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Research has shown that participants can extract the

average facial expression from a set of faces when these

were presented at fixation. In this study, we investigated

whether this performance would be modulated by

eccentricity given that neural resources are limited

outside the foveal region. We also examined whether or

not there would be compulsory averaging in the

parafovea as has been previously reported for the

orientation of Gabor patches by Parkes, Lund, Angelucci,

Solomon, and Morgan (2001). Participants were

presented with expressive faces (alone or in sets of nine,

at fixation or at 38 to the left or right) and were asked to

identify the expression of the central target face or to

estimate the average expression of the set. Our results

revealed that, although participants were able to extract

average facial expressions in central and parafoveal

conditions, their performance was superior in the

parafovea, suggesting facilitated averaging outside the

fovea by peripheral mechanisms. Furthermore,

regardless of whether the task was to judge the

expression of the central target or set average,

participants had a tendency to identify central targets’

expressions in the fovea but were compelled to average

in the parafovea, a finding consistent with compulsory

averaging. The data also supported averaging over

substitution models of crowding. We conclude that the

ability to extract average expressions in sets of faces and

identify single targets’ facial expressions is influenced by

eccentricity.

Introduction

Although the signals from the external environment
are abundant and varied, the visual system can
recognize its statistical properties and process such
signals both effectively and economically. Neighboring
features in natural scenes are often similar and to some
degree predictable, and this is supported in the sparse
coding behavior of V1 neurons that can accurately
transmit information about the complex scenes with
minimal redundancy and very little spikes (Barlow,
1961; Daugman, 1989; Field, 1987; Olshausen & Field,
1996; To, Baddeley, Troscianko, & Tolhurst, 2011;
Vinje & Gallant, 2000).

This idea of compressing repetitive information into
a simplified, more tractable ensemble representation
has also been supported in behavioral studies (see
Alvarez, 2011, and Whitney & Yamanashi Leib, 2018,
for reviews). These studies have shown that, when
presented with sets of similar objects, participants can
accurately extract low-level statistical properties of the
set, such as average size (Ariely, 2001; Chong &
Treisman, 2003), but are poor at identifying the
properties of individual objects. Likewise, Haberman
and Whitney (2007, 2009) showed that this ability could
also be extended to more complex elements, such as
facial expressions. Their study revealed that partici-
pants were better at identifying the average emotional
expression in a set of expressive faces compared to
recognizing a specific set member. Other researchers
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have further demonstrated that participants could
estimate the average identity in a set of faces (J. de
Fockert & Wolfenstein, 2009; J. W. de Fockert &
Gautrey, 2013), the average direction of a crowd
(Sweeny, Haroz, & Whitney, 2013), and the average
lifelikeness of a group of objects (Leib, Kosovicheva, &
Whitney, 2016). Given the high degree of repetition in
the natural environment, ensemble coding represents
an economical approach that enables participants to
rapidly gather a general impression of a scene. H. Li et
al. (2016) examined the effect of exposure time on the
ability to identify faces and their emotions and found
that participants were more sensitive to set represen-
tations compared to individual representations for
short presentations (e.g., 50 ms). However, the differ-
ence disappeared for longer durations (500–2,000 ms).
This suggests that ensemble coding is mostly relied
upon when resources are limited.

Given that neural resources are limited outside
central vision (Adams & Horton, 2002, 2003; Horton &
Hoyt, 1991; Inouye, 1909; Lister & Holmes, 1916), it
should not be surprising to observe averaging of
features in parafoveal and peripheral visual areas (e.g.,
Greenwood, Bex, & Dakin, 2009, 2010; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001). Averaging in
the periphery has been primarily attributed to mecha-
nisms associated with crowding, a visual phenomenon
whereby signals of surrounding stimuli can crowd out
signals of a single target, therefore, preventing and/or
interfering with its identification and recognition
(Bouma, 1970, also see Levi, 2008, and Pelli & Tillman,
2008, for reviews). Although crowding effects have
been extensively studied, from orientation identification
of artificial stimuli (e.g., Greenwood et al., 2009, 2010;
Parkes et al., 2001) to feature discriminations in natural
scenes (e.g., To, Gilchrist, Troscianko, Kho, &
Tolhurst, 2009; To, Gilchrist, Troscianko, & Tolhurst,
2011), its underlying mechanisms remain largely
speculative, and theories do not always reflect the
known behavior of neurons. A few neurophysiological
studies of V1 have compared single neurons with
peripheral and central (cat) or foveal (primate)
receptive fields. Generally, it has been found that
peripheral neurons have larger receptive fields and
respond to corresponding lower spatial frequencies of
grating (Hubel & Wiesel, 1974; Tolhurst & Thompson,
1981; H. H. Yu et al., 2010). These findings may explain
how simple visual acuity falls off with increasing
eccentricity, but only subtle differences between foveal
and peripheral neural processing have been reported in
V1 (H. H. Yu & Rosa, 2014), and these do not seem to
explain phenomena, such as veneer acuity or crowding
(Levi, Klein, & Aitsebaomo, 1985). Although it used to
be well accepted that cortical magnification factors
were closely related to retinal sampling density and
receptive field size (e.g., Hubel & Wiesel, 1974), many

studies since have reported that foveal V1 is greatly
enlarged, even allowing for its smaller receptive fields
(Adams & Horton, 2003; Popovic & Sjöstrand, 2001;
Tolhurst & Ling, 1988). This implies that foveal neural
processing has more dimensions than peripheral, but
this finding is not an explanation for crowding or the
poverty of peripheral visual perception. We are not
aware of any single neuron studies that explicitly
investigate responses with stimulus paradigms that
cause crowding in human perception. Nonetheless, the
effects of crowding have been successfully modeled by
spatial uncertainty and substitution (Freeman, Chak-
ravarthi, & Pelli, 2012; Krumhansl & Thomas, 1977;
Nandy & Tjan, 2007; Pelli, 1985; Põder & Wagemans,
2007; Popple & Levi, 2005; Strasburger, 2005; Wolford,
1975), imprecise integration (Neri & Levi, 2006; van
den Berg, Roerdink, & Cornelissen, 2010), limited field
of view (Tjan, 2009), and averaging (also referred to as
signal pooling; Freeman et al., 2012; Greenwood et al.,
2009, 2010; Parkes et al., 2001) in behavioral studies.

This averaging is not dissimilar to ensemble coding
that is reported in central vision. Both processes
promote a more efficient statistical representation of
global information in a scene while reducing the
processing of any redundant or finer-detailed infor-
mation. Parkes et al. (2001) reported compulsory
averaging of features for stimuli presented in the
parafovea. Although their participants were unable to
identify the orientation of a central target patch, they
were able to estimate the average orientation of all
patches. Research by Greenwood et al. (2009, 2010)
examining the effects of flankers on participants’ ability
to estimate a target’s position and on their ability to
detect a change in target appearance lend further
support to the averaging of target and flanker
information in the periphery (although, in the case of
target appearance, target–flanker substitution mecha-
nisms could have also played a part). This signal-
averaging mechanism in parafoveal and peripheral
vision and the aforementioned ensemble coding re-
ported in central vision are, therefore, quite similar in
terms of their function and their effect on viewers’
ability to process sets but not individual objects.
However, the averaging reported by Greenwood et al.
(2009, 2010) and Parkes et al. were confined to low-
level features (orientation).

To our knowledge, this is the first study that
compares averaging of facial expression in central and
parafoveal vision. Our method was largely adopted
from Parkes et al. (2001), who made a similar
comparison for orientation of Gabor-patch stimuli. In
our experiment, we investigated whether participants
could extract the average representation of emotional
cues from sets of faces presented in central and
parafoveal vision and whether their performance would
be modulated by eccentricity. We were also interested
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in whether or not there was compulsory averaging in
the parafovea as was reported in Parkes et al.

We asked participants to complete two tasks. In the
central task, they identified the expression of a single
central target face. In the average task, they estimated
the average emotional expression of a set of faces. We
compared participants’ performance in the two tasks at
different eccentricities. Similar performances through-
out would suggest similar mechanisms underlying
averaging across the visual field, whereas differences in
performances would suggest otherwise. If performance
in the average task improved at higher eccentricities,
this would suggest that the processing of averages is
enhanced in the parafovea. The expressive faces were
presented alone (flanker absent) or in sets of nine
(flanker present). This manipulation allowed us to
disentangle different mechanisms underlying averaging
in central and parafoveal areas. The absence of
interference by flanking stimuli in central vision
suggests that averaging at the fovea differs from
peripheral mechanisms.

We then compared participants’ responses with the
predictions of three simple computational models:

� A central model that predicts responses based on
the central target alone.
� An average model that is associated with the
aforementioned averaging of signals and that
predicts responses based on the set average.
� A substitution model that is associated with spatial
uncertainty and target–flanker swap and that
predicts responses based on the flankers’ proper-
ties.

The central and average models allowed us to
examine whether participants followed the instructions
and completed the assigned task (central vs. average) or
whether they were compelled to respond differently.
For example, if participants were asked to identify the
emotional expression of the central target, the central
model should be best at predicting their results as it
returns the emotion of the central target. Likewise, if
they were asked to estimate the average emotional
expression of all faces, then the average model should
be the strongest. However, if the ‘‘best’’ models and
tasks did not match up, then the data would suggest
that the participants were not following instructions
and were instead compelled to enter the expression of
the central target (in the average task) or the average
(in the central task).

We also added the substitution model so that we can
compare its performance with that of the average
model as this could offer further insight into the
mechanisms that underlie crowding in the extrafoveal
region. As mentioned above, several mechanisms have
been proposed to play a part in crowding in the
periphery, two of which are signal averaging (Freeman

et al., 2012; Greenwood et al., 2009, 2010; Parkes et al.,
2001) and spatial uncertainty (target–flanker substitu-
tion; Freeman et al., 2012; Krumhansl & Thomas,
1977; Nandy & Tjan, 2007; Pelli, 1985; Põder &
Wagemans, 2007; Popple & Levi, 2005; Strasburger,
2005; Wolford, 1975). Our interest in ensemble coding
and signal averaging propels us to model the averaging
of features (average model), but given that recognition
of facial expressions is highly complex and holistic,
comprising of low- and higher-level features (e.g., D.
Yu, Chai, & Chung, 2018), we thought it worthwhile to
also consider an unpooled substitution model, which
may be more suitable for stimuli whose features are
processed as a whole.

Methods

Participants

A total of 18 university students (14 females)
participated in this experiment (Age: M ¼ 23.5 years,
SD¼ 6.91). Informed consent was obtained for all
participants, and all had normal or corrected-to-
normal vision. This study was approved by the research
ethics committee at the University of Hull.

Stimuli and materials

The face stimuli were created from the face database
developed at Binghamton University (Yin, Wei, Sun,
Wang, & Rosato, 2006). The database contained male
and female faces showing neutral and emotional facial
expressions (happy, sad, surprised, angry, disgusted,
and fearful). All external features, such as hair and
glasses, were removed from the faces.

We used three original female faces (from a single
model) with neutral, disgusted, and happy expressions
and used FantaMorph (2009) to generate a series of
faces with intermediate emotions. We selected happy
and disgusted faces because these expressed positive
and negative emotions, respectively. We chose disgust
over sadness because research has shown that happi-
ness and sadness elicit different intensities of arousal,
but no such differences have been reported between
happiness and disgust (e.g., Schwartz & Davidson,
1997).

The original disgusted and happy faces were at the
ends of the face expression continuum and were labeled
100% disgusted and 100% happy, respectively. We
created four new faces with various levels of disgust by
morphing the 100% disgusted expression to a neutral
expression: 80% disgusted with 20% neutral, 60%
disgusted with 40% neutral, 40% disgusted with 60%
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neutral, and 20% disgusted and 80% neutral. Similarly,
we repeated the same procedure to create four levels of
happy faces. Figure 1 presents the original faces as well
as an example of morphed faces. There were 11 faces in
total: three originals (100% disgust, neutral, and 100%
happy) and the eight morphed variants listed above.

All faces were displayed on a 22-in. monitor
(IiyamaProlite E2200WS). The display resolution of the
experiment was set to 1,024 3 768 for the experiment,
and the background color of the screen was set to gray
(Hex: #C0C0C0). E-Prime 1.1 (PST, 2003) was used to
run the experiment, display the stimuli, and the record
responses.

Design

We examined the effect of three within-subject
factors: flankers, eccentricity, and task. Each of these
factors were manipulated as follows:

Flankers (absent or present)

In order to study the effect of flankers on partici-
pants’ ability to identify facial expression(s), a central
face was either presented alone (flanker absent) or
surrounded by eight faces (all sharing the same

expression) in a 333 configuration (flanker present; see
Figure 2). The faces in the flanker present condition
were located within 0.408 horizontally (2.038 center to
center) and 0.138 vertically (2.308 center to center) of
each other and the central target, giving the set an
overall set dimension of 5.698 3 6.778. According to
Bouma (1970), crowding at u8 in eccentricity occurs
when flankers are located within u/28 of the targets.
Although the faces are located 2.308 center to center
(beyond 1.58 if u¼ 3), they are nonetheless within 0.48
of each other side to side and 1.218 from center to side
of the next horizontal face. All 11 variants of
expressions were presented as central targets in the
flanker-absent condition and as central targets and/or
flankers in the flanker-present conditions. The example
in Figure 2 shows an 80% disgusted central face
surrounded by eight identical 80% happy flanker faces.

The order of the flanker conditions was counterbal-
anced such that half the participants started with the
flanker-absent condition and the other half started with
one of the flanker-present conditions.

Eccentricity (fovea, left, or right)

The parafoveal target sets in Parkes et al.’s (2001)
paper were presented at 2.58 to the left and right of
fixation. In addition, Calvo, Nummenmaa, and Avero
(2010) showed that observers were able to recognize
happy and disgusted faces that were presented for 150
ms at 2.58 although their faces were larger (8.48 3 6.48)
and were presented in isolation. A separate study by
Goren and Wilson (2006) showed that observers could
recognize happy expressions that were presented for

Figure 1. Original faces and examples of morphed faces. The

original 100% disgusted, neutral, and 100% happy faces (top

three) were taken from the BU-3DFE database (permission to

use can be found at http://www.cs.binghamton.edu/;lijun/

Research/3DFE/3DFE_Analysis.html). These were morphed us-

ing FantaMorph (2009) to generate intermediate facial

expressions (bottom four).

Figure 2. Example of faces presented in a set. This set shows a

central target (disgusted) face surrounded by eight flanker

(happy) faces. Each face subtended 1.638 3 2.178 of visual

angle, and was located within 0.408 horizontally and 0.158

vertically of one another. The whole set covered an area of 5.698

3 6.778. The original 100% disgusted, neutral, and 100% happy

faces were taken from the BU-3DFE database and permission to

use can be found at http://www.cs.binghamton.edu/;lijun/

Research/3DFE/3DFE_Analysis.html.
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110 ms at 5.58–5.88 in eccentricity although, again, the
faces were larger than ours (6.98 3 9.18) and were
presented without flankers. Based on these studies, we
have chosen to present faces foveally and at 38
parafoveally either to the left or to the right of a central
fixation to control for any hemispheric bias. In the
flanker-present condition, the central face was centered
at 38 eccentricity, a location that satisfies the traditional
bounds for crowding (Bouma, 1970). The three
positions of eccentricity were randomized to avoid
successive left or right presentations that might increase
the likelihood of participants foveating toward the
faces ahead of them appearing.

Task (central or average)

Participants were asked to either identify the
expression of the central faces (central) or to estimate
the average expression of the sets of faces (average).
Although the former task was completed in both
flanker-absent and -present conditions (in randomly
ordered blocks), the latter task was only conducted in
the flanker-present conditions (as there was no point
asking participants to estimate the average of only one
face).

Procedure

Each participant was tested individually and was
asked to complete the two tasks (central and average).
An adjustable headrest was used to fix the participant’s
eye height and viewing distance, which was set at 57 cm
away from the screen.

The experiment was divided into three blocks: (a)
identify central target in flanker-present conditions, (b)
estimate average expression in flanker-present condi-
tion, and (c) identify central target in flanker-absent
condition. The order of the blocks was counterbalanced
for each participant. Before each testing block, the
experimenter instructed participants of the task they
had to complete (central or average) and asked them to
complete 10 practice trials. These were then followed by
the test trials. In the flanker-present conditions, each of
the 11 faces was presented as central targets and as
flankers for each of the three locations, resulting in 363
trials (11 faces as central targets311 faces as flankers3
3 locations) in blocks 1 and 2. In the flanker-absent
condition, in order to match the number of times each
central target face was presented in the flanker-present
condition, each of the 11 central faces was presented 11
times at each location, resulting in a total 363 trials (11
faces 3 11 times 3 3 locations). So participants
completed 1,089 trials in total (363 trials/block 3 3
blocks).

On each trial, a fixation screen (with a cross in the
middle) was presented for 500 ms. Then a second screen
presented either a single central face (flanker absent) or
a central face surrounded by eight flankers (flanker
present). The faces were presented at the fovea or at 38
to the left or right of the fixation cross for 100 ms.
Afterward, a third response screen appeared, prompt-
ing the participants to enter their responses (following
the task they were given) on a scale from zero
(disgusted) to 10 (happy) with five corresponding to
neutral. This response screen was displayed until a
response was entered. Figure 3 shows the fixation
screen (top left), examples from flanker absent (fovea
and right, top left and right inset), and flanker present
(fovea and right, bottom left and right inset) blocks and
the response screen.

Measuring participants’ performance

To examine participants’ ability to identify the
expressions of a central target face or the average
expressions of sets of faces, we computed their
overall mean squared error (MSE) for each condition
by first subtracting participants’ response from the
actual expression(s) presented on each trial, squaring
the differences between each ‘‘actual � measured’’
pair, summing the squared differences, and then
dividing the whole by the total number of responses/
trials:

MSE ¼
Xn

i¼1

Participant0s Responsei � Actual Expressionið Þ2

n
; ð1Þ

where i refers to the trial number and n is the total
number of responses. Lower MSE values, smaller
error, correspond to stronger performances. We
selected MSE values to describe participants’ per-
formance because our aim was to identify how much
participants’ responses deviated away from actual
expressions and not how these could be biased
toward happy or disgusted faces.

Modeling

To examine whether participants were more com-
pelled to only rate the central target or estimate
averages in foveal and parafoveal vision and to
determine which model is best at describing any
potential effects of crowding of emotional features, we
compared the performance of three models: the central,
average, and substitution models. The central model
returns the facial expression of the central face alone
and is unaffected by the presence of the flankers. The
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average model computes the average facial expression
of all the faces in the set and is, therefore, significantly
affected by the presence of flankers. And the substitu-
tion model returns the facial expression of the flanker
faces (which are all identical) and is unaffected by the
expression of the central target. Please note that the
three models are not independent as the average model
is a composite of the central and substitution models,
and its output equals

Central Model output þ 8 3 Substitution Model outputð Þ
9

: ð2Þ

This means that a superior performance in the
average model would reflect a combined contribution
of the central and substitution models.

We then considered model performance by looking
at the errors between model predictions and partici-
pants’ measured responses. The MSE was calculated by
subtracting model predictions from participants’ re-
sponses, squaring the differences, summing these
together and then dividing the total by the number of
responses:

MSE ¼
Xn

i¼1

Model Predictioni � Participant0s Responseið Þ2

n
; ð3Þ

where i refers to the trial number and n is the total
number of responses. Stronger model performances are
reflected by lower MSE values.

Figure 3. Sample trials from the experiment. The fixation screen was first presented for 500 ms. Then participants were presented

with a single face (top row inset) or with a set of nine faces (bottom row inset) for 100 ms; the faces were displayed in the fovea or

with the central face at 38 to the left or right of fixation. This was followed by the response screen. The original 100% disgusted,

neutral, and 100% happy faces were taken from the BU-3DFE database and permission to use can be found at http://www.cs.

binghamton.edu/;lijun/Research/3DFE/3DFE_Analysis.html.
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Results

Measuring error

We used MSE to describe the deviation between
participants’ responses from the actual expressions or
correct answers. However, to ascertain whether the
measured MSEs were indicative of performance above
chance levels, i.e., participants accomplished the tasks
with some degree of error versus participants were
unable to complete the tasks and were forced to enter
random values, we used a Monte Carlo simulation to
generate 180,000 simulated data sets and then to
calculated the MSEs for the different conditions, which
averaged 20.00 with standard error values under 0.006.
We set this value as the chance performance level. None
of the MSEs measured were equal or beyond 18, so we
concluded that participants could perform at above-
chance levels and that the measured MSEs were
reasonable estimates of accuracy and performance.

Effect of flankers

To examine the effects of flankers on participants’
ability to identify expressions of a target face across
eccentricities, we compared how they performed in
rating the central targets’ expression when these were
presented alone (flanker absent) and among eight other
faces (flanker present). In addition, we also considered
performance when participants were asked to estimate
the average expression from a set of faces. Performance
on the tasks was evaluated using MSE (see Methods),
so the better the performance, the lower the MSE
values.

The data are presented in Figure 4. We ran a 2 3 3
within-subject ANOVA with two factors: flankers
(absent vs. present) and eccentricity (foveal, left vs.
right). There was a significant effect of flanker, F(1, 17)
¼ 38.58, p , 0.001, g2 ¼ 0.69. When asked to identify
the central targets’ expressions, participants were more
accurate when target faces were presented alone (MSE
¼ 7.24, SD¼ 0.37) compared to when they were
presented among flankers (MSE ¼ 10.62, SD¼ 0.52).

There was a significant effect of eccentricity on
participants’ performance, F(2, 34)¼ 34.05, p , 0.001,
g2 ¼ 0.67. Responses were more accurate in the foveal
condition (MSE¼ 6.15, SD¼ 0.43) compared to
parafoveal, left vs. right (MSE¼ 10.42, SD¼ 0.55 and
MSE¼ 10.20, SD¼ 0.50, respectively). Bonferroni post
hoc tests revealed significant differences between foveal
and left (d ¼ 0.93) and foveal and right (d¼ 0.74) but
none between left and right (d ¼ 0.06).

There was also a significant interaction between
flankers and eccentricity, F(2, 34)¼ 23.67, p , 0.001, g2

¼ 0.58. To determine the cause(s) of this interaction, we
examined two sets of simple main effects. First, we
compared the effect of flankers at each eccentricity. In
foveal vision, participants’ performances were similar
in the flanker-present and -absent conditions, F(1, 17)¼
3.84, p . 0.05 (MSE ¼ 6.88, SD ¼ 0.41 and MSE ¼
5.44, SD ¼ 0.68, respectively). However, in the
parafovea, flankers had a detrimental effect on overall
performance: Errors were significantly higher in the
flanker-present condition compared to the flanker-
absent condition: F(1, 17) ¼ 32.78, p , 0.01, g2 ¼ 0.66
and F(1, 17) ¼ 40.15, p , 0.01, g2 ¼ 0.70 for left and
right, respectively. At left and right, the data points
along the solid line (flanker present) are higher
compared to the points on the dashed line (flanker
absent); Cohen’s d values for left and right conditions
were 1.35 and 1.50, respectively.

Second, we compared the effect of eccentricity on the
flanker-absent and -present conditions. When partici-
pants were asked to identify the central targets’
expressions without flankers (dashed black line in
Figure 4), their performance was the same across the
different eccentricities, F(2, 34)¼ 2.75, p¼ 0.08, g2 ¼
0.21. When participants were asked to identify the
central targets’ expressions among flankers (solid black
line in Figure 6), there was a significant effect of
eccentricity, F(2, 34)¼ 30.52, p , 0.001, g2 ¼ 0.64.
Bonferroni post hoc analyses revealed that perfor-
mance was better in the fovea (MSE¼ 5.44, SD¼ 0.68)
compared to the left (MSE¼13.27, SD¼0.97, d¼2.04)
and right (MSE¼ 13.14, SD ¼ 0.85, d ¼ 1.36). There
was no difference between the left and right conditions

Figure 4. The MSE in the flanker-absent and -present conditions

(in solid and dashed lines, respectively) across the three

eccentricities. Error bars represent 61 SEM.
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(d¼ 0.02). This indicates that both factors flanker and
eccentricity affected each other.

Central versus average tasks

Next, we compared participants’ ability to identify
the expressions of central targets among flankers
(central) and their ability to estimate the average

expression of a set of faces (average). We then ran a 23
3 within-subject ANOVA with two factors: task
(central vs. average) and eccentricity (foveal, left vs.
right). The data is presented in Figure 5.

We found a significant effect of task, F(1, 17)¼
12.53, p , 0.005, g2¼ 0.42, where participants were
more accurate on the average condition (MSE ¼ 8.24,
SD¼ 0.41) compared to the central condition (MSE¼
10.62, SD¼ 0.52). There was a significant effect of
eccentricity, F(2, 34)¼ 14.73, p , 0.001, g2 ¼ 0.46:
Participants’ performance was superior in foveal vision
(MSE ¼ 7.99, SD ¼ 0.40) compared to left and right
(MSE¼ 10.22, SD¼ 0.44 and MSE¼10.07, SD¼ 0.43,
respectively; d¼ 0.33 and 0.27, respectively). There
were no significant differences between the two
parafoveal conditions (d ¼ 0.04).

There was also a significant interaction between task
and eccentricity, F(2, 34)¼ 31.38, p , 0.001, g2¼ 0.65.
To determine the cause(s) of this interaction, we
examined two sets of simple main effects. First, we
compared the effect of task at each eccentricity. When
faces were presented in the fovea, participants were
better at rating the central expression (MSE¼ 5.44, SD
¼ 0.68) compared to estimating the average of the sets
of faces (MSE¼10.54, SD¼0.70), F(1, 17)¼20.81, p ,
0.001, g2 ¼ 0.55. When faces were presented in the
parafovea, participants were poorer at rating the
central expression (MSE¼13.27, SD¼0.70 andMSE¼
13.12, SD¼ 0.85 for left and right, respectively)
compared to estimating the average of the sets of faces
(MSE¼7.18, SD¼0.57 andMSE¼7.01, SD¼0.37 for
left and right, respectively), F(1, 17)¼ 21.01, p , 0.001,
g2¼ 0.55 and F(1, 17)¼ 37.48, p , 0.001, g2¼ 0.67 for
left and right.

Figure 5. The MSE in performance in the central and average

task conditions (in black and red, respectively) across the three

different eccentricities, foveal, left, and right. Error bars

represent 61 SEM.

Figure 6. Model performances for the central and average tasks (panels A and B, respectively) across the three different eccentricities,

foveal, left, and right. The MSE for the central, average, and substitution models are presented in blue, green, and yellow, respectively.

Error bars represent 61 SEM.
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Second, we compared the effect of eccentricity on
each task. When participants were asked to identify the
expressions of central targets that were presented
among flankers (black line in Figure 5), their perfor-
mance was significantly better in the fovea (MSE ¼
5.44, SD ¼ 0.68) compared to left and right (MSE¼
13.27, SD¼ 0.97 and MSE¼ 13.14, SD ¼ 0.85,
respectively), F(2, 34) ¼ 30.52, p , 0.001, g2¼ 0.64.
When participants were asked to estimate the average
expression of a group of faces (red line in Figure 5),
their performance was significantly better in the left
and right (MSE¼ 7.18, SD¼ 0.57 and MSE¼ 7.01, SD
¼ 0.37, respectively) compared to the fovea (MSE ¼
10.54, SD¼0.70), F(2, 34)¼18.04, p , 0.001, g2¼0.52.
This indicates that both factors task and eccentricity
affect each other.

Comparing central, average, and substitution
models

We examined the performance of three models
(central, average, and substitution) in predicting
participants’ responses in the two different tasks. For
each task, we ran a 3 3 3 within-subject ANOVA with
factors model (central, average, and substitution) and
eccentricity (foveal, left, and right).

Central task

The data is presented in Figure 6A. There was a
significant model 3 eccentricity interaction, F(4, 68)¼
31.30, p , 0.001, g2¼ 0.65. First, we compared the
effect of model at each eccentricity. In the fovea, there
was a significant effect of model, F(2, 34)¼ 47.55, p ,
0.001, g2¼ 0.74. Bonferroni post hoc tests revealed that
the central model was the most accurate in predicting
participants’ responses (MSE¼ 5.44, SD¼ 0.68) and
was superior to the average and substitution models
(MSE¼ 12.25, SD¼ 0.75 and MSE¼ 15.33, SD¼ 0.88,
d¼ 1.33 and 1.72, respectively). The average model, in
turn, was significantly better than the substitution
model (d ¼ 4.73). In the parafovea, model also had a
significant effect, F(2, 34) ¼ 5.84, p ¼ 0.007, g2 ¼ 0.26
and F(2, 34)¼ 15.49, p , 0.001, g2¼ 0.48, for left and
right, respectively. In the left, the average model (MSE
¼ 9.12, SD¼ 0.68) was superior to both the central and
substitution models (MSE¼13.27, SD¼0.97 andMSE
¼ 10.83, SD¼ 0.82, respectively; d¼ 0.68 for average vs.
central, and 2.23 for average vs. substitution), and there
were no differences between the central and substitu-
tion models (d ¼ 0.66). However in the right, the
average model (MSE¼8.10, SD¼0.43) was superior to
both the central and substitution models (MSE¼13.14,
SD¼ 0.85 and MSE¼ 9.69, SD¼ 0.52, respectively; d¼
1.09 for average vs. central, and 2.74 for average vs.

substitution), and the substitution model was better
than the central model (d ¼ 0.66).

Second, we compared the effect of eccentricity for
each model. For the central model (in blue in Figure
6A), there was a significant effect of eccentricity, F(2,
34)¼ 30.52, p , 0.001, g2 ¼ 0.64: Performance was
significantly stronger in the fovea (MSE ¼ 5.44, SD ¼
0.68) compared to the left and right conditions (MSE¼
13.27, SD¼ 0.97 and MSE¼ 13.14, SD ¼ 0.85,
respectively; d¼ 2.04 and 1.36, respectively). Results of
the left and right conditions were comparable (d¼
0.02). For the average model (in green in Figure 6A),
there was a significant effect of eccentricity, F(2, 34)¼
21.60, p , 0.001, g2¼ 0.56: Performance was
significantly weaker in the fovea (MSE¼ 12.25, SD ¼
0.75) compared to the left and right conditions (MSE¼
9.12, SD ¼ 0.68 and MSE ¼ 8.10, SD ¼ 0.43, d ¼ 1.33
and 1.30, respectively). No difference was found
between left versus right (d¼ 0.36). For the substitution
model (in yellow in Figure 6A), there was a significant
effect of eccentricity, F(2, 34) ¼ 24.86, p , 0.001, g2 ¼
0.59: As was in the case of the average model,
performance was significantly weaker in the fovea
(MSE ¼ 15.23, SD¼ 0.86) compared to the left and
right conditions (MSE¼ 10.83, SD¼ 0.82 and MSE¼
9.69, SD ¼ 0.52, d ¼ 1.49 and 1.37, respectively). No
difference was found between results of left versus
right, d¼ 0.30.

Average task

There was a significant model 3 eccentricity inter-
action, F(4, 68)¼ 26.37, p , 0.001, g2¼ 0.61. The data
is presented in Figure 6B. First, we compared the effect
of model at each eccentricity. In the fovea, there was a
significant effect of model, F(2, 34)¼ 17.73, p , 0.001,
g2 ¼ 0.74. Bonferroni post hoc tests revealed that the
central model was the most accurate in predicting
participants’ responses (MSE¼ 7.35, SD¼ 0.62) and
was superior to the average and substitution models
(MSE¼ 10.54, SD¼ 0.70 and MSE¼ 13.17, SD¼ 0.82,
d¼ 0.66 and 1.06, respectively). The average model, in
turn, was significantly better than the substitution
model (d ¼ 4.26). In the parafovea, model also had a
significant effect, F(2, 34)¼ 15.45, p , 0.001, g2¼ 0.48
and F(2, 34) ¼ 32.54, p , 0.001, g2¼ 0.66 for left and
right, respectively. In the left, the average model (MSE
¼ 7.18, SD¼ 0.57) was superior to both the central and
substitution models (MSE¼13.97, SD¼1.08 andMSE
¼ 8.55, SD¼ 0.73, d¼ 1.06 and 1.67, respectively), and
the substitution model was better than the central
model (d ¼ 0.75). Likewise, in the right, the average
model (MSE ¼ 7.01, SD ¼ 0.37) was superior to both
the central and substitution models (MSE¼ 14.11, SD
¼ 0.94 and MSE¼ 8.34, SD¼ 0.45, d¼ 1.77 and 2.25,
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respectively), and the substitution model was again
better than the central model (d ¼ 1.56).

Second, we compared the effect of eccentricity for
each model. For the central model (in blue in Figure
6B), there was a significant effect of eccentricity, F(2,
34)¼ 27.91, p , 0.001, g2 ¼ 0.62: Performance was
significantly stronger in the fovea (MSE ¼ 7.35, SD ¼
0.62) compared to the left and right conditions (MSE¼
13.97, SD¼ 1.08 and MSE¼ 14.11, SD¼ 0.94, d¼ 1.59
and 1.31, respectively). Results for the left versus right
were comparable (d¼ 0.04). For the average model (in
green in Figure 6B), there was a significant effect of
eccentricity, F(2, 34)¼ 18.04, p , 0.001, g2 ¼ 0.52:
Performance was significantly weaker in the fovea
(MSE ¼ 10.54, SD¼ 0.70) compared to the left and
right conditions (MSE¼ 7.18, SD¼ 0.57 and MSE¼
7.01, SD¼0.37, d¼1.01 and 1.15, respectively). Results
for left versus right were similar (d¼ 0.09). For the
substitution model (in yellow in Figure 6B), there was a
significant effect of eccentricity, F(2, 34) ¼ 20.41, p ,
0.001, g2 ¼ 0.55: As was in the case of the average
model, performance was significantly weaker in the
fovea (MSE¼ 13.17, SD ¼ 0.82) compared to the left
and right conditions (MSE¼ 8.55, SD¼ 0.73 and MSE
¼ 8.34, SD¼ 0.45, d ¼ 1.08 and 1.18, respectively), no
difference was found between results of left versus right
(d ¼ 0.09).

The analyses showed that model performance was
affected by eccentricity. Although the central model
dominated in the fovea, the average model was
strongest in the left and right conditions. The
performance of the substitution model was generally
significantly weaker than the average model although it
too was stronger than the central model in the
parafovea. These results could suggest that, although
participants were given two tasks (central and average),
they had a natural tendency to identify the central
target in the fovea and to estimate the average in the
parafovea regardless of the instructions.

Discussion

We presented participants with expressive faces in
foveal and parafoveal vision and asked them to either
identify the expression of a central face (central task) or
to estimate the average expression from a set of faces
(average task). We found that participants were able to
complete both tasks, but their performance was
modulated by eccentricity: Although they were better at
identifying the emotion of the central face in the fovea,
they were better at estimating the average expression of
faces in the parafovea. We then compared the
performance of three models (central, average, and
substitution) in predicting participants’ data and

showed that the central and average models were the
best predictors of participants’ responses in central and
parafoveal vision, respectively, irrespective of the task.
The performance of the substitution model was weakest
overall.

First, we considered the effects of flankers on
participants’ ability to identify the expression of single
central targets. The baseline performances showed that
observers’ ability to identify a central target (central
task) was identical across eccentricities when it was
presented alone (flanker absent), suggesting that, in
isolation, the targets were equally visible at the different
locations. However, with the addition of flankers
(flanker present), the performance in the central task
remained the same in the fovea but deteriorated in the
parafoveal left and right. These results revealed that
flankers did not affect participants’ ability to identify
the target’s expression in the fovea but did worsen
participants’ performance in the left and right parafo-
veal locations (see Figure 4), which is consistent with
research on crowding that demonstrates how objects in
the vicinity of a target can interfere with its identifica-
tion (Bouma, 1970, but also see Levi, 2008, and Pelli &
Tillman, 2008, for reviews). The absence of interference
by neighboring stimuli in central vision would suggest
that averaging at the fovea was primarily driven by
ensemble coding and was largely independent of
peripheral crowding mechanisms, whereas averaging in
the parafovea may involve both central and peripheral
averaging mechanisms.

Our analyses also showed that participants were able
to extract an average expression from a group of faces,
and interestingly, their performance was superior in
parafoveal vision compared to foveal vision (Figures 5
and 6B). In fact, their performance in estimating
averages was comparable to when they were asked to
identify the expression of a single central target in the
fovea. Here the performance in the fovea was inferior
compared to the baseline (central task, flanker absent),
and the performance in the left and right was improved
but still comparable to the baseline, so the trends were
not influenced by any flooring or ceiling effects. These
results also showed that overall information could be
captured quickly, not only at fixation (Ariely, 2001;
Chong & Treisman, 2001, 2003; Haberman & Whitney,
2009), but also beyond it. In addition, our findings
supported feature averaging in the parafovea and near
periphery as was previously reported in studies that
have used homogenous sets of stimuli, such as crosses
(Greenwood et al., 2009) or Gaussian patches (Green-
wood et al., 2010; Parkes et al., 2001). These stimuli are
characterized by repetitive low-level features, which can
be averaged though peripheral mechanisms that
compute statistical means of corresponding points. The
faces in our experiment were also repetitive, but they
were more complex and contained low- and high-level
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information (emotion). Estimating the average emo-
tional expression of a set of faces may, therefore,
involve more than simply computing the mean of
corresponding low-level features.

Calvo, Nummenmaa, and Hyönä (2008) demon-
strated higher-level gist processing mechanisms in the
processing of complex natural scenes in the periphery.
They showed that participants presented with emo-
tional scenes in their peripheral visual field could not
describe the specific emotional content but could,
nonetheless, gather a general ‘‘average’’ impression of
pleasantness or unpleasantness. Such complex natu-
ralistic scenes could not simply be averaged through
low-level mechanisms, which suggests the contribution
of some higher-level mechanism at the semantic level in
the periphery. The enhanced ability to estimate average
facial expressions presented in the parafovea in our
study could, therefore, also be driven by a similar
ensemble-coding mechanism in combination with the
peripheral mechanisms. Future research may offer
further insight into how different averaging mecha-
nisms interact across the visual field by presenting
carefully designed stimuli across different eccentricities.
For example, isolated facial features (by decomposing
expressive faces) could tap into the role of lower-level
averaging, and complex natural scenes that contain
expressive faces of different sizes, colors, and identities
could examine the role of higher-level ensemble coding.

When considering the data from the foveal condition
alone, participants were more accurate in identifying
the expression of a central target compared to
estimating the average emotion of the set. This is
inconsistent with Haberman and Whitney’s (2009)
study in which participants were better at processing
the average expression of a group of faces compared to
the expression of a single face. This difference may arise
from the fact that, in the present experiment, we asked
participants to identify the expression of a central
target face, which was always displayed at the same
location, whereas in Haberman and Whitney’s (2009)
study, participants were exposed to an array of face
images, then presented with two faces and asked to
identify which of the two they had previously seen.
Participants in their study were required to store the
emotional expression of four faces (only one of which
was later presented for identification), whereas our
participants only had to remember and retrieve the
emotion of a single central face, which is, therefore, a
far less demanding task. Another possible reason for
more superior performance in judging the central target
in our study is that the flanking faces in our experiment
were identical, resulting in a more homogeneous
background (of both low- and high-level features) that
could be more easily ignored. The difference between
our stimuli could have led the central face to pop out,
leading to its dominance across all foveal conditions. In

contrast, Haberman and Whitney (2007, 2009) used
different images with varying levels of emotional
expressions in each set of faces. Repeating our study
with variable flanking faces would be necessary to
ascertain whether our result could be influenced by the
increased homogeneity of the flankers.

We tested the performance of three models on
predicting participants’ responses: the central model,
which returned the expression of the central target; the
average model, which returned the average expression
of a set; and the substitution model, which returned the
expression of a flanker. The central and average models
enabled us to consider how well participants completed
their assigned task (central vs. average) and to
determine when they might be compelled to respond
differently. If participants were instructed to identify
the central targets’ expressions, the central model
should be best at predicting their results. Similarly, if
they were instructed to estimate the average expres-
sions, then the average model should generate the best
predictions. So, in principle, model performance should
be determined by the participants’ task.

However, the present data showed that model
performance was not influenced by the task assigned to
the participants but rather by location of the stimuli.
This mismatch between model performance and task
suggests that participants were not always completing
the assigned task and/or were sometimes compelled to
do otherwise. In the foveal condition, the central model
outperformed the average model in both task condi-
tions: Participants’ responses were closest to the central
target expression regardless of whether they were asked
to identify the central target expression or to estimate
the average expression. In the parafoveal conditions,
the average model was consistently stronger: Partici-
pants’ responses were always nearer to the average
expression irrespective of the task they were given. In
foveal vision, the results showed that the facial
expression of the central target was dominant over the
averaged expression of the set. This could be explained
by the fact that central targets are processed by a higher
proportion of the neural substrates compared to the
peripheral flankers (Adams & Horton, 2002, 2003;
Horton & Hoyt, 1991), and so their signals should be
stronger and not so easily suppressed or ignored. On
the other hand, in the parafovea, the average expres-
sion was dominant over the central target expression,
supporting Parkes et al.’s (2001) ‘‘compulsory’’ aver-
aging of features in the periphery. We also considered
the average and substitution models to examine which
mechanisms may be involved in the processing of sets
of faces and facial expressions, particularly in the
parafovea. Our analyses revealed that the average
model consistently generated stronger predictions for
participants’ responses on both tasks and at all
eccentricities. This could further support averaging
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over substitution as a model for crowding (Freeman et
al., 2012; Greenwood et al., 2009, 2010; Parkes et al.,
2001). Some might argue that the tested models are not
independent, which may limit the understanding of the
mechanisms operating at the fovea and peripheral
locations. However, despite the average model being a
composite of the central and substitution models, the
results still suggest that it is superior compared to either
one individually.

The present study considered participants’ ability to
identify facial expressions of a single target face or
extract the average expression from a set of faces. We
found that, consistent with crowding literature, in the
parafovea, the ability to recognize the expression from
a single face was compromised in the presence of
flankers. We demonstrated that participants were able
to process the average expression from a set of faces in
central and parafoveal vision, but their performance
was actually better in the parafovea. We also compared
the performance of three models (central, average, and
substitution), and participants were compelled to
respond with the expression of the central target in
foveal vision and the average expression in the
parafovea regardless of the instructions. In addition, we
found further evidence to support averaging as a
superior model for crowding compared to unpooled
substitution. Our results have raised some questions
regarding the contribution of central and peripheral
and low- versus high-level averaging mechanisms and
the involvements of the single and crowd face-
processing pathways in participants’ ability to estimate
averages of facial expressions at different eccentricities.
Future experiments, using complex natural scenes
containing multiple expressive faces of different sizes,
colors, and identities, shown from various angles, could
be used to explore the role of higher-level ensemble
coding, and presenting such scenes in central, parafo-
veal, and more peripheral visual areas may be able to
shed light on these outstanding issues.

Keywords: facial expressions, ensemble coding, signal
pooling, foveal, parafoveal
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