A New Approach to Calculate Resource Limits with Fairness in Kubernetes

Hamed Hamzeh!, Sofia Meacham! andKashaf Khan?
LFaculty of Science and Technology, Bournemouth University, UK.
hamzehh@bournemouth.ac.uk, smeacham@ bournemouth.ac.uk
2British Telecom, Ipswich, UK, kashafkhan@bt.com

Abstract—Containerization has become a new approach
that facilitates application deployment and delivers scalability,
productivity, security, and portability. As a first promising
platform, Docker was proposed in 2013 to automate the deploy-
ment of applications. There are many advantages of Docker
for delivering cloud native services. However, its widespread
use has revealed problems such as performance overhead. In
order to deal with those problems, Kubernetes was introduced
in 2015 as a container orchestration platform to simplify the
management of containers. Kubernetes simplifies managing a
large scale number of docker containers, however, the fairness
is a missing point in the Kubernetes that has been applied in
other platforms such as Apache Hadoop, YARN and Mesos.
Assigning resource limits fairly among the pods in kubernetes
becomes a challenging issue as some applications may require
intensive resources such as CPU and memory that should be
maximized to satisfy them. In order to do that, in this paper,
we practice a novel way to assign resource limits fairly among
the pods in the Kubernetes environment.

Keywords-Cloud computing; dominant; non-dominant; fair-
ness; Kubernetes ; resource; Scheduling.

I. INTRODUCTION

Cloud computing provides many facilities and opportu-
nities for organizations and especially for DevOps to move
their operations into the virtual world. The aim of virtual-
ization in the cloud is to attain a good level of elasticity
in terms of resources so that Virtual Machines (VMs) and
containers provide a specific level of virtualization. While
virtual machines provide resources in Infrastructure as a
Service(laaS) layer, the virtualization in containers happens
in operating system level in which multiple containers
run on top of the OSKernal [1]. Containerization aims
to provide isolation between management and developing
applications without concerning of migrating them from one
environment to another. Docker is one of the most popular
containerization platforms which was proposed in 2013 to
package the applications along with their dependencies.
Within the Docker, codes are transformed easily to other
environments[2].

However, as users’s demands increase and the container-
ized applications are scaled, the management and coordi-
nation of the containers become challenging. To overcome
those problems, Kubernetes[3] was proposed in 2015 as
a container orchestration platform in order to orchestrate
different workloads in terms of computing and networking

operations. Additionally, Kubernetes provides different func-
tionalities such as load balancing, deployment, and scaling
of a wide range of workloads. Fairness algorithms are
generally used in well-known platforms such as Apache
Hadoop,YARN[4] and Mesos[5] such as Max-Min[6] and
proportional fairness[7].

Hadoop is an open-source software system which is used
to process the huge amount of data with the cluster of com-
puters. Hadoop Fair Scheduler(HFS)[8]assigns resources in
slots to all incoming jobs. HFS considers a queue of jobs that
allows short jobs to be processed without starving long ones.
Fair resource allocation in HFS applies priorities as weights
of each user’s job to calculate the exact amount of compute
resources that could be allocated in each time. Apache
Mesos[9] is a cluster manager developed by the University of
Berkeley that provides efficient resource sharing on a huge
scale between distributed applications and data centers. It
lays between the application and operating system layers
in order to provide an easy and efficient approach for
the application deployment and management in large-scale
clustered environments. Mesos uses DRF to allocate and
schedule resources across multiple users, aiming the high
resource utilization. Apache Hadoop YARN as a necessary
component for enterprise Hadoop aims to facilitate resource
management to provide consistent operations, security, and
data governance tools across the Hadoop clusters[10]. FIFO,
Fair, and Capacity are widely used schedulers in YARN.
Similar to Hadoop Fair policy takes into account only
utilization of memory for each job and intents to assign
memory in equal shares, while the DRF tries to ensure
all jobs to get an equal share of resources based on their
dominant resource requirements.

Kubernetes has an approach however we believe it can be
improved as it is not fair in all circumstances. Basically,
each pod may have intensive resource requests over one
of the resource types either in CPU or memory. In this
case, maintaining fairness among the pods would be a core
criterion in which the maximization of allocations for each
pod becomes an optimal solution.

The concept of fairness was initially considered in
a multi-resource cloud environment by introducing DRF
algorithm[11] in 2012. Technically, DRF equalizes dominant
shares of users to achieve a fair allocation along with

efficient utilization of resources while the objective is to
maximize the allocations of users’ shares. According to
our knowledge, there is no any specific work considering
fairness in Kubernetes, however, DRF has been considered
in kube-batch project as a batch scheduler in Kubernetes
which aims to share resources among different tenants[12].
DREF as a plugin in kube-batch is just for registering some
callbacks for actions such as the compare function to sort
jobs and event handler.

We believe that setting up resource limits without consid-
ering fairness is not an appropriate solution in an environ-
ment in which pods are competing to get more resources.
Basically, in the Kubernetes, if the resource limits are not
specified during the pod creation level, a pod may consume
all the resources of a node, leading to the starvation of other
pods. So, each pod should normally get a specific amount of
resource. In other words, some applications are intensive in
CPU or memory which means that they need more resources
be able to run in the cluster.

Kubernetes has an approach, however, we believe that it
can be improved as it is not fair in all circumstances. The
fairness problem in Kubernetes has only been taken into
account in terms of resource quota. The resource quota is
applicable when many number of users or teams share the
cluster with a certain number of nodes. In that case, the
resource quota feature, prevents a team to use more than its
fair share of resources. Although this method is a way to
avoid an unfair situation in the Kubernetes, however, it is
only for the limited number of cases not for a general situ-
ation. Furthermore, the resource quota and limit allocations
should follow dynamic settings which means that each pod
should receive its share based on what it has asked for and
what is the resource requirements. Basically, each pod may
have intensive resource requests over one of the resource
types either in CPU or memory. In this case, maintaining
fairness among the pods would be a core criterion in which
the maximization of allocations for each pod becomes an
optimal solution.

Taking into account the above-mentioned problems, In
this paper, the first attempt is to model and integrate
three different fair allocation algorithms, MLF-DRS[13] and
FFMRA[14] as well as DRF in Kubernetes, trying to assign
resource limits fairly among different pods running in a
specific node.

The paper is organized as follows: In section II, a back-
ground study is considered. Section III, explains the moti-
vation of the research. The proposed model is introduced in
section IV as well as examples. Finally, section V presents
the conclusion and summary of the paper.

II. BACKGROUND STUDY

A. Kubernetes architecture

Kubernetes (K8s) is a widely accepted open-source plat-
form for the container orchestration, automating deployment,

scaling, and management of containerized applications. It
gathers together all containers to keep up applications into
logical units to do an easy management and discovery
operations. The high level architecture of Kubernetes[15]
has been presented in Figure 1. Cluster is the highest-level
concept in Kubernetes which is composed of a bunch of
running machines to manage the containers. Unlike already
mentioned platforms, Kubernetes does not apply any fair
allocation and scheduling mechanisms.

CPU and Memory are two types of resources in Kuber-
netes known as computing resources for containers. Con-
tainers are placed in the simplest and the fundamental units
of Kubernetes known as pods. Pods are scheduled in the
selected nodes by the scheduler. Nodes are a kind of virtual
machines Which are not created by the Kubernetes, how-
ever, they are delivered by cloud providers such as Google
cloud, Amazon Web Services (AWS) and Microsoft Azure.
Basically, the Kubernetes consists of different components
listed as follow:

o Master: As the main control plane of the kubernetes,
the master component provides different functionalities
to worker nodes and also users. The main components
of master are categorized as follows:

1) Etcd: is a key value storage and backup agent in kuber-
netes in which all the information and configurations
regarding the cluster are stored and accessible through
the API server by the worker nodes.

2) Kube-apiserver: The API server as the front end of the
kubernetes control panel, is one of the critical services
within kubernetes master component and as a bridge
among different components. The API is served using
a json file and the communication inside it is handled
by kubeconfig package. As the principal management
component of the entire cluster, a user is allowed
to configure Kubernetes workloads and organizational
units. The API server is eligible to manipulate the state
of different objects like pods and services.

3) Kube-controller-manager: The share state of the clus-
ter in kubernetes is monitored by a controller via
the API server and it tries to change the current
state to the optimal state. The existing controllers in
kubernetes are endpoints, replication, namespace and
service accounts controllers. To reduce the complexity,
all those controllers are integrated and compiled in a
single binary.

4) Kube-scheduler: This component is responsible for de-
ploying pods and services in the suitable nodes. Differ-
ent parameters are considered during the scheduling,
resource requirements and limits, quality of services of
pods, affinity and anti-affinity. The main function of a
node in kubernetes is to check the requested resources
of all pods to make sure that their requested amount
doesnt exceed the total capacity of the corresponding

node.

o Node:As the worker machine managed by the master
component in the kubernetes, a node is created by
the cloud providers in order to run the containers. It
consists of different objects as follows:

1) Kubelet: Is one of the main components of the kuber-
netes that places into each worker node to run the pods
and checks them regularly in order to make sure that
they are working properly. Kubelet also runs health
checks for all running pods and then it interacts with
API server and reports regularly the state of the node
and running pods inside it.

2) Kube proxy: As an object running in each worker
node, kube proxy checks regularly the changes in pods
and services to keep the network up to date to make
sure that the environment is accessible.

3) Container runtime: This object is placed at the lowest
layer of the node in order to start and stop pods and
services. Docker is the most well-known container
run-time that we mentioned in previous sections.

Kube-proxy

kuect!
Worker node

Master node

[=l

Kubelet

Worker node

kube-proxy

{ o | Ll
NN
==

Figure 1: Kubernetes architecture

B. Scheduling in kubernetes:

When a user creates a pod, resource requests and limits
known as PodSpecs are included in that pod. The scheduler
considers different parameters such as predicates, priori-
ties, and Quality of Service of pods. Predicates maintain
functions and they get PodSpecs and node information like
available resources and capacity of the node and return a
boolean value to indicate whether a pod can be fitted in
a specific node. The priority of pods depends on the QoS
classes of those pods. The importance of a pod is determined
by the priority. Typically, pods with the lowest priority
is the best candidate to be evicted (preemption) in order
to schedule the higher priority pods. Therefore, pods are
categorized into three different levels: Guaranteed, burstable
and best-effort. The guaranteed class has the highest priority

in which pods have the same resource limits and requests.
In a case where the resource limit is set up above requested
resources, it refers to the burstable class so that a pod can
consume the resources up to the specified limit. Finally, in
the best effort class, both resource requests and limits are
not specified which makes a pod as the lowest priority one.

1) Afinity and anti-afinity: nodeSelector introduces the
best and simple approach to limit pods to nodes with
specific labels called affinity/anti-affinity property which
develops constraints so that a user may represent. The
affinity property involves two different types, node affinity
and inter-pocd affinity/anti-affinity. Node affinity is similar
to the nodeSelector object, while inter-pod affinity/anti-
affinity limits opposed to pod labels instead of node labels,
plus having the first and second features mentioned above.
Node affinity is perceptually like nodeSelector which allows
anyone limits which pod is eligible to be scheduled in a
particular node, according to the labels on the node. Node
affinity is determined as field nodeAffinity of field affinity
in the PodSpec.

2) Resource quota and namespaces: If many teams are
working in a shared cluster, it is necessary to assign
namespaces for each of those teams. Namespaces guarantees
isolation of each teams resources from the rest of the
cluster and for each namespace, resource quotas should
be setup that constraints resource consumption of pods in
each namespace. Resource quotas can be setup in different
practices. Typically, kubernetes, considers resource limits
based on what can be seen in figure 2. In original kubernetes,
the namespaces are placed directly inside the cluster with
specific resource quotas while according to figure 3, in
Rancher[16] as the recent development of the kubernetes, the
project object and project quota has been specified within the
cluster and then quotas have been assigned to the existing
namespecase.

III. FAIRNESS IN KUBERNETES

Resource allocation only based on resource limits and
requests and the specified QoS levels of pods may not satisfy
the fairness property in a multi-resource environment such as
Kubernetes where users may submit pods consist of either
intensive CPU or memory tasks. However, in kubernetes,
there is no any strategy to deal with such tasks or pods.

As an example based on figure 2, there are two pods
each has one single container. Also, there is a node with the
capacity of (900m, 1800mi) in which m and mi represent
CPU and memory units respectively. The kubernetes tries
to allocate resources to each pod according to resource
requests. Therefore, based on the default policy and what
has been set up in resource requests and limits, podl can
consume up to (200m,650mi) of the node resources and
pod2 ables to utilize maximum (400m,300ms). Conse-
quently, at least (300m,850mi) remain unused that can
be allocated to other pods. Unfortunately, Kubernetes is

apiVersion: v1

apiVersion: v1

kind: Pod kind: Pod
metadata: metadata:
name: pod1 name: pod2
spec: spec:
containers: containers:

- name: demo1
image: demo/demo1
resources:

- name: demo2
image: demo/demo2
resources:

requests: requests:
memory: “400Mi" memory: “100Mi*
cpu: "100m" cpu: "300m"
limits: limits:
memory: "650Mi" memory: "300Mi"
| cpu:"200m" cpu: "400m"”

Figure 2: Pod configuration

not able to manage resources dynamically and users may
require to assign resource limits when creating pods. It is
a challenging problem to allow kubernetes to set resource
limits after scheduling based on resource requests and node
information. To be more clear, when users create pods, they
do not know exactly what proportion of resource limits
should be assumed. Also, the scheduler does not consider
resource limits in scheduling time. Consequently, a problem
may occur. The scheduler selects a node for a sort of
pods with different resource limits. If the total amount of
resource limits becomes greater than the total capacity of
the node, and each node tries to consume resources up to
the specified limit, then the Linux OS kernel will ignore
resource limits and allocate only the requested resource or
the resource limit will be assigned based on the resource
limit ranges specified by the kubernetes. The logical way
is that after scheduling, Kubernetes assigns resource limits
based on resource requests and with respect to the given
node. However, in cloud environments, some users may
have intensive tasks in some resources. Here in kubernetes,
each pod may have one intensive resource either in CPU
or memory. So, after scheduling a pod in a specific node,
the resource limits should be determined fairly based on
the contribution of pods in the node. This gives an accurate
resource limit assignment while the fairness is considered.
Typically, when pods are created by users, resource limits
are also specified.

A. Planning fairness algorithms in Kubernetes

There are different fair allocation algorithms in the cloud,
and in this section, we introduce three algorithms, DRF,
MLF-DRS and FFMRA that we mentioned in section I that
we plan to integrate them in Kuberentes.

1) DRF: As an example based on Figure 2, If two users
A and B submit tasks with demand vector (d.a,d,4) and
(d.B,d,B) respectively where ¢ and m denotes CPU and
memory subsequently and the capacity of the resources is

indicated by C. and C),,, then dominant resources for both
users are calculated as follows:

domy = max(dea/Ceydma/Cm) (D

domp = max(d.p/Ce,dmp/Cm) 2)

Consequently, based on (1) and (2) as well as the example
in figure 1, the dominant resource for pod 1 is memory and
pod 2 is CPU. Therefore, the allocation of resources are
determined as the following optimization problem:

maximize (A, B)

subject to cA+c¢B < C..
mA+mB <, .
dima/Cr = de/C..

By solving(3), DRF assigns (300m,1200mi) resource
limits for pod 1 and (600m,200mi) for pod 2. Typically,
DRF equalizes dominant resource to calculate the alloca-
tions.

2) MLF-DRS:: While DREF takes into account only dom-
inant resources, MLF-DRS determines non-dominant re-
sources as well. Compared to DRF, MLF-DRS tries to
allocate all the resources of the resource pool to reach the
highest resource utilization and a desirable fair allocation.
It also guarantees that all users with dominant resource
get desirable amount of allocation while in DRF and in
scenarios with more than two users, some of them are not
able to maximize their allocations. Consequently, starvation
may have happened for those users with dominant shares.
So, according to the same configuration in 4.1, MLF-DRS
considers fair share of resources, indicated by f. =C./n and
fm = Cp/n where n denotes the total number of users.
Considering that (dA.,dA,,) and (dB.,dB,,) are demand
vectors for users A and B respectively, at the first stage,
dominant resources get a fair share of resources if (dA, <=
fe,dAy, <= fm) and (dB. <= f.,dBy, <= fm). Other-
wise, dominant resources get initial requested resources. De-
spite of DRF, MLF-DRS calculates non-dominant resources
of users based on (4) and (5) as follows:

3)

nondom g = min(dea/Ce,dma/Cm) 4)

nondomp = min(d.g/Ce,dmp/Cm) 5)

Similarly, non-dominant resources are allocated only what
they have requested. For the next level, considering that
the allocated resources for users A and B are denoted by
(Xea, Xima) and (Xca, Xyna) respectively, the allocation
can be calculated as follows:

CPU allocation for dominants:

UserA = ((Ce — (Xea + XeB)) * fe)/(Xea + XeB)

UserB = ((C. — (Xea + X)) * fo)/(Xea + XeB)

CPU allocation for non-dominants:

UserA: ((Co — (Xea+XeB)) * Xea)/(Xea + XeB)

UserB : ((C. — (Xea + XeB)) * Xen)/(Xea + XeB)

Memory allocation for dominants :

UserA : ((Om - (XmA + XmB)) * fc)/(XmA + X’mB)

UserD : ((Cm - (XnLA + XmB)) * .f(‘)/(XmA + XmB)

Memory allocation for non-dominants :

UserA: ((Cp— (Xma+XmB))*Xma)/(Xma+Xms)

UserB : (Con— (Xona+XmB)) % Xmp)/(Xma+Xmp)

3) FFMRA:: FFMRA is the generalization of DRF
and proportionality. Same as MLF-DRS, it considers both
dominant and non-dominant resources, however, it tries
to equalize both dominant and non-dominant resources in
entire resource pool to provide a totally fair allocation of
resources. FFMRA maintains the balance of the system
by evenly distributing system resources among the bounce
of dominant resources of users. By keeping the similar
configurations in the previous policies, FFMRA calculate the
allocation as follows. First of all, it determines dominant
and non-dominant resources and then it sums up together
all dominant resources of all users of the entire server. This
process also applies for all non-dominant resources. Then,
the proportion of resources in the server is calculated for all
dominant and non-dominant resources as follows:

Sdom = dom 4 + domp 6)
Shondom = nondom s + nondomp 7
Sc=C.+Cy, ®)

St = Sdom + Snondom ©))

Based on (6),(7),(8),and(9) Sgom, Snondom.S. and S
denote sum of dominant, non-dominant, capacity of the re-
sources of entire resource pool and both dominant and non-
dominant resources respectively. According to (10)and(11),
the total capacity of the resource pool is divided proportion-
ally among dominant and non-dominant resources indicated
by Piom and P, ondom respectively as follows:

Pdom = (Sc * Sdom)/St (10)

Pnondom = (Sc * Snondom)/st (1 1)

Accordingly, it is necessary to divide Py, and Pondom
to corresponding resources in the resource pool. This process
guarantees the balanced distribution of resources among
the users. The divided share for CPU and memory in the
resource pool denoted by Sh. and Sh,, respectively are
determined as follows:

Shc = (Pdom * C(')/SC (12)

Shm = (Pdom * Cm)/SC (13)

Finally, according to (12) and (13), the allocated resource
to each user is calculated as the final stage of MLF-DRS.

IV. PROPOSED SOLUTION

A. Mathematical implementation in Kubernetes

Basically, the purpose of this paper is to maximize the
resource limits assignment among the pods. Generally, we
can show the problem as follows:

Given that P is a set of created pods by user U, say
|P| = p1,p2,,pn and R indicates the number of resources
that can be requested by user U, |R| = 1,2,...,7 and N
represents the number of nodes where |[N| =1,2,...,n. We
assume that L P, and xp, refer to the resource limits and
requests of a pod created by user U where the requested
resources should be less than or equal to the resource
limit (zp, < Ip,). The scheduled pod in a specific node
is represented by p; which is the scheduled pod p in
a corresponding node ¢. Accordingly, dominant and non-
dominant resources of each pod considering the capacity of
resources with respect to each node indicated by C}, based
on the following formulations:

Dpir == max(xpr/cri) (14)
Ndp,; = min(xzp,/cr;) (15)

Basically, in Kubernetes the available resources for pods
in a node are defined as allocatable resources. So, without
loss of generality, it can be calculated as follows:

Allocatable = nodecapacity — (Kubereserved +
systemreserved + evictionthreshold)

Therefore, allocatable resources r of a particular noOde i
can be defined as AL,;. Hence, (14) and (15) can be changed
to (16) and (17):

Dp; = max(zp, [Al;) (16)
Ndp,; = min(xp,/AL) 17

However, if every pod has the resources associated with
a weight lets say, in the case the definition of dominant and
non-dominant resources can be changed to the following
formulations:

drp = max(xp,/ frp) (13)

ndy, = min(zp,/ frp) (19)

Lets say S(LP,) =Y Lp, refers to the sum of resource
limits of a specific pod p, then the new resource limits
assignment could be determined as follows:

maximize (p1,p2,...,Pn)

subject to zp,. < Cjpr. (20)
S(lpr) S Cir-

This is note that in the examples in figures 3 and 4, we
assume that C;. = AL,,;.

B. System Design

In order to integrate our proposed solution, we described
the system both structure and behaviour at the system level
using SysML modelling language[17]. To have an overall
approach of the system, SysML Block Definition Diagrams
were described for the structure and SysML Activity Di-
agrams for the behaviour. A professional tool, the Cameo
Systems Modeller was used to describe and validate the
diagrams[18]

1) Block diagram system structure: In order to design a
system to integrate mentioned policies in section IV, it is
essential to have in-depth information from different com-
ponent in Kubernetes. A quick review of different objects
is depicted in figure 3 and how the proposed model works.
First of all, a user with a unique ID creates a pod using
kubectl along with requested CPU and memory. The created
pod along with other information are passed to the API
server which serves the the kubernetes API, version vl.
The API consists of different component in which the most
important objects are nodes, pods, services and types. When
a node is created by a particular cloud provider like Amazon
Web Services(AWS), Google Cloud Platform(GCP) and
Microsoft Azure, that are references within cloud provider
object, the information is sent to the API server. Then
other objects get the node information through the API
server. In the model both scheduler and policy broker
get required information from API server. In our proposed
model, since, we are looking for changing and updating
resource limits after scheduling, it is necessary to extract
some important information. So, we consider two objects
in the model which are Node information and resource
limits. In node information object, different component are
considered that are described as follows:

e Node Information

1) AllowedPod(): It is an integer value in orde to store the
number of pods that can be run in the corresponding
node.

2) RequestedResource(): Stores all requested resources of
pods in the node.

3) AllocatableReosurce(): It stores allocatable resource
in a given node which can be equal or less than
total capacity of that node. We will cover it later in
mathematical implementation.

4) VolumeLimits: The maximum number of volumes that
can be considered to a particular node by different
cloud providers.

o ResourceLimits

1) GetResourceLimits(): Computes resourcelimits for in-

put pod.

The policy broker object has different allocation policies
that are defined as functions. A suitable policy can be
requested by API server based on the existing state of the
system and requirements. Consequently, the broker calls the
requested function and then, resource limits are calculated
and assigned to pods in a particular node. Then, the broker
updates the pods information with API server. At the next
stage, the API server passes the information to OS kernel in
order to allocate resources.

2) Behaviour-SysMI Activity diagram: Figure 4 repre-
sents the activity diagram which depicts the possibility
of applying fairness in Kubernetes. Activity or behaviour
diagram delivers a good picture of working a system in
a sequential way. Each step has been isolated from each
other. Three phases of the model which are User, Scheduler
and Fairness policies are categorized with their specific
operational levels.

V. PRACTICAL EXAMPLE

The implementation of the proposed model is being done
in go programming language[19]. Since the work is in the
implementation phase, we only refer to a small-scale exam-
ple. Hence, we design a practical case using four different
submitted pods. Accordingly, we setup a single cluster using
minikube[20], taking into account a single node with the
total capacity of (2000mi, 2000m). Despite the real world
cases, we assume that the administrator knows everything
regarding the node and applies fairness and resource limits
to all pods before sending to the scheduler. In other words,
based on the selected policy, the administrator investigates
that the sum of the requested resources of all pods are
not greater than the node’s capacity and based on that
information, she specifies resource limits for each pod. This
is note that in the real cases that will be included in the
next paper, all the processes will be done in a dynamic way
using the mentioned algorithms. The examples in this paper
are pretty static and only reflects the main concept of the
work. The example in figure 5 represents pods and assigned
resource limits in administrator’s side.

The results shown in Figure 5 based on pods configu-
rations in Figure 6 indicates resource requests and limits
as well as the running pods. the total capacity of the CPU
and Memory are 2 and 2,038,624ki respectively of which
2 is the number of CPU core equals to 2000m and the
memory equals to (2038624/1024=1990mi). However, the
allocatable and actual capacity of the memory is different
than the total capacity of the given node. According to the
mathematical implementations, in this example, frontend and
frontend1 have dominant resource in CPU, while frontend2
and frontend 3 have dominant resource in memory. So,
based on the output, the considered policy, resource limits

bdd [Model Model [Model |

Dol ablocks
— MNode Information

nude(}'

AllowedPod()
RequestedResource()
ablocks AllocatableResource()

Volumelimit()
User abiocks CalculateResource()
values Kubectl

UserlD

«blocks
resource Limits

wblocks

Pod GetResourcelimts()

Request‘aa-&Pu
Requested Memory

l

L pDRRQ

«blocks
Policy Broker

FFMRA()
MLF-DRS()

TutaIRequastedCPUEN‘uﬁeC‘PUCﬁpacity
TotaRequestedh! NodeM Capacity

ablocks
APl server
Nodes e
Pods wblock»
Services “ﬁIU:kn . Cloud provider
Types g I —
e AWS
CPU capacity s Google Cloud
biocks Memory Capacity Azure
Kubelet a3
wblocks
KernalOs
il
«blocks
Scheduler

Figure 3: The integration of differe

‘act [Acivity] Hodel] Model 1] Scheduler Fair resourse Imi caloulator
User
! Created pods
[] |7~ 7 eesentiome Doh':yl:roker
APl server gets
! | information
| | ! from the API
| ! |
! |
v | v
User submits a L Scheduler gets |
sk usin PodSpecs
|
be v
T " ! Dominant and
| v non-dominant
[S resources are

PodsSpecs are
sentto the

. dupenie {nosoloctod
Fodis creatsa mormaton | ‘
along witn wit APt server | |
PodSpecs | |
including | i
Fesoan |
remmants ! |
the |
let |

|
|
v
Sending |
sharin |
information to

EEKERaI0S | updated with
| he AP server

|

|

v
®

Figure 4: The Activity diagram of applying fairness in
Kubernetes

are evenly divided among the applications so that first two
applications with dominant resource in CPU get 36% and
38% respectively. For last two applications which have

nt fair allocation policies in kubernetes

default o n (118)

Figure 5: An experiment consists of four pods along with
resource limit assignments

dominant resource in Memory, they get exactly 38% of
resource limits. Since the efficiency is a basic concept in
Kubernetes, we only take care about resource limits and how

apiVersion: vl
kind: Pod
imetadata:

name: frontend
|spec:

containers:
| - name: wp

image: wordpress

| resources:
| requests:

memory: "50Mi"

cpu: "330m"

apiVersion: vl
kind: Pod
metadata:
name: frontendl
spec:
containers:
- name: wp
image: wordpress
resources:
requests:

memory: "150Mi"

cpu: "555m"
limits:

memory: "245Mi"

cpu: "720m cpu: "77%m"
apiVersion: vl apiVersion: vl
kind: Pod kind: Pod
metadata: metadata:
name: frontend2 name: frontend3
spec: |spec:
containers: containers:
~ name: wp | — name: wp
image: wordpress image: wordpress
resources: | resources:
requests | requests
memory 250Mi"™ memory 350Mi
cpu 111lm’ cpu 222m
limits limits
memory: "736Mi" memozy: "736Mi"
cpu: "159m" cpu: "319m" |

Figure 6: The configuration of four pods to be applied in
experiment

to assign them fairly among the pods. A pod may consume
the maximum amount of resources up to the specified limit,
while another one may not consume all possible amount of
resources based on specified limit. Basically, according to
the Kubernetes, the remaining resources will be allocated to
other pods that are waiting to be scheduled.

The conducted experiment is based on the administrator’s
perspective that can be done in minimum scales. However,
in real cases, such as big data scenarios, we need dynamic
allocation policies in order to calculate resource limits
automatically based on different parameters mentioned in
the previous section.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a model to calculate and assign
resource limits fairly among the pods. We then investi-
gated different platforms that fairness has been considered
and discussed that Kubernetes doesn’t consider fairness at
all. In the designing phase, we integrated three different
fair allocation policies, DRF, MLF-DRS and FFMRA in
Kubernetes original infrastructure. As practical perspective,
we assumed fairness in administrator’s point of view and
supposed that she is aware of the corresponding node
capacity. However, since the model is in implantation level,
we couldn’t give a real case example including many pods
and containers. For the future works, we will implement and
analyzed the proposed architecture in real cases considering
big data scenarios. Also, we will investigate to propose fair
scheduling and load balancing algorithms to be applicable
in Kubernetes.

REFERENCES

[1] C. Pahl, Containerization and the PaaS Cloud, IEEE Cloud
Computing, vol. 2, no. 3, pp. 2431, 2015.

[2] S. Singh and N. Singh, Containers Docker: Emerging roles
future of Cloud technology, 2016 2nd International Conference
on Applied and Theoretical Computing and Communication
Technology (iCATccT), 2016.

[3] https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/

[4] https://hadoop.apache.org/
[5] http://mesos.apache.org/

[6] X.Huang, Max-min fairness bandwidth allocation and schedul-
ing in wireless ad-hoc networks.

[7] T. Bonald, L. Massouli, A. Proutire, and J. Virtamo, A queue-
ing analysis of max-min fairness, proportional fairness and
balanced fairness, Queueing Systems, vol. 53, no. 1-2, pp.
6584, 2006.

[8] https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-
yarn-site/FairScheduler.html.

[9] B, Hindman., A, Konwinski., M, Zaharia., A, Ghodsi., A.
D., Joseph., R, Katz., S, Shenker., I, Stoica, "Mesos: A Plat-
form for Fine-Grained Resource Sharing in the Data Center”,
Electrical Engineering and Computer SciencesUniversity of
California at Berkeley, May 26, 2010.

[10] https://hortonworks.com/apache/yarn/

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.
Shenker, and 1. Stoica, Dominant resource fairness: Fair
allocation of multiple resource types.inProc. USENIX NSDI
, vol. 11, 2011, pp. 2424.

[12] https://github.com/kubernetes-sigs/kube-batch

[13] Hamzeh, H., Meacham, S., Virginas, B., Khan, K. and Phalp,
K. T.,, 2019. MLF-DRS: A Multi-level Fair Resource Alloca-
tion Algorithm in Heterogeneous Cloud Computing Systems.
In: 2019 IEEE 4th International Conference on Computer and
Communication Systems, 23-25 February 2019, Singapore.

[14] Hamzeh, H., Meacham, S., Khan, K., Phalp, K. and Stefani-
dis, A., 2019. FFMRA: A Fully Fair Multi-Resource Allocation
Algorithm in Cloud Environments. In: The 3rd IEEE Sym-
posium on Software Engineering for Smart Systems (SSESS)
2019 19-23 August 2019 Leicester. IEEE.

[15] https://x-team.com/blog/introduction-kubernetes-architecture/

[16] https://rancher.com/docs/rancher/v2.x/en/project-
admin/resource-quotas/

[17] http://www.omgsysml.org/
[18] https://www.nomagic.com/products/cameo-systems-modeler

[19] J. Newmarch,Overview of the Go Language, Network Pro-
gramming with Go, pp. 2127, 2017.

[20] https://kubernetes.io/docs/setup/learning-
environment/minikube/

