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Abstract

While most non-intrusive load monitoring (NILM) work has focused on super-

vised algorithms, unsupervised approaches can be more interesting and prac-

tical. Specifically, they do not require labelled training data to be acquired

from the individual appliances and can be deployed to operate on the measured

aggregate data directly. We propose a fully unsupervised novel NILM frame-

work based on Dynamic Bayesian hierarchical mixture model and Deep Belief

network (DBN). The deep network learns, in unsupervised fashion, low-level

generic appliance-specific features from the raw signals of the house utilities us-

age, then the hierarchical Bayesian model learns high-level features representing

the consumption patterns of the residents captured by the correlations among

the low-level features. The temporal ordering of the high-level features is cap-

tured by the Dynamic Bayesian Model. Using this architecture, we overcome the

computational complexity that would occur if temporal modelling was directly

applied to the raw data or even to the constructed features. The computational

efficiency is crucial as our application involves massive data from different util-

ities usage. Moreover, we develop a novel online inference algorithm to cope

with this big data. Finally, we propose different evaluation methods to analyse

the results which show that our algorithm finds useful patterns.
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learning, Human activity recognition.

1. Introduction

The monitoring of human behaviour is highly relevant to many real-word

domains such as safety, security, health and energy management. Research on

human activity recognition (HAR) has been the key ingredient to extract pat-

tern of human behaviour. HAR research can be categorised into three main5

classes: sensor-based [1], vision-based [2] and radio-based [3]. A common fea-

ture of these methods is that they all require equipping the living environment

with embedded devices (sensors). On the other hand, non-intrusive load moni-

toring (NILM) requires only single meter per house or a building that measures

aggregated signals at the entry point of the meter. Various techniques can then10

be used to disaggregate per-load power consumption from this composite sig-

nal providing energy consumption data at an appliance level granularity. In

this sense, NILM focuses not on extracting general human behaviour patterns

but rather on identifying the appliances in use. This, however, can provide

insight into the energy consumption behaviour of the residents and therefore15

can express users life style in their household. The idea of abandoning the

high costs and management/maintenance induced by various sensors entailed

by traditional HAR studies makes NILM an attractive approach to exploit in

general pattern recognition problems. On the other hand, taking the human

behaviour into account can leverage the performance of NILM; thus, providing20

finer understanding of the resident’s energy consumption behaviour. In this

paper, we do not distinguish between patterns and appliances recognition. The

main goal of our approach is to encode the regularities in a massive amount of

energy consumption data into a low-dimensional representation. This is only

possible by the fact that human behaves orderly following certain patterns. We25

are also lucky to have an extra large amount of real-world data which makes

this approach more viable.

Since the earliest work on NILM [4], most NILM work has been based
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on signal processing and engineering approaches [5, 6]. This can explain the

fact that even with the economical attractive tools that NILM can provide for30

pattern recognition and HAR communities, it has not been widely exploited.

Most of existing machine learning approaches to NILM adopt supervised algo-

rithms [4, 7, 8, 9, 10, 11, 12, 13]. Such algorithms could damage the attractive-

ness of NILM as they require individual appliance data for training, prior to the

system deployment. Hence, there is a need to install one energy meter per ap-35

pliance to record appliance-specific energy consumption. This incurs extra costs

and a complex installation of sensors on every device of interest. In contrast,

unsupervised algorithms can be deployed to operate directly from the measured

aggregate data with no need for annotation. Hence, unsupervised algorithms

are clearly more suitable for NILM. To the best of our knowledge, all existing40

unsupervised approaches to NILM [14] concentrate on disaggregating the whole

house signal into its composing (appliances’) ones. In contrast, our approach,

as mentioned earlier, does not focus on identifying per-appliance signal. We in-

stead propose a novel approach that seeks to extract human behaviour patterns

from home utility usage data. These patterns could be exploited for HAR as45

well as energy efficiency analysis.

The proposed approach is a three-module architecture composed of a DBN,

a hierarchical Bayesian mixture model based on Latent Dirichlet Allocation

(LDA) and a Dynamic Bayesian Network model based on Bayesian Hidden

Markov Model (HMM). Hence, we call it DBN-LDA-HMM. It draws inspiration50

from the work in [15, 16]. Authors in [15] plug a hierarchical Dirichlet process

(HDP) prior on top of a Deep Boltzmann Machine network which allows learn-

ing multiple layers of abstractions. The low-level abstraction represents generic

domain-specific features that are hierarchically clustered and shared to yield

high-level abstraction representing patterns. However, this model does not con-55

sider the temporal ordering of the high-level representations (patterns). On the

other hand, the work in [16] proposed an LDA-HMM hybrid model to perform

action recognition. The model was motivated by the success and the efficiency

of the bag-of-words approach, adopted by topic modelling, in solving general
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high-level problems. The temporal ordering power of HMM is harnessed to cor-60

relate the activity at high level. The paper uses collapsed Gibbs sampler for

approximate inference and learning. We employ an unsupervised version of this

model similar to the one introduced in [17]. However, we propose a stochastic

variational inference (SVI) [18] algorithm that allows scalable inference to cope

with the massive amount of energy consumption data (around 80 TB). We also65

employ the DBN to construct appliance-specific features which are used by the

hierarchical Bayesian mixture model to construct components (topic)-specific

features. Mixtures of these components form the residents’ energy consumption

patterns. The dynamic modelling part exploits the temporal regularity in the

human behaviour leading to better performance and allowing forecasting.70

Recently, the field of deep learning (DL) has made a huge impact and

achieved remarkable results in computer vision, natural language processing,

and speech recognition. Yet it has not been exploited in the field of NILM. DL

provides an effective tool for extracting multiple layers of distributed features

representations from high-dimensional data. Each layer of the deep architecture75

performs a non-linear transformation of the outputs of the previous layer. Thus,

through DL, the data is represented in the form of a hierarchy of features, from

low to high level [19, 20]. Instead of relying on heuristic hand-crafted features,

DL learns to extract features that allow for more discriminative power. Sup-

ported by the sheer size of the available data and its high sampling rate (20580

KHZ) which results in a very high-dimensional data, we are the first to use

unsupervised DL model in NILM. In contrast to existing electrical engineering

and signal processing approaches adopted in NILM, ours relies fully on the data

to construct informative features.

In this paper, we pre-train a DBN [21] to learn generic features from unla-85

belled raw electrical signal with 1 second granularity. The extracted features

are fed to the LDA-like part of the the model with 30 minutes granularity. Al-

though, the bag-of-words assumption adopted here is a major simplification, it

break down unnecessary low-level hard-to-model complexity leading to compu-

tationally efficient inference with no much loss as shown in LDA [22]. Finally,90
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an easy-to-model dynamic is done by the HMM-like part of the model.

In this work, we demonstrate that this approach can capture significant sta-

tistical structure in a specified window of data over a period of time. This

structure provides understanding of regular patterns in the human behaviour

that can be harnessed to provide various services including services to improve95

energy efficiency. For example, understanding the usage and energy consump-

tion patterns could be used to predict the power demand (load forecasting), to

apply management policies and to avoid overloading the energy network. More-

over, providing consumers with information about their consumption behaviour

and making them aware of abnormal consumption patterns compared to others100

can influence their behaviour to moderate energy consumption [23].

As already mentioned, this algorithm is designed to be trained over a very

huge amount of data resulting from the high sampling rate around 205 kHz of

the electricity signal which gives us an advantage compared to the data used in

other research studies except for [24, 25, 26]. Besides the advantage the data105

size offers, apart from [27, 28] whose sampling rate is very low, our data is the

only one including water and gas usage data. Moreover, measurements provided

by additional sensors are also exploited to refine the performance of the pattern

recognition algorithm. More details on the data can be found in Sec. 4. The

diversity of the data is another motivation for adopting a pattern recognition110

approach rather than traditional disaggregation approach. In a nutshell, we

propose an original NILM method with three characteristics:

• Scalability to deal with massive high-dimensional data. The proposed

three-module architecture model can learn from high-dimensional raw data

and uses online learning to cope with the massive size of the data.115

• Unsupervised learning. No labelling of appliance data is required. The

method bridges the gap between pattern recognition and NILM allowing

for sensors-free pattern recognition

• Learning from massive heterogeneous data. The data used in this study

comes from multi-utility usage.120
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The rest of the paper is organised as follows. Section 2 presents the related

work. Section 3 presents the proposed approach. Section 4 describes the data

and discusses the obtained results. Finally, Sec. 5 concludes the paper and hints

to future work.

2. Related Work125

We divide the related work into two parts: (i) machine learning approaches

to NILM and (ii) NILM data used in the literature.

As we have discussed in the introduction, most of existing NILM studies are

not based on machine learning algorithms and most of machine learning NILM

algorithms are supervised ones [4, 7, 8, 9, 10, 11, 12, 13, 29, 30, 31, 32]. Such130

algorithms requires training on labelled data which is expensive and laborious

to obtain. In fact, the practicality of NILM is stemmed from the fact that it

comes with almost no setup cost. Recently, researchers have started exploring

unsupervised machine learning algorithms to NILM. These methods have mainly

focused on performing energy disaggregation to discern appliances from the135

aggregated load data directly without performing any sort of event detection.

The most prominent of these methods are based on Dynamic Bayesian Network

models, in particular different variants of Hidden Markov Model (HMM) [33,

34, 35].

Authors in [33] proposes to use Factorial Hidden Markov Model (FHMM)140

and three of its variants: Factorial Hidden Semi-Markov Model (FHSMM), Con-

ditional FHMM (CFHMM) and Conditional FHSMM (CFHSMM) to achieve en-

ergy disaggregation. The main idea is that the dynamics of the state occupancy

of each appliance evolves independently and the observed aggregated signal is

some joint function of all the appliances states. To better model the state oc-145

cupancy duration, that is modelled with a geometric distribution by FHMM,

authors propose to use FHSMM which allows modelling the durations of the

appliances states with gamma distribution. Authors also propose CFHMM to

incorporate additional features, such as time of day, other sensor measurements,
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and dependency between appliances. To harness the advantages of FHSMM150

and CFHMM, authors propose a combination of the two models resulting in

CFHSMM. In that work, the electricity signal was sampled at low frequency

which is in contrast to our work.

Similar approach was taken in [34] where Additive Factorial Hidden Markov

Model (AFHMM) was used to separate appliances from the aggregated load155

data. The main motivation and contribution of this approach is that it addresses

the local optima problems that existing approximate inference techniques [33]

are highly susceptible to experience. The idea is to exploit the additive structure

of AFHMM to develop a convex formulation of approximate inference that is

more computationally efficient and has no issues of local optima. Although, this160

approach was applied on relatively high frequency electricity data [26], the data

scale is not close to ours. Hierarchical Dirichlet Process Hidden Semi-Markov

Model is used in [35] to incorporate duration distributions (Semi Markov) and

allows to infer the number of states from the data (Hierarchical Dirichlet Pro-

cess). On the contrary, the AFHMM algorithm in [34] requires the number165

of appliances (states) to be set a-priori. The work by [36] uses iterative fuzzy

c-means to determine the number of hidden states.

The common feature of the approaches discussed so far is that the considered

data sets are collected only from the electricity signals. In contrast, our data

involves different utilities namely electricity, water and gas data as well some170

sensors measurements that provide contextual features. To the best of our

knowledge, the only data that considers water and gas usage data is [27, 28].

However, the sampling rate of this data is very low compared to ours. Authors

in [37] exploit the correlation between appliances and side information, in partic-

ular temperature, in a convex optimisation problem for energy disaggregation.175

This algorithm is applied on low sampling rate electricity data with contextual

supervision in the form of temperature information.

This work is a continuation of our previous work [38, 39]. In [38], on-

line Gaussian Latent Dirichlet Allocation (GLDA) is proposed to extract global

components that summarise the energy signal. These components provide a rep-180
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Table. 1 Relevant work on NILM

Algorithms Unsupervised Scalability heterogeneous data temporal dependency
[12, 29, 30] X
[33, 34, 35] X X
[27, 28] X X
[37] X X
[38, 39] X X X
ours X X X X

resentation of the consumption patterns. The algorithm is applied on the same

data-set as in this paper. However, in contrast to [38], DBN-LDA-HMM employs

deep learning to construct features rather than engineering them using signal

processing technique. Similarly, the work by [39] also employs deep learning

for features extraction. However, DBN-LDA-HMM also considers temporal de-185

pendency. To wrap up this section, four features distinguish our approach from

existing ones. It bridges the gap between pattern recognition and NILM making

it beneficial for a variety of different applications. Driven by massive amount of

data, our method is computationally efficient and scalable, unlike state-of-the-

art probabilistic methods that posit detailed low-level temporal relationships190

and involve complex inference steps. The approach is fully data-driven where

DL is used to learn the features unlike existing features engineering approach.

The available data has a high sampling rate electricity data allowing learning

more informative features. It also includes data from other utility usage and

additional sensors measurements. Thus, our work also covers the research as-195

pect of NILM concerned with the acquisition of data, prepossessing steps and

evaluation of NILM algorithms.

3. Proposed Approach

Learning human behaviour from NILM is very challenging. The data is

highly unstructured with sequential dependency. Furthermore, labelling such200

sequential data is expensive. In this work, we aim at understanding the human

behaviour using NILM data. To capture such high-level pattern from highly
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unstructured unlabelled sequential data, highly informative big data is needed.

We collect massive heterogeneous data from multiple utilities usages with high

sampling rate.205

In this section, we present our proposed novel approach that is capable of

learning from our collected massive sequential highly unstructured NILM data.

Figure 1 shows the mapping from input raw data via the proposed three-module

architecture DBN-LDA-HMM to the extract human consumption behaviour.

At the bottom, DBN reduces the high dimensional input and extract low-level210

structured generic appliances-specific features from the raw signals of the house

utilities usage. LDA infers high-level features representing the residents’ con-

sumption patterns captured by the correlations among the low-level features.

It uses the bag-of-words assumption to allow computationally efficient infer-

ence. The temporal ordering of the high-level features is captured by HMM.215

The multi-layers dimension reduction achieved by this architecture results in

tractable computational complexity in contrast to that occurring if HMM was

directly applied to the raw data or even the constructed features. Note that al-

though we focus on NILM data, DBN-LDA-HMM is generic and can be used to

model any problem involving highly unstructured high dimensional sequential220

data.

In order to learn from our massive data, we propose a scalable novel infer-

ence algorithm. In this section, we focus on the Dynamic Bayesian hierarchical

mixture model (LDA-HMM) and its novel inference algorithm. Details about

the DL part of the model (Deep Belief Network) can be found in [21] and App. 6.225

As discussed earlier, similar model is proposed by [17] where inference is done

using MCMC sampling method. Conversely, we develop a variational inference

(VI) method.

VI has become widely used as a deterministic alternative approach to MCMC

sampling. In general, VI tends to be faster than MCMC which makes it more230

suitable for our large scale problems. VI turns the inference problem to an

optimisation problem by positing a simpler family of distributions and finding

the member of the family that is closest to the true posterior distribution [40].
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Figure. 1 Model architecture

Hence, the inference task boils down to an optimisation problem of a non-convex

objective function. This allows us to bring sophisticated tools from optimisation235

literature to tackle the performance problems.

Recently, stochastic optimisation has been applied to VI in order to cope

with massive data [18]. While VI requires repeatedly iterating over the whole

data set before updating the variational parameters (parameters of the varia-

tional objective), stochastic variational inference (SVI) updates the parameters240

every time a single data example is processed. Therefore, by the end of one

pass through the dataset, the parameters will have been updated multiple times.

Hence, the model parameters converge faster, while using less computational re-

sources. The idea of SVI is to move the variational parameters at each iteration
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in the direction of a noisy estimate of the variational objective’s natural gra-245

dient based on a couple of examples [18]. Following these stochastic gradients

with certain conditions on the (decreasing) learning rate schedule, SVI provably

converges to a local optimum [41].

It can be easily shown that LDA-HMM is a member of the family of graph-

ical models proposed by [18] where observations, global hidden variables, local250

hidden variables, and fixed parameters are involved. Hence, SVI for LDA-HMM

can be derived following similar but more complicated steps as LDA in [18] and

HMM in [42]. However, for simplification, we develop tailored SVI to LDA-

HMM. In the following, we present the graphical model, its distributions and

the proposed SVI algorithm.255

As we have mentioned, LDA-HMM is a member of the family of models pre-

sented in [18]. The global hidden variables include appliance-related (low-level)

variables, patterns-related (high-level) variables and dynamic-related variables.

The local hidden variables include HMM ”state” selection variables and LDA

”topic” selection variables. The state variables are distributed according to260

Multinomial distribution governed by the global dynamic parameters. They

select the patterns generating the topic selection variables which are also Multi-

nomial distribution. Note that the observations are the discrete output of the

DL algorithm. The graphical model is shown in Fig. 2. In the following, we list

LDA-HMM’s variables distribution which also satisfies the conjugacy assump-265

tions of the family of models presented in [18]:
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Figure. 2 Graphical Model

A0|α0 ∼ Dir(α0)

Ap|α ∼ Dir(α)

Lp|σ ∼ Dir(σ)

βk|ω ∼ Dir(ω)

yd,1|A0 ∼Mult(A0)

yd,t|yd,t−1, {Ap}Pp=1 ∼Mult(Ayd,t−1
)

zd,t,n|yd,t, {Lp}Pp=1 ∼Mult(Lyd,t
)

xd,t,n|zd,t,n, {βk}Kp=1 ∼Mult(βzd,t,n)

(1)
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Our ultimate purpose is to compute the posterior distribution over the hid-

den variables or some of them. By doing so, we can get insight into the energy

consumption behaviour and lifestyle of the residents. However, it can be clearly

seen that computing such posterior is intractable and approximation is needed.270

As we have already mentioned VI turns the inference problem to an optimi-

sation problem by positing a simpler family of distributions, called variational

distribution, and minimising the Kullback-Leibler divergence from the actual

posterior distribution. This is equivalent to maximising the evidence lower

bound (ELBO); a lower bound on the logarithm of the marginal probability275

of the observations log p(x):

log p(x) = log

∫
β

∫
A

∫
L

∫
A0

∑
y

∑
z

p(x, z,y,A0,L,A,β)dA0dLdAdβ

= log

∫
β

∫
A

∫
L

∫
A0

∑
y

∑
z

p(x, z,y,A0,L,A,β)

q(x, z,y,A0,L,A,β)

q(x, z,y,A0,L,A,β)
dA0dLdAdβ (2)

Using Jensens inequality and the concavity of the logarithm on Eq. (2), we

can obtain ELBO:

log p(x) ≥Eq[log p(x, z,y,A0,L,A,β)]− Eq[log q(z,y,A0,L,A,β)]

=L(q) (3)

The mean-field variational family is the commonly used and simplest ap-

proximation where each hidden variable is independent and governed by its own280

parameter. We propose a partial mean-field variational distributions by retain-

ing the dynamic structure of the HMM-part of the model because inference for

those variables is tractable using the well-known Forward-backward algorithm.

Equation (4) shows the proposed mean-field variational distributions:
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Figure. 3 Graphical Model of the variational approximation

q(z,y,A0,L,A,β) = q(z)p(y)p(A0)p(L)p(A)p(β) (4)
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where

A0|Ã0 ∼ Dir(Ã0)

Ap|Ãp ∼ Dir(Ãp)

Lp|L̃p ∼ Dir(L̃p)

βk|β̃k ∼ Dir(β̃k)

zd,t,n|z̃d,t,n ∼Mult(z̃d,t,n)

yd,1|ãd,0 ∼Mult(ãd,0)

yd,t|yd,t−1, l̃d,t, {ãd,p}Pp=1 ∼Mult(diag(l̃d,t)ãd,yd,t−1
)

(5)

where p(od,t|yd,t, ld,t) = l̃d,t,yd,t
. Figure 3 shows the relationships between the285

variables of the variational distributions. Following similar steps as in [18],

our goal is to optimise ELBO with respect to the variational parameters. In

traditional mean-field variational inference, ELBO is optimised with coordinate

ascent, where each variational parameter is iteratively optimise, holding the

other parameters fixed. Since LDA-HMM is a member of the family presented290

in [18], deriving SVI from VI is straightforward as the case in [18]. We first

derive the coordinate update for the global parameters {β̃, Ã, Ã0, L̃} of the

variational distribution, then the local ones {z̃,a0,a, l̃}.

3.1. Global Parameters

As a function of the appliance-related variational parameters β̃, we can295

rewrite the objective as:

L(β̃) = Eq[log p(β|x, z,ω)]− Eq[log q(β|β̃)] + const (6)

Eq[log p(β|x, z,ω)] = Eq[log p(x|β, z)] + Eq[log p(β|ω)] + const (7)
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Eq[log p(x|β, z)] =

D∑
d=1

T∑
t=1

N∑
i=1

K∑
k=1

Eq[log βk,xd,t,i
]q(zd,t,i = k|z̃d,t,n) (8)

E[log p(βk|ω)] =

V∑
i=1

(ωi − 1)Eq[log βk,i] (9)

where V is the number of DL outcomes.

Eq[log q(βk|β̃k)] = log Γ(

V∑
i

β̃k,i)−
V∑
i

log Γ(β̃k,i) +

V∑
i=1

(β̃k,i − 1)Eq[log βk,i]

(10)

By taking the derivative of the objective function with respect to β̃k,v and

set it to zero, we obtain the following:

dL(β̃)

dβ̃k,v
= 0 =⇒

D∑
d=1

T∑
t=1

N∑
i=1

dEq[log βk,v]

dβ̃k,v
I[xd,t,i = v]z̃kd,t,n+

(ωv − 1)
dEq[log βk,v]

dβ̃k,v
− (β̃k,v − 1)

dEq[log βk,v]

dβ̃k,v
= 0 (11)

where the last equation uses the fact that:

d log Γ(β̃k,v)

dβ̃k,v
= Ψ(β̃k,v)

Eq[log βk,v] = Ψ(β̃k,v)−Ψ(

V∑
i=1

β̃k,i) (12)

Hence, the update of the global parameters β̃k while holding the other pa-

rameters fixed can be done as follow:

β̃k = ω +

D∑
d=1

T∑
t=1

N∑
i=1

z̃kd,t,ixd,t,i ∀k ∈ {1, ...K} (13)

where the notation xd,t,i is overloaded to represent a vector whose xd,t,i element

is equal to one and all the rest are zeros. Note that this update is analogous

to that of LDA. As a function of the dynamic-related variational parameters Ã
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and Ã0, we can write the objective as:

L(Ã, Ã0) = Eq[log p(A,A0|y,α)]− Eq[log q(A,A0|Ã, Ã0)] + const (14)

Eq[log p(A,A0|y,α)] = Eq[log p(y|A,A0)] + Eq[log p(A,A0|α)] + const (15)

Eq[log p(y|A,A0)] =

D∑
d=1

( P∑
l=1

Eq[logA0,l]q(yd,1 = l|ad,0, ld)

+

T−1∑
t=1

P∑
i=1

P∑
j=1

Eq[logAi,j ]q(yd,t = i, yd,t+1 = j|ad, ld)

)
(16)

Eq[log p(A,A0|α)] =

P∑
i=1

( P∑
j=1

(αj − 1)Eq[logAi,j ] + (α0i − 1)Eq[logA0i]

)
(17)

Eq[log q(A,A0|Ã, Ã0)] =

P∑
p=1

(
log Γ(

P∑
i=1

Ãp,i)−
P∑
i=1

log

Γ(Ãp,i) +

P∑
i=1

(Ãp,i − 1)Eq[logAp,i]

)
+ log Γ(

P∑
i=1

Ã0i)

−
P∑
i=1

log Γ(Ã0i) +

P∑
i=1

(Ã0i − 1)Eq[logA0i] (18)

By taking the derivative of the objective function with respect to Ãi,j and set

it to zero, we obtain the following:

dL(Ã)

dÃi,j

= 0 =⇒
D∑

d=1

T−1∑
t=1

dEq[logAi,j ]

dÃi,j

q(yd,t = i, yd,t+1 = j|ad, ld)

+ (αj − 1)
dEq[logAi,j ]

dÃi,j

− (Ãi,j − 1)
dEq[logAi,j ]

dÃi,j

= 0 (19)
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Hence, the update of the global parameters Ãi,j while holding the other param-

eters fixed can be done as follow:

Ãi,j = αj +

D∑
d=1

T−1∑
t=1

q(yd,t = i, yd,t+1 = j|ad, ld) (20)

It can be noticed that this update is analogous to that of HMM [42]. Using HMM

message passing recursions known as Forward-backward algorithm, q(yd,t =

i, yd,t+1 = j|ad, ld) can be computed in O(TP 2) time as follows:

q(yd,t = i, yd,t+1 = j|ad, ld) = fd,t,iad,i,j l̃d,t+1,jbd,t+1,j/Z (21)

where fd,t,i is the forward message at time t and bd,t,j is the backward one:

fd,t,i =

P∑
j=1

fd,t−1,jad,j,i l̃d,t,i fd,1,i = ad,0,i

bd,t,i =

P∑
j=1

ad,i,j l̃d,t+1,jbd,t+1,j bd,T,i = 1 (22)

Z is the normalisation constant. Note that performing inference for long time300

series (high T ) is computationally intractable given the high-sampling rate of

our data. Hence, the significance of combining the temporal ordering power of

dynamic Bayesian networks with the automatic clustering power of hierarchical

Bayesian models. By taking the derivative of L(Ã) with respect to Ã0,j and

following the same pattern as Eq. (19), we obtain the following:305

Ã0,j = α0j +

D∑
d=1

q(yd,1 = j|ad,0, ld)

= α0j +

D∑
d=1

ad,0,jbd,1,j/Z (23)

As a function of the pattern-related variational parameters L̃, we can write
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the objective as:

L(L̃) = Eq[log p(L|y, z,σ)]− Eq[log q(L|L̃)] + const (24)

Eq[log p(L|y, z,σ)] = Eq[log p(z|L,y)] + Eq[log p(L|σ)] (25)

Eq[log p(z|L,y)] =

D∑
d=1

T∑
t=1

N∑
i=1

P∑
j=1

K∑
k=1

Eq[logLj,k]

q(yd,t = j|ad,ad,0, ld)q(zd,t,i = k|z̃d,t,i) (26)

Eq[log p(L|σ)] =

P∑
j=1

K∑
i=1

(σi − 1)Eq[logLj,i]

Eq[log q(L|L̃)] =

P∑
p=1

(
log Γ(

K∑
k=1

L̃p,k)−
K∑

k=1

log Γ(L̃p,k) +

K∑
k=1

(L̃p,k − 1)Eq[logLp,k]

)
(27)

By taking the derivative with respect to L̃p,k and setting it to zeros, we

obtain the following update:

L̃p,k = σk +

D∑
d=1

T∑
t=1

N∑
i=1

q(yd,t = p|ad,ad,0, ld)q(zd,t,i = k|z̃d,t,i) (28)

q(zd,t,i = k|z̃d,t,i) = z̃kd,t,i (29)

q(yd,t = p|ad,ad,0, ld) = fd,t,pbd,t,p/Z (30)

We can see that the update here involves additional term (Eq. (29)) to those
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of the HMM update that reflect the influence of the LDA-part on the HMM-part.

3.2. Local Parameters

In this section, we derive the coordinate update for the local parameters

{z̃,a0,a, l̃} of the variational distribution. As a function of the variational

parameters z̃, we can write the objective as:

L(z̃) = Eq[log p(z|x,β,y,L)]− Eq[log q(z|z̃)] + const (31)

Eq[log p(z|x,β,y,L)] = Eq[log p(x|z,β)] + Eq[log p(z|y,L)] (32)

Eq[log p(x|z,β)] =

D∑
d=1

T∑
t=1

N∑
i=1

K∑
k=1

z̃kd,t,iEq[log βk,xd,t,i
] (33)

Eq[log p(z|y,L)] =

D∑
d=1

T∑
t=1

N∑
i=1

P∑
p=1

K∑
k=1

z̃kd,t,ifd,t,pbd,t,pEq[logLp,k] (34)

Eq[log q(z|z̃)] =

D∑
d=1

T∑
t=1

N∑
i=1

P∑
p=1

K∑
k=1

z̃kd,t,i log z̃kd,t,i (35)

By taking the derivative with respect to z̃kd,t,i and setting it to zeros, we

obtain the following update:

z̃kd,t,i ∝ exp

(
Ψ(β̃k)Txd,t,i −Ψ(

V∑
i=1

β̃k,i) +

P∑
p=1

fd,t,pbd,t,pΨ(L̃p,k)

)
(36)

The first two terms of Eq. (36) show the LDA contribution to the updates

while the last term is the HMM’s. ELBO can be written as a function of the

variational parameters {a0,a, l̃} as follows:

L(a0,a, l̃) = Eq[log p(y|z,L,A0,A)]− Eq[log q(y|l̃,a,a0)] + const (37)
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L(a0,a, l̃) =

D∑
d=1

(
Eq

[
logA0yd,1

+

T−1∑
t=1

logAyd,t,yd,t+1
+

T∑
t=1

N∑
i=1

logLyd,t,zd,t,i

]
− Eq

[
log a0d,yd,1

+

T−1∑
t=1

log ad,yd,t,yd,t+1
+

T∑
t=1

log l̃d,t,yd,t

])
(38)

By taking the derivative with respect to {a0d,p, ad,i,j , l̃d,t,p}, we obtain the

following updates:

a0d,p ∝ expEq[logA0p]

= exp

(
Ψ(Ã0p)−Ψ(

P∑
i=1

Ã0i)

)
(39)

ad,i,j ∝ expEq[logAi,j ]

= exp

(
Ψ(Ãi,j)−Ψ(

P∑
j=1

Ãi,j)

)
(40)

l̃d,t,p ∝ exp

N∑
i=1

K∑
k=1

z̃kd,t,iEq[logLp,k]

= exp

N∑
i=1

K∑
k=1

z̃kd,t,i

(
Ψ(L̃p,k)−Ψ(

K∑
j=1

L̃p,j)

)
(41)

We can clearly see the resemblance of these updates to those of HMM SVI

proposed in [42]. The slight divergence is caused by the fact that here the310

observations are replaced by many latent variables zd,t,n.

3.3. Algorithm

Because LDA-HMM is member of the family of models presented in [18], its

SVI can be derived from VI following the same steps. Only the updates of the
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global variational parameters are modified so that no need to iterate D times315

over the observations or local parameters before updating the global ones.

β̃k = ω +D

T∑
t=1

N∑
i=1

z̃kd,t,ixd,t,i ∀k ∈ {1, ...K} (42)

Ãi,j = αj +D

T−1∑
t=1

fd,t,iad,i,j l̃d,t+1,jbd,t+1,j/Z (43)

Ã0,j = α0j +Dad,0,jbd,1,j/Z (44)

L̃p,k = σk +D

T∑
t=1

N∑
i=1

z̃kd,t,ifd,t,pbd,t,p/Z (45)

where d is sampled uniformly from {1, ...D}. In the following, we present

SVI algorithm of LDA-HMM which includes updates equivalent to following

noisy estimates of the natural gradient of the ELBO.

4. Experiments320

In this section, we will first introduce the experimental data DBN-LDA-

HMM will be tested on along with details about the data pre-processing stages.

Next, we define the experimental settings, introduce the evaluation strategy,

present and discuss the results. In order to provide some comparisons, we de-

rive two new simpler unsupervised pattern mining methods. For the first one,325

the DBN-like and HMM-like parts are omitted resulting in LDA with continuous

observation. In order to process continuous observations, the dirichlet distribu-

tion of LDA is replaced by Gaussian one resulting in Gaussian Latent Dirichlet

Allocation (GLDA) [38]. We also derive DBN-LDA model where the HMM-part

is omitted [39]330

22



Algorithm 1 Deep Online Hierarchical Dynamic Unsupervised Pattern mining
for energy consumption behaviour

1: Input: raw-data window length, R; preprocessed-data window length, N ;
length of time series, T ; number of components, K; number of patterns, P :
total number of iterations, C; learning rate parameters, κ and τ0; hyper-
parameters, α, α0, ω and σ.

2: Initialisation: variational parameters: {β̃k}Kk=1, {Ãp, L̃p}Pp=1 and Ã0,

learning rates {ρc = f(c, τ0, κ)}Cc=0 (see [43]).
3: for c = 0, 1, 2, ...C − 1 do
4: Read sequentially NT raw data windows of length R.
5: Extract features using the pre-trained DBN (see Sec. 4) for each window
6: Form windows of time series data points (actual input) of length NT in

the new feature space ({{xd,t,n}Nn=1}Tt=1)

7: Initialise {a0d, {ad,p, l̃d,p}Pp=1}
8: repeat
9: Compute local variational parameters {{{z̃d,t,i}Tt=1}Ni=1}Kk=1 (see

Eq. (36))
10: Update local variational parameters {a0d, {ad,p, l̃d,p}Pp=1} (see

Eq. (39), Eq. (40) and Eq. (41))
11: until local parameters converge
12: Compute intermediate global variational parameters {β̃′

k}Kk=1,

{Ã′
p, L̃′

p}Pp=1 and Ã′
0 (see Eq. (42), Eq. (43), Eq. (44) and Eq. (45))

13: Update the current estimate of the global variational parameters: {β̃k =
(1− ρc)β̃k + ρcβ̃′

k}Kk=1, {Ãp = (1− ρc)Ã′
p + ρcÃp, L̃p = (1− ρc)L̃′

p +

ρcL̃p}Pp=1 and Ã0 = (1− ρc)Ã′
0 + ρcÃ0

14: end for

4.1. Datasets

The real-world multi-source utility usage data used here is provided by ETI1.

The data includes electricity signals (voltage and current signals) sampled at

high sampling rate around 205 kHz, water and gas consumption sampled at low

sampling rate. The data also contains other sensors measurements collected335

from the Home Energy Monitoring System (HEMS). In this study we will use

4Tb of utility usage data collected from one house over one month. This data

has been recorded into three different formats. Water data is stored in text

files with sampling rate of 10 seconds and is synchronised to Network Time

1Energy Technologies Institute: http://www.eti.co.uk/
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Table. 2 Characteristics of the data

Data Range Resolution Measurement Total
frequency duration

Mains Voltage -500V to +500V 62mV 4.88s 1 months
Mains Current -10A to +10A 1.2mA 4.88s 1 months
Water Flow Volume 0 to 100L per min 52.4 pulses 10s 1 months

per litre
Room Air Temperature 0 to 40 DegC 0.1 DegC Once every 1 months

minute
Room Relative Humidity 0 to 95% 0.1 % Once every 1 months

5 minutes
Hot Water DegC 0.1 DegC Once every 1 months
Feed Temperature 5 minutes
Boiler: Water 0 to 85 DegC 0.1 DegC Once every 1 months
Temperature (Input) 5 minutes
Boiler: Water DegC 0.1 DegC Once every 1 months
Temperature (Output) 5 minutes
Household: Mains Cold DegC 0.1 DegC Once every 1 months
Water Inlet Temperature 5 minutes
Gas Meter Reading Metric Meter 0.01m3 Once every 1 months

15 minutes
Radiator Temperature DegC 0.1 DegC Once every 1 months

5 minutes
Radiator Valve 0 to 100% 50% Once every 1 months

5 minutes
Boiler Firing Switch Boolean None Once every 1 months

5 minutes

Protocol (NTP) approximately once per month. Electricity data is stored in340

wave files with sampling rate of 4.88 s and is synchronised to NTP every 28min

28sec. HEMS data is stored in a Mongo database with sampling rates differing

according to the type of the data and sensors generating it (see Tab. 2).

4.1.1. Data Pre-processing

In order to use raw utility data, a number of pre-processing steps are re-

quired. We implemented a Python code that reads the data from these different

sources, synchronises its time-stamps to NTP time-stamps, extracts features

and aligns the data samples to one time-stamp by measurement. For water

data, the PC clock time-stamps of samples within each month are synchronised
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Figure. 4 Alignment of the data

to NTP time-stamp. The synchronisation is done as follows:

timestampNTP (i) = timestampsclock(i) + i
Total T ime Shift

Number of Samples
(46)

In this equation, we assume that the total shift (between NTP and PC

clock) can be distributed over the samples in one month. Similarly, Electricity

data samples’ time-stamps are synchronised to NTP time-stamps. The shift is

distributed over 28 minutes and 28 seconds.

timestampNTP (i) = timestampsclock(i) + i
Total T ime Shift

Number of Samples
(47)

The time-stamps of HEMS data were collected using NTP and so no syn-345

chronisation is required. Having all data samples synchronised to the same

reference (NTP), we align the samples to the same time-stamps. The alignment

strategy is shown in Fig. 4 where the union of all aligned data samples is stored

in one matrix. Each row of this matrix includes a time-stamp and the corre-

sponding values of the sensors. If for some sensors, there are no measurements350

taken at the time-stamp, the values measured at the previous time stamp are

taken. The aligned data samples are the input of the feature extraction model.

Pushed by the complexity of the mining task and motivated by the informa-

tiveness and simplicity of the water and sensors data, at this stage, we only
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extract features from the electricity data over time windows of 1 second. These355

features are then aligned following the same process described earlier. We pro-

pose two different features extraction mechanisms. For GLDA, we use NILM

features known to work well with NILM supervised learning. For DBN-LDA

and DBN-LDA-HMM, we use deep learning to learn the features. Details about

the features extraction mechanism and DBN are provided in App. 6360

4.2. Experimental Settings

In this section, we focus on the experiments performed on the pre-processed

data, where the online LDA-HMM is applied on the features extracted by DBN.

We also provide some comparisons with GLDA and DBN-LDA.

In all experiments, the number of global components (i.e., patterns and365

appliances related components) K and P are fixed to 30 and 20. The DBN’s

input granularity is set to 1 second (See App. 6) for both DBN-LDA and DBN-

LDA-HMM. Given the data granularity, this leads to raw-data windows length

R = 204911. The pre-processed-data windows N is set so that the granularity

of the patterns is 30 minutes, hence N is equal to 30 ∗ 60. The length of time370

series T (DBN-LDA-HMM exclusive parameter) is fixed to span a whole day

(i.e., 24 hours), hence T is equal to 48.

we use the perplexity to measure the model fitness to the data. It is defined

as the reciprocal geometric mean of the inverse marginal probability of the input

in the held-out test set. Since perplexity cannot be computed directly, a lower375

bound on it is derived in a similar way to the one in [22]. This bound is used as

a proxy for the perplexity. To set the Dirichlet distribution hyper-parameters,

we ran experiments with α0 = {0.001, 0.01, 0.1, 1}, α = {0.001, 0.01, 0.1, 1}, σ =

{0.001, 0.01, 0.1, 1}, ω = {0.001, 0.01, 0.1, 1} on held-out data that is not part of

the one month one used for training and testing (see Sec. 4.1). We then chose380

the parameters that provided the highest preplexity {α0 = 0.1, α = 0.1, σ =

0.1, ω = 0.1}. We also evaluated a range of settings of the learning parameters on

DBN-LDA: κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} (learning factor), τ0 ∈ {1, 64, 256, 1024}

(learning delay) and batch size BS ∈ {1, 4, 8} on the held-out data, where the
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Table. 3 Parameter settings

Batch size: BS 1 4 8
Learning factor: κ 0.7 0.5 0.5
Learning delay: τ0 256 64 64
Perplexity 334 333 350

parameters κ and τ0, defined in [43], control the learning step-size ρj . In these385

experiments, we omitted HMM as we are interested in LDA parameters and to

speed up the experiments. Table 3 summarises the best settings of each batch

size along with the perplexity obtained on the held-out data.

The obtained results show that the perplexity for different parameters set-

tings are similar. However, the computation complexity increases with the size390

of the batch. Hence, we set the batch size to 1, where the best learning pa-

rameters are κ = 0.7 and τ = 256. In the following, we used the data collected

during the first two weeks for testing and that of the last two weeks for training.

All experiments are run 30 times.

4.3. Global Components395

The learned components by DBN-LDA-HMM correspond to clusters in DBN’s

output space and patterns of energy consumption activities. The clusters in

DBN’s output space are represented by multinomial distribution over the dis-

crete DBN’s outputs. Different mixing proportions of these clusters represent

the patterns components. Hence, to visualise these components, we plot gray-400

scale images of these components where black colour indicates zeros-probability

and white colour indicates one-probability. Figure 5 shows the aforementioned

clusters where x-axis corresponds to different clusters and y-axis represents the

discrete DBN’s outputs. Figure 6 shows the patterns (x-axis) represented by

different cluster’s proportions (y-axis), where each square indicates the proba-405

bility of a cluster with black colour indicates zeros-probability and white colour

indicates one-probability.

Figure 5 shows that DBNs outputs at most of the dimensions are zeros (cov-

ered in black). Hence, we conclude that the deep learning successfully extract

discriminative features with much lower dimensions than the input data. Par-410
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Figure. 5 Clusters in DBN’s output space

ticularly, it can be seen from Fig. 5 that only around 350 dimensions of DBN’s

output represent the appliance related components that summarise the data.

Hence, different combination in this 350 dimensions form the clusters whose

mixtures represents patterns. In analogy to topics model, these are the words

composing the topics forming the documents. This observation shows that DBN415

has managed to reduce the real high dimensional input space to discrete lower

dimensional output space where countably small number of points represents

most of the input signal over 1 second granularity. Hence, we expect these

points to have strong relation with appliances usage. This is supported by the
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Figure. 6 Patterns of energy consumption activities

few light coloured points appearing with each component meaning that different420

clusters (appliance-related components) are mainly composed of these points.

The sparse light coloured rectangle in Fig. 6 implies that the majority of

patterns consists mainly of few appliance-related components. For example, the

main components for breakfast patterns will relate to cooking and heating ap-

pliances such as the hob and the oven. Figure 6 also shows few horizontal strips425

of light colour, for example at components 2, 10,15 and 20. These components

therefore appears in most patterns meaning that they may belong to appliances

like lambs which are used in different activities. In the following, we propose two
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evaluation methods to support our claims about the relation between clusters

and appliance, patterns and activities.430

4.4. Evaluation and Analysis

In order to investigate the quality of the results, we study the regularity of the

mined patterns by matching them across similar periods of time. For instance,

it is expected that similar patterns will emerge in specific times like breakfast

in every morning, watching TV in the evening, etc. This regularity can also be435

seen across days, for instance, consumption behaviour during working days is

different from that during the weekend. Hence, it is interesting to understand

how such patterns occur as regular events.

We also provide a quantitative evaluation of the algorithm by proposing a

mapping method that reveals the specific energy consumed from the inferred440

patterns within the patterns’ granularity (fixed to 30 minutes). By doing so, we

can evaluate numerically the consistency between energy consumption and the

extracted patterns. This is achieved by fitting a regression model to the energy

consumption over the K components (clusters in DBN’s output space):

Aw = b (48)

where w is a vector expressing energy consumption associated with components,445

b is a vector representing consumption within the patterns’ granularity and A is

the matrix of the components proportions obtained by DBN-LDA-HMM. The

matrix A is the result of A1A2, where A1 represents the patterns proportions

within the patterns’ granularity and A2 is the clusters proportions within the

patterns. This technique will also allow numerically checking the predicted450

consumption against the real consumption.

4.4.1. Pattern Regularity

Using the optimal parameters’ setting, we examine in the following the reg-

ularity of the mined patterns. To do that, we use the first two weeks of the data

for testing. To study the regularity of the energy consumption behaviour of the
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Table. 4 Patterns dissimilarity matrix for DBN-LDA-HMM

Mon Tue Wed Thu Fri Sat Sun
Mon 0.0052 0.0048 0.0064 0.0069 0.007 0.0089 0.0091
Tue 0.0048 0.0049 0.0055 0.006 0.0064 0.0086 0.0095
Wed 0.0064 0.0055 0.0049 0.007 0.0071 0.0081 0.0091
Thu 0.0069 0.006 0.007 0.0058 0.0074 0.0085 0.009
Fri 0.007 0.0064 0.0071 0.0073 0.0068 0.008 0.0096
Sat 0.0089 0.0086 0.0081 0.0086 0.008 0.0082 0.0080
Sun 0.0091 0.0095 0.0091 0.0093 0.0096 0.0080 0.0088

Table. 5 Patterns dissimilarity matrix for DBN-HMM

Mon Tue Wed Thu Fri Sat Sun
Mon 0.0078 0.0071 0.0096 0.0104 0.0105 0.0133 0.0136
Tue 0.0071 0.0072 0.0082 0.009 0.0096 0.0129 0.0142
Wed 0.0096 0.0082 0.0073 0.0105 0.0107 0.0121 0.0137
Thu 0.0104 0.009 0.0105 0.0087 0.0111 0.0127 0.0136
Fri 0.0105 0.0096 0.0107 0.0111 0.0102 0.012 0.0144
Sat 0.0133 0.0129 0.0121 0.0127 0.012 0.0124 0.0121
Sun 0.0136 0.0142 0.0137 0.0136 0.0144 0.0121 0.012

residents, we compare the mined patterns across different days of the testing

period. The patterns of day d is computed as follow:

p(yd,t|{{xd,t}Tt=1}Dd=1,α,α0,σ,ω) (49)

This distribution is intractable and the proxy approximation shown in Eq. 5

is used instead. The similarity of the patterns across the two weeks are computed

as follows:

similarity(daya, dayb) =
1

P ∗ T

T∑
t=1

P∑
p=1

∣∣∣∣p(ya,t = p|{{xd,t}Tt=1

}Dd=1,α,α0,σ,ω)− p(yb,t = p|{{xd,t}Tt=1}Dd=1,α,α0,σ,ω)

∣∣∣∣ (50)

Table 4 shows the per-day similarity. It can be clearly seen from the table that

there is regular patterns across the same days from two different weeks. That is,

similar energy consumption patterns appear across these days. This similarity455
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Table. 6 Patterns dissimilarity matrix for GLDA

Mon Tue Wed Thu Fri Sat Sun
Mon 0.0093 0.0085 0.0115 0.0125 0.0126 0.0159 0.0163
Tue 0.0085 0.00864 0.00984 0.0108 0.0115 0.0155 0.017
Wed 0.0115 0.00984 0.0084 0.0125 0.0127 0.0145 0.0164
Thu 0.0125 0.0108 00.0125 0.0104 0.0133 0.0152 0.0163
Fri 0.0126 0.0115 0.0127 0.0133 0.0122 0.0144 0.0173
Sat 0.0159 0.0155 0.0145 0.0152 0.0144 0.0149 0.0145
Sun 0.0163 0.017 0.0164 0.0163 0.0173 0.0145 0.0144

is a bit less for the weekend where more random activities could take place.

Computing the similarity measure between week and weekend days confirms

this observation. For instance, the similarity between first week’s Monday and

second week’s Sunday is equal to 0.0093 which is much higher than that be-

tween the Mondays of the two weeks. In contrast, the similarity among working460

days are generally high. We perform similar regularity studies on GLDA and

DBN-LDA to provide some comparisons. Table 5 and Tab. 6 show the per-

day similarity of DBN-LDA and GLDA respectively. Comparing the results in

Tab. 4 to that in Tab. 5 and Tab. 6, it is clearly noticeable that our method

DBN-LDA-HMM was able to capture the patterns regularities better than both465

DBN-LDA and GLDA. We can also notice the improvement obtained by using

deep learning (i.e., DBN) for features extraction compared to the engineering

features approach taken by GLDA (see Tab. 5 and Tab. 6).

The captured regularity may be caused by regular user lifestyle leading to

similar energy consumption behaviour within and across the weeks. Such reg-470

ularity is violated in the weekend, as more random activities could take place.

Having shown that there is some regularity in the mined patterns, it is more

likely that specific energy consumption can be associated with each component.

In the next section, we apply a regression method to map the patterns within

the patterns’ granularity (fixed to 30 minutes) to energy consumption. Thus,475

the parameters of interest are the energy consumption associated with the com-

ponents. By attaching an energy consumption with each component, we can

help validate the coherence of the extracted patterns and evaluate numerically
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the consistency between energy consumption and the extracted patterns which

can be exploited to predict the load demand.480

4.4.2. Energy Mapping

(a) Computed energy consumption

(b) Estimated energy consumption by DBN-LDA-HMM

Figure. 7 Evolution of the energy consumption over time

As shown in the previous section, DBN-LDA-HMM can express the energy

consumption patterns by mixing multinomial distributions over mixture of com-

ponents (clusters) summarising the data. Each component is a distribution over

a high-dimensional feature space and understanding what it represents is not485
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easy. Hence, we propose to associate consumption quantities to each compo-

nent. Such association is motivated by the fact that an energy consumption

pattern is normally governed by the usage of different appliances in the house.

There should be a strong relation between components and appliances usage.

Hence, a relation between components and energy consumption is plausible.490

Note that the best case scenario occurs if each component is associated with

the usage of a specific appliance. Apart from the coherence study, associating

energy consumption with each component can be used to predict the energy

consumption demand. As explained in Sec. 4.4, we apply a simple least-square

regression method to map the inferred patterns within the patterns’ granularity495

(fixed to 30 minutes) to energy consumption. We train the regression model on

one of the testing week and run the model on the other testing week. Figure 7

shows the energy consumption (in joules) along with the estimated consumption

computed using the learned per-component consumption parameters.

The similarity between the estimated and computed energy consumption500

demonstrates that the DBN-LDA-HMM components express distinct usages

of energy. Such distinction can be the result of the usage of different appli-

ances likely having distinct energy consumption signatures. Thus, the proposed

approach produces coherent and regular patterns that reflect the energy con-

sumption behaviour and human activities. Note that it is possible that different505

patterns (or appliance usages) may have the same energy consumption and that

might be one reason why both estimated and computed energy consumption in

Fig. 7 are not fully the same.

Finally, we perform energy consumption estimation by GLDA and DBN-

LDA. Figrue 8 shows that DBN-LDA provide better performance than GLDA510

which is inline with the pattern regularity study in Sec. 4.4.1. Although the es-

timated energy consumption by DBN-LDA and DBN-LDA-HMM seems close,

DBN-LDA-HMM still shows better estimation. This supports the better perfor-

mance of DBN-LDA-HMM shown with the pattern regularity study in Sec. 4.4.1.
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(a) Estimated energy consumption by LDA-HMM

(b) Estimated energy consumption by GLDA

Figure. 8 Evolution of the energy estimation by DBN-LDA and GLDA over time

5. Conclusion515

In this paper, we presented a novel approach to extract patterns of the users’

consumption behaviour from data involving different utilities (e.g, electricity,

water and gas) as well as some sensors measurements. DBN-LDA-HMM is fully

unsupervised and the LDA-HMM component’ training is done online which

made it efficient for the fast learning of big data. To analyse the performance, we520

proposed a two-step evaluation that covers: patterns regularity and coherency.

The experiments show that the proposed method is capable of extracting regular
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and coherent patterns that highlight energy consumption over time.

The main limitation of the proposed approach is the difficulty to provide

standard quantitative empirical evaluation. In the future, we foresee four direc-525

tions for research to improve the obtained results and provide more features: (i)

involving some labelling in the data collection process and devise a new semi-

supervised approach from DBN-LDA-HMM (ii) improving the scalability of the

algorithm to learn from the whole data (whose size 80 terabytes) by applying

asynchronous distributed inference which can be derived from [44], (iii) consid-530

ering other houses by designing novel models that allow transfer learning and

(iiii) involving active learning strategy with the new semi-supervised version

to query users (residents) about their activities in order to guide the learning

process when needed [45, 46].
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Table. 7 Features after data pre-processing
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6. Features extraction and DBN

For GLDA, we also drop DBN and replace the deep learning features extrac-650

tion with NILM features known to work well with NILM supervised learning.

Two types of features were used: low and high sampling rate features. The first

type aims at capturing low sampling rate information such as the steady state of

the appliance for example a change of steady-state active power measurement

from a high to low value can identify whether the appliance is being turned655

On or Off. Active and Reactive power are among the most useful steady-state

features [6]. The second type of features aims to capture transient behaviour be-

tween steady states, e.g., high sampling frequency of voltage noise (that results

from the operation state change of the appliance). We consider the RMS spec-

trum power which involves (explicitly or implicitly) the information extracted660

with most transient-state features. Table 7 shows the obtained features over

time windows of 1 second.

For DBN-LDA and DBN-LDA-HMM, deep learning is used for feature ex-

traction. Here, the aligned data samples are the input of Deep Belief Net-

work [21]. Pushed by the complexity of the mining task and motivated by the665

informativeness and simplicity of the water and sensors data, at this stage, we

apply DBN only on the electricity data over time windows of 1 second.

The employed DBN 2 consists of three Restricted Boltzmann Machine layers

where the first layer reduces the input dimension from 204911 (1 second granu-

larity) to 700. The second and third layers’ outputs dimensions are 200 and 100670

respectively. Note that the first layer’s inputs are from continuous space while

the rest is categorical data. The rest parameters are left to the default setting.

2https://github.com/lmjohns3/py-rbm
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The last layer’s outputs are aligned and concatenated with the other utility and

sensors discretised data.
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