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Abstract

The subject of this paper is the review of advanced technology used in hydraulic

systems. The technology in question is termed Independent Metering (IM); this

is used in hydraulically driven mobile machinery, such as agricultural, construc-

tion, municipal, and forestry vehicles. The idea behind the concept is to modify

the connection between the actuator, which could be a cylinder or a motor, and

a flow control valve. Traditionally, spool hydraulic valves were used to control

the fluid flow into and out of hydraulic actuators. This keeps the meter-in and

the meter-out of the actuator mechanically connected due to the construction

of these valves. This connection makes the control system blind to pressure

changes in one of the hydraulic chambers in the actuator. This, in turn, reduces

the overall system controllability. It also increases energy losses, especially un-

der an overrunning load. These two main weaknesses led researchers to break

this mechanical connection and get into a new technology with different charac-

teristics. The proposed technology was called Independent Metering. New and

more complex control techniques can now be applied to the hydraulic systems

using this technology that were not possible before or could be applied to more

conventional servo design. This paper reviews Independent Metering (IM) and

the technologies used or developed in this field to date. The paper reviews the

state of art hydraulic technologies and indicates the links between them and

IM. It also reviews the different types of hydraulic valves used when imple-

menting IM. This review also discusses some control algorithms, IM layouts, IM

challenges, and identifies where further improvements may be achieved.
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1. Introduction

Hydraulic systems are important elements that indirectly contribute to the

quality of human life. They are heavily used for a variety of applications rang-

ing from constructional to industrial, military, aerospace, and earth moving

applications due to their unique and valuable characteristics. Compared to5

electrical actuators, hydraulic drives are characterized by high load capabili-

ties, high power to weight ratio and robustness [1] and [2]. They are effective

in applications with abrupt loading, frequent stops and variations. However,

hydraulic drives still suffer from some shortcomings, such as energy losses and

nonlinearities which makes the control system more challengeable [2]. These10

nonlinearities are largely due to friction and hysteresis, amongst other causes

[3]. Figure 1 illustrates the losses for a mobile load-sensing hydraulic system.

About 30% of the energy losses are due to the traditional valves.

Figure 1 Losses in a hydraulic mobile machine controlled by traditional spool valve
and variable displacement valve [4].

Hydraulic individualization methodology is used to improve power density,

robustness and flexibility. Individualization can be split into displacement and15

valve control [5]. Typical displacement individualization is shown in Figure 2.
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Figure 2 Illustrates different types of hydraulic drives individualization based on the
use of pump and motor [5].

The most common technique, also the lowest level, was one pump feeding

several actuators. This approach is common in injection and moulding machines

[6]. The second technique is mainly used in hydraulically driven mobile ma-

chines. A Green Wheel Loader was investigated by the Institute of Fluid Power20

at Dresden University of technology [7], and a (DC S-P) hybrid mini excavator

was improved at Maha Fluid power research centre at Purdue University[8],

both implementing this second method. The third or the last method, shown

in Figure 2, is used in high power applications where every actuator has its own

pump. These systems main characteristics are lower energy consumption rates,25

hence better fuel economy and fewer greenhouse gases. Their main drawbacks

are slower dynamics compared to servo actuators [2]. Iterations were established

to improve the response of this method using electronics similar to what in [9]

and [10].

Regarding individualization using hydraulic control valves, three main types30

of individualization are summarized in Figure 3.
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Figure 3 Hydraulic drive individualization based on valve structure, it shows the
flexibility could be obtained using independent metering and comparing to common
metering edge [5].

The first approach is a common metering edge, which is the traditional di-

rectional flow control approach. Each actuator is controlled by one valve. Due

to the mechanical connection between the metering edges of the actuator using

traditional spool valves, the system has one degree of freedom which means35

that the pressure of one cylinder chamber is controlled [11]. This configuration

limits the system flexibility, but it increases the robustness [12]. To improve

the efficiency and the energy saving, the trend was to break the mechanical

connection between the meter-in and the meter-out edges, which is why it is

called independent metering. Different terms are used for IM as separate me-40

tering, programmable valves, multifunctional valves and separate meter-in sep-

arate meter-out control [13, 14, 15]. It is termed by programmable because it

changes the control system from the hydro-mechanical concept into an intelli-

gent control system that relies on software. Breaking the mechanical connection

leads to many advantages and disadvantages as concluded from [16, 17, 18].45

The main advantages are:

1. Independent control of inlet and outlet orifices.

2. Increased energy efficiency by allowing individual control paths or modes.

This was proved for the excavator manipulator in [19].
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3. Application of simple valves.50

4. Avoiding cavitation during a pulling load.

5. Flexible system configuration.

6. Transfer of functionality from hardware to software.

7. An ability to apply advanced control methods.

The main disadvantages are as follows:55

1. Increased components costs.

2. Complex controllers are required.

3. Switching between modes cause sudden change in the velocity.

4. Difficulty of pressure compensator integration [20].

Research on IM systems has been conducted at different institutes and com-60

panies with various approaches. Figure (4) is a general statistical chart indi-

cating the up to date developments in the IM. The main scientific institutes

developing the intelligent hydraulic systems and precisely IM technology are

summarized in Table (1). The numbers of researches and patents developed

by these institutes and companies are illustrated in Figure (5). The first im-65

provement was quantities decoupling [21]. Many techniques were improved for

decoupling such as LQ technique and pressure feedback [8] and [22]. The effects

of feedback linearization and open loop control were investigated in [23] and

[24]. Besides, adaptive control, which is an important field, was used for these

systems [13], [25] and [26]. On the other hand, Tabor developed a quasi-static70

mathematical technique for IM [27]. Improving this model was by inserting

continuous mode switching [28]. The next significant improvement of the IM

technology was done by introducing the digital hydraulics [29]. Every consumer,

actuator, is actuated by four digital fluid control unit (DFCU) which contains

an array of on/off valves [30]. There was also a new system based on a hybrid75
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concept such as STEAM [8] and [31]. STEAM system relies on three pressure

lines, high, medium and tank. Changing between these pressure lines pursues

the functional decoupling of IM which will be explained in section 3 [32].

This paper reviews different aspects related to IM technology. It includes the

review of the different state of the art in these systems where the independent80

metering technology is discussed in more details. Besides, different IM valves

configurations, operation modes, and switching techniques are reviewed. It also

clarifies the main challenges facing the IM technology and the possible solutions

to overcome them. Finally, IM control systems, layouts, and algorithms are

reviewed in this paper.85

Figure 4 Number of studies related to IM in the last three decades.
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Table 1 Main academic institutes developing IM.

University Research Trends Sample of Studies

Institute of Hydraulic and
Automation at Tampere
University of Technology,
Finland.

1. Digital Hydraulic.

2. Hydraulic Manipulation
Development.

1. IM Hydraulic System
[33, 34, 35].

2. Hydraulic Manipula-
tions [36].

Institute of Fluid and
Mechatronics Systems
at Linkoping University,
Sweden.

1. IM and Load Sensing
System.

2. Hybrid Hydraulic.

3. Real-Time-Simulation
of Hydraulic Systems.

1. Load Sensing with IM
[37, 38, 39].

Institute of Fluid power
at Dresden University of
Technology, Germany.

1. Hybrid Hydraulic
STEAM.

2. Intelligent Hydraulic
Systems.

3. Developing Fluid-
Mechatronics system.

1. Independent Metering
and Decentralization for
Energy Saving [40, 5].

2. Hybrid Hydraulic Sys-
tem [32].

The George W. Woodruff
School of Mechanical En-
gineering at Georgia Insti-
tute of Technology, USA.

1. Hydraulics Component
Development.

2. Intelligent Control of
Hydraulic Manipulators

1. Poppet Valve Develop-
ments [41, 42, 43].

2. Independent Metering
System [44, 45].

State Key Laboratory of
Fluid Power and Mecha-
tronics System, Zhejiang
University, China .

1. Development of In-
dependent Metering
Switching Methods.

2. Hydraulic Drive Motion
Improvement.

1. Independent Metering
Mode Switching [46].

2. Energy saving [47, 48].

Maha Fluid Power Center,
Purude University, USA.

1. Hydraulic Components
Modelling.

2. Mobile Hydraulic Sys-
tems

3. Noise Control.

1. Load Sensing with IM
[49, 50].

2. Modelling of Compo-
nents [51].

Key Lab of Advanced
Transducers and Intelli-
gent System , Taiyuan
University, China.

1. Hydraulic Manipulation
System.

2. Modelling of Hydraulic
System

1. Independent Metering
Performance Analysis
[52]

School of Mechanical and
Automotive Engineering,
University of Ulsan, South
Korea.

1. Independent Metering
Implementation.

2. Hydraulic Manipulation
Energy

1. IM Systems [53].

2. IM Energy Saving [54].

Institute of Mechanical
Engineering, Illinois,
USA.

1. Dynamic and Control 1. Valve Performance [55].
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Figure 5 Contribution of the leading research institutes and companies to the IM
development.

2. State of the art

As indicated in [56], the three main requirements to improve hydraulic ma-

chines efficiency are as follows:

1. Reducing throttle losses,

2. Avoiding an inefficient operating point,90

3. Recovering potential energy.

Different methods were used to satisfy these requirements. They are load sens-

ing (LS), digital drive, holistic systems and independent metering. LS is one of

the most famous systems in hydraulic applications [57]. It was mainly designed

to save energy by producing the required amount of flow rate or pressure for95

the consumer [58]. This pressure is produced by a variable displacement pump
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(VDP) based on the highest actuator pressure feedback [59]. The conventional

LS systems were hydro-mechanical. The shortcomings of this traditional sys-

tem are the poor damping and inconvenient performance [60, 61]. The insertion

of electronics was performed by Casappa and Wlviol about 30 years ago [62].100

An example of practical implementation of electronic load sensing control by

HUSCO International, Inc [63]. LS systems can be split into two main cat-

egories, Open-Centre (OC) and Closed Centre (CC) Hydraulic systems. The

OC uses a fixed displacement pump, and the CC uses a variable displacement

pump [64]. The former has more losses than the latter especially when the load105

pressure is high and the required flow rate is small [65]. Adding a pressure

compensator to the CC leads to the load sensing pressure compensated LSPC

technique which is shown in Figure 6. The pressure compensator reduces the

influence of the pressure to the controlled flow. The LSPC’s drawbacks are os-

cillations and a pressure margin. Oscillations are produced in the mechanical110

system by the compensator due to the produced poor damping and increased

dynamic complexity. The pressure margin is an extra pressure needed to be

produced by the pump. The pump pressure should be more than the demand

from the most loaded actuator. This margin keeps the pressure level higher

than the pressure drop by the pressure compensator [12].115

Figure 6 Load sensing pressure compensated circuit where a variable displacement
pump uses the pressure feedback to produce the required flow and pressure [12].

Conventional spool valves controlled load sensing system still suffers from
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throttle losses due to the mechanical connection between the inlet and the outlet

[29]. This connection is illustrated in Figure 7.

Figure 7 The mechanical connections between the actuator meter-in and meter-out
due to the traditional spool valves. LS represents the load sensing signal, Ps and Qs
represent the main pressure and flow sources from the pump [12].

To reduce these losses the mechanical connection should be broken and this

leads to the IM technology [66]. Combining both systems IM and LS is a120

suitable approach to save more energy and produce better controllability. It

also transfers functionality from hardware to software, fasts the work cycle time,

and implements electronically tunable operation modes [67, 4].

An advanced practical implementation using both systems was developed by

Caterpiller Inc [68]. Also, an algorithm was developed for the combined systems125

when check valves are not used between the valve arrangement and the pump

[69], and an algorithm when the required velocity flow is more than the pump

flow [70].

Digital hydraulic is a term describing the digitalization of hydraulics. The

main idea is to replace the continuous variable with a discrete one. This covers130

different hydraulic equipment such as valves, motors, accumulators and pumps

[71]. For example, a digital pump-motor was used to implement a digital hy-

draulic power management system (DHPMS) [72]. A Digital Flow Control Unit

(DFCU) is a unit that connects a group of on/off valves in a parallel layout

and their response is presented proportionally. These valves are not prone to135
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leakage, are reliable and are insensitive to oil contamination. Using the digi-

tal valves to IM system adds extra advantages to the traditional IM that uses

poppet or spool valves [73]. Digital hydraulics can be controlled by three main

techniques as follows [29] and [74]:

1. Pulse number modulation (PNM).140

2. Pulse code modulation (PCM).

3. Fibonacci number.

The main drawbacks of digital fluid systems are as follows:

1. Larger overall size comparing with traditional valves.

2. The cost which depends on the application.145

3. Noise and pressure peaks.

The Institute of fluid power drive and controls in Aachen produced a new

configuration for hydraulic excavator called STEAM. It aims to reduce the valve

control losses as well as the engine losses by hybrid architecture [32] and [75].

The main fundamental principles concluded for the STEAM systems are as150

follows:

1. Using a constant pressure system saves more energy.

2. Using an intermediate pressure line reduces throttle losses.

3. Availability of regeneration and recuperation increases the energy effi-

ciency.155

The architecture of STEAM system offers the following advantages as follows:

1. Constant pressure system enables a fixed-point operation for the internal

combustion engine (ICE) in the machine.

2. Using three pressure lines increases the number of operating state for each

cylinder.160
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The main drawback of STEAM systems is poor controllability as the system

is based on different pressure lines [76], which produces high oscillation during

switching between the pressure levels [57].

The mentioned technologies aim to save more energy and they intersect

with IM. For example, IM was implemented using the digital hydraulic concept.165

STEAM systems can be applied by using IM. Also, a variable displacement

pump can be used with IM. To finish, independent metering, as mentioned

before, is based on breaking the mechanical connections between metering ports.

This requires different valves rather than the traditional spool type.

3. IM valves170

Generally, hydraulic valves used to implement IM can be classified into 3/3

and 2/2 valves [8]. These are used to make different forms of decoupling between

the input and the output. Decoupling can be mechanical or functional, as

summarized in Figure 8 [5]. The mechanical decoupling is based on changing the

valve kind from 3/3 or 4/3 into 2/2 proportional valves which lead to different175

configurations of IM. The functional decoupling relies on the switching and

proportional valves, where the functionality depends on the switching valve

direction combined with flow controlled by proportional valves.

The first iteration to implement IM using 4/3 valves was by Monsun-Tison

[77], and the system called MONTI. An example of IM configuration using two180

4/3 valves is Caterpiller patent [78]. Then, application of 3/3 valves was intro-

duced by EATON company. 2/2 valves were developed by many companies such

as Deere, Moog and Caterpillar [79]. These valves are cartridge poppets and are

widely used for IM control. The schematic design of the Valvistor valve is shown

in Figure 9. Its work principle is similar to the electronic transistor where the185

pilot circuit drive a larger main flow. The main difference between Pb and Pa

generated by Qp moves mm which is the main poppet for a distance xm. The

pilot stage which contains Pulse Width Modulation (PWM) solenoid controls

the Qp flow. A block arrangement contains four valves for every actuator was
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Figure 8 The main decoupling types that are used for Independent metering config-
uration [5].

developed by Caterpillar [80] and [81]. A programmable valve is a term repre-190

sents a configuration of a five electronically controlled poppet valve [82]. These

valves’ performance was evaluated by [83] and [77] and, their model was devel-

oped by [84]. After the manufacturing process for these valves, a deviation in

performance can be noticed which affect the IM system overall and to overcome

this a calibration algorithm can be used [85]. A novel auto-calibration state-195

trajectory control method for IM uses a four poppet valve configuration or a

Wheatstone bridge [18]. Inserting electronics and sensors to IM valves improves

the controllability and overall system performance. HUSCO’s INCOVA devel-

oped a brand of this configuration [86]. Figure 10 shows the configuration of

twin-spool valve architecture. Using electronics and sensors in these hydraulic200

systems increases the failure due to the harsh environment, and to overcome

this drawback, EATON improved a failure operational control algorithm [87].
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Regarding digital hydraulic approach using DFCU. Different kinds of valves are

used for digital hydraulics. These are bi-stable on/off valves improved by Uusi-

talo, a monostable needle improved by Karvonen and a wide array of digital205

hydraulic systems improved by Bucher Hydraulics [88]. These valves arrange-

ment can be used for IM as simulated by [73]. Table (2) includes the IM valves

that have been produced to implement the independent metering system in the

mobile machines.

Figure 9 The main schematic of electrohydraulic poppet valve where Qp is the pilot
flow, mm is the main poppet, PP is the pilot pressure, Pa is the main pressure source,
Q2 is the feedback control flow, Qb is the total flow. [83]
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Figure 10 The Eatons Ultronics twin independent spool valve (EATON 2010). 1 -
main stage valve block, 2 - independent spool for metering, 3 - pilot valve, 4 - low
power voice coil actuator, 5 - centring spring, 6 - pilot spool, 7 - position sensor, 8 -
thin film pressure sensor, 9 - embedded micro electronics

Table 2 Details of the industrially produced independent metering valves .

Manufacturer Product Flow Rate Hysteresis Response
Time

Pressure
Drop

EATON EPV10
[89].

30 L/min < 4% 35 ms 200 bar

BUCHER WS22GD[90]. 30 L/min < 5% 20 ms 350 bar

EATON CMA90
[91].

90 L/min sub-
micron

24 ms 25 bar

EATON CMA200
[92].

200 L/min sub-
micron

24 ms 35 bar

HUSCO EHPV[93]. 75, 150, 800
L/min

very Low 100 ms 15 bar

However, the major characteristics of the valves that have been studied to210

implement the IM are included in Table (3), as obtained from [4]. A significant

recent development in the IM valves is developing the new stepped rotary flow

control valve [94, 95, 96]. It has been developed to replace the poppet, valvi-

sotr, valve and to overcome some of its shortcomings such as flow accuracy and

stability. Embedding the stepped rotary valve into the IM configuration allows215

implementing an advanced intelligent control system and improves the system
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performance by avoiding depending on the fluid as part of the control system

which is a major drawback of the valvistor valve. The stepped rotary valve

is shown in Figure (11). It has two main parts which are the orifice and the

stepper motor. A sensor-less activation algorithm for the rotary valve has been220

developed in [97]. This technique increases the controllability and reduces the

fault rate by excluding rotation feedback sensor.

Table 3 Different flow control valves and their characteristics

Characteristic Spool Poppet Digital

Flexibility Low Medium High

Flow accuracy High Medium Low

Redundancy Low Medium High

Manufacturing cost High Medium Low

Anti-leakage Low Medium High

Sensitive to contamination High Medium Low

Stability High Medium medium

Figure 11 The main schematic of electrohydraulic rotary flow control valve [95].

4. IM control systems

Inserting software control as a main part of hydraulic system grants im-

plementing intelligent control techniques. The hydraulic programmable control225

system contains three main levels which are illustrated in Figure (12) [47]. The

upper level is the mode switching level which allows energy regeneration and
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recuperation. It performs the mode switching to select the most efficient mode

which allows energy regeneration and recuperation. The selecting technique re-

lies on the system’s status such as pressure and velocity. In the lower level, the230

selected valves in each mode are activated to produce a flow rate which controls

the cylinder speed. The primary level is to control the pump pressure and flow

[4]. The review in the paper focuses on the upper and lower levels.

Figure 12 The main three control levels of programmable hydraulic control system
[4].

For the lower level, different control parameters can be used for independent

metering as shown in Figure 13. These parameters can be separated into flow,235

pressure difference and displacement control. As the flow and displacement

controls rely on electronic sensors, they do not exist in hydro-mechanical types

that use pure mechanical components.

As the separation of actuator metering increased the degree of freedom,

different control strategies can be applied and investigated on the system. Three240

main control systems can be implemented on IM as shown in Figure 14 [5].

The first approach, which is Feed-forward control, is mainly used in mo-

bile machinery, and the operator who closes the loop [5] and [77]. The second
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Figure 13 Different control parameters implemented for IM where PPC-Primary
pressure compensator, SPC-secondary pressure compensator, EH-Electrohydraulic, P-
Pressure, F-Flow, and D-displacement [5].

type is closed loop control feedback, Single Input Single Output (SISO), to en-

sure that the output follows the trajectory command. The last one, which is245

the Multiple Input Multiple Output (MIMO), is a closed loop control system.

It is used to control more than one target variable where different states are

controlled at the same time in IM. These states are coupled together. The de-

coupling between them can be performed using MIMO control. A study for

MIMO control approaches and the pressure compensator effect was conducted250

by [16]. Different iterations were performed to decouple these factors. Decou-

pling between the actuator velocity and pressure using a combined pump and

valve control [98]. The aim of the study in [17] was to decouple the response and

the pressure level in the hydraulic actuator using four orifices. Some researchers

designed decoupling between the velocity and pressure in the hydraulic actuator255

and this requires velocity feedback [17]. This control approach achieved a good

decoupling, but this depends on the quality of the velocity feedback signal. A

H∞ loop-shaping approach without taking measures to dampen the system was

investigated [36]. Conversely, the pressure compensator is an important com-

ponent reducing cross-talking or the coupling between two valves [16] and [77].260
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Figure 14 Different control approaches for Independent Metering [5].

Moreover, a flatness-based control algorithm was used to allow manipulation of

the cylinder speed and the pressure level separately. It was used in the inner

layer for the continuous mode switching technique within Modicieny approach

[99] and [100]. On the other hand, load oscillation appears during movement

using separate meter-in separate-meter out (SMISMO) system, precisely when265

the load stopping after moving. An optimal approach based on Hamiltonian

method was developed in [101].

Regarding single loop controllers, PID controllers are widely used to acti-

vate valves with their flow maps. The Fuzzy PID controller was improved to

enhance the dynamic performance of two stages servo valves to form indepen-270

dent metering system [102]. Also PID controllers are used to activate variable

displacement pumps [47]. It was used for velocity and pressure control for ac-

tuators in multifunction systems [103] and[104]. It was also used to improve

performance for a hydraulic excavator [105].

Adaptive control is an approach that changes the controller in real time.275

This maintains the desired level of a control system especially when the pa-

rameters of the model are uncertain or nonlinear as in hydraulic systems [106].

Adaptive control was used for five valves scheme [107] and [25]. Usually, IM is

configured using four valves which is called Wheatstone bridge. Additional valve

enables precise control of direct cross port flow. This control technique was in-280
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cluded in an improved hybrid system using a three-level control system and an

accumulator [26]. Moreover, indirect adaptive robust dynamic surface control

(IARDSC) method was developed to enhance the performance of IM system

by reducing the internal uncertainties and external disturbances using (IARC),

while the dynamic surface control (DSC) is used to deal with the inherited ex-285

plosion of term [108]. As the IARC is good for constant parameters estimation,

it’s performance is poor when the is fast parameters changing. The effect of

fast parameters change produces an explosion of the term and is used to over-

come it [109]. Vibration is one of the drawbacks of the IM method due to the

lack of damping on meter-out. A hybrid control method combining dynamic290

pressure feedback and active damping controller was designed, and pole-zero

assignment approach was implemented to capture the optimal damping under

large variation of operating conditions [110].

5. IM operation modes

For the high level of the programmable hydraulic, the independent metering295

structure allows for different operating modes which reduce power consumption.

These operation modes represent certain fluid paths into and out of the actuator.

Also, they are variable due to load changes and supplied pressure. Some of these

modes such as regeneration were not achievable using 4/3 valves [111]. The main

scheme used by Shenouda in [111] and Sameh in [112] to study an independent300

metering system was the Wheatstone bridge as shown in Figure 15.

This configuration allows for five modes which are as follows:

1. Power extension mode (PE).

2. Power retraction mode (PR).

3. High side regeneration extension mode (HSRE).305

4. Low side regeneration extension mode (LSRE).

5. Low side regeneration retraction Mode (LSRR).
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Figure 15 The main IM diagram used by Shenouda [28] where Ksa is the valve
between the pump line and the cylinder head chamber, Kat is the valve between the
tank line and the cylinder head chamber, Ksb is the valve between the pump line and
the cylinder rod chamber, and Kbt is the valve between the pump line and the cylinder
head chamber.

Power extension mode is performed by supplying the fluid from the pump to

the actuator head chamber using inlet port, while the fluid drained from the

actuator to the tank using the outlet branch. The next operation mode is power310

retraction. Its the opposite of the power extension mode. These two modes are

illustrated in Figure 16. And they are the most energy-consumable modes.

Regeneration modes are separated into high side and low side. The High

Side Regeneration Extension Mode (HSR) is shown in Figure 16. The high side

regeneration is achieved when the fluid is passed from the rod chamber to the315

head chamber using the high connection point of the bridge. The recirculated

flow is not enough, so the difference supplied by the pump itself. This indicates

that the power extension mode provides force more than high side regeneration

extension while HSRE can achieve more speed than power extension [28].

The low side regeneration appears when fluid regeneration is performed at320

low point connection. Low side regeneration has two types which are low side

regeneration retraction mode and low side regeneration extension mode. These

modes are shown in Figure 16. The latter happens when the load is lowering

and the gravity helps. The first happens when the load is lowering using its

gravity and the outlet fluid is fed into the head chamber.325
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Figure 16 The five operation modes of the independent metering

As shown in Figure 17, different terms for the operation modes were defined

based on the meter-in, meter-out, and the pump activation[77]. These terms

are as follows:

1. Recuperative mode: The energy is gathered only from the load to actuate

actuators such as pumps and motors.330

2. Neutral: No energy is needed to perform the operation.

3. Regenerative: When the lower flow is required from the pump. Flow is

mainly obtained from the actuator with a high load.

4. Normal mode: These modes when all the flow is obtained from the pump.
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Figure 17 Main operation modes as indicated by [77]

There are other terms for the modes in Figure (17) as indicated in [99]. The335

terms of the Normal mode, Neutral mode, Regeneration mode, and Recupera-

tion mode, respectively, are the Normal mode, the Low-Pressure Regeneration

mode, the High-Pressure Regeneration mode, and the Reverse mode. Figure 18

shows valves activation in every control mode based on a five valves architecture.

These modes, with their valves, are used to implement Modiciency technique340

which is discussed in [99].

Figure 18 Valve architecture for Modiciency technique. The hpREG is for the high
pressure regeneration mode, lpREG is for the low pressure regeneration mode, Nm is
the normal mode, the Xm is the reverse mode, the suffix (sc) is for the short circuit,
and the suffix (f) is for additional pressure obtained from the supply pressure line [99]

STEAM systems introduced a different division based on operating states.

The operation state refers to each discrete valve setting while the operating mode

is a composition of the state and the load [75]. Figure 19 shows the discrete
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operating states for STEAM systems using low, medium and high-pressure lines.345

Figure 19 STEAM system operation modes where P: pressure, L: low, H:high, M:
medium and α: ratio [75]

In IM, operation modes are separated into four quadrants as shown in Figure

20 (a) and their power division in (b), [46].

(a) Operation mode based on quadrants
divisions

(b) Limits for the modes division

Figure 20 Limitation for the operation modes in IM
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These quadrants are separated as follows:

1. This quadrant has two operation modes which are power extension and

high side regeneration retraction mode. The limits for PE are implemented

by Eq. (1), and for HSRE by Eq. (2).

[FPE , VPE ] =
[
Ps,max.Aa,

qs,max

Aa

]
(1)

[FHSRE , VHSRE ] =
[
Ps,max.(Aa −Ab),

qs,max

(Aa −Ab)

]
(2)

2. This has two modes which are the low side regeneration retraction Eq (3)

and Eq (4) when the velocity exceeds the limits of LSRR mode.

[FLSRR, VLSRR] =
[
Fl,

qLSRR

Ab

]
(3)

[FLSR, VLSR] =
[
Fl,

qs,max

Ab

]
(4)

3. Power retraction mode PR

[FPR, VPR] =
[
Ps,max.Ab,

qs,max

Ab

]
(5)

4. Low side regeneration extention(LSRE)

[FLSRE , VLSRE ] =
[
Fl.Ab,min(

qLSRE1

Aa
,
qLSRE2

Ab
)
]

(6)

Shenouda designed three valve modulation modes. These modes are continuous

and they include the five discrete modes [28]. They are the powered high side350

regeneration extension mode (PHSRE), the powered low side regeneration re-

traction mode (PLSRR) and the powered low side regeneration extension mode

(PLSRE). As indicated in the same source, this method can achieve smoother

velocity control and higher force capability compared to discrete modes.
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Regarding STEAM systems, division is based on states as illustrated previ-355

ously in Figure 19. These divisions could be regeneration, recuperation, resistive

float or assistive float. It is normally difficult to apply all these divisions and

this is based on the actuator type and dimensions [43].

6. Mode switching methods

Mode switching should occur when the mode capability is no longer suffi-360

cient. A suitable mode switching is used to minimise losses and decrease switch-

ing problems which are switching instability and unsmooth switching [46]. Many

algorithms were developed for mode switching. As these modes directly affect

the performance of the actuator, smooth and fast switching is crucial. A se-

lection method based on cylinder force, velocity and required force using an365

ACR controller was improved [13] and [25]. A mode switching using a fitness

function was implemented [111]. This function receives problem parameters as

inputs and suggested the solution to get out the optimum solution. It should be

able to utilise fast computing speed and quantitatively measure the suggested

solutions. Also, the continuous mode switching using three valves simultane-370

ously was discussed [46]. A Mode transition, based on meter-in or meter-out

control, was developed as shown in Figure 21 [77]. Meter-out control uses a

meter-out valve to control the speed, has two operation modes which are recu-

peration mode and a neutral mode. Changing between these two modes depends

if the load is higher than the pump pressure. When neither of these operation375

cases can be used, the system will start using oil from the pump. This is called

meter-in control which represents the right part of Figure 21.

Moreover, mode switching technique for the STEAM system which relies

on two pressure lines [113] and [114]. This technique is based on a finite state

machine. The main idea is to split the modes into three groups, namely QH , QM ,380

and Ql. Each group contains three states, for instance QM includes QMP,HP ,

QMP,MP , and QMP,LP . The principle of the mode switching is to keep the

pressure in one chamber and change it in the other to prevent interference
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Figure 21 Mode switching division for four valves IM configuration [77]

between set of states in the same group as shown in Figure 19. For example, in

the group QM , the head chamber valve was fixed on pressure line MP during385

changes and the transition was for the rod chamber pressure between HP ,LP

and MP according to the state power capability. The change between QH ,

QM , and QT was performed by fixing the rod chamber valve and adjust the

head chamber valve.

On the other hand, the technique used for switching in the Modiciency ap-390

proach is based on controlling the velocity and pressure level using the MIMO

control. This technique allows for the continuous mode switching based on
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modes illustrated in Figure 18. The continuous mode switching is shown in

Figure 22.

Figure 22 The modes switching for the Modiciency technique [77]

A bumpless mode switching algorithm is used to overcome discrete switching395

problems [46]. This algorithm contains two parts which are dynamic dwell-time

and bidirectional latent tracking loop. The dynamic dwell-time is used to re-

duce transient instability by slowing the transformation into sufficient time. The

time value is obtained based on the Multi-Lyapunov function. The bidirectional

latent tracking aims to solve the unsmooth switching by eliminating the discon-400

tinuity of control signals. With regard to digital valve systems that can be used

to implement independent metering, Linjama has improved a stepwise change

in valve states [115].

7. IM layouts

In general, the combination between the hydraulic circuits and the IM has405

different forms as follows:

1. The combination between the traditional hydro-mechanical load sensing
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and the IM. In this configuration, the pump is driven hydro-mechanically

and the poor damping is one the main system shortcomings.

2. The combination between the electronics load sensing system and the410

IM valve configuration. The electronics load sensing relies on Electronics

Controlled Pump (ECP) to control the circuit pressure and flow.

3. Combine the closed circuit with IM to eliminate the throttle losses [116].

The drawback of this configuration is a functional failure under overload

condition [117]. So, ECP open circuit combining IM was introduced by415

Kim in [118].

4. The last configuration which includes inserting accumulator as an energy

storage unit that allows reusing the fluid during operation [26].

Tabor designed a control system configuration for four valves independent

metering as shown in Figure 23. The control system is based on a micropro-420

cessor that coordinates the work between different control portions which are

a pressure controller, a function controller and a system controller [119]. The

function controller reads the pressure from the meter-in, meter-out, source pres-

sure, and the tank pressure. The system controller is responsible for reading the

pressure and speed commands, then it selects the operation modes and identifies425

the required flow rates for each valve (21-24) in Figure 23. Also, the cavitation is

observed during operation as if it appears the controller loses its functionality.

In the end, the pressure controller is used to control the pressure from the pump

and tank in order to save energy and prevent cavitation. The practical imple-

mentation of a similar IM valve control system combined with pump control430

algorithm was performed on a 20-ton excavator by Hyundai Heavy Industries

Co., Ltd [120] and indicated a saving of energy of up to 10 % comparing to

conventional excavator which rely on normal spool valves.
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Figure 23 Tabor control scheme for four valves IM [119]

A novel structure for mobile machines with the common pressure compen-

sator was developed using the minimum number of sensors and simple control435

algorithms [11]. It was developed to be more acceptable to industry, as il-

lustrated in Figure 24. Its main strategy is controlling the velocity from the

meter-in using open loop approach. The meter-out is controlled using closed-

loop feedback. To overcome the nonlinear relationship between the meter-out

signal and the pressure compensator throttling which is inherent in the system440

due to the closed-loop feedback, the meter-out value should rely on the head

chamber pressure which can be determined from the pressure drop value on the

pressure compensator.

30



Figure 24 Novel pressure compensated control scheme [11]

For a hybrid system, a three-level control system was designed [26]. This

control system aims to cooperate the operations between the main pressure445

source, the accumulator and actuators to reduce the power consumption and

increase controllability using adaptive control. For STEAM systems, RWTH

Aachen university improved a control system using two proportional 2/2 way

valves and six switch valves for each actuator [31]. This system is shown in

Figure 25.450

Figure 25 STEAM system configuration for hydraulic excavator [31]

a new system that able to adapt to load fluctuation was designed [57]. Every

actuator contains two 3/2 switching valves and one proportional valve. The

proportional valve is to control the cylinder movement while the switch valves

are used to connect the proportional valve to the pressure lines as shown in
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Figure 26. The oscillation due to the pressure line switching can be reduced by455

a step change of the switching valves.

Figure 26 Valve control concept with intermediate pressure line [57]

A meter-out control with pressure compensator was improved [20]. This

system, which is illustrated in Fig. 28, was an improvement because most of

the manufacturers do not offer bidirectional poppet valves.

Figure 27 Meter-out control with the pressure compensator [20]

A flow on demand concept which was developed to reduce the losses in load460

sensing systems relies on the joystick commands or the valve position in contrast

to LS that depends on the highest consumer pressure [65] and [121]. Combining

flow on demand concept with independent metering leads to better efficiency

and controllability [122]. As illustrated in Figure 28, the controller receives
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signals from the joystick and the valve positions via CAN communication to465

control the variable displacement valve. The accumulator is used to allow energy

regeneration.

Figure 28 Flow on demand circuit combined with IM system, the highlighted part
represents the flow on demand circuit [122]

An example of load sensing combined with pressure compensation and inde-

pendent metering is shown in Figure 29. This configuration grants two pressure

compensation methods which are the meter-in pressure compensation (MIPC)470

and the meter-out pressure compensation (MOPC). The pressure reducing valve

is used between the metering valves block and the LS part to reduce the required

pressure from the pump as minimum as possible and this relies on the pressure

sensors 1 and 2. The feedback pressure 3 and 4 values are used to form a closed

loop control signal for the controller 2.475
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Figure 29 Hydro-mechanical pressure compensated load sensing circuit with inde-
pendent metering configuration. [67]

The independent metering has been used to drive motors in hydraulic mo-

bile machines. For example, IM is used to drive the swing part of a hydraulic

excavator similar to the driving technique that was developed in [123, 52]. The

study showed that IM improved the dynamics performance of the excavator

swing by controlling the throttle orifice size. A control algorithm was developed480

by Caterpiller to control the swing motor in order to save extra energy [124].

Also, an accumulator was attached to the swing motor to allow energy regenera-

tion as investigated in [125]. A flow matching technique for hydraulic excavator

swing was developed in [126]. This technique reduces the energy losses by pro-

ducing the required flow by the motor, and improves the system dynamics by a485

separate control of the throttles for a high inertia component.

A novel hydromechatronics configuration of the independent metering using

a stepped rotary flow control valve has been developed. This configuration,
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shown in Figure (30), is termed as Micro-Independent Metering (MIM) due

to the activation technique of the valve [127]. A new control algorithm has490

been developed for the MIM systen. It grants the user extra options such

as smoothness activation which changes the step division of the stepper motor.

Moreover, this configuration transfers the traditional control, using the valvistor

valve, from infinite positioning to finite steps. From the controllability side, the

new system increases the stability margin by eliminating the effect of the fluid495

disturbances on the control elements which usually burdens the poppet valve

performance hence affects the cylinder velocity performance.

Figure 30 The schematic of Micro-Independent Metering system. [127].

8. Independent Metering Challenges

There are many drawbacks that prevent IM systems from spreading widely in

industrial applications. In general, these challenges can be classified as follows:500

1. Mode Switching. The independent metering control algorithm relies

on a rule-based transition between many operating modes. This transition

contributes to two main types of discontinuity which are the valves control

signal and the system dynamics. The effects of the valve control signal
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disruption are a velocity oscillation and pressure peaks [28]. A tracking505

algorithm based on online and offline controllers has been developed to

reduce the effect of the control signal interruption. To overcome the dy-

namics problems which are the actuator motion instability and velocity

oscillation, a continuous mode switching was developed by Shenouda in

[28], but this solution suffers from extra power losses. However, the solu-510

tions to this problem can be listed as follows:

• Slowing the system reaction. This allows the controller to react to

the pressure after instability decay, but this technique slows down

the system.

• Slow down the valve using step-wise or ramp signal, but this tech-515

nique slows down the system. [128].

• A dwell time technique which detects the signal and executes af-

ter enough time period that allows decaying the pressure instability.

However, the efficiency of this method depends on selecting a suitable

time.520

2. Oscillation. The hydraulic actuator oscillation is an important point to

investigate. The independent metering reduces energy losses by enlarging

the orifices, but this dwindles the controllability and produces velocity os-

cillation due to lack of damping at the enlarged orifices. Also, the changing

between different operation modes with different dynamic characteristics525

is another source of oscillation. A high pass filter and PD regulator are

used to improve the damping and other parameters such as stability mar-

gin and vibration reduction for multi-actuator system [129].

3. Coupling. The independent metering system transfers the electrohy-

draulic drives into MIMO systems. For the coupling between the pressure530

and velocity, in the IM systems, many techniques were developed as dis-

cussed in Section 4. Each method has some shortcomings, and a new

decoupling strategy is an important point to investigate.
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4. Pump/Valve Coordinate Control. The IM grants a separation control

of flow and pressure which requires a coordinate control between the pump535

flow and the IM valves. Many iterations have been developed and one

of them is to fully open the meter-out valve and control the meter-in,

but this increases throttle losses by the meter-in. Another solution is to

make the meter-in fully open and control the flow using the electronically

controlled pump [130]. This technique prevents implementing the pressure540

compensation method which is important for the IM systems. Another

method is to fully open the meter-in and combine the control with the

meter-out [131]. This method relies on many modes with different dynamic

characteristics, so this technique affects the system dynamics overall. This

represents an important research point where further study to new systems545

that combine energy saving and system dynamic can be performed.

5. Safety and Reliability. Using systems including software, electronics,

and smart valves increases the fault percentage of these systems [132].

This is a very important aspect to investigate. Faults in the independent

metering systems can be classified into:550

• Function fault: it appears if one of the IM valves lost performance or

one of them encounters performance deviation. There are three main

techniques developed to overcome this fault which are model-based

design, intelligent control, and neural network [133]. The model-

based design is not suitable for the IM applications due to the high555

non-linearity in fluid applications. A neural network fault detection

algorithm was developed by Opendbosch in [134].

• Accuracy lost: it appears if one of the sensors lost functionality. A

configurable controller is a solution used to deal with sensor fault in

the IM systems, similar to what used in [135].560

• Stability lost: during mode switching, the system may suffer from

losing stability. Different iterations have been introduced such as
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step-wise or dwell time control. These solutions have some drawbacks

that affect system dynamics. So, new methods or techniques is an

important sector of IM to investigate.565

Finally, as illustrated in Section 3, a new trend of IM development is to use

a new stepped rotary flow control valve. This valve uses a stepper motor for

rotation. A model-based study for a simple IM configuration based on this valve

was included in Section 7. The new system requires different kind of analyses

such as570

• As inserting the stepper motor changes the valve activation concept from

infinite positioning to finite one, the mathematical relation between the

two valves in each IM operation mode has to be studied in a different

approach of what Tabor developed in [27]. Tabor, in [27], considered the

mathematical relation using the poppet valve which has nonlinear and non575

stable performance.

• There are different driving techniques for the stepper motor which are the

full step, half step and micro-step. Every type has a different effect on

the valve and the IM system dynamics. This requires studying these tech-

niques and determine the suitable valve activation technique. Moreover,580

developing a method that allows changing between these modes during

operation without effect the system dynamics is essential.

• Develop a control algorithm that can extract new facilities for the hy-

draulic machine user. For example, driving the stepper motor using micro-

stepping technique smoothness the hydraulic actuator movement. This585

can be one of the machine operator’s options.

9. Conclusion

This paper introduces a comprehensive review of IM technology with its rel-

ative systems. This technology is used in a range of very important applications
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such as hydraulic mobile machinery. It is based on breaking the mechanical590

connection between the meter-in and the meter-out of the hydraulic actuator.

Due to this, different kinds of valves are used. These valves were reviewed and

analysed. They are usually 2/2 and 3/3 spool valves. These valves’ types are

spool, poppet, and digital. Recently, there is a new trend of development in the

IM which is using the stepped rotary type. Implementing the IM technology595

is mainly based on a programmable multi-layouts control system. The layouts

are upper, lower, and primary. The upper layout is used to detect the suitable

operation modes. The lower layout is used to control the valves’ performance,

and the primary layout is used for the pump pressure and flow control. Different

control techniques in literature are used for the IM configuration. These meth-600

ods can be split into MIMO, SISO and open loop control systems. The pressure

compensator can be used to implement a SISO system instead of MIMO, but

it affects the system dynamics by introducing oscillations. Besides, different

operation modes can be used to implement IM. These modes were reviewed

and illustrated. Many algorithms were used to transfer between these operation605

modes to overcome drawbacks and produce smooth switching. In this review,

many challenges facing IM technology have been highlighted. The analysis of

these challenges indicates that this technology requires multi-disciplines devel-

opment techniques that rely on integrating different sciences ranging from elec-

tronics, mechanics, software, and artificial intelligence. So, the future trend for610

this technology is the combination between the fluid and mechatronics science

which is termed by hydromechatronics in some resources. Finally, as concluded

from this study, all the developments and iterations are keen on improving the

work methods or switching approaches rather than improving the main compo-

nent, the valve, which can be used for a different and novel system that allows615

implementing intelligent control algorithms. Study the performance of these

valves, such as the stepped rotary valve, and their effect on IM, from different

aspects as mentioned in the paper, will lead to new and novel technologies in

this field.
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den, no. 092, Linköping University Electronic Press, 2013, pp. 505–511.

[39] J. de Brun Mangs, M. Tillquist, Evaluation of a programmable hydraulic

valve for drill rig applications (2018).745
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