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Abstract (150 words):  50 

 51 

Global mean surface temperature is now 1.0°C higher than the pre-industrial period due to 52 

increasing atmospheric greenhouse gases.  Significant changes to natural and human (managed) 53 

systems have already occurred emphasizing serious near-term risks. Here, we expand on the 54 

recent IPCC Special Report on global warming of 1.5oC as well as additional risks associated 55 

with dangerous and irreversible states at higher levels of warming, each having major 56 

implications for multiple geographies, climates and ecosystems. Limiting warming to 1.5oC 57 

rather than 2.0oC is very beneficial, maintaining significant proportions of systems such as Arctic 58 

summer sea ice, forests and coral reefs as well as having clear benefits for human health and 59 

economies. These conclusions are relevant for people everywhere, particularly in low- and 60 

middle-income countries, where climate related risks to livelihoods, health, food, water, and 61 

economic growth are escalating with major implications for the achievement of the United 62 

Nations Sustainable Development Goals.  63 
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One Sentence Summary:  Climate change is already driving dangerous impacts that will be 64 

progressively less manageable at 1.5oC of global warming or higher. 65 

Main text: 66 

Climate change is one of the greatest challenges for humanity. Global mean surface temperature 67 

(GMST) is increasing at the rate of 0.2°C +0.1oC per decade, reaching 1.0°C above the pre-68 

industrial period (reference period 1850–1900) in 2017 (1).  GMST is projected to reach 1.5°C 69 

above the pre-industrial period between 2030 and 2052, depending on the model and 70 

assumptions regarding projected changes to atmospheric greenhouse gas (GHG) levels and 71 

climate sensitivity  (1).  At the same time, growing awareness of impacts beyond 1.5°C has 72 

focused international attention on the feasibility and implications of stabilizing temperatures at 73 

this level (2).   74 

  75 

In broad terms, limiting warming to 1.5°C will require a total investment in the energy sector of 76 

1.46-3.51 trillion (US$2010) in energy supply and 0.64-0.91 trillion (US$2010) in energy 77 

demand measures in order to reach net zero GHG emissions by 2050 (3)(p154).   On the other 78 

hand, the mean net present value (in 2008) of the avoided damages resulting from this action is 79 

estimated as totalling $496 trillion (US$2010) by the year 2200 (3–5). This, together with other 80 

damages that are difficult to fully cost and include (e.g. disruption and migration of human 81 

communities; reductions in ecosystem services associated with biodiversity loss), suggests that 82 

potential economic benefits arising from limiting warming to 1.5oC may be four or five 83 

times larger than the investments needed to stabilize GMST to 1.5oC (SM1)(3). 84 

 85 

Here, we explore the near-term mostly unmonetized impacts projected for 1.5°C of global 86 

warming, and the associated risks and adaptation options for natural and human (managed) 87 

systems.  In order to understand the implications of reaching 1.5oC, we compare it to recent 88 

conditions (i.e. 1.0oC warming above the pre-industrial period, Fig 1), and to those that are 89 

projected to emerge as we approach 2.0oC of warming. This comparison helps understand the 90 

benefits or not of stabilizing GMST at 1.5°C as compared to 2.0°C or higher, as well as 91 

providing a framework for societal responses and consequences. 92 

 93 
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[Insert Figure 1 here] 94 

Crossing the 1.0°C threshold has already severely impacted natural and human systems 95 

 96 
The incidence of extremes has increased sharply as GMST has warmed from 0.5oC to 1.0oC 97 

(~1980 – 2018) relative to the Pre-industrial period, with the intensity and/or frequency of 98 

extremes projected to change further with another 0.5°C of warming (5).  As GMST has 99 

increased, for example, the average temperature of cold days and nights (i.e. the coldest 10%) 100 

has also increased overall, as has the average temperature of warm days and nights (i.e. the 101 

warmest 10%) globally (5).  These changes have also been accompanied by increases in the 102 

frequency and/or duration of heatwaves for large parts of Europe, North America and Australia.  103 

Increases in GMST have been accompanied by increases in the frequency, intensity and/or 104 

amount of heavy precipitation in more regions than those with decreases, especially in North-105 

Hemisphere mid-latitude and high-latitude areas (5, 6). There is also evidence of increasing 106 

rainfall associated with recent tropical cyclones (6, 7) and increasingly heavy precipitation 107 

during storms in the Central Sahel (8, 9). The number of tropical cyclones has decreased, while 108 

the number of very intense cyclones has increased, for many areas (5). There is less confidence 109 

regarding trends in the length of drought, although a significant increasing trend has been 110 

detected in the Mediterranean region (particularly Southern Europe, North Africa and the near-111 

East) (10–12).   112 

 113 

As on land, coastal and marine habitats have also experienced an increased frequency, intensity 114 

and duration of underwater heatwaves, with a threefold increase in the number of marine 115 

heatwave days globally since 1980 (13). The differential heating of the water column has also led 116 

to increased thermal stratification in some coastal and oceanic regions which decreases ocean-117 

atmosphere gas exchange as well the turnover of nutrients between the photic layer and deeper 118 

layers of the ocean.  The annual mean Arctic sea ice extent decreased by 3.5 - 4.1% per annum 119 

from 1979 to 2012 (6). The melting of land-based ice includes potentially unstable regions such 120 

as the Western Antarctic Ice Sheet (WAIS, Fig 1B), which contributed 6.9 + 0.6 mm over 1979-121 

2017 to global mean sea level (GMSL).  Together with glacial melt water, thermal expansion of 122 

the ocean has accelerated the rate of GMSL increase by up to 0.013 [0.007-0.019] mm yr–2  since 123 
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the early 20th Century (14). Changes in ocean temperature have also decreased the oxygen 124 

concentration of the bulk ocean, interacting with coastal pollution to increase the number and 125 

extent of low oxygen dead zones in many deep-water coastal habitats (15).  In addition to 126 

increasing GMST, anthropogenic CO2 also enters the ocean causing a reduction in pH (ocean 127 

acidification) which negatively impacts processes such as early development, calcification, 128 

photosynthesis, respiration, sensory systems, and gas exchange in organisms from algae to fish 129 

(5). 130 

  131 

Changing weather patterns (e.g. temperature, rainfall, dryness, storms) have increased negative 132 

impacts on natural and managed systems (Fig 1A-D).  Changes to coral reefs (5), forests (e.g. 133 

changing drought/fire regimes) (16, 17), low-lying islands and coasts (5), and impacts on 134 

agriculture production and yield (18, 19) are threatening resources for dependent human 135 

communities.  There are also many gradual changes that have occurred as GMST has increased, 136 

with many being no less important than the more abrupt changes. Land-based biomes (i.e. major 137 

natural and agricultural ecosystem types) have also shifted to higher latitudes and elevation in 138 

boreal, temperate and tropical regions (5, 15)., with similar shifts reported for marine and 139 

freshwater organisms. Marine organisms and some ecosystems have also shifted their 140 

biogeographical ranges to higher latitudes at rates up to 40 km yr–1.  Rates are highest for pelagic 141 

organisms and ecosystems such as plankton, and are lowest for more sedentary benthic 142 

organisms and ecosystems such as seaweeds  and kelp forests (5, 15).  These types of changes 143 

(e.g. temperature, storms, circulation) have also affected the structure and function of ocean 144 

ecosystems with respect to its biodiversity, food-webs, incidence disease and invasive species 145 

(5).   146 

 147 

Other changes to biological systems include changes to the phenology of marine, freshwater and 148 

terrestrial organisms (e.g. timing of key events such as reproduction and migration) (5, 15).  The 149 

phenology of plants and animals in the Northern-Hemisphere, for example, has advanced by 2.8 150 

+ 0.35 days per decade due to climate change, with similar changes in the flowering and 151 

pollination of plants and crops, and the egg-laying and migration times of birds (5, 20). There are 152 

indications that climate change has already contributed to observed declines in insects and 153 

arthropods in some regions (21, 22). Variations in these types of changes have also been 154 
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observed in the phenology of tropical forests, which have been more responsive to changes in 155 

moisture stress rather than to the direct changes in temperature (5).  While the intention here is 156 

not to catalogue all of the changes that have occurring in natural systems, it is important to 157 

acknowledge that deep and fundamental changes are underway in biological systems with just 158 

1°C of global warming so far (5). 159 

  160 

Changes in GMST of 1.0°C have also directly and indirectly affected human communities, many 161 

of which depend on natural and managed systems for food, clean water, coastal defence, safe 162 

places to live, and livelihoods among many other ecosystem goods and services  (5).  Coral reefs 163 

clearly illustrate the linkage between climate change, ecosystem services and human well-being.  164 

At 1.0°C, large-scale mortality events driven by lengthening marine heatwaves have already 165 

reduced coral populations in many places (5), with prominent coral reef ecosystems such as the 166 

Great Barrier Reef in Australia losing as much as 50% of their shallow water corals in the last 167 

four years alone (5, 23, 24). These changes have potential implications for millions of people 168 

given their dependency on coral reefs for food, livelihoods and well-being (5).   169 

Understanding climate change over the next few decades: methods and assumptions 170 

 171 

There are a range of strategies for quantifying risks for natural and human systems at 1.5°C and 172 

2.0°C above the pre-industrial period.  This requires calculating the future exposure of systems 173 

to changes in climatic hazards.  Some methods rely on the fact that an equivalent amount of 174 

warming (e.g. 0.5°C) occurred in the recent past (e.g. ca. 1950 to 2000, or ca. 1980 to 2018, Fig 175 

2A; (3)) potentially providing insights into how risks might change in the near future. In this 176 

case, the associated risks of the next 0.5°C of global warming (Fig 2A) are linearly extrapolated 177 

from the impacts associated with the previous 0.5°C increase (ca. 1980-2018).  This method of 178 

projecting future risk is likely to be conservative given (a) the pace of climate change is 179 

increasing (25) and (b) the impacts per unit of temperature are likely to increase as conditions are 180 

pushed increasingly beyond the optimal conditions for a particular organism or physiological 181 

process (Fig 2B)(26).  Responses by natural and human systems are likely to also differ if 182 

temperature pathways involve a gradual increase to 1.5oC above the pre-industrial period (no 183 

‘overshoot’) as opposed to pathways that first exceed 1.5°C before later declining to 1.5°C, 184 
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which is referred to as an ‘overshoot’ (5) (Fig 2A).  High levels of overshoot involve exceeding 185 

1.5oC by 0.1oC (Figure 2A) (3). 186 

 187 

[Insert Figure 2 here] 188 

 189 

Other approaches for understanding how the world may change at 1.5°C and 2.0°C of global 190 

warming draw on laboratory, mesocosm, and field experiments.  These approaches simulate 191 

projected conditions for different levels of warming and, in the case of marine systems, levels of 192 

acidification (e.g. changes in pH, carbonate, pollution levels (5, 26, 27). These experimental 193 

approaches also provide calibration as well as insight into future conditions and responses (i.e. 194 

1.5°C versus 2.0°C).  Some caution is also required given that global increases of 1.5°C or 2.0°C 195 

may involve a broad range of regional responses.  This arises due to uncertainties in (for 196 

example) the likelihood of overshoot, land-atmosphere interactions, biophysical effects of land 197 

use changes, and interannual climate variability (28).  Several lines of evidence for 198 

understanding these complex problems include the analysis of the frequency and intensity of 199 

extremes as well as projections based on existing climate simulations and empirical scaling 200 

relationships for 1.5°C and 2.0°C of global warming (5).  Lines of investigation may also include 201 

dedicated experiments prescribing sea surface conditions consistent with these levels of 202 

warming,  as done in the HAPPI (Half a degree Additional warming, Prognosis and Projected 203 

Impacts) project (5). Furthermore, fully-coupled climate model experiments can be achieved 204 

using GHG forcing consistent with 1.5°C or 2.0°C scenarios (5). These multiple yet different 205 

lines of evidence (above) underpin the development of qualitatively consistent results regarding 206 

how temperature means and extremes could change at 1.5°C as compared to 2.0°C of global 207 

warming. 208 

Projected changes in climate at 1.5°C versus 2.0°C of global warming 209 

  210 

Understanding the potential advantages of restraining global warming to 1.5oC requires an 211 

understanding of the risks associated with the exposure of natural and human systems to climatic 212 

hazards, and how they change at 1.5°C relative to 2.0oC (Fig 3)(29).  Increases of GMST to 213 

1.5°C will further increase the intensity and frequency of hot days and nights, and decrease the 214 
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intensity and frequency of cold days and nights (Fig 3 C.D.E). Warming trends are projected to 215 

be highest over land, in particular for temperature extremes, with increases of up to 3°C in the 216 

mid-latitude warm season and up to 4.5°C in cold seasons at high latitudes. These increases are 217 

projected to be greater at 2.0°C of global warming, with increases of up to 4°C in the mid-218 

latitude warm season and up to 6°C in the high-latitude cold season (e.g. Fig 3 A.C.D.E.) (29).  219 

Heatwaves on land, which are already increasing pressure on health and agricultural systems, are 220 

projected to become more frequent and longer (Fig 3 C.D.).     221 

  222 

There is considerable evidence that dryness will increase in some regions, especially the 223 

Mediterranean as well as southern Africa (5, 30–32). Risks of drought, dryness and precipitation 224 

deficits are projected to increase  at 1.5°C and even further at 2.0°C for some regions relative to 225 

the pre-industrial period (Fig 3B,F)(5, 33).  Recent studies also suggest similar projections for 226 

the western Sahel and southern Africa, as well as the Amazon, north-eastern Brazil, and Central 227 

Europe (5, 34).  Projected trends in dryness are uncertain in several regions, however, and some 228 

regions are projected to become wetter(Fig 3 B,F) (5).  Reaching GMST of 1.5°C and 2.0°C, for 229 

example, would lead to a successive increase in the frequency, intensity and/or amount of heavy 230 

rainfall when averaged over global land area (Fig 3 B,F).  Global warming of 2.0°C versus 1.5°C 231 

increases exposure to fluvial flood risk particularly at higher latitudes and in mountainous 232 

regions, as well as in East Asia, China (35) and eastern North America overall (5). The 233 

prevalence of subsequent intense wet and dry spells, in which a prolonged drought is 234 

immediately followed by heavy precipitation at the same location (potentially leading to 235 

flooding) or vice versa, is projected to be greater at 2.0°C global warming versus 1.5°C (36). 236 

These large changes between coupled wet and dry conditions represent a major challenge for 237 

adaptation as they will affect water quality and availability as well as increased soil erosion 238 

along many coastal areas.  Sea level rise can also amplify problems through damage to coastal 239 

infrastructure and the salinization of water supplies for drinking and agriculture (5). 240 

 241 

Relatively few studies have directly explored the effect of 1.5°C versus 2.0°C of global warming 242 

on tropical cyclones (5). These studies consistently reveal a decrease in the global number of 243 

tropical cyclones at 1.5°C vs 1.0°C of global warming, with further decreases under 2.0°C vs 244 

1.5°C of global warming. Simultaneously, very intense cyclones are likely to occur more 245 
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frequently at 2.0°C vs 1.5°C of global warming, with associated increases in heavy rainfall and 246 

damage, further emphasizing the advantages of not exceeding 1.5oC  (5). 247 

 248 

[Insert Figure 3 here] 249 

 250 

Coastal and oceanic regions are also projected to increase in temperature as GMST increases to 251 

1.5°C, and further to 2.0°C, above the pre-industrial period.  Absolute rates of warming are only 252 

slightly lower in the ocean than on land although the shallower spatial gradient of ocean 253 

temperature will mean that the velocity of climate change may be higher in many regions of the 254 

ocean (5, 37). Increases in ocean temperature associated with 1.5°C and 2.0°C of global warming  255 

will increase the frequency and duration of marine heatwaves, as well as reducing the extent of 256 

ocean mixing due to the greater thermal stratification of the water column (13, 15).  Sea ice is 257 

projected to continue to decrease in the Arctic, although restraining warming to 1.5°C will mean 258 

an ice free Arctic summer will only occur every 100 years, while warming to 2.0oC above the 259 

pre-industrial period will mean an ice free Arctic summer is likely to occur every 10 years by 260 

2100 (5, 38).  These and other models indicate that there will be no long-term consequences for 261 

sea ice coverage in the Arctic (i.e. no hysteresis)if GMST is stabilised at or below 1.5oC (3).   262 

  263 

Impacts on ecosystems at 1.5oC versus 2.0oC of global warming  264 

 265 
Multiple lines of evidence (5) indicate that reaching and exceeding 1.5°C will further transform 266 

both natural and human systems, leading to reduced ecosystem goods and services for humanity.  267 

Importantly, risks for terrestrial and wetland ecosystems such as increasing coastal inundation, 268 

fire intensity and frequency, extreme weather events, and the spread of invasive species and 269 

diseases are lower at 1.5°C as compared to 2.0°C of global warming (5).  In this regard, the 270 

global terrestrial land area that is predicted to be affected by ecosystem transformations at 2.0°C 271 

(13%, interquartile range 8-20%) is approximately halved at 1.5°C (4%, interquartile range 2-272 

7%). Risks for natural and managed ecosystems are higher on drylands as compared to humid 273 

lands (5).   The number of species that are projected to lose at least half of their climatically 274 

determined geographic range at 2.0°C of global warming (18% of insects, 16% of plants, 8% of 275 
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vertebrates) would be significantly reduced at global warming of 1.5°C (i.e. to 6% of insects, 8% 276 

of plants, and 4% of vertebrates)(5).  In this regard, species loss and associated risks of 277 

extinction are much lower at 1.5°C than 2°C. Tundra and boreal forests at high latitudes are 278 

particularly at risk, with woody shrubs having already encroached on tundra, which will increase 279 

with further warming (5). Constraining global warming to 1.5°C would reduce risks associated 280 

with the thawing of an estimated 1.5-2.5 million km² of permafrost (over centuries) compared to 281 

the extent of thawing expected at 2.0°C (5).    282 

 283 

Ecosystems in the ocean are also experiencing large-scale changes, with critical thresholds 284 

projected to be increasingly exceeded at 1.5°C and higher global warming. Increasing water 285 

temperatures are driving the relocation of many species (e.g. fish, plankton) while sedentary 286 

organisms, such as kelp and corals, are relatively less able to move.  In these cases, there are 287 

multiple lines of evidence that indicate that 70-90% of warm water tropical corals present today 288 

are at risk of being eliminated even if warming is restrained to 1.5°C.  Exceeding 2.0°C of global 289 

warming will drive the loss of 99% of reef-building corals (5).  These non-linear changes in 290 

survivorship are a consequence of the increasing impact of changes as they move away from 291 

optimal conditions (Fig 2B) (26).   Impacts on oceanic ecosystems are expected to increase at 292 

global warming of 1.5°C relative to today, with losses being far greater at 2.0°C of global 293 

warming.  Significant compound or secondary risks exist with respect to declining ocean 294 

productivity, loss of coastal protection, damage to ecosystems, shifts of species to higher 295 

latitudes, and the loss of fisheries productivity (particularly at low latitudes)(15). There is 296 

substantial evidence that these changes to coastal risks will increasingly threaten the lives and 297 

livelihoods of millions of people throughout the world (5). 298 

Increasing risks for human (managed) systems at 1.5oC and 2.0oC of global warming 299 

Many risks for society will increase as environmental conditions change. Water, for example, is 300 

often central to the success or failure of human communities. The projected frequency and scale 301 

of floods and droughts in some regions will be smaller under 1.5°C global warming as opposed 302 

to 2°C, with risks to water scarcity being greater at 2.0°C than at 1.5°C of global warming for 303 

many regions (5). Salinization of freshwater resources on small islands and along low-lying 304 

coastlines is a major risk that will become successively more important as sea levels rise, 305 
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particularly as they will continue to increase even if temperatures stabilise. (5). Depending on 306 

future socio-economic conditions, limiting warming to 1.5°C is projected to reduce the 307 

proportion of the world's population exposed to climate induced water stress by up to 50% as 308 

compared at 2oC (5), although there is considerable variability among regions as already 309 

discussed.  Most regions, including the Mediterranean and Caribbean regions, are projected to 310 

experience significant benefits from restraining global warming to 1.5°C (39), although socio-311 

economic drivers are expected to play a dominant role relative to climate change for these 312 

communities over the next 30-40 years. 313 

 314 

Limiting global warming to 1.5°C is projected to result in smaller reductions in the yield of 315 

maize, rice, wheat and potentially other cereal crops than at 2.0°C, particularly in sub-Saharan 316 

Africa, Southeast Asia, and Central and South America (40–42).  A loss of 7-10% of rangeland 317 

stock globally is also projected to occur at an increase of 2.0°C above the pre-industrial period, 318 

which will have considerable economic consequences for many communities and regions. 319 

Reduced food availability at 2.0°C as compared to 1.5°C of global warming is projected for 320 

many regions including the Sahel, Southern Africa, the Mediterranean, Central Europe and the 321 

Amazon. Few examples exist where crop yields are increasing and hence food security is at 322 

increasing risk in many regions (41). Although food systems in future economic and trade 323 

environments may provide important options for mitigating hunger risk and disadvantage (43, 324 

44)(5), assuming that solutions are found to the decline in the nutritional quality of major cereal 325 

crops from higher CO2 concentrations (5). 326 

 327 

Food production from marine fisheries and aquaculture is of growing importance to global food 328 

security but is facing increasing risks from ocean warming and ocean acidification (5). These 329 

risks increase at 1.5°C of global warming and ocean acidification, and are projected to impact 330 

key organisms such as finfish, corals, crustaceans and bivalves (e.g. oysters) especially at low 331 

latitudes (5). Small-scale fisheries that depend on coastal ecosystems such as coral reefs, 332 

seagrass, kelp forests and mangroves, are expected to face growing risks at 1.5°C of warming as 333 

a result of the loss of habitat (5). Risks of impacts, and subsequent risks to food security, are 334 

projected to become greater as global warming reaches 1.5°C (5, 43, 44)  Tropical cyclones have 335 

major impacts on natural and human systems, and are projected to increase in intensity in many 336 
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regions, with the damage exacerbated by rapid sea level rise (14, 45). The tropical cyclones in 337 

the North Atlantic basin in 2017 had significant and widespread effects on the small islands of 338 

Caribbean as well as the United States, resulting in many deaths, displacement of communities, 339 

elevated rates of morbidity and mental health issues, as well as the long-term loss of electricity 340 

generation and distribution.  These impacts have resulted in significant economic damage, which 341 

has exceeded the annual GDP of some small island developing States (46, 47).   342 

 343 

Millions of people are already exposed to coastal flooding due to sea level rise and storms, 344 

particularly in cities. Projections of sea level rise remain uncertain (5), and may include 345 

significant non-linear responses, in part due to the contribution of land-based ice (48–50). Due to 346 

the time lag between increased emissions and higher sea levels, differences in mitigation at 1.5°C 347 

and 2.0°C, are relatively small compared with the uncertainty in the projections at 2050 or even 348 

2100. Small differences can, however, have big impacts: an increase of 0.1m of sea level rise, for 349 

example, will expose an additional 10 million people to flooding (5) particularly those living in 350 

low-lying deltas and small islands (5, 51). Even with mitigation, adaptation remains essential, 351 

particularly as multi-metre sea level rise remains possible over several centuries for higher levels 352 

of temperature rise (5).  Estimates of the net present value in 2008 of global aggregate damage 353 

costs (which would be incurred by 2200 if global warming is limited to 2.0°C) reach $69 trillion 354 

(5).  Damages from sea level rise alone contributes several trillion of dollars per annum (52). The 355 

net present value in 2008 of global aggregate damage costs associated with 1.5oC warming 356 

which would be incurred by 2200 if global warming is limited to 1.5C are less than those at 357 

2.0oC, with comparable estimates around $54 trillion in total (5). 358 

 359 

Warming of 1°C has increased the frequency and scale of impacts on human health through 360 

changes to the intensity and frequency of heatwaves, droughts, floods and storms, as well as 361 

impacts on food quantity and nutritional quality (through increasing CO2 concentrations) 362 

resulting in undernutrition or malnutrition in some regions (5, 43, 44).  Multiple lines of evidence 363 

indicate that any further increases in GMST could have negative consequences for human health, 364 

mainly through the intensification of these risks (5, 53). Lower risks are projected at 1.5°C than 365 

2.0°C of global warming for heat-related morbidity and mortality, and for ozone-related 366 

mortality if ozone precursor emissions remain high. Limiting global warming to 1.5°C would 367 
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result in 420 million fewer people being frequently exposed to ‘extreme heatwaves’ (defined by 368 

duration and intensity (54)) and about 65 million fewer people being exposed to ‘exceptional’ 369 

heatwaves as compared to conditions at 2.0°C GMST warming (55). Human health will also be 370 

affected by changes in the distribution and abundance of vector-borne diseases such as dengue 371 

fever and malaria, which are projected to increase with warming of 1.5°C and further at 2.0°C in 372 

most regions (5).  Risks vary by human vulnerability, development pathways, and adaptation 373 

effectiveness (43, 44, 56).  In some cases, human activities can lead to local amplification of heat 374 

risks from urban heat island effects in large cities (57, 58).  More specific impacts of, and 375 

solutions to, climate change on cities are provided elsewhere (43, 56) 376 

 377 

Global warming of 1.5°C will also affect human well-being through impacts on agriculture, 378 

industry and employment opportunities. For example, increased risks are projected for tourism in 379 

many countries, whereby changes in climate have the potential to affect the attractiveness and/or 380 

safety of destinations, particularly those dependent on seasonal tourism including sun, beach and 381 

snow sport destinations (5, 15).  Businesses that have multiple locations or markets may reduce 382 

overall risk and vulnerability, although these options are likely to be reduced as stress and 383 

impacts increase in frequency and areal extent.  Risks and adaptation options may lie in 384 

developing alternative business activities that are less dependent on environmental conditions.  385 

These risks become greater as warming increases to 2.0oC and pose serious challenges for a large 386 

number of countries dependent on tourism and related activities for national income (5).  387 

  388 

Multiple lines of evidence also reveal that poverty and disadvantage are also correlated with 389 

warming to 1.0°C above pre-industrial period, with the projection of increasing risks as GMST 390 

increases from 1.0°C (today) to 1.5°C and higher (43, 44).  In this regard, out-migration from 391 

agriculturally-dependent communities is positively correlated with global temperature although 392 

our understanding of the links between human migration and further warming of 1.5°C and 393 

2.0°C is at an early stage (5). Similarly, risks to global aggregate economic growth due to 394 

climate change impacts are projected to be lower at 1.5°C than 2.0°C by the end of the century 395 

(5).  The largest reduction in economic growth at 2.0°C compared to 1.5°C are projected for low- 396 

and middle-income countries and regions (the African continent, Southeast Asia, India, Brazil 397 

and Mexico). Countries in the tropics and Southern Hemisphere subtropics, are projected to 398 
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experience the largest negative impacts on economic growth if global warming increases from 399 

1.5°C to 2.0°C above the pre-industrial period (5, 43, 44).  The most perceptible impacts of 400 

climate change are likely to occur in tropical regions as GMST increases to 1.5 ºC and eventually 401 

to 2ºC above the pre-industrial period (59). 402 

   403 

Table 1 summarizes the emergence of potential climate change ‘hotspots’ (i.e. areas where risks 404 

are large and growing rapidly) for a range of geographies and sectors (5).  In all cases, these 405 

vulnerable regions show increasing risks as warming approaches 1.5oC and higher.  Not all 406 

regions, however, face the same challenges.  In the Arctic, for example, habitat loss is 407 

paramount, while changing temperature and precipitation regimes represent primary risks in the 408 

Mediterranean, Southern Africa, West Africa and the Sahel. These rapidly changing locations 409 

represent interactions across climate systems, ecosystems and socio-economic human systems, 410 

and are presented here to illustrate the extent to which risks can be avoided or reduced by 411 

achieving the 1.5°C global warming goal (as opposed to 2.0°C).   412 

 413 

[Insert Table 1 here] 414 

 415 

Trajectories toward hotspots can also involve significant non-linearities or tipping points.  416 

Tipping points refer to critical thresholds in a system that result in rapid systemic change when 417 

exceeded (5).  The risks associated with 1.5oC or higher levels of global warming reveal 418 

relatively low risks for tipping points at 2.0°C but a substantial and growing set of risks as global 419 

temperature increases to 3oC or more above the pre-industrial (Table 2) (5). For example, 420 

increasing GMST to 3°C above the pre-industrial period substantially increases the risk of 421 

tipping points such as permafrost collapse, Arctic sea ice habitat loss, major reductions in crop 422 

production in Africa as well as globally, and persistent heat stress that is driving sharp increases 423 

in human morbidity and mortality (Table 2) (5).  424 

 425 

[Insert Table 2 here] 426 

 427 
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Solutions: scalability, feasibility and ethics  428 

  429 

GMST will increase by 0.5oC between 2030 and 2052 and will multiply and intensify risks for 430 

natural and human systems across different geographies, vulnerabilities, development pathways, 431 

as well as adaptation and mitigation options (1, 43, 44, 56). To keep GMST to no more than 432 

1.5°C above the pre-industrial period, the international community will need to bring GHG 433 

emissions to net zero by 2050 while adapting to the risks associated with an additional 0.5°C 434 

being added to GMST (3, 5) The impacts associated with limiting warming to 1.5°C, however, 435 

will be far less than those at 2.0°C or higher (Table 1, 2).  Aiming to limit warming to 1.5oC is 436 

now a human imperative if escalating risks of dangerous if not catastrophic tipping points and 437 

climate change hotspots are to be avoided (2, 5). 438 

  439 

An important conclusion of the IPCC special report on 1.5oC is that limiting GMST to 1.5°C or 440 

less is still possible (3, 60).  This will require limiting GHG emissions to a budget of 420 Gt CO2 441 

for a 66% or higher probability of not exceeding 1.5°C (44). As global emissions are currently 442 

around 42 Gt CO2 per year, pathways should bring CO2 emissions to net zero over the next few 443 

decades (i.e. phase out fossil fuel use) alongside a substantial reduction (~35% relative to 2010) 444 

in emissions of methane and black carbon over the same time scale (44).  The current set of 445 

national voluntary emission reduction pledges (Nationally Determined Contributions or NDCs), 446 

however, will not achieve the goals of the Paris Agreement (2, 61), particularly when 447 

considering the land-use sector (62). Instead, GMST is projected to increase by 3-4°C above the 448 

pre-industrial period (1, 44), posing serious levels of risk for natural and human systems (3, 5, 449 

20).  450 

 451 

The majority of pathways for achieving 1.5oC also require the carbon dioxide removal (CDR) 452 

from the atmosphere.  Delays in bringing CO2 emissions to net zero over the next 20-30 years 453 

will also increase the likelihood of pathways that exceed 1.5°C (so-called ‘overshoot’ scenarios) 454 

and hence a greater reliance on net negative emissions after mid-century if GMST to return to 455 

1.5°C (Fig 2A).  Technologies designed to remove CO2 from the atmosphere are at an early stage 456 

of development, with many questions as to their feasibility and scalability (5). For example, 457 

bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, blue carbon 458 
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(i.e. carbon sequestration by marine ecosystems and processes), soil carbon sequestration, direct 459 

capture, biochar (i.e. charcoal for burial in soils), and enhanced weathering, variously struggle 460 

from issues such as feasibility, scalability, and acceptability.  These strategies are potentially in 461 

competition with each other.  For example, BECCS would require approximately 18% of global 462 

land to sequester 12 Gt CO2/yr (5).  This requirement is likely, however, to drive an accelerating 463 

the loss of primary forest and natural grassland which would increase GHG emissions (5).  Early 464 

emission reductions plus measures to conserve land carbon stocks may reduce these effects.  465 

Policy options might limit the expansion of agriculture at the expense of natural ecosystems, 466 

and/or safeguard agricultural productivity from reductions due to BECCS and/or biofuel 467 

production (5). 468 

 469 

There are CDR options, however, that do not rely as extensively on BECCS, but rather focus on 470 

afforestation and/or the restoration of natural ecosystems.  It is feasible, for example, to limit 471 

warming to 1.5oC using strategies such as changing diets and promoting afforestation to remove 472 

CO2 (3, 5, 43, 44). Negative consequences of afforestation such as monoculture plantations on 473 

local biodiversity might be countered by preferentially restoring natural ecosystems, re-474 

establishing the ability of native grasslands, peatlands, forests, mangroves, kelp forests, and 475 

saltmarshes to sequester carbon.  This creates a ‘win-win’ scenario in which both climate and 476 

biodiversity benefit, contributing to SDG 15 ‘Life on Land’: and hence, simultaneously making 477 

an enormous contribution to the goals of both CBD and UNFCCC.  Compatible with this idea is 478 

the recent UN establishment of the 2020s as the ‘Decade of Restoration’, with the intention to 479 

build a global resolve to conserve biodiversity, increase its resilience to climate change, and use 480 

it to sequester up to a total of 26 GtC (63).     481 

  482 

Extensive adaptation to 1.5oC of global warming or higher will be very important, especially if 483 

we have underestimated climate sensitivity.  Developing socially-just and sustainable adaptation 484 

responses will be increasingly necessary to help natural and human systems to prepare and 485 

respond to rapid and complex changes in risk (43). The global adaptation stocktake instigated by 486 

the Paris Agreement will help accountability through documentation and mechanisms that 487 

inform enhancement at national levels (64, 65). It must also be acknowledged that there are 488 

limits to adaptation for natural and human systems (66) and hence subsequent loss and damage 489 
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(5, 67–69). For example, actions to restore ecosystems may not always be possible given 490 

available resources and it may not be feasible to protect all coastal regions from erosion and loss 491 

of land. These challenges mean that identifying, assessing, prioritizing and implementing 492 

adaptation options are very important for reducing the overall vulnerability to increasing climate-493 

related risks as GMST increases. It has become increasingly clear that long-term solutions to 494 

climate change must also reduce disadvantage and poverty.  Consequently, the recent IPCC 495 

Special Report pursued its findings in the context of ‘strengthening the global response to the 496 

threat of climate change, sustainable development, and efforts to eradicate poverty’ (3). While 497 

previous reports recognized the importance of not aggravating disadvantage, few have 498 

specifically focused on solutions that involve multiple elements of climate change, sustainable 499 

development and poverty alleviation.  For example, greater insights and knowledge are required 500 

to understand how multiple Sustainable Development Goals (SDGs) interact with each other, 501 

although many of these interactions are beneficially synergistic (70).  Importantly, SDGs are far 502 

more easily reached at 1.5°C versus 2.0°C or more of global warming  (43). 503 

 504 

The important issue of ‘loss and damage’ also highlights the inequity between nations that have 505 

largely caused climate change (and have received the greatest benefits) and those who have not. 506 

This inequity is particularly important for least developed countries (LDCs) and small island 507 

developing States (SIDSs) that have contributed relatively little to global GHG emissions but 508 

now face disproportionate risks and harm from climate change, even at 1.5oC (67–69, 71). 509 

UNESCO has also emphasized the importance of ethics within a non-binding Declaration of 510 

Ethical Principles in Relation to Climate Change in 2017 (72).  Specifically, this declaration 511 

states that “decision-making based on science is critically important for meeting the mitigation 512 

and adaptation challenges of a rapidly changing climate. Decisions should be based on, and 513 

guided by, the best available knowledge from natural and social sciences including 514 

interdisciplinary and transitionary science and by considering (as appropriate) local, traditional 515 

and indigenous knowledge”.  These types of initiatives are especially important in the 516 

development of policies and actions that avoid inequalities that arise through exclusion and 517 

misinformation (61). A transformation toward climate-resilient and low-carbon societies needs to 518 

be done in a way that addresses the issue of justice and equity, through ensuring that trade-offs 519 

and synergies are identified and actioned (43).  520 
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Conclusion 521 

Warming of 1.0°C since the mid-20th century has fundamentally transformed our planet and its 522 

natural systems. Multiple lines of evidence reveal that a 1.5°C world will entail larger risks to 523 

both human and natural systems. The risks of a 2oC world are much greater.  This places us at a 524 

critical time in human history where proportionate action taken today will almost certainly 525 

minimize the dangerous impacts of a changing climate for hundreds of millions of people.   526 

Our preliminary estimates suggest that the benefits of avoided damage by the year 2200 may 527 

exceed the costs of mitigation by a factor of four or five.  Current NDCs for 2030 are insufficient 528 

to drive this even if followed by ‘very challenging increases in the scale and ambition of 529 

mitigation after 2030’ (44)(p 95), because models based on the current understanding of 530 

economic and technical dynamics cannot identify how to reduce GHG emissions to net zero by 531 

2050 from the current NDC starting point in 2030. Rather, these ambitions are consistent with a 532 

global warming level of 3-4oC which means that immediate and transformative action is required 533 

between now and 2030 in order to greatly scale up current nationally stated plans for GHG 534 

reductions.  Strategies for responding to climate change must be scalable to the challenges of 535 

climate change being faced today and into the future, while at the same time being feasible and 536 

fair. Given the scope and threats associated with climate change, there is an increasing need for 537 

large scale strategies such as the UN Climate Resilient Development Pathways (CRDP) or 538 

‘Green New Deal’ (UNEP) if society is to avoid potentially catastrophic circumstances over the 539 

next few decades.     540 

  541 
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Material and Methods 757 
 758 
SM1: Calculation of benefits versus costs for stabilizing at 1.5oC versus 3.7oC.  759 
 760 
Damages avoided can be estimated as those that accumulate under no mitigation scenarios (e.g. 761 

3.7oC by 2100), as compared to high mitigation scenarios in which GMST stabilizes at 1.5oC.  762 

Using PAGE09 model outputs, these are mean total damages of $550 Trillion (US$2008) versus 763 

$54 Trillion (US$2008)(3, 4)  The investments in the energy system required for stabilizing at 764 

1.5oC are the sum of the required annual investments on the energy supply and demand side 765 

provided by IPCC (2018) over a 34-year period 2016-2050, amounting to a total of $2.1-4.42 766 

Trillion (US$2010) annually, or $71-150 Trillion (US$2010).  Most of the mitigation costs 767 

accrue during the period ending in 2050 since this is the target date for net zero greenhouse gas 768 

emissions in IPCC scenarios limiting warming to 1.5oC.   769 

 770 

The ratio is consequently approximately $496 Trillion (US$2008; mean damage avoided but no 771 

mitigation costs) versus $71-150 Trillion (US$2010; mitigation costs only) which means that the 772 

avoided damage is three and seven-fold higher than the cost of restraining GMST to 1.5oC.  Total 773 

mitigation cost estimates (3) are used in this comparison, as they include the costs of mitigation 774 
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required to reach the NDCs and also the further measures required to limit warming to 1.5oC, 775 

including measures which are required after 2030. If all the mitigation costs were incurred at the 776 

mid-point of 2016 to 2050, their NPV in 2008 would be about half of the $71-150 trillion 777 

USD2010 (i.e. an even higher benefit to cost ratio).  Furthermore, damages could be higher than 778 

estimated, for reasons already outlined in the main text.   779 

 780 

We also provide a further explanation of why other cost estimates provided in (3) were not the 781 

appropriate for use in the comparison.  (3) also states that “Global model pathways limiting 782 

global warming to 1.5°C are projected to involve the annual average investment needs in the 783 

energy system of around 2.4 trillion US$2010 between 2016 and 2035” but as further costs could 784 

arise after 2030, and the damage estimate calculation refers to the year 2200, this is not 785 

appropriate to use for this comparison.  (3) also provides an estimate of the costs of measures 786 

which are additional to the countries’ Nationally Determined Contributions (NDCs).  Since these 787 

NDCs correspond to a global warming level of approximately 3-4°C, this figure is not suitable 788 

for comparison with avoided damage costs that refer to a baseline level of warming of 3.66C.  789 

The estimate of the additional costs is 150 billion to 1700 billion US$2010 over the same time 790 

period.  791 

 792 



Submitted Manuscript AAW6974: Confidential – revised July 13, 2019 
 

 

 1 

Table 1:  Emergence and intensity of climate change ‘hotspots’ under different degrees of global warming (summary, updated, Table 793 

3.6 from Hoegh-Guldberg et al., 2018, see text in 3.5.4 (5) for supporting literature and discussion; not intended to be all inclusive). 794 

Calibrated uncertainty language is as defined by the Intergovernmental Panel on Climate Change (3). 795 

 796 

Region and/or 
Phenomenon 

Warming of 1.5°C or less Warming of 1.5°C–2°C Warming of up to 3°C 

Arctic sea ice Arctic summer sea ice is likely to be 
maintained 
 
Habitat losses for organisms such as 
polar bears, whales, seals and sea 
birds 
 
Benefits for Arctic fisheries 

The risk of an ice-free Arctic in summer is 
about 50% or higher 
 
Habitat losses for organisms such as polar 
bears, whales, seals and sea birds may be 
critical if summers are ice free. 
 
Benefits for Arctic fisheries 

The Arctic is very likely to be ice free in 
summer 
 
Critical habitat losses for organisms such as 
polar bears, whales, seals and sea birds 
 
 
Benefits for Arctic fisheries 

Arctic land 
regions 

Cold extremes warm by a factor of 
2–3, reaching up to 4.5°C (high 
confidence) 
 
Biome shifts in the tundra and 
permafrost deterioration are likely 

Cold extremes warm by as much as 8°C 
(high confidence) 
 
 
Larger intrusions of trees and shrubs in the 
tundra than under 1.5°C of warming are 
likely; larger but constrained losses in 
permafrost are likely 

Drastic regional warming is very likely 
 
 
 
A collapse in permafrost may occur (low 
confidence); a drastic biome shift from tundra 
to boreal forest is possible (low confidence) 

Alpine regions Severe shifts in biomes are likely Even more severe shifts are likely Critical losses in alpine habitats are likely 

Southeast Asia Risks for increased flooding related 
to sea level rise 
 
Increases, heavy precipitation events 
 
 
Significant risks of crop yield 
reductions are avoided 

Higher risks of increased flooding related to 
sea level rise (medium confidence) 
 
Stronger increases, heavy precipitation 
events (medium confidence) 
 
One-third decline in per capita crop 
production (medium confidence) 

Substantial increases in risks related to 
flooding from sea level rise 
 
Substantial increase in heavy precipitation and 
high-flow events 
 
Substantial reductions in crop yield 
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Mediterranean Increase in probability of extreme 
drought (medium confidence) 
 
Medium confidence in reduction in 
runoff of about 9% (likely range 4.5–
15.5%) 
 
Risk of water deficit (medium 
confidence) 

Robust increase in probability of extreme 
drought (medium confidence) 
 
Medium confidence in further reductions 
(about 17%) in runoff (likely range 8–28%)  
 
Higher risks of water deficit (medium 
confidence) 

Robust and large increases in extreme drought.  
 
 
Substantial reductions in precipitation and in 
runoff (medium confidence) 
 
Very high risks of water deficit (medium 
confidence) 

West Africa & 
the Sahel 

Increases in the number of hot nights 
and longer and more frequent 
heatwaves are likely 
 
Reduced maize and sorghum 
production is likely, with area 
suitable for maize production 
reduced by as much as 40% 
 
Increased risks of undernutrition 

Further increases in number of hot nights 
and longer and more frequent heatwaves are 
likely 
 
Negative impacts on maize and sorghum 
production likely larger than at 1.5°C; 
medium confidence that vulnerabilities to 
food security in the African Sahel will be 
higher at 2.0°C compared to 1.5°C 
 
Higher risks of undernutrition 

Substantial increases in the number of hot 
nights and heatwave duration and frequency 
(very likely) 
 
Negative impacts on crop yield may result in 
major regional food insecurities (medium 
confidence) 
 
 
 
High risks of undernutrition 

Southern 
Africa 

Reductions in water availability 
(medium confidence) 
 
Increases in number of hot nights and 
longer and more frequent heatwaves 
(high confidence),  
 
 
 
 
High risks of increased mortality 
from heatwaves 
 
High risk of undernutrition in 
communities dependent on dryland 
agriculture and livestock 

Larger reductions in rainfall and water 
availability (medium confidence) 
 
Further increases in number of hot nights 
and longer and more frequent heatwaves 
(high confidence), associated increases in 
risks of increased mortality from heatwaves 
compared to 1.5°C warming (high 
confidence) 
 
Higher risks of undernutrition in 
communities dependent on dryland 
agriculture and livestock 

Large reductions in rainfall and water 
availability (medium confidence) 
 
Drastic increases in the number of hot nights, 
hot days and heatwave duration and frequency 
to impact substantially on agriculture, 
livestock and human health and mortality 
(high confidence) 
 
Very high risks of undernutrition in 
communities dependent on dryland agriculture 
and livestock 
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Tropics Increases in the number of hot days 
and hot nights as well as longer and 
more frequent heatwaves (high 
confidence) 
 
Risks to tropical crop yields in West 
Africa, Southeast Asia and Central 
and South America are significantly 
less than under 2.0°C of warming 

The largest increase in hot days under 2.0°C 
compared to 1.5°C is projected for the 
tropics. 
 
 
Risks to tropical crop yields in West Africa, 
Southeast Asia and Central and South 
America could be extensive 

Oppressive temperatures and accumulated 
heatwave duration very likely to directly 
impact human health, mortality and 
productivity 
 
Substantial reductions in crop yield very likely 

Small islands Land of 60,000 less people exposed 
by 2150 on SIDS compared to 
impacts under 2.0°C of global 
warming 
 
Risks for coastal flooding reduced by 
20–80% for SIDS compared to 2.0°C 
of global warming 
 
Freshwater stress reduced by 25% as 
compared to 2.0°C 
 
 
 
 
Increase in the number of warm days 
for SIDS in the tropics 
 
Persistent heat stress in cattle 
avoided 
 
Loss of 70–90%  of coral reefs 

Tens of thousands of people displaced owing 
to inundation of SIDS 
 
 
 
High risks for coastal flooding and increased 
frequency of extreme water-level events 
 
 
 
    
 
 
Freshwater stress from projected aridity 
 
Further increase of ca. 70 warm days/year 
 
 
Persistent heat stress in cattle in SIDS 
 
 
Loss of most coral reefs and weaker 
remaining structures owing to ocean 
acidification (i.e. less coastal protection) 

Substantial and widespread impacts through 
inundation of SIDS, coastal flooding, 
freshwater stress, persistent heat stress and 
loss of most coral reefs (very likely) 
 
Risk of multi-meter sea level rise due to ice 
sheet instability 

Fynbos biome About 30% of suitable climate area 
lost (medium confidence) 

Increased losses (about 45%) of suitable 
climate area (medium confidence) 

Up to 80% of suitable climate area lost 
(medium confidence) 

  797 
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Table 2: Summary of enhanced risks in the exceedance of regional tipping points under different global temperature goals.  798 
(summary, Table 3.7 from  see text in 3.5.5(5), for supporting literature and discussion; updated, not intended to be exhaustive).     799 
 800 

Tipping point Warming of 1.5°C or less Warming of 1.5°C–2°C Warming of up to 3°C 

Arctic sea ice Arctic summer sea ice is likely to be 
maintained 
 
Sea ice changes reversible under suitable 
climate restoration 

The risk of an ice-free Arctic in summer is 
about 50% or higher 
 
Sea ice changes reversible under suitable 
climate restoration 

Arctic is very likely to be ice free in summer 
 
 
Sea ice changes reversible under suitable 
climate restoration 

Tundra Decrease in number of growing degree 
days below 0°C 
 
Abrupt increases in tree cover are unlikely 

Further decreases in number of growing 
degree days below 0°C 
 
Abrupt increases in tree cover are unlikely 

 
 
 
Potential for an abrupt increase in tree fraction 
(low confidence) 

Permafrost 17–44% reduction in permafrost 
Approximately 2 million km2 more 
permafrost maintained than under 2.0°C of 
global warming (medium confidence)  
 
Irreversible loss of stored carbon 

28–53% reduction in permafrost with 
 
 
 
 
 
Irreversible loss of stored carbon 

Potential for permafrost collapse (low 
confidence) 

Asian monsoon Low confidence in projected changes Low confidence in projected changes Increases in the intensity of monsoon 
precipitation likely 

West African 
monsoon & Sahel 

Uncertain changes; unlikely that a tipping 
point is reached 

Uncertain changes; unlikely that tipping point 
is reached 

Strengthening of monsoon with wettening and 
greening of the Sahel and Sahara (low 
confidence) 
 
Negative associated impacts through increases 
in extreme temperature events 

Rainforests Reduced biomass, deforestation and fire 
increases pose uncertain risks to forest 
dieback 

Larger biomass reductions than under 1.5°C of 
warming; deforestation and fire increases pose 
uncertain risks to forest dieback 

Reduced extent of tropical rainforest in 
Central America and large replacement of 
rainforest and savanna grassland 
 
Potential tipping point leading to pronounced 
forest dieback (medium confidence) 
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Coral reefs Increased mass coral bleaching and 
mortality – decline in abundance to 10-30% 
of values of present day by 1.0oC (high 
confidence) 

High mortality - corals decrease to very low 
levels (<1%), impacts on organisms that 
dependent on coral reefs for habitat (fish, 
biodiversity, high confidence). 

Irreversible changes occur with tipping point 
around 2°C–2.5°C – reefs are no longer 
resemble coral reef ecosystems – recovery 
potential very low (medium confidence). 

Boreal forests Increased tree mortality at southern 
boundary of boreal forest (medium 
confidence) 

Further increases in tree mortality at southern 
boundary of boreal forest (medium 
confidence) 

Potential tipping point at 3°C–4°C for 
significant dieback of boreal forest (low 
confidence) 

Heatwaves, 
unprecedented heat 
and human health 

Continued increase in occurrence of 
potentially deadly heatwaves (likely) 

Substantial increase in potentially deadly 
heatwaves (likely) 
 
More than 350 million more people exposed 
to deadly heat by 2050 under a midrange 
population growth scenario (likely) 
 
Annual occurrence of heatwaves similar to the 
deadly 2015 heatwaves in India and Pakistan 
(medium confidence) 

Further increases in potentially deadly 
heatwaves (very likely) 

Agricultural 
systems: 
key staple crops 

Global maize crop reductions of about 10% Larger reductions in maize crop production 
than under 1.5°C of about 15% 

Drastic reductions in maize crop globally and 
in Africa (high confidence) potential tipping 
point for collapse of maize crop in some 
regions (low confidence) 

Livestock in the 
tropics and 
subtropics 

Increased heat stress Onset of persistent heat stress (medium 
confidence) 

Persistent heat stress likely 

    
801 
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Figure captions: 802 

Figure 1.  Changes at 1.0ºC of global warming. Increases in Global Mean Surface Temperature 803 

(GMST) of 1.0ºC have already had major impacts on natural and human systems. Examples 804 

include:  A. Increased temperatures and dryness in the Mediterranean region is driving longer 805 

and more intense fire seasons with serious impacts on people, infrastructure and natural 806 

ecosystems. Image shows tragic devastation of fire in the Greek village of Mati Greece in July 807 

25, 2018.  B. Evidence of ice sheet disintegration is increasing (here showing a 30 km fracture 808 

across the Pine Island Glacier which is associated with the Western Antarctic Ice sheet, WAIS). 809 

The fracture (see arrow) appeared in mid-October 2011 and has increased concern that we may 810 

be approaching a tipping point with respect to disintegration of the WAIS. C. Many low-lying 811 

countries such as the Maldives experience flooding and will be at an increased threat from sea 812 

level rise and strengthening storms over time. D. Many insects and birds have shifted 813 

reproductive events or migration to early times in the season as conditions have warmed.  Image 814 

credits: A. ‘Lotus R’,  https://www.flickr.com/photos/66012345@N00/964251167;  B. Image 815 

credits: NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science TeamLast 816 

Updated: Aug. 7, 2017, C. Male, Maldives (O. Hoegh-Guldberg) and D. Semipalmated Sand 817 

Piper (Calidris pusilla, Creative Commons (CC BY-SA 3.0, GNU Free Documentation License)  818 

 819 
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Figure 2A.  Action on climate change can still result in stable or even decreasing global 820 

temperatures, although variability around projections is substantial.   Strategies that include 821 

‘overshoot’ (red dashed line, illustrative of a very high level of overshoot) require as yet early 822 

stage technologies to ensure that overshoot is kept as short as possible.  Also, the larger 823 

overshoot, the higher the risk of irreversible change in affected systems.  B. Responses to 824 

changing conditions (shown here as a thermal performance curve) are typically tilted to the right 825 

with a steep decline in performance such as growth, towards high temperature extremes. Beyond 826 

a thermal optimum, Topt, performance begins to decline beyond the Pejus temperature, Tp. A 827 

critical temperature, Tc, characterizes a low level of performance and time limited passive 828 

endurance when, as in ectothermic animals, oxygen supply capacity becomes insufficient to 829 

cover oxygen supply, or, as in corals, a symbiosis between corals and their dinoflagellate 830 

symbionts suddenly breaks down (coral bleaching) and corals go from appearing healthy to 831 

experiencing large scale mortality over days-to-weeks. Accordingly, the high Tc characterizes a 832 

temperature of high responsiveness to small increases in temperature extremes, such as by 0.5°C, 833 

especially, if some life stages have a narrow thermal range indicating high vulnerability(26).  834 

   835 
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Figure 3 Projected changes in A. Mean temperature, B. Mean precipitation, C. Number of hot 838 

days (NHD; 10% warmest days), D. Temperature of hottest day (TXx), E. Temperature of 839 

coldest night (TNn), and F. Change in extreme precipitation (Rx5day).  Conditions are projected 840 

for 1.5°C (left-hand column) and 2.0°C (middle-hand column) of global warming compared to 841 

the pre-industrial period (1861–1880), with the difference between 1.5°C and 2.0°C of global 842 

warming being shown in the third column. Cross-hatching highlights areas where at least two-843 

thirds of the models agree on the sign of change as a measure of robustness (18 or more out of 844 

26). Values were assessed from the transient response over a 10-year period at a given warming 845 

level, based on Representative Concentration Pathway (RCP) 8.5 Coupled Model 846 

Intercomparison Project Phase 5 (CMIP5) model simulations (5)(3); adapted from (29, 73); see 847 

Supplementary Material 3.SM.2 (5). 848 

  849 
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Figure 3  850 

     851 
 852 
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Summary of Review 855 

 856 

Here today, gone tomorrow: the non-linearity of climate change. 857 

 858 

Background: 859 

United Nations Framework Convention on Climate Change (UNFCCC) was established in 1992 860 

with the central purpose to pursue the “stabilization of greenhouse gas (GHG) emissions at a 861 

level that would prevent dangerous anthropogenic interferences with the climate system”.   Since 862 

1992, five major climate assessment reports have been completed by the UN Intergovernmental 863 

Panel on Climate Change (IPCC). These reports identified rapidly growing climate related 864 

impacts and risks, including more intense storms, collapsing ecosystems, and record heatwaves, 865 

among many others.  Once thought to be tolerable, increases in global mean surface temperature 866 

(GMST) of 2.0°C or higher than the pre-industrial period look increasingly unmanageable and 867 

hence dangerous to natural and human systems. 868 

 869 

The Paris Climate Agreement is the most recent attempt to establish international cooperation 870 

over climate change (2).  This agreement was designed to bring nations together voluntarily in 871 

order for them to take ambitious action on mitigating climate change while also developing 872 

adaptation options and strategies, and guaranteeing the means of implementation (e.g. climate 873 

finance).  Since that time, 185 countries have ratified the Agreement, including countries such as 874 

diverse as USA, Saudi Arabia and China (74).  The Agreement is aimed at “holding the increase 875 

in the global average temperature to well below 2.0°C above pre-industrial levels and pursuing 876 

efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that 877 

this would significantly reduce the risks and impacts of climate change.”  Many unanswered 878 

questions regarding a 1.5oC target surround the feasibility, costs, and inherent risks to natural and 879 

human systems.  Consequently, the UNFCCC invited the IPCC to prepare a special report on the 880 

“the impacts of global warming of 1.5°C above pre-industrial levels and related global 881 

greenhouse gas emission pathways, in the context of strengthening the global response to the 882 

threat of climate change, sustainable development, and efforts to eradicate poverty.” The Special 883 

Report was completed and approved by the 48th Session of the IPCC in October 2018.   884 

 885 
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Advances: 886 

We review multiple lines of evidence that indicate that the next 0.5°C above today (which will 887 

take GMST from 1.0oC to 1.5oC above the pre-industrial period) will involve greater risks per 888 

unit temperature than those seen in the last 0.5oC increase.  This principle of ‘accelerating risk’ is 889 

also likely to drive proportionally higher risk levels in the transition from 1.5ºC to 2.0ºC above 890 

the pre-industrial period.  We argue that this is a consequence of impacts accelerating as a 891 

function of distance from the optimal temperature (Top, Fig 2b) for an organism or process.  892 

Ecosystems like coral reefs (Fig 1), for example, often appear healthy right up until the onset of 893 

mass coral bleaching and mortality (Fig 2A,B), which can then rapidly destroy a coral reef 894 

within a few months. This also explains the observation of ‘tipping points’ where the condition 895 

of a group of organisms or an ecosystem can appear ‘healthy’ right up until they collapse, 896 

suggesting caution in extrapolating from measures of ecosystem condition (i.e. changes in the 897 

amount of coral cover).  Information of this nature needs to be combined with an appreciation of 898 

where organisms are with respect to the optimal temperature (Top, see Fig 2, Hoegh-Guldberg et 899 

al. 2019, this issue).    900 

 901 
Fig 1 (legend).  Responses to climate change can be non-linear in nature, such exemplified by 902 

coral reefs. (A) Reef-building corals can suddenly lose their (B) dinoflagellate symbionts 903 

(bar=50µm) and die in response to increasing temperatures, exhibiting (C) non-linear changes in 904 

the amount of impact/risk from climate change.  Attribution: A. Author, Hoegh-Guldberg ; B. 905 
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Author, Hoegh-Guldberg; C is adapted from (5), H (high) and VH (very high) are the levels of 906 

confidence in the transition from one impact/risk level to another (i.e. colors).  907 

 908 

In a similar way, human systems tend to experience greater costs and risks as we move away 909 

from optimal conditions, with an increasing risk of non-linear changes.  Finally, we explore the 910 

relative costs and benefits associated with acting when it comes to climate change, and come to 911 

the preliminary conclusion that restraining average global temperature to 1.5°C above the pre-912 

industrial period may be 4-5 less costly than the damage due to inaction on global climate 913 

change.   914 

 915 

Outlook: 916 

As an IPCC expert group, we were asked to assess the impact of recent climate change (1.0°C, 917 

2017) and that likely over the next 0.5 - 1.0°C of global warming.  At the beginning of this 918 

exercise, many of us were concerned that the task would be hindered by a lack of expert 919 

literature available for 1.5°C and 2.0°C warmer worlds. While this was the case at the time of the 920 

Paris Agreement in 2015, it has not our experience four years later.  With an accelerating amount 921 

of peer-reviewed literature since the IPCC Special Report on 1.5oC, it is very clear that there is 922 

an even more compelling case for deepening commitment and actions for stabilizing global mean 923 

surface temperature at 1.5oC above the pre-industrial period. 924 

 925 

 926 


