä & Olson, 1995; Rayner, 1985a, Rayner 1985b). These children are typically 

younger in chronological age than the dyslexic readers and therefore they are reading 

at a level that is expected for their age. Such findings would suggest that differences 

in eye movement behaviour between children with and without dyslexia are 

indicative of a cognitive-level linguistic processing deficit, reflecting reading delay, 

and that, when matched to children of the same reading ability, these differences 

disappear. There is, however, a lack of studies comparing children with dyslexia to 

reading-ability matched controls.  
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Early research by Olson, Conners, and Rack (1991) explored the eye 

movements of dyslexic readers compared to a group of younger reading-level non-

dyslexic children during reading. The non-dyslexic children were matched to the 

dyslexic readers based upon their word recognition reading scores. Olson et al. found 

that there were no significant differences between the eye movement patterns of 

dyslexic readers and those matched for reading skill. They therefore concluded that 

dyslexic eye movement patterns are a consequence rather than a cause of their 

reading difficulty.  

Hyönä and Olson (1995) then extended the work by Olson et al. (1991) by 

also further examining the eye movement patterns of dyslexic readers to younger 

non-dyslexic readers whilst they read aloud. However, in this instance, the two 

groups were not matched in the same manner as in Olson et al., as they did differ on 

word recognition ability, with controls having better word recognition skills. Overall, 

Hyönä and Olson (1995) also found no differences in the eye movement patterns for 

dyslexic readers compared to younger non-dyslexic readers and again concluded 

dyslexic eye movements to be indicative of reading delay.  

This is further supported by more recent work from Zoccolotti et al. (2005) 

who found that whilst dyslexic readers showed increased vocal reaction times for 

single words compared to their peers; they have similar results to children two grades 

lower. Furthermore, and drawing similar conclusions, De Luca et al. (2002) found 

that dyslexic children’s eye movements, whilst reading lists of words and 

pseudowords, were demonstrative of their slow, sequential processing of graphemes 

to phonemes used in the absence of a more rapid global analysis. This once again, 

supports the notion that dyslexic eye movement patterns are largely explained by 

their reduced reading skills.  

As such, it appears that the typical eye movement patterns reported in 

dyslexia (longer fixations, more fixations, shorter saccades, more regressions, 

increased total reading times and so on) are likely to be due to the dyslexic readers’ 

low reading skill rather than an oculomotor deficit in their eye movement control. 

There is, however, a lack of research into parafoveal processing in dyslexia and 

specifically the comparison of dyslexic readers to reading-ability matched controls in 

foveal and parafoveal processing during silent reading. Indeed, there may be 

differences in the parafoveal processing of the two reading groups because of visual 
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attentional weaknesses in readers with dyslexia. This will be discussed further in this 

chapter. 

Although there are limited studies into eye movements for dyslexic readers 

during reading, there have been studies exploring landing positions for these readers. 

Such studies have, in fact, found that adult dyslexic readers tend to land earlier 

within a word than non-dyslexic adult readers (Hawelka et al., 2010; Pan, Yan, 

Laubrock, Shu, & Kliegl, 2014), and dyslexic children land earlier in a word than 

non-dyslexic children (De Luca et al., 2002; MacKeben et al., 2004). Those with 

dyslexia land at the beginning of the word rather than the usual PVL. As discussed 

earlier, the ability to target fixations to the PVL usually develops by the age of 7 

years for typically developing children (McConkie et al., 1991; Vitu et al., 2001). 

Therefore, it is possible that this deficit in landing position, found within dyslexic 

reading, is not due to their poor reading skill but in fact a deficit specific to dyslexia. 

As such, this deficit may be due to poor oculomotor control in targeting saccades, or 

due to a lack of parafoveal information to help guide saccade targeting. It must be 

noted, however, that early landing positions may also be conducive for serial, 

sublexical word decoding (MacKeben et al., 2004; Marx et al., 2016; Hawelka et al., 

2010), in which case these early landing positions may also represent a reliance upon 

a more effortful reading strategy which also may impact the ability to parafoveally 

pre-process information.  

With regard to eye movement patterns indicative of when we move our eyes, 

dyslexic readers show similar results in comparison to skilled readers. Although 

there have not been any disappearing text studies conducted with dyslexic readers, 

there have been studies that demonstrate that both word frequency effects (Ducrot, 

Pynte, Ghio, & Lété, 2013; Hatzidaki et al., 2011; Hawelka et al., 2010; Hyönä & 

Olson, 1995) and word length effects (Hawelka et al., 2010; Hyönä & Olson, 1995; 

Zoccolotti et al., 2005) occur in readers with dyslexia similarly to younger typically 

developing children. However, note, that these findings largely rely upon eye 

movement data during reading aloud. Even so, evidence of word frequency and word 

length effects in dyslexia demonstrate that fixation durations are dependent upon 

linguistic processing ability for dyslexic readers and, similarly to non-dyslexic 

readers, eye movements are under cognitive control. Thus differences in viewing 

duration measures for those with dyslexia compared to non-dyslexic readers tend to 

reflect the poor reading skills of readers with dyslexia.   
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1.3.6 Parafoveal processing and dyslexia  

Although there have been studies into the development of the perceptual span, only 

one study has explored the perceptual span during reading for readers with dyslexia 

(Rayner et al., 1989). Rayner et al. (1989) found a reduced span compared to skilled 

readers for a small sample of adults with dyslexia. However, Häikiö et al. (2009) did 

find a reduction in the letter identity span (the number of letters which can be 

identified during a fixation) for slow child readers compared to fast child readers 

(please note that this study was conducted in Finland in which dyslexia often 

manifests as slow reading). Although there has not been much research into the 

perceptual span particularly for readers with dyslexia, research into the development 

of the perceptual span suggests that the span increases with reading skill (Blythe, 

2014; Häikiö et al., 2009; Rayner, 1986). Therefore, as readers with dyslexia have 

lower reading skills compared to non-dyslexic children of the same chronological 

age, one would predict that readers with dyslexia show a reduced perceptual span 

compared to their peers (this is supported by Rayner et al., 1989). In contrast, it is 

unclear whether dyslexic readers would in fact show perceptual span deficits when 

compared to younger non-dyslexic readers who are matched for reading skill. It is 

possible that dyslexic readers may have a similar perceptual span to non-dyslexic 

children matched for reading skill, in which case their perceptual span is dictated by 

their reading ability. It is, however, also possible that dyslexic readers have a reduced 

perceptual span compared to non-dyslexic children matched for reading skill, 

suggesting that dyslexic-specific deficits cause their reduced perceptual span.      

According to the visual attentional (VA) span deficit hypothesis (Bosse et al., 

2007; Valdois et al., 2004), a reduced VA span may cause dyslexia for a proportion 

of children. Children with dyslexia have, indeed, shown evidence of a reduced VA 

span (Bosse et al., 2007; Prado et al., 2007; Valdois et al., 2004), in which they can 

process fewer elements in parallel during a brief visual display than typically 

developing children. Therefore, if a reduced VA span is a dyslexia-specific deficit, 

dyslexic readers may show a reduction in the perceptual span and limitations in their 

ability to parafoveally process information, compared to both typically developing 

children matched for chronological age but also typically developing children 

matched for reading age.  
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Although there is some research exploring the amount of parafoveal 

information attended to by dyslexic readers, there are currently no studies using the 

boundary paradigm to examine the type of information encoded during parafoveal 

processing in dyslexic reading. However, note that Chace et al. (2005) used the 

boundary paradigm to explore parafoveal processing during reading for a group of 

skilled and less skilled adult readers. In fact, although Chace et al. (2005) were able 

to replicate phonological preview benefit effects for the skilled adult reading group, 

they found no evidence of parafoveal processing in the group of less skilled readers. 

It is, however, important to note that skilled and less skilled reading groups were 

defined based upon their scores on the vocabulary and reading comprehension 

subtests of the Nelson-Denny Reading Test; dyslexia and difficulties with reading 

comprehension are considered separate disorders (Cain, Oakhill, & Bryant, 2000; 

Cain, 2010; Hulme & Snowling, 2009; Nation, Adams, Bowyer-Crane, & Snowling, 

1999; Nation & Snowling, 1998; Snowling & Hulme, 2012; Stothard & Hulme, 

1995). Further explanation of the methodological weaknesses within the Chace et al. 

design are discussed in detail in both Chapter 3 and Chapter 5. Due to the sample, the 

results from Chace et al. (2005) may not reflect dyslexic parafoveal processing. It is 

important to explore parafoveal processing specifically in dyslexic reading for a 

number of reasons: 

1) Parafoveal processing is particularly interesting in respect to dyslexia, as 

dyslexia may be causally linked to attention deficits (Bosse et al., 2007; 

Valdois et al., 2004; Hari & Renvall, 2001; Vidyasagar, 1999; Whitney & 

Cornelissen, 2005) and parafoveal processing is dependent on attention 

(Miellet et al., 2009). 

2) Where saccades land within a sentence is often determined through 

parafoveal information (Schotter et al., 2012) and readers with dyslexia have 

been shown to have different saccadic landing positions to skilled adult 

readers (De Luca et al., 2002; Hawelka et al., 2010; MacKeben et al., 2004; 

Pan et al., 2014). 

3) Dyslexic readers have been found to have a reduced perceptual span (Rayner 

et al., 1989) and VA span (Bosse et al., 2007; Valdois et al., 2004). They 

may, therefore, be limited in the amount of parafoveal information they can 

encode. 
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4) Independent encoding of letter identity and letter position is characteristic of 

parafoveal processing in skilled adult readers (Johnson et al., 2007) and 

dyslexic readers often show attention deficits that result in difficulties in 

letter position encoding (Casco & Prunetti, 1996; Facoetti, Paganoni, Turatto, 

Marzola, & Mascetti, 2000; Facoetti et al., 2010; Hari et al., 1999; Solan, 

Larson, Shelley-Tremblay, Ficarra, & Silverman 2001).   

5) Finally, skilled readers can parafoveally encode phonological information 

(Pollatsek et al., 1992) and, as readers with dyslexia have difficulties in 

processing phonological information (Liberman, 1973; Snowling, 1995; 

Snowling, 2000; Stanovich, 1988), we would expect that readers with 

dyslexia do not experience the usual phonological preview benefits that occur 

for skilled readers. 

The proposal that dyslexic readers have deficits in processing parafoveal 

information is not a new suggestion (e.g., Bouma & Legein, 1977), but there are still 

limitations in what we know about dyslexic parafoveal processing. The earlier work 

into dyslexic parafoveal dysfunction was largely focused upon crowding. Crowding 

(also known as lateral masking) is a perceptual phenomenon defined as the 

interference of flanking letters on the recognition of the target letter (Bouma, 1970, 

1973). This interference has detrimental effects upon letter encoding, which is a 

fundamental stage in reading (Pelli, Farell & Moore, 2003; Perry et al., 2007). 

Crowding is found in both skilled and dyslexic readers but there are numerous 

studies that have demonstrated increased crowding for dyslexic readers during both 

foveal  (Bouma & Legein, 1977; Callens, Whitney, Tops, & Brysbaert, 2013; 

Martelli, Di Filippo, Spinelli, & Zoccolotti, 2009; Moll & Jones, 2013; Moores, 

Cassim, & Talcott, 2011; Spinelli, De Luca, Judica, & Zoccolotti, 2002) and 

parafoveal processing (Bouma & Legein, 1977; Martelli et al., 2009; Moll & Jones, 

2013; Pernet, Valdois, Celsis, & Démonet, 2006). In fact, interventions that focus on 

reducing crowding by increasing inter-letter spacing show evidence for improved 

reading performance, particularly for those with dyslexia (Perea, Panadero, Moret-

Tatay, & Gómez, 2012; Spinelli et al., 2002; Zorzi et al., 2012).   

Increased crowding may, therefore, impair letter recognition during 

parafoveal processing for readers with dyslexia. However, it is unclear whether 

crowding is a deficit specific to dyslexic readers during parafoveal processing, as 

effects of crowding have been demonstrated in both foveal and parafoveal 
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processing. Moreover, although crowding has been largely considered to occur as a 

function of visual attention deficits (Bellocchi et al., 2013), there is evidence to 

suggest that the presence of flanking letters may not influence visual processing 

specifically, but actually occur as a result of readers attempting to extract 

phonological information from the crowded items (Hawelka & Wimmer, 2008; Jones 

et al., 2008). Thus, it may be the case that increased crowding effects occur more 

generally during reading for readers with dyslexia due to their difficulties within 

processing phonological information rather than a specific deficit in relation to 

parafoveal processing during reading.  

Further to the crowding literature, there is a growing body of evidence that 

explores dyslexic parafoveal processing during Rapid Automised Naming (RAN, 

Wolf & Denckla, 2005). RAN requires readers to rapidly name visually presented 

arrays of letters, numbers, colours or objects that are presented randomly within 

rows. RAN tests naming speed, a measure of how quickly one can integrate visual 

and language processes. Poor RAN scores are often considered to reflect poor 

phonological processing (Clarke, Hulme, & Snowling, 2005), however, RAN has 

been found to independently predict dyslexia in readers who do not necessarily show 

phonological deficits (Wolf & Bowers, 1999; Wolf, Bowers, & Biddle, 2000; Torppa 

et al., 2013). RAN has been found to reflect several stages of lexical processing (for 

example, orthographic and phonological selection and visual–verbal integration; 

Jones et al., 2008, 2010, 2013), thus RAN similarly requires many of the component 

processes that are necessary during reading. It must be noted, however, that although 

RAN performance does reflect reading performance (in particular reading fluency), 

RAN is an artificial task and, as such, there are a number of differences in RAN and 

reading tasks. For example, reading usually requires comprehension therefore adding 

a level of additional complexity to the task, and, RAN presentations are usually 

comprised of arrays of individual letters or individual numbers as such the item is 

much less visually and cognitively complex compared to words within a sentence. 

That said, there have been some extremely useful insights into dyslexic parafoveal 

processing based upon studies from RAN.  

Studies using RAN tasks have found parafoveal preview benefits for readers 

with dyslexia (Jones et al., 2008, 2010, 2013; Yan, Pan, Laubrock, Kliegl, & Shu, 

2013). More specifically, Yan et al. (2013) provided evidence for less efficient 

orthographic parafoveal processing in Chinese dyslexic child readers compared to 
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typically developing child readers. Yan et al. (2013) implemented the moving 

window paradigm during a RAN task to test whether children with dyslexia show a 

narrower perceptual span. They presented children with dyslexia and chronological 

age match controls with two RAN tasks: a continuous RAN task (in which all letters 

were presented at the same time) and a discrete RAN task (where one letter was 

presented at a time, therefore, removing the possibility of parafoveally processing the 

next letter). Eye movements were recorded whilst children read aloud the letters. 

Within their findings, Yan et al. (2013) showed that removing a parafoveal preview 

of the upcoming letter disrupted both groups of readers, i.e. naming times and 

viewing durations were longer during the discrete RAN than the continuous RAN. 

This indicates that children with dyslexia do make use of information in their 

parafovea, and, processing of a letter occurs prior to fixation during a RAN task. 

However, Yan et al. (2013) showed an interaction between reading ability and RAN 

condition in which children with dyslexia were less disrupted by the discrete RAN 

task than the typically developing children. Therefore, Yan et al. (2013) concluded 

that children with dyslexia were less efficient in their use of parafoveal information 

and suggested this is probably due to dyslexic readers requiring greater attentional 

resources for foveal processing.   

In addition to Yan et al. (2013), Jones and colleagues have published a body 

of work exploring parafoveal processing during RAN which demonstrates that whilst 

dyslexic readers do make use of parafoveal information during RAN, parafoveal 

information is in fact a potential source of confusion (Jones et al., 2008, 2010, 2013). 

More specifically, Jones et al. (2013) found that dyslexic readers were more 

susceptible to orthographic confusability in the parafovea and phonological 

confusability in the fovea. Jones et al. (2013) found that the processing of two 

consecutive letters is disrupted when the parafoveal information from the second 

letter is orthographically similar, thus confusable, to the first letter. However, this 

effect occurred whilst fixating upon the second letter rather than the first letter; 

therefore, dyslexic readers fixated the second letter for longer if it was 

orthographically similar to the previous letter (the first letter) when it appeared 

parafoveally (even though the second letter was not orthographically similar to the 

first letter during fixation). As such, Jones et al. (2013) suggest that not only is there 

interference from parafoveal information for dyslexic readers, but also there is a lag 

in the effect from the interference that indicates slower parafoveal processing for 
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readers with dyslexia. Therefore, dyslexic readers show parafoveal deficits in regard 

to orthographic confusability as well as processing delay, both of which may 

negatively impact their reading.     

For the results of the foveal processing, Jones et al. (2013) found that 

dyslexic readers, compared to non-dyslexic readers, were slower to articulate letter 

names when phonologically similar information was present in the fovea. This 

occurred in two ways; 1) when trying to articulate the phonological information of 

the previously fixated letter (N), the currently fixated letters (N+1) phonological 

information interfered. 2) Dyslexic readers also struggled to disengage with already 

activated phonological information when it was similar to the phonological 

information of the next item; dyslexic readers were slower to name N+1 because the 

activated phonological information from N was interfering. In sum, Jones et al. 

(2013) found that dyslexic readers experience a “processing bottleneck” where they 

demonstrate greater difficulty in selecting information from competing alternatives 

and such effects occur across both parafoveal and foveal processing. The authors 

conclude that the confusability found in readers with dyslexia may result from 

degraded orthographic and phonological representations, making it more difficult for 

those with dyslexia to distinguish between, and thus slower to select and retrieve, the 

correct orthographic and phonological representations.  

In order to try to extend the work by Jones and colleagues, Silva et al. (2016) 

aimed to understand whether dyslexic readers show difficulties that are due to either 

a lack of parafoveal information, or, from parafoveal information disrupting the 

encoding of the foveal information. In order to explore this, Silva et al. (2016) 

recorded eye movements of dyslexic and non-dyslexic adults during a modified 

serial RAN task. In their naming task, they manipulated the parafoveal load (whether 

or not there was an item presented within the parafovea) and the parafoveal preview 

potential of each item (whether the item was previewed parafoveally or not). 

Dyslexic readers showed evidence of reduced parafoveal processing compared to 

skilled readers but no differences in the effect of parafoveal load. Therefore, dyslexic 

readers appear to encode less parafoveal information than non-dyslexic readers, but, 

are not increasingly impacted by having parafoveal information available whilst they 

are encoding the foveal item. Thus, Silva et al. (2016) suggested that dyslexic 

limitations in parafoveal processing might be due to attentional restrictions (that 

occur as a consequence of difficulties in extracting phonological information from 
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the foveal information) rather than interference from the parafoveal information 

during foveal processing. 

In sum, the research exploring dyslexic parafoveal processing during RAN 

suggests that dyslexic readers are somewhat less efficient in their parafoveal 

processing abilities than non-dyslexic readers (Jones et al., 2008, 2010, 2013; Silva 

et al., 2016; Yan et al., 2013). Whilst the findings from RAN provide a useful basis 

for exploring dyslexic parafoveal processing, there are, however, very few studies 

exploring parafoveal processing during silent sentence reading for readers with 

dyslexia (however see Rayner et al. (1989) who demonstrated that a small sample of 

readers with dyslexia have a reduced perceptual span). As such, it is still unclear as 

to how parafoveal processing difficulties may impact reading for readers with 

dyslexia. In fact, dyslexic readers may show a range of parafoveal processing 

difficulties during reading. Dyslexic readers may have reduced parafoveal preview 

benefits compared to non-dyslexic readers, where dyslexic readers gain less 

facilitation from the parafoveal information. Due to sluggish attention, they may 

show delayed parafoveal processing in which the time course of parafoveal preview 

effects may occur later in time for readers with dyslexia compared to non-dyslexic 

readers (which may also result in reduced parafoveal preview benefits). Furthermore, 

dyslexic readers may have specific difficulties encoding certain types of information 

within the parafovea (e.g. letter position of phonological information). Thus, the 

current thesis aimed to examine parafoveal processing during reading for readers 

with dyslexia in order to further our understanding of attentional deficits in readers 

with dyslexia. The specific thesis aims are outlined below.  

1.4 Chapter summary and aims of the thesis 

This chapter provides a detailed review of the literature on developmental dyslexia, 

theories of dyslexia, and, eye movements during foveal and parafoveal processing 

for dyslexic and non-dyslexic readers. Within the above literature review, it is clear 

that there are a number of issues and areas that need additional research in order to 

further our understanding of dyslexia. Whilst there are a number of attention deficit 

theories of dyslexia (Bosse et al., 2007; Hari & Renvall, 2001; Vidyasagar, 1999; 

Whitney & Cornelissen, 2005), it is currently unclear exactly how attention deficits 

impact silent reading for dyslexic readers. Although eye movement research is 

particularly useful in developing our understanding of attentional processes during 
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reading, there is a lack of eye movement studies detailing eye movement behaviour 

for readers with dyslexia during silent reading. In fact, there is a particular lack of 

research in regard to parafoveal processing during reading for readers with dyslexia; 

this is surprising given number of theories suggesting that attention deficits play a 

causal role in dyslexia (Bosse et al., 2007; Hari & Renvall, 2001; Vidyasagar, 1999; 

Whitney & Cornelissen, 2005), and the importance of attention allocation 

specifically for parafoveal processing (Miellet et al., 2009; Schotter et al., 2012).  

Therefore, this thesis aimed to provide additional research in order to further develop 

our understanding of dyslexia by recording eye movements during reading. 

Specifically, this thesis aimed to:  

1) to provide a detailed characterisation of dyslexic foveal eye movement 

patterns during silent reading, for both adults and children,  

2) to determine whether dyslexic adults and children gain parafoveal previews 

benefits during silent sentence reading,  

3) to understand what information is encoded from the parafovea during 

dyslexic silent sentence reading,  

4) to explore the nature of the dyslexic eye movement patterns by 

experimentally comparing children with dyslexia to groups of typically 

developing children matched for chronological age, but also typically 

developing children matched for reading age.  

Thus, this thesis reports three research studies conducted to address these aims. The 

following chapter details the specifics of the methodological approach adopted to 

address these aims. 
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Chapter Two: Methodological considerations 

2.0 Chapter overview  

Whilst some aspects of the methodology have been discussed briefly during Chapter 

1, this chapter will identify the key methodological considerations that were made, in 

order to address the aims of the thesis. As the main focus of this thesis was to 

develop an understanding of dyslexia through examining eye movement behaviour, 

the chapter starts by outlining the specific eye movement measures and relevant eye 

movement terminology used throughout the thesis. This is followed by a discussion 

of the participant groups and the offline testing used to verify the participant group 

allocation. Finally, this chapter includes discussions of the specific paradigm selected 

to examine parafoveal processing, and the statistical analyses conducted for this 

thesis. 

2.1 Eye movement measures and terminology    

This section provides an overview of the eye movement measures selected within 

this thesis and examination of the terminology used to categorise different eye 

movement measures. In the first instance, the distinction between global and local 

eye movements will be explained. Global measures refer to aggregated eye 

movement data from a whole sentence and allow us to look more broadly upon 

differences in eye movement behaviour that are not specific to a particular word or 

manipulation. In fact, differences in eye movement behaviour may accumulate over a 

sentence, whilst individual fixations may not differ greatly in duration; these small 

differences can accumulate and, therefore, impact measures such as total reading 

time. As such, global eye movements provide a useful measure to explore group 

differences in dyslexic and non-dyslexic readers during silent sentence reading. 

Furthermore, within boundary paradigm studies, global eye movement data is, 

typically, not impacted by the target word manipulation of parafoveal preview and, 

thus, provides a useful indication of differences in eye movement behaviour for 

dyslexic and non-dyslexic readers independently of the specific target word 

manipulation.  

In contrast to global measures, local measures are the eye movements that 

occur specifically in a region of interest (in this case, on the target word manipulated 
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for parafoveal preview). Local eye movement measures are much more specific, 

allowing for a detailed examination of how a particular linguistic manipulation may 

impact cognitive linguistic processing and, thus, influence eye movement behaviour. 

Within the current thesis, the impact of manipulated parafoveal previews was 

examined using local measures, as they are able to demonstrate the subtle effects of 

parafoveal preview benefits. In addition to being extremely useful at indicating the 

effects of specific target word manipulations, local measures are often used to 

demonstrate the differences in eye movement behaviour for dyslexic readers 

compared to non-dyslexic readers. Whilst global measures provide an indication of 

accumulated or averaged eye movement behaviour across a sentence (i.e. average 

fixation duration, total reading time), local measures provide a better indication of 

differences in individual fixations (i.e. first fixation duration, single fixation 

duration). Unlike global measures, however, local measures do not provide an 

indication of group differences independently of the specific experimental 

manipulation. Therefore, and particularly when examining differences in reading 

groups, it is important to include both global measures, to gain a broader 

understanding of the differences in groups across sentence reading and local 

measures, to provide more fine-grain detail on eye movement measures of reading, 

as well as to explore the impact of parafoveal manipulations. For this reason, the 

experiments detailed throughout this thesis include analysis of both global and local 

eye movement measures. The following section describes the eye movement 

measures used throughout the experiments reported in this thesis.   

For the global analysis the following eye movements were computed: total 

sentence reading time, average saccade amplitude, average forward and regressive 

fixation duration, and total number of forward and regressive fixations per sentence. 

Total reading time is the sum of all fixations that occur throughout the whole trial 

(including any regressive fixations). Forward and regressive fixations were classified 

based upon the previous saccade direction (fixations preceded by a rightward 

saccade are considered forward fixations and fixations preceded by a leftward 

saccade are referred to as regressive fixations). In addition, the following eye 

movement measures were computed for local analysis: first fixation duration, single 

fixation duration, gaze duration, go-past time, total reading time and also landing 

position. First fixation duration is the duration of the initial fixation on the target 

word. Single fixation duration represents those fixations for which the reader made 
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only one fixation on the target word during first pass (first pass is the initial instance 

when an eye movement is made into the target region until it leaves the target region, 

any subsequent eye movements to that region are not first pass eye movements). 

Gaze duration is the sum of fixation durations on the target word, before the reader 

leaves that word. Go-past time is the sum of fixation durations from when a reader 

first fixated the target word until their first fixation to the right of that word 

(including any regressions made before moving forward past the target word). For 

local measures, total reading time is the sum of all fixations that occur on the target 

word throughout the whole trial (including any regressive fixations). Landing 

position is the character location on which the eye fixates. This variety of local eye 

movement measures were largely selected due to their distinction in being early and 

late measures.  

The distinction between early and late measures is interesting, because the 

point at which a specific manipulation has an impact upon the eye movement 

behaviour may be informative about the nature of the underlying cognitive processes 

occurring at that point within reading (Clifton, Staub, & Rayner, 2007). To clarify, in 

reading, early eye movement measures are the initial eye movements that occur 

within a word or region, before leaving that word or region for the first time, such as 

single fixation duration, first fixation duration and gaze duration (however gaze 

duration may also incorporate some in-word first pass regressions). These early eye 

movement measures regularly produce similar patterns of effects (but not always; 

Rayner & Liversedge, 2011) and are good indices of initial lexical processing 

(Rayner & Liversedge, 2011). Late eye movement measures are those that involve 

revisiting a word or region, in which case the word or region has already been 

fixated. Examples of late eye movement measures are those such as go-past time and 

total reading time and tend to reflect later stages of processing, such as semantic and 

discourse processing. 

Within the current thesis, both early and late eye movement measures were 

recorded. Including both early and late measures provides a useful indication of the 

time-course of processing for the different reading groups, allowing for comparison 

on both early lexical processing and later semantic and discourse processing. 

Furthermore, studies have reported different eye movement behaviours for readers 

with dyslexia compared to non-dyslexic readers, during both early and late eye 

movement measures (Hawelka et al., 2010; Hutzler, Kronbichler, Jacobs, & 
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Wimmer, 2006; Hutzler, & Wimmer, 2004; Hyönä, & Olson, 1995; MacKeben et al., 

2004). Moreover, it is possible that dyslexic readers may show delayed processing 

relative to skilled adult readers (e.g., Hari, & Kiesilä, 1996; Helenius et al., 1999; 

Merzenich et al., 1993), in which case it is important to include a range of eye 

movement measures.  

In addition to early measures being useful in exploring the difference 

between reading groups (e.g. dyslexic or non-dyslexic), early measures are also 

particularly important when exploring parafoveal processing using the boundary 

paradigm. Early measures are often used within boundary paradigm studies because 

the manipulations of parafoveal processing occur before the reader fixates the word. 

Consequently, the effects of the manipulation typically occur within the initial eye 

movements made onto that word. Thus, similarly to a range of boundary paradigm 

studies (e.g., Chace et al., 2005; Hӓikiӧ et al., 2010; Johnson et al., 2007; Marx et al., 

2015; Pagán et al., 2016; Pollatsek et al., 1992; Tiffin-Richards & Schroeder, 2015), 

early measures such as first fixation duration and single fixation duration were 

included to examine the impact of parafoveal preview manipulations. The research 

reported throughout this thesis, therefore, included both early and late measures of 

reading, in an attempt to better understand the time-course of the reading process for 

readers with dyslexia and to ensure the impact of the parafoveal processing 

manipulations were explored. 

In sum, eye movements differ in regard to whether they are global or local 

measures, and also early or late measures. In order to address the aims of the thesis, 

it is important to include range of eye movement measures. In fact, by using both 

global and local and early and late eye movement measures, it is possible to gain a 

detailed understanding of the time course of word identification, for both foveal and 

parafoveal processing during dyslexic and non-dyslexic reading.  

2.2 Adult and child participant groups 

In addition to selecting the appropriate eye movement measures for the experiments, 

it was crucial to select suitable participant groups. Specifically, as the primary aim of 

this thesis was to further our understanding of developmental dyslexia, it was 

important to explore reading deficits across the developmental trajectory. In fact, the 

developmental process can impact the reading difficulties found within readers with 

dyslexia (Karmiloff-Smith, 1998). For this reason, the research for this thesis was 
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conducted with both adult readers (who are at the latter end of reading development) 

and children (who are still developing their reading skills). Whilst there are a number 

of strengths and weaknesses associated with testing either of these specific samples 

alone, testing both child and adult samples can be much more useful. Indeed, testing 

with both children and adults helps to provide a greater understanding of the deficits 

that occur throughout development. The following section details the specific 

reasoning for exploring effects across both children and adults. This section aims to 

explain why adult readers were selected for both Experiment 1 and Experiment 3 

(reported in Chapter 3 and Chapter 5 respectively). Furthermore, this section 

provides detail as to why the experimental design from Experiment 1 was then used 

as the basis for Experiment 2, conducted with children (reported in Chapter 4).  

Adult samples of dyslexic readers were selected for two of the experimental 

chapters (both Experiment 1 detailed in Chapter 3 and Experiment 2 in Chapter 4). 

One key reason for selecting an adult sample for these two experimental chapters 

was to determine whether dyslexic readers do, in fact, gain parafoveal preview 

benefits during reading. As discussed within the initial chapter of this thesis, there 

were very few studies exploring parafoveal processing for readers with dyslexia 

(however, see Jones et al., 2008, 2010, 2013; Silva et al., 2016; Yan et al., 2013, who 

conducted research into dyslexic parafoveal processing during RAN). Consequently, 

both Experiment 1 and Experiment 3 provided a novel exploration of parafoveal 

processing during reading for readers with dyslexia; Experiment 1 focused upon 

orthographic parafoveal processing and Experiment 3 on phonological parafoveal 

processing. It was unclear whether readers with dyslexia would gain preview benefits 

and how these preview benefits may manifest during reading. For this reason, data 

was initially collected with adults, in order to first establish that dyslexic readers, at 

the latter end of the reading development trajectory, were able to develop the skills 

required to parafoveally process information during reading. These findings were 

then useful to provide a foundation to examining the development of parafoveal 

processing in children with dyslexia.  

Another benefit of initially testing adult dyslexic readers is that there is a 

body of work exploring parafoveal processing for skilled adults (for a review see 

Schotter et al., 2012). This research provides a useful foundation to understanding 

and predicting parafoveal processing for dyslexic adults. For children, however, 

there is far less research into parafoveal processing (Pagán et al., 2016; Tiffin-
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Richards & Schroeder, 2015) and some inconsistencies with regard to the age at 

which parafoveal processing skills develop. It would have been challenging to 

conduct these initial studies with a dyslexic child sample, as it was unclear whether 

dyslexic children would gain parafoveal preview benefits and, if so, at what age they 

would develop. Furthermore, by specifically examining parafoveal processing in 

dyslexic adult readers, who are at the latter end of reading development, it is then 

more logical to develop predictions for additional studies exploring the development 

of parafoveal processing with dyslexic children. Accordingly, both Experiment 1 and 

Experiment 3 used adults’ dyslexic samples to explore parafoveal processing in adult 

dyslexia.  

Whilst is it extremely useful to use adult samples to initially determine 

whether dyslexic readers can gain parafoveal preview benefits during reading, there 

are a number of weaknesses in testing adult samples. There has been critique about 

using adult samples to explore a developmental disorder, as they do not represent the 

development that occurs within a disorder and this makes it difficult to draw 

conclusions upon the etiology of dyslexia (Karmiloff-Smith; 1998). Although the 

current research did not directly address the causes of dyslexia, it is still important to 

consider the role of development in a developmental disorder. Karmiloff-Smith 

(1998) proposed the Neuroconstructivist approach to developmental disorders, which 

recommends that, in order to fully understand developmental disorders, one needs to 

consider the dynamics of development and how a child’s developmental trajectory 

will be impacted due to the specific deficits that occur early within their life (Elman 

et al., 1996; Karmiloff-Smith, 1998).  

The Neuroconstructivist approach considers that development is an 

interactive process during which the cognitive system is able to self-organise in 

response to particular deficits. Due to such flexibility and self-organisation, this 

approach also considers that people with a developmental disorder may exhibit 

specific strengths as well as weaknesses and that particular areas of cognitive 

strength may help to compensate for areas of weakness (Perin, 1983; Stanovich, 

1980; Walley, 1993). Therefore, dyslexic adults, especially those enrolled within 

higher education, are often considered to be ‘compensated’ dyslexic readers who 

have developed compensatory strategies that enable them to read at an adequate 

level. Consequently, Karmiloff-Smith (1998) suggests that it is important to separate 

behavioural outcomes from underlying cognitive processes. In fact, it is possible that 
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the behaviours that are observed in adults with dyslexia are not associated with the 

cause of dyslexia, but rather an outcome of their earlier deficits in learning to read. 

The eye movement patterns and parafoveal processing abilities of adults with 

dyslexia may differ to those found for dyslexic children, as they may reflect 

compensatory strategies. It was, therefore, extremely important that the research 

reported within this thesis not only included adult readers, in order to establish that 

parafoveal processing does occur in dyslexia, but also to test children with dyslexia 

in order to further understand the development of parafoveal processing. 

Consequently, the results from Experiment 1 were the extended to explore parafoveal 

processing for children (Experiment 2, Chapter 4).  

Finally, recall the aim throughout this thesis was not only to explore the 

extent to which parafoveal processing occurs in dyslexic reading, but also explore 

the nature of the dyslexic reading deficit. To this end, dyslexic children were tested 

alongside both typically developing children, matched for chronological age (these 

children were the same age as the dyslexic children but had an increased reading age) 

and typically developing children matched for reading age (these children were 

chronologically younger than the dyslexic readers but had the same reading age). 

Thus in Experiment 2, eye movements were recorded from 3 child samples; children 

with dyslexia, typically developing children matched for chronological age and 

typically developing children matched for reading age. By comparing dyslexic 

children to both of these control samples, one can determine whether deficits in 

dyslexic parafoveal processing are, in fact, specific to dyslexia, or due to a 

developmental lag. If the deficit is specific to dyslexia, dyslexic readers would show 

different eye movement patterns compared to both control groups. If, however, 

dyslexic reading behaviour is indicative of a developmental lag, then dyslexic 

readers would show similar behavioural patterns when compared to typically 

developing children matched for reading age.  

Within the eye movement and reading literature, research has demonstrated 

that eye movement patterns typically reflect difficulties in linguistic processing 

(Häikiö et al., 2009; Kirkby et al., 2008; Rayner, 1986), thus it is possible that 

dyslexic eye movement patterns are purely representative of their reduced reading 

skill in comparison to typically developing children matched for chronological age. 

As discussed in the introductory chapter, there is very little research exploring eye 

movement behaviour of dyslexic readers in comparison to both chronological age 
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matched children and reading age matched children. Accordingly within the current 

thesis, it was important, not only to extend the findings of parafoveal preview benefit 

in adults to children, but also to further our understanding of the nature of reading 

difficulties in dyslexia, through testing both chronological age matched and reading 

age matched control groups. 

2.3 Offline testing  

Another methodological consideration discussed within this chapter is that of offline 

testing. Although all dyslexic readers tested within this thesis had a prior 

independent diagnosis of dyslexia, in order to establish that our groups of readers 

showed patterns representative of their reading group (i.e. dyslexic and non-dyslexic 

readers, age or reading age matched control groups), offline tests were conducted. 

These offline tests were used to gain further understanding of their general 

intelligence and reading profiles. This section provides a discussion of specific 

offline tests used and why they were chosen.  

The first consideration in regard to offline testing was general intelligence. 

General intelligence is an individual’s ability to acquire and apply knowledge and 

skills and is, typically, measured through tests of intelligence quotient (IQ). In 

previous years, general intelligence was widely used to help diagnose dyslexia 

through the discrepancy approach (Ellis, McDougall, & Monk, 1996; Rutter & Yule, 

1975). The discrepancy approach to diagnosis required that children with dyslexia 

had a reading age that was lower than their general intelligence scores would predict. 

In fact, a number of researchers exploring developmental dyslexia previously 

considered the IQ-discrepant group to be the core dyslexic population (e.g. Ellis et 

al., 1996) and considered dyslexic readers to be distinct from other poor readers, due 

to their specific reading deficit in relation to their cognitive ability. There has, 

however, been a growing body of evidence to discredit the role of IQ in dyslexia. 

Specifically, there is limited support for the suggestion that the discrepancy between 

IQ and reading is an important predictor of the difference in decoding for dyslexic 

readers compared to poor readers who are not considered to be dyslexic (Fletcher et 

al., 2007; Hoskyn & Swanson, 2000; Stuebing, Barth, Molfese, Weiss, & Fletcher, 

2009; Stuebing et al., 2002). Similarly, there has been little evidence that IQ 

discrepancy can differentiate between readers who benefit from intervention and 

those who do not (Gresham & Vellutino, 2010). Furthermore, IQ discrepancy 
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appears to provide very little prognostic information about future reading ability 

(Flowers, Meyer, Lovato, Wood, & Felton, 2001; Francis, Shaywitz, Stuebing, 

Shaywitz, & Fletcher, 1996). In general, the IQ-discrepancy approach is no longer 

supported as a diagnostic measure (e.g. Hatcher & Hulme, 1999; Shaywitz, Fletcher, 

Holahan, & Shaywitz, 1992; Stanovich, 2005; Stanovich & Siegel, 1994; Vellutino 

et al., 2004). In fact, it is now typically accepted that individuals with all levels of 

general intelligence can be diagnosed with dyslexia (Snowling & Hulme, 2012). That 

said, IQ is, however, still used as part of the exclusion criteria to assess dyslexic 

readers, for research purposes (Rice & Brooks, 2004).  

Studies of dyslexia often examine IQ in order to control for below average 

intelligence scores (Rice & Brooks, 2004). Individuals with low general intelligence 

may have underlying cognitive deficits that are not causally linked to dyslexia but do 

in fact impact on reading ability. Thus, in order to test dyslexic reading difficulties, it 

is useful to exclude participants whose general intelligence is below average and 

may, therefore, impact their ability to read (Snowling, 2008). As such, measuring IQ 

allows for exploration of the underlying cognitive deficits associated with dyslexic 

reading (Snowling, 2008), without additional cognitive deficits that occur due to low 

IQ, but may also impact reading behaviour. Consequently, throughout the three 

experimental chapters (Chapter 3, 4, and 5) IQ was measured using the two subtests 

version of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), 

to ensure that participants had an average or above average IQ score (IQ≥90; 

Wechsler, 1999).  

The two-subtest version of the WASI includes a vocabulary subtest and a 

matrix reasoning subtest. The vocabulary subtest is a 42-item task, which requires 

participants to provide an oral definition of each item, and measures the participant’s 

expressive vocabulary, verbal knowledge and general information learning. Indeed 

the vocabulary subtest task is used to examine cognitive abilities such as, memory, 

learning ability, concept and language development (Sattler, 1988). The matrix 

reasoning subtest, comprised of 35 items, requires participants to identify (from a 

number of choices) the missing item within a gridded pattern. This test measures 

non-verbal fluid reasoning and general intellectual ability. Together, these scores 

provide an IQ score for each participant, which can be used to determine whether the 

individual meets the score of average/above average IQ. Dyslexic and non-dyslexic 
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readers did not significantly differ in measures on IQ (see individual chapters for 

further details).  

In addition to examining the IQ of participants, further testing was conducted 

to examine reading skills. As dyslexia is often diagnosed through deficits in 

decoding (Snowling & Hulme, 2012), it is usually assessed by measures of word 

recognition, phonological awareness and phonological decoding. These are typically 

assessed through reading aloud a range of single words and a range of pseudowords. 

Consequently, within each experimental chapter of this thesis, participants were 

required to take part in word reading and pseudoword reading tasks. In the single 

word reading task, readers had to read aloud a set of increasingly challenging words. 

Specifically, single word reading is an assessment of letter knowledge, phonological 

awareness and decoding and sight-word knowledge. Although the task may require 

some explicit phonological decoding (especially for the more challenging words), 

readers cannot solely rely upon phonological decoding as a method to correctly read 

the words. In fact, there are a number of irregular words on the list, which cannot be 

phonologically decoded to provide the correct pronunciation, and thus participants 

have to rely upon their sight-word knowledge. As reading skills develop, readers 

typically move from a precise serial approach to reading, to a more automated, whole 

word method of reading. The serial approach to reading is time consuming and 

requires the reader to phonologically decode individual letters in order to sound out 

the word. In contrast, when a reader becomes more experienced, they are able to use 

a much more automated, fluent approach that relies on sight-word knowledge; 

allowing the reader to extract the phonological representations from the orthographic 

representation of the word rather than its individual letters (Ehri, 2010). To achieve 

high scores on these single word reading tests, it is expected that readers are able to 

both phonologically decode words and also use sight-word knowledge in order to 

read. Sight-word knowledge is dependent upon the ability to map graphemes to 

phonemes and create well-developed orthographic representations. Therefore, as 

readers with dyslexia have difficulties with decoding, they also tend to struggle with 

sight-word knowledge (Ehri, 1997). Thus, readers with dyslexia tend to show poor 

scores on test of single word reading.  

In contrast to tests of single word reading, tests of pseudoword decoding 

require readers have to read aloud a list of orthographically legal and therefore 

pronounceable non-words. Due to the nature of the task, readers cannot rely upon 
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their sight-word knowledge and have to explicitly decode the sounds within the 

words in order to correctly pronounce the pseudoword. As such, this task is a more 

direct assessment of phonological decoding and is usually challenging for readers 

with dyslexia. In fact, readers with dyslexia typically perform poorly on both 

measures of single word reading and pseudoword reading. It is for this reason that 

both single word reading and pseudoword decoding tests were administered to all 

participants throughout the work reported in this thesis. For adults, the Test of Word 

Reading Efficiency was used (TOWRE; Torgesen, Wagner, & Rashotte, 1999); for 

children the Word Reading and Pseudoword Reading subtests of the Wechsler 

Individual Achievement Test – Second Edition (WIAT-II; Wechsler, 2005) was 

administered. The specific set tests used for each population are discussed in further 

detail during the individual experimental chapters. In addition to completing word 

and pseudoword reading tests, participants were also required to take part in RAN 

(rapid automised naming) tests of letters and numbers.  

RAN requires readers to rapidly name visually presented arrays of letters, or, 

numbers that are presented randomly within rows. Tests of RAN examine how well 

individuals can integrate both visual and language information and have been found 

to correlate with (see Bowey, 2005; Kirby, Georgiou, Martinussen, & Parrila, 2010, 

for reviews) and predict reading ability (Lervåg & Hulme, 2009). RAN scores have 

been found to be predictive of reading ability independently of skills in letter 

knowledge and phoneme awareness, and some dyslexic readers have been found to 

show average phoneme awareness but poor RAN (Wolf & Denckla, 2005). 

Therefore, in addition to tests of word and pseudoword reading, RAN scores were 

collected for readers with and without dyslexia. Specifically, the letter and number 

subsets of RAN were administered to all participants, as these subtests have been 

found to be consistent predictors of reading across reading development (Kirby, 

Parrila, &, Pfeiffer, 2003; Shaywitz & Shaywitz, 2005; Wolf & Obregón, 1992).  

2.4 The boundary paradigm 

Further to understanding both eye movement measures and terminology and 

selecting the appropriate samples to explore dyslexic deficits, consideration was 

given to ensure the most appropriate paradigm was selected to examine parafoveal 

processing during reading for readers with dyslexia. As discussed in the introductory 

chapter, there are two well established methodological approaches that have been 
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used to explore eye movements and parafoveal processing, particularly during 

studies of reading: the moving window paradigm (McConkie & Rayner, 1975) and 

the boundary paradigm (Rayner, 1975).  

The moving window paradigm (McConkie & Rayner, 1975; see Figure 1.2 in 

Chapter 1) was developed to determine how far into the parafovea readers can obtain 

useful information (i.e. the region of effective vision known as the perceptual span) 

during sentence reading. Specifically, using the moving window paradigm during 

reading, Rayner et al. (1989) found that dyslexic readers had a reduced perceptual 

span compared to non-dyslexic readers. Whilst there has only been one study directly 

measuring the perceptual span for dyslexic readers during reading (Rayner et al., 

1989), this finding is supported by research showing that increases in the perceptual 

span are largely attributed to improved reading skills (Häikiö et al., 2009; Rayner, 

1986).  

Although there is some research into the perceptual span of readers with 

dyslexia (Rayner et al., 1989), very little is known about the type of information 

readers with dyslexia can encode from the parafovea. The boundary paradigm 

(explained fully in Chapter 1, Rayner, 1975; See Figure 1.3) is used to determine the 

extent and nature of the information processed in the parafovea during sentence 

reading and research has demonstrated that a range of information, such as 

orthographic (e.g. letter identity and letter position), phonological, morphological, 

and semantic information, can provide parafoveal preview benefits to skilled adults 

during reading (e.g. Ashby & Rayner, 2004; Ashby et al., 2006; Balota et al., 1985; 

Blythe et al., 2018; Chace et al., 2005; Deutsch, Frost, Pelleg, Pollatsek, & Rayner, 

2003; Deutsch, Frost, Pollatsek, & Rayner, 2000, 2005; Drieghe et al., 2005; 

Hohenstein, Laubrock, & Kliegl, 2010; Miellet & Sparrow, 2004; Pollatsek et al., 

1992; Pollatsek, Tan, & Rayner, 2000; Rayner, 1975; Rayner et al., 1980; Sparrow & 

Miellet, 2002; White, Rayner, & Liversedge, 2005b; Williams et al., 2006; Yan et 

al., 2009). There were, however, no studies that had used the boundary paradigm to 

explore dyslexic reading (although some great insights have been provided by 

studies using RAN; Jones et al., 2013; Silva et al., 2016; Yan et al., 2013). It was, 

consequently, unclear as to what information dyslexic readers could encode 

parafoveally during sentence reading. Dyslexia may be causally related to attentional 

deficits that impact letter position encoding (Vidyasagar & Pammer, 2010; Whitney 

& Cornelissen, 2005), therefore, readers with dyslexia may have struggled with the 
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parafoveal encoding of orthographic information. Moreover, dyslexia is defined by 

deficits in phonological processing (Liberman, 1973; Snowling, 1995; Snowling, 

2000; Stanovich, 1988); readers with dyslexia may in fact have shown difficulties in 

encoding phonological information from the parafovea during reading. Thus, as this 

thesis focused upon determining what information (specifically, orthographic and 

phonological) dyslexic readers can extract from parafovea during reading, the 

boundary paradigm was selected as the most appropriate method.  

2.5 Data analysis  

The final discussion presented here concerns the method of statistical analysis used 

for eye movement studies of reading. In 1973, Clark provided a critique of the 

statistical procedures used in studies of language; specifically, he proposed that, in 

addition to considering participants as random variables (in which it is acknowledged 

that the research outcomes need to be generalised beyond the individual participants 

to the wider population), researchers should also treat language materials as random 

variables. Indeed, not only do individual participants vary at a range of levels (due to 

factors such as genetic, developmental, environmental, social, or political 

influences), but experimental stimuli such as sentences also vary on a range of levels 

(such as variations in words, syllables, and language). Thus, both participants and 

language materials should be considered as random variables within the analysis. 

This recommendation by Clark (1973) resulted in many studies then reporting 

statistical analyses (typically in the form of analysis of variance, ANOVAs) for both 

the participants (F1) involved within the study and the items (F2, the specific set of 

words or sentences) used within the study (Raaijmakers, Schrijnemakers, & 

Gremmen, 1999). This was based on a widely held assumption that research findings 

could be generalised to both the participant population and the language as a whole, 

if the participant and items analysis were conducted separately (Raaijmakers et al., 

1999). Whilst such practice was not actually in line with the recommendations of 

Clark (1973), this became the typical format for eye movement analysis for studies 

of reading. The original issues raised by Clark et al. (1973) were not addressed and, 

in many cases, it was still unclear whether research findings could in fact be 

generalised to both the participant population and the language.  

A new statistical approach, linear mixed modeling (LMM), has recently 

become popular within the eye movement and reading literature (Baayen, Davidson, 
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& Bates, 2008; Barr, Levy, Scheepers, & Tily, 2013), as it is able to address these 

issues raised by Clark (1973). Linear mixed models (LMMs) can include both 

random and fixed effects within one model, with both effects being modeled as 

having a linear form. Fixed effects are the variables that have been purposely 

manipulated and thus have an a priori theoretical motivation for statistical analysis 

(Pinheiro & Bates, 2000); for example, the fixed effects reported in the current thesis 

were the manipulations of parafoveal preview and also the reading group. In contrast, 

random effects are variables that typically occur when individual data points cluster 

together, via association with a set of entities, but are not variables that have been 

manipulated. For example, the random effects reported in the current thesis were 

participants and items (sets of stimuli), as the data points can be grouped by 

individual participants and individual items.  

It is the inclusion of these additional random effects alongside the fixed 

effects that makes the linear mixed model a mixed model and a popular method 

within research into language. Adding the random effects into the linear model 

provides structure within the model error and allows for the variation in the data to 

be characterised. Thus, in studies of language, as reported in this thesis, both 

participants and items can be included as random factors within the same model, 

which then characterises the variation in the data that is due to individual differences 

in both participants and the selected stimuli. Therefore, analysis conducted using 

LMMs does address the concerns raised by Clark (1973), by allowing both 

participants and items to be considered as random variables within the same model. 

This means that, research using LMMs allows for the research to be generalised 

across both participants and items and is one of the reasons that LMM’s are now 

becoming the preferred method of analysis for researchers exploring eye movement 

behaviour during reading (e.g. Marx et al., 2016; Marx, Hawelka, Schuster, & 

Hutzler, 2017; Pagán et al., 2016; Tiffin-Richards, & Schroeder, 2015).  

In addition to the ability to include both fixed and random effects within one 

model, LMMs are also known to accommodate for instances of missing data (Gurka 

& Edwards, 2011; Kutner, Nachtsheim, Neter, & Li, 2005; Smith, 2012; West, 

Welch, & Galecki, 2007), which is not the case for more traditional methods of 

analysis such as the ANOVA. Indeed, missing data and unbalanced designs occur 

regularly when testing special populations, as data collection can be often 

challenging and the number of participants often limited (Blythe & Joseph, 2011). 
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Furthermore, missing data occurs regularly during eye movement studies of reading, 

particularly in boundary paradigm studies where a strict exclusion criterion is 

followed and portions of the data have to be excluded to ensure accurate data. In line 

with a range of boundary paradigm studies (Angele & Rayner, 2011; Angele, 

Slattery, Yang, Kliegl, & Rayner, 2008; Chace et al., 2005; Hӓikiӧ et al., 2010; 

Johnson et al., 2007; Kliegl, Risse, & Laubrock, 2007; Marx et al., 2015; Pagán et 

al., 2016; Pollatsek et al.,1992; Tiffin-Richards & Schroeder, 2015), a strict 

exclusion criteria was followed to ensure that the gaze contingent change worked 

efficiently and effectively in presenting a parafoveal preview independently to the 

foveal preview (see the experimental chapters for detail on the individual criteria). 

Therefore, due to the nature of this thesis (exploring eye movement behaviour for 

readers with dyslexia using the boundary paradigm), it was considered highly likely 

that there would be instances of missing data and that using LMMs to analyse the 

data would be beneficial. For these reasons, similarly to a range of studies in eye 

movements and reading (e.g. Bélanger, Mayberry, & Rayner, 2013; Hawelka et al., 

2010; Kirkby et al., 2011; Marx et al., 2017; Pagán et al., 2016; Sperlich et al., 2015; 

Tiffin-Richards, & Schroeder, 2015; Yan et al., 2013), LMMs were selected as the 

main method of analysis for the eye movement data.  

2.6 Chapter summary   

In sum, this chapter provided a discussion of the key methodological considerations 

that were made prior to experimental testing and data analysis. These decisions 

allowed for thorough and well-controlled experimental design and analysis in order 

to explore parafoveal processing for dyslexic readers. The next chapter presents the 

first experiment, which used the boundary paradigm to explore orthographic 

parafoveal processing in skilled and dyslexic adult readers.  
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Chapter Three: Experiment 1 

3.0 Chapter overview   

Within the first two chapters of this thesis, the gaps within dyslexic literature have 

been identified, the thesis aims been outlined and the rationale for the methodology 

provided. This chapter is the first experimental chapter of this thesis. This 

experiment aimed to provide initial evidence for dyslexic adult parafoveal processing 

of orthographic information. Specifically, using the boundary paradigm, the 

experiment explored whether dyslexic adults can parafoveally encode letter identity 

and letter position during silent sentence reading.  

 

Orthographic parafoveal processing in adults with dyslexia    

3.1 Introduction  

As discussed within Chapter 1, developmental dyslexia is a severe, persistent, and 

specific disorder of reading development that affects between 5-20% of children, 

despite normal intelligence and adequate reading instruction (Shaywitz, 1998). This 

chronic reading disorder is characterised by impaired decoding skills - the ability to 

map phonology (speech sounds) to orthography (the written form; Snowling & 

Hulme, 2012). Indeed, this characterisation is further supported by the fact that the 

most widely accepted theory of dyslexia is the Phonological Deficit Hypothesis 

(Liberman, 1973; Snowling, 1995; Snowling, 2000; Stanovich, 1988), in which 

dyslexia is caused by a cognitive level deficit in accessing and representing 

phonological information. However, it is important to note that the deficits in 

accessing and representing phonological information may occur due to difficulties in 

either the phonological or orthographic counterpart of decoding (Castles & Coltheart, 

2004). Furthermore, phonological decoding is an attention-demanding process 

(Reynolds & Besner, 2006) that requires both phonological skills (Ramus, 2003; 

Ziegler & Goswami, 2005) and efficient allocation of visual attention (Cestnick & 

Coltheart, 1999; Facoetti et al., 2006; Perry et al., 2007). In addition, there is a body 

of evidence suggesting that dyslexia is also associated with visual attention 

allocation deficits that may cause difficulties in the serial scanning of letters and 

encoding of letter position; this then impacts upon the development of phonological 
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skills by disrupting the mapping of orthographic and phonological information 

(Vidyasagar & Pammer, 2010; Whitney & Cornelissen, 2005). 

Skilled reading relies upon reader’s correctly and rapidly identifying 

phonological information from orthographic form. Thus, readers need to be able to 

sufficiently allocate their attention, in order to identify the orthographic properties of 

a word, such as letter identity and letter position, and then determine the correct 

phonological mapping for that letter or combination of letters. Indeed, letter identity 

and letter position encoding are fundamental processes in visual word recognition 

that allows a reader to distinguish between the phonological outputs of anagrams 

such as was and saw. Whilst letter position is an important aspect of visual word 

recognition, it is encoded with a level of flexibility, particularly for skilled adult 

readers. Studies of single word recognition in skilled adult readers have shown that 

non-words with a transposition of two letters (e.g. jugde) are more similar to the base 

word (e.g. judge) than non-words with two substituted letters (e.g. jupte; Chambers, 

1979; Christianson, Johnson, & Rayner, 2005; Forster, Davis, Schoknecht, & Carter, 

1987; O’Connor & Forster, 1981; Perea & Fraga, 2006; Perea & Lupker, 2003a, 

2003b, 2004). This is known as the transposed letter (TL) effect and indicates that 

words with transposed letters significantly activate the lexical representation of the 

base word more than words with substituted letters. Therefore, letter identity 

encoding is not specific to letter position; letter identity and letter position are 

encoded independently of one another and skilled readers have a level of flexibility 

within their letter position encoding. 

In support of the body of work demonstrating flexible letter position 

encoding, there are now a number of visual word recognition models that aim to 

explain how letters are encoded with such flexibility (Davis, 1999, 2010; Gómez, 

Ratcliff & Perea, 2008; Grainger & van Heuven, 2003; Whitney, 2001). In particular, 

the SERIOL model (Whitney, 2001) proposes that letter position is encoded through 

open bigrams and that this encoding of open bigrams depends on the development of 

an attentional location gradient. It is this attentional location gradient, that develops 

in a bottom-up manner through experience, that allows readers to serially encode 

letter order, activate the corresponding open bigrams and then encode letter position 

with a level of flexibility. 
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Based upon their SERIOL model, Whitney and Cornelissen (2005) propose 

that attention deficits in dyslexia may impact the formation of the attentional location 

gradient. Dyslexic readers struggle with encoding letter position information, which 

then causes difficulties in establishing the correct grapheme to phoneme 

correspondences. Whitney and Cornelissen (2005) claim that, in extreme cases, such 

difficulties may cause readers with dyslexia to use an object style recognition method 

in which each word is encoded as a whole visual object rather than a letter string. In 

a similar proposal, Vidyasagar and Pammer (2010) argue that attention deficits cause 

disruption in the allocation of serial attention during reading and this is considered to 

cause a cascade of difficulties such as difficulties in letter position encoding and 

impairments in developing grapheme-phoneme correspondences. Indeed, such 

proposals have been supported by evidence that sensitivity to the spatial order of 

symbol strings can explain a unique proportion of variability in later reading skill in 

both children (Pammer et al., 2004) and adults (Pammer et al., 2005). 

Although letter position is flexibly encoded for skilled adult readers, the 

location of the letter position transposition also has an impact on how well the 

transposition non-word activates the lexical representation of the base word (Johnson 

et al., 2007; Perea & Lupker, 2003a, 2003b, 2004, 2007; Schoonbaert & Grainger, 

2004; Tiffin-Richards & Schroeder, 2015; White, Johnson, Liversedge, & Rayner, 

2008). A series of lexical decision experiments exploring TL effects for single word 

recognition have demonstrated that transpositions that occur internally (for example 

jugde) are more likely to activate the lexical representation of the base word than 

letter transpositions that occur externally (for example ujdge) (Perea & Lupker, 

2003a, 2003b). Such findings have also been replicated during silent sentence 

reading; transposing the internal letters of a word causes less disruption to reading 

compared to when the external letters are transposed (Rayner, White, Johnson, & 

Liversedge, 2006). Transposing the initial letter causes the greatest disruption to 

reading, suggesting initial letter transpositions have the greatest influence on lexical 

activation (Johnson & Dunne, 2012; Johnson & Eisler, 2012; Johnson et al., 2007; 

Tiffin-Richards & Schroeder, 2015; White et al., 2008). 

In order to examine why word-initial letters have greater importance than 

internal letters, White et al. (2008) explored two possible explanations. The first 

explanation focused on the visual processing of the word, specifically, the fact that 

English words are presented spatially left to right and English readers read left to 
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right. Therefore, when fixating upon a word, the initial letters of the next word are 

closer to the fovea and as, visually, acuity decreases from the fovea to the parafovea 

to the periphery, the initial letters of the next word are more clearly visible in the 

parafovea than the internal and end letters of that word. Thus, transpositions in word-

initial letters may cause greater disruption during reading due to their spatial 

location. The second possible explanation focuses on lexical identification and 

suggests that the initial letters of a word are, perhaps, intrinsically more important for 

lexical identification. It may be that letters within a word are processed from left to 

right during lexical identification and, as a consequence, these initial letters are more 

important in allowing readers to determine the word. 

In order to examine these competing explanations, White et al. (2008) used 

the moving window paradigm (McConkie & Rayner, 1975) to restrict the availability 

of parafoveal preview information for skilled adult readers whilst they read sentences 

with transposed letters. They found that, even with a restricted parafoveal preview, 

transpositions within the initial letters of words still caused greater disruption to 

lexical processing than internal transpositions. This suggests, therefore, that the 

importance of the initial letters of a word does not occur as a consequence of the 

spatial location of the letters (i.e. the parafoveal preview being visually clearer); but 

rather due to some intrinsic importance of the initial letters in regard to lexical 

identification. It is possible that this intrinsic importance of the initial letters may be 

related to the need for sequential activation of phonological codes, particularly in 

determining the phonological onset of a word, in order to activate phonological 

representations of words during reading. 

Research to date has demonstrated that phonological information is encoded 

before lexical access (for a review see Leinenger, 2014) and, whilst orthographic 

codes appear to be activated slightly earlier than phonological codes (Lee, Rayner, & 

Pollatsek, 1999), it is likely that phonological information may still impact lexical 

activation (Leinenger, 2014; Miellet & Sparrow, 2004). This can help to explain the 

increased importance of encoding letter position for word-initial letters, as 

demonstrated by White et al. (2008); disrupting the initial letters may have an impact 

on both orthographic processing, but also phonological processing, through 

disrupting the sequential activation of phonological codes. In fact, the phonological 

codes may help to restrict the number of suitable lexical candidates (Folk & Morris, 

1995), or aid in activating the correct lexical representation (Lima & Inhoff, 1985). 
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However, we propose that it is the phonological codes for the initial letters that are 

most useful due to sequential processing of phonological information. In this case, 

the letter order would need to be encoded, allowing phonological codes to be 

activated sequentially, thus permitting a reader to both identify and also pronounce 

the word in the correct manner. A dyslexic reader’s difficulties in encoding 

phonological information may be explained, at least to some degree, by difficulties in 

the sequential processing of letter information (Whitney & Cornelissen, 2005). 

While models of letter position encoding (Davis, 1999, 2010; Gómez et al., 

2008; Grainger & van Heuven, 2003; Whitney, 2001) are useful in explaining 

flexible letter position encoding for letters processed foveally, they have not yet been 

extended to consider how readers encode orthographic information in the parafovea. 

There is, however, a body of work that has found evidence for the TL effect and the 

importance of initial letter position information in parafoveal processing during silent 

sentence reading for skilled adult readers and children (Johnson et al., 2007; Pagán et 

al., 2016; Tiffin-Richards & Schroeder, 2015). 

Recall, parafoveal processing is the ability to extract useful information from 

the parafovea in order to facilitate reading; whilst fixating word N, readers allocate 

their attention to word N+1 and start pre-processing the word prior to fixation. 

Therefore, attention allocation is extremely important to parafoveal processing and 

research has demonstrated that the amount of information processed parafoveally is 

dependent on the attentional resources available after foveal processing (Miellet et 

al., 2009). As discussed in detail in Chapter 1, a common method of exploring 

parafoveal processing and parafoveal preview benefits during reading is the 

boundary paradigm (Rayner, 1975; see Schotter et al., 2012 for a review). In the 

boundary paradigm an invisible boundary is placed between a pre-target and target 

word and, when the reader’s gaze is left of the boundary, the target word is 

manipulated for parafoveal preview. Once the reader’s eyes move across the 

boundary, the preview word changes to the original target word. A parafoveal 

preview benefit is apparent from shorter fixations on the target word when the 

parafoveal preview is identical to the target, compared to when the parafoveal 

preview is manipulated.  

Using the boundary paradigm, Johnson et al. (2007) explored the TL effect 

during parafoveal processing. They demonstrated that identical previews (e.g., judge) 
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received shorter fixation durations compared to both transposed-letter previews (e.g., 

jugde) and substituted-letter previews (e.g., judpe). As identical previews provided 

greater facilitation than substituted-letter previews, the results provided evidence of 

parafoveal preview benefits in skilled adult readers. In addition, identical previews 

provided greater facilitation than transposed-letter previews indicating that letter 

position information is encoded from the parafovea; if parafoveal preview benefits 

were driven by letter identity alone then identical previews and transposed-letter 

previews would provide equal facilitation. Furthermore, and in line with the single 

word recognition studies, transposed-letter previews received shorter fixation times 

compared to substituted-letter previews, thus demonstrating the TL effect. This 

pattern of results suggests that letter identity information is encoded independently to 

letter position, and therefore flexibly, in the parafovea for skilled adult readers. 

Further to establishing that the TL effect occurs during parafoveal processing, 

Johnson et al. (2007) also demonstrated that orthographic manipulations of external 

letters, both the initial letter and final letter, cause greater disruption to visual word 

recognition than manipulations that occur internally within the word during 

parafoveal processing. Therefore, the TL effect is weaker for external letters 

compared to internal letters and for external letters there appears to be greater 

dependence of letter identity encoding upon letter position encoding. In line with 

studies of foveal processing, Johnson et al. (2007) proposed that these external letters 

play an important role in visual word recognition, even during the parafoveal 

processing of words. Indeed, this work by Johnson et al. (2007) has been further 

supported by Pagán et al. (2016) and Tiffin-Richards and Schroeder (2015). Pagán et 

al. (2016) provided further evidence for the TL effect occurring in the initial trigram 

of the parafoveal word for both adults and child readers. Specifically, the TL effect 

was found for transpositions and substitutions that occurred in the first two letters of 

the parafoveal word (letter positions 1 and 2) and for the second two letters of the 

parafoveal word (letter positions 2 and 3). In addition, Tiffin-Richards and Schroeder 

(2015), in their examination of both phonological and orthographic parafoveal 

processing, found that adult readers exhibited a TL effect for internal letter 

transpositions but a reduced TL effect of initial transpositions. Thus further 

demonstrating that skilled readers flexibly encode letter position during reading and 

that the initial letters have increased importance (compared to internal letters) during 

parafoveal processing.  
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While there have been numerous studies into parafoveal processing for 

skilled adult readers (see Schotter et al., 2012), and recent progress in research on the 

development of parafoveal processing (Häikiö et al., 2009, 2010; Pagán et al., 2016; 

Marx et al., 2015; Tiffin-Richards & Schroeder, 2015), there is a paucity of research 

exploring parafoveal processing in dyslexic reading (however see Jones et al., 2013, 

and Yan et al., 2013, who found evidence for parafoveal processing for dyslexic 

readers during Rapid Automised Naming; RAN, Wolf & Denckla, 2005). Although 

not specifically testing dyslexic readers, one study (Chace et al., 2005) explored 

parafoveal processing during reading for a sample of university readers who were 

divided into groups of less skilled and skilled reading adults. Indeed, Chace et al. 

(2005) used the boundary paradigm with the following preview conditions: identical 

to the target word (i.e. beach), a homophone of the target word (beech), an 

orthographic control (bench), or a random letter string (jfzrp). Consistent with prior 

research, skilled adult readers obtained the usual preview benefit in which identical 

previews provided greater facilitation than random letter strings. Furthermore, skilled 

readers also showed a benefit of homophone previews compared to orthographic 

previews, demonstrating the parafoveal processing of both orthographic and 

phonological information for skilled readers. The less skilled readers, however, did 

not show a benefit of homophone previews compared to orthographic previews and 

very little benefit of identical previews compared to random letter strings. As such, 

Chace et al. (2005) concluded that less skilled readers showed no evidence of any 

type of preview benefit, and that increased foveal load (Henderson & Ferreira, 1990; 

Rayner, 1986; Vignali et al., 2019), induced through the use of low frequency pre-

target words (33 counts per million; BNC, British National Corpus), might have 

prevented parafoveal processing for the less skilled readers.  

Whilst this is interesting in regard to parafoveal processing for readers with 

dyslexia, it must be noted that the skilled and less skilled reading groups used within 

Chace et al. (2005) were determined based on their scores on the vocabulary and 

reading comprehension subtests of the Nelson-Denny Reading Test (Brown, Bennett, 

& Hanna, 1981). Thus, the less skilled reading group used by Chace et al. (2005) 

would have been readers with poor vocabulary and comprehension, not necessarily 

readers with impaired decoding skills (i.e. readers with dyslexia). In fact, it is 

important to note that dyslexia and difficulties with reading comprehension are often 

considered separate disorders; Cain et al., 2000; Cain, 2010; Hulme & Snowling, 
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2009; Nation et al., 1999; Nation & Snowling, 1998b; Snowling & Hulme, 2012; 

Stothard & Hulme, 1995). In which case, the parafoveal processing difficulties found 

in the less skilled reading group tested in Chace et al. (2005), may not represent the 

parafoveal processing difficulties that occur for readers with dyslexia. Indeed, whilst 

Chace et al. (2005) found no evidence of parafoveal processing for their less skilled 

reading group, studies have demonstrated that both adult and child dyslexic readers 

do in fact gain parafoveal preview benefits during RAN tasks (Jones et al., 2013; 

Yan et al., 2013). As such, is it still unclear as to whether readers with dyslexia do in 

fact gain orthographic parafoveal preview benefits during reading.  

The current study examined the transposed letter effect for the initial letters 

of a word during parafoveal processing in adults with and without dyslexia. 

Although transposed letter effects may be reduced within the initial letters for skilled 

readers, the initial letters were manipulated for the following reasons. The first 

reason was to optimise the opportunity for dyslexic readers to demonstrate a 

parafoveal preview benefit. Indeed, Rayner et al., (1989) found a reduced perceptual 

span (defined as the region of effective vision) within their small sample of dyslexic 

readers. As such, positioning the manipulation within the first 2 letters of the target 

word increases the possibility to find effects of parafoveal processing even if 

dyslexic readers have a restricted perceptual span. Furthermore, as discussed earlier 

within this chapter, transposing the initial letters of a word may indeed heighten the 

disruption caused to readers with dyslexia, given the importance of initial letters 

(perhaps due to sequential mapping of phonological information) and dyslexic 

readers’ difficulty with mapping phonology to orthography. Therefore, using 

identical previews (IP; e.g. nearly), transposed-letter previews (TL; e.g. enarly), and 

substituted-letter previews (SL; e.g. acarly) the current study aimed to clarify; 1) 

whether adults with dyslexia exhibit parafoveal preview benefit during reading by 

examining to what extent dyslexic readers can encode orthographic information 

parafoveally, as, to our knowledge, no studies have yet tested dyslexic parafoveal 

processing during sentence reading, and 2) explore the extent to which transposing 

letters disrupts reading for dyslexic readers in comparison with skilled adult readers. 

Further to Jones et al. (2013) and Yan et al. (2013), who provide evidence for 

parafoveal processing in dyslexic reading during a RAN task, we predicted that 

adults with dyslexia would show parafoveal preview benefit as demonstrated through 

reduced viewing durations for identical previews compared to substituted-letter 
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previews. Furthermore, based upon the proposed visual attention deficits 

(Vidyasagar & Pammer, 2010; Whitney & Cornelissen, 2005), the following 

predictions were made. If dyslexic readers encode letter position extremely flexibly 

(or perhaps not at all), then dyslexic readers would gain similar preview benefit for 

both identical previews and transposed-letter previews (as they both provide the 

correct letter identity information regardless of letter position). Such result would 

indicate that readers with dyslexia do not show an importance of initial letter 

information. Conversely, if adults with dyslexia have a greater dependence on letter 

position information, perhaps due to encoding words as visual objects (Whitney & 

Cornelissen, 2005): they would gain a preview benefit for identical previews 

compared to both transposed-letter previews and substituted-letter previews, with no 

additional benefit of pre-processing the transposed-letter preview compared to the 

substituted-letter preview. This would indicate that dyslexic readers rely heavily on 

the correct letter position information and, consequently, have not developed a 

skilled attentional location gradient that allows for flexibility during the encoding of 

letter position. Alternatively, dyslexic readers may not show any deficits in attention 

allocation during parafoveal processing: in which case, dyslexic readers should show 

the usual orthographic preview benefits (benefit of identical previews compared to 

transposed-letter previews and transposed-letter previews compared to substituted-

letter previews) in the same manner as the skilled adult readers.  

3.2 Method 

3.2.1 Participants  

Participants were 25 university students with developmental dyslexia (mean age of 

21 years and 6 months, SD: 4 years and 6 months) and 26 university students without 

dyslexia (mean age 20 years 3 months, SD: 1 years and 3 months). Students with 

dyslexia had a prior, independent diagnosis of dyslexia and such diagnosis was 

further supported by deficits in standardised tests of reading ability (see Results 

section). All participants were native English speakers with normal or corrected to 

normal vision and were recruited from Bournemouth University. All participants 

performed within the normal range on a standardised intelligence test (IQ≥90).  
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3.2.2 Apparatus  

Eye movements were recorded from the right eye using a SR Research Eyelink 1000 

eye-tracker. Sentences were presented at a viewing distance of 660 mm on a 21 inch 

Formac ProNitron 21/750 monitor with a screen resolution of 1024 x 768 pixels and 

a refresh rate of 120 Hz. Sentences were presented in black 14pt Courier New font 

on a white background.  

3.2.3 Design and stimuli  

Three parafoveal preview conditions were presented using the boundary paradigm 

(Rayner, 1975). Parafoveal previews of the target words were either 1) identical to 

the target word, 2) a transposed-letter non-word, or 3) a substituted-letter non-word. 

The manipulation occurred in the initial two letters of the target word to both 

examine the impact of parafoveal processing for initial letters (which may in fact 

have a specific importance related to phonological processing) but also because these 

letters are indeed spatially closer to foveal vision and dyslexic readers may have 

reduced perceptual span (Rayner et al., 1989). For the transposed-letter conditions, 

the positions of the two initial letters were switched and for the substituted-letter 

conditions the initial two letters were replaced with visually similar letters (ascenders 

were replaced with ascenders and descenders with descenders) to retain orthographic 

similarity. Target words were always 6 letter words and preceded by a 5 or 6 letter 

pre-target word to increase the likelihood of a readers fixating upon both the words. 

Pre-target and target words were presented to the middle of the sentence and were 

high frequency words. In contrast to Chace et al. (2005), who used low frequency 

pre-target words, the current design specifically selected high frequency pre-target 

and target words in attempt to reduce foveal load and allow for parafoveal 

processing. The mean frequency of the pre-target word was 535 counts per million 

and the mean frequency of the target word was 262 counts per million (BNC; British 

National Corpus).  

The stimuli consisted of 90 sentence frames and for each sentence frame 

there were 3 versions corresponding to the three parafoveal preview conditions (See 

Table 3.1 for an example). Three experimental lists were constructed whereby each 

list contained a different version of each sentence frame and the parafoveal preview 
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manipulations were randomised across the 3 experimental lists, so that each 

participant saw 30 sentences from each of the three preview conditions.  

The eye movement contingent change boundary was located at the end of the 

pre-target word and to the left of the space preceding the target word. When the eyes 

moved past the invisible boundary, the target word changed from the parafoveal 

preview to the target word. The correct target word then remained in the sentence 

throughout the remaining duration of the trial. Display changes were typically 

undetected by the readers as they occurred during a saccade (when visual 

information is suppressed). Indeed when participants were questioned as to whether 

they noticed anything unusual during the experiment, very few reported noticing 

anything and those who did notice something suggested it occurred in a very small 

number of trials (less than 4 trials) and were unable to explain what had happened.  

 

Table 3.1. Examples of the target word manipulation. Sentence frames included an 

identical preview, a transposed-letter preview, or a substituted-letter preview.  

 Example sentence 

Identical  During the earthquake the table nearly collapsed on him. 

Transposed During the earthquake the table enarly collapsed on him. 

Substituted During the earthquake the table acarly collapsed on him. 

 

3.2.4 Offline measures of reading ability and IQ   

As discussed in Chapter 2, all participants completed a range of offline tests to 

validate that they were allocated to the correct reading group and to further assess 

their reading and intelligence profiles. IQ was measured using two subtests of the 

Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999); i) the 

vocabulary subtest, ii) the matrix reasoning subtest (for the full details on the WASI 

IQ test, refer back to Chapter 2). The Test of Word Reading Efficiency (TOWRE; 

Torgesen et al., 1999) was conducted to provide information on the participants’ 

reading ability. Indeed, as discussed in Chapter 2, reading ability is best assessed 
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through the combination of both word reading and pseudoword reading. Thus the 

TOWRE was selected to explore reading ability for adults, as it is formed of two 

parts; the sight word efficiency test and the phonemic decoding efficiency test, which 

together provide an overall word reading efficiency standard score for each 

participant. For both subtests, participants are required to read aloud as many items 

as possible within 45 seconds. The sight word efficiency subtest is a list of real 

words and the phonemic decoding efficiency subtest is a list of pseudowords. 

Finally, all participants completed the Number and Letters measures of the Rapid 

Automatised Naming (RAN; Wolf & Denckla, 2005) test in which they were 

required to read an array of letters or numbers presented within rows, as quickly and 

correctly as possible (again see Chapter 2 for discussion of the use of RAN as an 

offline measure). The time taken to correctly read aloud the items provides the RAN 

score and is an indication of how well individuals can integrate both visual and 

language information.  

3.2.5 Procedure 

Participants sat in front of a computer screen with their head positioned in a forehead 

and chin rest to minimise head movements. They were instructed to read the 

sentences silently for comprehension and to press a button on a gamepad once they 

had finished reading. A 3-point calibration was conducted prior to the experimental 

trials and selected due to the horizontal nature of single line sentences; an accurate 

calibration was accepted when the average errors in the validation were below 0.3° 

of visual angle. Calibrations were confirmed throughout the experiment and repeated 

when required. Each trial began with a gaze contingent box (a small black square) 

presented on the left hand side of the screen, positioned so that the initial letter of the 

sentence occupied the same location. Once the participant had fixated the square for 

250ms, the sentence appeared on the screen. Participants then read the sentence 

silently and terminated the trial with a button press. After 25% of the experimental 

sentences a “yes/ no” comprehension question appeared; participants were required 

to press a corresponding button to answer the question.  

3.2.6 Statistical analysis 

Prior to the analysis, fixations less than 80ms were either merged into nearby longer 

fixations or excluded and fixations more than 800ms were excluded from the data set 
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(5.07 % of fixations). Additional trials were excluded based upon the following 

criteria; 1) when the boundary was triggered prior to a saccade being made across the 

boundary, 2) when the display change completed more than 10ms after a fixation 

landing on the target word, 3) when the end of a saccade briefly crossed the 

boundary but the successive fixation remained in a position before the boundary, 4) 

when participants blinked on either the pre-target or target word, 5) when the 

participants skipped either the pre-target or target word. In total 1,937 trials were 

removed from the analyses (31.66 % of the dataset), data were excluded similarly 

across groups and conditions.  

3.3 Results  

As discussed in Chapter 2, analyses were conducted for both global and local eye 

movement measures. Global measures refer to results from all of the fixations within 

the sentence, whereas local measures were based solely on the eye movements that 

occurred on the target word. Data were analysed using linear mixed models (LMMs; 

see Chapter 2 for further discussion on the use of LMMs) using the lme4 package 

(version 1.1.442) in R (version 3.4.4). For global analyses, reading group was the 

fixed factor for all models. For local analyses, both reading group and preview 

condition were fixed factors for all models. Participants and items were specified as 

random effects for both global and local analyses. For each dependent measure, a 

“full” random structure was implemented including all varying intercepts and slopes 

of the main effects and interaction (maximal random effects structure as suggested 

by Barr et al., 2013). If the “full” model failed to converge, or there were too many 

parameters to fit the data (as indicated by correlations of 0.99, 1, -0.99 or -1 in the 

random structure), the random structure was systematically trimmed (first by 

removing correlations between random effects, and if necessary also by removing 

their interactions). Given our specific predictions, successive difference contrasts 

were used for preview condition (comparing identical previews and transposed-letter 

previews, followed by transposed-letter previews and substituted-letter previews). 

Treatment contrasts were used for Reading group with Skilled Readers (SR) set as 

the baseline. For each contrast we report beta values (b), standard error (SE) and t or 

z statistics. Fixation time analyses were carried out on log-transformed models to 

increase normality and count data were analysed using generalised linear mixed 

models following a Poisson distribution (GLMMs). 
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3.3.1 Eye tracking comprehension questions   

To ensure participants were reading the sentences, mean accuracy scores for the 

comprehension questions were recorded for each reading group. The mean accuracy 

in comprehension score was 95.83% correct for dyslexic readers and 96.82% for 

skilled adult readers. There was no significant difference in the accuracy scores for 

comprehension for the two reading groups, t(49) = -.72, p=.478. Both reading groups 

were able to read these sentences in order to correctly respond to the comprehension 

questions.  

3.3.2 Off-line measures of reading ability and IQ 

Mean scores and statistical analyses for the offline tests are presented in Table 3.2.  

There were no significant differences in the IQ scores of the two groups. However, 

the adults with dyslexia scored significantly lower on the TOWRE compared to the 

skilled adult readers. Scores for both the number and letter subsets of the RAN were 

also significantly lower for adults with dyslexia compared to skilled adult readers. 

Thus dyslexic readers showed similar levels of general intelligence to skilled readers, 

but poor reading and rapid naming skills. 

 

Table 3.2. Mean scores and statistical analysis for the offline tests for adults with and 

without dyslexia. Standard scores are provided for IQ, reading ability (measured via 

the TOWRE) and RAN numbers and letters. Standard deviations are shown in 

parentheses.  

	

 Dyslexic Readers Skilled Readers t-test result 

IQ 105.40 (7.92) 108.08 (6.36) t(49)= -1.33, p=.188 

TOWRE 82.60 (11.43) 102.15 (12.67) t(49)= -5.78, p<.001 *** 

RAN Numbers 103.92 (3.87) 111.38 (3.81) t(49)= -6.94, p<.001 *** 

RAN Letters 101.16 (5.94) 109.12 (4.59) t(49)= -5.36, p<.001 *** 

	



 

 
 

71 

3.3.3 Global measures  

The following global measures were included; total sentence reading time, average 

saccade amplitude, average forward and regressive fixation duration, and total 

number of forward and regressive fixations per sentence (See Table 3.3 for means 

and Table 3.4 and Table 3.5 for model outputs). Forward and regressive fixations 

were classified based upon the previous saccade direction (fixations preceded by a 

rightward saccade are considered forward fixations and fixations preceded by a 

leftward saccade are referred to as regressive fixations).  

Total reading time: As predicted, there was a main effect of reading group whereby 

dyslexic readers had significantly longer total reading times than the skilled readers; 

indicating dyslexic readers take longer to read than non-dyslexic readers.  

Saccade amplitude: Whilst there was a numerical trend to support dyslexic readers 

having shorter saccades than skilled readers, there was, however, no significant 

difference in saccade amplitude for dyslexic readers compared to skilled readers. 

Therefore, on average, dyslexic and non-dyslexic readers made saccades of a similar 

length.  

Forward and regressive fixation durations: There was a main effect of group for 

both forward fixation duration and regressive fixation duration. Dyslexic readers 

made longer forward fixations and longer regressive fixations compared to the 

skilled adult readers. 

Forward and regressive fixation counts: As predicted, dyslexic readers made 

significantly more forward fixations and regressive fixations compared to the number 

of fixations made by skilled readers.  
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Table 3.3. Average global reading measures for Experiment 1. 
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Table 3.4. Model output for LMMs conducted for global reading measures for Experiment 

1.  
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Forward fixation count Regressive fixation count 

 b SE z  b SE z   

Intercept 2.16 0.04 57.72  0.77 0.06 12.15   

Dyslexic readers 0.20 0.05 3.71  0.54 0.09 6.20   

 

Table 3.5. Model output for GLMMs conducted for global reading measures of 

forward fixation count  and regressive fixation count. Significant z values (|z| ≥ 1.96) 

are marked in bold.  

	

 

 

 

	

3.3.4 Local measures   

The following measures were analyzed for the embedded target words; first fixation 

duration, single fixation duration, gaze duration, go-past time, total reading time and 

landing position. First fixation duration is the duration of the initial fixation on the 

target word. Single fixation duration represents those fixations for which the reader 

made only one fixation on the target word during first pass. Gaze duration is the sum 

of fixation durations on the target word before the reader leaves that word. Go-past 

time is the sum of fixations durations on the target word from when a reader first 

fixated that word until their first fixation to the right of that word (including any 

regressions made before moving forward past the target word). Total time is the sum 

of all fixations that occur on the word throughout the whole trial (including any 

regressive fixations). Landing position is the character location on which the eye 

fixates. Table 3.6 provides the mean results for first fixation duration, single fixation 

duration, gaze duration, go-past time, total reading time and landing position across 

reading group and preview condition. Table 3.7 provides the LMM outputs and 

Table 3.8 provides LMM outputs for the simple effects analysis for when 

interactions between group and preview occurred.  
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 Identical Preview  Transposed Substituted  

First fixation duration (ms) 

 Dyslexia 247 (92) 272 (100) 269 (99) 

 Skilled Reader 224 (67) 231 (74) 249 (77) 

Single fixation duration (ms) 

 Dyslexia 253 (94) 284 (102) 290 (100) 

 Skilled Reader 225 (67) 237 (75) 257 (77) 

Gaze duration (ms) 

 Dyslexia 298 (152) 337 (145) 340 (148) 

 Skilled Reader 253 (103) 261 (101) 286 (105) 

Go-Past Time (ms) 

 Dyslexia 406 (383) 434 (280) 478 (343) 

 Skilled Reader 300 (212) 303 (218) 346 (197) 

Total Time (ms) 

 Dyslexia 436 (296) 476 (268) 495 (291) 

 Skilled Reader 317 (222) 344 (157) 343 (158) 

Landing Position (characters) 

 Dyslexia 3.28 (1.59) 3.09 (1.49) 3.10 (1.53) 

 Skilled Reader 3.51 (1.55) 3.46 (1.61) 3.35 (1.52) 

	

Table 3.6. Mean first fixation duration, single fixation duration, gaze duration, go-

past time, total reading time and landing position for the target word, as a function of 

preview condition and reading group. Standard deviations are shown in parentheses.	
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First fixation duration. For first fixation duration, there was a main effect of group 

in the predicted direction whereby dyslexic readers made longer first fixations on the 

target word than skilled readers. There was also a main effect of preview whereby 

transposed-letter previews received shorter fixation durations than substituted-letter 

previews. The main effect for identical previews compared to transposed-letter 

previews, however, did not reach significance. In addition, both interactions were 

significant (see Figure 3.1). The preview benefit in which identical previews had 

shorter first fixation durations compared to transposed-letter previews was larger for 

readers with dyslexia than for skilled readers. Furthermore, the TL effect in which 

transposed-letter previews had shorter fixation durations than substituted-letter 

previews, only occurred for the skilled adult readers. Simple effects analysis for the 

TL effect indicated that the dyslexic readers did not show the usual benefit of 

transposed-letter previews compared to substituted-letter previews. Thus, for first  

 

	

Figure 3.1. Mean first fixation durations for dyslexic readers and skilled readers 

across identical previews, transposed-letter previews and substituted-letter previews. 

Error bars show standard error in each preview condition. 
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fixation duration, skilled adult readers showed the usual orthographic parafoveal 

preview pattern in which they received the greatest preview benefit from identical 

previews, followed by transposed-letter preview, with the least benefit for 

substituted-letter previews; indicating flexible letter position encoding during 

parafoveal processing. In contrast, dyslexic readers showed a slightly different 

pattern of results, in which they demonstrated less flexibility when encoding letter 

position; readers with dyslexia showed a larger preview benefit for identical 

previews compared to transposed-letter previews than skilled readers and dyslexic 

readers did not show the usual benefit of transposed-letter previews compared to 

substituted-letter previews.  

Single fixation duration: The single fixation results were very similar to the first 

fixation duration results. Dyslexic readers demonstrated the usual effect of group in 

which they made longer single fixations on the target word than skilled readers. In 

addition, there were main effects of preview where identical previews received 

shorter fixation durations than transposed-letter previews and transposed-letter 

previews received shorter fixation durations than substituted-letter previews. Both 

the interactions were also significant; dyslexic readers showed a greater benefit of 

identical previews compared to transposed-letter previews than the skilled readers, 

and, skilled adult readers showed a greater benefit of transposed-letter previews 

compared to substituted-letters compared to the dyslexic readers. Similar to first 

fixation duration, the simple effects analysis indicated that dyslexic readers did not 

show a significant TL effect (see Figure 3.2). This further indicates that, in contrast 

to skilled readers, dyslexic readers have difficulty with flexibly encoding 

orthographic information from the parafovea. 

Gaze duration: As predicted, dyslexic readers’ gaze durations were longer than 

skilled readers’ gaze durations, further indicating their difficulties with reading. The 

main effect for identical previews compared to transposed-letter previews was 

marginally significant, indicating such that gaze durations were shorter for identical 

previews. There was also a significant main effect demonstrating shorter gaze 

durations following transposed-letter previews than substituted-letter previews. 

There was an interaction whereby dyslexic readers showed a greater benefit for 

identical previews compared to transposed-letter previews than did skilled readers. 

The interaction comparing transposed-letter previews to substituted-letter previews 

across reading group was also significant. Although dyslexic readers showed a 
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numerical trend to support a benefit of transposed-letter previews compared to 

substituted-letter previews, simple effects analyses indicated that the benefit of 

transposed-letter previews compared to substituted-letter previews did not reach 

significance for dyslexic readers. Thus providing further evidence that dyslexic 

readers have difficulty with flexibly encoding orthographic parafoveal information. 

Go-past time: Similarly to the previous measures reported thus far, readers with 

dyslexia had longer go-past times than the skilled readers. There was a main effect in 

which transposed-letter previews required shorter go-past times compared to 

substituted-letter previews. The main effect of identical previews receiving shorter 

go-past times than transposed-letter previews was not significant, there was, 

however, a marginally significant interaction whereby dyslexic readers showed a 

greater benefit for identical previews compared to transposed-letter previews than 

skilled readers. The interaction comparing transposed-letter previews to substituted- 

 

 

Figure 3.2. Mean single fixation durations for dyslexic readers and skilled readers 

across identical previews, transposed-letter previews and substituted-letter previews. 

Error bars show standard error in each preview condition. 
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letter previews across reading group was not significant. Therefore, for go-past time, 

dyslexic readers showed the usual orthographic parafoveal preview pattern, in which 

they received the greatest preview benefit from identical previews, followed by 

transposed-letter preview, with the least benefit for substituted-letter previews; this 

indicates flexible letter position encoding during parafoveal processing.  

Total reading time: Again, we found a group effect in which dyslexic readers had 

longer total reading times than skilled readers. For total reading time, there was also 

a main effect whereby transposed-letter previews had shorter total reading times than 

substituted-letter previews. The main effect comparing total reading times for 

identical previews and transposed-letter previews was not significant, however, there 

was a significant interaction to indicate that dyslexic readers showed a greater benefit 

for identical previews compared to transposed-letter previews than skilled readers. 

The interaction comparing transposed-letter previews to substituted-letter previews 

across reading group was not significant. These results for both dyslexic and non 

dyslexic readers demonstrate the typical orthographic parafoveal preview effects in 

which identical previews have the shortest total reading times, followed by 

transposed-letter previews, with substituted-letter previews having the longest total 

reading times.  

Landing position: There was a marginally significant main effect of group on 

landing position; dyslexic readers were found to land earlier into the target word than 

the skilled adult readers. In contrast to the effect of group, preview condition had no 

significant effect upon landing position. Furthermore, none of the interactions were 

significant.  
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Table 3.7. Model output for LMMs conducted for local reading measures for 

Experiment 1. 
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	  First fixation duration Single fixation duration  Gaze duration  

 b SE t  b SE t  b SE t  

Intercept 5.45 0.02 307.31  5.47 1.94 282.4  5.60 2.38 235.72  

TL vs SL -0.01 0.02 -0.68  8.66 2.16 0.69  9.72 2.19 0.66  

 

Table 3.8. LMM output for simple effects analysis exploring transposed-letter 

previews (TL) compared to substituted-letter previews (SL) for dyslexic readers in 

measures of first fixation duration (ms), single fixation duration (ms) and gaze 

duration (ms). Significant t values (|t| ≥ 1.96) are marked in bold.  

	

	

 

 

 

 

3.4 Discussion  

The aim of the current study was to examine parafoveal processing in dyslexic 

reading; particularly, to examine parafoveal letter position and letter identity 

encoding in adults with dyslexia. The pattern of results indicated that both dyslexic 

and skilled adult readers gain preview benefit during reading; however, when 

presented with identical previews compared to transposed-letter previews, dyslexic 

readers often exhibited a larger parafoveal preview benefit compared to skilled 

readers. In addition to demonstrating an increased preview benefit for identical 

previews compared to transposed-letter previews, dyslexic readers did not 

demonstrate a TL effect during early reading measures. The TL effect only became 

significant for dyslexic readers in later measures of reading such as go-past time and 

total reading time. Finally, in regard to foveal eye movement patterns, dyslexic 

readers required longer viewing durations and made more fixations than skilled adult 

readers. 

The results from the current study provide initial evidence that dyslexic 

readers are able to gain parafoveal preview benefit during silent sentence reading. 

This finding supports and extends the evidence that dyslexic readers parafoveally 

process information during RAN (Jones et al., 2013; Yan et al., 2013). The current 
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findings, however, show a different pattern of preview benefit effects to those 

reported by Chace et al. (2005), who concluded that their sample of less skilled 

readers did not benefit from parafoveal information during silent sentence reading. 

This is, perhaps, not that surprising since the current experimental design was 

optimised to find parafoveal preview benefits for readers with dyslexia; specifically, 

the experiment was designed so that the parafoveal manipulation occurred within the 

initial two letters and both pre-target and target words were high frequency words 

which reduce foveal demand and attentional constraints. In contrast, Chace et al. 

(2005) used low frequency pre-target words, which would demand an increased 

foveal load in comparison to the high frequency pre-target words selected within the 

current study. As such, it is possible that the experimental design of the study by 

Chace et al. (2005) restricted the reader’s attentional resources and prevented 

parafoveal preview benefits, whereas the current experimental design did not. In 

addition, the two experiments differed in regard to samples. The current experiment 

focused upon readers with dyslexia whereas Chace et al. (2005) used a sample of 

readers with poor vocabulary and reading comprehension (often named poor 

comprehenders). Therefore, it is possible that these two reading groups show 

differences in their ability to parafoveally process information during reading; this is 

somewhat supported by studies that indicate that dyslexia and poor comprehenders 

are considered separate reading disorders with different causes and different 

treatments (Cain et al., 2000; Cain, 2010; Hulme & Snowling, 2009; Nation et al., 

1999; Nation & Snowling, 1998b; Snowling & Hulme, 2012; Stothard & Hulme, 

1995). Indeed, within the current study, readers with dyslexia had the attentional 

resources available to allow them to gain useful information from the parafovea 

during reading.  

Further to examining whether dyslexic readers gain parafoveal preview 

benefit during reading, the current study explored how attention allocation may 

impact parafoveal orthographic encoding for the initial letters of the parafoveal word. 

Contrary to the first prediction that dyslexic readers may have difficulty with letter 

position encoding (Vidyasagar & Pammer, 2010; Whitney & Cornelissen, 2005) and 

therefore show similar preview benefit for both identical previews and transposed-

letter previews, the present findings demonstrate that both groups of readers showed 

greater preview benefit for identical previews compared to transposed-letter 

previews. This supports research demonstrating that letter-position information is 



 

 84 

encoded from the initial letters within the parafoveal word for skilled readers 

(Johnson et al., 2007; Pagán et al., 2016; Tiffin-Richards & Schroeder, 2015). 

Furthermore, the current results provide evidence that dyslexic readers do in fact 

encode letter position from the initial letters of the parafoveal word. This finding 

suggests that not only are adult dyslexic readers able to allocate their attention to the 

parafovea for pre-processing, but also individually to the initial letters within the 

parafoveal word in order to encode letter position information. Dyslexic readers, 

however, often demonstrated an increased benefit of identical previews compared to 

transposed-letter previews relative to that of the skilled adult readers. Indeed, 

consistent with prior research (Johnson & Dunne, 2011; Johnson et al., 2007) we 

found that, for skilled readers, transposed-letter previews were almost as beneficial to 

lexical identification as identical previews. Dyslexic readers, however, demonstrated 

a significantly greater benefit of identical previews compared to transposed letter 

previews in comparison to skilled readers. This suggests that dyslexic readers show 

reduced lexical activation for transposed-letter previews than that of the skilled 

readers; dyslexic readers, therefore, have less flexible letter position encoding, in 

which previews with transposed letters provide a reduced lexical activation to the 

base word, than that found for skilled adult readers.  

In support of previous studies in skilled adult parafoveal processing (Johnson 

et al., 2007; Pagán et al., 2016), the current results also provide evidence of a TL 

effect (preview benefit for transposed letter previews compared to substituted letter 

previews) in skilled adult readers, thus demonstrating that skilled adult readers can 

encode letter identity independently to letter position. For dyslexic readers, however, 

there was a slightly different pattern of results. The increased preview benefit that 

occurred for identical previews compared to transposed-letter previews, specifically 

for dyslexic readers, occurred alongside a reduced difference between transposed-

letter previews and substituted-letter previews (the TL effect) for the dyslexic 

readers. Thus, dyslexic readers did not demonstrate a TL effect in early measures of 

reading and the TL effect only became significant in later reading measures (go past 

time and total reading time). For first fixation duration, dyslexic readers did not show 

a numerical trend to support the TL effect, indicating that dyslexic readers rely more 

heavily upon correct letter position information than skilled readers, during early 

measures of reading. In measures of single fixation duration and gaze duration, 

dyslexic readers showed a numerical trend to support the TL effect but, through 
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further exploration using simple effects, this effect was not significant for dyslexic 

readers. For go-past time and total reading time, however, readers with dyslexia 

exhibited a significant TL effect. 

The fact that the TL effect is significant in go-past time suggests that dyslexic 

readers start to flexibly encode letter position in first pass within word regressions 

rather than during early reading measures. Whilst this is a later measure than one 

would typically expected to find parafoveal preview benefits, this is perhaps not that 

surprising for dyslexic readers who have slower lexical activation and make more 

fixations (both forward and regressive) compared to skilled adult readers. Thus, for 

dyslexic readers, successful lexical activation often occurs from multiple fixations. 

Furthermore, as discussed, dyslexic adults showed an increased dependence on letter 

position for lexical activation of parafoveal information compared to skilled adult 

readers. As such, flexible encoding of letter position and letter identity may not be as 

useful for dyslexic readers in early measures of reading. Therefore, whilst dyslexic 

readers did show a TL effect, indicating that they can use a flexible letter position 

encoding mechanism, they are, however, less efficient at processing correct letter 

identity information when it is in the incorrect letter position, causing the TL effects 

to occur within later eye movement measures. Indeed, it may be the case that the 

incorrect letter identities encoded in a substituted-letter preview disrupt lexical 

activation during these later measures, whereas the transposed-letter previews 

provide the correct letter identities and thus cause less disruption to lexical 

activation.   

Although dyslexic readers demonstrated a greater dependence on letter 

position information and a delayed TL effect relative to skilled adult readers, 

dyslexic readers did show a trend toward a benefit of transposed-letter previews 

compared to substituted-letter previews in single fixation duration and gaze duration 

as well as significant effects n go-past time and total reading time. As such, we 

suggest that dyslexic readers are not using a whole word encoding method as 

suggested by Whitney and Cornelissen (2005) but are, in fact, using a flexible letter 

position coding mechanism with greater dependence upon correct letter position 

information compared to skilled readers. Such pattern of results could be explained 

by dyslexic readers’ reduced reading skills; dyslexic readers are demonstrating a 

serial reading pattern similar to younger readers, who rely more upon encoding 

individuals letters within a word (Ehri, 2005; 2010), therefore letter position 
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information is more important to lexical activation. Such explanation is in line with 

the proposal that the eye movement patterns of dyslexic readers indicate their 

linguistic processing difficulties (Kirkby et al., 2008). Furthermore, the reduced TL 

effect for dyslexic readers could also highlight that dyslexic readers have a deficit in 

attention allocation, whereby they have not developed the correct attentional location 

gradient to allow them to flexibility encode letter position information (Vidyasagar & 

Pammer, 2010; Whitney & Cornelissen, 2005). It is, however, currently unclear the 

extent to which this attentional allocation deficit may be specific to dyslexic readers 

rather than to poor readers more generally.  

Indeed, it is important to note that the greater dependence on correct letter 

position information, found for dyslexic readers compared to non-dyslexic readers, 

might be a finding limited to these initial letters. Recall that the current experiment 

specifically manipulated the initial letters within the parafoveal word. Initial letters 

of a word are, however, encoded less flexibly than internal letters, demonstrating an 

intrinsic importance of initial letters for lexical identification (Johnson & Dunne, 

2012; Johnson & Eisler, 2012; Johnson et al., 2007; Tiffin-Richards & Schroeder, 

2015; White et al., 2008). Here we show that dyslexic readers have a greater reliance 

on these initial letter positions for lexical word identification compared to skilled 

adult readers. Therefore, it may be that readers with dyslexia show an increased 

importance for these initial letters compared to skilled readers. We suggest that these 

initial letters may be intrinsically important due to the requirement for sequential 

activation of phonological codes in order to activate phonological representations 

during reading. Dyslexic readers, due to their difficulties in phonological processing 

(Snowling, 2000), may therefore have a greater reliance upon the correct initial letter 

position information, as they have specific difficulties with encoding phonological 

information compared to skilled adult readers. Thus, disruptions in the sequential 

order of phonological information, as found in transposed-letters, may be more costly 

to dyslexic readers than skilled readers.  

Finally, in addition to exploring parafoveal processing for readers with 

dyslexia, the current study also recorded measures of foveal processing. In line with 

previous research into dyslexic eye movements during reading (Hawelka et al., 2010; 

Kirkby et al., 2011; Kirkby et al., 2008), the present study found the usual effects of 

reading ability on eye movement behaviour. Dyslexic readers required longer 

viewing durations than the skilled adult readers and this occurred at both global 
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(average regressive fixation duration and total reading time) and local levels (first 

fixation duration, single fixation duration, gaze duration and total reading time). 

Dyslexic readers also required more forward fixations and more regressive fixations 

than skilled adult readers at a global level. Altogether, these differences in eye 

movement behaviour for dyslexic compared to non-dyslexic readers indicate that the 

current sample of dyslexic readers showed reading difficulties compared to the 

sample of non-dyslexic adult readers, thus providing further evidence of dyslexic 

readers’ difficulties with lexical processing in comparison to skilled readers 

(Hawelka et al., 2010). 

In addition to the above eye movement patterns, dyslexic readers also showed 

differences in landing position; dyslexic readers landed earlier into the target word 

compared to skilled adult readers. Whilst earlier landing positions are often found for 

readers with dyslexia relative to non-dyslexic readers (De Luca et al., 2002; Hawelka 

et al., 2010; MacKeben et al., 2004; Pan et al., 2014), it is less clear as to why readers 

with dyslexia make these early landing positions. One explanation is that dyslexic 

readers do not receive sufficient parafoveal information to correctly target their 

saccades; indeed, parafoveal information is typically used to help guide eye 

movements (Rayner, 1998; Sereno & Rayner, 2000). Within the current study, 

however, dyslexic readers showed the ability to allocate their attention to the 

parafovea, in order to extract useful information from the parafovea during reading 

(however, note the parafoveal manipulations only occurred within the first two letters 

of the parafoveal word and, as such, it is possible that parafoveal processing 

difficulties may occur further into the parafovea). An alternative explanation is that 

dyslexic readers develop a reading strategy, which impacts their landing positions. 

Specifically, it has been suggested that the frequent orthographic recognition failures 

made by readers with dyslexia may have resulted in a general tendency to target the 

beginnings of words in hope to improve reading (Hawelka et al., 2010); this 

suggestion has been supported by a number of studies (De Luca et al., 2002; 

MacKeben et al., 2004). Consequently, whilst the current study cannot determine 

why readers with dyslexia make earlier landing positions, similarly to previous 

studies, the current study did demonstrate that readers with dyslexia show earlier 

landing positions compared to skilled adult readers. 

Whilst the current research provides initial evidence in regard to parafoveal 

processing during reading for adults with dyslexia, future work is required to extend 
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these findings and further understand why dyslexic readers exhibit differences in 

parafoveal processing relative to skilled adult readers. In fact, future work would 

benefit from exploring whether readers with dyslexia can extend their parafoveal 

processing abilities beyond the initial letters of the parafovea and, if so, whether they 

show similarly reduced TL effects for internal letter transpositions. Since this initial 

study was designed to determine whether readers with dyslexia do gain parafoveal 

processing benefit during reading, the foveal demands were kept low (with a high 

frequency pre-target word), it is possible that when foveal demand is increased, 

dyslexic readers show limitations in parafoveal processing. 

3.5 Chapter summary   

This chapter reported the first Experiment of the thesis, which explored orthographic 

parafoveal processing for adult readers with dyslexia compared to skilled adult 

readers. In sum, this chapter provided initial evidence that dyslexic readers were able 

to allocate their attention to the parafoveal word in order to gain parafoveal preview 

benefits during reading. Specifically, readers with dyslexia were able to allocate their 

attention to individual letters within the parafoveal word in order to encode both 

letter position and letter identity. However, whilst readers with dyslexia appear to use 

a flexible letter position encoding mechanism (in which letter identity and letter 

position are encoded independently), they showed a greater dependence upon correct 

letter position information, compared to skilled readers. Consequently, contrary to 

the predictions, dyslexic readers were able to allocate their attention to the parafoveal 

word in order to encode letter identity and letter position information during reading, 

but, they appeared to rely more on letter position information for lexical activation 

compared to skilled adult readers. Therefore, although dyslexic readers were able to 

allocate their attention to the parafovea, they may have an attention deficit in which 

they have not developed the correct attentional location gradient to allow for the 

flexible encoding of letter position information that occurs within skilled adult 

readers (Vidyasagar & Pammer, 2010; Whitney & Cornelissen, 2005). However, 

note that the current results cannot determine the cause of such difficulties; these 

results may also be explained by dyslexic readers’ reduced reading skills compared 

to skilled readers, or, due to dyslexic readers showing increased importance for 

initial letters due to their difficulties in phonological processing. Whilst this initial 

experiment provides evidence of orthographic parafoveal processing during dyslexic 

reading, it is still unclear to what extent attention deficits may impact readers with 
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dyslexia and whether such attention deficits are specific to dyslexic readers, or due to 

their poor reading skills.  

The next chapter extends this work to examine attention allocation and 

parafoveal processing for children with dyslexia. Chapter 4 explores orthographic 

parafoveal processing in children with dyslexia, children matched for reading age 

and children matched for chronological age. This allows for further understanding of 

how deficits in reading ability may impact dyslexic reading. 
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Chapter Four: Experiment 2 

4.0 Chapter overview   

Whilst Chapter 3 provides initial evidence for dyslexic parafoveal processing during 

reading, adult dyslexic readers showed a greater reliance on letter position 

information for lexical identification of parafoveal information compared to skilled 

adult readers. Within this chapter, the same experimental design was used to explore 

parafoveal processing and orthographic encoding of letter identity and letter position 

information for children with dyslexia. This not only allowed for the findings to be 

extended to child populations, but also served to examine the relationship between 

dyslexic parafoveal processing and reading ability, through the use of two control 

groups; typically developing children with a similar chronological age to the dyslexic 

children and typically developing children with a reading age similar to the dyslexic 

children (see Chapter 2 for discussion about the importance of testing with both adult 

and child samples and also experimental controls groups). Thus, the following 

chapter used the boundary paradigm to explore whether both dyslexic and groups of 

non-dyslexic children can parafoveally encode letter identity and letter position 

during reading.  

Orthographic parafoveal processing in children with and without 

dyslexia  

4.1 Introduction  

Whilst there is a growing body of research into parafoveal processing for skilled 

adult readers (see Schotter et al., 2012 for a review), there is still a limited amount of 

research exploring the development of parafoveal processing for child readers 

(Hӓikiӧ et al., 2010; Marx et al., 2015; Pagán et al., 2016; Tiffin-Richards & 

Schroeder, 2015). As discussed in Chapter 1, the perceptual span increases during 

development and this increase in perceptual span is largely assigned to developments 

in reading ability (Häikiö et al., 2009; Rayner, 1986). In fact the perceptual span 

plateaus by the age of 11 years old when children show a perceptual span similar to 

that of adults (Häikiö et al., 2009; Marx et al., 2016; Rayner, 1986; Sperlich et al., 

2015). In addition to understanding the development of the perceptual span, recent 
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research has started to use the boundary paradigm to explore parafoveal processing 

benefits of children during reading (Hӓikiӧ et al., 2010; Marx et al., 2015; Pagán et 

al., 2015; Tiffin-Richards & Schroeder, 2015). To date, there is evidence of 

parafoveal preview benefits for child readers; specifically, orthographic and 

phonological parafoveal processing have been found to occur in typically developing 

readers as young as 8 years old (Pagán et al., 2015; Tiffin-Richards & Schroeder, 

2015). 

Marx et al. (2015) used the boundary paradigm to explore parafoveal 

processing for German-speaking children in grade 4 (mean age 10 years old) and 

grade 6 (mean age 12 years old). They used parafoveal masking, a paradigm in 

which valid previews are compared to previews that are ‘masked’ to prevent 

parafoveal processing. Within their study they implemented a novel masking 

technique in which the salience of the preview was manipulated by systematically 

degrading the perceptibility of the preview; black pixels from the letters were 

randomly exchanged for white pixels from the nearby area thus making the words 

look somewhat blurred. Up until recent years, there was very limited research on 

parafoveal processing in children. Marx et al. (2015) developed their predictions 

based upon two studies, Zoccolotti et al. (2013) and Häikiö et al. (2009). Zoccolotti 

et al. (2013) found that 12 year olds read words faster when they are presented in list 

format, compared to words presented in isolation, a finding that was taken as 

evidence of parafoveal processing in children aged 12 years old. In addition, Häikiö 

et al. (2009) reported that the letter identity span of 10 year olds (4th grade children) 

was restricted to seven letters where as the span of 12 year olds (6th grade children) 

was much more similar to adults at nine letters. Marx et al. (2015) predicted preview 

benefit effects for 12 year old children but less preview benefit for 10 year old 

children. In fact, Marx et al. found evidence for parafoveal processing in both groups 

of children and, contrary to their predictions, there were no differences in the amount 

of preview benefit that the two groups received. This may be explained by the fact 

that child readers around the age of 11 years old show similar eye movement patterns 

and perceptual span to skilled adult readers (Blythe & Joseph, 2011: Häikiö et al., 

2009; Rayner, 1986; Sperlich et al., 2015). In which case, it is possible that both the 

10 year old and 12 year old children were reading at a level at which they show 

similar parafoveal processing abilities to adult readers.  
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Hӓikiӧ et al. (2010) also found evidence of parafoveal processing in typically 

developing Finnish children (age 8 years old, 10 years old and 12 years old) and 

adults. More specifically, they used the boundary paradigm to examine whether 

children and adults extract more parafoveal information from the second part of a 

compound word than from the same word when it forms part of an adjective-noun 

phrase. The results showed that all age groups were able to extract information from 

the parafovea, and more parafoveal information was extracted within compound 

words than across two separate words. They used these results to conclude that all 

reading groups were able to allocate their attention to the parafovea in order to 

encode useful information and that attention allocation was influenced by words that 

are more linguistically and spatially integrated.  

Whilst Hӓikiӧ et al. (2010) predicted that beginning readers (8 year old 

children) would show a different pattern of preview benefit compared to the more 

skilled reading groups (10 and 12 year old children; in line with results from Hӓikiӧ 

et al., 2009), they found consistent preview benefit across both younger and older 

children. As such, even children as young as 8 years old were able to allocate their 

attention to the parafoveal word in order to gain preview benefit and greater preview 

benefit from a compound word than from an adjective-noun phrase. This may, 

therefore, indicate sufficient parafoveal processing abilities develop as young as 8 

years old. However, the authors suggest that a lack of significant difference between 

the groups could be due to the stimuli used within their experiment. The sentences 

used within their study were designed to be particularly easy to read and this may 

have enabled the younger readers to allocate their attention further into the 

perceptual span to such an extent that parafoveal manipulations affected all groups of 

readers in a similar manner. In which case, they suggested that, if the reading task 

was made more challenging, such as paragraph reading in Hӓikiӧ et al. (2009), there 

may be variation in the parafoveal processing of children at different ages. In 

favourable reading conditions, however, children as young as 8 years old show the 

ability to parafoveally process information during reading in a similar manner to 

more skilled reading children; therefore, reading ability may only impact the ability 

to parafoveally process information during reading when attentional demands are 

increased.  

Of greater interest to the current line of enquiry are the studies by Tiffin-

Richards and Schroeder (2015) and Pagán et al. (2016) who explored parafoveal 



 

 93 

processing of orthographic information (letter identity and letter position) during 

reading. Both studies used the TL (transposed letter) effect to explore letter position 

encoding during parafoveal processing. Before discussing the development of TL 

effects within parafoveal processing, research into foveal processing of TL effects 

within children will be discussed. Indeed, similarly to research with adults, studies of 

single word recognition have demonstrated that, even for children, non-words with a 

transposition of two letters (e.g. jugde) were found to be more similar to the base 

word (e.g. judge) than non-words with two substituted letters (Acha & Perea, 2008; 

Castles, Davis, Cavalot, & Forster, 2007; Kohnen & Castles, 2013; Lété & Fayol, 

2013; Paterson, Read, McGowan, & Jordan, 2015; Perea & Estévez, 2008). The 

facilitation that is provided by non-words with transposed letters compared to words 

with substituted letters is known as the TL effect and indicates that non-words with 

transposed letters significantly activate the lexical representation of the base word 

more than non-words with substituted letters. The TL effect demonstrates that letter 

identity encoding is not specific to letter position – these are encoded independently 

of one another. 

Using a masked priming lexical decision task, Castles et al. (2007) explored 

transposed-letter and substituted-letter priming in English speaking third grade 

children (mean age 8 years 6 months) and adults. The third grade children were then 

tested again once they reached fifth grade (mean age 10 years and 5 months). Castles 

et al. (2007) used a transposed-letter prime (created by reversing two letters at the 

beginning, middle, or end of the word), substituted-letter prime (created by replacing 

one letter with another letter in the first, third, or fifth position) and control prime (in 

which none of the letters overlapped with the base word) to explore orthographic 

encoding. Whilst they did not specifically explore the TL effect (i.e. the difference 

between substituted-letter primes and transposed-letter primes), they did examine 

both the difference between the control prime and the transposed-letter prime and the 

difference between the control prime and the substituted-letter prime.  

For the adult readers, Castles et al. (2007) found no facilitation for either 

transposed-letter primes or substituted-letter primes. Such results suggest that adults 

have a finely tuned word recognition system in which readers have developed an 

effective mechanism for discriminating between words with a high level of precision; 

however, as discussed in Chapter 3 there is a body of research finding TL effects in 

adult readers (Chambers, 1979; Christianson et al., 2005; Forster et al., 1987; 
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O’Connor & Forster, 1981; Perea & Fraga, 2006; Perea & Lupker, 2003a, 2003b, 

2004). For third grade children, Castles et al., (2007) found that both transposed-

letter primes and substituted-letter primes provided substantial facilitation to lexical 

decision responses. Children, therefore, had a much more flexible word recognition 

system, which was much less finely tuned compared to adult readers. In addition to 

encoding letter position flexibly, children within grade 3 appeared to tolerate some 

degree of mismatch in letter identity as well. However, when grade 3 children were 

tested again in grade 5, Castles et al. (2007) found that children were no longer 

showing facilitation for the substituted letter prime, nevertheless, they were still 

gaining facilitation from the transposed-letter prime. Such results suggest that precise 

letter position encoding develops slower than precise letter identity encoding, and 

letter position information is encoded flexibly for children in grade 5 (with a mean 

age of 10 years and 5 months).   

Although beginning readers rely upon a letter-by-letter reading technique 

(Ehri, 2005; 2010), Castles et al. (2007) suggest that children have a more flexible 

letter position encoding mechanism than skilled readers. In particular, Castles et al. 

(2007) proposed that because children are less skilled readers, they have a reduced 

vocabulary and therefore, a smaller range of words within their lexicon. This means 

that when words are being identified, there are fewer competing lexical entries and 

words can be identified more flexibly using orthographic information. As such, 

children are more likely to identify a word with a less accurate overlap of 

orthographic information than adults who have finely tuned and wide ranging lexical 

representations. This suggestion is supported by Perea and Estévez (2008) who 

tasked Spanish beginning (7 year olds), intermediate (9 year olds), and adult readers 

with reading aloud words with transposed letters (for example CHOLOCATE, where 

the base word is CHOCOLATE). They demonstrated that beginning readers made 

more errors (i.e. reading aloud the base word), compared to both intermediate and 

adult readers; these results provide additional evidence that children have a more 

flexible letter encoding system.   

In a similar line of enquiry to that reported by Castles et al. (2007), Acha and 

Perea (2008) found that the primary difference in the encoding of transposed-letters 

between children and adult readers was the magnitude of the TL effect; children 

showed a larger TL effect compared to adults. Using a masked priming lexical 

decision task with Spanish beginning (7 years old), intermediate (11 years old) and 
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adult readers, Acha and Perea (2008) found that for all reading groups base words 

(e.g. animal), which were initially primed by transposed-letter non-words (e.g. 

aminal), were responded to faster than words which were primed by substituted-letter 

non-words (e.g. arisal). This demonstrates that children as young as 7 years old, 9 

year old children and adults, all showed a benefit of processing transposed-letter 

words over substituted letter words. Interestingly, Acha and Perea (2008) found that 

the beginning readers showed a TL effect of greater magnitude compared to both 

intermediate and adult readers, providing further support for increased flexibility in 

orthographic processing for less skilled readers.  

Whilst studies of single word identification provide a basis for understanding 

the development of orthographic encoding, there are now a small number of studies 

that have started to explore the development of orthographic encoding, during 

parafoveal processing in natural reading tasks. Tiffin-Richards and Schroeder (2015) 

used the boundary paradigm to explore parafoveal processing in German-speaking 

children aged 8-9 years in order to assess both phonological and orthographic 

preview effects. Two sets of sentences were constructed, intermixed and presented to 

participants. The first set of sentences included a parafoveal manipulation in which 

the preview could be: an identical preview, a pseudo-homophone or an orthographic 

control (examples are provided in German; Reis, Rais, Ruis, respectively). In the 

second set of sentences the parafoveal manipulation was either; an identical preview 

(target word which had a capitalised first letter, e.g. Burg), a lower case preview 

(where the target word was presented all in lower case, e.g. burg), a transposed-letter 

manipulation (in which the manipulation was presented within the initial letters of 

the word or internal letters of the word, e.g. Ubrg or Brug) and a substitution 

manipulation (where the initial or internal letters of the word were replaced with 

orthographically similar letters, e.g. Ohrg or Bnog).  

Tiffin-Richards and Schroeder (2015) found evidence of parafoveal 

processing in child readers. They showed that pseudo-homophone previews 

differentially influenced children’s compared to adult’s reading; children appeared to 

use phonological information from the parafovea whilst adults did not. Adults, 

however, did receive benefit from orthographic information whereas the children 

only gained orthographic preview benefit during single fixation durations and such 

effects were specific to TL-internal and TL-initial preview benefits, where TL 

conditions provided greater preview benefit than the corresponding substituted letter 
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preview. The author’s note that the TL effect found in single fixation duration for 

children should, however, be interpreted with caution. It is well established that 

children generally make more fixations during reading as well as more refixations on 

words than adult readers (Blythe & Joseph, 2011; Reichle et al., 2013). As such, 

children make fewer single fixations. That said, their findings are consistent with a 

developmental view of reading that initially depends on phonological processes, and 

orthographic processes become increasingly important later on in development 

(Grainger, Lété, Bertand, Dufau, & Ziegler, 2012).  

Whilst the results from Tiffin-Richards and Schroeder (2015) provide a 

useful basis for understanding parafoveal processing in developing readers, the lack 

of a TL effect found within their child sample contrasts directly with research 

exploring foveal TL effects in children (Acha & Perea, 2008; Castles et al., 2007; 

Perea & Estévez, 2008). Indeed, research has found an increased TL effect in 

children compared to adults during foveal processing (Acha & Perea, 2008; Castles 

et al., 2007; Perea & Estévez, 2008). Tiffin-Richards and Schroeder (2015), however, 

only found TL effects for children in single fixation duration and thus concluded that 

children only make use of flexible orthographic parafoveal information during 

occasions when the target received only one fixation. Children, therefore, have a 

reduced flexibility in encoding orthographic information compared to adult readers, 

except for occasions in which they are able to encode a word within one fixation. 

This suggests that, for child readers, perhaps TL effects manifest differently across 

parafoveal processing and foveal processing. Children are developing readers in 

which reading is a more taxing process; therefore, differences in orthographic 

encoding during foveal and parafoveal processing may be due to children having 

reduced attentional resources available to allocate to parafoveal compared to foveal 

processing. Hence, foveal processing may allow for flexible letter position encoding 

whereas parafoveal processing may in fact rely more upon correct letter position, 

except for occasions where the word is easy enough to encode within one fixation. 

This suggestion is, however, difficult to merge with the finding that these children 

were able to gain parafoveal preview benefit from phonological information 

regardless of whether the word was encoded within one or more fixations.  

One must consider, however, that Tiffin-Richards and Schroeder’s (2015) 

study was conducted in German, which is a more orthographically transparent 

language than English. Indeed, languages vary in orthographic depth (McDougall, 
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Brunswick & de Mornay Davies, 2010) and are broadly described in terms of 

transparent (shallow: e.g. Finnish) or opaque (deep: e.g. English). Within a 

transparent orthography, each grapheme represents one phoneme and ‘sounding out’ 

letters in a word is a successful strategy for reading (McDougall et al., 2010). In 

contrast, a deep orthographic language has a much more complex mapping of 

graphemes and phonemes, where several letters often represent one phoneme. 

Additionally, there are considerably more phonemes than letters, therefore, making 

letter-sound relationships much less predictable than in transparent orthographies 

(McDougall et al., 2010). As German is more orthographically transparent than 

English, there are fewer irregular words (Ziegler, Perry, & Coltheart, 2000) and this 

is important in regard to the development of orthographic processing and 

consequently TL effects. Irregular words cannot be correctly pronounced using 

phonological decoding; therefore, these words are suggested to require greater 

dependence on orthographic processing. In which case, English readers may show an 

earlier dependence on orthographic information than was found for German children 

(Tiffin-Richards & Schroeder, 2015). This suggestion is supported by the work of 

Pagán et al. (2016) who demonstrated orthographic parafoveal preview benefits for 

English children as young as 8-9 years old.   

Pagán et al. (2016) explored parafoveal processing of both letter identity and 

letter position information in the initial trigram (three letters) of the parafoveal word. 

Using the boundary paradigm, they presented English children (aged 8-9 years) and 

skilled adult readers with the following parafoveal manipulations: identity previews, 

transposed letter and substituted letter non-words with a manipulation within letter 

positions 1 and 2, 1 and 3, and, 2 and 3. Pagán et al. (2016) reported that children 

were able to gain orthographic parafoveal benefit in a similar manner to the adult 

readers. Children showed a benefit of identity previews compared to substituted and 

transposed letter previews, and also showed a TL effect (benefit for transposed letters 

compared to substituted letters). Children were able to encode letter position 

information independently to letter identity within the parafovea. It must, however, 

be noted that although the children in the Pagán et al. (2016) study had a mean age of 

9 years old, the mean reading age was in fact much higher, at 11 years, which 

suggests the children who were tested were particularly good readers for their age 

and, on average, read approximately two years above their chronological age. It is, 

therefore, difficult to determine whether the parafoveal processing abilities of 
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children in the Pagán et al. (2016) study are due to their chronological age (9 years 

old) or due to their reading age (11 years old). As such, it is unclear whether children 

with a reading age of 9 years would demonstrate the same pattern of parafoveal 

preview effects.  

Whilst there is a growing body of research into orthographic parafoveal 

processing in children, there has been very little research into parafoveal processing 

for children with dyslexia. There is, however, evidence for transposed-letter priming 

and substituted-letter priming within foveal processing for readers with dyslexia. 

Lété́ and Fayol (2013) conducted a masked priming lexical decision task with 

typically developing French third grade children (with a mean age of 8 years 11 

months and a reading age of 9 years), fifth grade children (with a mean age of 10 

years 10 months and a reading age of 11 years 3 months), adults, and dyslexic 

children from sixth, seventh, and eighth grade (mean age 13 years 1 month and a 

reading age of 8 years and 6 months) matched for reading age with the typically 

developing third grade readers. Similarly to that of Castles et al. (2007), Lété́ and 

Fayol (2013) used a transposed-letter prime (created by reversing two letters at the 

beginning, middle, or end of the word), substituted-letter prime (created by replacing 

one letter with another letter in the first, third, or fifth position) and control prime (in 

which none of the letters overlapped with the base word) and explored the difference 

between the control prime and the transposed-letter prime and the difference between 

the control prime and the substituted-letter prime.  

For skilled adult readers, Lété́ and Fayol (2013) found facilitation for the 

transposed-letter primes but no facilitation for the substituted-letter primes. In fact, 

adult readers demonstrated flexible encoding of letter position information in which 

encoding the correct letter identities is useful, even if they are in the incorrect letter 

position. In contrast, having incorrect letter identity information does not provide 

facilitation to lexical identification of the base word as there is a stricter requirement 

for correct letter identity compared to letter position. In contrast to adults, children in 

the fifth grade showed facilitation from both transposed-letter primes and 

substituted-letter primes. Therefore, similarly to the third grade English readers from 

Castles et al. (2007), fifth grade French readers show flexible orthographic encoding 

of both letter identity and letter position information. Interestingly, and in contrast to 

the findings for third grade children in Castles et al. (2007), the third grade children 

in Lété́ and Fayol’s (2013) study showed no evidence of priming for either 
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transposed-letter or substituted-letter primes, suggesting that these children were 

either unable to encode any information during priming, or that there is very little 

flexibility within their orthographic encoding. This indicates that orthographic 

parafoveal processing develops at different ages in English and French; English 

children appear to develop flexible orthographic processing younger than French 

children. Whilst French and English are both considered to be opaque orthographies, 

the level of phonological consistency within French suggests that the language is 

quite regular in respect to reading (Ziegler, Stone, & Jacobs, 1997). Orthographic 

density may, in fact, impact the development of orthographic parafoveal processing. 

Of particular interest to the current thesis, however, are the results from the children 

with dyslexia. 

Similarly to the children in fifth grade, the dyslexic children showed both 

priming effects for transposed-letter primes and substituted-letter primes and these 

effects were at a similar magnitude to that found for the children in fifth grade. 

Therefore, although the 13-year-old dyslexic readers had similar reading abilities 

(when evaluated on grapheme-to-phoneme mapping in a reading aloud task) 

compared to the third grade children (aged 8 years 6 months), they demonstrated 

similar orthographic processing during masked priming as the fifth grade children 

(aged 10 years 10 months, with a reading age of 11 years 3 months). This suggests 

that dyslexic readers have more finely tuned orthographic representations than their 

reading skill would predict, at least for the high frequency words used within Lété 

and Fayol’s (2013) study. It is interesting to note that the authors claim that the 

dyslexic readers’ orthographic processing was similar to fifth grade children in 

regard to substituted-letter priming, but suggest that it was in fact less finely tuned 

(thus more flexible) in the case of transposed-letter priming. Whilst they did not find 

a significant interaction to support this, dyslexic readers showed a numerical trend to 

support greater priming effects for transposed-letter primes, compared to fifth grade 

children. Although non-significant results must be interpreted with caution, such a 

trend in the pattern of results might lead us to predict that dyslexic children’s access 

to orthographic lexical information is less impoverished than their access to 

phonological codes, which is a function of their reading ability (see Grainger, 

Bouttevin, Truc, Bastien, & Ziegler, 2003, and Lété & Ducrot, 2008, for similar 

conclusions). This is also consistent with Ziegler and Goswami (2005) who proposed 

that children with dyslexia do not perform worse than children matched on reading 
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age during tasks that require automatic orthographic access to whole words, 

however, they do show deficits in relation to sublexical phonology.  

Whilst Lété and Fayol (2013) provide useful insights into orthographic 

processing of letter identity and letter position information for dyslexic readers, 

unfortunately the authors did not include a group of typically developing children 

matched for chronological age. Therefore, it is impossible to fully understand the 

developmental trajectory for readers with dyslexia compared to typically developing 

readers. From their pattern of results, it can be concluded that the dyslexic readers 

show effects of priming that are different to the children who are matched for reading 

age (third grade children); however, we cannot determine whether the dyslexic 

readers are performing similarly to children of the same chronological age. Even 

when examining previous studies into the development of orthographic processing 

(Acha & Perea, 2008; Castles et al., 2007; Pagán et al., 2016; Tiffin-Richards & 

Schroeder, 2015), it is still unclear as to whether dyslexic readers may be performing 

similarly to a control group of typically developing English children matched for 

chronological age, as the correct age group has yet to be tested. Furthermore, many 

studies do not indicate the reading age of their typically developing child samples, 

making it difficult to understand how the development of orthographic processing 

occurs alongside both chronological age and reading age. From the research by Lété 

and Fayol (2013) it is clear that French children with dyslexia show similar patterns 

of priming to the French children in grade 5; however, the children in grade 5 are 

younger than the dyslexic readers. Therefore, it may be the case that children with 

dyslexia show similar patterns to children in grade 5 but deficits in comparison to 

their peer group. In fact, by age 13, one would predict that typically developing 

children would show similar patterns of results to adults, in which case typically 

developing children matched for chronological age would show a priming benefit for 

TL primes but no priming benefit for SL primes. Such a result would suggest that 

dyslexic readers would show orthographic processing abilities that are delayed 

relative to their peers.   

Although these results provide a basis from which to understand TL effects in 

foveal processing for readers with dyslexia, there is currently only one study 

exploring the TL effect during parafoveal processing for dyslexic readers (the first 

experiment within this thesis, detailed in Chapter 3). As discussed throughout this 

thesis, parafoveal processing is particularly interesting in regard to dyslexia, as 
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efficient encoding of parafoveal information requires correct attention allocation and 

deficits in attention allocation may be causally related to dyslexia (Vidyasagar & 

Pammer, 2010; Whitney & Cornelissen, 2005). One study, which has explored 

parafoveal processing for Chinese dyslexic children during RAN, found evidence for 

less efficient orthographic parafoveal processing in dyslexic children compared to 

typically developing child readers (Yan et al., 2013). Yan et al. (2013) recorded the 

eye movements of children with dyslexia and chronological age matched children as 

they read aloud letters during two rapid automised naming (RAN) tasks; a 

continuous RAN task (in which all letters were presented at the same time) and a 

discrete RAN task (where one letter was presented at a time, therefore, removing the 

possibility of parafoveally processing the next letter). Through including two 

variations of the RAN task, Yan et al. (2013) were able to determine whether 

dyslexic readers were making use of the parafoveal information presented during 

RAN. They found that removing a parafoveal preview of the upcoming letter 

disrupted both groups of readers, i.e. naming times and viewing durations were 

longer during the discrete RAN than the continuous RAN. This indicates that 

children with dyslexia do make use of information in the parafovea. However, Yan et 

al. (2013) also found an interaction between reading ability and RAN condition, in 

which children with dyslexia were less disrupted by the discrete RAN task than the 

typically developing children. Consequently, the authors concluded that children 

with dyslexia were less efficient in their use of parafoveal information, compared to 

typically developing children matched for chronological age, and suggested this is 

probably due to dyslexic readers requiring greater attentional resources for foveal 

processing. Whilst dyslexic readers showed less efficiency in the parafoveal 

processing of orthographic information compared to typically developing children 

matched for chronological age, Once again, due to a lack of the both chronological 

age and reading age control groups, it is unclear whether such findings may be 

caused by dyslexic readers’ lower reading skill rather than a fundamental difference 

in their cognitive processing.   

Whilst there are currently no studies exploring orthographic parafoveal 

processing during reading for children with dyslexia, Chapter 3 provides initial 

evidence of orthographic parafoveal processing during reading for dyslexic adults. 

Recall, dyslexic adults readers showed parafoveal preview benefits in which they 

encode both letter identity and letter position, however, dyslexic readers 
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demonstrated a greater reliance on letter position for the lexical identification and 

delayed flexible letter position encoding (at least for the initial letters of the 

parafoveal word) compared to skilled adult readers. It was, however, unclear exactly 

why dyslexic adult readers demonstrated such differences in letter position encoding. 

As discussed in Chapter 3, such results could be explained by reduced reading skills, 

in which case dyslexic readers demonstrate a serial reading pattern similar to 

younger readers (Ehri, 2005; 2010), or, due to a deficit in attention allocation 

whereby dyslexic readers have not developed the correct attentional location gradient 

to allow them to flexibly encode letter position information (Vidyasagar & Pammer, 

2010; Whitney & Cornelissen, 2005). By comparing results from the dyslexic 

children to the correct samples of typically developing children, these issues can be 

addressed. To this end, the current study explored parafoveal processing of 

orthographic information for children with dyslexia compared to both chronological 

age and reading age matched control groups.  

It is important to explore the trajectory of deficits in developmental dyslexia. 

By using reading age and chronological age matched control groups one can examine 

to what extent the deficits demonstrated by dyslexic readers are explained by their 

reading difficulties (therefore representing deficits that occur due to a reading delay), 

or are due to specific cognitive deficits related to dyslexia. Such results will help to 

inform whether the differences found within adult dyslexic orthographic parafoveal 

processing are attributable to their poor reading skills, or a function of a specific 

dyslexic deficit. Studies of foveal processing have shown that dyslexic readers have 

different patterns of eye movements during reading compared to typically developing 

children matched for chronological age; longer and more fixations, shorter saccades, 

longer total reading times, more regressions and landing positions that occur earlier 

within a word (for a reviews, see Kirkby et al., 2011; Bellocchi et al., 2013). 

However, these eye movement patterns are largely believed to reflect their difficulty 

with linguistic processing, and there are a small number of studies that suggest 

dyslexic eye movement patterns are indeed similar to typically developing children 

matched for reading age (Hyönä & Olson, 1995; Rayner, 1985a, Rayner 1985b). 

There is, however, a lack of research specifically aimed at exploring the eye 

movement patterns for dyslexic children in comparison to reading age matched 

children during foveal and parafoveal processing.  
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Similar to Experiment 1 with dyslexic adult readers (reported in Chapter 3), 

the current study used identical previews (IP; e.g. caught), transposed-letter previews 

(TL; e.g. acught), and substituted-letter previews (SL; e.g. erught) during the 

boundary paradigm to explore orthographic parafoveal processing. Again, 

manipulations occurred within the initial letter of the parafoveal word; recall that 

whilst TL effects may be somewhat reduced within the initial letters of the 

parafoveal word (discussed in detail in Chapter 3) they were selected for the 

following reasons: 1) dyslexic readers and children more generally have both been 

found to have a reduced perceptual span compared to skilled reading adults (Blythe, 

2014; Blythe & Joseph, 2011; Rayner et al., 2013; Rayner et al., 1989), in which case 

their parafoveal processing may be limited to the beginning of the parafoveal word, 

2) as discussed in Chapter 3, the initial letters of a word may be more important due 

to sequential mapping of phonological information, in which case transposing the 

initial letters of a word may in fact heighten the disruption caused to readers with 

dyslexia due to dyslexic readers’ difficulty with mapping phonology to orthography 

(Liberman, 1973; Snowling, 1995; Snowling, 2000; Snowling & Hulme, 2012; 

Stanovich, 1988). Indeed, similarly to skilled adults, typically developing children 

show greatest disruption to lexical activation when the initial letters of a word are 

transposed compared to internal letters of a word (Pagán et al., 2016; Tiffin-Richards 

& Schroeder, 2015).  

The current study aimed to address the following questions; 1) Do children 

with dyslexia encode letter position information within the parafovea during reading? 

2) Do children with dyslexia encode letter position information flexibly within the 

parafovea, thus demonstrating the TL effect? 3) Do children with dyslexia show 

orthographic parafoveal processing abilities similar to those of typically developing 

children matched for reading age matched or chronological age? 4) Do children with 

dyslexia show foveal eye movement patterns that are similar to those of typically 

developing children matched for reading or chronological age?  

Based on studies reviewed above and in Chapter 1, it was predicted that 

children with dyslexia would show foveal eye movement patterns indicative of their 

reading difficulties compared to typically developing children matched for 

chronological age (i.e. longer fixation durations, more fixations etc.). However, as 

typically developing children matched for reading age and dyslexic children have 
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similar reading abilities, it was predicted that dyslexic readers would show similar 

foveal eye movement patterns to the reading age matched children.  

Based on the findings of Pagán et al. (2016), it was predicted that typically 

developing children would show orthographic parafoveal preview benefits during 

reading, whereby they gain benefit of identical previews compared to transposed-

letter previews, and, transposed-letter previews compared to substituted letter 

previews. Whilst it was predicted that both typically developing child groups would 

show such orthographic preview effects, it is also possible that the typically 

developing children matched for reading age show a slightly different pattern of 

parafoveal processing compared to the older children, as it is currently unclear 

exactly how reading age and chronological age impact the development of parafoveal 

processing. Indeed, similarly to findings of TL effects in children (Acha & Perea, 

2008; Castles et al., 2007; Lété & Fayol, 2013), younger children might demonstrate 

more flexible encoding of letter position.  

Furthermore, from the findings presented in Chapter 3 that report parafoveal 

processing in adult dyslexic readers and the results of Yan et al. (2013) who found 

dyslexic parafoveal processing for children during RAN, it was predicted that 

dyslexic children would show parafoveal preview benefits during reading. In 

addition, further to Chapter 3, in which dyslexic adults and skilled reading adults 

showed differences in flexible letter position encoding during parafoveal processing, 

we predicted differences between the parafoveal processing abilities of dyslexic 

readers and typically developing children matched for chronological-age. Whilst we 

found difference in letter position encoding for adults with dyslexia compared to 

skilled adult readers, for children with dyslexia, we might find a slightly different 

pattern of results. As, children are still developing their reading skills, deficits in 

letter position encoding may manifest differently compared to dyslexic adults. In line 

with Vidyasagar and Pammer (2010), and, Whitney and Cornelissen (2005), dyslexic 

children may have specific deficits in attention allocation, which make it difficult to 

encode letter position, in which case dyslexic children would show an equal benefit 

of identical previews and transposed-letter previews. However, it is also possible, 

that similarly to dyslexic adults, children with dyslexia show less flexibility within 

their letter position encoding; this would result in a pattern of results where 

transposed-letter previews provide similar parafoveal preview benefits to substituted-

letter previews (a reduced TL effect).  
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Finally, whilst we predicted differences in parafoveal processing between 

dyslexic and typically developing children matched for chronological age, 

predictions for comparisons between dyslexic and reading age matched typically 

developing children are more speculative. Indeed, dyslexic children might develop 

their parafoveal processing skills alongside their reading ability, in which case they 

would demonstrate parafoveal processing abilities similar to that of reading age 

matched children. However, if children with dyslexia have an attentional deficit that 

impacts their ability to parafoveally process information during reading that occurs 

independently of their poor reading skills, then dyslexic children and children 

matched for reading age will show different patterns of parafoveal processing.  

4.2 Method  

4.2.1 Participants  

Participants were 18 children with developmental dyslexia (mean age of 10 years 4 

months and reading age of 8 years 0 months), 28 typically developing children with a 

similar chronological age (CA) as the dyslexic readers (mean age of 10 years 2 

months and reading age of 12 years 7 months) and 28 typically developing children 

with a similar reading age (RA) as the dyslexic children (mean age of 8 years 8 

month and reading age of 8 years 3 months). Children with dyslexia had a prior, 

independent diagnosis of dyslexia, through their local education authority. All 

participants were native English speakers with normal or corrected to normal vision 

and were recruited from local schools. The children performed within or above the 

normal range for IQ (IQ≥90; Wechsler, 1999). To ensure the child groups were well 

matched, two one-way ANOVAs were conducted to examine chronological age and 

then reading age across the three groups. There was a significant difference in the 

chronological age of the three groups, F (2,73) = 47.66, p < .001. The reading age 

matched children were significantly younger than both the children with dyslexia and 

the age matched children (p’s< .001); there was no difference in the age of the 

children with dyslexia and the chronological age matched children. There was also a 

significant difference in reading age, F (2,73) = 48.08, p < .001; the chronological 

age matched children had a significantly higher reading age than both children with 

dyslexia and the reading age matched children (p’s< .001). The children with 

dyslexia and the reading age matched children, however, did not differ significantly 

on reading age.  
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4.2.2 Apparatus  

Eye movements were recorded from the right eye using a SR Research Eyelink 1000 

eye-tracker. Sentences were presented at a viewing distance of 660 mm on a 21 inch 

Formac ProNitron 21/750 monitor with a screen resolution of 1024 x 768 pixels and 

a refresh rate of 120 Hz. Sentences were presented in black 14pt Courier New font 

on a white background.  

4.2.3 Design and stimuli  

Three parafoveal preview conditions were presented using the boundary paradigm 

(Rayner, 1975). Parafoveal previews of the target words were either 1) identical to 

the target word (IP), 2) a transposed-letter non-word (TL), or 3) a substituted-letter 

non-word (SL). The manipulation occurred in the initial two letters of the target 

word, both to examine the impact of parafoveal processing for initial letters (which 

may in fact have a specific importance related to phonological processing) and also 

because these letters are indeed spatially closer to foveal vision and dyslexic readers 

may have reduced perceptual span (Rayner et al., 1989). For the transposed-letter 

conditions, the positions of the two initial letters were switched and for the 

substituted-letter conditions, the initial two letters were replaced with visually similar 

letters (ascenders were replaced with ascenders and descenders with descenders) to 

retain orthographic similarity. Target words were always 6 letter words and were 

preceded by a 5 letter pre-target word to increase the likelihood of a children fixating 

upon both the words. Pre-target and target words were presented towards to the 

middle of the sentence and were high frequency words. High frequency words were 

chosen in attempt to reduce foveal load and allow for parafoveal processing. The 

mean frequency of the pre-target word was 618 counts per million and the mean 

frequency of the target word was 409 counts per million. Frequency counts were 

taken from the Children’s Printed Word Database (CPWD; Masterson, Stuart, Dixon, 

& Lovejoy, 2010) as this best reflects frequency counts for children; indeed word 

frequency for children can differ to that found for adults. Sentences were single line 

sentences ranging from 9-12 words (45-60 characters).  
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The stimuli consisted of 60 sentence frames and for each sentence frame 

there were 3 versions corresponding to the three parafoveal preview conditions (See 

Table 4.1 for an example). Three experimental lists were constructed whereby each 

list contained a different version of each sentence frame and the parafoveal preview 

manipulations were randomised across the 3 experimental lists so each participant 

saw 20 sentences from each of the three preview conditions.  

The eye movement contingent change boundary was located at the end of the 

pre-target word and to the left of the space preceding the target word. When the eyes 

moved past the invisible boundary, the target word changed from the parafoveal 

preview to the target word. The correct target word then remained in the sentence 

throughout the remaining duration of the trial. Display changes were typically 

undetected by the readers as they occurred during a saccade (when visual 

information is suppressed). Indeed when participants were questioned whether they 

noticed anything unusual during the experiment, very few reported noticing anything 

and those who did notice something suggested it occurred in a very small number of 

trials (less than 4 trials) and were unable to explain what had happened.  

Table 4.1. Examples of the target word manipulation. Sentence frames included 

either an identical preview (IP), a transposed-letter non-word preview (TL), or a 

substituted-letter non-word preview (SL).  

 Example sentence 

Identical  The group of boys never caught any frogs at the pond.  

Transposed  The group of boys never acught any frogs at the pond. 

Substituted  The group of boys never erught any frogs at the pond. 

 

4.2.4 Offline measures of reading ability and IQ   

As discussed in Chapter 2, offline tests were conducted in order to establish that our 

groups of readers showed patterns representative of their reading group and to gain 

further understanding of their general intelligence and reading profiles. As such, all 

participants completed a range of offline tests. IQ was measured using two subtests 
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of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999); i) the 

vocabulary subtest, ii) the matrix reasoning subtest (for the full details on the WASI 

IQ test, refer back to Chapter 2).  

Whilst the TOWRE was used within Experiment 1 to examine reading ability 

of adult participant (detailed in Chapter 3), the TOWRE is not well suited to child 

participants. For this reason, the current experiment used the Word Reading and 

Pseudoword Reading subtests of the Wechsler Individual Achievement Test – 

Second Edition (WIAT-II; Wechsler, 2005) as an equivalent for children. Similarly 

to the TOWRE, these subtests were used to record sight word reading using a list of 

real words and the phonemic decoding using a list of pseudowords. However, unlike 

the TOWRE, children were not provided a time limit, they continued to read the list 

until they either completed all items or consistently made errors and therefore were 

asked to stop reading. The Word Reading and Pseudoword Reading subtests 

provided standardised measures of reading ability based upon a child’s chronological 

age. Thus, in the instance of dyslexic readers, they show a standardised score that 

represents their low reading skills relative to their chronological age. The result from 

the Word Reading subtest were used to determine each child’s reading age, whereby 

the raw score taken from Word Reading indicates at what age-level a child is 

reading. As such, reading age was used as a comparative measure across all children 

regardless of their chronological age.  

All children also completed the Number and Letters measures of the Rapid 

Automatised Naming (RAN; Wolf & Denckla, 2005) test in which they were 

required to read an array of letters or numbers presented within rows, as quickly and 

correctly as possible (again see Chapter 2 for discussion of the use of RAN as an 

offline measure). The time taken to correctly read aloud the items provides the RAN 

score which is then standardised across age and used an indication of how well 

individuals can integrate both visual and language information. Finally, all children 

completed a phoneme deletion task (McDougall et al., 1994). The phoneme deletion 

task is an additional measure of phonological awareness, which does not require oral 

reading, and was used to provide further support for the reading tests. Within this 24 

item task, children were told a word and asked what word would remain if a given 

phoneme were deleted from the word. As there are no standardised scores for this 

test, results are scored based on the number of correct answers.  
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4.2.5 Procedure  

Participants sat in front of a computer screen with their head positioned in a forehead 

and chin rest to minimise head movements. They were instructed to read the 

sentences silently for comprehension and to press a button on a gamepad once they 

had finished reading. A 3-point calibration was conducted prior to the experimental 

trials and selected due to the horizontal nature of single line sentences; an accurate 

calibration was accepted when the average errors in the validation were below 0.3° 

of visual angle. Calibrations were confirmed throughout the experiment and repeated 

when required. Each trial began with a gaze contingent box (a small black square) 

presented on the left hand side of the screen, positioned so that the initial letter of the 

sentence occupied the same location. Once the participant had fixated the square for 

250ms, the sentence appeared on the screen. Participants then read the sentence 

silently and terminated the trial with a button press. After 25% of the experimental 

sentences a “yes/ no” comprehension question appeared; participants were required 

to press a corresponding button to answer the question.  

4.2.6 Statistical analysis 

Prior to the analysis, fixations less than 80ms were either merged into nearby longer 

fixations or excluded and fixations more than 800ms were excluded from the data set 

(5.49% of fixations). Additional trials were excluded based upon the following 

criteria; 1) when the boundary was triggered prior to a saccade being made across the 

boundary, 2) when the display change completed more than 10ms after a fixation 

landing on the target word, 3) when the end of a saccade briefly crossed the 

boundary but the successive fixation remained in a position before the boundary, 4) 

when participants blinked on either the pre-target or target word, 5) when the 

participants skipped either the pre-target or target word. In total 1,522 trials were 

removed from the analyses (34% of the dataset), data were excluded similarly across 

groups and conditions.  

4. 3 Results  

As discussed in Chapter 2, analyses were conducted for both global and local eye 

movement measures. Global measures refer to results from all of the fixations within 

the sentence whereas local measures were based solely on the eye movements that 
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occurred on the target word. Data were analysed using linear mixed models (LMMs; 

see Chapter 2 for further discussion on the use of LMMs) using the lme4 package 

(version 1.1.12) in R (version 3.3.1). For global analysis, reading group was used as 

the fixed factor for all models. For local analysis both reading group and preview 

condition were fixed factors for all models. Participants and items were specified as 

random effects. For each dependent measure, a “full” random structure was 

implemented including all varying intercepts and slopes of the main effects and their 

interaction (maximal random effects structure as suggested by Barr et al., 2013). If 

the “full” model failed to converge, or there were too many parameters to fit the data 

(as indicated by correlations of 0.99, 1, -0.99 or -1 in the random structure), the 

random structure was systematically trimmed (first by removing correlations 

between random effects, and if necessary also by removing their interactions). 

Successive difference contrasts were used for preview condition (comparing IP and 

TL, followed by TL and SL). Orthogonal contrasts were used for reading group with 

the first contrast exploring chronological age matched children compared to dyslexic 

and reading age matched children, and the second contrast exploring dyslexic 

children compared to reading age matched children. For each contrast we report beta 

values (b), standard error (SE) and t or z statistics. Fixation time analyses were 

carried out on log-transformed models to increase normality and count data were 

analysed using generalised linear mixed models following a Poisson distribution 

(GLMMs). 

4.3.1 Eye tracking comprehension questions   

The mean accuracy in comprehension score was 87.78% correct for dyslexic 

children, 91.43% for chronological age matched children and 88.57% for reading age 

matched children. There was no significant difference between the comprehension 

scores for the three groups, F (2,71) = 1.34, p = .27, suggesting all reading groups 

were able to read these sentences well enough to correctly respond to the 

comprehension questions.  

4.3.2 Off-line measures of reading ability and IQ   

Mean scores for all offline tests are presented in Table 4.2. ANOVAs were 

conducted to explore the differences between reading groups across the offline 

measures. There was a significant main effect for Word Reading (F (2,71), 25.37, p 
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<.001) and Pseudoword Reading (F (2,71), 15.10, p <.001). As both of these 

measures are presented as standardised scores based upon chronological age, 

dyslexic children performed significantly lower compared to the both groups of 

typically developing children (p’s <.001). Although there were no significant 

differences between the three reading groups for the letter subset of the RAN (F 

(2,71), 1.52, p =.225), there was a significant effect for the number subset of the 

RAN (F (2,71), 5.80, p =.005); children with dyslexia performed significantly slower 

than the age matched children (p=.015) and reading age matched children (p=.007). 

Again there was a significant difference in the scores on the phoneme deletion task 

(F (2,71), 5.88, p =.004), with both dyslexic readers and reading age matched 

children performing significantly poorer than chronological age matched children 

(p<.001). There was, however, no difference in the phoneme deletion scores for 

dyslexic and reading age matched children (p>.05)  

 

Table 4.2. Mean scores for the offline tests and age data for children with dyslexia, 

reading age matched children and chronological age matched children. Standard 

scores are provided for Word Reading, Pseudoword Reading and RAN numbers and 

letters, and, IQ. Standard deviations are shown in parentheses.  

 Dyslexic  

Children 

Reading Age 

Matched Group 

Chronological Age  

Matched Group 

    

Chronological Age 10 years 4 months 8 years 8 months 10 years 2 months 

Reading Age 8 years 0 months 8 years 3 months 12 years 7 months 

Word reading 84.33 (9.65) 102.54 (11.46) 108.25 (12.12) 

Pseudoword reading 88.17 (10.30) 103.54 (14) 108.57 (12.16) 

RAN letters 94.54 (12.12) 99.89 (15.95) 101.72 (12.54) 

RAN numbers 95.00 (10.68) 106.56 (11.69) 105.28 (12.35) 

Phoneme Deletion 12.44 (3.77) 14.41 (4.17) 18.63 (1.79) 

IQ 101 (10) 111 (14) 113 (10) 
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4.3.3 Global measures  

Similarly to those reported in Experiment 1 (Chapter 3), the following global 

measures were included; total sentence reading time, average saccade amplitude, 

average forward and regressive fixation duration, and total number of forward and 

regressive fixations per sentence (See Table 4.3 for means and Table 4.4 and Table 

4.5 for model outputs). Forward and regressive fixations were classified based upon 

the previous saccade direction (fixations preceded by a rightward saccade are 

considered forward fixations and fixations preceded by a leftward saccade are 

referred to as regressive fixations). Global measures allowed for exploration of the 

differences between reading groups at a sentence level. 

Total reading time: As predicted, dyslexic readers and reading age matched children 

had significantly longer total reading times compared to those of the chronological 

age matched children, thus demonstrating their difficulties with linguistic processing 

relative to the chronological age matched children. There was also a marginally 

significant difference in the total reading times of the children with dyslexia 

compared to reading age matched children, whereby dyslexic children had longer 

total reading times than the reading age matched children; suggesting dyslexic eye 

movement patterns may not solely be explained by their reduced reading skills.  

Saccade amplitude: Dyslexic readers and reading age matched children had shorter 

saccade amplitudes compared to those made by the chronological age matched 

children. In addition, there were no differences between the saccade amplitudes of 

dyslexic children and reading age matched children.   

Forward and regressive fixation durations: For both forward and regressive fixation 

durations, dyslexic readers and reading age matched children made longer fixations 

compared to the fixations made by the chronological age matched children, again 

indicating their linguistic processing difficulty relative to the chronological age 

matched children. For forward fixation duration, there was no difference in the 

duration of fixations for the dyslexic children compared to reading age matched 

children. For regressive fixation duration, however, there was a significant difference 

between the dyslexic children and the reading age matched children; dyslexic readers 

made longer regressive fixations, indicating that even when matched on reading age, 
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dyslexic readers show a specific requirement for longer regressive fixation durations 

compared to non-dyslexic readers.  

Forward and regressive fixation counts: Dyslexic readers and reading age matched 

children made more forward and regressive fixations compared to the number of 

fixations made by chronological age matched children. There were no significant 

differences between the number of fixations made for the dyslexic children and the 

reading age matched children, for either forward or regressive fixations.  
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Table 4.3. Average global reading measures for Experiment 2. 
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 Table 4.4. Model output for LMMs conducted for global reading measures for 

Experiment 2. 
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Table 4.5. Model output for GLMMs conducted for global reading measures of 

forward fixation count and regressive fixation count. Significant z values (≥ 1.96 of 

standard error, SE) are marked in bold.  

 

4.3.4 Local measures   

The following measures were analyzed for the embedded target words; first fixation 

duration, single fixation duration, gaze duration, go-past time, total reading time, 

fixation count and landing position. First fixation duration is the duration of the 

initial fixation on the target word. Single fixation duration represents those fixations 

for which the reader made only one fixation on the target word during first pass. 

Gaze duration is the sum of fixation durations on the target word before the reader 

leaves that word. Go-past time is the sum of fixations durations on the target word 

from when a reader first fixated that word until their first fixation to the right of that 

word (including any regressions made before moving forward past the target word). 

Total time is the sum of all fixations that occur on the word throughout the whole 

trial (including any regressive fixations). Landing position is the character location of 

which the eye fixates. Table 4.6 provides the mean results for first fixation duration, 

single fixation duration, gaze duration, total reading time and fixation count across 

reading group and preview condition. Table 4.7 provides the LMM outputs and 

Table 4.8 provides LMM outputs for the simple effects analysis for when interactions 

between group and preview occurred.  

First fixation duration: For first fixation duration there was a main effect of group 

in the predicted direction; dyslexic children and reading age matched children 

required longer first fixation durations than chronological age matched children. The 

were no significant differences between the first fixation durations of children with 

 Forward fixation count Regressive fixation count 

 b SE z  b SE z  

Intercept 2.49 .03 98.80  1.34 0.06 24.31  

DR + RA vs CA -0.18 0.05 -3.88  -0.37 0.11 -3.44  

DR vs RA 0.06 0.06 1.03  0.17 0.13 1.26  
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dyslexia and typically developing children matched for reading age, indicating they 

make first fixations of a similar duration. The main effects for both preview 

condition contrasts were not significant but there was a significant interaction in 

which shorter first fixation durations were made on identical previews than 

transposed-letter previews, however, this effect only occurred for the chronological 

age matched children. Thus, for single fixation duration, only the chronological age 

matched children showed any benefit of parafoveal information during reading and 

this preview benefit demonstrated that chronological age matched children do in fact 

encode letter position from the parafovea. All other interactions did not reach 

significance.  

Single fixation duration: In single fixation duration, there was a similar pattern to 

that of first fixation duration. Dyslexic children and reading age matched children 

required longer single fixation durations than chronological age matched children, 

again, indicating their linguistic processing difficulties in comparison to the 

chronological age matched children Again, there was no significant difference 

between the single fixation durations of the children with dyslexia and reading age 

matched children. The main effect comparing identical previews and transposed-

letter previews showed no significant difference in single fixation duration, however, 

there was an interaction in which shorter single fixation durations were made on 

identical previews than transposed-letter previews specifically for the chronological 

age matched children. This result provides further evidence of parafoveal preview 

benefit and letter position encoding in chronological age matched children. There 

was also a significant main effect whereby shorter single fixations were made for 

transposed-letter previews than substituted-letter previews, suggesting all reading 

groups encode letter identity during single fixation duration. The additional 

interactions were not significant.    

Gaze duration: As predicted, dyslexic children and reading age matched children 

required longer gaze durations compared to chronological age matched children. In 

addition, dyslexic children required longer gaze durations than reading age matched 

children, indicating that dyslexic readers’ reduced reading age (compared to their 

peers) is not the sole cause for their increased gaze durations and there is something 

specific to dyslexic readers that means they require increased gaze durations 

compared to non-dyslexic readers. For the preview condition contrasts, both main 

effects were significant; shorter gaze durations were made on identical previews 
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compared to transposed-letter previews, and, transposed-letter previews compared to 

substituted-letter previews. None of the interactions were significant (see Figure 4.1). 

However, in order to confirm our hypothesis, a simple effects analysis was 

conducted to explore the TL effect for dyslexic readers. The simple effects analysis 

indicated shorter gaze durations were made upon transposed-letter previews 

compared to the substituted-letter previews for the dyslexic children, indicating that 

the TL effect occurs in children with dyslexia. In fact, all reading groups showed 

evidence of parafoveal processing during reading, specifically, all groups were able 

to encode letter position and encode letter position independently to letter identity 

(the TL effect). 

Go-past time: Similarly to previous measures, dyslexic children and reading age 

matched children required longer go-past times than chronological age matched 

children. Moreover, dyslexic children required longer go-past times than reading age 

matched children, providing further evidence that dyslexic readers’ reduced reading 

age (compared to their peers) cannot fully account for the eye movement patterns of 

readers with dyslexia. Similarly to gaze duration, there was also evidence for main 

effects for both preview condition contrasts; shorter gaze durations were made on 

identical previews compared to transposed-letter previews, and, transposed-letter 

previews compared to substituted-letter previews. There was, however, a marginally 

significant interaction to suggest that dyslexic readers do, in fact, show a greater 

benefit of transposed-letter previews compared to substituted-letter previews than 

children matched for reading age. Indeed, a simple effects analysis indicated shorter 

gaze durations were made upon transposed-letter previews compared to the 

substituted-letter previews for the dyslexic children, thus providing further evidence 

of a TL effect in children with dyslexia. 

Total reading time: Similarly to gaze duration, dyslexic children and reading age 

matched children required longer total reading times than chronological age matched 

children, and, dyslexic children required even longer total reading times than reading 

age matched children. For the effects of preview, there was only a significant main 

effect in which total reading times were longer for transposed-letter preview 

compared to substituted-letter previews. The main effect comparing identical 

previews to transposed-letter previews was not significant and none of the 

interactions were significant. Again, simple effects analysis was conducted to 

determine if the TL effect occurred in dyslexic readers. Similarly to that found for 



 

 119 

gaze duration, dyslexic readers had shorter total reading times on transposed-letter 

previews than substituted-letter previews, thus, proving further support for flexible 

letter position encoding for readers with dyslexia.  

Landing position: Whilst dyslexic readers show a numerical trend to support earlier 

landing positions compared to both chronological and reading age matched children, 

none of the group effects were significant. Furthermore, there were no effects of 

preview condition on landing position and none of the interactions were significant.   

Fixation count: Dyslexic children and reading age matched children required more 

fixations than chronological age matched children. In addition, dyslexic children 

required more fixations compared to reading age matched children, further indicating 

that dyslexic readers demonstrate specific reading difficulties that are not explained 

by their reduced reading age. There were, however, no significant effects for either 

preview contrast and no evidence to support any of the interactions.  
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Figure 4.1. Mean gaze durations for dyslexic children, reading age matched typically 

developing children, and chronological age matched typically developing children 

across identical previews, transposed-letter previews and substituted-letter previews. 

Error bars show standard error in each preview condition. 
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Table 4.6. Mean first fixation duration, single fixation duration, gaze duration, go-

past time, total reading time, fixation count and landing position for the target word, 

as a function of preview condition and reading group.  

  

 Identical Preview  Transposed Substituted  

First fixation duration (ms) 

 Dyslexic 322 (138) 319 (132) 320 (131) 

 Reading age match  312 (128) 305 (134) 323 (137) 

 Chronological age match 252 (93) 270 (98) 276 (100) 

Single fixation duration (ms) 

 Dyslexic 352 (137) 341 (127) 371 (137) 

 Reading age match  325 (122) 329 (135) 358 (131) 

 Chronological age match 265 (96) 288 (103) 301 (105) 

Gaze duration (ms) 

 Dyslexic 515 (354) 579 (451) 588 (402) 

 Reading age match  455 (269) 497 (309) 486 (262) 

 Chronological age match 342 (189) 353 (154) 371 (162) 

Go-past time (ms) 

 Dyslexic 753 (876) 741 (653) 807 (584) 

 Reading age match  634 (622) 700 (614) 655 (490) 

 Chronological age match 436 (379) 484 (424) 480 (438) 

Total time (ms)  

 Dyslexic 782 (557) 772 (559) 803 (585) 

 Reading age match  650 (421) 687 (448) 700 (426) 

 Chronological age match 467 (298) 491 (290) 495 (289) 
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Table 4.6 continued. 

 

 Identical Preview  Transposed Substituted  

Fixation count  

 Dyslexic 2.60 (1.84) 2.55 (1.76) 2.69 (1.87) 

 Reading age match  2.20 (1.33) 2.36 (1.45) 2.40 (1.47) 

 Chronological age match 1.90 (1.09) 1.95 (1.12) 1.94 (1.13) 

Landing position  

 Dyslexic 2.84 (1.43) 2.90 (1.51) 2.84 (1.46) 

 Reading age match  3.08 (1.62) 3.05 (1.59) 3.01 (1.57) 

 Chronological age match 3.09 (1.62) 3.10 (1.55) 3.08 (1.52) 
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Table 4.7. Model output for LMMs conducted for local reading measures for 

Experiment 2. 
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Table 4.8. LMM output for simple effects analysis exploring TL compared to SL for 

dyslexic readers in measures of gaze duration    (ms), go-past time (ms) and total 

reading time (ms). Significant t values (≥ 1.96 of standard error, SE) are marked in 

bold.  

 
 
 

4.4 Discussion  

The aim of the current study was to examine whether children with dyslexia gain 

orthographic parafoveal preview benefit during reading. Specifically, to determine 

whether dyslexic children encode letter position information from the parafovea, and 

if letter position is encoded parafoveally, to explore whether it is encoded 

independently to letter identity. In addition, the current study examined whether 

dyslexic children show foveal and parafoveal eye movement patterns that are similar 

to typically developing children matched for chronological age or to typically 

developing children matched for reading age.  

The pattern of results presented in this chapter indicated that all reading 

groups gained parafoveal preview benefit from orthographic information. All reading 

groups, including readers with dyslexia, showed a preview benefit (i.e. subsequent 

reading times were shorter when the target was fixated) when an identical parafoveal 

preview was presented compared to when a transposed-letter preview was presented, 

indicating that letter position was encoded from the parafovea. Furthermore, all 

reading groups were found to benefit from transposed-letter previews more than 

previews containing substituted-letters, thus demonstrating that letter identity was 

encoded independently to letter position during parafoveal processing. For typically 

developing children matched for chronological age (the most skilled reading group 

tested within this sample), these preview effects occurred within early measures of 

reading such as first fixation duration and single fixation duration. However, for 

 
Gaze duration Go-past time Total time 

 b SE t b SE t b SE t 

Intercept 5.97 0.04 168.47 6.22 0.04 153.62 6.30 0.04 158.00 

TL vs SL -0.10 0.04 -2.35 -0.18 0.05 -3.40 -0.11 0.05 -2.40 
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readers with dyslexia and reading age matched children, the effects only occurred 

within later measures such as gaze duration, go-past time and total reading time. 

These findings indicate that that reading age impacts the time point at which 

parafoveal preview effects occur in eye movement measures during reading, due to 

more efficient lexical processing that occurs alongside reading development (Reichle 

et al., 2013). Furthermore, such finding demonstrates that parafoveal processing 

occurs similarly for dyslexic readers and children matched for reading age. Indeed, 

the only significant difference between the parafoveal preview benefits of dyslexic 

children and typically developing children matched for reading age, occurred within 

go-past time where readers with dyslexia showed a larger TL effect than was found 

for reading age matched children. Dyslexic readers, however, showed a numerical 

trend indicating that they did not gain a preview benefit of identical previews 

compared to transposed-letter previews, thus indicating that dyslexic readers were 

less able to encode letter position information during go past time compared to 

reading age matched children. Furthermore, children with dyslexia and reading age 

matched children showed foveal eye movement patterns indicative of their reading 

skill and reduced lexical processing efficiency; longer fixation durations, more 

fixations, shorter saccades, longer total reading times compared to the chronological 

age matched children. There were, however, also a number of differences between 

the eye movement patterns of children with dyslexia and reading age matched 

children; these differences occurred within later measures where dyslexic children 

showed longer gaze durations and total reading times than reading age matched 

children.  

Similarly to previous research on children’s parafoveal processing (Hӓikiӧ et 

al., 2010; Marx et al., 2015; Pagán et al., 2016; Tiffin-Richards & Schroeder, 2015), 

the current findings provided evidence for parafoveal preview benefit in typically 

developing children. In the current study, orthographic parafoveal processing 

abilities were explored in a range of ages and reading abilities. In line with the 

findings of Pagán et al. (2016), who found orthographic parafoveal processing 

abilities for 8 year old children, the current results also provided evidence that 

children as young as 8 years old demonstrated benefit from orthographic parafoveal 

information and were able to parafoveally encode letter identity independently to 

letter position (thus demonstrating the TL effect during parafoveal processing). What 

is particularly interesting within the current study, however, is that the 8 year old 
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sample of typically developing children (selected to have a reading age to match the 

dyslexic children) did, in fact, have a reading age representative of their 

chronological age (8 years old). This is in contrast to Pagán et al. (2016), who had a 

sample of 8 year old children with a mean reading age of 11 years old. The current 

findings, therefore, suggest that children with a reading age as young as 8 years old 

do in fact demonstrate TL effects during parafoveal processing.  

In addition to the 8 year old reading age matched children included within the 

current study, the 10 year old typically developing children matched for 

chronological age also demonstrated the TL effect during parafoveal processing. In 

fact, the only difference in orthographic parafoveal processing abilities of 8 year old 

typically developing children and 10 year old typically developing children tested 

within the current study, was the eye movement measures in which the effects 

occurred. For the 10 years olds, orthographic preview effects were demonstrated in 

measures of first fixation duration and single fixation duration as well as gaze 

duration, go-past time and total reading time. In contrast, the 8 year old reading age 

matched children showed effects of orthographic preview benefits only in later 

measures of gaze duration, go-past time and total time. This demonstrates that 

children with a younger age and reading age show orthographic preview effects at a 

delayed time frame compared to older, more skilled child readers. This is in line with 

a developmental increase in the rate of lexical processing (Reichle et al., 2013) and 

the findings that lexical processing is slower in children compared to adults (e.g., 

Blythe, 2014; Blythe et al., 2006, 2009, 2011; Häikiö et al., 2009, 2010; Huestegge et 

al., 2009; Joseph et al., 2009; McConkie et al., 1991; Rayner, 1986; Reichle et al., 

2013; Tiffin-Richards & Schroeder, 2015).  

The fact that 8 year old typically developing children demonstrated a TL 

effect during parafoveal processing (specifically in later eye movement measures) 

differs to the results of Tiffin-Richards and Schroeder (2015) who only found 

evidence of orthographic parafoveal processing in single fixation duration for 

German readers aged 8 years old. However, as they noted, single fixation is a 

particularly unreliable measure for young readers due to their increased likelihood of 

refixating a word. As such, Tiffin-Richards and Schroeder (2015) suggest that 

German children depend more so upon phonological parafoveal processing whereas 

adults rely upon orthographic parafoveal processing. As the current study provides 

support for orthographic parafoveal processing in young English readers, it is 
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possible that orthographic depth plays a role in the development of parafoveal 

processing. As discussed, German is a less opaque orthography than English; 

therefore, it is possible that English readers have a greater reliance on orthographic 

information during reading development.  

Further to the discussion of orthographic parafoveal processing in typically 

developing children, and specifically to the aim of this thesis, the current study 

explored orthographic parafoveal processing for dyslexic children. In line with Yan 

et al. (2013), who explored parafoveal processing during RAN, and the results for 

adult dyslexic readers reported in Chapter 3 of this thesis, the current pattern of 

results provide evidence that dyslexic children gain parafoveal preview benefit 

during reading. Evidence was provided to show that dyslexic readers aged 10 years 

old with a reading age of 8 years old could also encode letter identity and letter 

position from the parafovea. Furthermore, evidence suggests that similarly to the 

results found for adults with dyslexia (reported in Chapter 3), dyslexic children can 

also encode letter identity and letter position independently; in fact, dyslexic children 

showed a preview benefit for transposed-letter previews compared to substituted-

letter previews in gaze duration, go-past time and total reading time. Such results are 

contrary to our predictions, and to those proposed by Whitney and Cornelissen 

(2005) who suggested dyslexic readers have specific deficit in attention allocation, 

which impacts on their ability to encode letter position. As such, the current results 

provide evidence to suggest that children with dyslexia are in fact able to allocate 

their attention to the parafovea in order to effectively encode letter identity and letter 

position. 

Whilst children with dyslexia showed orthographic preview effects 

demonstrating that letter position was encoded parafoveally and independently to 

letter identity, these effects did not occur within single fixation duration or first 

fixation duration. This is in contrast to the results found for the 10 year old typically 

developing children matched for chronological age. This difference in parafoveal 

processing suggests that dyslexic readers gain orthographic preview benefits at a 

delayed time frame compared to their peers. Whilst they do encode orthographic 

information parafoveally, it takes longer for dyslexic readers to process this 

information relative to their non-dyslexic peers. Delayed orthographic parafoveal 

processing may occur due to dyslexic readers requiring greater attentional resources 

for foveal processing (compared to their peers), perhaps due to difficulties in 
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phonological decoding and thus having less attentional resources for parafoveal 

processing (Yan et al., 2013). This is consistent with studies demonstrating slower 

lexical processing for less skilled readers and the proposal of a developmental 

increase in the rate of lexical processing (Reichle, Liversedge, Drieghe, et al., 2013). 

Furthermore, such results support the findings of Yan et al. (2013) who suggest that 

dyslexic readers are “less efficient” in their use of parafoveal information compared 

to chronological age matched controls.  

In contrast to the differences found within dyslexic readers and chronological 

age matched children, the orthographic preview benefits demonstrated by dyslexic 

readers and children matched for reading age showed a similar pattern. For both 

dyslexic children and 8 year old typically developing children matched for reading 

age, the typical orthographic preview effects (a greater benefit for identical previews 

compared to transposed previews and for transposed previews compared to 

substituted letter previews) occurred but only during later measures such as gaze 

duration, go-past time, and total reading time. In fact, the only difference in preview 

benefit between readers with dyslexia and children matched for reading age occurred 

within go-past time where readers with dyslexia showed a marginally larger TL 

effect.  

Whilst it is hard to interpret marginal findings, such results could suggest that 

dyslexic readers have an increased level of flexibility for orthographic processing of 

letter position information compared to children matched for reading age. It is 

important to note, however, that numerically dyslexic readers did not show a benefit 

of transposed-letter previews compared to identical previews, which suggests that the 

dyslexic children were not encoding letter position information in go-past time. In 

which case, it is difficult to conclude that letter position was encoded independently 

to letter identity, as there is no evidence of initial letter position encoding. In fact, 

such result suggests that dyslexic readers are only encoding letter identity during go-

past time. As discussed in Chapter 2, parafoveal preview benefits are typically 

measured using first fixation duration, single fixation duration and gaze duration, as 

parafoveal processing manipulations occur before the reader fixates the word. 

Consequently, the effects of the parafoveal manipulation typically occur within the 

initial eye movements made onto that word. Measures of go-past time and total 

reading time, whilst useful for indicating differences in reading groups, are generally 

not as useful when exploring the effects of a parafoveal manipulation. Whilst the 
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results from go-past time and total reading time are somewhat tricky to interpret, the 

results from first fixation duration, single fixation duration, and gaze duration appear 

to be clearer. Indeed, dyslexic readers show similar orthographic preview effects to 

those found for reading age matched children for all early measures. As such, it 

appears that the degree to which children engage in orthographic parafoveal 

processing is determined by their reading ability. Therefore, the differences in 

parafoveal processing abilities found between dyslexic children and chronological 

age matched children (less efficient or delayed parafoveal processing) are likely to be 

due to dyslexic readers’ lower reading skill rather than a specific cognitive deficit for 

readers with dyslexia.  

The current study also provided evidence that foveal eye movement patterns 

were indicative of reading skill, where chronological age matched children showed 

shorter, first fixation durations, single fixation durations, total sentence reading 

times, average fixation duration and less fixations than both the less skilled reading 

groups (children with dyslexia and reading age matched children). There were, 

however, also differences between the eye movement patterns of children with 

dyslexia and reading age matched children; dyslexic readers showed additional 

linguistic processing difficulties during gaze duration and total reading time and 

evidence of an increased fixation count on the target. Consequently, as the reading 

age matched children were specifically selected to have a similar reading age to that 

of the children with dyslexia, this suggests that the foveal eye movement patterns of 

dyslexic readers are not solely due to their poor reading ability and phonological 

skills. In fact, such result suggests that, during foveal processing, there is a specific 

reading deficit for children with dyslexia compared to children who read at the same 

level; their eye movement behaviour is not solely explained by their reading ability. 

It appears that although children with dyslexia make similar length fixation durations 

to typically developing children with a similar reading age, dyslexic children require 

additional fixations within a word, which results in increased gaze durations and 

reading times.  

Refixations typically occur due to a requirement for a second visual sampling 

(Blythe et al., 2011). In particular, they tend to occur when a reader’s initial fixation 

is unable to provide sufficient visual information for lexical identification. This is 

often the case for longer words, due to limitations in perceptual span (Blythe, 2014; 

Blythe et al., 2011). However, note that, as discussed in Chapter 1, children as young 
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as 7 years old have been found to demonstrate normal reading patterns during the 

disappearing text paradigm (Blythe et al., 2009); such a result demonstrates that 

children are able to encode visual information effectively within the initial 40ms of a 

fixation (in order to begin normal lexical identification), with continued linguistic 

processing occurring throughout the remainder of the fixation. For this reason, it is 

not completely clear as to why readers need to make additional fixations if visual 

sampling can occur within the initial 40ms of a fixation. Blythe et al. (2011) suggest 

refixations may occur for a number of reasons, such as: limitations in visual 

sampling due to a reduced perceptual span, continued linguistic processing in which 

the currently fixated word is yet to be lexically activated thus another fixation is 

programmed to that word, or, due to “habit” where children continue to make 

additional fixations although they are not strictly necessary. Blythe et al. (2011) 

suggest that it is unlikely for there to be a single reason why children make 

refixations during reading, and, it is expected that a combination of these factors 

contribute to the requirement for refixations.  

Within the current experiment, dyslexic readers made more fixations 

compared to typically developing children matched for reading age. As discussed 

above, one explanation for increased refixations may be due to limitations in visual 

sampling. In fact, compared to non-dyslexic readers, dyslexic readers have been 

found to show both a reduced perceptual span (Rayner et al., 1989) and limitations in 

the VA span (recall the VA span corresponds to the amount of orthographic 

information that can be simultaneously processed when reading, see Chapter 1 for 

detailed discussion of the VA span; Bosse et al., 2007; Prado et al., 2007; Valdois et 

al., 2004). As such, dyslexic readers may not be able to encode enough information 

within one fixation and therefore need to make additional fixations. Whilst it is 

possible that difficulties in phonologically processing the fixated word causes 

increased foveal load and reduces perceptual span, a reduced VA span has been 

found to occur in dyslexia independent of phonological difficulties (Bosse et al., 

2007; Prado, Dubois & Valdois, 2007). Furthermore, both perceptual span and VA 

span are (at least to some extent) determined by visual attention, therefore, dyslexic 

readers may make more fixations compared to typically developing children matched 

for reading ability due to specific deficits in attention allocation in relation to the 

foveal word or through restrictions in attention due to difficulties in phonological 

processing associated with the fixated word (i.e. increased foveal load).  
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Whilst it is possible that dyslexic readers have restricted attention allocation 

and, therefore, need to make additional fixations, such an explanation appears 

somewhat contrary to the findings that dyslexic readers can encode orthographic 

information from the parafoveal word during reading (detailed within both the 

current chapter and Chapter 3). It may, however, be possible that attention is not 

allocated efficiently across the foveal and parafoveal words for readers with dyslexia. 

In line with this reasoning, previous studies have reported increased parafoveal 

processing in dyslexic readers (Geiger & Lettvin, 1987; Geiger, Lettvin, & Zegarra-

Moran, 1992; Lorusso et al., 2004) and also confusability when encoding foveal and 

parafoveal information during RAN (Jones, Branigan, & Kelly, 2009; Jones et al., 

2008; 2013). It is possible, therefore, that dyslexic readers have widely distributed 

attention, and, instead of prioritising attentional resources to foveal processing, they 

equally encode all information within their perceptual span.  

It is important to note that the current evidence for parafoveal processing in 

dyslexic reading (demonstrated within the current chapter and Chapter 3) only 

focuses upon orthographic parafoveal processing. Accordingly, it is possible that 

while dyslexic readers orthographically encode foveal and parafoveal information, 

they might have a specific difficulty in the foveal (and parafoveal) processing of 

phonological information. In fact, within the eye movement and reading literature, it 

is generally accepted that saccades to the next word are programmed when some 

level of lexical activation occurs (such as the completion of word identification, 

Morrison, 1984; or the completion of an early stage of lexical processing called the 

familiarity check, Pollatsek et al., 2006; Reichle et al., 1998) and this lexical 

activation requires both orthographic and phonological information. As such, a 

specific difficulty with foveally encoding phonological information would disrupt 

lexical activation and thus prevent the next saccade being programmed to word N+1. 

Note that explanations that rely upon deficits in phonological processing do appear 

somewhat counterintuitive since dyslexic readers showed increased refixations 

compared to typically developing children matched for reading ability (i.e. 

phonological skills). It is, however, important to acknowledge that the tests used to 

determine phonological skills did not take into account the time taken to complete 

phonological processing. Dyslexic readers may have demonstrated similar 

phonological capabilities, but it may have taken them longer to activate these 

phonological representations and articulate their answers. As discussed, dyslexic 
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readers are known to have difficulties with decoding (mapping phonology onto 

orthography; Liberman, 1973; Snowling, 1995; Snowling, 2000; Snowling & Hulme, 

2012; Stanovich, 1988) and this difficulty might be specific to accessing the 

representations (Boets et al., 2013). Slower lexical activation could also be explained 

by SAS (sluggish attention shifting, discussed within Chapter 1), where readers with 

dyslexia struggle to disengage attention when visual or auditory stimuli is presented 

within a rapid sequence; their attention is ‘sluggish’ and engaging and disengaging 

attention takes longer for a dyslexic reader than a typical reader (Hari, & Kiesilä, 

1996; Hari & Renvall, 2001; Helenius, et al., 1999; Merzenich et al., 1993). 

Finally, another possible explanation for increased refixations relates to 

landing positions. Whilst there were no significant differences between the landing 

positions of the three reading groups within the current results, dyslexic children 

showed a numerical trend for the typical pattern of results in which they made 

fixations that landed earlier within a word compared to their non-dyslexic peers (De 

Luca et al., 2002; Hawelka et al., 2010; MacKeben et al., 2004; Pan et al., 2014). 

Whilst the difference was not statistically significant, the numerical trend suggested 

that dyslexic readers made fixations earlier within the target word compared to both 

chronological age matched children and reading age matched children. Although it is 

hard to draw conclusions based on numerical trends, if readers with dyslexia do in 

fact have landing positions which occur earlier in a word compared to typically 

developing children matched for reading age, this would suggest that dyslexic 

readers have a dyslexic specific deficit (that is not explained solely by their reading 

age) which impacts their ability to effectively target their saccades to the preferred 

viewing location. Additionally, it is possible that because dyslexic readers land closer 

to the beginning of the word (in comparison to non-dyslexic readers who land toward 

the middle), they are more likely to make extra fixations. In fact, when typically 

developing children make fixations positioned at the beginning of the word, they are 

more likely to refixate that word (Joseph et al., 2009; McConkie et al., 1991; Vitu et 

al., 2001). Thus, it is possible that these early landing positions are in fact a dyslexic 

specific deficit that then impacts the requirement for additional fixations during 

reading.  

It is, however, less clear as to why dyslexic readers may make these non-

optimal landing positions in the first instance. Indeed, parafoveal information is 

typically used to help guide eye movements (Rayner, 1998; Sereno & Rayner, 2000); 
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therefore, deficits in parafoveal processing may impact a reader’s ability to target 

their saccades. However, within both the current experiment and Experiment 1 

(Chapter 3) of this thesis, dyslexic readers demonstrated evidence of parafoveal 

processing for the initial letters of the parafoveal word, thus readers with dyslexia do 

gain some form of parafoveal information. Although the current thesis demonstrates 

parafoveal processing in readers with dyslexia, Rayner et al. (1989) demonstrated 

that readers with dyslexia do, in fact, have a reduced perceptual span. It is, therefore, 

possible that whilst readers with dyslexia are able to gain orthographic parafoveal 

preview benefits from the initial letters of the parafoveal word, they may not code 

enough parafoveal information (information such as word length or spaces between 

words requires parafoveal processing of information beyond the initial letters of a 

word). In which case, it is possible that although dyslexic readers can encode 

orthographic information from the initial letters of the parafoveal word, they do not 

receive enough parafoveal information to correctly target their saccades. It must be 

noted, however, that early landing positions may also be conducive for serial, 

sublexical word decoding (MacKeben et al., 2004; Marx et al., 2016; Hawelka et al., 

2010), in which case these early landing positions may represent a reliance upon a 

more effortful reading strategy which may also impact the ability to parafoveally pre-

process information, resulting in non-optimal landing positions and a requirement for 

more refixations.  

Altogether, there are a range of explanations as to why dyslexic readers show 

differences in refixation durations compared to typically developing children 

matched for reading age. Whilst the current results cannot address these competing 

explanations, it provides an interesting line of enquiry for further research, including 

exploring how phonological deficits manifest during foveal and parafoveal 

processing (Chapter 5 explores phonological parafoveal processing for dyslexic 

adults).   

 

4.5 Chapter Summary    

This chapter explored orthographic parafoveal processing for dyslexic children, 

typically developing children matched for chronological age and typically 

developing children matched for reading age. In support of the adult data, dyslexic 

children demonstrated the ability to allocate their attention to the parafovea and 
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parafoveally process orthographic information. Indeed, they too encoded letter 

identity information independently to letter position within the parafovea. Whilst 

dyslexic readers showed a different time course during parafoveal processing 

compared to chronological age matched children, dyslexic readers parafoveally 

processed orthographic information similarly to typically developing children 

matched for reading age. Thus, the current experiment demonstrated that dyslexic 

parafoveal processing is determined by their reading skill and dyslexic readers do not 

appear to have a specific deficit relating to attentional allocation during parafoveal 

processing. However, dyslexic readers exhibited foveal eye movement patterns that 

differed to both typically developing children matched for chronological age and 

typically developing children matched for reading age. In fact, dyslexic children 

made more refixations on the fixated word compared to typically developing children 

matched for reading age, thus demonstrating that dyslexic readers do show a dyslexic 

specific deficit that impacts the processing of the fixated word, resulting in a 

requirement for additional fixations.  It is, however, less clear what might cause such 

deficit. The next chapter extends the current exploration of orthographic parafoveal 

processing to determine whether dyslexic readers can parafoveally encode 

phonological information.  
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Chapter Five: Experiment 3 

5.0 Chapter overview   

Chapters 3 and 4 of this thesis established that both dyslexic adults and dyslexic 

children do gain parafoveal preview benefits during reading. The results showed that 

dyslexic readers gained preview benefits from orthographic information presented 

parafoveally; both children and adults with dyslexia encoded letter identity and letter 

position information from the parafovea. Whilst these results provide useful findings 

in relation to dyslexia, these previous chapters did not provide examination of 

phonological parafoveal processing. It is, therefore, still unclear whether readers with 

dyslexia are able to encode phonological information from the parafovea during 

reading. As discussed in earlier chapters, dyslexic readers have specific difficulties 

with mapping phonology to orthography (Liberman, 1973; Snowling, 1995; 

Snowling, 2000; Snowling & Hulme, 2012; Stanovich, 1988); therefore, whilst 

dyslexic readers were able to encode orthographic information parafoveally, there 

may be deficits in dyslexic phonological parafoveal processing. The following 

chapter details the final experiment within this thesis and explores phonological 

parafoveal processing in adults with dyslexia.  

 

Phonological parafoveal processing in adults with dyslexia    

5.1 Introduction  

There is a body of research demonstrating that skilled readers encode phonological 

information during parafoveal processing (Ashby & Rayner, 2004; Ashby et al., 

2006; Blythe et al., 2018; Chace et al., 2005; Choi & Gordon, 2014; Dare & 

Shillcock, 2013; Liu, Inhoff, Ye, & Wu, 2002; Miellet & Sparrow, 2004; Pollatsek et 

al., 1992; Rayner, Sereno, Lesch, & Pollatsek, 1995; Sparrow & Miellet, 2002; 

Tiffin-Richards & Schroeder, 2015; Tsai, Lee, Tzeng, Hung, & Yen, 2004). In fact, 

one of the earliest studies to explore phonological preview benefits during parafoveal 

processing was that of Pollatsek et al. (1992) who used the boundary paradigm to 

demonstrate phonological preview benefits for homophone previews compared to 

orthographically similar previews in measures of single word naming latency.  
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Homophones are words that are orthographically and semantically dissimilar 

but phonologically identical (e.g., genes, jeans) and allow for an examination of 

whether phonological information is encoded from the parafoveal word and, 

therefore, used to facilitate the processing of the target word (which shares 

phonological form) once fixated. Within the first of two experiments detailed in 

Pollatsek et al. (1992), participants were required to fixate upon a fixation cross that 

was presented at the center of a screen. Once their fixation was stable, the 

experimenter triggered a word to appear within the parafovea, participants then made 

a saccade to that word (triggering the boundary paradigm and the word to change), 

read and named the word. The parafoveal word manipulations were: 1) an identical 

preview (e.g. brake, or, plate), 2) a visually similar preview which was either a 

homophone (e.g. break) or orthographically similar preview (e.g. pleat), or 3) a 

different preview which was a word of equal length and similar word shape but 

differed in all letter positions (e.g. doubt, or, grill). Therefore, each set of preview 

word stimuli (e.g. break, brake, doubt, or, plate, pleat, grill) only had one visually 

similar preview that was either a homophone or an orthographically similar word. As 

mentioned, homophone previews were included to explore phonological preview 

benefits as the words share their phonological form. In addition to homophones, 

orthographic control previews were used in attempt to determine whether 

phonological information was encoded and used to facilitate preview benefit 

independently to the preview benefits found for orthographic information. Many 

homophone previews are orthographically similar to the target word (e.g. break, and, 

brake), as such orthographic control previews were required to control for letter 

similarity within the preview conditions. However, due to the experimental design, 

there was not a direct comparison between homophone previews and 

orthographically similar previews for each of the sets of preview word stimuli (e.g. 

break, brake, doubt), as only one of these preview manipulations occurred within a 

set of preview stimuli. This occurred due to “the constraints of English” (Pollatsek et 

al., 1992, p. 152), which made it difficult to exert the level of control required to 

include all manipulations for all sets of stimuli. Nevertheless, in this initial 

experiment, Pollatsek et al. (1992) demonstrated that homophone previews were 

named quicker than the orthographically similar controls, thus demonstrating 

phonological information was encoded parafoveally and helped facilitate the naming 

on the word once fixated. Whilst this experiment provided initial evidence for 
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phonological preview benefits, this was demonstrated during single word naming and 

is not necessarily generalisable to natural sentence reading. 

In their second experiment, Pollatsek et al. (1992) used the boundary 

paradigm to explore homophone previews during silent sentence reading. In this 

experiment, the following parafoveal preview manipulations were used to examine 

phonological parafoveal processing: 1) an identical preview (e.g. beach), 2) a 

homophone preview (e.g. beech), 3) an orthographic control preview (e.g. bench) 

and finally 4) an orthographically and phonologically dissimilar preview (e.g. house). 

Thus, within their second experiment, Pollatsek et al. (1992) included a direct 

comparison for homophone and orthographic control previews. Pollatsek et al. 

(1992) found that, during first fixation durations, homophone previews resulted in a 

greater preview benefit than the orthographic control previews. Furthermore, whilst 

the effect was not significant during gaze duration, there was a trend in the mean 

values that suggested greater preview benefit for homophone previews compared to 

orthographically similar previews. This indicates that, as well as encoding 

orthographic information parafoveally, skilled readers get additional preview benefit 

from encoding phonological information in the parafovea during sentence reading. 

Analysis was also conducted to compare the homophone preview benefit to the 

dissimilar condition; homophone previews provided greater preview benefit 

compared to dissimilar previews in both first fixation duration and gaze duration. 

There was also a trend in the means, to suggest orthographic control previews 

resulted in greater preview benefit compared to dissimilar previews, however, this 

effect was not statistically significant. Finally, the advantage for identical previews 

compared to homophone previews was not significant for either first fixation 

duration or gaze duration. Thus suggesting, in this instance, homophone previews 

activated the base word as effectively as the correct parafoveal preview.  

Whilst Pollatsek et al. (1992) provided evidence for phonological parafoveal 

preview benefits that occur in addition to benefits from orthographic parafoveal 

processing, the authors noted that, as predicted, the effects were not “huge”. The high 

correlation between orthographic control previews and phonology-based previews 

(such as homophones) makes it particularly difficult to establish large differences 

between the preview benefits for these two conditions. It is, therefore, typically 

difficult to determine whether there are distinct orthographic and phonological 

components of parafoveal preview. Furthermore, research has demonstrated that for 



 

 139 

occasions when the first two letters of the previews overlap (even when they are not 

homophones), preview benefits are close to those obtained when the previews were 

identical (Balota et al., 1985; Rayner et al., 1980), thus limiting the possibility for 

large increases in preview benefits for homophone and orthographical control 

previews when the manipulation occurs across 2 or more letters. In fact in their 

study, Pollatsek et al. (1992) demonstrated that phonological preview benefits were 

particularly hard to identify when there was greater visual overlap between the 

preview conditions. It is, however, important to note that Pollatsek et al. (1992) 

particularly decided to use homophones to explore phonological parafoveal preview 

benefits as earlier work by Rayner et al. (1980) was unable to establish phonological 

preview benefits using a manipulation of single phonemes. 

In their study, Rayner et al. (1980) used the boundary paradigm to examine 

preview benefits upon the target word (e.g., plane) when the parafoveal preview was 

manipulated for either an identical initial phoneme (e.g., prune) or a dissimilar initial 

phoneme (e.g., phone). Rayner et al. (1980) found no evidence of phonological 

preview benefits during this initial study, where the manipulation was limited to the 

initial phoneme. As the manipulation of phonology was limited only to the initial 

phoneme, the phonological overlap between the target word and the phonologically 

manipulated preview was very small and this reduced likelihood for Rayner et al. 

(1980) to find phonological preview benefits. Therefore, within their later study 

Pollatsek et al. (1992), specifically selected homophones to examine phonological 

preview benefits as they provide greater phonological overlap (i.e. across the whole 

word) compared to manipulating just one phoneme. In fact, these studies demonstrate 

the difficulties in finding phonological preview benefits as both too much and too 

little phonological overlap can hinder the ability to find such effects. However whilst 

it can be challenging to establish these effects, there are a number of studies 

demonstrating phonological parafoveal preview benefits in a range of languages, for 

example English (Ashby et al., 2006; Chace et al., 2005; Choi & Gordon, 2014; 

Tiffin-Richards & Schroeder, 2015), French (Miellet & Sparrow, 2004), and Chinese 

(Liu et al., 2002; Pollatsek et al., 2000; Tsai et al., 2004).  

In further exploration of phonological parafoveal processing for English adult 

readers, Ashby et al. (2006) manipulated internal vowel phonemes (e.g. chirp 

compared to cherg and chorg). They compared phonologically similar internal vowel 

phonemes and phonologically dissimilar internal vowel phonemes, and found that 
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non-words that share phonologically similar internal vowel phonemes to the target 

word resulted in greater preview benefits than non-words with dissimilar internal 

vowel phonemes. Therefore, Ashby et al. (2006) provide additional evidence for 

phonological parafoveal processing, but through the manipulation of vowels rather 

than full homophones. In addition, Miellet and Sparrow (2004) provided evidence for 

phonological preview benefits in their sample of French adult readers.  

Within their study Miellet and Sparrow (2004) used the boundary paradigm 

during silent sentence reading to compare the parafoveal previews benefits of the 

following preview conditions: 1) an identical preview (e.g. chaise), 2) a spelling 

control pseudoword preview (e.g. choise), and 3) a homophone pseudoword preview 

(pseudohomophones; e.g. cheise). Spelling control pseudoword previews were non-

words that were orthographically similar to the identical preview. Pseudohomophone 

previews were non-words that shared the same phonology but differed in 

orthography. Miellet and Sparrow (2004) found that pseudohomophone previews 

resulted in greater preview benefit compared to previews that were non-word non-

homophones. They used pseudoword stimuli rather than real word stimuli to 

determine how phonological parafoveal information is extracted from the parafoveal 

word. In fact, the findings that readers did gain phonological preview benefits during 

parafoveal processing of pseudowords suggests that parafoveal information is 

encoded through assembling sub-lexical information from grapheme-phoneme 

correspondences rather than through a complete orthographic representation of the 

word. Thus, Miellet and Sparrow (2004) provide evidence for phonological 

parafoveal preview benefits, but also findings to suggest that readers do not need a 

full orthographic representation of the parafoveal word before phonological 

preprocessing occurs. This is particularly interesting when considering dyslexic 

parafoveal processing as dyslexic readers have been found to have a reduced 

perceptual span (Rayner et al., 1989). Although Chapters 3 and 4 provide evidence of 

dyslexic parafoveal processing for the initial letters of the parafoveal word, dyslexic 

readers may have limitations in attention allocation that prevent the orthographic 

preprocessing of the entire parafoveal word. It is, therefore, important to establish 

that phonological parafoveal previews benefits do not rely upon a full orthographic 

representation, and, as such the “amount” of information extracted from the 

parafovea (i.e. from how far into the parafovea readers can extract information) 
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might not necessarily impact the type of information extracted (i.e. orthographic or 

phonological).  

In a further study of phonological parafoveal processing in skilled adult 

readers, Choi and Gordon (2014) also examined phonological preview benefits using 

pseudohomophones. They used two different methods to examine phonological 

parafoveal processing. In Experiment 1 Choi and Gordon (2014) used the boundary 

paradigm to examine preview benefits for the following preview manipulations: 1) 

an identical preview (e.g., brain), 2) a pseudohomophone preview (e.g., brane), and 

3) an orthographic control preview (e.g., brant). During single fixation duration, first 

fixation duration and gaze duration, they found that identical previews resulted in 

greater preview benefit compared to both pseudohomophone and orthographic 

control previews, with no difference between the pseudohomophone and 

orthographic control previews. Thus, in this experiment, Choi and Gordon were 

unable to find evidence in support of additional parafoveal processing benefit for 

phonological information compared to the equivalent orthographic match. Such 

results are contrary to Miellet and Sparrow (2004) but are supported by studies that 

have demonstrated difficulty in finding phonological benefits specifically for 

pseudohomophones (Lee, Kambe, Pollatsek, & Rayner, 2005; Lee et al., 1999).  

In their second Experiment, Choi and Gordon (2014) used the boundary 

paradigm to examine preview benefits for the following preview manipulations: 1) 

an identical preview (e.g. plain), 2) a homophone preview (e.g. plane), and 3) an 

orthographic control preview (e.g. plate). Thus, in this experiment, they used 

homophone previews to examine phonological preview effects rather than 

pseudohomophone previews. In support of Experiment 1, they found that identical 

previews resulted in greater preview benefit compared to both homophone and 

orthographic control previews, particularly for occasions in which the previous 

launch site was five or fewer characters from the left of the beginning of the target 

word. This demonstrates the importance of nearby launch sites for parafoveal 

preview benefits during reading. In fact, such a finding is interesting in relation to 

dyslexic readers as they often show earlier landing positions within a word compared 

to non-dyslexic readers (De Luca et al., 2002; Hawelka et al., 2010; MacKeben et al., 

2004; Pan et al., 2014), and, may therefore have greater restrictions in parafoveal 

processing.  
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In contrast to Pollatsek et al. (1992), Choi and Gordon (2014) were unable to 

establish a significant difference between the homophone and orthographic control 

previews. There were, however, numerical trends in the data to indicate an additional 

benefit of homophone previews compared to orthographic control previews. In fact, 

similarly to Pollatsek et al. (1992), Choi and Gordon (2014) suggested that a lack of 

a significant effect might be due to the high degree of orthographic overlap between 

the homophone previews and orthographic control previews compared with the 

target word. 

Whilst there is increasing evidence of phonological parafoveal processing 

during reading for skilled adult readers (Ashby & Rayner, 2004; Ashby et al., 2006; 

Blythe et al., 2018; Chace et al., 2005; Choi & Gordon, 2014; Dare & Shillcock, 

2013; Liu et al., 2002; Miellet & Sparrow, 2004; Pollatsek et al., 1992; Rayner et al., 

1995; Sparrow & Miellet, 2002; Tiffin-Richards & Schroeder, 2015; Tsai et al., 

2004), there is very little known about the development of phonological parafoveal 

processing and how reading ability impacts phonological parafoveal processing. As 

discussed within earlier chapters of this thesis, Tiffin-Richards and Schroeder (2015) 

explored both orthographic and phonological parafoveal processing for both children 

and adult German readers. Specifically, they used an identical preview, a 

pseudohomophone preview, and an orthographic control preview (examples are 

provided in German; e.g. Reis, Rais, Ruis, respectively) during a boundary paradigm 

study of silent sentence reading.  

For adult readers Tiffin-Richards and Schroeder (2015) found no evidence of 

increased preview benefit for pseudohomophones compared to the orthographic 

control previews, however, they did find evidence to support that identical previews 

provide significantly greater preview benefits compared to pseudohomophone 

previews. For children, there was a different pattern of results; children demonstrated 

a significant preview benefit for pseudohomophones compared to orthographic 

control previews which occurred significantly within single fixation duration and 

gaze duration and, numerically, in first fixation duration (the effect was not 

statistically significant for first fixation duration). Interestingly, for children, 

pseudohomophones provided preview benefits that were similar to those for identical 

previews. Thus, for children, pseudohomophones equally activated the lexical 

representation of the target word compared to the identical preview, indicating that 
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phonological information may play an important role in parafoveal processing for 

beginning readers.  

For adults, however, phonological information appeared less important for 

parafoveal processing compared to orthographic information (at least for the German 

speaking adults tested by Tiffin-Richards and Schroeder, 2015). In their study, 

Tiffin-Richards and Schroeder (2015) demonstrated that adult readers relied more on 

orthographic information to provide parafoveal preview benefit during reading. 

Recall, however, there is a body of work demonstrating skilled adult readers do gain 

parafoveal preview benefit from phonological information during reading across a 

range of languages. 

Whilst the findings from Tiffin-Richards and Schroeder (2015) are useful in 

developing our understanding of phonological parafoveal processing in German 

children, the results found for skilled adult readers contradict studies of phonological 

parafoveal processing for skilled English readers (Ashby et al., 2006; Blythe et al., 

2018; Pollatsek et al., 1992). As noted above, however, it is particularly hard to 

establish phonological preview benefits, especially when using pseudohomophones 

(Lee et al., 2005; Lee et al., 1999). Another point to consider, when comparing the 

work of Tiffin-Richards and Schroeder (2015) to studies of English phonological 

preview benefits, is that of orthographic density. Indeed, within the results reported 

in this thesis thus far, there have been findings that are contrary to those found by 

Tiffin-Richards and Schroeder (2015) in their study of German readers. Specifically, 

findings from Chapter 3 and Chapter 4 demonstrated that both English adults and 

children showed orthographic preview benefits, whereas for German readers, Tiffin-

Richards and Schroeder (2015) found that adults showed orthographic preview 

benefits, but children showed little evidence of such effects. Thus, it is possible that 

for English readers, parafoveal processing develops differently compared to German 

readers. This may be due to English being a less transparent language than German 

as this may impact the development of orthographic processing (McDougall et al., 

2010). Furthermore, research has also demonstrated a strong impact of phonological 

information during English reading (Rastle & Brysbaert, 2006). It is, therefore, 

possible that English readers, particularly during development, show differences in 

both orthographic and phonological parafoveal processing of information during 

reading compared to German readers.  
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Further to the results from Tiffin Richards, one study by Chace et al. (2005; 

also discussed within Chapter 3) explored phonological preview benefits during 

reading for a sample of university readers who were divided into groups of less 

skilled and skilled reading adults. Chace et al. (2005) aimed to extend the findings of 

Pollatsek et al. (1992) by exploring the impact of reading skill upon phonological 

parafoveal processing. They predicted that less-skilled readers would gain less 

preview benefit from phonological parafoveal information compared to more skilled 

readers. This was predicted on the basis that less skilled readers might allocate more 

of their resources to processing the currently fixated (foveal) word, thus leaving less 

capacity available to effectively encode the parafoveal word. Similarly to Pollatsek et 

al. (1992), Chace et al. (2005) used the boundary paradigm with the following 

preview conditions: identical to preview (words that were identical to the target 

word, e.g. beach), a homophone of the target word (e.g. beech), an orthographic 

control preview (e.g. bench), or a random letter string (e.g. jfzrp).  

Using a sample of 23 adult readers (the poor readers were excluded for 

purposes of replication), Chace et al. (2005) were able to demonstrate phonological 

parafoveal processing similar to that of Pollatsek et al. (1992). In fact, Chace et al. 

(2005) found a significant preview benefit for homophones compared to the 

orthographic control previews in gaze duration, and this was further supported by a 

numerical trend in first fixation duration (which did not reach significance). Such 

results further indicate that using homophones to manipulate phonological preview 

can provide evidence of phonological preview benefits in skilled readers. Chace et al. 

(2005) demonstrated that skilled readers were able to encode phonological 

information during parafoveal processing, and that phonological information 

provided a preview benefit greater than that of orthographic information. In addition 

to replicating the results of Pollatsek et al. (1992), a second set of analyses was 

conducted to explore the effects of reading skill on phonological parafoveal 

processing. In order to explore this, Chace et al. (2005) divided their sample into two 

reading groups, “more skilled” (N=13) and “less skilled” readers (N=13), and this 

group distinction was based on the participants’ scores on the vocabulary and reading 

comprehension subtests of the Nelson-Denny Reading Test (Brown et al., 1981).  

Chace et al. (2005) found that for first fixation duration, there was a main 

effect of reading skill with more skilled readers having shorter first fixation durations 

compared to less skilled readers. In addition, there was an interaction in which there 
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was no significant increase in preview benefit for homophone previews compared to 

orthographic control previews for skilled adult readers; thus, although there was a 

numerical trend to support phonological parafoveal processing in more skilled 

readers, this effect was not significant during first fixation duration. For less skilled 

readers, however, there was a significant effect but this occurred in the opposite 

direction to more skilled readers; less skilled readers showed greater preview benefit 

from orthographic control previews compared to homophone previews. However, 

Chace et al. (2005) note that, whilst this is a significant finding, it relied upon two of 

the less skilled readers and, consequently, the effect was no longer significant when 

these individuals were removed from the analysis. Thus, for first fixation duration, 

neither reading group showed a significant benefit of homophone previews compared 

to orthographic control previews.  

For gaze duration, the pattern of results was as Chace et al. (2005) had 

predicted. Although there was no main effect of reading skill, there was an 

interaction demonstrating that more skilled readers showed increased preview benefit 

for homophone previews compared to orthographic control previews. Less skilled 

readers, however, showed no significant difference between these two preview 

conditions. Therefore, indicating that the less skilled readers did not encode 

phonological information from the parafovea whereas skilled readers did. It is, 

however, important to note that, in contrast to the more skilled readers, the less 

skilled readers did not demonstrate preview benefit for identical previews compared 

to random previews. Chace et al. (2005) consequently concluded that less skilled 

readers showed no evidence of any type of preview benefit, and that they were likely 

to be devoting more attention to encoding the fixated word, leaving limited 

attentional resources left for parafoveal processing. Such finding is contrary to the 

results detailed in earlier chapters of this thesis (Chapter 3 and 4), where dyslexic 

adults and children showed orthographic parafoveal processing benefits during 

reading. There are, however, a number of differences between these studies that may 

explain the differences in results.   

One difference between the experiments detailed in Chapters 3 and 4 and the 

study by Chace et al. (2005), is the frequency scores of the pre-target words. Within 

the studies detailed in this thesis (in Chapter 3 and 4), the pre-target words were 

specifically selected to be high frequency words, in order to increase the likelihood 

of attentional resources being available for parafoveal processing. In contrast, Chace 
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et al. (2005) used low frequency pre-target words, which may have required 

increased foveal attention in order to encode the fixated word, compared to attention 

required for high frequency pre-target words. It is, therefore, possible that the stimuli 

used by Chace et al. (2005) consequently restricted the attentional resources for their 

sample of less skilled readers, which meant they were unable to gain any benefit 

from parafoveal information during reading. There is, however, an alternative 

explanation for the differences in preview benefit found within Chapter 3 and 4 of 

this thesis and that found by Chace et al.  (2005). It is possible, that the samples used 

within these studies represent separate groups of readers with different types of 

reading difficulties.   

Whilst the findings from Chace et al. (2005) help to develop our 

understanding of how reading difficulties may impact parafoveal processing, it is 

unclear to what extent their results generalise to dyslexic readers. To clarify, Chace 

et al. (2005) used measures of vocabulary and reading comprehension to determine 

the less skilled reading group within their sample. Dyslexia, however, is defined by 

difficulties with decoding (Liberman, 1973; Snowling, 1995; Snowling, 2000; 

Snowling & Hulme, 2012; Stanovich, 1988) and studies that explore dyslexia 

typically use measures of decoding to identify their sample (e.g. Hawelka et al., 

2010; Kirkby et al., 2011; Silva et al., 2015; Snowling & Hulme, 2012). In fact, 

dyslexia and difficulties in reading comprehension (a group known as poor 

comprehenders) are often considered separate reading disorders with different causes 

and different treatments (Cain et al., 2000; Cain, 2010; Hulme & Snowling, 2009; 

Nation et al., 1999; Nation & Snowling, 1998; Snowling & Hulme, 2012; Stothard & 

Hulme, 1995). Thus, the sample used by Chace et al. (2005) may not reflect dyslexic 

deficits and the conclusions may not extend to readers with dyslexia. Such 

suggestion is supported by the fact that the less skilled readers in Chace et al. (2005) 

showed increased first fixation durations compared to the more skilled reading 

group, but no differences in gaze durations. Indeed, during reading, it is unusual for 

dyslexic readers to have similar gaze durations to skilled adult readers; dyslexic 

readers typically show increased gaze durations compared to skilled readers 

(Hawelka et al., 2010; Hutzler & Wimmer, 2004; Yan et al., 2013) and this is 

supported in both Chapter 3 and Chapter 4 of this thesis. Therefore, as the sample of 

readers used within Chace et al. (2005) show differences in both foveal and 

parafoveal processing compared to samples of dyslexic readers, it is possible that 
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they are in fact different types of poor readers, and that the underlying deficits that 

are causing their reading difficulties impact parafoveal processing in different ways. 

Consequently, further work is required to understand phonological parafoveal 

processing for readers with dyslexia.  

In addition to the analysis for the two reading groups, Chace et al. (2005) also 

conducted analyses with reading skill as a continuous variable in regression analyses 

using their full sample of 32 participants (both more and less skilled readers). The 

Nelson-Denny (Brown et al., 1981) percentile rank scores were regressed on the 

differences between the homophone preview and the orthographic control previews. 

For both first fixation duration and gaze duration, they found a significant effect, 

indicating that the increased preview benefit for the homophone preview, compared 

to orthographic control previews, was greater for more skilled readers compared to 

less skilled readers, thus, indicating that reading skill (as measured by the Nelson 

Denny tests of vocabulary and reading comprehension; Brown et al., 1981) impacts 

upon a reader’s ability to encode phonological information during parafoveal 

processing. It is, however, still unclear as to whether difficulties in decoding may 

impact a reader’s ability to parafoveally process phonological information.  

In addition to Chace et al. (2005), Bélanger et al. (2013) explored 

phonological parafoveal processing for skilled adult readers and groups of deaf 

readers. It has been suggested that deaf readers may only develop partial or 

underspecified phonological representations (Kelly & Barac-Cikoja, 2007), perhaps 

similar to dyslexic readers; however, as discussed by Bélanger et al. (2013), the role 

of phonological processing in deaf readers is still under debate. Similarly to previous 

studies with skilled adult readers, Bélanger et al. (2013) demonstrated phonological 

preview benefits for skilled readers. However, whilst deaf readers demonstrated 

parafoveal processing abilities during reading, they showed no benefit of 

phonological parafoveal processing. In contrast to Bélanger et al. (2013), Blythe et 

al. (2018) demonstrated that their sample of teenagers with permanent childhood 

hearing loss did exhibit phonological parafoveal processing during silent sentence 

reading. Blythe et al. (2018) suggest these discrepancies may occur to differences in 

the way in which the participants process phonological information. Indeed, the 

sample criteria for participants was different across the two studies. The participants 

in the Blythe et al. (2018) study had a greater range of level of hearing loss (30–126 

dB SPL), and all used oral language as their primary means of communication. 
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Whereas, those in the Bélanger et al. (2013) study, were severely to profoundly deaf 

(hearing loss > 71 dB SPL) and used sign language (ASL) as their primary means of 

communication. Whilst Blythe et al. (2018) found that deaf readers’ level of hearing 

loss had no impact on phonological processing during reading, the two groups also 

differed in their method of communication which would impact their phonological 

processing. Thus although it is unclear exactly how phonological processing occurs 

for deaf readers, their phonological processing appears to impact their ability to gain 

phonological preview benefits. Accordingly, if deaf readers do have partial or 

underspecified phonological representations, then dyslexic readers may show a 

similar pattern of results during phonological parafoveal processing. There are, 

however, no studies explicitly looking at phonological parafoveal processing for 

dyslexic readers during sentence reading.  

One study of particular interest to the current line of enquiry is that of Jones 

et al. (2013). Within their two experiments, Jones et al. (2013) explored both 

orthographic and phonological foveal and parafoveal processing of information 

during RAN for groups of skilled and dyslexic adult readers. Jones et al. (2013) used 

the boundary paradigm to independently manipulate foveal (Experiment 1b) and 

parafoveal (Experiment 1a) information processing, in order to examine the impact 

of confusable information. To this end, letter arrays contained target item pairs where 

the second letter of the pair was orthographically or phonologically similar (and 

therefore confusable) to the first letter when viewed either foveally or parafoveally.   

In Experiment 1a, orthographically confusable (e.g. b and d) or 

phonologically confusable (e.g. g and j) letters were presented parafoveally. 

Therefore, when the participant fixated upon letter N (e.g. b), letter N+1 (presented in 

the parafovea) was confusable to the fixated letter (e.g. d). Once the reader made a 

saccade across the invisible boundary placed between the letter pairs, letter N+1 was 

replaced with a non-confusable letter (e.g. m). Thus, the parafoveal letter was no 

longer confusable once the reader fixated upon it, allowing for the exploration of 

orthographic or phonological confusability only during parafoveal processing. For 

skilled adult readers, there was no disruption to gaze duration and naming latency for 

either orthographic or phonologically confusable information presented parafoveally. 

Skilled readers were able to minimise any detrimental impact of parafoveal 

information when the parafoveal information was incorrect. Therefore, whilst skilled 

readers may have encoded the incorrect information parafoveally, they were more 
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easily able to reject the incorrect letter information and activate the correct 

information once it was fixated. Indeed, for skilled adult readers, the incorrect letter 

information did not disrupt the activation of the foveal letter or the parafoveal letter 

once it was fixated. Dyslexic readers, however, showed a different pattern of results. 

For Experiment 1a, dyslexic readers showed disruption when the available 

parafoveal information was orthographically similar to the foveal information. 

Specifically, dyslexic readers showed confusability effects in which gaze durations 

on letter N+1 were longer if the parafoveal preview of that letter was 

orthographically similar to the previously fixated letter (e.g. fixating letter d with a 

parafoveal preview of b). This effect occurred even though N+1 was not 

orthographically similar to N when it was fixated. Whilst gaze durations were 

disrupted for letter N+1, there was no disruption to the processing of letter N even 

though the confusable information was available parafoveally. Such results indicate 

that dyslexic readers had difficulty inhibiting the parafoveally orthographic 

confusable letter information that was activated during fixation on letter N, when 

they were then fixating upon and encoding the orthographic information from N+1. 

The previously activated orthographic information (e.g. b) interferes with the 

activation of the newly presented foveal letter (e.g. m). As such, it is possible that 

dyslexic readers are less effective at precise letter activation based on orthographic 

form; orthographically confusable letters may receive similar activation levels and 

this may impact their ability to efficiently process orthographically similar letters 

presented consecutively. Furthermore, as the effects only occurred once the dyslexic 

readers fixated the letter N +1, there appears to be a lag in the interference of 

parafoveal information, which might suggest that dyslexic readers have slower 

parafoveal processing. Such suggestion is consistent with Yan et al. (2013) who 

propose dyslexic readers have less efficient parafoveal processing and could be 

explained by sluggish attention during parafoveal processing. In fact, the Sluggish 

Attentional Shifting (SAS) Hypothesis (Hari & Renvall, 2001; Lallier et al., 2010) 

suggests that dyslexic readers struggle to engage and disengage with stimuli 

presented in a rapid sequence and this makes dyslexic readers slower to process 

information.  

In addition to the above, the finding that dyslexic readers show difficulties in 

processing consecutive letters that are parafoveally orthographically confusable is in 

line with research that demonstrates dyslexic readers show parafoveal processing 
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difficulties during studies of lateral masking (Pernet et al., 2006). Although 

parafoveal orthographic confusability impacted reading for dyslexic readers, there 

was no impact of phonologically confusable parafoveal information. Such result 

might suggest that phonologically confusable parafoveal information does not cause 

disruption for dyslexic readers, as they can effectively inhibit the competing 

phonological representations and activate the correct representations, or that 

phonological parafoveal information is not actually parafoveally encoded by dyslexic 

readers and therefore not a source of confusability. 

 Further to Experiment 1a, during Experiment 1b Jones et al. (2013) examined 

the impact of orthographically confusable or phonologically confusable items 

presented within the fovea (the information was not confusable in parafoveal preview 

and only became confusable once fixated). In this experiment, skilled readers showed 

effects of orthographic confusability in foveal processing. Notably, they were slower 

to process N + 1 when it was orthographically similar to N compared to when it was 

dissimilar. This suggests that for skilled readers, foveal processing can be influenced 

by the orthographic features of the previous item, and the activation of the previous 

letter impacts activation of the currently fixated letter. For dyslexic readers, naming 

latency was longer when foveal information was phonologically similar to the 

previous letter. The impact of phonological similarity for dyslexic readers occurred 

in two different ways: naming latency was longer for letter N, therefore suggesting 

that the new foveal information impacted the phonological assembly and articulation 

of the previously fixated letter. In addition, the naming of N+1 was impacted; 

suggesting that dyslexic readers have difficulty disengaging from already articulated 

phonological codes. There were, however, no effects of orthographic similarity for 

foveal confusability for dyslexic readers.   

Taken together, the results from the two experiments conducted by Jones et 

al. (2013) demonstrate that, compared to skilled adult readers, dyslexic readers show 

differences in both foveal and parafoveal processing and this may impact their ability 

to read fluently. Specifically, dyslexic readers appear to show both independent 

orthographic and phonological difficulties and these manifest in different ways 

during foveal and parafoveal processing. Thus, whilst dyslexic readers can encode 

orthographic parafoveal information (see Chapter 3 and 4), it is still possible that 

they may have an additional specific deficit that impacts phonological parafoveal 

processing during reading.  
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Whilst the conclusions drawn from Jones et al. (2013) during studies of RAN 

are insightful into foveal and parafoveal processing for readers with dyslexia, it is 

still unclear whether dyslexic readers show phonological parafoveal processing 

benefits during reading. As discussed in Chapter 2, RAN and reading differ on a 

number of levels and, whilst Chapter 3 and Chapter 4 of this thesis provide evidence 

of orthographic parafoveal processing in dyslexic readers, phonological parafoveal 

processing may be impacted for dyslexic readers. Indeed, dyslexic readers have 

difficulty in extracting phonological information from orthographic form (Liberman, 

1973; Snowling, 1995; Snowling, 2000; Snowling & Hulme, 2012; Stanovich, 1988); 

therefore, whilst they may access orthographic information parafoveally, they may 

not gain any benefit for parafoveal phonological information. Furthermore, as 

demonstrated by Jones et al. (2013) and Yan et al. (2013), dyslexic readers have 

slower, less efficient processing of parafoveal information. This is important 

because, the onset of phonological encoding occurs later in time compared to the 

onset of orthographic encoding, as orthographic codes are activated prior to 

phonological codes (Lee et al., 1999; Lee et al., 1999). Therefore, dyslexic readers 

may extract orthographic information from the parafovea, but may struggle to encode 

phonological parafoveal information before the next saccade is executed.  

The current study aimed to explore phonological parafoveal processing for 

readers with dyslexia. In order to find phonological parafoveal preview benefits, the 

current study used the stimuli from Chace et al. (2005). For that reason, the following 

preview manipulations were used: 1) previews that were identical to the target word 

(IP; e.g. beach), 2) a homophone of the target word (HP; e.g. beech), 3) an 

orthographic control word which was matched to the homophone condition in the 

amount of orthographic overlap shared with the identical preview (OP; e.g. bench), 

or, 4) a random string of consonants (RP; e.g. jfzrp). This design was selected as 

phonological preview effects can often be difficult to observe, and Chace et al. 

(2005) already established phonological preview benefits for skilled readers. For 

skilled adult readers, the usual pattern of preview effects were predicted; identical 

previews should provide the greatest preview benefit, followed by homophone 

previews, then orthographic control previews and finally, random previews provide 

least preview benefit. Specifically, it was predicted that there would be a benefit of 

homophone previews compared to orthographic control previews for skilled adult 

readers. For dyslexic readers, it was predicted that there would be a different pattern 
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of results to that of the less skilled readers in Chace et al. (2005). In fact, it was 

predicted that dyslexic readers would gain preview benefits during reading. As 

demonstrated in Chapter 3 and Chapter 4, dyslexic readers gained preview benefits 

from identical previews and orthographic previews. It was, therefore, predicted that 

dyslexic readers would show benefit of identical and orthographic control previews 

compared to random previews. However, due the their deficits with phonological 

processing (Liberman, 1973; Snowling, 1995; Snowling, 2000; Snowling & Hulme, 

2012; Stanovich, 1988), dyslexic readers were predicted to have difficulty in 

encoding phonological information from the parafovea. It was further predicted that 

there would be an interaction between preview condition and reading group in which 

dyslexic readers would show no difference between the homophone previews and the 

orthographic control previews.  

5.2 Method  

5.2.1 Participants  

Participants were 23 university students with developmental dyslexia (mean age of 

25 years and 8 months, SD: 7 years and 8 months) and 23 university students without 

dyslexia (mean age 22 years 8 months, SD: 4 years and 0 months). Students with 

dyslexia had a prior independent diagnosis of dyslexia and their diagnosis was 

further supported by deficits in standardised tests of reading ability. All participants 

were native English speakers with normal or corrected to normal vision and were 

recruited from Bournemouth University. All participants performed within the 

normal range on a standardised intelligence test (IQ≥90).  

5.2.2 Apparatus  

Eye movements were recorded from the right eye using an SR Research Eyelink 

1000 eye-tracker. All sentences were presented at a viewing distance of 660 mm on a 

22-inch Lacie Electron 22 Blue IV monitor with a screen resolution of 1024 x 768 

pixels and a refresh rate of 150 Hz. Sentences were presented in black 14pt Courier 

New font on a white background.  
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5.2.3 Design and stimuli  

The stimuli used within the current study were taken from Chace et al. (2005), with 

the exception of some small changes detailed later in this section. As in Chace et al. 

(2005), four parafoveal preview conditions were presented using the boundary 

paradigm (Rayner, 1975). Parafoveal previews of the target words were either 1) 

identical to the target word (IP), 2) a homophone of the target word (HP), 3) an 

orthographic control word (OP), or 4) a random string of consonants (RP). Sentences 

were presented on a single line and consisted of up to 80 characters. Target words 

were 4-6 letter words (mean: 4.51, SD: 0.76) and were preceded by a 4-8 letter pre-

target word (mean: 6.02, SD: 1.08). Pre-target and target words were presented 

towards the middle of the sentence. Pre-target words were chosen to be low 

frequency words (mean: 22 counts per million, SD: 17, as reported by Chace et al. 

using word frequency scores from Francis and Kučera, 1982) of medium to long 

word length in order to increase the likelihood of the participant fixating the word. 

Target words varied in length and frequency but were matched on both across all 

conditions; frequency was matched for both identical (mean: 41, SD: 72), 

homophone (mean: 45, SD: 90) and orthographic control previews (mean: 45, SD: 

76), random previews were non-words and do not have frequency values. Identical, 

orthographic and homophone previews were matched for orthographic overlap; when 

the homophone condition shared the first two letters of the identical preview, the 

orthographic control did also. All the target words were normed for predictability and 

all target words were predicted less than 25% of the time. Target words were also 

normed for understandability, using a scale of 1-7, the mean rating for all the 

sentences was 5 or greater, suggesting they were understandable.  

In addition, as the experimental stimuli from Chace et al. (2005) were 

developed for readers of American English, the sentences were piloted with thirteen 

native British English speakers to make sure they were understandable and coherent. 

Participants were required to determine whether each sentence “made sense” with a 

“yes” or “no” response. On occasions where 6 or more of the participants responded 

to indicate that the sentence did not make sense, these sentences were altered to 

ensure they were understandable and coherent. Overall, one pre-target word was 

altered (from senior to graduate), and one sentence frame was changed to increase 

understandability for British English readers (note that for this particular sentence, 
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the target word and manipulations remained the same as that within Chace et al., 

2005).  

The stimuli consisted of 64 sentence frames and for each sentence frame 

there were 4 versions corresponding to the four parafoveal preview conditions (See 

Table 5.1 for an example). Three experimental lists were constructed whereby each 

list contained a different version of each sentence frame and the parafoveal preview 

manipulations were randomised across the 4 experimental lists so each participant 

saw sentences from each of the four preview conditions.  

The eye movement contingent change boundary was located at the end of the 

pre-target word and to the left of the space preceding the target word. When the eyes 

moved past the invisible boundary, the target word changed from the parafoveal 

preview to the target word. The correct target word then remained in the sentence 

throughout the remaining duration of the trial. Display changes were typically 

undetected by the readers as they occurred during a saccade (when visual 

information is suppressed). Indeed when participants were questioned as to whether 

they noticed anything unusual during the experiment, very few reported noticing 

anything and those who did notice something suggested it occurred in a very small 

number of trials (less than 4 trials) and were unable to explain what had happened. 

 

Table 5.1. Examples of the target word manipulation. Sentence frames included an 

identical preview, a homophone preview, an orthographic control preview, or a 

random preview.  

 Example sentence 

Identical preview Andrew sat on the beach watching the sunrise.  

Homophone preview Andrew sat on the beech watching the sunrise. 

Orthographic control Andrew sat on the bench watching the sunrise. 

Random preview  Andrew sat on the jfzrp watching the sunrise. 
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5.2.4 Off-line measures of reading ability and IQ   

Similarly to the previous experimental chapters, all participants completed a range of 

offline tests (see Chapter 2 for further details about offline testing). IQ was measured 

using two subtests of the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechsler, 1999); i) the vocabulary subtest, ii) the matrix reasoning subtest. In 

support of Experiment 1 (detailed in Chapter 3), the TOWRE was selected to explore 

reading ability for adults as it is formed of two parts: the sight word efficiency test 

and the phonemic decoding efficiency test, which together provide an overall word 

reading efficiency standard score for each participant. For both subtests, participants 

are required to read aloud as many items as possible within 45 seconds. The sight 

word efficiency subtest is a list of real words and the phonemic decoding efficiency 

subtest is a list of pseudowords. In addition to the TOWRE, supplementary tests were 

administered to allow for further exploration of phonological difficulties in adults 

with dyslexia. Specifically, the Comprehensive Test of Phonological Processing – 

Second Edition (CTOPP-2; Wagner, Torgen, Rashotte, & Pearson, 2013) was 

selected to examine phonological processing. The CTOPP-2 provides a phonological 

awareness composite score based upon 3 subtests: an elision task, word blending and 

finally phoneme isolation. Within the elision task participants are presented with a 

word and asked to say the word with one of its sounds deleted. For example, "Say the 

word blend without the /l/". This tests their ability to remove phonological segments 

from spoken words to form other words. Word blending requires the individual to 

listen to a number of individual phonemic sound components that make up a word, 

and to combines the sounds to form the word. Word blending tests the ability to 

synthesize sounds to form words. Finally, phoneme isolation requires the participant 

to identify the first and the last sound of a word. This task examines the ability to 

isolate individual sounds within words. Together these provide a phonological 

awareness composite score for each participant, which is a specific indication of the 

individuals’ awareness of and access to the phonological structure of oral language. 

The CTOPP-2 also provides subtests for RAN, so the CTOPP-2 was also 

used to measure RAN for both letters and numbers. Again, RAN requires 

participants to rapidly name either an array of letters or an array of numbers. The 

time taken to name all these items and the accuracy of which it is done provides a 

score that is then standardised based on age. The CTOPP provides a RAN composite 
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score based upon the results of RAN letters and RAN numbers. This composite score 

is an indication of the participant’s ability to efficiently retrieve phonological 

information from long-term memory and articulate that information, thus it is an 

indication of how well individuals can integrate both orthographic and phonological 

information.  

5.2.5 Procedure 

Participants sat in front of a computer screen with their head positioned in a forehead 

restraint and chin rest to minimise head movements during the eye movement 

recording. They were instructed to read the sentences silently for comprehension and 

to press a button on a gamepad once they had finished reading. A 3-point calibration 

was conducted prior to the experimental trials and selected due to the horizontal 

nature of single line sentences; an accurate calibration was accepted when the 

average errors in the validation were below 0.2° of visual angle. Calibrations were 

confirmed throughout the experiment and repeated when required. Each trial began 

with a gaze contingent box (a small black square) presented on the left hand side of 

the screen, positioned so that the initial letter of the sentence occupied the same 

location. Once the participant had fixated the square for 250ms, the sentence 

appeared on the screen. Participants then read the sentence silently and terminated 

the trial with a button press. The first 10 sentences presented were practice trials and 

were excluded from the analysis. After 25% of the experimental sentences a “yes/ 

no” comprehension question appeared; participants were required to press a 

corresponding button to answer the question.  

5.2.6 Statistical analysis 

As discussed in Chapter 2, prior to the analysis, fixations less than 80ms were either 

merged into nearby longer fixations or excluded and fixations more than 800ms were 

excluded from the data set (3.37 % of fixations). Additional trials were excluded 

based upon the following criteria; 1) when the boundary was triggered prior to a 

saccade being made across the boundary, 2) when the display change completed 

more than 10ms after a fixation landing on the target word, 3) when the end of a 

saccade briefly crossed the boundary but the successive fixation remained in a 

position before the boundary, 4) when participants blinked on either the pre-target or 

target word, 5) when the participants skipped either the pre-target or target word. In 
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total 1007 trials were removed from the analyses (34.21 % of the dataset), whilst this 

figure is rather high for data exclusions (typically studies report to exclude up to 

approximately 30% of the dataset; Chace et al., 2005; Johnson et al., 2007), data 

were excluded similarly across groups and conditions.      

5.3 Results  

Similarly to previous chapters, analyses were conducted for both global and local eye 

movement measures. Global measures refer to results from all of the fixations within 

the sentence whereas local measures were based solely on the eye movements that 

occurred on the target word (see Chapter 2 for discussion). In support of the previous 

chapters, both the global and local data were analysed using LMMs (see Chapter 2 

for further discussion on the use of LMMs) using the lme4 package (version 1.1.12) 

in R (version 3.3.1). For global analysis, reading group was the fixed factor for all 

models. For local analysis, both reading group and preview condition were fixed 

factors for all models. Participants and items were specified as random effects for 

both global and local analyses. For each dependent measure, a “full” random 

structure was implemented including all varying intercepts and slopes of the main 

effects and their interaction (maximal random effects structure as suggested by Barr 

et al., 2013). If the “full” model failed to converge, or there were too many 

parameters to fit the data (as indicated by correlations of 0.99, 1, -0.99 or -1 in the 

random structure), the random structure was systematically trimmed (first by 

removing correlations between random effects, and if necessary also by removing 

their interactions). Successive difference contrasts were used for preview condition 

(comparing identical previews and homophone previews, followed by homophone 

previews and orthographic control previews, finally, orthographic control previews 

compared to random previews). Treatment contrasts were used for Reading group 

with Skilled Readers (SR) set as the baseline. For each contrast, beta values (b), 

standard error (SE) and t or z statistics are reported. Fixation time analyses were 

carried out on log-transformed models to increase normality and count data were 

analysed using generalised linear mixed models following a Poisson distribution 

(GLMMs). 

In line with Chace et al. (2005), the local data were analysed in two ways. 

Therefore, in addition to the LMM analysis (where reading group was treated as a 

categorical variable), regressions were conducted on the difference between 
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homophone previews and orthographic control previews, using the phonological 

composite score as a continuous variable to plot reading skill.  

5.3.1 Eye tracking comprehension questions   

The mean accuracy in comprehension scores was 92.93% correct for dyslexic readers 

and 95.92% for skilled adult readers, with no significant difference in scores for the 

two groups, t(44)= -1.52, p=.134. Thus, both dyslexic and non-dyslexic readers were 

able to read these sentences in order to correctly respond to the comprehension 

questions 

5.3.2 Off-line measures of reading ability and IQ   

Mean scores and statistical analyses for the offline tests are presented in Table 5.2.  

There were no significant differences in the IQ scores of the two groups. However, 

the adults with dyslexia scored significantly lower on the TOWRE and the RAN 

composite score compared to the skilled adult readers. Scores for the phonological 

composite score followed a similar trend in which dyslexic readers had lower scores 

compared to skilled adult readers, however, this difference was only marginally 

significant.  

5.3.3 Global measures  

The following global measures were included; total sentence reading time, average 

saccade amplitude, average forward and regressive fixation duration, and total 

number of forward and regressive fixations per sentence (See Table 5.3 for means 

and Table 5.4 and Table 5.5 for model outputs). Forward and regressive fixations 

were classified based upon the previous saccade direction (fixations preceded by a 

rightward saccade are considered forward fixations and fixations preceded by a 

leftward saccade are referred to as regressive fixations).  

Total reading time: There was a main effect of reading group whereby dyslexic 

readers had significantly longer total reading times than the skilled readers.  

Saccade amplitude: There were no significant differences in saccade amplitude for 

dyslexic readers compared to skilled readers.   
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Forward and regressive fixation durations: For forward fixation duration, there was 

a marginally significant effect of reading group where dyslexic readers had longer 

first fixation durations compared to the skilled adult readers. Regressive fixation 

duration showed a similar pattern, there was a significant effect whereby dyslexic 

readers showed longer regressive fixation durations than skilled readers.  

Forward and regressive fixation counts: Dyslexic readers made significantly more 

forward and regressive fixations compared to the skilled readers.  

 

Table 5.2. Mean scores and statistical analysis for the offline tests for adults with and 

without dyslexia. Standard scores are provided for IQ, the TOWRE, phonological 

composite score, and RAN composite score. Standard deviations are shown in 

parentheses.  

 Dyslexic Readers Skilled Readers t-test result 

IQ 108.83 (11.38) 112.30 (10.85) t(44)= -1.06, p=.294 

TOWRE 84.00 (12.12) 100.04 (11.92) t(44)= -4.53, p<.001 *** 

Phonological Composite  92.70 (14.80) 100.43 (13.68) t(44)= -1.84, p=.072  

RAN Composite 78.83 (20.29) 99.22 (14.15) t(44)= -3.95, p<.001 *** 

 

  



 

 160 

Table 5.3. Average global reading measures for Experiment 3.  
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Table 5.4. Model output for LMMs conducted for global reading measures for 

Experiment 3. 
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Table 5.5. Model output for GLMMs conducted for global reading measures of 

forward fixation count and regressive fixation count. Significant z values (|z| ≥ 1.96) 

are marked in bold.  

 

 

 

 

 

 

 

 

  

 Forward fixation count Regressive fixation count 

 b SE z  b SE z   

Intercept 2.27 0.05 44.89  0.73 0.12 5.96   

Dyslexic readers 0.24 0.07 3.55  0.60 0.17 3.51   
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5.3.4 Local measures   

The following measures were analysed for the embedded target words; first fixation 

duration, single fixation duration, go-past time, total reading time, fixation count and 

landing position. First fixation duration is the duration of the initial fixation on the 

target word. Single fixation duration represents those fixations for which the reader 

made only one fixation on the target word during first pass. Gaze duration is the sum 

of fixation durations on the target word before the reader leaves that word. Go-past 

time is the sum of fixation durations on the target word from when a reader first 

fixated that word until their first fixation to the right of that word (including any 

regressions made before moving forward past the target word). Total time is the sum 

of all fixations that occur on the word throughout the whole trial (including any 

regressive fixations). Landing position is the character location of which the eye 

fixates. Table 5.6 provides the mean results for first fixation duration, single fixation 

duration, gaze duration, total reading time and fixation count across reading group 

and preview condition. Table 5.7 provides the details of the LMM outputs.  

5.3.4.1 LMM analysis 

First fixation duration: For first fixation duration there was no significant main 

effect for group. There was, however, a main effect of preview condition in which 

identical previews received shorter first fixations compared to homophone previews. 

There was no significant benefit of homophone previews compared to orthographic 

control previews. Finally, there was a benefit in which first fixation durations were 

shorter for orthographic control previews compared to random string previews. None 

of the interactions were significant. 

Single fixation duration: In single fixation duration there was a similar pattern to 

that of first fixation duration. There was no significant main effect for group. There 

was, however, a main effect of preview condition in which identical previews 

received shorter first fixations compared to homophone previews. Again, there was 

no significant benefit of homophone previews compared to orthographic control 

previews. Finally, there was a marginally significant benefit in which first fixation 

durations were shorter for orthographic control previews compared to random string 

previews. None of the interactions were significant (see Figure 5.1). 

 



 

 164 

	

Figure 5.1. Mean single fixation durations for dyslexic readers and skilled readers 

across identical previews, homophone previews, orthographic control previews, and 

random previews. Error bars show standard error in each preview condition. 

 

Gaze duration: For gaze duration, there was a marginal main effect for group in 

which dyslexic readers had longer gaze durations than skilled adult readers. Similarly 

to both first and single fixation duration, there was a main effect of preview 

condition in which identical previews received shorter first fixations compared to 

homophone previews. Again, there was no significant benefit of homophone 

previews compared to orthographic control previews. Finally, there was a significant 

benefit in which first fixation durations were shorter for orthographic control 

previews compared to random string previews. Again, none of the interactions were 

significant. 

Go-past time: In go-past time, there was a significant main effect of group in which 

dyslexic readers had longer go-past times compared to skilled adult readers. There 

was no significant difference between the go-past times for identical previews and 
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homophone previews. Similarly, there was no significant difference between the go-

past times for homophone previews compared to orthographic control previews. 

Finally, there was a significant benefit in which go-past times were shorter for 

orthographic control previews compared to random string previews. None of the 

interactions were significant. 

Total reading time: In total reading time, there was a significant main effect of group 

in which dyslexic readers had longer total reading times compared to skilled adult 

readers. There were, however, no effects for any of the preview condition contrasts 

and none of the interactions were significant.  

Landing position: There were no significant effects of reading group or preview 

condition on landing position. There were no significant interactions.   

Fixation count: For fixation count, there was a significant main effect of group in 

which dyslexic readers made more fixations compared to skilled adult readers. There 

were, however, no differences in fixation count for any of the preview condition 

contrasts. In addition, none of the interactions were significant. 

 

5.3.4.1 Regression analysis 

In addition to conducting LMMs to explore the effects of preview condition and 

reading group, additional regression analysis was conducted for the difference values 

between the homophone preview condition and the orthographic control preview 

condition. Such analysis is similar to that conducted by Chace et al. (2005), however, 

in the current study the difference values were regressed on phonological composite 

scores rather than Nelson Denny percentile ranks. Phonological composite scores did 

not predict the difference between homophone and orthographic control preview 

benefits for any of the measures (first fixation duration, single fixation duration, gaze 

duration, go-past time, and total time). See Table 5.8 for the results.  
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Table 5.6. Mean first fixation duration, single fixation duration, gaze duration, go-

past time, total reading time, fixation count and landing position for the target word, 

as a function of preview condition and reading group. Standard deviations are shown 

in parentheses. 

 

 Identical  Homophone Orthographic  Random 

First fixation duration (ms)  

 Dyslexic 261 (102) 285 (116) 283 (112) 300  (130) 

 Skilled reader 239 (77) 262 (98) 259 (90) 285 (105) 

Single fixation duration (ms)  

 Dyslexic 266 (102) 294 (115) 289 (111) 321 (132) 

 Skilled reader  244 (78) 272 (99) 270 (89) 297 (103) 

Gaze duration (ms)  

 Dyslexic 304 (146) 344 (165) 321 (141) 359 (177) 

 Skilled reader  272 (102) 300 (126) 298 (114) 323 (119) 

Go-past time (ms)  

 Dyslexic 433 (360) 496 (410) 479 (427) 631 (672) 

 Skilled reader 329 (188) 364 (248) 356 (207) 402 (243) 

Total time (ms)   

 Dyslexic 466 (342) 501 (304) 532 (445) 554 (369) 

 Skilled reader 354 (198) 381 (226) 386 (177) 418 (232) 
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Table 5.6 continued. 

 

 Identical  Homophone Orthographic  Random 

Landing position (characters)  

 Dyslexic 2.95 (1.28) 2.87 (1.37) 2.92 (1.33) 2.79 (1.33) 

 Skilled reader 2.88 (1.33) 2.85 (1.42) 2.99 (1.51) 2.82 (1.37) 

Fixation count   

 Dyslexic 1.86 (1.25) 1.91 (1.08) 2.05 (1.60) 2.12 (1.42) 

 Skilled reader  1.55 (0.83) 1.55 (0.89) 1.58 (0.78) 1.62 (0.89) 
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Table 5.7. Model output for LMMs conducted for local reading measures for 

Experiment 3 
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Table 5.8. Results of the regression analysis conducted on the difference values of 

homophone previews compared to orthographic control previews regressed on 

phonological composite scores. Results are reported for local reading measures of 

first fixation duration (ms), single fixation duration (ms), gaze duration (ms), go-past 

time (ms) and total reading time (ms).  

 

 R2 Adj. R2 F p (F) Constant β1 t p (t) 

Phonological composite score 

First fixation .002 -.021 .09 .766 -18.33 .17 0.30 .766 

Single fixation  .001 -.021 .06 .814 -15.97 .14 0.24 .814 

Gaze duration .028 .005 1.25 .270 -92.48 .81 1.12 .270 

Go-past time .002 -.021 .08 .775 -43.87 .37 0.29 .775 

Total time  .022 <.001 .99 .325 -123.85 1.47 0.99 .325 

 

5.4 Discussion  

The aim of the current study was to examine phonological parafoveal processing in 

dyslexic reading; specifically, to examine whether adults with dyslexia gain benefit 

from phonological parafoveal processing in addition to orthographic parafoveal 

processing. The pattern of results indicated that both dyslexic and skilled adult 

readers gained preview benefit during reading; for both reading groups, orthographic 

control previews provided greater preview benefit compared to random previews, 

and identical previews provided greater preview benefits compared to homophone 

parafoveal previews. There was, however, no evidence of a significant benefit of 

homophone previews compared to orthographic control previews for either of the 

reading groups. Therefore, in the current study, there was no evidence that 

phonological information provides further preview benefit compared to orthographic 

information. Finally, in regard to foveal eye movement patterns, dyslexic readers 

required longer viewing durations and made more fixations than skilled adult 

readers. 
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Similarly to the previous experiments reported in this thesis (see Chapter 3 

and Chapter 4), and in support of previous research into parafoveal processing during 

the RAN task (Jones et al., 2013; Yan et al., 2013), the current results provide 

evidence for parafoveal processing during reading for dyslexic readers. Notably, 

during first fixation duration, single fixation duration and gaze duration, both 

dyslexic and non-dyslexic readers showed a benefit of orthographic control previews 

compared to random previews. These two types of preview manipulations varied in 

letter identity across the full length of the word (e.g. compare bench to jfzrp). 

Therefore, differences in these preview manipulations demonstrate that both reading 

groups were encoding orthographic information from parafovea. Indeed, both 

dyslexic and non-dyslexic readers appear to encode letter identity from the 

parafoveal word in order to aid lexical identification, and having the correct preview 

for the first two letters is beneficial compared to having an incorrect parafoveal 

preview for all letters of the word. Such finding supports previous research 

demonstrating orthographic parafoveal processing for skilled readers (Johnson et al., 

2007; Pagán et al., 2016; Tiffin-Richards & Schroeder, 2015), and, also supports the 

findings shown for dyslexic readers in both Chapter 3 and Chapter 4. Similarly to the 

findings in previous chapters of this thesis, dyslexic readers were able to allocate 

their attention to the parafovea in order to encode orthographic information during 

silent sentence reading.  

In addition to demonstrating a preview benefit for orthographic control 

previews compared to random previews, both dyslexic and skilled readers showed a 

benefit of identical previews compared to homophone previews and this occurred 

within first fixation duration, single fixation duration and gaze duration. This finding 

is somewhat contrary to previous studies which demonstrated that when the first two 

letters of the previews overlap, preview benefits for skilled adult readers are close to 

that obtained when the previews were identical (Balota et al., 1985; Rayner et al., 

1980). Such finding is also contrary to Pollatsek et al. (1992) who found that, for 

skilled adult readers, there was no difference in the preview benefits gained from 

identical previews and homophone previews. The current pattern of results do, 

however, support that of Choi and Gordon (2014) who also found skilled readers 

showed a greater preview benefit from identical previews compared to homophone 

previews. Thus, whilst there are mixed findings within the literature, the current 

findings suggest that viewing an identical parafoveal preview provides greater 
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benefit, and therefore greater lexical activation, compared to viewing a homophone 

parafoveal preview even though there was a large amount of orthographic and 

phonological overlap (for orthographic information this was at least the first two 

letters, and, phonology was matched across the whole word).  

The finding that both reading groups showed greater preview benefit for 

identical previews compared to homophone previews indicates that both groups were 

able to allocate their attention to the beginning of the parafoveal word in order to 

encode the letter identities of the initial similar letters, but, also allocate their 

attention towards the middle or latter end of the word to encode letter identity for the 

letters that differ across the preview manipulations (e.g. compare beach to beech). In 

fact, it is the letter identity encoding for the middle or latter letters that provides the 

additional preview benefit that occurs for identical previews compared to 

homophone previews (this will be discussed in further detail later within this 

section). Thus, whilst both identical and homophone previews have the same 

phonological form, previewing the correct orthographic representation of the word 

provides greater lexical activation and increases the preview benefit effects for both 

skilled and dyslexic readers. Although this specific comparison cannot determine if 

either group of readers are in fact encoding phonological information from the 

parafovea, these results suggest that perhaps encoding phonology is not enough to 

provide optimal preview benefit and that orthographic information is also important.  

Further to providing evidence for orthographic parafoveal processing, the 

current study aimed to explore whether dyslexic readers gained parafoveal preview 

benefit from phonological information. Contrary to previous studies with skilled 

adult readers (Ashby & Rayner, 2004; Ashby et al., 2006; Chace et al., 2005; Liu et 

al., 2002; Miellet & Sparrow, 2004; Pollatsek et al., 1992; Rayner et al., 1995; 

Sparrow & Miellet, 2002; Tsai et al., 2004), neither reading group showed a benefit 

of homophone previews compared to orthographic control previews. It is, therefore, 

unclear as to whether skilled readers or dyslexic readers gain additional preview 

benefit from encoding phonological information parafoveally. As discussed in the 

introduction, phonological preview benefits are typically hard to identify, and, there 

are a number of studies that have been unable to provide evidence for phonological 

parafoveal preview benefits (Choi & Gordon, 2014; Lee et al., 1999; Lee et al., 1999; 

Rayner et al., 1980).  
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In order to increase the likelihood of finding phonological parafoveal preview 

benefits, the current study purposely used the stimuli from Chace et al. (2005) who 

were able to demonstrate phonological parafoveal preview benefits for skilled adult 

readers during reading. Furthermore, data were collected from an increased sample 

size to further aid in establishing the effects. Contrary to the predictions and the 

results of Chace et al. (2005), however, skilled adult readers did not show an 

increased preview benefit from homophone previews compared to orthographic 

control previews within the current study. Whilst it was predicted that dyslexic 

readers would not demonstrate an increased preview benefit for homophone 

previews compared to orthographic control previews, because skilled readers did not 

demonstrate the pattern of results previously found with this stimuli, it is impossible 

to draw conclusions about dyslexic phonological parafoveal processing.  

As proposed by previous researchers (Choi & Gordon, 2014; Pollatsek et al., 

1992), a lack of evidence for phonological parafoveal processing in the skilled adult 

readers might be due to the high degree of orthographic overlap between homophone 

and orthographic control previews. The similarity between the previews often makes 

it difficult to establish a difference and the effects are typically very small in 

duration. It is, however, important to note that Chace et al. (2005), were able to 

establish an effect with the same set of stimuli, and within the current results there 

was a significant difference in the preview benefit of identical previews compared to 

homophone previews. This finding is important because identical previews (e.g. 

beach) and homophone previews (e.g. beech) shared the same level of orthographic 

overlap as homophone previews and orthographic control previews (e.g. bench). As 

such, it is unlikely that orthographic overlap is the primary cause of the lack of 

evidence for phonological preview benefit demonstrated within the current study.  

Another possible explanation for the lack of evidence supporting 

phonological parafoveal preview benefits in skilled adult reading may be due to the 

word frequency scores used within the current study. Whilst the stimuli were piloted 

with thirteen native British English speakers, to make sure they were understandable 

and coherent, the word frequency scores originated from the Chace et al. (2005) 

study. Within their experiment, Chace et al. (2005) used word frequency scores from 

the Francis and Kučera (1982) database to determine the frequency of the pre-target 

and target word. To be specific, the word frequency of the target word was matched 

across three of the preview conditions (identical previews, mean: 41, SD: 72; 
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homophone previews, mean: 45, SD: 90; and orthographic control previews, mean: 

45, SD: 76). Whilst the Francis and Kučera (1982) word frequency scores were 

previously regularly used in samples of British English readers (e.g. Ashby, Rayner, 

& Clifton, 2005; Kirkby et al., 2013; White et al., 2005a; 2005b), such database is 

now often considered to be a somewhat out-of-date word frequency database (Balota, 

Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Brysbaert & New, 2009; Burgess 

& Livesay, 1998; Zevin & Seidenberg, 2002), and for British English readers the 

preference has moved toward the British National Corpus (BNC). When using the 

BNC values of word frequency, the pre-target words remain, on average, low 

frequency words (mean: 31.34 per million, SD: 51.96). However, for the target 

words, there are differences in the frequency scores across the preview 

manipulations. Specifically, using the BNC, word frequency scores are as follows: 

identical previews (mean: 38.25 per million, SD: 72.14), homophone previews 

(mean: 52.76 per million, SD: 141.55), orthographic control previews mean: 71.79 

per million, SD: 200.81). Thus, whilst the target word stimuli were well matched for 

US English readers (using Francis & Kučera, 1982), there was much greater 

variation in frequency across target words for British English readers (when using 

BNC).  

Whilst the differences in word frequency across the target word preview 

manipulations are perhaps rather small, considering that word frequency scores in the 

BNC can range up to 68,954 for words such as “the”, any additional noise that is not 

controlled for may impact the ability to detect already temperamental phonological 

parafoveal preview effects. It may be the case that when target words are less 

frequent words, they require additional attentional resources to parafoveally process 

(Henderson & Ferreira, 1990). In fact, the onset of phonological encoding occurs 

later in time compared to the onset of orthographic encoding, and orthographic codes 

are activated prior to phonological codes (Lee et al., 1999; Lee et al., 1999). 

Therefore, it is possible, that words with lower word frequency scores are 

orthographically encoded, but phonological encoding is limited due to restrictions in 

attention. Consequently, phonological parafoveal processing may be limited during 

occasions when the target word is lower in word frequency.  

Such reasoning would explain why identical previews showed greater 

preview effects than homophone previews; if these words require increased 

attentional resources, due to being lower frequency words, phonological information 
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may not be encoded parafoveally, thus the identical preview provides greater 

orthographic overlap and therefore larger preview benefit compared to homophone 

previews. Furthermore, more frequent words, such as the orthographic control 

previews, may benefit from some level of phonological parafoveal processing. This 

would then eradicate any difference between the homophone and orthographic 

control preview benefits (as homophone previews are orthographically similar), and 

perhaps provide slightly more preview benefit for orthographic control previews, 

which may have received some level of phonological encoding. Therefore, the 

differences in frequency scores across the target word preview manipulations may 

explain why the current study did not find evidence for phonological parafoveal 

preview benefits. As such, it is still unclear as to whether dyslexic readers can 

encode phonological information parafoveally during reading.  

Whilst the current study was unable to determine whether dyslexic readers 

can encode phonological information from the parafovea, there are still a number of 

interesting findings from the current results. Notably, in contrast to findings from the 

poor readers in the study by Chace et al. (2005) who did not show any evidence of 

parafoveal processing, the current results show that dyslexic readers do gain 

parafoveal preview benefit during reading. Thus, it is possible that dyslexic readers 

and the poor readers selected within Chace et al. (2005) represent different subsets of 

reading difficulty; dyslexic readers and poor comprehenders have been identified as 

separate samples of reading disability (Cain et al., 2000; Cain, 2010; Hulme & 

Snowling, 2009; Nation et al., 1999; Nation & Snowling, 1998b; Snowling & Hulme, 

2012; Stothard & Hulme, 1995). Furthermore, in contrast to Chace et al. (2005) who 

found the Nelson-Denny percentile rank scores predicted phonological preview 

benefits, the phonological composite score (from the CTOPP) was not found to 

predict phonological preview benefits in the current sample. It is, therefore, possible 

that the reading difficulties as identified using the Nelson Denny test (using tests of 

vocabulary and reading comprehension, which rely much more upon extracting 

meaning from language rather than phonological decoding) provide a greater 

indication of phonological parafoveal processing than the phonological composite 

score from the CTOPP, which is an overall indication of the individuals awareness 

of, and access to, the phonological structure of oral language. Parafoveal processing 

is dependent on attention (Miellet et al., 2009); therefore phonological parafoveal 

processing may rely heavily upon attentional resources rather than decoding as an 
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isolated measure. Such possibility, however, would need to be explored thoroughly 

with further empirical research.  

Another interesting finding from the current study demonstrates that dyslexic 

readers showed the ability to parafoveally process orthographic information even 

when the pre-target word was a low frequency word. In both Experiment 1 and 

Experiment 2 of this thesis (reported in Chapters 3 and 4), dyslexic readers showed 

the ability to parafoveally process orthographic information, but, during these initial 

studies, the pre-target word was purposely manipulated to be a high frequency word. 

It has been proposed that dyslexic readers have limited attentional resources and as 

such, when foveal demands are high (as the case with a low frequency pre-target 

word), dyslexic readers have less attentional resources to allocate to parafoveal 

processing. Nonetheless, as demonstrated within the current study, dyslexic readers 

were able to allocate their attention to the parafoveal word to encode orthographic 

information during reading, even when the pre-target word was a low frequency 

word with increased foveal processing demands. Thus, for dyslexic readers, the 

attentional resources required for parafoveal processing may not always be limited 

by foveal demand during reading (however, note that this was not explicitly tested 

within the current study so firm conclusions cannot be drawn). This suggestion is, 

however, further supported by the finding that dyslexic readers can encode 

parafoveal information from the middle or latter end of the target word even when 

foveal demand is increased.  

Recall that dyslexic readers gained increased preview benefit from identical 

previews compared to homophone previews. Interestingly, both identical previews 

and homophone previews typically had the same two initial letters, thus the 

manipulation only became apparent from the middle of the word onwards (e.g., 

beach, beech). To clarify, in the first two experiments of this thesis, parafoveal 

manipulations were kept to the initial letters of the word to ensure that dyslexic 

readers would show an impact of the manipulation if their attention was restricted. 

Therefore, whilst preview effects during orthographic parafoveal processing were 

reported in Chapters 3 and 4, it was impossible to be certain whether parafoveal 

processing might occur for letters in the middle or end of the word. In addition, the 

initial letters are intrinsically more important to lexical identification, and, 

manipulating the initial letters often causes greater disruption to lexical identification 

than when letter manipulations occur internally within a word (Johnson & Dunne, 
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2012; Johnson & Eisler, 2012; Johnson et al., 2007; Tiffin-Richards & Schroeder, 

2015; White et al., 2008). It was unclear whether dyslexic readers would gain 

parafoveal preview benefits from internal letters of a word, since they do not hold the 

same intrinsic importance, and restrictions in attention allocation may have prevented 

dyslexic readers from gaining preview benefits from the middle or end of the 

parafoveal word.  

The current study showed that dyslexic readers do gain benefit of identical 

previews compared to homophone previews, consequently demonstrating that they 

can allocate their attention to encode information from not only the beginning letters 

but also the middle letters of the parafoveal word. This indicates that dyslexic 

parafoveal preview benefits are not purely a function of disrupting the initial letters 

of the parafoveal word, and dyslexic readers do gain preview benefits from internal 

letters of the parafoveal word. In fact within the current study, dyslexic readers 

demonstrated the ability to allocate their attention to the middle letters of the 

parafoveal word, even when foveal load was increased (due to the low frequency 

pre-target word). Such findings might suggest that dyslexic readers did not have 

difficulty in processing these sentences and, therefore, had adequate attentional 

resources to allocate to parafoveal processing during reading. Such explanation is, 

however, contrary to the finding that dyslexic readers did show foveal eye movement 

patterns indicative of reading difficulty. It is possible that dyslexic readers were 

unable to restrict their attentional resources accordingly during parafoveal 

processing. Clearly, dyslexic readers can allocate their attention to the parafovea; 

however, they may have difficulty in selecting the correct information on which to 

focus their attention (Boden & Giaschi, 2007). In which case they may allocate 

attention to both foveal and parafoveal information within their perceptual span, but 

not have developed the correct attentional gradient (Whitney & Cornelissen, 2005) to 

prioritise encoding of foveal information by restricting attention allocation. Such a 

suggestion is in line with the findings that dyslexic readers may have more widely 

distributed attention leading to increased parafoveal processing compared to non-

dyslexic readers (Geiger & Lettvin, 1987; Geiger et al., 1992; Lorusso et al., 2004), 

and results that demonstrate dyslexic readers show confusability when encoding 

foveal and parafoveal information during RAN (Jones et al., 2008; 2009; 2013). In 

this suggestion, dyslexic readers struggle to restrict their attentional focus and encode 

too much information, which then competes for lexical activation. Indeed, this may 



 

 178 

help to explain why dyslexic readers have longer fixation durations and make more 

fixations.  

To conclude, in support of previous research into dyslexic eye movements 

during reading (Kirkby et al., 2008; 2011) and of Chapter 3 of this thesis, the present 

study found the usual effects of reading ability on eye movement behaviour. 

Specifically, dyslexic readers required longer viewing durations than the skilled adult 

readers and this occurred at both global (average regressive fixation duration and 

total reading time) and local levels (gaze duration, go-past time, and total reading 

time). Dyslexic readers also required more forward fixations and more regressive 

fixations than skilled adult readers at a global level and local level. Whilst the 

differences in first fixation duration and single fixation duration were not 

significantly different, there was a trend to support the usual effects, where dyslexic 

readers had longer fixations than skilled readers. Finally, there were no significant 

differences in the landing positions of dyslexic readers and skilled adult readers. 

Altogether, the pattern of results demonstrate that the current sample of dyslexic 

readers showed reading difficulties compared to the sample of skilled adult readers; 

indeed, their eye movement behaviour was indicative of the dyslexic readers’ 

difficulties with linguistic processing during reading.  

In sum, whilst the present study aimed to explore phonological parafoveal 

processing in adults with dyslexia, neither adults with dyslexia nor skilled adult 

readers showed benefit of homophone previews compared to orthographic control 

previews. It is, therefore, unclear as to whether dyslexic readers can encode 

phonological information from the parafovea. In addition, the CTOPP (which 

provided an indication of the readers’ awareness of and access to phonology) did not 

predict phonological parafoveal preview benefits, suggesting that the ability to gain 

phonological parafoveal preview benefits may be driven from additional factors such 

as attention. The current findings did, however, provide additional evidence for 

dyslexic readers’ ability to encode orthographic information from the parafovea 

during reading. In fact, dyslexic readers were able to allocate their attention to the 

middle of the parafoveal word to extract orthographic information, even when the 

pre-target word was a low frequency word. Within the current study, dyslexic 

readers’ attention was not restricted by the increased foveal demand and, thus, they 

did not show deficits in attention allocation for orthographic processing.   
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5.0 Chapter summary   

Further to the previous experimental chapters, which explored orthographic 

parafoveal processing for readers with dyslexia, this chapter details the exploration 

of phonological parafoveal processing for dyslexic adults. Similarly to the previous 

experiments in this thesis and contrary to the findings of Chace et al. (2005), dyslexic 

readers showed preview benefits from orthographic information during reading. 

There were, however, no significant effects to indicate phonological parafoveal 

processing during reading for either skilled readers or dyslexic readers. As such, the 

current study does not allow for conclusions to be made on dyslexic phonological 

parafoveal processing. The final chapter provides discussion and conclusions based 

upon the findings from all three experiments reported in this thesis.  
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Chapter Six: Discussion  

6.0 Chapter overview 

This final chapter provides an overview of the thesis, including: the aims introduced 

in the initial chapter, discussion of the main findings, challenges within the current 

research and, finally, future research directions.  

6.1 Recap of thesis  

Reading plays a vital role in modern society; much of the teaching provided at school 

requires children to read and approximately 90% of all careers require literacy skills 

(Lenhard et al., 2005). Whilst most children learn to read with relative ease, between 

5-17% of children will be diagnosed with developmental dyslexia; a lifelong reading 

disability that impacts their ability to learn to read (Shaywitz, 1998). Although 

dyslexia is one of the most common learning disabilities, there is still a lot we do not 

know about the cause.  

Eye movements provide great insight into the moment-to-moment cognitive 

processes that occur during reading and, because of this, eye movement research has 

been highly influential in developing our understanding of skilled adult reading 

(Liversedge et al., 2011; Radach & Kennedy, 2013; Rayner, 1998). There is now a 

large body of research providing evidence for the basic characteristics of eye 

movements in skilled adult readers (for reviews, see Rayner, 1998, 2009) and in 

more recent years, researchers have started to use eye movement technology to 

explore reading development by collecting eye movement data with child 

participants (for reviews see, Blythe, 2014; Blythe & Joseph, 2011; Rayner et al., 

2013). 

There is, however, still a paucity of eye movement research conducted with 

children and adults with developmental dyslexia during reading (although, see 

Kirkby et al., 2011; Bellocchi et al., 2013) and specifically during parafoveal 

processing. This is surprising given that dyslexia has been causally linked to both 

phonological deficits (Snowling, 2000) and difficulties in allocating attention (Bosse 

et al., 2007; Valdois et al., 2004; Hari & Renvall, 2001; Vidyasagar, 1999; Whitney 

& Cornelissen, 2005), both of which are utilised during parafoveal processing 

(Schotter et al., 2012). Furthermore, whilst there is a small body of work exploring 
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dyslexic eye movement behaviour, very few studies have compared dyslexic readers 

to non-dyslexic readers matched on chronological age and also non-dyslexic readers 

matched on reading age (Olson et al., 1991; Hyönä & Olson, 1995; Rayner, 1985a, 

Rayner 1985b). By comparing dyslexic children to both of these control samples, one 

can determine whether differences in dyslexic eye movement behaviour are specific 

to dyslexia, or due to a developmental lag in their ability to read. As such, the current 

thesis aimed to further inform theoretical accounts of dyslexia by examining foveal 

and parafoveal eye movement behaviour in readers with and without dyslexia.  

The aims of the thesis were: 1) to provide a detailed characterisation of 

dyslexic eye movement patterns during silent reading, for both adults and children, 

2) to determine whether dyslexic adults and children gain parafoveal preview 

benefits during silent sentence reading, 3) to understand what information is encoded 

from the parafovea during dyslexic silent sentence reading, 4) to explore the nature 

of the dyslexic eye movement patterns by experimentally comparing children with 

dyslexia to groups of typically developing children matched for chronological age, 

but also typically developing children matched for reading age. Thus, this thesis 

reports three research studies conducted to address these aims.  

 

6.2 Summary of key findings  

The thesis details three eye movement experiments examining both foveal and 

parafoveal processing of readers with and without dyslexia. The main findings of the 

research were as follows: 

• In comparison to typically developing children that were matched on 

chronological age, dyslexic children showed eye movement patterns 

indicative of their linguistic processing difficulty, such as: increased fixation 

durations (both regressive and forward fixations), more fixations (regressive 

and forward fixations), shorter saccades, increased first fixation durations, 

single fixation durations, gaze durations, increased go-past times and total 

reading times.  

• Dyslexic children also showed differences in eye movement behaviour 

compared to typically developing children that were matched for reading age. 

Dyslexic children made more fixations and longer regressive fixation 
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durations, resulting in longer gaze durations, go-past times and total reading 

times compared to typically developing children matched for reading age.  

• Adult dyslexic readers also showed differences in eye movement patterns 

compared to skilled adult readers. Dyslexic adult readers made more fixations 

(forward and regressive) and had increased regressive fixation durations, gaze 

durations, go-past time and total reading times compared to skilled adult 

readers. Dyslexic readers also made longer forward fixation durations, first 

fixation durations and single fixation durations compared to skilled adult 

readers, although these differences were not always significant.  

• Throughout all three experiments, dyslexic readers (children and adults) 

showed orthographic parafoveal preview benefit during reading. Experiment 

1 and 2 demonstrated that adults and children encode orthographic 

information from at least the two initial letters of the parafoveal word. 

Experiment 3 demonstrated that the dyslexic adults could extend their 

attention further to the parafovea and gain orthographic parafoveal preview 

benefits from manipulations that occur after the initial two letters of the 

parafoveal word. 

• Although orthographic parafoveal preview benefits were demonstrated in 

Experiment 3, there was no evidence to support phonological parafoveal 

preview benefits for skilled adult or dyslexic adult readers. 

• Both adults (Experiment 1) and children (Experiment 2) with dyslexia were 

found to encode letter position information during parafoveal processing; 

both groups of readers demonstrated a parafoveal preview benefit when 

viewing identical previews compared to transposed-letter previews.  

• Dyslexic adults and children did, however, show a greater reliance on letter 

position for lexical identification compared to their peers (skilled adult 

readers and typically developing children matched for chronological age). 

Dyslexic readers demonstrated a larger parafoveal preview benefit for 

identical previews compared to transposed-letter previews than their non-

dyslexic peers.  

• Dyslexic readers were found to encode letter identity and letter position 

independently during parafoveal processing, as evidenced by greater preview 

benefits for transposed-letter previews compared to substituted-letter 

previews. Thus, indicating that dyslexic readers do use a flexible letter 
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position encoding mechanism. Dyslexic readers did, however, show 

transposed-letter effects during later eye movement measures relative to their 

peers. 

• Dyslexic children showed similar parafoveal processing abilities to the 

typically developing children matched on reading age; both of these poorer 

reading groups showed a greater dependence on letter position information 

(increased parafoveal preview benefit for identical previews compared to 

transposed-letter previews). This greater dependence on letter position 

information then resulted in a delayed TL effect (increased parafoveal 

preview benefit for transposed-letter previews compared to substituted-letter 

previews) relative to the typically developing children matched to the 

dyslexic children on chronological age.  

• These difficulties in letter position encoding, however, still occurred for 

dyslexic adult readers who demonstrated greater dependence on letter 

position information and a transposed-letter effect that only occurred in later 

eye movement measures compared to skilled adult readers.  

Thus this thesis contributes new knowledge to the field by providing the first 

research studies to demonstrate that dyslexic readers do gain orthographic parafoveal 

preview benefits during silent sentence reading, that they do encode letter identity 

and letter position from the parafovea, and they can encode parafoveal information 

from at least the middle of the parafoveal word. The above results are discussed in 

detail throughout the following section.  

 

6.2 Discussion of key findings  

6.2.1 Foveal processing  

Throughout all three experimental chapters, dyslexic readers showed different eye 

movement patterns to the non-dyslexic readers. Specifically, the research in this 

thesis demonstrates that dyslexic readers show different eye movements compared to 

non-dyslexic readers of the same age. As demonstrated in Experiment 1 and 

Experiment 3, adult dyslexic readers showed a significant increase in fixation count 

(forward and regressive), increased regressive fixation durations, gaze durations, go-

past time and total time compared to their non-dyslexic peers. In addition, dyslexic 
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adults consistently showed a numerical trend for increased forward fixation duration, 

first fixation duration and single fixation duration compared to non-dyslexic adults. 

In support of the results for the adult dyslexic readers, dyslexic children also 

demonstrated different eye movement behaviour compared to typically developing 

children of the same chronological age. As evidenced in Experiment 2, dyslexic 

children demonstrated longer viewing durations (such as average fixation duration, 

first fixation duration, single fixation duration, gaze duration, go-past time, and total 

reading time) and made more fixations (both forward and regressive fixations) 

compared to typically developing children matched for chronological age.  

Taken together, the results from the child data and the adult data suggest that 

dyslexic readers consistently demonstrate different eye movement behaviour 

compared to their chronological age matched peers, and this difference occurs 

throughout the lifespan. Indeed, as eye movements provide insight into the moment-

to-moment cognitive processes that occur during reading (Liversedge et al., 2011; 

Radach & Kennedy, 2013; Rayner, 1998), it is generally accepted that the differences 

in eye movement behaviour found during reading reflects the readers ability to 

linguistically process text (Blythe, 2014; Häikiö et al., 2009; Kirkby et al., 2008; 

Rayner, 1986). The current findings, therefore, indicate that dyslexic readers 

demonstrate slower and more effortful lexical processing compared to their non-

dyslexic peers and supports previous studies of dyslexic eye movements during 

reading (Biscaldi et al., 1998; De Luca et al., 2002; De Luca et al., 1999 Hatzidaki et 

al., 2011; Hawelka & Wimmer, 2005; Hawelka et al., 2010; Hutzler & Wimmer, 

2004; McConkie et al., 1991; Rayner, 1986; Zoccolotti et al., 1999).  

The finding that dyslexic readers make longer and more fixations is 

consistent with the Lexical Quality Hypothesis (Perfetti, 2007; Perfetti & Hart, 2001, 

2002) which suggests that variation in the quality of lexical representations of words 

impacts upon reading skill. Within this proposal, through reading experience, readers 

develop high quality lexical representations allowing quick, reliable, and 

simultaneous access to a word’s orthography, phonology, and semantics in order to 

achieve efficient word identification. Lexical representations that do not meet the 

criteria for high quality representations are considered to be low quality lexical 

representations and result in effortful and slow lexical identification. Indeed, due to 

dyslexic readers difficulties with reading, they have lower quality lexical 

representations compared to their non-dyslexic peers and, therefore, demonstrate 
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differences in their eye movement behaviour. As such, dyslexic readers eye 

movement behaviour is considered representative of their difficulties in linguistic 

processing rather than a cause of their reading difficulties (Bellocchi et al., 2013; 

Kirkby et al., 2011; Rayner, 1986).  

In addition to exploring the eye movement patterns of readers with dyslexia 

compared to non-dyslexic readers matched on chronological age, Experiment 2 

explored the eye movement patterns of children with dyslexia compared to typically 

developing children matched for reading age. Although it is widely accepted that eye 

movement patterns are indicative of linguistic processing (Blythe, 2014; Häikiö et 

al., 2009; Kirkby et al., 2008; Rayner, 1986), in order to further understand the 

causes of dyslexic eye movement patterns, dyslexic readers need to be compared to 

two control groups: a group of non-dyslexic readers matched for chronological age, 

and, a group of non-dyslexic readers matched on reading age. This allows us to 

examine whether differences in eye movement and reading behaviour are explained 

by differences in reading ability and therefore indicative of a developmental lag in 

which dyslexic readers are just less experienced, poorer readers, or, whether there is 

specific dyslexic deficit (such as difficulty in attention allocation; Bosse et al., 2007; 

Valdois et al., 2004; Hari & Renvall, 2001; Vidyasagar, 1999; Whitney & 

Cornelissen, 2005) that impacts upon their ability to read.  

As reported in Experiment 2, dyslexic children did in fact demonstrate 

differences in their eye movement behaviour compared to typically developing 

children matched on reading age. Although their individual fixation durations were 

similar, and therefore representative of their linguistic processing ability, dyslexic 

children made more fixations compared to reading age matched children. This 

increased fixation count then resulted in longer gaze durations, go-past times and 

total reading times. The finding that dyslexic children show increased fixation count 

compared to typically developing children matched for reading age suggests that 

dyslexic eye movement behaviour is not only indicative of their reading skills; there 

must be a specific dyslexic deficit that impacts their fixation count and occurs 

independently to the developmental lag in their reading development. This finding is 

similar to the results found for the dyslexic adult readers (Experiment 1 and 3) who 

did not always demonstrate significantly increased fixation durations but consistently 

made additional fixation durations compared to their peers.  
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As discussed in detail in Chapter 4, there are a number of reasons as to why 

dyslexic readers may make more fixations compared to non-dyslexic readers with the 

same reading age, and these may be due to difficulties in attention and/or the speed 

of processing of phonological information. One explanation for increased refixations 

on a word is that dyslexic readers have limitations in visual sampling. In fact, 

compared to non-dyslexic readers, dyslexic readers have been found to show both a 

reduced perceptual span (Rayner et al., 1989) and limitations in the VA span (recall 

the VA span corresponds to the amount of orthographic information that can be 

simultaneously processed when reading, see Chapter 1 for detailed discussion of the 

VA span; Bosse et al., 2007; Prado et al., 2007; Valdois et al., 2004). Furthermore, 

Prado et al. (2007) demonstrated that children who have a smaller VA span made 

more first-pass fixations during reading than children with a larger VA span. As 

such, dyslexic readers may have a specific attention deficit which means they are not 

able to encode enough information within one fixation and therefore need to make 

additional fixations. In addition, a reduced VA span has been found to occur in 

dyslexia independent of phonological difficulties (Bosse et al., 2007; Prado et al., 

2007), thus explaining why dyslexic readers make additional fixations compared to 

both non-dyslexic readers matched on chronological age and non-dyslexic readers 

matched on reading age.  

A second explanation for why dyslexic readers make more fixations 

compared to non-dyslexic readers is that they have difficulty in prioritising foveal 

information for lexical identification; whilst dyslexic readers are able to allocate their 

attention to the parafovea, they may do so at the expense of prioritising foveal 

processing. Such suggestion is in line with previous research finding that dyslexic 

readers have increased parafoveal processing compared to non-dyslexic readers 

(Geiger & Lettvin, 1987; Geiger et al., 1992; Lorusso et al., 2004). In their early 

work, Geiger and Lettvin (1987) briefly presented dyslexic and non-dyslexic adults 

with pairs of letters to identify; one at the center of eye gaze and one presented 

horizontally adjacent in the periphery at a variety of eccentricities. Non-dyslexic 

readers demonstrated a sharp decrease in the recognition rate of the peripheral letter 

with increasing eccentricity. Dyslexic adult readers, however, had a wider area of 

correct identification; they were able to correctly identify letters presented further 

into the periphery of the right hemifield compared to non-dyslexic readers. Such 

result has been supported in both dyslexic adults and children (Geiger & Lettvin, 
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1987; Geiger et al.,1992; Geiger, Lettvin, & Fahler, 1994; Lorusso et al., 2004; see 

also Facoetti et al., 2000), demonstrating that dyslexic readers have a wider 

distribution of attention across the visual field compared to non-dyslexics when 

processing small amounts of information (such as 2 individual letters).  

The finding that dyslexic readers have a wider distribution of attention can be 

explained by lateral masking. Dyslexic readers have reduced lateral masking; they 

are less able to suppress parafoveal and peripheral information to avoid the effects of 

crowding on foveal processing (Facoetti et al., 2000; 2003; Geiger & Lettvin, 1986). 

Whilst there is still much debate about the causes of crowding (for a review see Gori 

& Facoetti, 2015), is has been argued that crowding is modulated by attention (Chen 

et al., 2014; He, Cavanagh, & Intriligator, 1996; Intriligator & Cavanagh, 2001; 

Petrov & Meleshkevich, 2011a, 2011b; Strasburger, 2005; Yeshurun & Rashal, 

2010). Thus, dyslexic attention deficits may result in dyslexic readers being less able 

to suppress extraneous information and effectively prioritise foveal information. In 

fact, interventions that focus on reducing crowding by increasing inter-letter spacing 

show evidence for improved reading performance, particularly for those with 

dyslexia (Perea et al., 2012; Spinelli et al., 2002; Zorzi et al., 2012). Dyslexic readers 

may, therefore, make additional fixations due to difficulties in effectively allocating 

attention to foveal processing. In fact, this is further supported by findings 

demonstrating that dyslexic readers show confusability in processing foveal and 

parafoveal information (Jones et al., 2008; 2009; 2010; 2013). Specifically, Jones et 

al. (2013) found that dyslexic readers were more susceptible to orthographic 

confusability in the parafovea and phonological confusability in the fovea. Such a 

result supports the notion that dyslexic readers have difficulty in correctly mapping 

their attentional resources across foveal and parafoveal information (prioritising and 

inhibiting the correct information). 

Increased fixation counts may also be explained by dyslexic readers’ slow 

encoding of phonological information from orthographic form resulting in lexical 

activation taking longer. Whilst dyslexic readers and reading age-matched children 

have similar phonological skills, dyslexic readers may be slower to encode 

phonological information. Indeed, in Experiment 2, the tests used to match dyslexic 

children to reading-age matched children did not take into account the time taken to 

complete phonological processing (see Blythe et al., 2018 for a similar comparison in 

which pen and paper tests do not accurately reflect the eye movement behaviour 
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during silent sentence reading). Although specific word identification models may 

differ on the exact processes, it is generally accepted that saccades to the next word 

are programmed when a level of lexical activation occurs (such as the completion of 

word identification, Morrison, 1984; or the completion of an early stage of lexical 

processing called the familiarity check which is an overall feeling of familiarity 

based on the word’s orthographic form; Pollatsek et al., 2006; Reichle et al., 1998), 

and this lexical activation requires both orthographic and phonological information. 

Specifically, within the E-Z Reader model (Reichle et al., 1998) saccades are initially 

programmed when successful orthographic recognition occurs (i.e. the familiarity 

check, Pollatsek et al., 2006) and attention moves to N+1 once the word’s phonology 

and meaning is accessed (i.e. lexical completion). Thus, if the reader can rapidly 

encode orthographic and phonological information, a saccade will be programmed to 

the next word and attention will move to N+1 for pre-processing. If saccade 

programming is still in an early labile stage when the familiarity check of word N+1 

is completed, then the saccade programming for word N+1 will be cancelled and 

replaced by the programming of a saccade to word N+2. This would explain word 

skipping in skilled readers. If, however, the required level of lexical activation does 

not occur quickly enough to programme a saccade to the next word, another eye 

movement will be triggered to refixate the current word; preventing the eyes from 

staying too long on the same location without moving. Thus, if dyslexic readers are 

slow to encode grapheme-phoneme representations, the next eye movement may be 

programmed to refixate the currently fixated word in order to allow additional time 

for lexical processing. Indeed, Blythe et al. (2018) found that teenagers with 

permanent childhood hearing loss showed a delay in their processing of phonological 

information compared to their age matched peers, with the pseudohomophone 

advantage occurring only in the second fixation for hearing loss readers. Thus, less 

skilled readers may require additional fixations in order to encode phonological 

information.  

The above suggestion that additional fixations may occur due to slow 

encoding of phonological information is supported by the phonological deficit theory 

(Liberman, 1973; Snowling, 1995; Snowling, 2000; Snowling & Hulme, 2012; 

Stanovich, 1988), where dyslexic readers have difficulty in forming grapheme-

phoneme representations. This makes it more challenging for those with dyslexia to 

distinguish between, and thus slower to select and retrieve, the correct orthographic 



 

 189 

and phonological representations. Such delay in correctly mapping orthographic and 

phonological information would, therefore, impact the early lexical activation 

required to program a saccade to the next word. An alternative explanation is that 

slower lexical activation could also be explained by the SAS Hypothesis (Sluggish 

Attentional Shifting; Hari & Renvall, 2001; Lallier et al., 2010), which suggests that 

readers with dyslexia take longer to engage and disengage attention resulting in a 

prolonged time in which it takes to process information (Hari, & Kiesilä, 1996; 

Helenius et al., 1999; Merzenich et al., 1993). Specifically, the SAS Hypothesis 

considers deficits in attention to fall specifically within serial attention allocation, 

whereby serial identification of letters is more challenging for those with dyslexia 

than for typical readers. Such delay in letter identification would slow down early 

lexical activation preventing saccades being programmed to target the next word. As 

discussed in Chapter 1, it has been proposed that SAS may even explain 

phonological difficulties for readers with dyslexia (Blomert, 2011; Hari & Renvall, 

2001), however, research to support such suggestion is still in its infancy.  

The final explanation provided for why dyslexic readers make additional 

fixations compared to non-dyslexic readers relates to saccadic targeting and landing 

positions. Previous research into skilled reading has demonstrated that readers are 

more likely to refixate a word when their initial landing position was not in the 

optimal location (Joseph et al., 2009; McConkie et al., 1991; Vitu et al., 2001). If the 

fixation location is far from the center of the word, word identification is more 

difficult (Brysbaert, Vitu, & Schroyens, 1996; O’Regan, 1990). The reader will, 

therefore, typically make a subsequent fixation in order to gain adequate visual 

information. In fact, it has been found that dyslexic readers make earlier landing 

positions into a word compared to their chronologically age matched peers (De Luca 

et al., 2002; Hawelka et al., 2010; MacKeben et al., 2004; Pan et al., 2014). Thus, 

dyslexic readers may make additional fixations due to their earlier landing positions. 

In fact, this suggestion is supported by both Experiment 1 and Experiment 2 reported 

within this thesis. Specifically, Experiment 1 demonstrated that dyslexic adult 

readers land earlier in a word compared to skilled adult readers. Furthermore, 

Experiment 2 provided additional numerical support for this suggestion by 

demonstrating a similar trend for children with dyslexia compared to typically 

developing children matched on chronological age and typically developing children 

matched on reading age.  
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Although it is unclear exactly why dyslexic readers land earlier within a 

word, these early landing positions may indicate that dyslexic readers are less able to 

correctly target their saccades to the preferred viewing location due to magnocellular 

dysfunction (Boden & Giaschi, 2007). It must be noted, however, it is generally 

accepted that the differential eye movement patterns demonstrated by readers with 

dyslexia are not the cause of dyslexia (Rayner, 1985b). Another explanation for early 

landing positions may be due to a lack of parafoveal information, as this information 

is used to target saccades (Schotter et al., 2012). The suggestion that dyslexic readers 

lack parafoveal information seems somewhat counterintuitive to the results presented 

within this thesis as the first two experiments demonstrate that dyslexic readers 

encode parafoveal information from the initial 2 letters of the parafoveal word, and 

the final experiment of the thesis demonstrates that dyslexic adults extract 

information further into the middle of the parafoveal word. The current research, 

however, did not determine whether dyslexic readers can allocate their attention far 

enough into the parafovea in order to gain sufficient information to target saccades 

correctly (e.g. information about word length or spaces between words). In fact, 

dyslexic readers have been found to have a reduced perceptual span compared to 

non-dyslexic readers (Rayner et al., 1989), thus is it possible that they do receive 

reduced parafoveal information which impacts their saccade targeting and landing 

positions.  

While there is a lack of evidence to determine the exact causality of dyslexic 

differences in foveal eye movement behaviour compared to non-dyslexic readers, the 

results reported within this thesis, (such as increased within word fixation counts and 

early landing positions) are indicative of serial sublexical grapheme–phoneme 

conversion in order to access phonology and meaning. Thus this research further 

supports the work Hawelka et al. (2010) who found similar results for dyslexic adult 

readers and provides additional support for both attentional (Bosse et al., 2007) and 

phonological theories of dyslexia (Snowling, 2000).  

6.2.2 Parafoveal processing  

In addition to exploring the eye movement patterns of adults and children with 

dyslexia, the current thesis aimed to examine parafoveal processing during reading 

for these readers. Recall, one of the key issues identified in Chapter 1 was the lack of 

research exploring parafoveal processing during reading for those with dyslexia. As 
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such, the three experiments detailed in this thesis aimed to further our understanding 

of parafoveal processing for both dyslexic adults and children, by exploring whether 

dyslexic readers could gain parafoveal preview benefits during reading.  

 

Do dyslexic readers show parafoveal preview benefits during reading?  

Using the boundary paradigm (Rayner, 1975) to manipulate parafoveal information, 

all three experiments reported in this thesis demonstrated that dyslexic readers were 

able to allocate their attention to the parafoveal word in order to gain parafoveal 

preview benefits during silent sentence reading. Specifically, Experiment 2 

demonstrated that children with dyslexia were able to gain parafoveal preview 

benefit during silent sentence reading and both Experiment 1 and Experiment 3 

demonstrated that dyslexic adults also gain parafoveal preview benefit during silent 

sentence reading. Thus, similarly to non-dyslexic children and adults (Pagán et al., 

2016; Schotter et al., 2012; Tiffin-Richards & Schroeder, 2015), dyslexic readers 

were able to allocate their attention to the parafovea in order to pre-process 

information from the parafoveal word and facilitate the encoding of the word once it 

was later fixated.  

Within Experiment 2, children with dyslexia and both non-dyslexic child 

groups (typically developing children matched on chronological age and typically 

developing children matched on reading age) demonstrated the ability to allocate 

their attention to the parafoveal word and gain parafoveal preview benefits during 

silent sentence reading. For the dyslexic children and typically developing children 

matched for reading age, parafoveal preview benefits occurred in later measures of 

reading in comparison to the typically developing children matched on chronological 

age. Both of these less skilled reading groups had the attentional resources to allocate 

their attention to parafoveal processing, but their encoding of the pre-processed 

information was slower than that of a more skilled reader. Indeed, dyslexic children 

and reading age matched typically developing children were less efficient at 

activating the correct lexical candidate and, as such, were less likely to gain 

parafoveal preview benefit during early measures of reading. Such findings are 

consistent with the idea of a developmental increase in the rate of lexical processing 

(Reichle, Liversedge, Drieghe, et al., 2013). These findings, therefore, indicate that 

efficient parafoveal processing develops alongside reading skill; as reading skill 
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increases, lexical processing becomes more efficient and demands less attentional 

resources, thus allowing attentional resources to be allocated to parafoveal 

processing and parafoveal preview benefits to help to quickly activate the correct 

lexical candidate.  

In contrast to the dyslexic children, dyslexic adult readers did not show the 

same delay in the timeframe in which they showed parafoveal preview benefits; 

dyslexic adults were able to gain preview benefit during early measures of single 

fixation duration and first fixation duration. Indeed, by the time dyslexic readers 

reach adulthood, their reading skill is of an adequate level to allow parafoveal 

preview benefits to occur within early measures of reading. This provides further 

support that delayed parafoveal preview benefits (parafoveal preview benefits that 

occur in later eye movement measures) and slower lexical activation are part of 

typical reading development for dyslexic and non-dyslexic readers.  

The finding that dyslexic adults and children can gain parafoveal preview 

benefit during reading supports and extends the body of work demonstrating 

parafoveal preview benefit in skilled adult readers (see Rayner, 1998, and Schotter et 

al., 2012 for reviews) and typically developing child readers (Hӓikiӧ et al., 2010; 

Marx et al., 2015; Pagán et al., 2016; Tiffin-Richards & Schroeder, 2015). 

Furthermore, the results reported in this thesis also support research demonstrating 

that dyslexic readers can parafoveally process information specifically during RAN 

(a task which requires readers to allocate their attention to an array of individual 

letters or numbers in order to name them as quickly and accurately as possible; Jones 

et al., 2008, 2010, 2013; Yan et al., 2013), and extends this work to reveal dyslexic 

parafoveal processing during the more cognitively demanding task of silent sentence 

reading. It is important to note, however, that the results of the current thesis differ to 

those found by Chace et al. (2005) who used the boundary paradigm to explore 

parafoveal processing during reading for a group of skilled and less skilled adult 

readers.  

Whilst Chace et al. (2005) did not directly test dyslexic readers; they found 

no evidence of parafoveal processing in their group of less skilled readers (as 

measured by the Nelson Denny tests of vocabulary and reading comprehension). As 

discussed in detail in throughout the thesis, the contrast in results from Chace et al. 

(2005) compared to those of the current thesis may be explained upon two accounts; 
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1) their less and more skilled adult readers were selected using the Nelson Denny test 

which measures a readers ability to extract meaning from language rather than 

phonological decoding, thus their sample of less skilled adult readers may not reflect 

dyslexic parafoveal processing abilities but that of poor comprehenders, and 2) due 

to increased foveal load (caused by low frequency pre-target words) preventing the 

readers from having enough attentional resources to allocate their attention to the 

parafovea for pre-processing. Indeed, there is a body of work which demonstrates 

that if the fixated word is difficult to process, readers obtain less preview benefit 

from the parafoveal word (Henderson & Ferreira, 1990; Kennison & Clifton, 1995; 

White et al., 2005a; Balota et al., 1985; Drieghe et al., 2005; Vignali, Hawelka, 

Hutzler, & Richlan, 2019).  

Whilst Experiment 1 & 2 of this thesis were specifically designed to ensure 

dyslexic readers had enough attentional resources to encode parafoveal information 

(e.g. reduced foveal load through the use of high frequency 5-6 letter pre-target 

words, and ensuring the parafoveal manipulation occurred only within the initial 

letters of the parafoveal word), the third Experiment used the stimuli from Chace et 

al. (2005), which included pre-target words of varied length and frequency scores, as 

well as parafoveal manipulations that occurred in the beginning and middle of the 

parafoveal word. Even when using the stimuli from Chace et al. (2005), the results 

indicated that dyslexic readers did gain parafoveal preview benefit during silent 

sentence reading. Thus, dyslexic readers do have the attentional resources and ability 

to parafoveally process information during reading and can gain preview benefit 

from both the initial letters and middle letters of the parafoveal word. In contrast, 

however, readers who have difficulty with reading comprehension show difficulty in 

allocating their attention to the parafovea or in having enough attentional resources 

for parafoveal processing (Chace et al., 2005).  

Contrary to the proposal that readers with dyslexia have difficulty in 

allocating their attention to the next word due to deficient posterior parietal lobe 

functioning (Boden & Giaschi, 2007), the studies in this thesis indicate that dyslexic 

readers do not have a deficit in their ability to shift their attention from the foveal to 

parafoveal word during silent sentence reading. Indeed, one of the possible 

manifestations of magnocellular dysfunction during reading is that dyslexic readers 

have difficulty in allocating their attention the next word (Boden & Giaschi, 2007; 

Stein & Walsh, 1997; Steinman, Steinman, & Garzia, 1996, 1998; Vidyasagar, 
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1999). Although there is evidence indicating that the posterior parietal cortex is key 

to aspects of visual spatial attention (for a review see Boden & Giaschi, 2007), there 

is little research to demonstrate dyslexic difficulties in attention orienting specifically 

during reading. There has been research which examines attention orienting and 

visual search for dyslexic readers (Buchholz & Davies, 2005; Buchholz & McKone, 

2004 ; Casco & Prunetti, 1996; Facoetti, Paganoni, & Lorusso, 2000; Facoetti et al., 

2000; Sobotka & May, 1977), but there is a paucity of research actually examining 

attention allocation from the currently fixated word to the next word for dyslexic 

readers during reading. All three experiments of this thesis, however, specifically 

examined this by exploring whether dyslexic readers could allocate their attention to 

the parafoveal word in order to gain parafoveal preview benefits during reading. In 

fact, all three experiments provided evidence that dyslexic readers can allocate their 

attention to the parafoveal word in order to gain preview benefits; there was no 

evidence to suggest that dyslexic readers demonstrate difficulty in allocating their 

attention the upcoming word. Thus, the ability to allocate attention from the foveal 

word to the parafoveal word is not a causal factor in the reading difficulties for the 

dyslexic readers reported in these experiments.  

It is important to note, however, that whilst the current sample of dyslexic 

readers do not have a deficit in allocating their attention from one word to the next, 

they may still have difficulty in effectively allocating their attention between 

individual letters within a word. Recall, the SAS Hypothesis (Hari & Renvall, 2001; 

Lallier et al., 2010) suggests that dyslexic readers have deficits in attention whereby 

serial identification of letters is more challenging for those with dyslexia than for 

typical readers. It is, therefore, possible for readers with dyslexia to demonstrate 

attention allocation deficits within words even though they are able to allocate their 

attention from one word to another in order to benefit from parafoveal processing. 

Attention allocation to individual letters will be discussed in more detail in the 

following section, which focuses on the type of information that is encoded from the 

parafovea. Specifically, Experiment 1 & 2 explored orthographic parafoveal 

processing of letter identity and letter position, and Experiment 3 explored 

parafoveal processing of phonological information. The findings from Experiment 1 

& 2 on orthographic parafoveal processing will be discussed first.  
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Do readers with dyslexia encode orthographic information from the parafovea?  

Orthographic parafoveal processing capabilities were examined in both children with 

dyslexia (Experiment 2) and adults with dyslexia (Experiment 1) in order to assess 

whether readers with dyslexia were able to effectively allocate their attention to 

individual letters within the parafoveal word to encode letter identity and letter 

position information. Recall, it has been proposed that attention deficits may impact 

a dyslexic reader’s ability to accurately encode letter position information during 

reading (Boden & Giaschi, 2007; Cornelissen, Hanson, Hutton, et al., 1998; Hari & 

Renvall, 2001; Vidyasagar & Pammer, 2010; Whitney & Cornelissen, 2005) and, in 

extreme cases, readers with dyslexia may use an object style recognition method in 

which each word is encoded as a whole visual object rather than using a serial left to 

right encoding mechanism to encode letter position information (Whitney & 

Cornelissen, 2005).  

Specifically, in order to examine how orthographic information is encoded 

parafoveally, Experiment 1 and Experiment 2 explored two key preview effects; the 

viewing durations on identical previews compared transposed-letter previews, and, 

also the TL effect which is the comparison of viewing durations for transposed-letter 

previews to substituted-letter previews. A preview benefit for identical previews 

compared to transposed-letter previews indicates that readers are encoding letter 

position information from the parafovea. A preview benefit for transposed-letter 

previews compared to substituted-letter previews indicates that readers are able to 

encode letter position information flexibly; letter position and identity information 

are encoded independently so that readers can gain benefit from having the correct 

letter identity in the incorrect letter position. The following section will discuss each 

of these effects in more detail.  

Firstly, contrary to suggestions that attention deficits may impact a dyslexic 

readers ability to accurately encode letter position information during reading (Boden 

& Giaschi, 2007; Cornelissen, Hanson, Hutton, et al., 1998; Hari & Renvall, 2001; 

Vidyasagar & Pammer, 2010; Whitney & Cornelissen, 2005), Experiment 1 and 2 

showed that dyslexic adults and children were able to encode letter position from the 

parafovea during silent sentence reading. Both adults and children with dyslexia 

showed a greater preview benefit for identical parafoveal previews compared to 

transposed-letter parafoveal previews, thus indicating that they were able to allocate 
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their attention to the parafoveal word and encode letter position information. 

Although dyslexic readers were able to encode letter position during parafoveal 

processing, dyslexic adults showed a greater preview benefit for identical previews 

compared to transposed-letter previews than the skilled adult readers. Thus, dyslexic 

adult readers had a greater reliance on parafoveal letter position for lexical 

identification compared to skilled reading adults. Such finding is contrary to the 

proposal of Whitney and Cornelissen (2005) who suggested that dyslexic readers 

have attentional deficits that disrupt the correct mapping of graphemes to phonemes, 

resulting in a reduced requirement for encoding the correct left-to-right position of 

individual letters within a word.  

In fact, a similar trend occurred for both dyslexic children and typically 

developing children matched for reading age compared to the typically developing 

children matched for chronological age; dyslexic readers and reading age matched 

controls were more reliant on letter position for lexical identification compared to the 

typically developing children matched on chronological age. The finding that 

dyslexic children and typically developing children matched on reading age show 

similar dependence on letter position information suggests that reading ability 

modulates parafoveal processing of letter position information in developing readers. 

It is important to note, however, that dyslexic adults still showed a greater 

dependence on letter position information during parafoveal processing compared to 

skilled adult readers. Therefore, although dyslexic children and typically developing 

children matched on reading age show similar dependence on letter position during 

parafoveal processing, as their reading skills improve, the typically developing 

children become less dependent on letter position information for lexical activation. 

In contrast, dyslexic children continue to show increased dependency on letter 

position during parafoveal processing as they progress into adulthood. Whilst it may 

initially appear that increased dependence on letter position is explained by reduced 

reading skills, and therefore occurs as a function of a dyslexic reading delay, such 

effect still occurs for dyslexic adults and consequently cannot purely be a 

developmental lag. Increased dependence on letter position may initially occur due to 

delay in reading development, but the difference persists throughout dyslexic 

reading. The potential causes for this increased dependence on letter position 

information will be discussed in further detail later in this section.  
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Another difference in dyslexic reader’s ability to encode letter position 

information during parafoveal processing compared to non-dyslexic readers was in 

which eye movement measures the preview benefit occurred; dyslexic children 

encoded letter position during later eye movement measures compared to typically 

developing children matched on chronological age. Specifically, both dyslexic 

children and typically developing children matched for reading age only 

demonstrated significant preview benefits for identical previews compared to 

transposed-letter previews during later measures of reading such as gaze duration, 

go-past time and total reading time, whereas chronological age matched typically 

developing children encoded letter position during both single fixation duration and 

first fixation duration. This indicates that letter position information was encoded at a 

slower rate for both dyslexic readers and typically developing children matched on 

reading age compared to the typically developing children who were matched to the 

dyslexic readers on chronological age. This pattern of results, however, did not occur 

for adult dyslexic readers who were able to encode letter position during early 

measures of single fixation duration and first fixation duration. Thus, by the time 

dyslexic readers reach adulthood, they still have a greater reliance on letter position 

for lexical activation but are no longer slower to demonstrate parafoveal preview 

benefit from encoding letter position.  

In fact, the delay in letter position encoding, demonstrated by dyslexic 

children and reading age matched children compared to typically developing children 

matched for chronological age, indicates that less skilled readers are not as efficient 

in using letter position information to facilitate lexical activation during parafoveal 

processing. This is supported by research demonstrating that precise letter position 

encoding develops slower than precise letter identity encoding (Castles et al., 2007). 

Taken together with the fact that dyslexic adult readers no longer show this delay in 

letter position encoding, the finding that dyslexic children demonstrate letter position 

encoding in later measures of eye movement behaviour is, therefore, indicative of 

typical reading development and not a dyslexic specific deficit.  

Further to demonstrating that dyslexic readers encode letter position 

information during parafoveal processing, Experiment 1 and Experiment 2 examined 

whether dyslexic readers showed a TL effect. The TL effect occurs when readers are 

able to gain benefit from encoding the correct letter identity of letters that are in the 

incorrect letter position; thus, indicating that readers are encoding letter identity and 
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letter position information independently using a flexible letter position encoding 

mechanism (such as; the SOLAR model Davis, 1999, 2010; the Open Bigram model, 

Grainger & van Heuven, 2003; Grainger, Granier, Fariolli, van Assche & van 

Heuven, 2006; Grainger & Ziegler, 2011; the Overlap model, Gómez et al., 2008; the 

SERIOL model, Whitney, 2001). In support of previous research (Johnson et al., 

2007; Pagán et al., 2015; Tiffin-Richards & Schroeder, 2015), Experiment 1 and 2 

found that skilled adult readers and typically developing child readers demonstrated 

the TL effect in which they showed greater preview benefit for words with 

transposed letters compared to words with substituted letters. This provides further 

evidence that non-dyslexic readers use a flexible letter position encoding mechanism; 

they independently encode letter identity and letter position during parafoveal 

processing. Furthermore, Experiment 1 and Experiment 2 demonstrated that dyslexic 

children and adults also showed a TL effect; dyslexic readers were able to encode 

letter identity independently to letter position information during parafoveal 

processing. Such result indicates that, similar to non-dyslexic readers, dyslexic 

readers use a flexible letter position encoding mechanism. This is contrary to 

Whitney and Cornelissen’s suggestion that dyslexic readers may use an object style 

of word recognition due to an underdeveloped attentional location gradient that does 

not allow for letter position encoding (Whitney & Cornelissen, 2005).  

It must be noted, however, that although dyslexic readers demonstrated a TL 

effect, there were differences in the TL effect for dyslexic readers compared to their 

non-dyslexic peers. Similarly to the results for identical previews compared to 

transposed-letter previews (in which a preview benefit for identical previews 

indicates that letter position encoding occurs), both dyslexic children and typically 

developing children matched on reading age, demonstrated the TL effect during later 

eye movement measures (such as gaze duration, go-past time and total reading time) 

compared to typically developing children matched on chronological age who 

showed the effect in early measures (such as single fixation duration and first 

fixations duration). This is not surprising given that dyslexic children and reading 

age matched controls only show evidence of letter position encoding in later 

measures of eye movement behaviour. Dyslexic adults also showed a delayed TL 

effect compared to non-dyslexic adults. This result, however, is somewhat surprising 

because dyslexic adults were able to encode letter position information during early 

eye movement measures; they demonstrated preview benefits for identical previews 
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compared to transposed letter previews during single fixation duration and first 

fixation. Thus, although dyslexic adults can encode letter position in early measures 

of reading, they have difficulties in flexibly encoding letter position which results in 

a delay in their ability to flexibly encode letter position. This difficulty in flexible 

letter position encoding, therefore, is a persistent and specific deficit in dyslexic 

reading that occurs in both childhood and adulthood. In contrast, for typically 

developing children, delayed TL effects appear to occur as part of typical reading 

development and as their reading skills improve, readers are able to independently 

encode letter position during their initial fixations. 

In sum, the results of Experiment 1 and Experiment 2 demonstrated a number 

of differences in dyslexic orthographic parafoveal processing, which occur 

independently of reading skill and impact dyslexic readers as children and adults. 

Specifically, dyslexic readers consistently showed increased dependence on letter 

position information for lexical activation and only demonstrated independent 

encoding of letter position and letter identity during late measures of reading. Whilst 

increased dependence on letter position information is normal for young readers 

(Ehri, 2005; 2010), it is less clear as to why dyslexic readers have a specific 

dependence on letter position information that occurs independently of typical 

reading development and persists throughout their lifespan.   

One explanation as to why dyslexic readers have a specific dependence on 

letter position information is that they have limitations in their ability to encode 

letters in parallel (a reduced VA span Bosse et al., 2007; Prado et al., 2007; Valdois 

et al., 2004) which causes them to adopt a serial sublexical method for reading. As 

discussed earlier in this chapter, a VA span deficit would result in dyslexic readers 

encoding smaller chunks of information and, therefore, having to make more 

fixations to ensure they encode each word. This requirement for additional fixations 

would then result in a greater reliance on letter position to accurately map these 

chunks of information together to form a full orthographic representation of the 

word.  

 The second explanation for increased dependence on letter position 

information is that, in line with the Phonological Deficit Hypothesis (Liberman, 

1973; Snowling, 1995; Snowling, 2000; Stanovich, 1988), dyslexic readers have 

difficulties in accurately mapping phonological and orthographic information and, 
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therefore do not develop the high-quality lexical representations required for skilled 

adult reading (Perfetti, 2007). Indeed, because of their difficulties in mapping 

phonology to orthography, dyslexic readers are slower to access phonology from 

orthographic representations (Bergmann & Wimmer, 2008) and are less likely to 

form high-quality orthographic representations of words (Hulme & Snowling, 2013; 

Lervåg & Hulme, 2009). Because of their underspecified lexical representations, 

dyslexic readers then rely on the fine-grained route for orthographic encoding 

(Grainger & Ziegler, 2011). The fine-grained route requires chunking visual input 

into frequently co-occurring contiguous letter combinations, such as multiletter 

graphemes (e.g., sh, th, and ph) and morphemes (e.g., ing, er, and re) in order to 

access semantics; therefore, the fine grain route depends on the precise ordering of 

letter position information. As such, readers with dyslexia would have greater 

dependence on letter position encoding for lexical activation. This is consistent with 

research demonstrating that flexible letter position encoding occurs when lexical 

representations are encoded more precisely in children (e.g., Grainger & Ziegler, 

2011; Grainger et al., 2012; Lété & Fayol, 2013; Ziegler et al., 2014) 

Both of these suggestions are in line with the proposal that dyslexic readers 

rely upon serial sublexical grapheme–phoneme conversion in order to access 

phonology and meaning (Hawelka et al., 2010) and provide additional support for the 

foveal eye movement data reported in this thesis. 

Lastly, the explanations as to why dyslexic readers show delayed TL effects 

are closely aligned with the explanations of why dyslexic readers have increased 

dependence on letter position. Indeed, if readers with dyslexia rely more heavily 

upon correct letter position for lexical identification, flexible encoding of letter 

position and letter identity may not be as particularly important to their reading. 

Therefore, whilst dyslexic readers do use a flexible letter position encoding 

mechanism, they are less efficient at processing correct letter identity information 

when it is in the incorrect letter position, causing the TL effects to occur within later 

eye movement measures. Furthermore, as dyslexic readers often require multiple 

fixations to achieve word identification, one would predict that the TL effect would 

occur at delayed timeframe and, therefore, occur in late eye movement measures 

which take into account multiple fixations. Dyslexic readers’ delayed TL effects can, 

therefore, also be explained by their reliance upon serial sublexical grapheme–
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phoneme conversion in order to access phonology and meaning (Hawelka et al., 

2010) 

It is, however, important to note that the greater dependence on correct letter 

position information, found for dyslexic readers compared to non-dyslexic readers, 

might be a finding limited to these initial letters. Recall, as explained in Chapter 3, 

the initial letters were selected for the TL manipulation due to their close proximity 

to the foveal word, but, also due to the intrinsic importance of the initial letters for 

lexical identification (White et al., 2008). In fact, skilled readers encode the initial 

letters of a word less flexibly than internal letters (Johnson & Dunne, 2012; Johnson 

& Eisler, 2012; Johnson et al., 2007; Tiffin-Richards & Schroeder, 2015; White et 

al., 2008) and this may be explained by the fact that words need to be sequentially 

processed from left-to-right in order to correctly activate phonological 

representations and establish the phonological onset of the word. The initial letters 

may, therefore, be encoded less flexibly to allow for correct sequential phonological 

encoding, which can then help to restrict the number of suitable lexical candidates 

(Folk & Morris, 1995), or aid in activating the correct lexical representation (Lima & 

Inhoff, 1985). Dyslexic readers, however, have difficulties in phonological 

processing (Snowling, 2000). As such, their less flexible letter position encoding 

may be specific to these initial letters because they need to ensure accurate 

phonological encoding in order to help efficiently identify the word; their difficulties 

in phonological processing cause a greater reliance upon the correct initial letter 

position information to help improve lexical identification. 

It is, therefore, possible that a dyslexic readers’ reduced flexibility in letter 

position encoding is due to a heightened importance for these initial letters, caused 

by their difficulty in encoding and representing phonological information (Snowling, 

2000). Thus dyslexic readers may show a specific difficulty in the flexible encoding 

of initial letter position, because of the sequential nature of encoding phonological 

information from left to right, rather than because they have an attentional deficit 

related to the amount of information they can encode in parallel (Bosse et al., 2007; 

Prado et al., 2007; Valdois et al., 2004).  

Do readers with dyslexia encode phonological information from the parafovea?  

Whilst the first two experimental chapters of this thesis focused upon whether 

dyslexic readers could encode orthographic information from the parafovea, the final 



 

 202 

experiment (Experiment 3) explored whether dyslexic adults could encode 

phonological information from the parafovea. Dyslexic readers have difficulty in 

extracting phonological information from orthographic form (Liberman, 1973; 

Snowling, 1995; Snowling, 2000; Snowling & Hulme, 2012; Stanovich, 1988); 

therefore, whilst they do access orthographic information parafoveally, they may not 

gain any benefit for parafoveal phonological information. It was, therefore, predicted 

that dyslexic readers would show difficulties in phonological parafoveal processing 

compared to non-dyslexic readers. In order to test this, Experiment 3 used the 

boundary paradigm to compare the following parafoveal preview manipulations: 1) 

identical previews, 2) homophone previews, 3) orthographic control previews, and 4) 

a random string of consonants. Specifically, by exploring the benefit of the 

homophone previews compared to the orthographic control previews, it is possible to 

determine whether phonological information is encoded in addition to orthographic 

information. In fact, this design has been previously used to identify phonological 

preview benefits in skilled adult readers (Chace et al., 2005; Pollatsek et al., 1992).   

Although the experimental design was replicated from Chace et al. (2005), 

the results of Experiment 3 indicated that neither skilled adult readers nor dyslexic 

adult readers showed a benefit of phonological information compared to 

orthographic information. Whilst such result is consistent with a body of work 

demonstrating that phonological preview benefits are notoriously difficult to identify 

(Choi & Gordon, 2014; Lee et al., 1999; Rayner et al., 1980), such a finding was 

unexpected given that the same experimental stimuli had previously been used to 

identify phonological preview benefits during skilled adult reading (Chace et al., 

2005). However, as discussed in Chapter 5, one possible explanation for the lack of 

evidence supporting phonological parafoveal preview benefits in skilled adult 

reading may be due to differences in the native language of the samples selected for 

the study. Indeed, Chace et al. (2005) conducted their research with native American 

English readers whereas Experiment 3 was conducted with native British English 

readers. Within the study reported by Chace et al. (2005), the word frequency of the 

target words were matched across three of the preview conditions (identical 

previews, homophone previews, orthographic control previews) using word 

frequency scores from the Francis and Kučera (1982) database. Whilst the Francis 

and Kučera (1982) word frequency scores were previously regularly used in samples 

of British English readers (e.g. Ashby et al., 2005; Kirkby et al., 2013; White et al., 



 

 203 

2005a; 2005b), this database is now often considered to be somewhat out-of-date 

(Balota et al., 2004; Brysbaert & New, 2009; Burgess & Livesay, 1998; Zevin & 

Seidenberg, 2002). For British readers, the BNC (British National Corpus) is now 

more frequently used. Indeed, when using the BNC to measure word frequency for 

the target words in the Chace et al. (2005) stimuli, there was greater variation in the 

word frequency scores compared to that found when using the Francis and Kučera 

(1982) database. As such, the variations in word frequency scores may have 

impacted the ability to find phonological preview benefits for skilled and dyslexic 

readers.  

Due to the lack of significant results across both reading groups, it is 

impossible to draw conclusions on dyslexic readers’ ability to phonologically process 

parafoveal information during silent sentence reading. Further research is required in 

order to address this research question and determine whether dyslexic readers show 

differences in phonological preview benefits compared to non-dyslexic readers. 

Future research exploring phonological parafoveal processing with British readers 

should use the BNC to determine and control for word frequency as the word 

frequency scores from the Francis and Kučera (1982) database may have enough 

variation to mask the small effects of phonological parafoveal processing.   

 

6.2.3 Overall discussion  

The research presented within this thesis provides a detailed account of foveal and 

parafoveal processing for adults and children with dyslexia in order to develop our 

understanding of dyslexic eye movement behaviour and further inform theories of 

dyslexia. The current findings demonstrated that dyslexic readers show consistent 

and dyslexic-specific reading difficulties in both foveal and parafoveal processing 

during silent sentence reading compared to non-dyslexic readers. Specifically, during 

foveal processing, dyslexic readers required additional fixations, which resulted in 

longer fixation durations such as gaze durations and total reading times. In addition 

to showing increased fixations, dyslexic readers also showed evidence of earlier 

landing positions compared to non-dyslexic readings. In measures of parafoveal 

processing, dyslexic readers showed orthographic parafoveal preview benefit, 

however, they also demonstrated a greater reliance on letter position information for 
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lexical activation, which in turn impacted their ability to flexibly encode letter 

position. Taken together, these results indicate that dyslexic readers rely upon serial 

sublexical grapheme-phoneme conversion for word processing (Hawelka et al., 

2010) and that is caused by a dyslexic specific deficit and not explained by their 

reduced reading skill.  

When using a sublexical route for reading, readers have to make more 

fixations in order to encode the full word. Sublexical processing requires that small 

chunks of information are serially encoded for grapheme-phoneme conversion in 

order to eventually gain a full orthographic and phonological representation of the 

word and access word meaning. In fact, a reliance on the serial sublexical method 

implies that dyslexic readers have an orthographic lexicon deficit in which they are 

unable to find a match within the orthographic lexicon and therefore cannot activate 

word phonology and meaning through this efficient orthographic route to word 

recognition. This would prevent dyslexic readers from learning to target their 

saccades towards the centre of the word, as they are unable to encode the whole word 

within one fixation. Instead, they need to encode information serially and 

consequently make earlier landing positions compared to non-dyslexic readers, with 

the expectation that their additional fixations on that word would allow for the rest of 

the letters to be encoded. Due to the serial nature of sublexical processing and 

decoding, readers need to ensure they are encoding the letter information in the 

correct order to achieve correct lexical activation. Thus, letter position information is 

more important when relying upon a serial sublexical route for word recognition as 

readers make multiple fixations and letter order needs to be retained for grapheme-

phoneme conversion to take place.  

These findings are consistent with both phonological and attention deficit 

theories of dyslexia. Indeed, the Phonological Deficit Hypothesis (Liberman, 1973; 

Snowling, 1995; Snowling, 2000; Stanovich, 1988) suggests that readers with 

dyslexia have difficulties with phonological awareness, which then impacts their 

ability to store high-quality orthographic representations of words (Hulme & 

Snowling, 2013; Lervåg & Hulme, 2009) and prevents quick access from 

orthographic to phonological word representations (Bergmann & Wimmer, 2008). 

Dyslexic readers, therefore, use a serial sublexical method of reading, which relies 

upon the slow and effortful phonological decoding of graphemes to phonemes and 

requires accurate mapping of letter position. In addition to the Phonological Deficit 
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Hypothesis, the results from this thesis are also consistent with attention deficits 

theories of dyslexia. Specifically, although dyslexic readers did not show an attention 

deficit in their ability to allocate their attention to the parafovea during reading, a VA 

span deficit (Bosse et al., 2007; Valdois et al., 2004) could explain their reliance on a 

serial sublexical method for reading. The VA span suggests that readers with 

dyslexia have a reduced area in which they can allocate attention, which, in turn, 

limits the number of letters that can be processed in parallel. As such, readers with 

dyslexia can only encode a small amount of information in parallel. This means that 

they would need to make additional fixations to extract the rest of the letters from the 

word, leading to a serial sublexical method to reading. Whilst the current results 

cannot draw clear distinctions between the competing theories, they do indicate that 

the serial sublexical grapheme–phoneme conversion method of reading adopted by 

dyslexic adults and children is representative of more than just a reading delay 

caused by dyslexic readers’ poor reading skills and is, in fact, representative of a 

specific dyslexic reading difficulty.  

 

6.3 Challenges in the current research  

One of the greatest challenges within the current body of research was that of 

obtaining enough power in order to establish significant effects and interactions. 

Whilst many of the results did reach significance, there were still some findings that 

were perhaps underpowered. There were two main contributing factors to this 

challenge: the participant sample and the nature of preview benefits.  

Collecting data with children and special populations such as dyslexic readers 

is typically challenging for a number of reasons. Firstly, recruitment of children and 

special populations takes time as it can be more challenging to find these individuals 

compared to a typical university student sample. Therefore, it is not unusual to have 

relatively small sample sizes for studies of children or dyslexic readers and this 

occurs even more so for studies of eye movement behaviour (e.g. Blythe et al., 2006; 

2009; 2010; Joseph et al., 2009). Indeed, as highlighted by Blythe and Joseph (2011) 

collecting eye movement data can be challenging as recording accurate eye 

movement data requires that participants sit very still, often for prolonged periods of 

time; this can be particularly difficult for children and special populations. In fact, 
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collecting accurate eye movement data is particularly important when using the 

boundary paradigm (Rayner, 1975) as the parafoveal preview manipulation relies 

upon a gaze contingent change. Thus, if the calibration of the eye tracking equipment 

is not accurate, then the boundary will trigger at the incorrect time point and the 

participant may not get the intended parafoveal preview. Therefore, not only were 

calibrations accuracies checked, but also a strict exclusion criterion was followed to 

make sure that the data was as accurate as possible. This led to a relatively large 

amount of data loss, which is not unusual for boundary paradigm studies (Chace et 

al., 2005; Johnson et al., 2007), but does reduce the amount of data gathered from 

each participant. As such, due to the challenging nature of recruitment and the need 

for extremely accurate recordings, it was difficult to collect a lot of data and obtain 

enough power.  

Another challenge with collecting and analysing data from children and 

special populations is that of the increased variance within the samples. Within the 

current thesis data was collected from a wide range of children, varying in both their 

chronological ages as well as their reading skill, both of which can impact their eye 

movement behaviour. Furthermore, dyslexia is a widely heterogeneous 

neurodevelopmental disorder in which case there is often great variance between 

readers with dyslexia (Hynd & Cohen, 1983). Whilst increased variance is typical for 

such groups, it can become a particular challenge when collecting eye movement 

data to explore parafoveal preview benefits. Specifically, parafoveal preview benefits 

are very small in duration; a typical TL effect for a skilled adult reader is 

approximately between 10-20 ms for a manipulation that occurs within the internal 

letters of a word (Johnson et al., 2007). Thus, when introducing small samples sizes 

(due to difficulties in recruitment) and variation in eye movement behaviour (due to 

the nature of the sample), it becomes even more challenging to ensure that the 

experimental design for parafoveal preview manipulations have enough power to 

establish statistically significant results should they exist. 

An additional challenge relating to the experimental design of both 

Experiment 1 and Experiment 2 was deciding where within the parafoveal word the 

orthographic parafoveal preview manipulation should occur. Recall, this thesis 

provides initial exploration of dyslexic parafoveal processing during reading, As 

such, it was initially unclear as to whether readers with dyslexia would in fact show 

parafoveal preview benefits during reading. Therefore, for the initial experiments of 
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this thesis, reading conditions were specifically manipulated to be favourable in 

order to increase the likelihood of finding parafoveal preview benefits for readers 

with dyslexia. Indeed, as dyslexic readers have been found to have a reduced 

perceptual span (Rayner et al., 1989) and/or VA span (Bosse et al., 2007; Prado et 

al., 2007; Valdois et al., 2004), it was important to include the parafoveal 

manipulation early within the parafoveal word. Based on this, and the proposal that 

the initial letters may have an additional intrinsic importance related to phonological 

processing, it was decided that the orthographic parafoveal preview manipulations 

should occur within the initial two letters of the parafoveal word. As mentioned 

above, the typical TL effect is very small in magnitude, even for internal letters of a 

word. TL effects are, however, reduced for initial letters of the word (Johnson et al., 

2007). Thus, whilst the orthographic preview manipulations were placed within the 

initial letters of the word to ensure readers with dyslexia were able to demonstrate 

parafoveal preview benefits, if they were indeed able to, this also made it perhaps 

more challenging to find TL effects for both dyslexic and non-dyslexic readers.  

The research presented within this thesis is, to my knowledge, the first body 

of work to explore parafoveal preview benefits during reading for dyslexic adults and 

children. The paucity of research into dyslexic parafoveal processing during reading 

may somewhat be explained by the challenges listed above. This thesis, however, 

aimed to further understand parafoveal processing during dyslexic reading; as such, 

decisions were made to try and address the challenges that come with exploring 

parafoveal preview benefits for special populations. First, whilst it was difficult to 

recruit dyslexic children as part of the research, it was slightly less challenging to 

recruit typically developing children. Therefore, it was decided that the groups of 

typically developing children need not be restricted to the sample size of the dyslexic 

group, thus allowing for more data to be collected for typically developing children. 

A further consideration was that of the method of analysis. Indeed, as the sample 

sizes were likely to be uneven, with missing data from following a strict exclusion 

criterion, linear mixed models were selected to analyse the data. As discussed in 

detail in Chapter 2, LMMs can accommodate for instances of missing data and 

uneven sample sizes, thus making the analysis more robust given the challenges 

relating to sample and preview effects. Even though there were challenges related to 

conducting this research, there were a range of significant findings into dyslexic 

parafoveal processing during reading and, as such, this work provides a useful basis 
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for future work that can help us further develop our understanding of dyslexic 

parafoveal processing during reading.  

 

6.4 Future research  

Whilst the current thesis provides insight into foveal and parafoveal processing for 

children and adults with dyslexia compared to non-dyslexic readers, there is still 

much more research required to further our understanding of dyslexic reading 

deficits. Specifically, this research indicates that dyslexic readers rely upon a serial 

sublexical method of word recognition. The current research, however, was not 

designed to fully address the issue of causality. Thus further research is required to 

understand why dyslexic readers rely upon a serial sublexical method of reading. 

Specifically, dyslexic readers were found to make more fixations compared to non-

dyslexic readers. As discussed earlier within this discussion chapter, there are a 

number of explanations as to why this might be the case and future work should 

examine these explanations in more detail.  

In addition to providing support for a serial sublexical method of reading, the 

current research provides an initial body of work to further our understanding 

dyslexic parafoveal processing during reading. However, as these studies are the first 

to establish parafoveal preview benefits during dyslexic reading, there is still much 

more research required to further advance our understanding of dyslexic parafoveal 

processing during reading. Due to the heterogeneous nature of the dyslexic 

population further research is required to replicate the current findings using other 

samples of readers with dyslexia. Additional research is also required to determine 

how far into the parafovea dyslexic readers can allocate their attention and gain 

parafoveal preview benefit, and to explore whether dyslexic readers show differences 

in the orthographic parafoveal preview benefits for initial word letters compared to 

internal and end letters. Furthermore, as the results of the third experiment were 

inconclusive in regard to whether dyslexic readers can extract phonological 

information from the parafovea, further research is required to address this question.  

Finally, the current thesis aimed to further understand dyslexic eye movement 

behaviour across development and to better understand the nature of the deficit by 

including two child controls samples. Additional work is, however, required to fully 
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understand the developmental process and the nature of the deficit for a more readers 

with dyslexia. Indeed, while the current research helps to address this, there is a lack 

of longitudinal research examining eye movement behaviour and the nature of the 

reading deficit for readers with dyslexia. Thus, future research resources should be 

allocated these areas of research.  
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