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Numerical Modelling of the Aluminium Extrusion Process 

Zhi Peng 

Abstract 

The extrusion of aluminium alloys involves the shaping of the product from an 

homogenised billet into a complex shape. In addition the properties of the extrudate are 

closely related to the processing parameters (temperature, stain rate, and material 

morphology). Since all the parameters vary throughout the ram stroke and throughout the 

billet the prediction of the condition of the extrudate is complex. In this study the analysis 

is accomplished by the use of finite element analysis coupled with sub-illodelling of the 

structural features. The study is extended to include the lieat-treatment process necessary 

for precipitation hardened alloys subsequent to the process. The author has published these 

results in a number of learned journals and these are given in Appendix. 

After a concise introduction and crirical literature review chapter3 analyses the basic 

operation of the finite element package(FEM) discussing the procedures involved, the 

equilibrium equations and the more practical aspect of the mesh morphology and size. 

Finite Element analysis and material structural models have been integrated using parallel 

processing technology and program sub-routines. In this section the external inputs are also 

defined paying particular attention to the friction conditions and the constitutive equations. 

The thesis then proceeds to describe and analyse the integrated modelling of the process 

necessary to introduce the user introduction of the equations necessary to produce a 

comprehensive analysis of the material structural problems. This includes the cellular 

automata teclu-iiques. Various complex extrusion geometries are analysed and the effects of 

scaling considered. 

Development of the extrudate surface and criteria for ptedicting this important feature are 

coinprehebsivcly covered in chapter 5 whilst chapter 6 considers some special technologies 

such as the use of pockets to obtain homogenous structures. Isothermal extrusion is also 

included in this section. 
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I Introduction 

1.1 Aluminium alloy and extrusion process 

Aluminium and its alloys, which can be of widely differing properties. are readily 

fabricated into sin-iple and complex shapes. Consequently a large extrusion industry has 

ernerged around these products. 

Wrought aluminiurn alloys are divided into seven classes according to their principal 

alloy elements (Sheppard 1999a, p. 69). Each alloy is described by a four digit number 

plus a further letter and nui-riber indicating the teniper or condition of the alloy. 

Furthermore, alloy classes can be divided into two categories according to whether they 

are strengthened only by work hardening or also by heat treatment (precipitation 

hardening). The former applies to IXXX, 3XXX, 4XXX and 5XXX alloys, while the 

latter applies to 2XXX, 6XXX and 7XXX alloys. Most of the work in this thesis is 

concerned with 2XXX and 6XXX alloys. The specification of these txvo alloy series are 

shown in Table 1.1. 

Table 1.1 2XXX and 6XXX alloy properties 

Designation 
Major alloying 
element 

Characteristic Typical alloys and their 
main application 

_ 2XXX Cu 'S I Hard alloy, heat 2017,2014,2024 for 
treatable, low aircraft industry 
extrudability 

6XXX Mg, Si Soft to medium 6061,6063,6351 6082 for 
alloy. good structural and architectural 
extrudability application 

Historically, mechanical working has bcen used as the primary means of changing the 

size and shape of materials while transfolMing the cast structure of an ingot into what is 

generally referred to as a wrought product. Extrusion is one of the major processes by 

which this has becii achieved. The process is typically conducted at relatively high 

tcnipcraturcs because the lower flow stress of the material under these conditions 

permits larger section reductions to be achieved; lowering the power requirements and 

processing tinics. 

I -, 



Extrusion is a plastic deformation process in which a billet of cast and hornogenised 

metal (billet) is forced to flow by compression through the die opening of a smaller 

cross-scction of area than that of the original billet. Figure 1.1 illustrates the essential 

principle of the extrusion process, and, at the same time, the distinction between two 

methods of working, known as direct and indirect extrusion. These depend oil the 

arrangement of the tools. The extrusion process must usually pi-odUCC an CIIIýIFICCI-Cd 

product satisfying strict geometric, cosmetic and property specifications. This complex 

process involves interaction between the process variables and material high- 

temperature characteristics. 

I- 

Nll, u i 
R mi 

a) Direct extruSion 

b) Indirect extl'LISIOII 

Figure 1.1 Extrusion tools (Saha 2000, pI I) 

The SI)CCIfic steps of all cxtrusloll process (excluding billet preparation and prodUCt licat 

ti-catillcilt) aiv: 

16 



1. Loading of the die holder and dieo 

2. Loading of the billet; 

3. Extrusion; 

4. Separation of the die holder Nvith the die and the discard fl-0111 thC CXtl'LISIOII. 

Process variables available for control are the extrusion ratio R, the raill speed V and tile 

cxtrusion temperatUre T. One limiting factor lies in the inherent stiffness (The 

relationship of load to deformation for a particular material) of alloys even at elevated 

tcmperatures. The stiffiess may make the reqUired load higher than the extrusion press 

capacity. Another ri-iajor fiactor limiting the process parameters is the maximum 

temperature that can be tolcratcd cluring the process. The represcritation of these two 

ractors upon one diagram is termed linut diagrams and the most Liseful f61-111 Of SLICII 

diagrams is in the format developed by Sheppard (1999a). One example of the limit 

diagram is shown in Figure 1.2. 

E 

0, z -, /%\\\N. \NN 

N 

nsu ffii cie nt or k", ., Surface Damage 
Pressure 

Max Speed 

116. 

'k 

Operating Area 

Temperature 

Figure 1.2 Limit Diagram (Sheppard 1999a) 

I-lic fulidalliciltal way to Control the fitial product propertics is to study the complex 

relationship bct\N,, eeii forming parametei's, metallurg), ical response and final properties. 
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Since 1970s, Sheppard and his co-workers ha-ve carried out extensive experimental work 

in this field and accumulated a considerable amount of primary data (Sheppard 19991). 

It is now generally recognized (Sellars et al. 1986, Shercliff and Lovatt 2001) that the 

microstructure of the material also requires careful control and hence the integrated 

process must be considered. For extrusion, the integrated process (the therl-no- 

inechanical process) will consist of the unit processes involved: homogenization (the 

alloy is heated up to its eutectic temperature and kept at this temperature during some 

time), heating to working temperature, extrusion, stretching, solution treatment and 

ageing. Microstructural features of importance for property control of alurninluill alloys 

include: 

(a) the coherency and distribution of strengthening precipitates; 

(b) the degree of recrystallization; 

(c) the grain and /or subgrain size and shape; 

(d) crystallographic texture and 

(e) size and distribution of intermetallic particles including the dispersoids (present by 

design) and constituent phases (which result from iron and silicon impurities). 

(t) There are also trace elements arising from grain refinement during casting using 

Titanium Boride rod. This leaves small amounts of Titanium oxide and Boride. There 

have been no reported works on their affect during all 

The ability to understand the effect of these features on the properties of aluminiurn 

alloys has led to efforts to upgrade product performance by modifications in 

conventional primary processing methods. Beginning with the as-cast ingot which 

cxhibits a heterogeneous morphology, processing includes a homogenization treatment, 

to reducc segregation, remove the low melting point phases and thus improve 

\\, ýorkabilitv. This thermal treatment also serves to precipitate dispersoid-forming 

clenients such as chromium, manganese and zli-coniurn. so that they may perform their 

role of grain control during processing. 
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The extrusion process breaks down the billet and effects the required shape change. 

Since alurniniurn and its alloys have a high stacking fault energy (Jonas et al. 1969). 

sufficient dynamic recovery normally occurs during hot deformation, i. e. at temperatures 

above 0.5 TI, (homologous temperature, which is defined as the extrusion temperature 

divided by the lowest melting temperatux of the phase) (Joilas et al. 1969), to give rise 

to a stable polygonized substructure. The subgrains remain equiaxed during hot working 

although the grains elongate in the direction of flow and do not recrystallise. Some of the 

alloying additions are in solution during hot working but tile dispersoid-forilling 

transition elements (such as CuA12 ) Precipitate and may become strung out in the 

working direction (Sheppard 1999a). 

Extrusion is the dominant process in producing complex shape products. The section 

shape is quite clearly the most important factor in the CXtrUdability considerations. 

Typical examples of complex shapes are shown in Figure 1.3. The harder alloys of the 

2XXX, 5XXX (> 3111OMg ), and 7XXX series are more dift"icult to extrude and 

consequently Lire used for more demanding applications SLICh as aerospace. Generally 

these alloys are ofless complex shape than is shown in FIgLll'C 1.3 

Figure 1.3 Examples ot'extruded shapes. (Courtesy of Hoogovens Alummium) 

1.2 The role ot'process modelling in manufacturing processes design 

The selection and optimising of a sultable manulacturing process often involves 

considering the compIcx coupling bchN,, ck----n charactcristics ofthe dcsign, the material and 
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the process. Requirements and attributes of a process selection and optirnisation can be 

greatly improved by process modelling. The use of modelling opens up gi-cat 

opportunities for making maximum use of sparse process data, for optimum co-selection 

of material and process, and for providing the designer with feedback on the likely 

influence of processing on the viability and cost of a design as Nvell as indicating 

promising processing parameters (Shercliff and Lovatt 2001). 

It is widely recognised that the most appropriate approach to selectioll during 

engineering desigii depends on the design context. Pahl and Beitz (1977) split the 

context of design into conceptual (preliý_-ninary), embodiment (intermediate) and detail 

(final) stages. Although different design objectives are undertaken in different desigil 

stages, the task-based selection is particularly important whenever (Shercliff and Lovatt 

2001): 

The quality or functionality of the component is strongly influenced by the 

interaction of the process with specific design features; 

(2) The econornics of the process depend on detailed aspects of the design. 

A single methodology for approaching task-based selection, which can incorporate this 

breadtli of complexity, has been described in the literature (Grong and Shercliff 2002, 

Sliercliff and Lovatt 200 1). 

The employment of numerical methods in materials science is promoted by the ever- 

increasing capability of computer systems in terms of speed and information storage, 

and by the growing demands for quantitative predictions in industry and research. The 

scleiitiric branch that has matured within this interdisciplinary field, is often refereed to 

as "COMPLItational material science" (Evans 1993). This science branch brings together 

approaclies Froin materials science, phys ics, computer science, mathematics, chemistry, 

and mechanical engineering. The applications of microstructure simulation into 

extrusioi-i modelling are discussed iri depth in the present work. 

The application ot' variOLIS models in simulation of the extrusion process will be 

111LIstrated in the present work. 
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1.3 Modelling of extrusion process 

Exact mathematical analysis of the extrusion process requires a complete solution to the 

equilibrium equations, the instantaneous yield criterion, the plasticity equations, and the 

cornpressibility condition. Theoretically, it is possible to do this, but the mathematical 

complexities become enormous and have not been fully resolved. In addition, there is 

often insufficient knowledge regarding the stress-strain relationship of the extruding I- 
metal at various strani rates, and the friction effects at the die/metal interface. Thus, the 

solution becomes approximate. Many analytical and semi-analytical methods such Lis 

ideal work,, slab (or equilibrium), slip line, upper bound, visco-plasticity, integral profile, 

and energy methods are well established and have been discussed in nurnerous text 

books and scientific studies (Ruppin and Strehmel 1977, Sheppard and Raybould 1973b, 

Castle and Sheppard 1976, Sheppard and Wood 1980, Bianchi and Sheppard 1987). 

In extrusion, both the frictional work and the work of deformation generate heat. Heat 

generation and transtler take place simultaneously from the commencement of the rarn 

stroke during extrusion. Some of the generated heat remains in the extruded metal, some 

is transmitted to the container and the die, and some increases the temperature of tile 

section of the billet that is not yet extruded. With knowledge of these factors it should be 

possible to calculate the mean exit temperature and several mathematical models (Finite 

difference method, Integral profile models, etc. ) have been developed for this calculation. 

However, all these models involve certain assumptions to simplify the analysis. These 

models are detailed in individual references (Humphreys 1979, Zaidi and Sheppard 1984, 

Paterson and Sheppard 1982, Q. Li et al. 2003). 

With the development of process modelling technology, more advanced numerical 

thennal-niechanical combined simulation has been provided by the Finite Element 

Method (FEM). The implementation of the model in the form of computer codes, with 

thermo-rnec lian ica I balance and kinematics compatibility built in, has introduced a 

modelling tool driven only by the external boundary conditions and the material 

behaviour. Thus, additional assumptions' such as the pre-setting of discontinuity lines - 

as iri uppci- bound techniques - are not necessary. Because of' their flexibility in 

reproducit-ii, ali-nost any required geon-ietry, finite-element techniques inust be regarded 

as potciitially the most practical tool presently available. The details of the comparison 
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between the FEM with upper-bound aýid slip-line field techniques can be found in 
Sheppard's work (1999). 

In recent years, the theri-nal -mechanical and inicrostructure integrated simulation has 

also been developed. By empirical and physically based means, a modest degree of 

prediction of microstructure can be achieved, for example, linking recrystallisation after 
deformation to the average process conditions (Shercliff 1997, Shercliffand Lovatt 1999, 

Raabe 1998). 

1.4 Objective of this research 

All of the work that has been developed will be applied into the modelling of the 

i-naiiufacturing process, specifically, hot extrusion of aluminiun-i alloys (Peng and 
Sheppard 2003,2004a-g). 

FEM simulation is employed in the 2D and 3D thermal-mechanical simulation of the 

extrusion process, which has achieved successful results (Q Li et al. 2003, Peng and 

Sheppard 2003). Metallurgical models are applied to the modelling of the substructure 

evolution and have been proved to be effective (Peng and Sheppard 2003,2004a, b, fg). 

Special extrusion technologies, such as pocket die extrusion (Peng and Sheppard 2005a) 

and isothermal extrusion (Peng and Sheppard 2004e) were modelled and 3D visuallsed 

simulation results have been published. Product quality controls were established 

numerically and quantitative analysis results had been provided (Peng and Sheppard 

2004c). 

Witli the appropriate metallurgical model, fracture models applicable to surface cracking 

and three dimensional modelling technologies, FEM simulation is proved to be a 

powerful too] for the alurninium industry, especially when combined other numerical 

models which can be compactly integrated into the FEM software (Peng and Sheppard 

2004d, 2005b, c). 



literature review 

2.1 Mechanics of hot extrusion 

Although extrusion is a modern process (rolling and forging being much older) it 

precedes the development of aluminium which was only commercially available 
following the invention in 1886 (Sheppard 1999a, Castle 1974), concurrently by Hall 

and Heroult, of the electrolytic process to extract the metal fi-orn bauxite. The 

conventional extrusion process is complex. Among the industrial methods by whicli 

aluminiurn billets can be transformed to exceedingly complex shapes, extrusion has no 

rival and has firmly established itself as a major industrial process (Farag and Sellars 

1975, Sheppard and Chare 1972, Wood and Sheppard 1975). 

2.1.1 Direct and indirect extrusion 

It is noted in section 1.1 that almost shice the inception of the extrusion process there 

have been two modes of operation. The difference between the two modes are provided 

in great detail in previous studies (Morse 1970, Spiers et al. 1969, Mueller 2002, 

Sheppard and Paterson 1982, Long 1986). 

The major difference is that in the indirect mode there is no friction between the billet 

and container w, hereas in the direct mode the outer shell of the billet moves relative to 

the container as extrusion proceeds (Chadwick 1970, Cocluoft 1969, Tuschy 1971, 

Berezlmoy 1997). Thus in direct extrusion the surface of the billet is sheared at, or slides 

along, the container wall (Hodges 1970, Hiroburni and Hiromasa 1974). In every case, 

part of the extrusion load, depending on the length of the billet, is expended in 

overcoming the fi-iction between the billet and the container, or in shearing the inner 

material from the slower-moving peripheral layer adjacent to the container wall. As one 

would expect, this results in conside--able variation in flow bellaviour, which is 

considered in detail in Chapter 3. 

Gencrallv, dircct extrusion is inore widely used and sorne of the complex extrusions 

employcd M the subsequent chapters are : Introduced below, including: 
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(1) Multihole-dic extrusion: 
0 

When extruding shaped sections which vould normally require pressures in excess of 

the press capacity, and where it is more productive to extrude shorter lengths or NN'llcil 

extruding forge stock, it is common to use multi-hole dies (Castle 1974, Gunasekera 

1984, Romana and Jozef 1985). The literature describing or analysing this process is 

sparse although the industrial application is quite common. The majority of experimental 

extrusion reported has been concerned with plane or axi-symi-netric extrusion of sheet or 

rod. There are few studies reported concerning the pressure requirements or the 

temperature variations and material flow when considering complex shapes or multi- 
hole dies (Johnson and Kudo 1962, Ulysse and Johnson 1998, Rahman et al. 2002) 

although these are important considerations to the press designer and to the operator. 

Reports concerning the use of a commercial FEM code FORGE31-ý, to study the 

influence of the number and the distribu'. 
-ion of die holes on extrusion parameters can be 

found in Chapter 4. The flow pattern, p, -. -essure requirements, and temperature histories 

developed are established and the difference in the properties of the extrudate using 

multiple holes (compared with single hol--) are also reported in Chapter 4. 

(2) Shape extrusion: 

Extrusion is the preferred method to produce complex shaped components (Doar 1969, 

Ferguson 1996, Lof and Bloldluis 2002, Sheikh et al. 2004, Rong 1998). As ail example 

to demonstrate the effectiveness of numerical simulation in modelling extrusion process, 

T shape extrusions (representative of the aircraft wing axe) at various initial conditions 

are studied in the following chapters. The dimensions of the section are shown in Figure 

1. The distribution of equivalent strain, strain rate, temperature and the evolution of the 

substructure including static recrystallisation have been studied and results are presented 

in Chapter 4. 
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Figure 2.1 Dimensions of T shape section 

2.1.2 Physical paraineters and principles used in modelling of extrusion 

2.1.2.1 Extrusion ratio 

In coilvcntlonal extrusion the cxtrusion ratio R is defined as: 

Ac 

nA E 
(2.1) 

where Ac is the area of the container cross section, Ai the total cross sectional area of ES 

the extruclatc and n tile number of holes in the die (for multi hole extrusion). The 

effcctive extrusion ratio range in industry practice for soft alloys is from 10: 1 to 100: 1. 

2.1.2.2 Plastic strain and strain rate 

The actLIcIl strain, -c 
, obtained by integration is a logarithmic function. Tlicrefore, the 

clTective strain in direct extrusion is usually approximated as the fractional cross- 

scctional arca and is dct-ined in an elementary notation as: 

Ac 
= In R 

AE 
(2.2) 
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1011 where Ac is the cross sectional area of the container bore and AEs the cross sect' 

area of the extrudate (Sara 2000). it is worth noting that when the extrusion ratio is low. 

the amount of plastic strain is also low. Thus the amount of work done during the 

extrusion will be less. Therefore, the structure of the extrudate will be under Icss 

deformation and physical property specifications will be compromised. 

nplex flow pattern in the It is very difficult to determine the stra, n rate due to the coi 

deformation zone. The material undergoes a rapid acceleration as it passes through the 

deformation zone. Therefore, a mean equivalent strain rate, -c-, has to be estimated for 

determination of the flow stress. After extensive optimisation of the upper bound 

solution, Castle (1976a) and Tutcher (1979) suggested the following equation for the 

mean equivalent straii-i rate: 

E= 
6D 2 

CVR (a +b In R)(c +d tan co) (2.3) 
D 3, D3 E 

where a, b, c and d are constants, D(- is the container diameter, Di E *s the extrudate 

diameter, Vjý is the ram speed and co is the deformation cone semi-angle 

withco= i+j In R, where land j are constants. Of course more accurate calculation or 

F- may be obtained when using FEM (Loi'2001, Peng 2004a). 

2.1.2.3 Friction 

Friction in aluminium. extrusion is a complex and still not fully understood phenomenon 

(Wagener 1994, Renne 1989, Mullei- 2002, Nakamura and Ishibashi 1995). The 

cilvironment of hot extrusion (i. e. high pressure, high temperature and material flow) 

pi-cvents efficient investigation of the frictional interfaces. The temperature distribution 

depends heavily on the frictional heat flux generated at the interfaces between tile 

tooling and the material. Temperature increases also occur due to shearing at the dead 

metal zone interface (Abtahi 1996, Sara '1998, Tokizawa et al. 1976, Sivaram 1988). 

Generally the direct hot extrusion of alurninium. alloys is performed without any 
ILibricant. Howcvcr a small amount of graphite based grease is sometimes used on the 
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face of the container which could become washed in below the extrudate surface during 

extrusion. This can lead to surface lamination and blistering. 

In direct extrusion (with a flat die) friction occurs at four interfaces (Bowden and Tabor 

1964, Schey 1983, Benedyk 2001, Garnache 1999, Lin 2003, Guha and Lengycl 1974): 

(a) container-billet, (b) die bearing-material, (c) dead metal zone-inatcrial, and (d) 

dummy block-billet, as shown in Figure . 2.2. 

u- lt-ný -I I cl r. -1 fli et ly 

A-11tamet -biflet 

C'eai: i mita1 zjn-tiiateria1 

I ý-: r " 
Diebt, 3nn g- rnat. cna 

Figure 2.2 Fi-iction interfaces at dn'ect extrLIS1*011 

The 11LIMerical description of friction is introduced in detail in Chapter 3 and it is not 

repeated here. 

2.1.2.4 Extrusion pressure 

The study of pressure during aluminium extrusion has been extensively reported (Oki 

1990, Arif 2001, Chadwick 1970, Sonmez 2002, Ohuchi and Takahashi 1988). The 

I)I-CSSLII-C required for the process is the principal consideration in the selection of' an 

extrusion press. The pressure can vary depending on: the alloy and its condition, the 

extrusion ratio, diameter and length of the billet, temperature of the billet and tooling, 

ram speed and the shape ot'the extrudate (Sheppard 1993,1999a). 

All carly estimation of tile extrusion pressure, p, was suggested by Siebel and Fangmeir 

(1931 cited Sheppard 1999a, L Li et al. 21004, Mosliksal'and Ebrahimi 1999, Bessey 2004) 

III the form of. 
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p= fflnR (2.4) 

whereýff is the equivalent stress. UnforLunately, this equation underestimates the real 

extrusion pressure by about 60%. It does not take account of the friction and the peak 

pressure. It is now generally accepted that the extrusion pressure (or the pressure cxerted 

on the ram), p, can be divided into four parts as follows (Castle and Sheppard 1976b). 

p ::: p 
1) 

+p 
Jý- 

+p 
Rw 

+pB (2.5) 

where pD is the pressure required for the plastic deformation of the billet, which is givcii 

in the functional form as: 

D =f(, ) (2.6) 

where -E is the ii-iean equivalent strain and Jd is the flow stress. p is the pressure F 

required to overcome the friction mainly at the container wall, p R", ' is the pressure 

required to compensate redundant or internal cleformatiori work. p is the pressure B 

required to overcome the higher number of dislocation density present in the billet 

before steady state extrusion is reached. 

From experimental observations and nw-nerical analysis (slip line or Lipper bound) the 

f'ollowing flormulac can be derived (Sheppard and Raybould 1973): 

p= d(a +b In R+ cL) (2.7) 

where ci is the contribution to the redundant work, b is linked to the semi-dead metal 

zone angle, L is the length of the billet ard c is dependent on the friction coefficients. 

Further work (Castle and Sheppard 1980a, b, Sheppard and Wood 1980, Sheppard 1993, 

Vicrod and Sheppard 1985,1987, Langseth 1994) demonstrated the importance of the 

sliape of the extruded product on the c. Ktrusioii pressure. Therefore a peripheral ratio 

parameter, ý,, defined as the ratio of the r eriphery of the sectim to the peripliery ofa rod 
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of' equivalent cross-section, was introduced into the pressure equation. One example 

helping to understand the definition of th, - peripheral ratio is shown below: 

In case a I-OUnd and a square enclose an equal area, ;ý= 2a / 7uR 

Figure 2.3 Example of peripheral i-atio parametei, 

Here the square and the round have the sarne extrusion ratio. Thus the shape factor is 

-1pheral distance of'the given by the peripheral values for the square 4a divided by the pei 

rOLlild 2 Ti R. 

It has already been well recogi-iiscd that Finite Elcment Method (FEM) cail give 111o1, e 

precise pi-cdictioii of'extrusion pressure Ciaii the methods introduced above. FEM is also 

more flexible than other methods, especially when complex boundary conditions are 

Mider coi-isideration (f'or example, in flic analysis of mutti-hole or complex shape 

extrusion). The detail ofthe discussion can be found in Chapter 3 and 4. 

2.1.2.5 Heat transfer and balance during extrusion process 

Heat transt'er is one of the most important phenomena to consider in extrusion as it 

defines the temperature parameter. This is one of the process variables that can be 

controlled. In general it has been shown that variations in temperature are mainly due to 

the extrusion ratio and rarn speed (Wu et al. 1995, Guice and Witte 1987, Kanial and 

Kalyon 1983) The flow stress and therefore the pressure can be reduced it' the 

tcniperature is increased. However, there is a risk of' locallsed incipient melting -vNlith 

Imoh rain velocity (Clien 22000, Gopalakrishna 1991). 

Heat trans1'er occurs throughout the extrusion process from the initial stage of 
1101110gen I sat loll to tile 1,01lowillp extrusion stage, during which heat transfers to the die 

(11-om the billet) and air (from the extrudatc), LIIItIl the stage of stretching and finally at 

tile stage of solution treatment and agcing (Sheppard and Wood 1980, Lange 1971, 
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Castle and Sheppard 1976, Macey and Salim 1988, Chenot 1992). Ho\\, ever. the licat 

generation and heat transfer occuring during the extrusion are critical because tliev 

define the exit temperature of the extrudate. The temperature of the extrudate just 

leaving the die is important for product quality (dimensional stability and cxtrusion 
defects) and die life (wear and perfor'liance). Castle (1992) and Sheppard (1999b) 

divided the heat balance between the following processes: 

(1) Heat generation due to plastic deformation, 

(2) Heat generation due to friction at the container-billet, dead metal zone-material and 
die land-material interfaces, 

(3) Heat exchange between the billet and the tooling (container, pressure pad, die land). 

The detail of theory of numerical modelling of thernial behaviour during extrusion 

process can be found in Chapter 3. 

2.2 Optimising extrusion conditions and the role of modelling 

The extrusion process must produce a product satisfying strict geometric, cosmetic and 

property specifications. The extrudability of aluminium alloys, which means the 

compatibility of an alloy to withstand high speed extrusion, varies with the material 

variables, which include alloy elements, homogeneity and billet conditions. One 

measure of extrudability is the flow stress of the alloy since this parameter, for any given 

section, determines the pressure locus on the extrusion limit diagram (McShane 1978, 

Patterson 198 1, Sheppard and Wright 1979, Sheppard 1999a). 

The representation of press capacity and maximum temperature which can be tolerated 

during process in one diagram is termed a limit diagrarn and one example is 

schematically shown in Figure 1.2 and iL is not repeated here. The most useful form of 

such diagrams is in the format developed by Sheppard and Raybould, (1973a). Tile 

I'orniat utilises constant strain rate curves and also shows that limit diagrams could 

proN, Ide specific metallurgical data on the structure of the final extrudate, thus providing 

the pi-css operator with the capacity for metallurgical process control. 
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The application of numerical techniques to the continuum mechanics problem. 

developed over the last three decades, has improved the capability for an integrated 

treatment of both tool-load demands and internal micromechanics (Bianch, and 

Sheppard 1987, Childs 1974, Baskes 1999, Harrison 1994). Their implementation as 

computer codes, with thermo-mechanicai balance and kinematics con'lpatibility built in, 

has introduced a modelling tool driven olily by the external boundary conditions and the 

material behaviour. The Finite Element method now provides sufficient information for 

many 'mechanical' problems, such as load prediction, speed optimisation, temperature 

and residual stress, etc. to be solved. Whilst most of the early finite element methods 

used in computational science postulated isotropic, homogeneous, linear, and continuous 

materials properties (Zienkiewicz et al. ý990), a number of advanced methods consider 

material heterogeneity, crystal anisotropy, nonlinear material response, and nonlinear 

geometrical aspects (Gittus and Zarka 1986, Mchugh et al. 1993, Dawson et al. 1994, 

Fleck et al. 1994, Schmauder and Weichert 1996, Sarma 1996). 

However, FEM is mainly applied in thermal -mechanic aI continuum analyses. To 

simulate the evolution process of the material structure (for example, recovery and 

recrystallisation) and predict the final structure, FEM has to be combined with other 

structural rnodels. Microstructure modelling is now often seen as the n-lost profitable 

way to add value when applied to industrial based FEM sin-itilation (Shercliff and Lovatt 

2001). Various microstructure models liý. ve been developed, although many of them are 

still in an early stage. Different methods,, such as physically based model using internal 

state variables, statistical mechanism mcdels, Monte Carlo and Cellular Automata, etc. 

have been applied in simulations of different scales (Micro, Meso and Macroscale) 

(Siiiolander 1985, Hunter et al. 1990, S: olovitz et al. 1986) A new branch of science: 

"coniputational material science" is under development (Raabe 1998a). 

The greater part of process modelling is developed for detailed design, or to enhance 

scientific understanding of processing. The challenge is to extract an appropriate level of 

detail and approximation to provide useful discrimination as dictated by the needs of the 

designer. Process modelling could also play a more significant role in improving 

understanding ol'the response of the material in the numerous standard laboratory tests 

used by industry. This modelling could provide a more robust basis for making design 

decisions on the basis oftliese tests. 
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An important aspect of modelling In selection. which has to be considered here. is the 
degree of uncertainty in the predictions, the work on simulation using different models 

niust take this into account (Shercliff and Lovatt 2001). 
1 

2.3 Numerical modelling and simulation 

The term "modelling" has two meanings, one falls into the domain of model formulation 

or model design. By selecting the independent variable (typically time tand space x) 

and dependent variables (functions of the independent variables), underlying kinematics 

and structure evolution equations couid be established, in the forryi of algebraic, 
differential,, and/or integral expressions. The second meaning of modelling is the 

numerical solution of the governing eqL ations associated with models. This procedure 

, ng" or "simulation" (Ashby 1992, Biner 1992, can be referred to as "numerical modelli 

Miller 1987,, Kirtley 200 1, Jekl et al 199 1). Both terms parapl-irase the solution of a set of 

mathematical expressions, i. e., of a number of path-dependent and path- independent 

functions, which quantify the underlying model formulation using appropriate boundary- 

and initial-value conditions. 

One common approach is to use the notion "numerical modelling" for the entire 

procedure of model formulation and program code generation, while the term 

"simulation" is often used in the sense of numerical experin-ientation. The details of the 

definition and discussion of the terms can be found in Raabe's work (1998a). 

The application fields, for example, niechanical engineering or materials science, 

commonly classify different modelling methods (Murphy and Perera 2002). The 

modelling applied in different research fields in the present work are introduced in the 

sections below. However, the trend is to integrate different research fields and thus 

"integrated modelling" is introduced at the end of this chapter. 

2.3.1 Therinal-inechanical modelling by Finite Element Method 

The simulation calculation of an extrýision sequence in an industrial environment 

consists principally of a therino-inechanical analysis of the plastic deformation (Dyja 

, and Korczak 1999, Kowalsky and Ahrens 1997, Meguid 2001). Modelling of thermo- 

mech. anical proccssing, of metals is one of a number of industrial modelling activities 
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which has been reviewed in response io the technology foresight exercise (Shercliff 

1997). This illustrated the breadth of industrial processes and alloys for which there are 

common underlying challenges in process modelling (Shercliff and Lovatt 1999). 

The term thermodynamics refers to the study of heat related to matter in motion. 
Modelling of thermomechanical processing of metals is one of a number of materials 

modelling activities. The Finite Element Method (FEM) is a general numerical means of 

obtaining approximate solutions in space to boundary and initial-value problems. It is 
based on generating the governing differential equations and the discrete algebraic 

counterparts of the problem under investigation using a variation formulation. The 

development of the state variable being approximated by appropriate interpolatioil 

functions. The application of numerical techniques to the continuum mechanics problem, 

developed over the last three decades (Iwata et al 1972, Livesley 1983, Rclilikaii1en 

1994, Herberg and Skauvik 1993, Udagawa 1992, L Li et al 2004) has improved the 

capability for an integrated treatmeiit of both tool-load demands and internal 

micromechanics. 

Currently, computer modelling and simUlation of the material forming process has been 

developed to the point where it may b4c used to solve industrial problems. Computer 

modelling is often treated as a universal tool in all problems of metal forming processes. 

Taking a general view of the present st&, e of the art in terms of numerical modelling, it 

appears that the finite element method is most suited to the three-dimensional analysis of 

material forming processes. In fact, the finite element method can take into account 

practical non-linearity in the geometry and material properties, besides producing 

accurate predictions of stress, strain, strain rate and temperature throughout the 

del'ori-ning billet (Mathur and Dawson 1989, Becker 1991, Liu et al. 2000, Chanda. 2000). 

For many deformation processes, there is a view that continuum mechanics FEM is well 

established, both for simulating the manufacturing process itself and the less obvious 

task of modelling the 'standard test' used, for example, to determine constitutive 

behaviour (Huang 1998). The greatest limiting factors at the continuum level in all 

nietal-forining analyses are poor charactcrisation of interfacial friction conditions (and to 

a lesscr degree heat ti ei -ansf -), and the need for improved models of material constitutive 
behaviotir for complcx deformation histories and for heterogeneous materials (Shercliff 

1997, Marthinsen 2003). 
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2.3.2 Microstructure modelling 

Observations of the structure developed by hot working have been made on a wide range 

of materials deformed either by forgin rolling, or extrusioii, oi- by high-strain-rate 

tension, compression, or torsion tests (Sheppard and Tutcher 1979a, b, Tibbetts and Well 

1998, Sellars 2003, Nes 1994). In general, the results obtained using different modes of 

deformation are in good agreement and they indicate that there are two broad groups of 

metals and solid-solution alloys which may behave differently under hot working 

conditions. Aluminiurn and aluminiurn alloys, commercial-purity (X -iron and ferrite 

alloys are observed to develop subgrains during deformation when specimens are cooled 

rapidly after either small or large amounts of deformation. The structural changes during 

hot working of this group of metals are similar to those during creep, and where 

activation energies have been observed to remain nearly constant over the whole range 

of strain rates and terriperature (Jonas et al. 1969). 

In contrast, copper and copper alloys, nickel alloys and austenitic steel show a 

substructure within the distorted original grains after low deformations, but after higher 

deformations, when steady-state cond1tions have been attained, they develop ail 

equiaxed recrystallised grain structure. Activation- energy measurements for creep and 

hot working on materials in this group show distinct differences (Jonas et al. 1969). This 

form of deformation is talown as dynamiý; recrystallisation. 

The work in the present study concentrates on deformation of aluminium alloys in which 

dynan-iic recovery and static recrystallisation are the main restoration process. Since the 

beginning of the 1990's, much progress has been made in computer modelling of 

i-nicrostructure evolution during the hot deformation process. Excellent reviews of 

modelling of' static recrystallisation (SRX) have been given by Gottstein et at. (2000) 

and by Shercliff and Lovatt (1999). There are several approaches to modelling 

microstructure evolution in hot deformation and subsequent annealing, the most 

commonly used methods include: (a) Empirical methods, (b) Network models 

(HLIIIIPIII-CYS 1992), (c) Statistical modelling (Crotaz et al. 2002) (d) 'Physically based' 

(PB) state variable methods (Nes 1998, Sellars and Zhu 1999, Gottstem 1998, Furu 1999, 

Zhu et al. 2003) NvIiicli have been proposed to describe the hot rolling of aluminium 

allovs. One of the important tasks of the present project is to verify and apply these 
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models to the extrusion process as well ý. s (e) the cellular automaton (CA) and the Potts 

model (MC) (Liu 1996, Davis 1997). 

The various scales of microstructure modelling can also be roughly grouped into the 

nanoscopic, microscopic, mesoscopic, and macroscopic regimes (Raabe 1998a). In this 

context the term nanoscopic refers to the atomic level, microscopic to lattice defects 

ensembles below the grain scale, mesoscopic to lattice defect ensembles at the grain 

scale, and macroscopic to the sample geometry. This subdivisiori is to a ccrtain extent 
deterministic, various alternative subdivisions are conceivable. In the present work, most 

studies are concentrated on the macro and mesoscopic scale simulation with physically 
based metallurgical models and other numerical models, for example, the Cellular 

Automata model. Some work concerned with the microscopic simulatiori is also 
discussed. 

2.3.2.1 Empirical inodels 

The greater part of process modelling is developed for detailed design, or to enhance 

scientific understanding of processing. The challenge is to extract aii appropriate level of 
detail and approximation to provide usef-il discrimination as dictated by the needs of tile 

designer. The inherent complexity of some process physics also calls for a degree of 

pragmatism, so that purely empirical models are used if required in order that as wide a 

range of options as possible is consider&.. 

The established empirical approach (Sellars 1990, Mclaren & Sellars 1992) to predict 

flow stress and subsequent recrystallisation is based on the Zener-Hollomon parameter: 

Z- AH) 
= F- exp( RT 

(2-8) 

NvIlerc. C_ is the inean equivalent strain rate, AH is the activation energy and T is the 

temperature. Flow stress in the above stLiAy is commonly described by an equation ol'the 

601-111 

I zIfl 
= -arcsinh(---) az 

(2-9) 

Iý 



where (x f 9Z 
* and n are material constants. Recrystallised grain size. dr,, 

. and the time to 

50% recrystallisatiOll') t5o (a common measure of recrystallisation kinetics), are 

described by power laws: 

d= kd Cf F-b Zc 
rex 0 

t50dP C-qZ-r 0 cxll(Qdef / RT) 

(2-10) 

(2-11) 

where (x, P, k are constants, do is the initial grain size (Nes 1994,1998), and c is the Von 

Mises equivalent straiii. The other pararricters are empirical constants. 

The volume fraction recrystallised factor can also be related to the temperature and the 

other forming parameters, which can be expressed as: 

Xv =f (K, T, ý� Z, E, ü) (2-12) 

where T is the temperature, ý, is the peripheral ratio, R is the extrusion ratio, K is a 

constant (Sheppard 1993,1999a). 

Other empirical models have been developed to describe: 

(1) The relations between the subgrain size and recrystallised grain size to processing 

parameters: 

01-1 the finer scale, the extrudates contain a well recovered subgrain structure whose sizes 

are modified by the presence of the niclusion and precipitates. The subgrain size is 

commonly gi\, 'en as reported in a considerable volume of literature (Sheppard and 

Tutcher 1979, Sheppard and Raybould 1073a, Paterson 198 1, Sellars 1986) as: 

6- 1= 
ALn(Z) +B (2-13) 
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and the constants A and B have been giv, -II for various alurninium alloys (Sheppard 1982. 

Zaidi 1983, Sheppard 1999, Nes 1994, Sellars 1996). 

Empirical equations were also given to relate the recrystall, sed grain size to tile 

deformation conditions (Nes 1994). Empirical models have also been combined \\"Itll 

FEM to predict the final structure in rolling in many previous studies When 1992, DUan 

2002). Some of them have been introduced in the introductory chapter and they are not 

repeated here. 

(2) Volume fraction recrystallised factor. 

The volurne Eraction of a material Xv w iich recrystallises in a time t during isothermal 

annealing produces a curve of sign--oldal shape as reported by Sheppard and 

Raghunathan (1989), and is consisten, with the recovery, nucleation, and growth 

equation proposed by Johnson and Mehl and Avrai-ni which takes the form: 

Xv =I- exp(-Pt ") (2-14) 

where P and n are constant for any fixed time and temperature conditions. Rearranging 

this equation yields: 

In In( 
I)= 

In +n In 
I- Xv 

(2-15) 

By introducing the concept of temperatu,. -e compensated time, shape factor k(defined as 

the ratio of the periphery Q, of the section to the periphery Q,. of a rod of equivalent 

cross-section) and the strain rate, Sheppard (1993) has reported the expression for the 

extrusion process as: 

liilii( 
1)= 

Ko + KIT + K2 lii(; ý2)R -, - K3 ln[2ý, 2 (Z )]+K4 ; ý2 (2-16) 
1- xv A 
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Subjecting the experimental measuremeiits to multiple regression analv-sis to obtain the 

relevant equation yields, for example, for direct extrusion of AA2024: KO = 1.95. KI 

0.012, K2 =1.16, K3 -0-04, K4 =0.04 (correlation coefficient 0.9907), for indirect 

extrusiong KO =-2.05, K1 =-0.005, K2 =1, K3 =0.003, K4 =0.02 (correlation coefficient 

0.9615). 

(3) Working hardening phenomenon. 

Various empirical equations have been given in predicting the proof stress by Nes 

(1998), or used to relate the work hardening to the variation of subgrain size or tile 

recrystallised grain size (Nes 1994, SeIL--s 1986, Nes 1998, Urcola 1987, Vernon-Parry 

1996) and now they have been developed into a physically based model, which is fully 

physically based (Nes and Marthinsen 2002). 

However, it is important to point out ", ere that it is not the aim of present work to 

develop any empirical methods to predict the structural evolution. The only use of these 

equations is to give a reference data to correlate the simulation results when the detailed 

experimental results are not available. 

As can be seen from the discussion above, by empirical means, a modest degree of 

prediction of i-nicrostructure can be achieved, for example, hi-i-king recrystallisation after 

defori-nation to the average process conditions. However, the empirical expressions 

depend on the accuracy of experiments and are regarded mainly as a case study method. 

2.3.2.2 Network models 

The network model is an efficient way to represent microstructural evolution in 

discretiscd form (Humphreys 1992). These models are efficient because they abstract a 

key Feature of the grain structure, i. e., the vertices or triple junctions between grain 

boundaries, and are therefore, efficient because only the motion of the joint points needs 

to be calculated, provided that local equilibrium can be assumed at triple Junctions. 
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2.3.2.3 Physically based internal state variable model 

A certain amount of the modelling wor. K has been achieved in the field Of hot rolling 

(Duan 2002a, Chen 1992, Mclaren 1992, Zhu 2003, Marthinsen 2003), and recentlv lil 

the field of hot extrusioi-i by Duan and Sheppard (2004a, b). Some models introduce 

many tuning parameters, especially for 'ý, he physically based models. These parameters 

depend mainly on the material. To estimate their real values, specific and numerous 

experiments would be required. Recently, the inverse method combined with FEM has 

been adopted to tune the values of these parameters. The FEM is run iteratively until the 

appropriate value is found to match the experimental measurement. Duan and Sheppard 

(2004a, b) have used the inverse method Lo give the parameters for alloy 5083 and 2014. 

The method has also been used in simulations of the extrusion process by Peng 

(2004a, c). 

Modelling of microstructure evolution e. ýplicitly in differential form has been the basis 

for most classical theories of work hardening and annealing. The internal state variables 

are now physically meaningful quantities that can, at least in principle, be measured by 

electron microscopy (dislocation densities etc. ). Developments of this approach can now 

benefit from the recent advances in microscopy, such as semiautomatic electron back 

scatter diffraction (EBSD), which enables substructures to be quantified with far greater 

speed and precision (Hurley and Humphreys 2003a, b). Differential physically based 

state variable models have the potential to follow complex process histories and provide 

a means of conveying microstructure explicitly from one processing stage to the next. 

The approach summarised here comes largely from the research groups in Trondheim, ) 
Sheffield and Cambridge (Nes 1994, Selfars 1986, Shercliff and Lovatt 1999). There are 

three separate modelling tasks: (a) describing the evolution of deformation substructure, 

in particular the subgrain size, dislocation density and subgrain boundary misorientation; 

(b) coupling substructure to flow stress; and (c) predicting recrystallisation behaviour. 

The Trondheim group (Nes et al. 1994, Nes 1995, Nes & Furu 1995) have used 

evolutioii laws for subgraiii size and dislocation density to study steady-state flow stress 
iii constant strain-rate hot deformation, when work hardening and dynamic softening 

processes are balanced. Complex developments of this approach have been proposed to 

provide a 'uiiiversal model' for work hardening (at constant strain rate) across all 
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defon-nation temperatures both for pur%,. FCC metals and AI-Mg alloys, based on a 

statistical view of dislocation storage (Nes 1998. Marthinsen & Nes 1997). 

The Sheffield (IMMPETUS) group have approached hot working of alunIIIIILHII alloys 
from a background of FE analysis of th; -, transient nature of the deformation histor\' In 
flat rolling, in terms of temperature, strail-i rate and strain path. Models for predicting the 

evolution of internal state variables suc', i as internal dislocation density, subgrain size 

and misorientation between subgrains, as well as subsequent recrystallisation behaviour 

are developed for both constant and transient deformation conditions (Furu et al. 1999, 

Zhu et al. 2000). The detail of the model can be found in Appendix A. 

However, criticism of the physically based models is that they have mainly been 

concentrated on a specific alloy (AI-I%Mg) and developed from experiments utilisiiig 

plain strain compression (PSC), in which plastic strains greater than 2 are difficult to 

achieve. The interaction of recrystallisation and precipitation (Jones and Humphreys 

2003) has not been considered in detail in the models. 

At the present time, it is still difficult t,,:, obtain a precise measurement of some of the 

parameters used in the physically based models, such as the dislocation density. It has 

been reported by Sellars (1994), Shaham (1994) and reviewed by Nes (1994) that during 

steady state the dislocation within the cells ( I/ ýpj ) is inversely proportional to the cell 

size 6: 

V-pi 

= C6 /6 (2-17) 

where C8 is a constant of typical value of the order 5. The stored energy can be written 

(Nes 1994): 

PD --: ':: I-P + 1'ýYSB 

where 17 is the dislocation line tension, 7SB 's the sub-boundary energy: 

-ys, 3 = (xý4 ( ibü(Iii c0, / 0) (2-19) 
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with: 

(X4 = I/ 4n(I - v) (2-20) 

v is the Poisson coefficient. 0(= 3) is the sub-boundary misorientation and K is a 
0 

geometrical constant (Ký:: -- 3 for a uniform, regular substructure). Althougli the 

expression of the stored energy has bee. i refined further (Furu and Sellars 1999), it is 

still at its early stage since the dislocat-on densities are difficult to measure in detail. 

There are still many phenomena to be understood to describe the complete physical 

nature of recrystallisation (Doherty et al. 1997) and this retards the development of 

physically based models. 

2.3.2.3.1 Subgrain size 

The as-defornied state microstructures in aluminium alloys have been characterised by a 

subgrain structure of low misorientation consistent with the operation of dyiIarnic 

recovery and repo I ygon isation during extrusion (Marthinsen 2002, Ryen et al 2002, Nes 

2004). 

Examples of the substructures in the 5% ýCu alloys at low extrusion temperature and Iligil 

temperature are shown in Figure 2.4. As can be seen from Figure 2.4(a), the subgrains 

are elongated in the extrusion direction and haN, e a relatively high internal dislocation 

density indicating that recovery is not complete at low temperatures. The substructure 
from higli temperature extrudates in Figure 2.4 (b) shows that an increase in extrusion 

temperature results in a steady state substructure of larger subgrains with lower internal 

dislocation densities and narrower subboundary walls. The increase in thermal activation 

permits easier cross slip and climb of dislocations. The subgrains are generally more 

equiaxed in nature which can be associated with the need to reduce the grain boundary 

area and thus reduce the free energy of the structure, which is further enhanced by the 

increased mobility of the subboundary dislocations. The subgrairi size can be related to 

the temperature compensated strain rate Z and hence the process condition by: 

d-"' =a+ bLiiZ (2-21) 
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where a, b and m are constants (Jonas et al. 1969, Nes 1994,1998). A value of' m:: -- I is 

normally used since it has been found to give the best overall correlation. 

a) Ti=350'C LiiZc--:: 26.56 

pis 

Figui-e 2.4 subs trLICtLIrCS observed in the longitudinal plaric of the press quenched direct 
extrudates ofthe 5% Cu alloys (Vierod 1983) 

2.3.2.3.2 Recrystallised grain size 

Static recrystallisation can occur subsequently to extrusion after the material travels out 

of' the die. Apart from the heavily worked Outer region, the structure can be fully 

i-ccrystallised, fibrous, or a combination of both. The structures may be classified into 

three main typical types as shown in Figure 2.5. Frequently the structure is a 

combination ofoilc or more of these types. 

In the case of' solutioniscd rod eXtRIS1011. SLibramanlyan gives ail empirical relationship, 

in which the volume percentage recrystallisation is related to LnZ, (Subranianlyan 1989). 

VO I L11110 o=a+bI ii Zj ('2 -22) 
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where volume% is the volume percentage recrystallisation, a and b are constants, Z, Is 

the Zener-Holomon parameter calculated usIng the initial temperature: 

Zi =üexp( 
AH 

) (2-2 3) 

where T, is the initial temperature, AH is the activation energy for deformation, R is the 

Ulliversal gas constant. 

(c) 00: 1,408'C, 
-') mill/sec 

Figure 2.5 Optical 11lic"091-aPhs oftypical StRICtUres of the extruclate showing tile 
fibrous, mixed and recrystalliscd morphologies possible (Castle 1974) 
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The relationship of equation 2-23 can o-ily be regarded as an approximation, since the 

quench delay varies with the strain ratý-. and, in addition, IS Virtually doubled dUrInj! 

indirect extrusion due to the difference in the tooling arrangement. The constants ci and 
b vary significantly for different alloys and depend heavily on the forming conditions. 

Therefore, precautions should be taken when using this type ofernpirical equation. 

Heat treatments are usually applied after extrusion of heat treatable alummium alloys to 

improve the mechamcal qualities. Static recrystallisation usually occurs during this heat 

treatment, and the as CXtrUded structures are replaced by a newly-formed graIll Structure 

(Sheppard, 1993, Nes et al. 2002, Sellars et al. 2003). Fully recrystallised structures are 

produced in all extrudates produced below an Initial temperature of about 350'C for 

2014 alloy. 

Typical examples of longitudinal and transverse sections are shown in Figure 2.6, taken 

from a 350'C extrudate, showing I'Lill rorystallisation with ail average grain size ol'O. 3 

nim in the transvcrse dircction (Subramanlail 1989). 

The extrusion conditions, such as the initial temperature, tile raill speed and tile 

condition oftlic heat treatment have great 11111LIC11CC Oil the final product structures, and 

this IS Studied in detail in Chapter 4. One example of the IIlf1LIeIlCC Or tile initial extrusion 

temperature Oil tile fraction recrystallised factor is shown in Figure 2.7. 

r 

(b) Transverse 

Figure 2.6 350'C extrudate,, 0.5 hour soak, 500'C (Subramanlyan 1989) 
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Figure 2.7 VolLime percent recrystallised vs initial billet tempei-atui-e f'Ol' SOILItIOllised 
extruclates (Subramanlyan 1989) 

2.3.2.3.3 Kinetics of Recrystallisation 

The relationship betwecri the V011.111-ic fraction recrystalliscd (Xv) and the holding time (t) 

is generally represented by the Jolinson-Mehl ( 1939)-Avi-aiiii ( 1939)-Kolmogorov ( 1937) 

eqUation (JMAK), which predicts the relationship between tile VOILIIIIC fraction 

recrystallised (Xv) and the holding time (L) and is generally represented as: 

t Xv =I- exp J-0.693( 
t50 

(2-24) 

where t is annealing time, k is the Avrami exponent Nvith a commonly reported value of 

2, t 50 is the time to 501NO recrystallisation. For the calculation oft 50 , the physical model 

is commonly regarded as the method of revealing the mechanics driving the 

transt'ormation. Previous studies (Funt et al. 1999), have shown that the physical models 
describe the experimental results well f6i uniform processing conditions. The model was 

also successfully applied to tests In which the strain rate was increased (when 

III ICI*OStl'LICtLll'C tR1I1SICI1tS NN'Ci-c not observed). Recently, Sheppard and DUan (2003) have 

COIII-11-111CLI that the Physical model will better computed results than the empirical 

model In the SIMUlatIO11 01' all. 1111111IL1111 CXtI'LISIOI1. Oilly t1le pljySICal model proposed by 

Ful'Ll ct al. ( 1990) and Zl1U and Sellars (2000) has been used in this Study. 
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2.3.2.4 Cellular Automata (CA) and Potts model (NIQ 

Potts model (or Monte Carlo, MC) and cellular automata are two Nvell knowil analogous 

probabilistic or statistical models. 

The various techniques commonly referred to as Monte Carlo methods comprise direct 

approaches to mimic stochastic events which can be decomposed into isolated processes 

and statistical approaches to integrate multi-dimensional definite integrals nui-nerically. 
Cellular automata are algorithms that describe the discrete spatial and/or temporal 

evolution of complex systems by applying local or global deterministic or probabilistic 

transformation rules to the sites in the lav Ice (Raabe 1998,2002). 

Computer simulation of grain growth and recrystallisatoii was strongly stimulated ill the 

early 1980s by the realisation that MC models could be applied to problems of grain 

structure evolution. By extension of the Ising model for doi-riam modelling of magnetic 

domains to the Potts model, it was then possible to represent grains (domains) by regions 

of similarly oriented (lattice) points (Anderson et al. 1984, Baxter and Behringer 199 1 ). 

The simulation of recrystallisation by the CA method is reported by Hesselbarth and 

Gobel (1991), Pezzee and Dunand (1994). Davies (1995,1997,1999) also gave detailed 

discussions of the effect of neighbourhood and the possibility of the application of CA 

into aluminium rolling. 

However, neither the MC model nor the CA model in their standard form is entirely 

satisfactory for studying boundary migration under the combined influence of two 

different driving forces (Zandler 1994, Sreekumar 1998). In grain growth, the driving 

force derives from the curvature of a boundary, for which the MC model is satisfactory. 

In primary recrystallisation, the driving force is the removal of stored dislocations by the 

migration ol'the recrystallisation front, for which the CA model is satisfactory. In both 

cases, we expect to find a linear relationship between driving force and migration rate 

(vclocitN). The actual behaviour of the MC model does not give this for stored energy as 

a driving f6rcc (except for low driving forces), and the CA model does not allow for 

bOUndary Uirvawre as a driving force. Although both of the models have been developed 

extctisivcly M the last decade and various hybrid models have been provided (Rollett 

and Raabe 2001), difficulty still cxists in integrating the two methods without arbitrary 
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control by the user. In the following studies, only the CA model is adopted since most of 

the time only primary recrystallisatIon applies to the present research. 

2.3.2.4.1 Definition of CA 

Cellular automata are algorithms that describe the discrete spatial and/or ternporal 

evolution of complex systems by applying local or global deterministic or probabilistic 

transformation rules to the sites of a lattice (Raabe 1998,2002). 

It is well known that a cellular automaton (CA) is an arrangement of cells characterised 

by three Features: 

(1) The number and the kind of states a cP-11 can possess 

(2) The geometry and the definition of the neighbourhood of a cell 

(3) The rules of transition for a CA that determine the state of each cell in the next time 

step, depending on the actual state of the cell, and the state of the cells in its 

neighbourhood. 

Different definitions of neighbourhood that have been used in the previous studies are 

shown in Figure 2.8. A new type of neighbourhood is adopted in this study due to the 

elongated nature of the recrystallisation grain shape in the extrudate, as shown in Figure 

2.8e. 

It has been pointed out by Janssens (2003) that the main reason why the scientific 

community is searching for new computational approaches to simulate and predict 

recrystallization and grain growth processes is the heterogeneous nature of these 

processes. 

The as deformed structures are spatially nonhomogeneous, however, the continuum 

theory at the present time has some difficulty in precisely simulating the heterogeneity at 

the process size (macro-) scale, although great improvements have been achieved in 

crystal modelling at the micro- or meso-scale in the last decade. 
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Figure 2.8 Dehilition ol'iielglibOLli'lioods: (a) Von Newmann, (b) Moore, (c) 7-cells- 
ileighbOUrhood, (d) 25-cells-neighbourhood (e) side-prefer-neighbour 

The crystal plasticity Finite element model, which accounts for plastic del'ormation by 

crystallographic slip and Ior the rotation of the crystal lattice during deformation, COUld 

predict the dctormation behavIOUr of on-- or several coalescing grains or subgrains, but 

was not fully capable of simulation of' the deformation process at the inacro-scale. Tile 

FEM SIIIILIIatIOII at the inacro-scale did iiot take accOLUIt Of' tile material heterogeneity, 

however, it is still a powerful tool in predicting tile necessary variables, such as strain, 

strain rate and stress, which are necessary for microstructure S11111,11ation. The recently 

developed physically based models relate the final recrystallised structure to tile as 

del'ormcd state, but it ignores the evClLItIOII process of the recrystallisation. Every 

method has its own ments and shortcomings. However, if the macro-scale FEM can be 

integrated with the physically based metallurgical model and CA, it could have a 

promising Future In the simulation of structural evolution at different scales (inacro-, 

micro and meso-scalc). 

By mapping the state variables on a two- or three-dimensional spatial grid. cellular 

automaton simulations are capable of ýiccountirig 1`61- 111 ICI-OStI-LICtLiral inhomogcneities 

sticl, as second phases, microbands, shea - bands, transition bands, heterophase interfaces, 

grain boundaries, or twins. These local defect structures can be described In terms ot, I- 

48 



I ients corresponding values of the state variables (such as temperature) or their gradi 

(Raabe 1998a). 

The cellular automata concept is not simply identical to conventional simulation 

approaches such as the finite difference, finite element or Potts methods, but is defined 

in a much more general and versatile manner. Although CA simulations have been 

typically performed at an elementary level (e. g. atoms, clusters of atoms. dislocations), it 

should be emphasised that particularly those variants that discretise and map into a 

continuum space are not intrinsically czalibrated by a characteristic physical length or 

time scale (Bolt 2005, Alonso 2005) 

Details of discussion on CA can be found in Chapter 5, only the definition of' the 

deterministic and the probabilistic CA are introduced below. 

2.3.2.4.2 Deterministic CA 

The local interaction of neighbouring sites in a cellular automaton is specified througli a 

set of deterministic or stochastic transtcrmation rules (Gallas et al. 1992, Grassberger 

1983, Kagaris and Tragoudas 1977, Lopez et al. 1999). The value of an arbitrary state 

variable ý assigned to a particular site Lt a time (to +At ) is determined by its present 

state ( to ) (or its last few states to , to -At , et al. ) and the state of its neighbours. 

Considering the last two steps for the evolution of a one-dimensional cellular automaton, 

this can be expressed forinally by writing 

to +At to -At to-At to -At to to to ýj 
J-1 

ýj ýj+l 
5ýj _]'ýj 9ýj+d (2-25) 

where ý, tO indicates the value of the variable at a time to at the node j. The positions 

j+I and j-I indicate the nodes in the immediate neighbourhood of position i. The 

fI unction I specifies the set of transformation rules, such as provided by standard finite 

difference algorithms. The value of a va-iable at a node is derived from the state of the 

neiglibours througli the employment of t. -ansfori-nation rules. These rules are identical at 

each node. Howcvcr, nonliornogeneous i-laterials are i-nore easily simulated by assigning 

cori-csponding properties to the state of' the nodes and exploiting the huge variety of' 
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possible switching rules rather than by changing the transformation laws locally. The 

simulation of microstructure evolution with consideration of stochastic processes can be 

achieved by rendering deterministic ii--to probabilistic trans format; oil rules (Raabe, 

1998b). 

2.3.2.4.3 Probabilistic CA 

In order to avoid confusion when discussing nondeterministic cellular automata, one 

must clearly indicate the stochastic element that appears in the algorithm (Pemantle 2005, 

Adell and Sanguesa 2005, Makowice 1993, Meghdadi 2002). There are essentially two 

possible ways of transforming a deterministic cellular automaton into a nondeterministic 

one. The first approach consists in selecting the investigated lattice sites randomly, 

rather than systematically in sequential order, but using a deterministic transformation 

law. The second approach consists in using a probabilistic instead of a deterministic 

transformation law. Probabilistic cellular automata are in their elementary setup very 

similar to conventional cellular automata, except for the fact that the transition rules are 

stochastic rather than deterministic. The 11ocal switching probability can be quantified by 

the ratio of the local and the maximum mobility mlocal / mmax , which is a function of 

the grain boundary character and by the ratio of the local and the maximum driving 

local max pressure p /p 

local local - local IIIIIX local mpxt 
max max 11,14"IX local 

mpt 
(2-26) 

t is the local time required by a grain boundary with velocity ý to cross the automation 

cell. The detail of the transition rule can be found in Raabe's work (1998). 

2.4 Product quality control 

With the different models introduced before, there is a great potential to apply numerical 

simulation to the extrusion process to improve the product quality. 

DLII*Illu CXtl-LISIOII, imperfections in the quality of the extrudate may arise, ranging trom a L- - 
I*OLIIIII 01- UIICVCII SLIIIace to a complete scverance of the extruclate. The quality of the 
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extrudate can be measured by the degree of internal precision (substructure. grain size. 

metallurgical structure, precipitates, non-homogeneous metal flow, variation of structure 

across the extrudate, etc. ), external defects (surface finish), geometrical tolerances and 

mechanical physical properties. The mechanical properties are mostly dependent on the 

internal structural variations (Wang et A 2001.13unting 1983, Venkatesan 2003. Taver 

2004, Potente 1996). The surface finish of the product is as important as the mechanical 

properties, and the control of defects is often the deciding factor in determining the 

extrusion conditions. Defects that may occur vary from visible blemishes such as cracks 
(Clode and Sheppard 1990), blisters, and die lines, to invisible ones that show up after 

anodising. In high-strength aluminium alloys where die lines and surface scoring have 

only secondary importance to the mechaitical property requirenients (because tile surface 

often has to be machined to remove recrystallized layers) the defect is tolerated provided 

the die lines are not so coarse that stress concentrations arise (Sheppard 1993). 

The peripheral coarse grain (PCG) is also identified as one of the common deFects in all 

alloys. the factors affecting recrystallisation in the outer band grain structure are: the 

degree of del'ormation (extrusion ratio); exit temperature; alloy composition, with 

particular reference to its transitional element (Mn, Cr, Zr) content; metallurgical 

structure of the alloy, with particular reference to the changes taking place in it during 

extrusion; and flow stress, the solvus, solidus and recrystallisation temperatures of the 

alloy under the given extrusion conditions. 

Various methods have been forwarded to minimise the defects. One important means is 

isothermal extrusion. The isothermal extrusion process has the potential to maxii-nise 

prodLICtIVity and product quality (Bryant 1999). 

2.4.1 Surface cracking 

Surface cracking is generally recognised as one of the main defects occurring during the 

process of aluininium extrusion, especially in the case of the so-called hard aluminium 

alloys (Kaida 1997, Gupta and Hughes 1979, Onawola and Adeyemi 2003) For the 4% 

Cu alloys, surflace cracking (or speed cracking) is a major problem, especially at high 

ternpci-atures and strain rates. Prcvious experiments suggest that this type of defect is 

caused by the rise in temperature as the process proceeds. Some other experiments 
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indicate the surlace quality is good evc-,,, l though the temperature may be high c1l. 11,11-ig II 
extrusion. 

Since the product must be scrapped due to poor surface quality and inferior mechanical 

properties, it is of primary importance to study the occurrence of surface cracking in the 

extrusion of hard alloys. 

In order to evaluate surface cracking th,. - extrudates have been placed into one of three 

categories (Sheppard and Raybould 1973a, Dixon 2004). 

A- No evidence of cracking. 

B -- Cracking commences at some distan,. e along the extrudate. 

C -- Cracking occurs along the entire lcnýjh ofthe extrudate Increasing in sevcrity as 

extrusion proceeds. 

Typical examples of' tlicse three categories are shown in FIgLII-C 2.9, the examples are 

taken From the same position along the cxtrudate length corresponding to a position at D 
0.5L, i. e. halfway along the extrudate length. Detail study on SLIrI`acc cracking can be 

I'OLInd in Chaptcr 6. 

300'- 

T 4000" WWOW 
- 

. T1 = 

Figure 2.9 Three categories A'surlace cracking (Shcppard 1993) 
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2.4.2 Microstructure control 

Dynamic recovery and static recrystallisLtion are the most common plasticity restoration 

processes that occur during aluminium alloy extrusion. The size of subgrains. resulting 
From recovery, and the recrystallised grains are closely related to the conditions of 

extrusion process and the subsequent heat treatment. Ideally, the reaction of' the 

substructure to solution soaking should be subgrain coalescence without recrystallisation, 
but if static recrystallisation is to occur then the extrusion conditions must be controlled 

to ensure a uniform small recrystallised grain size (Sheppard 1999). In fact, the process 

conditions, the structure and properties cf the extrusion product interact with each other 

and therefore it is important to control the microstructure to obtain the best quality by 

optimising the extrusion parameters. 

2.4.3 Effect of isothermal extrusion 

Isothermal extrusion is defined as an extrusion procedure which results in the extrudate 
leaving the die at a constant temperature. Although there are difficulties in temperature 

control, significant gains in productivity and product quality can be realised by adopting 

processes and process controls to achieve "close to" isothermal conditions. 

2.4.3.1 Benefit of isothermal extrusion 

Referring to the limit diagram developed by Sheppard and Raybould (1973c), the 

maximum productivity ignoring structure is achieved when extrusion is carried out at the 

apex of the operation window, as shown in Figure 1.2. It has been reported previously 

that the process variables, such as the ram speed, ram load, billet metallurgy and the 

different tooling temperatures, introduc-- complex nonlinearities into the deformation 

equations so that control of exit temoerature to maintain the required isothermal 

condition is difficult to achieve. However, the sophistication of modern radiation 

pyrornetry and the cyclic nature of the commercial extrusion process, which allows for 

iterative changes, have increased the possibility of developing algorithms for satisfactory 

1'ecdback control for isothermal operation (Bryant, 1999). There is the added fact that 

accuratc simulation could negate ternperýture measurement. 
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2.4.3.2 Establishment of isothermal extrusion 

Numerous methods have been or are being adopted to achieve isothermal extrusion 

operation, these may be divided into two types: 

(1) Setting up a longitudinal thermal gradient in the billet (tapered billet) before feeding 

it to the press. 

This is done by applying differential heating along the billet length in the preheat 
furnace (taper heating) or by applying a differential quench to the billet during its travel 

from preheat furnace exit to the press (taper quenching). In direct extrusion,, the hot end 

of the billet would be placed at the front of the container against the die. The cold end 

would then be heated by frictional deformation resistance during the extrusion stroke. 

(2) Controlling extrudate exit temperature by varying ram speed. 

In this case, which is an example of the principle of feedback control, the ram speed and 

exit temperature are continuously measured and transmitted to a microprocessor. The 

ram speed is then adjusted in the appropriate sense to maintain constant exit temperature. 

There are also numerous examples of i-i-plant attempts to achieve isothermal or near 

isothermal exti-usion based on ram load or some expert ImoNvIedge and shop-floor 

experience to set up the appropriate conttol procedures. 

For the first method mentioned above, the "longitudinal thermal gradient" can be linear, 

i. e. the temperature decreasing linearly from the front to the back end of the billet, or the 

gradient can be non-linear, in which the temperature decreases more rapidly in the front 

part of the billet than in the rear. Some results of process optimisation by linear 

temperature gradient have been presented by SMS Schloemann (131swas 1996), and 

recently some studies concerning non-linear gradients were also reported (L Li et al. 

2003). Detail study on isothermal extrusion can be found iii Chapter 7. 
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2.5 Application of Integrated FEM sin-ulation into extrusion process 

The "modelling" and "simulation" are classified by different approaches. Often t1ley are 

simply grouped according to their underlying characteristic scale. A coarse spatial 

subdivision would suggest four classes of models, namely, macroscopic (refers to the 

sample geometry), mesoscopic (lattice dofect ensembles at the grain scale), microscopic 

(lattice defects below grain scale), and nanoscopic models (atornic level). However. the 

most commonly used classification is by the field the modelling is applied to, far 

example, thermo-mechanical modelling and structural modelling. 

Figure 2.9 illustrates the interactions in thermo-mechanical process modelling at the 

4macro' level. Given the volume of detailed FE output about the distribution of 

def'ormation and temperature history, there is great potential to exploit this output Ior 

rn icro structure modelling (Evans 1993). 

In most cases, microstructure modelling will be a 'post-processing' activity, but, in more 

complex situations, microstructure prediction may be in parallel, determining the 

constitutive response of the material in '. he next time-step. Figure 2.10 summarises the 

necessary inputs required for process modelling at this 'micro' level. It is clear that there 

is potential great 'added value' that may be obtained by incorporating microstructure 

modelling, in particular offering: 

Wider scope for predicting propert16i, damage and subsequent material process 

ability. 

(2) Linking upstream and downstream material behaviour through multi-stage process 

histories. 

It is the modelling interactions illustrated in Figures 2.10 and 2.11 that currently provide 

the most fertile opportunities for collaborative research between academia and industry. 
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3 Thermal-mechanical simulation of the extrusion process 

Iii this chapter the fonnulation of the FEM code is investigated and 2-D simulation 

examples are employed to fully validate its use. 

3.1 Basic characteristics of the Finite Element Method (FEM) 

The FEM is now regarded as a powerflil method for obtaining solutions to boundary- 

and initial-value problems by using polynomial interpolatioii functions. The FEM 

procedures are employed extensively ir, the analysis of solids and structures and of licat 

transfer and fluids, and indeed, finite element methods are useful iii virtually every field 

of engineering analysis (Bathe 1982,. In contrast to analytical techniques, finite 

elements are also applicable to complicated shapes. The basic characteristic of the finite 

element method is the discretisation of the domain of interest, which may have nearly 

arbitrary geometry, into aii assembly of relatively simply shaped elements that are 

connected. 

The finite element method approximates the real value of the state variables considered 

within each element by interpolation polynomials. This approach of interpolating the 

variable within each cell amounts to assuming a piecewise polynomial solution over the 

entire domain under consideration. In the case of elastic and large-strain plastic 

materials response it is usually the displacement that is the unknown state variable. The 

Polynomials Usually serve as shape functions to update the form of the finite elements. 

The co-ordinate transformation associated with the remesh, for instance during a 

simulated large-strain plastic deformailion process is often referred to as the most 

important component of a successful finite element solution. This problem is of special 

relevance for simulations at the meso- aad macroscale. 

Application of Finite Element Method can be divided into three categories luiown as: 

(1) eqUIlibrium problems (time independent problems) 

(2) eigcw, 'alue problems 

(3) propagation problems (time dependent problems) 
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3.1.1 Finite Element Procedure 

The most widely used finite element formulation in solid mechanics Is the displacement 

approach. The displacement field within the element is defined in terms of assumed 
functions (interpolation functions) and unkriown parameters at the nodes \\"hich are 

either displacements or displacement related quantities such as slopes and curvatures. 
For each finite element, a displacement function in terms of the element coordinates (x, 

y, z) and the nodal displacement parameters is chosen to represent the displacement 

field, and thereby the strain and stress, within the element. A stiffness matrix relating 

the nodal forces to the nodal displacements can be derived through the application of 

the principle of virtual work or the principle of minimum total potential energy. The 

stiffness matrices of all the elements in the domain can be assembled to form the 

overall stiffness matrix for the system. ý After modifying the global stiffiiess matrix in 

accordance with the boundary conditions and establishing the force vector, the system 

of equations can be solved to yield firstly the nodal displacements, and then 
I 

subsequently the stresses at any point in each individual element. 

The steps of a finite element analysis can be sunimarised as follows (Cheung 1996, p5): 

1. Discretisation of the problem domain into finite elements. 

2. Selection of nodal displacement parameters and element interpolation functions. 

3. Evaluation of individual element properties. 

4. Assembly of system stiffness matrix. 

5. Introduction of boundary conditions. 

6. Formation of global force vector. 

7. Solution of systen-i matrix equations for nodal displacements. 

8. Additional calculation for stresses and other parameters. 

3.1.2 The equilibrium equation in FE simulations 

Depending on the character of the matcrial response to external Lind internal loads, the 

matcrial dynamics are com'emently described in tern-is of the "strong forin" of the 

ion, the "weak form" of the virtual work principle, or the diffuential equation of motl %, II 

stable equilibrium quantified by the "minimum mechanical energy". 
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A simple straightforward approach to deriving the equations for displacement-based 

finite element codes starts from the general principle of virtual work. This Is the work 
done by arbitrary small virtual displacements due to the forces and moments acting oil 

a solid body in accord with continuity and displacement boundary constraints. For the 

most general cases this principle can be written as: 

6w aij6c-ijdV Pj6iijdV +A Tj 6ii 
j dS + Fj 66 

j (3.1) 

where 6W is the virtual work which results from the strain due to the virtual 
displacements & that act on the stressý--s (T. This work equals the surn of the virtual 

work which results from the virtual displacements 51-1 due to the body force P, to the 

traction T, and to point forces F. S is the surface that enclosed the volume V. 

Equation 3.1 is generally valid for an arbitrary body. However, the finite element 

method decomposes the solid tinder investigation into a large nun-iber /I of simply 

shaped volume elements which are connected at nodes. Thus, equation 3.1 applies for 

each individual element under implicit consideration of equilibrium and compatibility. 

The course of the displacement is approximated in each finite element by interpolation 

polynomials that enter all 17 equations of the form of equation 3.1. This amounts to 

calculating the volume and surface integrals over each finite segment individually and 

subsequently summing up all elements. Assuming that the point forces are only applied 

at the nodal points, equation 3.1 may then be rewritten 

oijUijdV fffv Pj8djdV +I ATj65jdS + Qj 
n 

3.1.3 Finite Element kinematical description 

(3.2) 

The Algorithms of continuum mechanics usually make use of two classical descriptions 

ofinotion: the Lagrangian description and the ELIlerian description (Malvern 1969). 

Lagrangian algorithms, in which eacl-, individual node of the computational mesh 

tollows the associated material particl,, during motion, are mainly used in structural 

mechanics. 



The Lagrangian description allows an easy tracking of free surfaces and interfaces 
between different materials. It also facilitates the treatment of i-naterjals with h1stop,, - 
dependent constitutive relations. Its weakness is its inability to follow large distortions 

of the computational domain without recourse to frequent remeshing operations. 

Eulerian algorithms are widely used iii fluid dynamics. The computational mesli is 
fixed and the continuum moves with respect to the mesh. In the Eulerian description, 

large distortions in the continuum motion can be handled with relative case, but 

generally at the expense of precise interface definition and the resolutiori of flow details. 

Because of the shortcoming of purely Lagrangian and purely Eulerian descriptions, a 

technique has been developed that succeeds, to a certain extent, in combining the best 

features of both the Lagrangian and lie Eulerian approaches. Such a technique is 

known as the arbitrary Lagrangian-Eulerian (ALE) description. In the ALE description, 

the nodes of the computational mesh may be moved with the continuum iii normal 

Lagrangian fashion, or be held fixed in Eulerian manner, or be moved in some arbitrary 

specified way to give a continuous remesh capability. Because of this freedom iii 

moving the computational mesh offered by the ALE description, greater distortions of 

the continuum can be handled than would be allowed by a purely Lagrangian method, 

with more resolution than that afforded by a purely Eulerian approach. 

3.1.4 Finite element discretisation and element type 

The first step of a finite element analysis is to divide the continuum or problem doinairl 

into valid finite elements. The discretisation of the problem domain involves a decision 

on the number, size and shape of sub regions used to model the real structure. The 

element should be small enougn to give useftil results and large enough to reduce the 

coinputatioiial effort. The actual discretisation process can be divided into two parts - 
the divisiori of the system into elements and the labellingy of the elements and nodes 

(Cheung 1996, p5). 

Figure 3.1 shows the basic shapes available (Fagan 1992, p23) in the finite element 

method. As might be expected, they range from a single point through to volumes or Z7 Z7 
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three-dimensional shapes. Before choosing the element type, the engineer should try to 

predict what is taking place in the probjern to be examined. Th finite element method e 

works by approximating the distribution of an unknown variable in a precise manner 

across the body to be analysed. The size and number of' elements in a finite element 

model are clearly inversely related. As the IlUmber of elements increase, the size of 

each element must decrease, and consequently the accuracy of the model generally 

increases. 
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Figure 3.1 Basic elem, --nt shapes (Fagan 1992,1). 23) 

The Unknown variables are only reliably produced if the shapes ofthe elements are not 

excessively distorted. As element distortion increases, so errors in the element 
l'ormulations start to become increasingly important. The allowable limits of distortion 

are difficult to qUantify, and depend N, ery much on the variable distribution that the 

clements are representing. The two methods of assessing element distortion are known 

as 

- longest side of' an element to the shortest side. I Aspect ratio, which is the ratio of th. 

as illustrated in Figurc 3.2. 

Internal ancyles of' the Clement. Rectangular elements SlIOLIld include angles as close 

to 90' as possible, whereas the corner- of triangular clements should be near to 600. 

ii 

iT 
: /- =/-1 r_ 

: 
'"4 
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The range of allowable distortion may , ary fron-i problem to problem, but as a gUide. if 

no other information is available, the values suggested in Figure 3.3 may be used. 

The finite element discretisation is outlined with the mixed velocity and pressure 
l'ormulation and the time discretisatium is prescnted with the incremental contact 

problem. 

1 

Aspcct ratio =2 
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I 
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/2 

Figui-e 3.2 Examples of aspect ratio, to measure elerrient distortion 
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Figure 3.3 Allowable element distortions 

Symmetry Is the most clTective way to improve the efficiency of FEM calCUlations. If 

tlic colifiguration ol'the body and the cýaernal conditions (i. e. bOUndary conditions) are 
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similarly symmetric, then only the repeated part of the structure needs to be modelled. 
There are four common types of'syrnilictry encountered in engineering problems: axial, 

planar, cyclic and repetitive, as illustrated in Figure 3.4. 
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Figure 3.4 Types of symmetry 

3.1.5 Increment approach 

Using isoparametric elements, the velocity field i,,, is discretised with the help of the 

nodal velocity vcctoi, s V,, , shape functions N,, and local co-ordinate vector as: 

IV,, Nil (3-3) 
11 

and xX 11 N (3-4) 

the strain ratc tcnsor is expressed Nvith the B operator 
6 

IV,, Btý (3-5) 
11 
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Similarly the pressure field is discr(, -tised in terms of nodal pressure P,,, , with 

compatible shape functions M III: 

P PmMm 

for the mixed approach, we obtain the set of non-linear equations 

(3-6) 

RV(V, P)= L2K(vfýýF-'m-'LB dV+ (xfKlAvlp-'AvNý, dS-Lptr(Bll)dV=O n oll- n 
fa 

Qc 

(3-7) 

RP (V) M div(v)dV =0 III m (3-8) 

The nodal update can be performed wi.. 11 Ili the simplest scheme (Euler explicit). If Xt is 

t the co-ordinate vector of node number n at time t, with velocity vector Vn , at time 

t+ At the new co-ordinate vector will be: 

X tl+ At 
=Xt+ AtVit (3-9) 

A semi implicit second order scheme was shown to improve the accuracy (Surdon 

1987): 

x t+At -xt+I At(Vt + Vt+At 11 11 2 11 11 

3.1.6 Constitutive equation 

(3-10) 

Three coi-istitutive equations, the Norton Hoff law, the hyperbolic sine function and the 

Hansel-Spittle's model, have usually been adopted in those FEM simulations using a 

commercial code (Transvalor 200 1). 

The exponent lal Ibrin of the Norton Hoff law is written as (Transvalor 200 1 

IIV + -0)11 K- cxp(PT) cFC (3-11) 
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where K, P are material constants, m is the strain rate sensitively index, which ranges 

between 0.1 and 0.2 for ordinary metals. and between 0.5 and 0.7 for superplastic 

metals. n is the strain-hardening index, -F- is the equivalent strain, -E is the equi\-alent 

stain rate, co is a small constant (Transvalor 200 1). Critically the formulation does not 

include any tenn related to the physical state. 

To describe the deformation of aluminium alloys the most commonly used equation is 
that proposed by Zener and then by Sellars (1973) and subsequently modified by 

Sheppard and Wright (1979) to yield the steady state flow stress & as: 

Z I/n z)2/n 
Ln (3-12) 

aAA 

F(xr 

where the Zener-Hollomon parameter Z is given by: 

Z= ýexp 
AH 

= A[sinh(a(y)]" 
GT (3-13) 

is the strain rate, G is the universal gas constant (8.314 J moIA-1 ), AH is the 

activation energy, T is the absolute temperature, and A, a, n are constants. Here AH is 

closely related to the activation energy for self diffusion. 

The flow stress is given as a function of the process parameters and the constants are 

established experimentally. The relationship is widely used both in extrusloil and 

rollMg (Sheppard and Richards 1987, Raghunathan 1989, Sheppard and Jacksoll 1997) 

and has been used by the alurninium industry for on-line control in extrusioil and 

tandem inill rolling. The criticism of the equation is that it says nothing concerning the 

structural events occurring and does not consider the evolution of structure, which 

detcri-iiiiies the cLirrent flow stress for subsequent operations. Howcvcr, it has beell 

sliowii that the Z parameter is important both in the development and definitioii of the 

flow structure. 
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The Hansel- Spittle's model is expresseC as: 

m, T-, * 111 M2- F3e 1114 / F- 
(3-14) 

A, mj, m2, m3, m4are constant (Spittc-I et al. 1990, Transvalor 2001). It is a purely 

empirical equation that is regressed from experimental results. 

Among the three constitutive equations, the hyperbolic-sine function is the only one 

revealing the physical nature of the flow stress and can be derived without the need for 

statistical analysis, while the other two are pure empirical methods with the tuneable 

constants to comprise experimental measurernents (Sheppard 1999a). 

3.1.7 Friction Model 

The locally varying and time-dependent friction values in the contact zone between 

workpiece and tools represent one of the required boundary conditions. The value of 

the friction influences the calculated contact shear stresses and, hence, the accuracy of 

the numerical process model. The friction values used in numerical modelling are either 

estimated on the basis of Imowledge a-ad experience or determined using tribological 

i-nodel tests. To what extent the friction values obtained in a model test apply to the 

process to be modelled essentially depends on how accurate the model test reflects its 

tribological conditions and dominating ývear mechanism. The tribological conditions in 

forming at elevated temperatures are very complex and can only be determined with the 

help of a numerical model. The loca! and time-dependent distributions of contact 

temperature, contact normal stress, sliding length and sliding velocity are especially 

important. 

Three kinds of friction laws are coninionly employed in the metal forn-iiiig process: 

Trcsca, Viscoplastic and Coulomb. The Tresca. friction law developed by using the 

Tresca yield criterion is written in the following form: 

T= -11ITniax (3-15) 
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where r is a property of the material m is conunonly referred to as a friction factor. max 

AV is the velocity difference at the interface. The Tresca law treats the interface 
friction as pressure independent and relates the friction stress directly to the yield 

strength of the deformed material. When m=1, sticking friction occurs. The range of 

m is 0!! ý rn!! ý 1. This development of friction is the most used in numerical analysis of 
hot deformation processes. 

The viscoplastic friction law arises from the consideration of a thin interface layer of a 

viscoplastic lubricant between the workpiece and tool. The Viscoplastic friction law is 

written in the following form: 

T= -aKAVP-1 AV (3-16) 

where a is a Viscoplastic friction coefficient and 0:! ý a :! ý 1, which is a function of the 

normal stress. p is the sensitivity parameter to the sliding velocity. K is the consistency 

of the material, which is defined by: 

K= Ko (-üo + -E)n 9 F- exp(ß / T) (3-17) 

KO is a constant. -F-0 is the term of stravi hardening regulation. n is the strai n -hardening 

sensitivity, P is the temperature term. 

The modified Coulomb friction law can be written as: 

If ýtGn ': ý 
CY 

V -3 

and 

if V -3 

\\"here -d i's the vOil MISCS stress. With this relationship, the friction shear stress is equal 

to the normal stress a,, multiplied by the friction coefficient p or to a fraction of the 
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maximum shear stress sustainable by the material. Figure 3.5 Illustrates this friction law 

against the value of the normal stress. 

4. 

in 

Figure 3.5 COLIlomb fi-Iction law 

3.1.8 Therinal-inechanical simulation by FEM 

In a FEM simulation, the temperature Eeld is discretised with the same elenici-its as lor 

the velocity field. 

IT,, N 
11 

(3-20) 

The temperature evolution inside any physical system is the result of' the competition 
bctween the plicilonicna ofinternal licat conduction and internal heat dissipation, under 

the constraints dellined on the area 'mundary in terms of interchange (radiation, 

conduction, convection ... ) or in terms of imposed temperature. 

The classical semi-discretised form is eý-, sily obtained from the equation: 

C 
dr 

IiTF0 
(It 

(3-2 1) 

N\, Iici-c T is the nodal tcniperatures vector, C is the capacity matrix and H is the 

coliclLictivity matrix. C and H are computed by: 

68 

T, -151 Cy. 
3 



Cij = fpcNiNjdV (3-22) 
Q 

and 

Hij = fkgrad(Ni). grad(Nj)dV (3-23) 
Q 

wiet ie F vector contains the viscoplastic heat dissipation and boundary conditions. 
For the finite element solution of the heat transfer problem we use the principle of 

virtual temperature given as: 

f ,TBs 
vt 

kt'dV = fv tq dV +qt q"'dS+V-t Q (3-24) 
1 

where: 

t/T - [at 
at at 

(3-25) 
ax ay az 

and 

kx 00 
k= 0 ky 0 (3-26) 

-0 
0 kz_ 

the Q' are concentrated heat flow inputs, qB is the rate of heat generated per unit 

volume, qs is the prescribed heat flux input on the surface of the body, kxýky, kz are 

the therinal conductivities corresponding to the principle axes x, y and z.. Each Q'is 

equivalent to a surface heat flow input over a very small area. The bar over the 

temperature t indicates that a virtual temperature distribution is being considered. 
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3.1.9 FEM software (FORGE2"" and FORGE3 

The French developed FEM software FORGE21ý'and FORGE3 Gý are used in the present 

work. FORGE29 is dedicated to the sil-nulation of hot. warm and cold forging of axi- 

symmetric (revolution) parts and parts with high length-to-wIdth ratios (Plain Stral,, ). 

FORGEII is constructed for the simulation of three dimensional problems. 

The geometry of a FORGE39 die is described only through its surface, represented by 

a triangular mesh. A complete tooling file is composed of different dies (for example, 

the ram, container and the bottom die in extrusion). Each die is described through one 

specific surface n-iesh. These meshes have to be prepared with CAD system (1-deas). 

FORGE2"" and FORGE31ý provide interfaces for standard output formats. 

Several technology difficulties have been met in the present work when using 

FORGE2&3 m the simulation of extrusion, including: 

(1) There is a small gap between the die land and the material, which will never occur 

in practice. Details of the problem and t1he solution method can be found in Appendix B. 

Some of the communications between the virtual manufacturing group of Bournemouth 

University and Transvalor software company can also be found in Appendix C. 

(2) Time needed for a complete three din: iensional simulation of extrusion process is 

too long to be acceptable. 

The first problem has already been solved. In two dimensional simulations, by adopting 

small time increments in the input file of FORGE2, the orifice can be eliminated. In 

three dimensional simulations, an upgraded version of Forge3 has been developed by 

Trarisvalor and satisfactory simulation results have already been obtained. 

The second problem was also partially solved by using auto-trim technology, which is 

introduced below. However, the time scale for a complete three dimensional simulation 

is still long and furtlier attempts have to be made, such as the employment of' cluster 

COMPLIters, to soIN-c the problem. 
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3.1-10 Auto-trim applied in FEM Shimlation 

A new technology called "auto-trim" is adopted in the present work and the calculation 

time can then be significantly reduced., The method involved is to "kIll" the elements 

when they are extruded out of the die orifice after a certain distance. It can be seen 
from Figure 3.6 that after the technoloLY is adopted, the elements shown in the box at 

(a) are eliminated and then the remcsl-ý time used In SIMUlation (b) IS IIILICII less than 

required in simulation (a). The cornp'ete extrusion process can be performed in a 

relatively short time with this technology. 

I 

Defore 
F, I-A 

Figure 3.6 "auto-trim" ised to shorten computing time 

The new technology can be applied to either two-dimensional simulation or three- 

dimensional simulation. An example of the application of the auto-trim in three- 

dimensional T shape extrusion is shown in Figure 3.7. 
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:e had 
ted 

Figure 3.7 "auto-trim" used in three dimensional simulation 

With auto-trim, most of' the two-dimensional simulations call be completed ill 36 

computer working hours. However, although the calculation time in three-dimensional 

shmilations has also been reduced en0i'll-IOLISly, It WaS fOUnd that much time was still 

i-eqLlll'Cd to pciTorm a complete simulation due to the asymmetric natLll'C or the threc- 

dimensional SIMUlations and many more elements than two-dimensional simulation 

were employed. 

3.2 Validation ol'simulation results: Extrusion load 

FIgUre 3.8 depicts an ideallsed load-displacement curve for direct extrusion and shows 

ree distinct stages. During stage I the billet is how this curve may be divided into th 

upset to 1-111 the container and there is limited ram travel for an increase in the load to a 

IllaXII11LI111. 

Stage 11 is rel'erred to as steady state flow and shows a decrease iii load with ram travel 

since the Crictional Corce generated by the movement of' the billet relative to the 

container is reduced as the billet length decreases. Stage III involves a rapid rise in load 

as thC I)I-CSSLII-C pad impinges on the det'ormation zone. For this reason a discard is left 

in dic container and is ejected before the next extrusion. 
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Figure 3.8 Typical load-displaccinent CLU'ves 

The controlling feature, which will determine whether extrusion is possible or not, is 

the maximum PI-CSSUre Which OCCUrs at the bOLIndary betwecri stages I and 11. This 

pressure is referred to as the peak or breakthrOLIgh pressure and must lic within tile 

capacity ofthe press. The magnitude ofthis pressure is dependent on the extrLIS1011 ratio, 

the initial billet temperature, the ram speed, and the billet length/diameter ratio. The 

existence of the peak, although it is not always detected, has becii rccognised for many 

years. 

In aluminium extrLIS1011 the shape of the shear region between the deforming billet and 

the dead metal region has been described as approximately elliptical. 

Simulations wcre pcrtormed for one &Xect extrusion and one indirect extrusion. The 

extrusion conditions arc shown in Table 3.1. In both of' the cxtrusions, the cxtrusion 

ratto is 20, the container temperat Lire is . 50'C lower than the billet temperature, 
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Table 3.1 Experimental setting and results (Vierod 1983) 

Run Mode Initial billet Ram Experimental Experimental load 

temperature speed peakload at end of 

(0c) (mm/s) (tonnes) extrusion (tonnes) 

I Direct 400 12.4 284.7 214.8 

2 Indirect 400 10.6 '1 96.2 197.4 

The complete load-displacement curve of the no. I extrusioii shown in Table 3.1 is 

shown in Figure 3.9. The peak load is about 300 tonnes, which is 5.4% higher thaii the 

experimental measurement (284.7tonnes) (Vierod 1983). 

The predicted load-displacement curve of the no. 2 extrusion showii in Table 3.1 is 

shown in Figure 3.10. The predicted peak load is 2 10 torines (7.0% higher than the 
i 

experimental result) and the predicted load at end of extrusion is 215 tonnes (8.2% 

higher). 

As can be seen from the simulation results, the predicted loads are in reasonable 

agreement with the experimental results. The difference between the peak load and the 

miiiii-nuni load in the indirect extrusion is smaller than that in the direct extrusion. In 

stage 11 of the direct extrusion, the extrusion load decreases nearly linearly, which is 

caused by the decrease of contact area between the container and the billet. However, 

the sarne phenomenon has not been found in the indirect extrusion, which indicates a 

different material flow pattern exists between the direct and indirect extrusion and the 

influence of the friction on extrusion load is more significant in direct extrusion than in 

indirect extruSion. 
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Figure 3.9 Load-displacement CLU've for nin I 
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Figure 3.10 Load-displacement CLII'VC for Illn 2 

Complex shapes and multi-hole die extrusions are more complex than rod extrLIS1011. 

One example is shown in Figure 3.11. However, once the basic problem, SLICh as FEM 

SIIIILIlation ofrod extrusion has been solved and proved to be effective, there is a great 

potential tlor FEM to develop a comprehensive and deep Understanding of complex 

sh. 'Lipes CXtI'USIOIIS, which are discussed in detail in Chapter 4. 
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Figui-e 3.11 Experimental results for multi-hole dies and comparison with single-hole 
and shaped extruslons (Sheppard I 999a) 

3.3 Validation of simulation results: T eniperature evolution 

Assuming sufficient press capacity and speed is available then the limit of' extrusion 

speed is governed by the tempei-atLII'C Of' the section as it leaves the die or, more 

Col-l-CCtly, tllC IIILIXIIIILIIII permitted temp, -rature within the section (Sheppard, I 999a). 

Extruders have long recognised the importance of regulating the exit temperature either 

to maintain a good surface quality or to achieve properties specified by the customer. 

The predicted peak temperature (the tcrriperatUre at the time when peak load occurs) 

and the final temperature by integral profile method are shown in Table 3.2. The typical 

eXtRISion area near the die land is slio,. vii in Figure 3.12 and temperature rises at the 

centre point and the side point (as shown in Figure 3.12) are extracted as shown in 

Figures 3.13 and 3.14. However, the temperature diff-crence betwecri the surtace and 

the centre has not bcen considered by the integral profile method (IP). Therefore only 

an approximate comparison can be made between the results given by the finite 

diff'ercrit method and by FEM SIIIII. Ilation. 
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Table 3.2 Temperature predicted by IP and FEM (IP results from Vierod 1983) 

Run Predicted peak I Predicted peak Predicted final Predicted peak 
(same as in terrip by IP ternp by FEM temp by IP temp by FEM 

Table 3.1) (OC) 0C) (OC) (0c) 

315.0 312.1 452.8 453.2 

2 406.0 403.2 460.9 456.5 

e -eritratit die 

Figure 3.12 Deformation area near the die (a complete die has been shown in Hpire 
3.6) 
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Figui-e 3.13 Tempeiature rise in direct extrusion 

As can be seen in Ficytirc 3.13, the temperature at the side of the extruclate is higher than L- 
that Lit the centrc of the extruclate except at the end of' extrUSioll (stage III as shoNvii in 

Figurc 3.8), the temperature Lit the surface rises sharply and overwhelms the 

tClllj)Cl'atLll'C 'Llt the cciiti-c. This has been reported previously (Valberg 19922) and Nvas 
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regarded as caused by the different material flow pattern Occurring at the end of 

extrusion. 

470 
460 
450 
440 
430 
420 
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Tenj)erature at side of extrude II 

4ý irp ýit nf pyit-i itlp , 400 
390 
380 

20 41) 60 80 100 

Ram tnivel distance (mm) 

Figure 3.14 Tempen tui-e i-Ise in indirect CXtl'LISIOII 

It can also be scen from Figure 3.13 and 3.14, that the temperature difference between 

the centre and the side of extrudate is simaller in the indirect extrLISIOll thCII in the direct 

extrLISion. The MllpellItUre diff'erence is abOLIt 25'C in direct extrLISion and no more 

than I O'C in indirect extrusion. 

3.4 Surface formation and material flow pattern 

There have been se'veral experimental methods reported to StUdy the material flow 

during extrusion: 

[I] Physical modelling by using model materials such as plasticine. 

[2] Macro-etching a partly extruded billct. 

[3] Inscribing a grid on one half of a billet prior to extrusion. One method developed in 

the I 960's by Thomson ( 1965) and his co-workers is the visloplastic technique. 

in incremental steps and by A split-billct, with a grid inscribed in one half, is extRided ii 

rcmovim, the billet Lit the end of each step, the instantaneous velocity of a material 

particle can be found. By applying basic plasticity theory the stress and strain variation 

in the material can be studied. 
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[4] Numerical simulation 

The material flow pattern of axi-syi--qmetrical extrusion has been established by 

physical modelling and numerical simulation. Arentoft et al. (1998.20001) havc studied 

the material flow in axi-symmetric extiusion with physical and two dimensional FEM 

simulation. Li et al. (Q. Li 2003) has studied the influence of pocket die designs on 

metal flow in aluminium extrusion with two dimensional FEM simulation. 

Based on experimental results, Pearson and Parkins (1961) classified the flow patterns 

into three types 

A- Found in lubricated and indirect extrusion, where the billet undergoes no 
deformation until it reaches the deformation zone. 

B- Similar to type A except that no labricant is used, and shear occurs between the 

billet and the container surface. 

C-A more complex form found in many industrial extrusions, where a fairly thick rim 

of dead material extends down the sides of the stagnant zone, under the shoulder of the 

die, to the back of the billet. The material at the back is gathered into the centre and 

eventually forms the back end defect. This type of flow is avoided during aluminium 

extrusion by ensuring a lack of lubricaW at the container/die interface. 

The methodology and the procedures used in the present study of surface formation can 

be found in the literature (Velay et al. 2003) and are not repeated here. The billet was 

extruded dowri to a discard of 30mm. (without the auto-trim technology) in the 

simulation. 

One vertical line (AB, with a length of 2000 mm, as shown in Figure 3.15) that is 0.05 

ri-im under the extrudate surface, is adopted to study the flow behaviour of the billet 

skin. The surface location points are shown in Figure 3.15 in detail. The location in the 

billet from which the outer surface layers of the profile originates can be determined 

with a high degree of'precision. As can be seen from Figure 3.15, a 0.05mm thick outer 

surl'ace layer of the rod in axi-symnietric direct extrusion would form from a relativelv I 
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small crescent wedge-shaped region 1c, cated near to the dead metal zone during tile 

extrusion. In aluminiurn extrusion the s, iape of the shear region between the deforn-III. I., 
billet and the dead metal region has been described as approximately elliptical. This has 

been reported previously in the study of outer surface layer formation In CXtI'LIS1*OI1 Of 
AlMgSi alloy (Valberg 1986) as shown in Figure 3.16. In Valberg's study, the 

experiments were performed by implanting a complete grid pattern inside the billet, 

which is the same as shown in Figure 3.17 and 3.18. 

A 

AI Delormation 
Area 

Extrudate 
Surface 

B 

(a) ExtrLISIOll process 

(b) enlarged dcformation arca 

(c) Material covering the extrudate 
surface (AB) traced back to the billet 

Figui-e 3.15 Surface formation in the conventional extrusion 
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Figure 3.16 Grid elements ofthe billet in dii*cct exti, usion (R::::::: 40) forilling tile outel- 
surfiace layei-s ofthe i-od (Valberg 1986). 

Figure 3.1 7(a) at the beginning of extrusion (experiments after Castle 1974) 
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Figure 3.17(b) a. the middle of extrusion 

IYY 

Figure 3.1 7(c) at the end of extrLISIOll 

Figure 3.17 Matenal llow in thc dii, ect extrLIS1011 (experiments al'ter Castlc 1974) 

Figure 3.18 Material flow in indirect eXtl'LISIOII 
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As can be seen frorn Figure 3.18, the material flows from the wedge-shaped region 

gradually during extrusion and forms a surface layer that completely covers the rod. 
The mechanical properties, the extrusion pressure and the surface finish will all be 

related to the flow pattern, the more complex the flow the more inhomogeneous the 

working. Many studies have been carried out on axi-symmetrical extrusion. 

Due to the axi-symmetric nature of the rod extrusion, two dimensional simulations 

were performed to study the material flow. The simulation results of direct and indirect 

extrusion are shown in Figure 3.17 and Figure 3.18 individually. As can be seen from 

these Figures, the simulation results are in reasonable correspoildance with the previous 

experimental results. Some experiment., ý, performed by inscribing a grid on one half of 

a billet prior to extrusion, are shown n Figure 3.19 and Figure 3.20. The different 

material flow occurring during direct ai-. d indirect extrusion can also observed from the 

simulation results of shear stress, which are shown in Figure 3.21 and Figure 3.22. The 

location of the maximum shear stress in direct extrusion is found to be at the die 

entrance area and shear stress between the billet and the die can be discerned, while in 

the indirect extrusion, there is no shear deformation between the billet and the die. It 

can be seen that the simulation results correspond well to these experimental 

measurements. Although quantitative analyses were not performed due to lack of 

detailed experimental results, the simulation results can at least provide some 

qualitative and basic information about the deformation process. 

3.5 Conclusion 

As can be seen from the discussion in this chapter, thermal-mechanical FEM simulation 

is a powerftil tool in tile study of metal forming process such as extrusloii. Tile 

extrusion load, the temperature distribition and the material flow pattern can all be 

simulated at the level of quantitativc prediction. If further experiments could be 

performed combined with the three dimensional simulation, there is a definite 

pronlisingy ftiture for FEM simulatior to be an even more effective tool for tile 

nianut'acture processing design. 
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Figure 3.19 Experimental reSLdtS ot'dii, ect extrusion (Castle 1974) 

Figure 3.20 Expenmental restilts of indirect extmsion (Castle 1974) 
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Figure 3.21 Shear stress distributions in direct extrusion 
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Figure 3.22 Shear stress distributions in indirect extrusion 
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4 Integrated modelling of the extrusion process 

Various methods used to model the microstructure evolution process and predict 

the final structure state were introduced in Chapter 2 and 3. Combined with FEM 

and structural models, the integratecl models are capable of Producing a 

comprehensive modelling of alumini-Am extrusion from the metal fonning 

process to the following heat treatment. In this chapter, the models that have been 

successfully employed in structural simulation in the field of extrusloii and the 

following heat treatment are discussed hi detail. 

4.1 Rod extrusion 

Examples of the thermal-mechanical simulation results of rod extrusions have 

been provided in Chapter 3 and they are not repeated here. The structural 

simulation results are presented in the following sections. 

4.1.1 Structural modelling results 

Although the microstructure models provided by Furu and Sellars (1999) are 

physically based (presented in Appenc. ix A), which means there should be no 

restriction to applying them to a different aluminium alloy or different 

deformation, it is still of primary importance to give a Justification before any 

application of the model. Here a rod extrusion process was selected and the 

effectiveness of the model combined with FEM in predicting the final structure 

was tested. The experimental setting is shown in Table 4.1. The container 

temperature is 50'C lower than the billet temperature. 
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Table 4.1 Experimental setting (Vierod 1983) 
Extrusion ratio Ram speed Extrusion mode Billettemp(OC) 

(mm. /s) 
410 40 3 Direct 

The Tresca friction law is adopted in the FEM simulation. To obtain the friction 

coefficient, the inverse method was adopted. Three simulation results. which are 

shown in Table 4.2, are compared with the experimental measurements. The 

friction coefficient, which gave the bes: agreement with the experimental result, 

was finally applied to the following simulations: 

Table 4.2 Simulation runs to judge the friction coefficient 
Run No. Friction 

coefficient 

Peak load 
(tonnes) 

Quasi-static state 
Load (tonnes) 

1 0.8 305.5 258.9 
2 0.9 321.7 270.5 
3 1.0 349.8 285.8 

The experimental peak load was 339 tonnes and the steady state pressure was 

659 MPa,, which is equal to 291 tonnes. As can be seen from the group of 

simulations above, full sticking condition, which was used in No. 3 run, gave the 

best result when cornpared with the experimental data. The predicted peak load 

was 349.8 tonnes, whicli is 3.2% higher, and the predicted quasi-static state load 

was 285.8 tonnes, which is 1.8% lower than the experimental result. It should be 

noted here that due to the lack of exact mformation concerning the discard length, 

it is acceptable that there is a small difference between the simulated and the 

experimental loads. Thus full sticking condition was used here and throughout 

the later simulations in the next section. 

4.1.1.1 Subgrain size 

The predicted SUbgrain sizes at the transverse direction are shown in F gure 4.1. 
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It can be seen from Figure 4.1 that the ýifference between the calculated subgrain 

size at the centre (2.27 ýtm ) and the experimental measurement (2.21 pm ) is no 

more than 0.3%. At the edge of the extrudate, the predicted subgrain size is 

2.52 ýtm , which is just 0.3% higher than the experimental result (2.45 pm ). It is 

clear from FIgUre 4.1 that the predicted subgrain size increascs Lis the 

tem )erature rises along the trariverse direction of the extrudatc. This I 17ý 

phenomenon is the same as that observed previously (Sheppard 1993). 

460 1 -- - ---- 2.6 

Temperature, (PI-edicted) 
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2.4 N 
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CL 

I 

------------- 2.3 2-3 
E 440 

2.2 
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430 2.1 

0 245 
Coordinate r(mm) 

Figure 4.1 SUbgi, ain size and temperatUl'C 

It should be noted that all of the above diSCLISSIO11 IS fOCLIsed on deformation area 

I (cxti-Lidate), as shown in Figure 4.2. For the area 2 (billet, or the inside of 

coi-itainer), the predictions show a little higher value than the experimental results. 

Although at test points A, C and D the predictions correlate to experimental 

111CaSUrCIIICIIt quite well, the prediction at point B is higher because ofproxii-nity 

to tile clead metal zone. The predicted subgrain size at this point is 2.68 pm , 

while the experinict-ital mcasurement is 2.228ýtm . The differci-ice bctwcen tile,,, is 

about 1 7.5'ý, ý). li()wcvci-, it should bc noted that thcrc is a relative error ot' 9' o in 

any subgrain sizc nicasurcillent. Thcrelorc the pi-cdictioil can bc takcil Lis 

rcasonabIc. Furtlici-more, bMILIse the curivi-it work is concentrated on the area of 
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the extrudate surface, the problem of inaccurate prediction of the subgrain size of 

the billet within the container area will not affect this study. 

D 

Position Subgrain size(pm) 

Experiment Simulation 
A 3.0 2.92 
B 2.28 40 2.68 
c 2.37 2.50 
D 2.40 2.42 

Figure 4.2 Subgrain size distributions 

4.1.1.2 Recrystallised grain size 

From Figure 4.3, the recrystallised grain size shows a sharp decrease at the 

surface of the extrudate, and it is easy to see the recrystallised grain size is in 

inverse proportion to the equivalent strain. This has also been observed before by 

Vierod and many others (Vierod 1983, Sellars 2000). The predicted value is 

0.455mm, which is 3.2% lower than the experimental results. 

The given misorientation is shown in Figure 4.4. The value of the misorientation 

rises up to about 3 *and then remains constant. The prediction correlates well 
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with previous studies (FLII'Ll 1999, Sellars 2000). 

One problern concerning the shear defori-ned surface layer at the outside of' the 

extrudate should be addressed here. Aukrust et A (1997) have given a 

quantitative study ofthe sheared sub-surface of alLIMMIUM extrudates. As can be 

seen in Figure 4.3, the predicted value of the eqUivalent strain increases sharply at 

the subsurlace area indicating that the snear stresses will also increase, 
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Figure 4.3 Recrystallized gý-ain size and eqUivalent strain 

According to the physically based model, the density of'nucleation sites is much 

higher and the rccrystalliscd grain size is expected to be considerably smaller at 

the sLibstirt'acc area Linder shear deformation than the ai-eas below. The values of 

grain bOUndary area per unit area SN, and the nucleation site density 

Nv (calculated from equation A3 anid A4 In Appendix A) across the extrudate 

are shown individually in Figure 4.5 and 4.6. As can be seen in these two graphs, 

the value of' Sv and Nv increases sharply in thC SUb-SUrtace area of the 

extrudatc. This is duc to the shear deformation sullcred at the SLII'I', -, ICC area ofthe 

extruclate, which has been reported by many StLICIICS (CLIStIC 1976). 

JjoNN, CN, Cj-, III cX11cl-11-nelits, tile cxtreii --ly small recrystalliscd grain vvas not 
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observed, only a relatively small decrease of the grain size was found in this area. 

Two causes may lead to this phenomenon: one is that the physically based (PB) 

model needs to be improved to predict the recrystallisation in extremely sheared 

structures, and the second is that secondary recrystallisation is likely to Occur in 

this special area. 
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Figum 4.4 Predicted misorientation of the subgrain 
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However, with the lack of experimental evidence. it is difficult to reach any 

conclusion. Some arbitrary solution has to be applied to simulate the structure 

evolution for this special area. According to the experimental results, the nuclei 

number at this area was regarded as apdroximately 1.4 times more than the area 

500 ýtm below the surface. Because the -)uter surface layer with 0.5mm thicluiess 

is a very small portion of the extruclate (5.93mm), the approximate solution will 

not influence the final result of the macro-scale simulation. 

4.1.1.3 Fraction recrystallised factors 

For the predictcd result of volurric fraction recrystallisation, the simulation gavc a 

slightly rising value along the extrudate surface, as can been seen from Figure 

4.7. This phenomenon has been obse,, -x,, ed in previous experiments (Sheppard 

1993). It should be noted that the experimental measurement, which is 27.37" o, is 

an average value along the extrudate. It is difficult to compare the variation of the 

predicted Xv with the averaged experimental measurement. The method Used in 

this study to solve this problem was to find a point, whose Y coordinate gave the 

best correspondence to the experimental result in the given curve. At the same 

time, the X coordinate of this point and the time step of the simulation were 

picked out, and the predicted Xv of &, other simulations employed in the next 

section (section 4.3) was obtained from the point with the same coordinate and at 

the sarne time step. Because the rise of Xv during the extrusion is small, the 

value picked out from the point can bc- regarded as the mean value along the 

extrudate. Because all simulations in the next section are using the same FEM 

setting, the predicted result will not be affected by the meshing or tooling. 

4.1.2 Individual influence of forming paraineters on the structure 6 

As can bc sccii froin the discussions abovc, the physically based models can be 

applied to the simulation of' extrUsion process successfully to predict the final 
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structure. In the f'ollowing sections, tbe simulations with the physically based 

models used to analysis the individual intILICIlCe of forming parameters on the 

final structure will be discussed in detai.. 

35 
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Figure 4.7 Predicted volume fi-action i -, crystal I ised tactor (Xv) along extruclate 
SUrface and the selected point 

Special licat treatments are required for most of the licat treatable alumiIIII-1111 

alloys after extrusion to improve the mechanical properties. For alloy AA2024, 

fully recrystallised structures are produced in all CXtl'Lidates below an extrusion 

temperatLIFe of' abOLIt 350'C, solution treated at 500'C lor 30 minutes and water 

quenched, followed by ageing at 160 'C for 18 hours. Below this temperatUIT the 

fibrous strLICture observed in the centnal region ol' the extrudate is no longer 

retained, static recrystallisation having ll'ormed new strain Free grains. Above this 

temperatUre thC CXtrUdates exhibited a fibrous core similar to the as-quenched 

SpeCIIIICIIS SUITOLIndcd by a recrystallised grain structure as shown in Figure 4.8 

(Vicrod 1983). it is well k-nown that when surrace recrystallisation occurs, the 

percentage of' recrystallisation increases NA71th decreasing extrusion temperature. 

As has becii shown in Chaptcr 2, Figu. -c 2.6, the pci-centage of recrystallisation 

decreases from abOLIt 50"1"'(') to 10% with increase ol'the temperature. This is dLIe 

to (lie increased stress and hence tile driving force for static recrystallisation. Tile 

surface i-ccrystallisation is of major importance because in these applications 

rcqu IrIn gy gi, ood f'1', -lCtLIl-C tOLIgII11CSS toc-letilel- NNItll Col'I, OSIOII resistance, an Z--- 
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unrecrystallised structurc is prcferrcd, tIlLIS the surface and sub-surt'ace 

recrystallisation determine the volumu, of material wasted by the necessary 

machinery operations. 

The effect of extrusion mode (direct/indirect) Oil tile VOILlIlle percentage 

recrystallised is represented graphically in Figure 4.8. There is a large reduction 

of' percentage recrystallisation for both extrusion ratios investigated Nvllcll the 

indirect process is used. 

Vi 
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. ........ . .... 
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Te rrp ýs ab. i re f. C) 

Figure 4.8 Influence of'extrusion modc on SLII'I'cICC recrystallisation 

As can be seen from, the above discussion, relationships exist. only between the 

stirl'ace recrystallisation and one or twG parameters. There are no comprehensive 

literature reviews concerning tile contribution ofeach parametel- to the process of 

SUITace i-ccrystallisation. The absence of this type Of Study may be caused by the 

non-linear relationships between the forming parameters and the recrystallisation 

behaviour. The complexity of the CXtl'LISIOII process and the subsequent heat 

treatment may also prevent SLICII Studies from giving a comprehensive and simple 

relationship. N/Iol-eover, the rccrystallisation bk-, IiavlOLII* varies when the 

composition of' the alloy changes, Nvhl-li adds tG thC COIIIPICXIty 01' thC study. 

However, the knowledge of' the cont -lbution of inclividUal Cactors is key to 

deciding OIC MItLIN Oftlle COMI-01 to he cstablished in a production process. Ifthis 
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infori-nation is established, even for a specific alloy and a limited range of 

temperature, it will still be helpful to the design of the extrusion process. 

In the following sections, an investigation is made into the relationship of the 

fraction recrystallised coefficient to the main extrusion parameters in the 

extrusion of AA2024: extrusion ratio, ram speed, billet temperature and extrusion 

mode. The individual influence of these four parameters on the percentage 

recrystallisation is discussed by the use of the Taguchi method. To carry out this 

analysis, at least eight experimental iesults are required, but only five were 

available frorn the previous experiments. In this study, the other data that are 

necessary but not available were obtained by FEM simulation. 

4.1.2.1 Taguchi method 

The sequence of the simulations to predict surface recrystallisation is possible 

using the Taguchi method. The Taguchi method is designed to improve the 

quality of products and processes where the performance depends on many 

tactors. Its approach to enhance quality in the design phase involves two steps 

(Fowlkes 1995): 

1. Optinilsing the design of the product/process (system approach). 

-1. Making the design insensitive to the influence of uncontrollable factors 

(robustness). 

The TagLICIII method is most effective w-hen applied to experiments with multiple 

lactors. Taguchi constructed a special set of general designs for factorial 

experiments that cover many applications. The special set of designs consists of' 

orthogonal arrays. The use of these arrays helps determine the least IlLimber ol' 

cxperiments needed for a given set of tactors (Ranj it 1990). 
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An L8 orthogonal array is shown in Table 4.3. For the L8 array, there are two 

linear graphs available as shown in Figure 4.9. These two linear graphs indicate 

that several factors may be assigned to different columns and several different 

interactions may be evaluated in different columns. 

Table 4.3 L8 Orthogonal Array Matrix 

Trial no. Column no. 
1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 
2 1 1 1 2 2 2 2 
3 1 2 2 11 1 2 2 
4 1 2 2 2 2 1 
5 2 2 1 2 2 
6 2 2 2 1 2 1 
7 2 2 1 2 2 1 
8 2 2 2 11 11 2 

Table 4.4 Simulation schedules according to Figure 4.9(a) 

Run 

s 

A 
(Billet temp) 

0C 

B 
(Extrusion 

ratio) 

AxB C 
(Ram 

speed) 
mm. /s 

AxC AxD D 
(Extrusion 

mode) 

1 360 40 1 7 1 1 Direct 
2 360 40 1 3 2 2 Indirect 
3 360 20 2 7 1 2 Indirect 
4 360 20 2 3 2 1 Direct 
5 410 40 2 7 2 1 Indirect 
6 410 40 2 3 1 2 Direct 
7 410 20 1 7 2 2 Direct 

410 20 - 1 3 1 1 Indirect 

For instance, linear graph (a), Factors A, B, C, and D may be assigned to 

colun-nis 1 2,4 and 7 respectively. This places the AxB interaction in column 3, 

the AxC interaction in column 5, and the AxD interaction in column 6. The 

other linear graph provides an alternative arrangement with other interactions 

assigned. Both of these two possible interpretations are discussed in this thesis. 
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Figure 4.9 L8 linear graphs arranged by Taguchi Method 
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Figure 4.10 Effect ofeach 1, actor (cacti number represents a level ofa tactor) 

Table 4.5 Simulation scheddes according to Figure 4.9(b) 

4 

Run A B AxB C AxC BxC D 

s (Billet temp ( Extrusion ( Ram (not 

ý ratio) speed) III C) 
11111-1/s Use) 

1 360 40 1 7 1 1 
2 360 40 1 2 2 
3 360 20 2 7 1 2 
4 3 60 20 2 [ 3 
5 _ _ _ 410 40 _ 2 _ 7 2 1 
6 41 0 40 2 3 1 
7 ý -)o ýII 410 7 2 2 
8 410 ')0 3 1 1 
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The simulation schedules for these two linear graphs are shown ii-i Table 4.4 and 

4.5 respectively. Because the extrusion mode is a parameter which can not be 

adjusted conveniently during the process of production and has been used in the 

analysis shown in Table 4.4, it is not used in Table 4.5. 

4.1.2.2 Experimental Procedure an6 FEM Analysis setting. 

Experiments performed by Subramaniyan (Subramaniyan 1989) are used to 

correlate the prediction results in this study. Extrusion was performed on a5 MN 

press operating with tooling set up for direct and indirect extrusions. The billets 

were 75mm diameter x95mi-n long and were heated in an induction heater or in 

aii air circulating furnace. The load was measured by a Mayes load cell situated 

directly above the ram, the output froin the cell being recorded oii a Labmaster. 

Rani speeds and displacements were tneasured by a rectilinear potentiometer 

fixed between the moving crossheads and the press bolster that transmitted to the 

Labmaster (Subramaniyan 1989). 

The solution treatnient for hot worked alloy 2024 is 20 minutes to 2 hours at 

500'C (depending on section size), I'cllowed by water quenching to obtain a 

supersaturated solution. 

The FEM prograrn, FORGE2*' is used in the present study. It is a process 

simulation tool based on the Finite Element Method. The hyperbolic sine 

tI Linction was combined into the FEM to describe the material behaviour. For 

aluminitim alloy AA2024, AH=146880KJ/i-riol, a=0.016ni"/MN, n=4.27, 

LnA= 19.6 (Sheppard 1999). The Tresca frictioii law Nvith full stick friction is 

adopted in the present work. 

98 



4.1.2.3 Results and discussion 

The runs, the experimental results and the simulation results are shown hi Table 

4.6. It is easy to see that the simulation runs according to Table 4.4 as shown in 

Table 4.6 can be used for Table 4.5 without any adjustment, that is, the same 8 

runs can be used for both of the two possible schedules. Because the variation of' 

each parameter is small in this study, it is reasonable to appoint only two levcls 

to each parameter. AxB, AxC, BxC andAxDshown in Table 4.4 are the 

interactions between two parameters. 

There are two methods to analyse the results: the signal-to-noise (S/N) ratio 

analysis and the standard deviation analysis (Ranjit 1990). Whenever an 

experiment involves repeated observations at each of the trial conditions, the S/N 

ratio has been found to provide a practical way to measure and control the 

combined influence of deviation of the population mean from the target and the 

variation around the mean. In this study, the S/N ratio analysis was adopted. 

In cases when a smaller response is better, the formula of S/N ratio is: 

S/N - -10*Log(MSD) (4-1) 

where MSD is the Mean Squared Deviation (MSD) of the set. If the smaller 

response is the best quality characteristic, then: 

1 11 
" 

MSD=(-I]Yi-) 

where Yl is the repeated simulation results in each run. 

(4-2) 
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Table 4.6 Experimental and Simulation results 
Runs Experimental Simulation results S/N 

result 1 2 3 
1 38.79 8.23 
2 27.12 27.54 27.33 11.27 
3 23.10 12.73 
4 27.21 26.85 27.04 11.40 
5 25.12 25.41 25.01 11.98 
6 27.37 27.47 27.30 27.52 11.24 
7 25.50 11.87 
8 13.91 13.85 13.95 17.14 

The analysis of variance (ANOVA) for the schedule shown in Table 4.4 and 

Table 4.5 is shown in Table 4.7 and Table 4.8 respectively. In this study, the S/N 

ratio analysis will use the experimental result if it is available, and if not, the 

three repeated simulation results of the same run shown in Table 4.6 will be used. 

The effect of each factor is plotted in Figure 4.10. The factorial effect is the 

difference between the two average effects of the factor at the two levels. The 

greater the difference between levels, the greater the effect. 

Table 4.7 ANOVA for Table 4.4 

Source df s v SI) 
P (%) 

A (Billet temp) 1 9.25 9.25 8.75 20.57 
B 1 13.59 13.59 13.09 30.77 
(Extrusion ratio) 
AxB 1 0.17 - 

(pooled*) (pooled*) 
C (Ram speed) 1 4.86 4.86 4.36 10.25 
AxC I (pooled*) 0.99 

(pooled*) 
D 1 13.47 13.47 12.97 30.49 
(Extrusion mode) 
AxD I (pooled*) 0.34 - 

(pooled*) 

e 5 1 0.5 3.5 7.92 
3( df, ) . 

(V, ) 

Total 12.67 i 42.67 1 

* When the contribution of a factor is small, as AxB, AxC and AxD in the 
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Table, the sum of squares for that tacto, * is combined with the error e. The detail 
ofthe pooling procedure is not mentioned here. 

Table 4.8 ANC VA foi- Table 4.5 

V SI Source df S 
(0/) 

A (Billet terrip) 1 9.25 925 8.75 30.0 
B (Extrusion 1 13.59 13.59 13.09 44.8 
ratio) 
AxB I (pooled) 0.1 7(pooled) I- 
C (Ram speed) 114.86 4.86 4.36 14.9 
AxC I (pooled) 0.99(pooled) 
B xC Ipo ol ed) 0.34(pooled 

1.5 0.5 3.0 1-10.3 

Total 17 29.2 29.2 11 

The parameterS Used in Table 4.7 and 4. S are explained below: 

dt': Degree of'freedom. 

df= NUmber oftrial conditions for a Ia. -tor- I 

dfe: Dcgrec offi-cedom of Error Term. 

dt'e=dt'T -(df'm +dfjý +dfB +d('E +'Jfc) (4-3) 

S: Suni of'squares: 

S=A 2 /N I +A 2 /N -T 
2 /11 (4-4) 1A2 A2 

Where A, and A2 are the sum of' run results in each level of' a factor, 

NAI and N A2 are the number of trials lor each level o fa. factor (4 in this case), 

T is the grand total ofall results, ii is thc total number of runs. 

V: Variancc. 

VI = sl // df, (4-5) 
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S": pure sum of squares. 

Si =Si -Ve (4-6) 

From these Tables, it is easy to see that the extrusion ratio is the most important 

in terms of surface re crystal li sation. The influence of the extrusion ratio is 

30.77% and the influence of extrusion mode is 30.49% as shown in Table 4.7. 

When the extrusion mode is excluded, the influence of the temperature (30.0', 0) 

and the ram speed (14.9%) is also less than thQ influence of extrusion ratio 

(44.8%) on surface recrystallisation. The influence of the interaction effects can 

be ignored both in Table 4.7 and 4.8. Because all of the parameters studied here 

each have influences on the temper-ature rise, which is important for the 

metallurgical behaviour during aluminium extrusion, it seems surprising that 

interaction effects are very small. When noting that the different extrusioii 

parameters tend to result in a very small exit temperature range, it not difficult to 

understand this result. In related research work performed by the present author 

(Peng and Sheppard 2004a), the individual influence of forming parameters 

(extrusion mode, billet temperature, container temperature and ram speed but 

excluding extrusion ratio) on the surface recrystallisation have also been 

determined using an identical method t, 'iat is used in this study. The study result 

shows the extrusion mode and the initial temperature are the most influential 

factors, which clearly correlate with the conclusion of the present study. 

It is worthwhile to reiterate that in this study, the temperature is limited between 

two levels: 360'C and 410*C. Below o-,. - beyond this temperature range, the bI Ilet 

temperature shows a much more important influence than the other parameters. 

Ho\\,, c\,, ci-, surface integrity factors dictate that such data may not be used in this 

analysis. 

102 



As can be seen from the discussion z: bove, with the use of the metallurgical 

model, the recrystallisation behaviour at the extruclate surface of aluminium alloy 

can be predicted by FEM simulation. The mode of extrusion is clearbyý of 

paramount importance and if the highest quality material is required. then this 

mode should be used,, despite the mechanical drawbacks. The analysis using the 

Taguchi method shows that the extrusion ratio has the most significant influence 

on the volume fraction recrystallisation when compared with the other forming 

parameters. However this is not a ccmmonly accepted proposition (because 

extrusion ratio is not in general controllable) and it would appear that careftil 

control of temperature and ram speed would be the method generally attainimy 

the desired structure. Moreover, the ext-usion ratio is normally a fixed paraineter 

in the industrial context. 

4.2 T shape extrusion 

Practical experience indicates that very large increases in the extrusion load can 

be encountered as the section geometry diverges from simple rounds to complex 

shapes containing re-entrant corners ur thin wall sections, depending on the 

complexity of the shapes. An example Gf a thin wall extrusion is shown in Figure 

4.11. In the following discussions, the simulations of T shape sectimi extrusion 

are adopted to illustrate the application of FEM in this field. The dimension of 

the T section has been shown in FigIlre 2.1 and it is repeated here for the 

convenience of the reader. 
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__7 B 

3 0' 

A 

Figure 4.11 Dimcnsion of-the T sLapc extrudate (Subramanlyan 1989) 

4.2.1 Therinal-meclianical simulation results 

Compared with axi-symmetric exti*LlSiOll, the flow pattern of shape extrusions is 

more complex. 

For the present work, the periphenal ratio, A, defined as the ratio of the periphery 

Q, of' the section to the periphery ý2,. of a rod of equivalent cross-section, has 

beell Used to represent the complexity of the die. For example, Sheppard and 

Woocl ( 1980) have show'n that the total pressure requirement would bc predicted 

by an cqUation ol'tlic form: 
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fGý, R, Z, A) (4-7) 

where R is the extrusion ratio, Z is the Zener-Hollonlon parameter. A is a 

constant, )ý is the shapc I'actor. 

Experiments and simulations have beer performed and the individual results for 

T-shape extrusion are shown in Table 4.9. The container temperatUre is 50'C 

lower than the billet temperature in T-shape extrusions and remains at 300'C in 

multi-hole die extrusions. 

Table 4.9 Experimental settings and simulation results off-shape CXtI'USIOII 

(Experiments after Subramaniyan 1989) 

Run Ratio Temperature 
(OC) 

Ram speed 
t 

k, mill/s) 

Experiment aI 
load (toilnes) 

Predicted load 

(to 11 Iles) 
1 40 350 3 458 460 

40__ 
__452 

7 326 340 

The predicted time-load curve of'run 2 is shown in Figure 4.12. As can be seen 

From tile SIMUlatIO11 I'CSLIltS, tile predicted loads are in reasonable agreement with 

the experimental results. 

,-I , CIL 

,2 'LIE, 

100 

5 

D 

- ----- ---- 
------------- 
----- --- ----- 

---- ------ 

- ----------- - -------------------------- 
4 

Time (s) 

Figure 4.12 Predicted peak loads in T-shapc extrusion (run 

Due to the asymmetric nature of th%. " complex shape dies, the temperature 

distribution III the CXtI-Udatc in the trai sversc direction is quite Inhomogeneous 
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when it exits the die orifice. Because the temperature is to be strictly controlled 

to give a product with satisfactory quality, it is therefore important to study the 

temperature distribution and its influence on the product quality. 

The most important information is the temperature distribution in the cross 

section of the extrudate. In Figure 4.13 and Figure 4.14, the temperature at the 

sections of extrudate of the run I (as shown in Table 4.9) was provided. As can 

be seen from these two figures, the highest temperature occurs at the position 

with sharp configuration changes. 

Celsius 
r---T- 508.2 

507.88 

507.56 

507.24 

506.92 

506.6 

506.28 

505.96 

505.64 

505.32 

505 

(a) run I (b) run 2 

Figure 4.13 Temperature distribution at the die exit cross section (run 1: initial 

temperature 350'C, 3mm/s, run 2: initial temperature 452'C, 7mm. /s). 

In addition, the temperature distribution inside the billet is also shown in Figure 

4.13 and 4.14, the temperature rises sharply at the die entrance comers, which is 

also where the highest strain rate occurs. The temperature continues to rise until 

the material exits the die. As can be seen in Figure 4.13, the temperature 

distribution at the cross section is similar although a larger range of temperature 

can be observed when the ram speed is higher. 

Celsius 
----T- 530 

526 

522 

518 

514 

510 

506 

502 

498 

494 

490 
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However, the present study is just a demonstration of the application of the FEM 

simulation into the study of aluminium extrusion. Because of the lack of 

experimental means to measure the temperature distribution inside the billet 

precisely, it is difficult to provide any comparison analysis at the present time. 

The justification of FEM given in Chapter 3 gives confidence that these results 

can be acceptable. 

(a) run I 

Cel-SiIAS 

530 

511 

492 

473 

454 

435 

416 

397 

378 

359 

340 

(b) run 2 
Figure 4.14 Temperature distribution at the symmetric section (run 1: initial 

temperature 350'C, 3mm/s, run 2: initial temperature 452'C, 7mm/s). 
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4.2.2 Structural and substructural simulation results 

In the extrusion of AA2024, due to the stored deformation energy within the 

extrudate, static recrystallisation usually occurs and extends to 100"o of the 

material in some cases. The production of coarse grains during heat treatment is 

not beneficial because it causes a reduction in mechanical properties. Damage 

tolerance, ) I'atigue crack propagation or corrosion, which are three very import 

technical indices required by the aerosjý, ace industry, are significantly affected by 

the recrystallised grain size and the volume fraction recrystallised. It has also 
been shown that this problem becomes greater as the complexity of section shape 

increases. 

Hence, Imowledge of the variation of the recrystalised grain size with time and 

space assists optimisation of the extrusion process. In the studies belo\v, all 

discussions are I'locused on the formation of the grain size, the V011-111le fraction 

rccrystallised and the subgrain size. 

Compared with axi-symmetrical extrusion, the material flow is rtonhomogeneous 

in shaped extrusion. The flow pattern corresponding to the extrusion of rod and 

shape section is shown in Figure 4.15. The shape sections are Cut from face AB 

as shown in Figure 2.1 and Figure 4.14. The cross plane section and the expected 

metal flow patterns t1or aT shape are also shown in Figure 4.16. It can be seen 

fron-i Figure 4.15 and 4.16 that althoug. i the general flow pattern remains similar 

to that in rod extrusion, a certain arnou', it of asyn-ii-netry about the billet axis can 

be seen, especially in the regions close to the die shoulders (dead metal zone). 

'Flits can be explained on the basis that. if the flow is expected to be radial from 

the coiitainer \N, all, at least on the plane of projection parallel to the die place, tile 

distance ab and cd as showii in Figure 4.16 over which the metal flows will be 

dift'ercrit. This can to some extent cause the asyninietry obscr\, ed in the present 

instance. The asyninietrical material flow pattern has an important Influence oii 
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the metallurgical behaviour during shape extrusion, which will be discussed 

below. 

The equivalent strain and the recrystallised grain size distribution of the two 

sections are shown in Figure 4.17 and Figure 4.18 respectively. As can be seen in 

Figure 4.18, unlike the axi-symmetrical extrusion, the recrystallised grain size 

around the periphery of the shape section is nonhomogeneous. The inverse 

relationship between the recrystallised grain size and the equivalent strain does 

exist in shape sections. In the area where the greater deformations occur. the 

recrystallised grain size is smaller than the other areas. 

The predicted fraction recrystallised factors (Xv) at the periphery of the T shape 

section are shown in Table 4.10. The positions of the points used in these 

Tables are shown in Figure 4.19. For tl,, e shaped section, estimation of the depth 

of the recrystallised layer was difficult in previous experiments, since the layer 

was no longer uniform. With FEM simulation, the distribution of the volume 

traction recrystallised factors can be predicted and extracted more easily. It has 

been found that both in previous experiments and FEM simulations that the 

recrystallised layer was thicker for more complex sections due to the larger 

temperature rise. As can be seen in Table 4.10, at the positions where the 

deformation is more complex, that is, where the strain and the temperature are 

higher, the fraction recrystallised factor is also higher. The experimental 

'/ý), the average meaSUrement of the average fraction recrystallised factor is 751/ 

valLic oftlic Xv as shown in Table 4.10 is 68%, which is about 7% lower tliaii the 

cxperimental result. It should be point. -., d out here that the relative error for the 

method ot I measurements was approxin-ately 9% and there was a variation M the 

valuc of Xv in the thickness arOLind the extrudate. Considering these factors, the 

predicted results can be regarded as in reasonable agreement with the 

experinicntal measurcments. 
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Table 4.10 Fraction recrystallised factors of T shape extrusion 
I Point 

2 

I Equivalent strain 
2. 
3*37 

-I 
Xv 
61% 
62% 

lit --Po i 
8 
9 

Equivalent strain XV I 
3.19 70%ý 
3.36 78% 

3 3.04 

_2.9 
7 

65% 
60% 

10 
11 

3.38 68% 
3.40 721NO 

4.06 69% 12 3.17 65% 
6 4 15 82% 13 3.4 68 (1/ /o 

72% 

The temperature distribution across the shape extrudatcs is shown in Figure 4.20. 

It can be seen that Lit the place where a sharper deformation OCCL11'S, the 

temperatUl'C and the VOILMIC Fraction recrystallised arc higher. 

Rod 

Figure 4.15 Macrosections ol'partially extruclated billets 
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It can be seen From the discussions above, due to the difTerent flow pattern in 

axi-syrnmetrical extrusion, the recrystall1sed grain size and the volurne traction 

recrystallised factor are nonhornogeneous around the periphery of' the shaped 

section. 

Circumscribing c 

Figure 4.16 Metal flow expected in a T-Shape 
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Figure 4.18 Recrystallisod gi-am size (111111) (111112) 

Figure 4.19 Position o ý'thc points in Table 4.10 
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Figure 4.20 Temperature distribution ('C ) (run 2) 

4.3 Multi-hole (lie extrusion 

Multi-hole extrusion is widely adopted to increase prodLICtIVIty 01' WIICI-C SIIOI-t 
lengths are required. An example ol'a 1111.11ti-hole die is shown in Figure 4.2 1. 

Three-diniensional FEM analyses of symnietric extruslon liave been reported. 

ZIIOLI Ct al. (2003) studied the complete cycle of an aluminium extI'LISIOII Nvith a 

rcdLICtIO]l IlItIO Of (S: I- Sonic examples of the material flow pattern of complex 

shape extrusion have also been reported by Gouveia et al. (2001 ). they studied 

the round-to-square forward extRISIon by three-dimensional FEM simulation. 

2) studied a very complex shape extrusion with Milenin ct al. (200. 

tlII-CC-(l1111CIISIOIIdl COIIII)LItCl- SIMulation. but little information about the material 

tlo\v is providcd III thC StUdy. 

Compared Nvith axi-symnictric extrusion, the flow pattun of multi-hole cxtrusion 

is more complex. The flOXV tllýlt OCCUrs IS aSYMIllctrical and depends on the 

distribution of the holcs. This can hav-ý important consequciices on sLibscqLlCllt 

heat treatillclit and ally Further working. Expcriments concaning material flow III 
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multi-hole extrusion reported, both L sing plastIcIne, and metals. Vater and 

Koltzenburg (1970) have also published some flow patterns for more complex 

shapes. By extruding two billets, one behind the other, after separation, the 

complex shape of the zone in the billet can be seen. 

(a) Three hole die (b) Two hole die 

(c) Three hole die (triangle distribution) 

Figure 4.21 Definition of eccentricity in multi-hole dies 

Therc is no literature i-cported to pi-cdicL the tlo\v pattan of' multi-hole extrusioll 

11-oin dicory. The cxception is those Litilising slip-linc field or uppcr bound 

approaclics. Bccausc the Lipper bound approach assumes the flow stress is a 

mited collstý111t value, this method can only give approximate patterns in a 11 1 
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number of cases. With the developmený. of three-dimensional FEM, the problem 

can be solved by numerical simulation. In this study, the material flow during the 

extrusion process is demonstrated clearly by such simulation. 

In the case of two-hole or three-hole die extrusion, the eccentricity, which is 
defined as 

b 

a+b 
(4-8) 

is adopted to evaluate the die layout, wliere a and b are shown in Figure 4.2 1. 

When b is zero F- is zero and when a is zero, F- is unity In the case of Figure 

4.2 1 (c), the three holes are in a triangular distribution. d is the distance between 

the centres of the two holes, maybe used to define the geometry. 

Castle (1974) reported experiments concerning the extrusion of shapes as well as 

extrusion through multihole dies. Sheppard (1999) has used the experimental 

data to show that for multihole extrusion the correction factor required may be 

expressed in terms of the peripheral raJo calculated using all the holes (i. e. for 

the extrusion of multiple rounds the rat to is simply -\IrN- where N is the number of 

holes) and the pitch circle diameter such that 

/k(DB /(D - Dp)) where Dp is the pitch circle diameter and D BB is the 

billet diameter. Table 4.9 shows the results of the analysis and the experimental 

data published by Castle (1974). 
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4.3.1 Thermal-mechanical simulation results 

To analyse the influence of the multi-h Dle die on the extrusion load, some extra 

rod extrusions for comparison of multi-hole die extrusions were performed as 

shown in Table 4.11. The simulated peak load-time curves of the multi-hole die 

extrusions are shown in Figure 4.22 and some experimental measurements are 

also shown in Table 4.11. 

The experimental measurement of the peak load is 245 tonnes for the No. 3 run 

as shown in Table 4.11. The predictel value is 229.5 tonnes, which is 6.5(ý, (') 
lower. The experimental measurement of the No. 6 run is 281 tonnes and the 

simulation result is 270.5 tonnes, which is 3.7% lower. Due to the lack of precise 

measurement of the friction at the interface of the billet and the dies, it is 

foreseeable that there are differences between the predicted and experimental 

loads. However, the FEM simulation results correlate well with the experimental 

measurements. 

Some empirical work on the multi-ho'e extrusion of rods reported previously 

(Johnson and Kudo 1962) indicated that the load increased as the number of 

holes increased. For the two-hole die, t. '-ie minimum is at an eccentricity of 0.45, 

which is almost identical to the symm,,, trical position of a and b being equal in 

Figure 4.2 1. The minimum for the three-hole extrusion pressure is at an 

eccentricity of 0.6, which again almost corresponds to the symmetrical 

configuration of a equal to 
b 

(a and b ire shown schematically in Figure 4.2 1). 

The peak loads have also been studied by slip line solutions. The dependence of 

the peak load on the eccentricity of the die was also calculated. As can be seen 

fi-orn Figure 4.22, for both the two and the three hole configurations a minimurn 

load is predicted at a cci-tam value of the eccentricity. wliich is practically 
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independent of the extrusion ratio (R). The increase in the extrusion ram pressure 

A-n / 2k (The increase in the extrusion ram pressure caused by the eccentricIty E, I- 

k is the maximum shear stress in simple shear) caused by the eccentricity F- in 

multi-hole extrusion is clearly shown (Johnson and Kudo 1962). The R shown in 

Figure 4.23 is defined as: 

The two hole extrusion: 

R=1-[2RE /(a+ b+2RE)] 

The three hole extrusion: 

R=1-[3RE /(a+ b+3RE)] 

where a, b, RE are shown in Figure 4.2 1. 

(4-9) 

(4-10) 

Table 4.11 Experimental settings of multi-hole die extrusion 
Run Type R 2RE Predicted Experimental 

(Extrusion peak peak load 
ratio) (In load (tonnes) 

Fig. 3.8) (toni-ies) (Castle 1974) 
(mm) 

I One hole 120: 1 0-- 6.86 0 298.0 313 
2 One hole 60: 1 9.68 0 170.8 190 
3 Two hole 60: 1 6.86 0.27 229.5 245 
4 Two hole 60: 1 6.86 0.45 196.2 
5 Two hole 60: 1 6.86 0.7 211.3 
6 Three hole 60: 1 5.59 0.22 270.5 281 
7 Three hole 100: 1 4.3' 2 0.17 310.2 
8 Three hole 60: 1 5.59 d= 342.8 

(Triangular 12.61 
Distribution) (MM) 

9 Three hole 60: 1 5.59 0.6 304.2 

It can be seen that there are some differences between the prediction, the 

theoretical solutions and the empirical work with regard to the two-hole 

extrusion. Using slip-line field theory, the eccentricity at which the minimum 
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load occurs is 0.7 in the two hole extrusion, whilst it is 0.45 according to the 

experiments as shown in Figure 4.23 (Johnson and KLido 1962, p65). It ShOUld be 

pointed out that in Johnson's work, plain strain condition was assurned, and the 

work hardening and the friction condition were not considered. This explains the 

discrepancy existing between this and FEM. It also clearly II 1tv indicates the necessi , 
for the FEM approach. Further rescarch examining the peak load and geometry 

of'multi-hole extrusion is now under investigation. 

The conclusions From the empirical experiments, thC S111) IIIIC SOILItion and the 

FEM SIMUlation are: 
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e: 
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Figure 4.22 Peak load obtained Ior the runs given in Table 4.11 

(i) 'rjc pcaiý load increases as tile IlLln-., ber of 1101cs increases. That is. tile peak 

load of three hole extrusion is the h'ghcst and the peak loads of two hole 

CXtl'LISIOII are IllgilCl- thall tile S11-igle hole extrusion at the same extrusion ratio. 
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(2) Three holes in -a Ime in the dian-icter planC produce lo\%, cl- luads dWil a 

triangular distribution. However the reader should note that this work does not 

address the possibilities ofthe stress and "slinking". 

(3) The least peak load of' the three-hole extrusion occurs at an eccentricity of' 

about 0.22 compared. with a slip line field value of'O. 6 (FIgUre 4.23). For the two 

hole extrusions the corresponding values are 0.45 and 0.75. 

These values clearly demonstrate that the predictions based on a perfectly plastic 

material coupled with a plane strain model are qLIItC Unacceptable. The obvIOLIS 

advantages oI'FEM analysis are clear. 

07 

(1) P=0.75 
0.6 1ý ý22) R-0,86 
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Figure 4.23 Variation of' extl-LISIOII Pressure Nvith eccentricity according to slip 
line SOILItIOIIS (Johnson and KUdo 1962, p65) 

Flowcvcr, to cstablish a quantitativc rclationship bctNvecii the shalic factor and the 

peak load, illaily 11101T S11111,11ations and cxperiments nced to be performed. The 

III thiS SCCtIOll al'C *Llst den-., mistrations of FEM applications to the 
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simulation of the extrusion process. 

Examples frorn experimental and simulation results of the material flow pattern 

are shown in Figure 4.24. The experimental work showing the flow patterns for 

multi-hole extrusion were all taken in the vertical plane containing all the holes 

and typical examples are given to the left of Fig 4.24. The simulation outputs are 

given to the right of the Fig. Dead metal zones are seen in the circumferential 

extremities and can just be discerned -in the area between the holes wlieii the 

velocity vectors indicate stagnation. There are many basic similarities to the 

single-hole extrusion, with regions of intense shear bordering the dead metal 

zones, but there is also a shear region dowii the central axis in the case of the 

three-hole extrusion. In between these zones of shear the metal flows in a curved 

path to the exit. The dead metal zones are indicated in Figure 4.24. 

As can be seen from both the experimental and simulation results, the aiigle that 

the outer dead metal zone boundary makes with the die is greater than that seen 

in single hole extrusion but the region extends back to approximately the same 

depth, roughly equal to half the billet diameter. This coincides with previous 

studies (Pearson 1961), which indicated that the geometry of these outer dead 

n-ietal zones appeared to be only a function of the distance between the outer rod 

and the billet edge, and not of the number of holes being extruded. 

In the two-hole case a large volume of metal has to flow from the edge of the 

billet to the extrudate. A smaller volume flows from the central region. To 

accomi-nodate these differing flow rates the line of symmetry, where the flow 

rates are equal, will be displaced towards the centre. The three-hole extrusions 

ýire similar but more complex. 
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Figure 4.24 Expermicntal and SIMUlation I-CSUItS indicating the agi-cenicilt L- 

bctween illilcrograph and simulation OLltj)Llt. 

It is worth noting that the Illesh slzc of the F EM setting can influence the 

ead metal zone 

interpretation of I results. As can be seun from Figure 4.24(c). The back of' the 

Die face area' m 
Dead metal zone 

One hol e 

77 

(b) Two hole Dead metal zone 

, -4-L 

121 

Mesh size: 4.0 



billet is in coarse mesh size and the front of - the billet is in firic mesh. The 

simulated vector distribution in the fine mesh area is fairly good but it is not verv 

clear in the coarse mesh area. The conclusion can be easily drawn that a fine 

mesh is preferred, but at the same time It means that much more calculation time 

is needed. 

From the discussion above, it can bc seen that the peak load has a close 

relationship with the material flow pattern developed dLII'IIAg CXtJ'LISIOII. 

The position of the line CD is shown in Figure 4.25. Th equivalent stress and 

eqUivalent strain-rate distribution along the linc CD is shown in FIgUrc 4.26. It 

can be scen that the flow stress and the cquivalent straiii-i"ate are highcr wlicii the 

flow pattern becomes more complex. !t is noticeable that there is a strain rate 

peak associated with each hole (I (or single-hole, 2 1`6r clouble-holc ctc. ) This 

implies that the mean strain rate also varies with the geometry. This has a large 

C1 , feet Oil the StRICtUre development as discussed below. It is not diffilcult, 

tllCref'01T, to Understand why higher loads are expected in 1111.11t1-1101C CXtrUS1011. 

Die 
centre 

B 

(a) two hole (lie extrusion 

Die 
centre 

(b) three hole dic extrusion 

Figure 4.25 The position of line CD 
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Figure 4.26a Equivalent stress distribution along line CD 
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Figure 4.26b Equivalent strain-rate distribution along linc CD 

Figure 4.26 Exti-acted i itbi-mation along line CD 

4.3.2 Structural and substructural simulation results 

The simulation I-CSUlt I-Cgal-Cllllg the rc-storation behaviour is discussed in this 

section. Thi-cc-diniciisional SlIllUlations were carried out when studying the 

IIILlltl-1101C CXtl'LISIOII. It ShOLIld be noted that III the 110.8 SIMUlation as shown in 

Table 4.11, d -= 12.6 1 nim. which is equal to b+ 2R E Of thC 110.6 S11111-Ilation. 
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The value of d (shown in Figure 4.21 ) in the ruil 8 is equal to the value of b 

(Figure 4.21 ), which is used in the run 6. 

II 

Centre Side hole 
hole 

\Centre ot \Centre of the 
the die extruded bar 

(a) Three hole extrusion 

x 

Centre 
of the 
die 

Centre of the 
ext[-Llded bar 

x 
(b) Two hole extrusion 

Figure 4.27 The coordinate system 

The simulation results of the recrystall sed grain size are shown in Figure 4.28. 

The co-ordinatc system used in FIgLll'%-- 4.28 is shown in Figure 4.27(a) and 

4.27(b). The predicted grain sizes ccri-csPoncled well Nvith the experimental 

rcsults available. For run 2 as shown in Table 4.11, the cxperimcntal 

measurement at the centre of' tile extrudate is 40 ýtm and the predicted valLIC IS 

42.3 pm , which is 5.7"//(ý) higher. For run 3, the predicted value is 41.2 pm , which 

is 42N) lower than the experimental meaSLirement (43 pm ). The detail of the 

effectivci-icss ol'tlic model can be found in literature (Duan and Sheppard 22003). 

There are some conclusions that can be drawn from the simulation results. 

It can be seen that tor extrusions Nvith the same reduction ratio, the 111111111IL1111 

grain size occurs in the three-hole extrusion. As the extrusion ratio increascs, the 

size ofthe uraill clcci-c, -iscs. 
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Figure 4.28 Recrystallised grain size along the tranverse dircction 

The recrystallised grain size on the surike of the CXtl'Lidate is smaller than at the 

centre. From Figure 4.28, it can be seen that the recrystallised grain size shows a 

sharp decrease at the SLIITaCC of the extruclate, and it is easy to see the 

rccrystalliscd grain size is in inverse proportion to the equivalent strain. This has 

also been observed by other workers (ScIlars 2000). 
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Regarding the bars CXtl-Lided from the two-hole extrusion, oile can observe that 

the rccrystallised grain size is slightly -ý-Ifferent at opposite surfi-ices of the same 

bar. The grain size is smaller on the su---face that is nearer to the the centre. This 

phenomenon IS 11101'e Significant in tlic: three-hole extrusion, which has a high 

extrusion ratio. As can be seen from Fq, ure 4.28, for the simulation results of the 

run 7 in Table 4.11 ý the grain size is i 6, um at the side that is nearer to the die 

centre, while on the opposite surface, the grain size is 24pin. This phenomenon 

is closely related to the distribution of the equivalciit strain, as plottcd in Figure 

4.29 

c 
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.9 
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Figure 4.29 Equivalent strain distrbution along the transverse direction 

For the bars CXtl'Lided From the cciitrc lic-le of the threc-hole die, the recrystallised 

grain size is axi-symmetric. It can be sc. -, ii that tor the simulation Rills I and 3 as 

shown in Table 4.11, the extruded bars are of' the same size (2Re). In these two 

simulations, the recrystallised grain siz. -s in the transverse direction are similar, 

as shown in Fi(, YLli-c 4.28. Only on thL circumferential suiface are there some 

lallised grain sizes to each other. Whilst difTcrences whcn comparing the rccrys, 

these cliff'ercilces may appear trivial, and certainly the degree of' precision in the 

model WOUld suggest this, the reader should note the remark in the previous 
I-- 

paragraph aild also the c1cletel-IOLIS natUIT (-)f' the dillcring grain si/. c at opposing Z7 - 
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circumferential locations as reported abo,,,, c. 

In Figure 4.30, part of the cross-section of' a multihole extRidate is seen. The 

main structure is the fibrosity, which is radiating from the surface and 
dernonstrates one ofthe distinctive Features of multi-hole extrusion. For the rods 

oftwo-hole extrusion, and the outer rocs of the three-hole extl'LISIOII, Ollly OIIC Of' 

these regions of radiating lines was seen. Two were found In the centre rod oftlic 

three-hole extrusion. This non-unif'orm llow is a direct result of' the flow 

OCCUrring in mulli-hole extrusion. It is clear to see that the radial point coincides 

with the location at which the corresponding recrystallised grain size is at a 

minimum. 

Figui-e 4.30 Cross section of a multi-hole extrudate shows the fibrous nature of 

the radial grain distribution. (R=30: 1, three hole, 420 'C , 11.1 min / sec-' ) 

(Castle 1974, p. 233) 

Meam, N]-ille, it should be pointed OLIt that in some of the experiments, when 

recrystallisation had still OCCUITed no such radiating strUctures were seen and the 

i-ccrystalliscd grain sizes on the extai&-tc SUrface are not difTerent to each other. 

This IS CMIsed by thC CXtI'LISIOIl ratio being no greater than 60 In these 

cxpci-iniciits. As mciitioncd abovc in the two-holc and thrcc-hole cxtrLIS1011, thC 

size of' the i-ccrystalliscd grain v, -, II-ICS Oil the CXtl'Lidatc SLII"I'LICC CVC11 WIJCII tile 

extrusion ratio is low. It should also be noticed that there is a relative error (9(lo) 
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in the size measui-ements the experiments. When the size differences are II small. 

inaccuracies may clearly occur. 

Furthermore, means to minimise or eliminate the deformation and the following t7 
recrystallisation unbalanced behaviour are discussed in Chapter 6, in which 

pocket die extrusion or isotherinal extrusion are introduced in detail. 

4.4 Scaling effect on numerical simulation of aluminium extrusion process 

The finite element method is only approximate. The way in whicli the problem is 

modelled, for example the approximaticris in the geometry or rnaterial properties, 

and the method of description (i. e. the number and type of elements used), both 

affect the accuracy of the final answer. This section is concerned with modelling 

procedures and use of finite element software to obtain solutions. 

Taking a general view of the present state of the art in terms of numerical 

modelling, itt appears that the finite element method is n-iost suited to the 

three-dimensional analysis of material forming processes. In fact, the finite 

element method can take into account practical non-linearity in the geometry and 

material properties, besides producing accurate predictions of stress, strain, strain 

rate and temperature throughout the deforming billet. However, in some cases, 

this stage is extremely time consuming and there are limitations, which could 

cause fault in the design process. Physical simulation, in which a sealed down 

process is adopted, would result in the time spent in desigii to be signiticaritly 

reduced. It is therefore of great interest to investigate if a small-scale model call 

be adopted in numerical simulations. rhe relevant question that is fi-equently 

being asked coriccrns the difference ir accuracy between simplified modelling 

and simulation (Gouveia 2001). When some simplification (I'or example, a 

smaller-scalc but geometrically similar process) is adopted, will the simulation 

simulati still be of' sufficient accuracy? Can the si II ion i-eprodLICe MOSt Of 
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the important forming parameters of the real process? 

It should also be borne in mind that at the present tirne, the trend of numerical 

simulation is not only thermally and m. -chanically coupled, but also structurally 

or metallurgically combined. Excellent reviews of modelling of static 

recrystallisation (SRX) have been given by Gottsteiii et al. (2000) and b-"' 

Shercliff and Lovatt (1999). Recently, the inverse method combined with FEM 

has been adopted to integrate those values of parameters reported in the literature. 

The FEM is run iteratively until the appropriate value is found to match the 

experimental measurement. Duan and Sheppard (2002) have used the inverse 

method to give the parameters for alloy 2014. 

In the following studies, the possibility of the application of ýi small-scale model 

to numerical simulation of extrusion is discussed. It was found that although the 

small-scaled model is effective in saving computing time, there are some serious 

deviations in the simulation results. 

The alloy used in the present work is AA2014 and the main simulation tooling is 

shown in Table 4.12. Two simulations of rod extrusion were performed and the 

billet size in Run 2 was 2.5 times smaller than that in Run 1, in terms of diameter 

and length. In these two simulations, the extrusion ratio was 20, the ram speed 

was 12.4mi-rL/sec, the initial temperature of the billet was 350'C and the container 

temperature was 50 "C lower than the billet. 

Table 4.12 Tooling of FEM model (As shown in Fig 1) 
Run Billet length (mm) Billet diameter (mm) 

95 75 
38 30 

The hyperbolic sine function was in. cgrated into tile FEM to describe the 
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material beliaviour. For aluminium ýlloy AA2014, AH =1 44408KJ, 'iiiol. a- 

0.0 152 in 2/ MN ý ii = 5.27ý LnA = 24.41 (Sheppard and Jackson 1997). 

The Trcsca friction law is adopted in the numerical model in the present work 

and the friction coefficient 117 = 0.85 was adopted (Flitta 2003). 

In the following sections, the thernial-mcchanical and the Stl*UCtLli, al combined 

simulation results ofthe two runs are compared. The discussion concerning the 

COMPLItation time and material flow pattern is presented first. 

4.4.1 Thernial-ineclianical simulatien 

When modelling a complex problem, approximations might bc madc in onc or 

more ol'the following: 

Radius 

Length 

Figtire 4.31 Relerence grid pattern (undeformed) Z-- 
(a) geometry, 

Illatcrial proputies 

(c) loading conditions 
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constraint conditions 

The acceptability of those approximations depends on the purpose of the 

investigation, and indeed some comparative analyses do not require absolute 

accuracy. The final answer produced by the analysis depends on the validity and 

accuracy of the model, and the user should give some consideration to whether 

the model is valid and accurate enough. The degree of ,, 7alidation may well be 

checked by comparison with the previcus experiments or with answers obtained 

by approxin-iate hand calculations, such as the results frorn upper bound theory. 

4.4.1.1 Material flow pattern 

Previous studies have confirmed that FEM simulation is effective in predicting 

the material flow pattern. Arentoft et al. (2000) have studied the material flow iii 

axi-syn, imetric extrusion with physical and two dimensional FEM simulation. 

Some studies in multi-hole die extrusion by three dimensional, FEM sii-nulatioii 

have also been published by Peng (2004). In the following study, a reference grid 

pattern was adopted to study the mater.; al flow pattern, as shown in Figure 4.3 1. 

The simulatim results of Run I and Run '21 are shown in Figure 4.32 and 4.33 

respectively. 

As can be seen from Figure 4.32 and 4.33, although the billet sizes are different 

in these two runs, the simulation results of the material flow pattern are similar. 

The different deformatioil areas can be shown clearly M both of these t\\, o runs 

and the predictions correspond well with experimental results (Sheppard and 

Tutcher 1980), which are shown in Figure 4.34. The complete computation time 

of' the first run IS 2-5 hours whilst in Run 2. the total time is not more than 15 

hours. It is evident therefore that computation time can be significantly savcd 

\N,, Itli a small-scale simulation and the simulation result is still approximate 

compared with the material flow pattern of the original process. In fact. it is 
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worth noting that small-scale simulation has been used in the field of pliysical 

simulation, in which soft materials werc adopted in experiments and the cost of 

desigii was then significantly saved (Aretz 2000). However, the majority of the 

cases reported in the literature show that the use of physical modelling is limited 

to qualitative analyses of the material flow. 

It has been pointed out by Arentoft et all. (2000) that the basic problem lies in the 

transferral of the model- experiment results to reality. In the case of extrusion, iii 

which temperature rise is significant and strain rate is quite high, more important 

factors in addition to the material flow need to be considered, for example, the 

structure evolution. To ensure accurate results and interpretation, the model and 

the real process must be similar. For metalworking processes the following 

important similarity conditions must be created (Wanheim 1988, Fergusoi-i 1993): 

geometrical, plastic, -frictional, thermal, elastic and dynamic. The fulfilment of all 

of these conditions is practically impossible. In most cases. the first four 

conditions are the most important, although they are also perhaps the hardest to 

rulfil. Therefore , it 
is essential to determine and select which material properties 

and process parameters are the most relevant for the purpose of the experiment. 

During the process of extrusion, the press load, temperature rise, surface quality 

and extrudate mechanical properties are the most important factors to be 

considered. If any simulation is applied in extrusion, it has to be effective in 

predicting all of the above factors. In the following discussions, the analysis 

results of these forming parameters in the small-scaled simulation are set Out. 
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4.4.1.2 Equivalent strain rate 

The S11111-Ilated instantaneous strain rate distribLItIO11S ( L17(, &) ) III these two rLlIlS 

are compared as shown In Figure 4.35 and FIgUre 4.36. 

Tablc 4.13 shows the averagc strain rate ofthe whole del'ormation area CalCLIlated 

by the FEM program and given by the upper bound method (Sheppard 1999a) 

according to cquation (4-11): 

6VBDý3(0.171 + 1.86LnR)Tan(38.7 +6.9LnR) 
(4-11) 

D3D3 BF 

W110"O VB is the ram spood, DB is the billet dianicter. DI-, IS the CXtI'LIdatc 

diametcr and R is the extrusion ratio. 
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Table 4.13 Average strain rate of extrusion 

Average strain rate in Run e ofthe whole deformation c given by 
the area with 

area calculated by FEM ion (4-16) equat -' Lii(t) >1. s 
(S-1 

1 6.57 5.6 20.3 
2 15.1 14.4 23.7 

However, in the process of extrusion, the main deformation occurred at the area 

near the die orifice as shown in Figure 4.35 and 4.36. The average strain rate ot 

the whole dcformation area could not reflect the true condition of the process, so 

the average strain rate of' the area with Ln(ý)>l was calculated and the results 

are also shown in Table 4.13. 

Figure 4.33 SIIIII. Ilation result u, -, ing the small-scale billet (Run 2) 
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i "_ 

Stage 2 

Stage I 

Stage 3 
Figure 4.34 Experimental result of' the material flow pattern after TLItCher and 
Sheppard ( 1979), comparing with Figur,, ý 4.32 

It can be sccn from Figure 4.35,4.36 and Table 4.13 that the strain rate, cithcr in 

terms of' 'average' or 'Instant', is ilILICII higher in the small-scale simulation than 

that predicted iii Run 1. So, it could be said that the small-scale simulation could 

not rctlect the original dcl'ormation Correctly In terills ol'straill ratc. 
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Figure 4.35 The distribution ofthc c in the billet with I'LIJI SIZC (RLIII I 
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Figure 4.36 The disti-ibUtIO11 ofthet in the small-scale billet (Run 2) 

4.4.1.3 Temperature rise during extrusion 

The temperature risc during cxti'Lisic-ii was also studiccl. In extrusion, the 

temperature distribution in the billet is a critical process variable, aftecting 

CXtl'LISIOII I)]-CSSUI-C, speed, surflace finish and mechanical properties. Extl*LISIOII 

exit tempcratUl'C also determines the surface finish and shape dimensions. The 

tcniperaturc rise is actually more significant than most ofthe other metal forming 

variables. The side tempci-atUre Lind the centre tenipci-ature are extracted from the 

side point and the centi-c point, which are shown in FIgUre 4.37. The SIMUlation 

I-CSUltS Ol'tllC CXlt tClIljICI'atLIl'CS Of Run I and Run 2 arc shown in FIFUrc 4.38 and 

4.39 respectivcly. 
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Coritro point 
Reentt-)n: die 

Figure 4.37 The def'ormation area 

The main difference concerning the te. -riperature rise .n these tWO I'LIFIS can be 

summarised in two points: 

(I ) The maximum temperature 

In the present study, the extrusions wer-ý carried to the end of' the billct length. It 

should be borne in mind that in real situations, CXti-LISIOII is normally stopped 

whcn the billet has extruded to about 9W/0 of its length, which is marked in Figure 

4.38 and 4.39 with a vertical line. It can be seen from Figure 4.38 and Figure 4.39 

that the maximum temperature on the surface of the extrudate In Run I is 475 'C' 

while it is 466'C in Run 2. The ina. unium temperatUIT in the centre of the 

extrudate in Run I is 432'C whilst it is 447'C in RLIn 2. 

(2) The temperature gradicnt along the transverse direction (between the surface t) 

and tile CClltl*C ol'tilC CXtl'Lidatc) 

RLIII 1, thC tClIlj)CI-ýItLli-c difTerence bctwecii the surfacc and the centre is 

maintamcd at 43 'C Nvliilc it is only I 9'C in Run 21. 
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Figure 4.38 Temperature rise in the full size billet (Run 1, Temperature in 
Celsius) 
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Figure 4.39 Temperature rise in the small-scale billet (RLin 2, Temperature ill 
CCISILIS) 

As can be sccii fi-om the discussion above, although the geometrical conditions 

are S111111"Ir In these two rulls, there is nc, similar or proportional result concci-ning 

the CXlt tClIl PCI*, 'Llt Lire. The small-scale SIFIlUlation failed to predict the correct 

tC111pC1-atL11-C distribUtIO11, especially in 1he dic orifice area. It is well known that 

the exit temperature depends on the initial billet temperature, the magnitude of 

the work carried out (11.11-11hy CXtrusion, Pnd how this is divided between tile work Cý 

nccded to overconic friction on one hand, and the heat losscs to the tooling 

(Sliclipard 1999a) on the othcr. The geometrically similar conditions cannot 
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guarantee that the simulation result is ccrrect. 

4.4.2 Scaling effect on structural simulation 

The models for structural simulation are introduced below. The subgrain size is 

the most commonly used parameter in the study of aluminium extrudate 

structures. The subgrain size can be related to the temperature compensated 

strain rate Z and hence the process condition for alloy AA2014 by (Sheppard 

1999): 

d-1 -0.096LnZ-1.747 (4-12) 

The physically based model is given in Appendix A in detail, and it is not 

repeated here. 

The calculation results are shown in Table 4.14. As can be seen from Table 4.14, 

the simulation with the original billet size gave reasonable results while the 

small-scale simulation gave rather deviant results compared with the 

experimental results. The sn-iall-scale simulation proved to give incorrect results 

in material structural simulation. 

Table 4.14 The predicted material structures (experiments from Castle 1974) 

Run Predicted Predicted grain Experimental Experimental grain size 
subgrain size (mm) subgrain size (nim) 

size (, uin) Centre Edge 
(, Ul)l Centre Edge 

1 1.75 0.294 0.273 
1 43'0 25 32 l'O 04 0 266'0 04 0 

2.26 0.250 0.232 . . . . . . 
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4.4.3 Further discussion on scaling effect 

A finite elernent analysis will only produce the correct answer if the model is 

both valid and accurate. Validity depends on how faithfully the physical problern 

is represented in the computer, while accuracy depends on how close the model 

is to convergence. To investigate whether the scaling effect could be modified by 

a sample scalMg factor we now attempt to obtain similar straiii rates by such 

method. 

4.4.3.1 Similar strain rate obtained by changing rain speed 

As has been shown in the previous two sections, the scaled down sh-nulatioii can 

not reproduce the deformation histories and material properties concerned with 

the original models with manufacturing scale sizes. However, suggestions 

following that study indicate that a sinailar strain rate could be expected if the 

rarn speed is also scaled down according to equation 4-11. Run no. 3 as shown in 

Table 4.15 is the run which is designed to investigate whether this is feasible. 

Run I and 2 in Table are identical to the corresponding runs of Table 4.13 but 

have been rerun and modifications are made in the way of interpolating the 

simulation results. 

The billet sizes in Run 2,3 and 4 are scaled down to 2.5 times smaller than those 

ofRun I in terms of diameter and length. In these simulations, the extrusion ratio 

is 20, the initial temperature of the billet is 350 ̀ C and the container temperature 

is 50'C lower than the billet. All other FEM data are the same as in the paper 

previously published (Peng 2004d). 
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Table 4.15 Toolinv- of FEM model 
Run Billet leng 

(mm) 
i 

Billet 
diameter 
(mm) 

Ram speed 
(Mm/s) 

Calculation time 
(hours) 

1 

95 75 12.4 1 23 
2 38 30 12.4 15 
3 38 30 4.93 17 
4 38 30 8.0 1 16 

The simulation results concerning the equivalent strain rate distribution of each 

run detailed in Table 4.15 are shown in Figure 4.40. As can be seen in Figure 

4.40, the deformation area with the equivalent strain rate greater than I in run 2 

is obviously larger than the field found in the other simulations. At the die 

entrance area,, a much larger area with the strain rate greater than 30 was also 

observed. One problem which must be addressed is that at the location very close 

to the die entrance radius, the predict--d strain rate rises sharply as shown in 

Figure 4.41 which is an enlarged pictu-e of Figure 4.40a. Inside the location of 

the triangle, the strain rate is shown to be greater than 50 (at one or two specific 

nodes even greater than 100). Until the present time, no experimental 

measurements have been found to justify this simulation result. It would seen-i 

that the value at this point is greatly influenced by the small penetration of nodes 

into the die. Since the number of the nodes witli a strain rate greater than 100 is 

limited, it is justifiable when calculat-ng the mean equivalent strain rate that 

these nodes may be ignored. This criter. ion was followed for all of the simulation 

runs. This may cause some discrepancy when comparing the calculation results 

with the previous study, however, this should not influence the conclusion of the 

present study since at every run in Table 4.15, the rogue nodes (with equivalent 

strain rate greater than 100) are not included in the overall average strain rate. 

As caii be seen in Table 4.16, the cý. Iculated equivalent strain rate of run I 

according to equation I is 5.6, which is larger than the calculated average e- of the 

whole deforiliation area. Shice the equation 4.16 is the approximate result of E- of 
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the deformation area but not the wholl, -- area, the disc i-cpancy between tile two 

numbers is acceptable. The calculated average strain rate of the area with 

-r greater than 0.1 A is much closer to th-- prediction results of equation 4.16 than 

the results from other areas used in Table 3, which indicates the deformation area 

assume in equation 4.16 is closer to this specific area. 

Table 4.16 Average : -Arain rate of extrusion 
Run Area with Area with 

e given by e ofthe 
F >0. I (S-1 c >5(s-l 

whole area 
equation 4-16 (s-') 

(S-1) 

1 5.6 3.75 8.4 25.9 
2 14.4 4.79 12.5 28.2 
3 5.6 2.77 7.5 
4 9.1 3.79 10.4 [26.4 

As caii also be seen in Table 4.16, the average strain rates calculated from all the 

specific areas of I run 3 are smaller than that of run 1. Therefore, it can be 

concluded that the scaled down ram speed according to equation 4.16 can give 

approximately the same average strain rate when the area with F>o. 1 is chosen. 

However, it will not be unusual for some differences to emerge wheri the 

equation is compared directly to FETA simulation, which should give more 

precise predictions. 

Furthermore, the first three running results gave a promising probability to obtain 

a similar strain rate to rLin I if a sultable ram speed can be chosen between that of 

run 2 and 3. There is no strict scientific method to infer the selected ram speed, 

except tor an observatlon that the average straln rate of run Is approximately at 

the middle of nin 2 and run 3. Therefore, run 4 with a ram speed of 8mm/s is 
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established and the average strain rates of the specific areas are calculated by 

FEM subroutines. It can be seen that in the areas within a certain range of 

equivalent strain rates the result of run 4 is very close to run 1. 

15 

1.0 

3 
4 

15 
15 

c) Run 2 d) Run 4 

Figure 4.40 Equivalent strain rate distribution in billet 

It can also be seen from Table 4.15 that although run 3 is expected to give the 

closest simulation results compared to run 1, the run 4 is in fact most similar to 

run I in the sense of equivalent strain rate. 
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4.4.3.2 Effect of scaling on Zener-Hollomon Parameter 

The predicted temperature fields of the fOUr SIMUlations in Table 4.15 are showii 

in Figure 4.42. The billet is extruded down to half length in all of the figures in 

Figure 4.42. It has been shown in Me previous section that the maxill11.1111 

temperatUre during extrusion in run I is sin-iflar to run 2, althOL12"ll thC 

temperature difference between the cemil. -c and surface of the extrudate is larger in 

run I, which is due to the larger extrudate size. The maximum temperatures in 

run 3 and 4 are lower than 11111 1, as can be seen in FIgUre 4.42c and 4.42d. 

1.01 

CIosct. o t-1-1 e 
trý gi e ar ca, 
t-he -st. naln rat. e 
iv ery I-ar gc 

Figure 4.41 Enlarged picture of Figure 4.40a. 

As discussed before, the scaled down simulations can give either a similar 

average strain rate or a similar temperature in separate runs. Ill other words, 

when the temperature is similar, the strain rate is higher (as ill I'Lin 2), while when 

the strain rate is similar, the temperatu: e is lower (as in run 4). It has not been 

1`61.1nd that the average strain rate and the temperature can both be reproduced in 

011C 11111. Since the Zener-Hollon-ion p; iramcter is in direct proportional to the 

equivalciA strain ratc and in iilvcl-sc i-C ationship to the temperatUrc. differences 

are also expcctcd For the calculated Z valLic betwcen run I and the other runs. 
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The predicted value given by FEM subroutines are shown in Table 4.17. The 

values are extracted from the same stage of extrusion for run I and 3. The 

predicted values in run 3 are higher than in run 1. 

Table 4.17 Predicted value of Zener-Hollomon parameter 
Run The whole Area with Area with Area with c>1 (according to deformation 1 1 - C >0.1 9 >0.05 Table 2) field 
1 1.87e8 6.54e8 5.22e8 3.15e8 
3 2.18e8 1.1 8e9 8.25e8 4.29e8 

r 

4,5961e+02 
4 4589e+02 
4 3"lse+02 
4.1846e+02 
4.0474e+02 
3.9102e+0-2 
3. -,,,, 30e+O-" 
3,6359e+02 

Figure 4.42(a) Temperature distribution in Run I 
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t4lke+02 
W117e+02 
MEMO 
t0988e+02 
19924e+02 
jSS59e+02 
3.7795e+02 

Figure 4.42(b) Temperature distribution in Run 2 

Figure 4.42(c) Temperature distribution in Run 3 
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Figure 4.42 Temperature distribution 

As has been discussed previously, the difference of Z parameter indicates a 

difference of material response to the deformation process (Nes 2002), which 

will lead to a different restored (recovery or recrystallisation) structure and 

therefore, the final properties of the extrudates. 

Although it is possible to give an identical Z value by choosing another ram 

speed, which will be different to all of the runs in Table 4.15, the influence on the 

material property is not clear as regards the material properties when the 

deformation temperature, the deformation strain and strain rate are different 

(Sheppard 1993, Peng 2004a). Another problem will also emerge concerned with 

how to evaluate the imposed ram speed in a scaled down model to give a similar 

Z to the original run. The method of trial and error will not be admissible since 

the time and economic cost will be too high and the advantages of the scaled 

modelling will be diluted. Detailed discussion will not be addressed here but the 

main point is that caution must be taken because of uncertainty when employing 

the scaled down model to study the manufacture process. 
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Moreover, in numerical simulations concerned with finite element method. a 

larger mesh could be applied to moCelling the manufacturing process Nvhen 

establishing the models. The detail of this discussion can be found below. 

4.4.3.3 Effect of mesh in manufacturing scale FEM simulatimi 

The Finite Element Method, after three decades of development, has reached that 

point of maturity at which nobody doubts its effectiveness and power to solve 

various kinds of engineering problerns. However, its results, as those of any other 

numerical method, can not be relied upcn without an assessment of their accuracy. 

The accuracy of the finite element SOILItion depends on the discretisation which is 

characterised by the finite elemenL mesh and the choice of element 

(Kris hnamorth y 1997). 

After the importance of developing bot! -. I a valid and an accurate representation of 

the problem is examined, element mesh refinement is discussed in detail iii this 

section, and comparisons of the pert'k, rmance of different mesh densities are 

reported. 

The accuracy of a model can be improved in two ways. Either the geornetry can 

be divided into smaller elements, so that the mesh density is increased, or the 

accuracy of the elements themselves ýan be improved by using higher-order 

interpolation functions. These two techniques to improve a model's accuracy are 

known as li-refinernent and p-refineme-it, respectively (Fagan. 1992). The latter 

appears the simpler of the two methods for the user of a finite element package, 

but in practice corni-ilercial programs only offer linear and quadratic elements, so 

that the opportunity for p-ret-inement is Iii-nited. Also, increasing the element 

order from linear to quadratic, for cxample, leads to a significant increase in the 

COMPLIter time ilecdcd to analyse the structure. To confirm the convergence of a 

model by prourcssivc h-ref-hicnient of *he rnesh. all pre%-IOLIS meshes should be 
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contained in the finer meshes. This is generally referred to as a reducible net 

(Fagan, 1992). 

Considerable work has been done to investigate the various criteria involvcd in 

designing the 'best' mesh. Notable ai-nong this are the studies of Melosh and 

Ebner etc. (Melosh and Utku, 1987). These studies expose the complexit1v 

involved in designing the mesh and provide some guidelines covering problems 

of idealisation and discretisation. It is only recently that researchers have focused 

their attention on the main problems ofthe 'reliability' of solutions of the finite 

element method. 

Normally a finite element analyst designs a i-nesh based oi-i his previous 

experience, intuition and guesswork. The results are accepted if they reasonably 

match with what he has guessed. If tie initial solution is not acceptable, the 

analyst has to prepare an entirely new sý-, t of input data for a finer mesh. This is a 

very costly and time consuming procedure, and does not guarantee that the new 

mesh will sufficiently accurate results. However, in the software of Forge2 and 

Forge3, automatic mesh generation has been developed and it is a technique that 

caii generate subregions of node poijitQ and element connectivity for ari object 

given its overall geometry and limited meshing information. 

The refinement strategy depends on the criteria to be adopted to attain the level 

of accuracy required. The refinement scheme and data structure that supports it 

arc crucial since they strongly influence the practical feasibility, storage 

overheads and related considerations. 

To discuss the effect of inesh size on FEM simulation, two extra simulations, 

which utillse a model of true inanufac, Li ring scale, are established as shown in 

Table 4.18. The billet length is 400m. m, the diameter is 300mm and the ram 

spced is 12.4 inn/s. The radius of the Cie entrance is 2.5mm, the die land length 
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is 25mm. The model has been built up in a more complex mesh, which is detailed 

in Table 4.18. The positions of the mcsh boxes are shown in HgUre 4.43. To 

avoid errors caused by element distortion, the mesh size difference between n-iesh 

boxes III C011taCt Should be controlled at a limited range, usually smaller than 3, 

which can be checked in Table 4.18. 

Table 4.18 Mesh sizes (unit mm) 
Run ý Delault Box I Box 2 Box 3 Box 4 

mesh size 
5 11.82 8.1 3.0 
6 8.1 4.0 2.0 1.0 0.4 

Calculation 

time (hours) 
12 
39 

Figure 4.43 Mesh boxes used in FEM simulation 

As can be seen in Tablc 4.18, by tising lic coarsc mesh size, the calculation time 

is c,,,, ell less than that needed In the pr-, vious simulations shown in Table 4.15. 

When I-incr meshes are C-111ploycd, Lis 11 11111 2 of Table 4.15, the amount oftinic 
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increased significantly. However, the time implication is still acceptable and the 

simulation results compared with run 1 are similar. This can be seen in Figure 

4.44 as an example of the predicted results of strain rate. 

1.0000e+Ol 
8.5-, 14e+00 

1.1429e+00 
5. -, 143e+00 
4.2857-e+00 
2.85'ýIe+oo 
1.4286e+00 
0.0000e+ 

(a) Predicted results with fine mesh 

1.0000e+Ol 
8.5-1.14e+00 
7 o. 1429e+00 
5.7143e+00 
4. "185-e+00 
2.85 7-le+00 
1.4286e+00 
0.0000e+00 

(b) Predicted results with coarse mesh 

Figure 4.44 Predicted strain rate with different mesh sizes 

The calculated strains in the two runs at the deformation area are almost identical, 

except at the die entrance comer as marked as area A in Figure 4.44. It is found 

that the maximum strain rate in run 5 is 70 but the maximum strain rate in run 6 

is nearly 100. The discrepancy of the prediction at the die entrance corner is 

caused by the mesh penetration, which is influenced by the mesh size. As 

reported it is prudent to ignore the abnormal and probably erroneous Figure. 

There is no experiment or theoretical analysis which would rectify the predicted 

results. However, it is generally agreed that the finer the mesh, the more precise 
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the simulation. Whilst the prediction of the simulation v., Ith coarse mesh call still 

be regarded as acceptable, a balance k-. ould be achieved between the time and 

precision when a suitable mesh size is chosen. Therefore, full modelling of tile 

process without scaling is strongly recommended and the use of a suitable design 

of optimum mesh should be the simulatjon route. 

4.5 Simulation of recrystallisation by cellular automata 

It has been shown in the discussion above that the as-extruded structures are 

spatially nonhomogeneous, however, at the present time the continLIUM theory 

has some difficulty in precisely simula'Aiig the heterogeneity at the process size 

(macro-) scale, although great improvement has been achleýýed in crystal 

modelling at micro- or meso-scale (between macro- and micro- scale) in the last 

decade. The crystal plasticity finite element model, which accounts for plastic 

deformatiori by crystallographic slip and for the rotation of the crystal lattice 

during deformation, could predict the deformation behaviour of one or several 

coalescing grains, but is not mature for simulation of the deformation process on 

the macro-scale. FEM simulation at tl-, e macro-scale does not include material 

heterogeneity. However, it is still a powerful tool in predicting the necessary 

variables, such as strain, strain rate and stress, which are necessary for 

rnicrostruCtUre simulation. The recently developed PB models can relate the final 

recrystallised structure directly to the as deformed state, but ignore the evolution 

process of the recrystallisation. Every method has its own merit and shortcomings. 

However, if the macro-scale FEM can be integrated with the physically based 

metallurgical model and CA, it could have a promising future in the simulation of 

structural evolution at the macro-, micro or meso-scale. 

The transition rulc at the beginning state of CA depends in an arbitrary way (Liu 

et al. 1996). purely on the geometry ofthe matrix. Howcver, it has now reached a 

I-atilcr coniplcx and probabilistic state (Raabe and Beckcr 2000), which depends 
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on the mobility ofthe grain boundary and the stored energy of the Structure. It has 

been pointed out previously (Raabe and Becker '1000) that although spatially 

discrete microstructure simulations have already PI'OfOLIndly enhanced our 

understanding of' microstructure and te, -,,, tui-e evolution over the last decade, their 

potential is sometimes simply limited by an insufficlent knowledge abOLIt the 

external boundary conditions that characterise the process aild aII HISLIffiClent 

knowledge ofthe internal starting conditions that are, to a larggc extent, inhented 

from the preceding process step. 

DitTerent definitions ofneighbourhood have been used in the pl'CVIOUS studies as 

shown in Chapter 2, Figure 2.7 and they are not repeated licre (I'or the 

convenience of the reader, the novel Figure 2.7e is shown again below). The 

pret'erred ratio is defined as the 11LI111her of' cells at the pref'ci-red side to the 

number of' the cells at the other side (the preferred ratio is 2 as shown In FIgLll'C 

2.7e). It should be pointed OLIt that a prel'erred ratio of' 15 is adopted in 

construction oftlic initial Stl'LICtUl, es and a ratio of 2 is employed at the 11LICleation 

and growing state Ol'SIMUlation. The exact value oftlic preferred ratio IS CIIII-ICUlt 

tO jUdge from the experiments becaLISC OftlIC LlIlCel'tL! Illty in original grain shape. 

CoiiscqLlClltly a process of iteration liý. s been carricd out by the prescnt author 

and only the ratios giving the most appropriate I'CSLIltS have been presented in this 

study. 

Repeated figure 2.7c Sldc-prcl'cr-ncighbOL11' (prel'ared ratio 2) (relicat ot'FIgLll'C 
2.7 lor the convenience of the readcr) 
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Before grams begin to touch each other, the shape of the grain and its growd-i rate 

depend on the definition of the neighbourhood. The recrystallised structure is 

more or less independent of the neighbourhood that was chosen. After the grains 

have grown together, and the process is ten-ninated. the grain pattern is virtually 

independent of the neighbourhood chosen. It was also reported by Davies ( 1995) 

that on average, to within 95% certainty the neighbourhood used in a cellular 

automaton does not affect the JMAK (. Pohnson-Mehl-Avrami-Kolmogoro\,, ) time 

exponent. However, in discrete cases the model may yield time exponents which 

differ significantly from the theoretical values and this must be accounted for in 

any simulation attempts. In the present study, research in predicting the 

recrystallisation time has not been : ompleted, so the impact of different 

neighbourhoods is mainly on the shape of the recrystallised grain before the grain 

impact on each other. The side preferred neighbourhood Nvas found n-iost suitable 

fI or the present case, which is determined by the nature of the recrystallised grain 

size found in experiments. 

As fo r the transition rules, the recrystallisation designed with a 

probabilistic-switching rule was adopted in this study. The local switching 

probability can be quantified by the ratio of the local and the maximum mobility 

n, local /m max 
, which is a function of the grain boundary character and by the 

local max 
ratio of the local and the maximum driving pressure p/p 

local ni 
local 

p 
local local t max 

max inax- max local 
pt 

(4-13) 

t is the local tinic required by a grain boundary with vclocity x to cross the 

automaton cell. 

In Raabe's study (2000), nucleation in Vie simulation is performed in accord with 
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two aspects, i. e. potential nucleation sites must fulfil both the kinetic and the 

thermodynamic instability criterion. At the beginning of the simulation, the 

thermodynamic criterion, i. e. the local value of the dislocatioi-i density, was first 

checked for all grid points. If the dislocation density was larger than some critical 

value of its maximum value in the ch. --cking area (for examPle. 30"'0,00"lo or 

90%), the cell recrystallised without any orientation change (dislocation density 

assigned as zero and original crystal orientation reserved). The ordinary growth 

algorithm was started and the kinetics f*or conditions -for nucleation was checked 

by calculating the misorientations among all recrystallised cells and tlieir 

neighbourhood. If any pair of cells found a misorientation above 15', the cell flip 

of the unrecrystallised cell was calculated according to equation 4-13. The detail 

of the transition rule can be found in Raa-be's work. 

As a result of the lack of means for predicting the crystal orientation at the 

inacro-scale simulation and the shorýAge of experiment results, a statistical 

i-nethod was adopted in the present study to give the misorientation between the 

grains. For each cell, a randomly allocated orientation number, (1, was assigned 

to each grain. The orientation number indicates primarily the orientatioii of a cell 

and maximum number of q was 936, which represents 936 texture components, 

these were equally distributed in orientation space. Geiger et al. (2001) has 

discovered that q ý! 64 crystal orientations were necessary to simulate the 

recrystallisation process, and the nuniber of 936 was taken From Raabe's study 

(2003). 

The inisorientation is obtained fron-i the q numbers of the neighbouring grains: 

ir/2 *lAql/qtiiax (4-14) 
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where Aq is the difference between or, *entation numbers of two adjacent grains 

(Doherty et al. 1995) and 0:! ý jAqj /q max 'ýý I- 

In the present study, an adjustment of the nucleation criterion used in Raabe's 

study (I 998b) was adopted. At the beginning of simulation, the dislocation 

density was also checked, in the same way as Raabe's study, but the total number 

of the nucleation site was controlled to no more thaii a certain iiui-yiber (30, in 

macro-scale simulation) at the first step decreasing gradually at the following 

time steps. In other words, only the cells having the 30 highest dislocation 

densities could be the nucleation sites and in the following steps this i-iumber 

decreased slightly and gradually. The recrystallised grain grows continually until 

it impacts on the other growing grains. 

The second phase particles (mainly 0 phase and S phase) were considered in 

the simulation. A certain number of pixels, which were set as the particles, were 

distributed into the automata matrix. Their states were unchangeable during 

simulation and when the grain boundary impacts on these cells, the boundary 

will stop moving forward until the particle is surrounded and bypassed by the 

boundary. This corresponds to the expc, riments in which these small or n-lediLlm 

sized particles are interfering with the dislocations during the solution soaking 

treatment and retard the recrystallisation process (Doherty et al. 1997). 

Iii this chapter, finite element simulation combined with the physically based 

model is adopted to give the initial parameters for the calculation of the as 

deformed structures, as introduced below. 
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4.5.1 Simulation setting and initial state of simulation 

The Finite element method (FEM) is adopted to give the initial state variables f61, 

the structure models,, such as the equivalent strain, the ternperatui-e and the 

equivalent strain rate. The subgrain siz(.,, and dislocat, 011 densities are calculated 

fron-i physically based models and are i--ansferred to CA i-riodels to COIIStrLICt the 

data reqUired to del-ine initial state of recrystallisation. Simulation results are 

compared with experimental measureink. nts. It is demonstrated that CA integratcd 

with the physically based models is effective lil predicting the StRICtUl-al ChallgCS 

by selecting a suitable ncighbout-hood and reasonable transition rules. 
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For the solution soaked aluminium alloy used in this study, AH=l76867KT, 'moI. 

=0.0 118 rn 2/ MN 
, n= 5.86, In A =31.43 (Sheppard 1999a). Experiments have 

been performed by Vierod (1983) and Paterson (19811). The extrusion ratio \vas 

20. Initial billet temperature was between 350'C. The lengtli of the billet \vas 

95mm. The container temperature was 50'C lower than the billet temperature. 

and the ram speed is 12.8 mm/s. The billet is homogenised at 500'C for 30 

minutes. The billet is then heated to the extrusion temperature. After extrusion, 

the extrudate is subjected to a solutior,,, treatment at 500'C for 30 minutes and 

water quenched, followed by ageing at " 60'C for 18 hours. 

The equivalent strain and the temperature, which are predicted by the FEM 

simulatiori (as shown in Figure 4.45), are used in calCUlating the subgrain size 

with the equation 2-2 1. As shown in Figure 4-12, the predicted subgrain sizes are 

in reasonable correspondence with the experimental measurement. The 

difference is no more than 1% at either centre or edge of the extrudate. 

The values of grain boundary area per unit area SN' and the nucleation site 

density Nv (calculated from equations A-3 and A-4 in Appendix A) across the 

extruclate are shown individually m Figures 4.47 and 4.48 (this has beeii shown 

in Chapter 4, but is repeated for the convenience of the reader). As can be seen in 

these two graphs, the value of Sv and Nv increases sharply on the sub-surface 

area of the extrudate. This is due to the shear deformation suffered at the surface 

area of the extrudate, which has beer,, reported by many studies (Castle and 

Sheppard 1976). Aukrust etc. (1997) also give a quantitativc study on the sheared 

SUrface ot'aluminium extrudates. 

In the analyses performed by Auluust, a transition from grains which are laiTiella 

to the point at which the lamella structure is broken up was found. It NN'Lis reported 

to take place around 2100pin below the surface. Results in another experiment 
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carried out by the same author reported where the transition from a bulk region 

with a rolling type of texture to a surface boundary layer with shear type of 

texture takes place between 400 pin and 165 pin . The main component of the 

texture in the surlace in both experiments mentioned above is close to ( 113)[332], 

which corresponds to the idealised shear texture, the skew cube (00 1)[ 1101, 

rotated about 25' about the transversal axis. In the present study, the transition 

location was regarded as 500 pin below the surface area, where the sharp rise 

of Sv or Nv occurs. The transition point is shown in Figures 4.47 and 4.48, as tile 

cross point between the dashed point line and the predicted CUrve. 
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According to the physically based mod, -ýI. the density of nucleation sites is much 

hig, lier and the i-ccrystallised gralil size is expected to be substantially smaller at 
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the subsurlace area under shear deformation than the areas below. However. in 

experiments, this phenomenon has not been observed, only a relatively small 

decrease of' the grain size was found in this area. Two causes may lead to this 

phenomenon: one is that the PB model needs to be improved to predict tile 

recrystallisaton in extremely sheared structUres, and the second is that secondary 

recrystallisation is likely to occur in this special area. However, Nvith the lack of' 

experimental evidence, it is difficult to make any conclusion. Accordiiig to the 

experimental observation, the nuclei number at this area was approximately 

regarded as 1.4 times more than the area 500 pm below the SUrface. 

The dislocation density and the stored energy can be CýIICLllated by the physically 

based models, which are given in Appendix A. The stored energy is showil in 

Figure 4.49. The calculation results are transf'erred to the initial state for CA 

calculation by Fortran progranis in ordcr to match the Fortran Iormat ofthe base 

program. 
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4.5.2 Meso-scale simulation 

At the meso-scale simulation, 1000x500square cells were used as shown iii 

Figure 4.50. Eacli pixel corresponds to Li cell: thus the terms pixel and cell may be 

used interchangeably. Each pixel represents the size of Iýtm , and thus the grapli 

represents IxO. 5mni'of the material at the surface area. The initial fibrous 

structure was constructed and each 5bre of the as extruded structure was 

appointed with aq number, which represents the crystal orientation. To help 

display on a screen, each q number has a different colour, which is allocated by 

the program automatically. The finite element and PB simulation results (for 

example, the stored energy and the subgrain size across the transverse direction of 

the extrudate) are transferred to the initial state of the CA model by the FEM 

program subroutines and a further computer program, compiled in Visual Fortran 

6.1. 

The empirical equation has been employed to give the width of the as extruded 

elongated grain, which is written as: 

D, =Do IVR (4-15) 

where D, is the width of the fibrous grain and Do is the initial grain width 

(approximately 90 ýLm), R is the extrusion ratio (20). The width of the fibrous 

structure using this calculation is 20pm . However, due to the heavily sheared 

deformation suffered during extrusion. the width of the elongated grain at the 

Subsurface area is much less than the c-ilculated result. There is no experimental 
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measurements in the literature and the value of 8 pm has been adopted from 

experimental observations and consideration of' the variation of equivalent strai 

across the extrudate sectim (the equival. -nt strain has beeri shown m FIgUre 4.45). 

. -vei se It ei 11 1 if e T -an at i -i - -: -.: ti . 111 -e 

Figure 4.50 The initial state ot'CA( I OOOx500cel Is) 

The SIMUlation results are compared with the experimental meaSUrCrIlent as 

shown in Figure 4.5 1. 

The program measured the size of different recrystallised grains in both the 

transverse section and the extrusion direction automatically. The calculated 

average grain size is I 88ýtm in the extrusion direction and 92V/71 ill tile 

transverse direction. The average value is 140pm , which is 7.9"//o lower than the 

CXI)Cl-llllellt, -Il 111castircillent 152 ± 6.013ýtm However, the grain size 

distribution is 1111,01,10,1"ClICOLIS and the shape of'cNej-y grain is quitc dill'crent, it is 

difficult to achieve a very prectse meaSUITI'llellt eItlICI' III SIIIIlIkItIOIl 01- 111 

experilliclits. 
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The reason for the formation of the clongation nature of the recrystalliscd grain 

has been discussed previously by many studies in metal forming processes and I 
was regarded as caused by orientation pinning (Dolierty etc. 1995, Subramaniyan 

1989). 

(a) left: simulation, right: experiment 

Extrude edge 

(b) Ictt: simulation, right: cxperimcnt 
Figure 4.51 Meso-scale simulation: recrystallisation at the sLirf', -, -Icc area 

(a) at the bcainningy, (b) i-ccrystallisation occurred to the centre. Experiments aller 
Paterson ( 198 1 

Based oil experimental studies of Nvarm plane strain extruded aluilliniuIll, tile 

dcl'ormcd hands of' nearly constant orientation are stretched out In the extrusion, 
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similar but more pronounced than in the hot rolling process. Very strong 

inhibition of growth in the transverse (normal) direction will occur. A similar 

analysis proposed by Subrarnaniyan (1989) but involving precipitates Is shown 

schematically in Figure 4.52. The elonclated nature in the extrusion direction is 

due to pinning of the boundaries by second phrase particles (no larger than 

I ýt rn ). 

Recrysta II isation 

->fi-oiit 

Extrusion direction 

(a) IOW tClIll)el-atLll"e 

EXtYLISion direction 

P r'jct c1 11 cpd 1 lIS 

(b) high tc-niperature tý 

Figure 4.52 Mccliantsm ot'grain growth in high and IONV M11PUýItUre extrudates: 
ýIIICI* SLibran-anlyan ( 1989) 
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As shown in Figure 4.52a at low terrij.,., rature extrudates, the deiisitv of' second 

phase particles is high and coalescence is difficult, whereas for high temperature 

extrudates, the propensity for subgrain coalescence to be predominant is high. as 

shown in Figure 4.52(b). The grain is not impeded in either the transverse or 
longitudinal direction due to the reduced density of particles, resulting in the 

equiaxed nature of the grains. The black points in the new-f"ormed grains as 

shown in Figure 4.51 are the particles and as previously explained, wheii the 

grain boundary moves up to these cells, growth will stop until the particle is 

surrounded and bypassed by the boundary. 

4.5.3 Macro-scale simulation 

Simulation at the i-nacro-scale was also performed. The 100OX500 pixel iiiatrix 

I 
is used, but represents 8.3 8x4.19mm of the extrudate. The SIMUlatiori and the 

experimental results are shown in Figure 4.53. The micrographs of the 

experimental results are obtained from extrusion under slightly different 

conclitions, however, the results are quite similar to the measurements under the 

present experiment conditions. 

The predicted recrystallised grain sizes'Oy CA, physically based model across the 

transverse direction are compared witii the experimental results, as shown in 

Figure 4.54. The results at the surface and centre by every method are also shown 

ii-i Table 4.19. It can be seen from Table 4.19, either by physically based model or 

by CA, the simulation results correspond reasonably well with the experimental 

meaSUrement. 
Table 4.19 Results of recrystallised grain size 

Method Edge (mm) Centre (mm) 

Experiments 0.152 ± 0.013 0.297 ± 0.110 
PB 0.149 0.312 

CA 0.16 0.30 
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However, because the lack of full exper-mental records in the transverse direction 

of the extrudate, further comparlsons within various metliods must be completed 

with a matrix of'different extrusions. 
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Figure 4.54 Experiment and simulaion results of recrystallised grain size 

4.6 Conclusion 

As can be seen from the discussion , -Oove, the empirical models, the internal 

state variables models (physically bascd models) are effiective in simulation of' 

the recrystallisation process OCCUrring In the extrusion and heat treatment of' 

LlltllllllllLllll extRidates. With the combination of FEM and integrated 

metallurgical model, the substructure evolution and recrystallisation could be 

I)i-cdictcd qUalltitatively. 

The IIIIILICIICC 01' thC scaled down inodelling on the prediction results of' 

JjLjJjjej-lCýjj Simulation is Significant. Although the average strain rate, the 

temperature and the Zener-Flollonion parameter could be similar to the model 

with the 01-hylilal size III Separate runs, it is dit'liCLIlt to reprodUCC ý111 01' tllC Z-- 

variables III OlIC S111IL11LItiOll I'Lln. Scaled modellinc: i; could reproduce some 
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information at the macroscopic level, for example, the material flow Pattern. 

However. quantitative analysis using scaled down numerical modelling should be 

avoided. Full size modelling is recommended for the simulation of 

manufacturing processes, but require,, ) detailed comparison with parameters 

colleted from industry. 

As can be seen from the discussion albove, the empirical models, the internal 

state variables model (physically based model) and cellular autornata are 

effective in simulation of the recrystall-, sation process occurring in the extrusion 

and heat treatment of aluminium extrudates. With the combination of FEM and 

integrated metallurgical model, the substructure evolution and recrystallisation 

could be predicted quantitatively. 

However further improvement must be made either to the PB model or to the CA 

rnodel if more precise simulation is to be performed. The assumptions, for 

example, the neighbourhood, the assumed initial nucleatioii sites and the 

statistical cases for initial crystal orientations, have to be adopted to give a 

satisfactory simulation. 

The improvements to eliminate the assumptions depend on the clevelopi-nerit, 

concurrently of several scientific research fields and one strong limitation is the 

fact that it is not entirely clear how the, computational kinetics of these models 

relate to the actual kinetics of re crystal 11 sation. 
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5 Surface Quality Control 

The surface finish of the product is as '-inportant as the mechanical propertics. and the 

control of defects is often the deciding factor in determining the extrusion conditions. 
Defects that may occur vary from visible blemishes such as cracks, blisters, and die lilies. 

to invisible ones that show up after anodising. While in high-strength alurninium alloys 

where die lines and surface scoring have only secondary importance to the mechanical 

property requirements (because the surface often has to be machined to remove 

recrystallized layers) the defect is tolerated provided the die lilies are not so coarse that 

stress concentrations arise (Sheppard 1993). For the 4% Cu alloys surface cracking (or 

speed cracking) is a major problem, esp2cially at high temperatures and strain rates. 

Copper is one of the most important afloying constituents for ýIluminil. lm because of its 

appreciable solubility and strengthening effect, the strength increasing with increasing 

copper content up to a maximum of approximately 6%. Magnesium is used in 

corribination with copper to accelerate and increase the age hardening at room 

temperature. The equilibrium compounds for this system are CuA12 (0 -phase) and 

CuMgA12 (S-phase) (Sheppard 1999, Mondolfo et al. 1976). These are soluble in the 

matrix during solution heat treatment. 

The effects of particles on recrystallisation are complex. During deformation, particles 

wi II affect the deformation microstructure and texture through effects such as all increase 

in dislocation density, the production of large deformation heterogeneities at larger 

particles, and the alteration of the homogeneity of slip, e. g. shear bands. During 

annealing, the primary effect of closely ; paced particles is to pin grain boundaries (Zener 

pinning), but the deformation heterogeneities at large particles may be sites at which 

recrystallisation originates (particle stin-ulated nucleation or PSN) (Dolierty et al. 1997). 
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5.1 Integrating cracking criteria into FEM simulation 

It is also well known that crack criteria (the criteria developed by Rice and Tracey, 

Cockroft and Latham, Oyane and empirical method) have been adopted to explain the 

cracking that occurs in extrusion, blanking and rolling, etc. In this chapter, FEM is used 

in differing ways to predict the surface cracking during hot extrusion. The crack criteria 

are integrated into the FEM code FORGEV2.0. The effectiveness of these criteria in 

predicting the surface cracking in the case of hot extrusion is discussed. The FEM 

simulation also provides some other quantitative data, such as the temperature rise 

during the extrusion at different initial temperatures. In addition, the principal stresses at 

the die land area at different stages of the extrusion are also shown. 

A typical simulation procedure carried out by FEM, can consider the effect of- 

(1) The geometry of the die and workpicce,, 

(2) Operating variables such as temperature and the rate of deformation, and the bulk 

constitutive response of the material and the interaction with solid boundaries. 

The stresses and strains can then be calculated as functions of time from which 

predictions regarding the occurrence of fractures are obtained. 
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Traditional criteria 

There exists a wide variety of criteria f: )r assessing rupture in metal forming processes 

(Hambli and Reszka 2002, Clift et al. 1990), which are based on experimental work 

which utilise a deformation process that is related to actual industrial applications. The 

initiation of ductile fracture in metals depends strongly on the stress and strain historics. 

Many ductile-fracture criteria have a form which leads to fracture when the value of a 

darnage parameter, which is given as an integral form of strcss and strain, reaches a 

particular value. In this study, several of the criteria were combined into the FEM 

subroutine to see if there was a critical value to indicate the initiation of the surface 

cracking in hot extrusion. The details of the selected criteria are: 

(1) Oyane: 

(I +A 
(yf' )dF-eq ý! Cl 
(T eq 

(5.1) 

where A and CI are constants, GH is the hydrostatic stress, (Yeq is the equivalent stress, 

F-eq is the equivalent strain. The process by which fractures occur in metal forming has 

been widely modelled as void initiation and growth, followed by coalescence to form a 

crack. Based on this hypothesis, criteria for ductile fracture have been suggested by 

McClintock et al. (1996) and Oyane et al (1978). 

(2) Cockroft and Latham (C-Ll): 

) 
cy * dr- eq > c-) (5.2) 

CY *= Max(cTj, CT-,. CT-i, O) (5.3) 
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where C2 is a constant, a is the maximum principle stress. Cockcroft and Latham (1968) 

considered the effects of the maximum principal tensile stress over the plastic strain path 

to fracture. 

(3) Cockroft and Latham normalised (C -L2): 

G dF-eq > C3 (5.4) 
(T eq 

where C3 is a constant. This criterion has a dependence on hydrostatic stress. 

(4) Ayada: 

)dF-eq ý! C4 (5.5) 
eq 

where C4 is a constant. 

(5) Generalised work criterion (GW), or Freudenthal criterion: 

f) 
GeqdF-eq ý! C5 (5.6) 

f) (Cy IýI+ (3 2ý2 -ý- (73 ý3 )dt > C5* (5.7) 

where C5and C5'are constants. C51, G2and G3are the principle stresses and ý,, ý2and 

-ý, are the corresponding principle strain rates. 

Freudenthal ( 1950) proposed that energy represents the critical parameter measuring 

traCtUrc. in this criterion, the Fracture occurs in a material element when the rate of 
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plastic energy dissipation reaches a critical value when Integrated with respect to time, 

following the element as it travels through the die. This is the only criterion that 

accurately predicted the site of fracture initiation for all three metal-lorming processes 

considered: Upsetting, extrusion (Brass) and strip deformation in the work of Clift et al 

(1990). 

(6) Temperature: 

T >- C6 (5.8) 

where C6 is a constant. If the heat generation near the die land area increases the local 

temperature such that the applied stresses exceed the resistance to deformation then 

severe cracking at the surface may be expected. This temperature generation is a function 

of the alloy chemistry, extrusion speed, extrusion ratio, aspect ratio, container 

temperature and the initial billet temperature (Sheppard 1993). Much of the heat 

generation to the surface occurs through the dead metal zone and the deformation zone 

shear band, which terminates on the face of the die immediately prior to the die land area. 

This results in a steep rise in the temperature as the material approaches the die land 

(Sheppard 1999a). Heat generation is comparatively less iii the indirect mode of 

extrusion compared to the direct mode. 

According to the six criteria mentioned above, when the constants, i. e. CI -C6, reach the 

critical value, the crack occurs. 

By integrating the crack criteria into FEM programs, research has been carried out to 

study various criteria adapted to the metal forming process. 

Hambli and Rcszka (2002) have check. ed the fracture criteria validlty LISing an FEM 

ir study showed model of the blanking opcration by an inverse technique approach. Thel 

ino mechanisms could be the valid critical values for crack Initiation generated by sheari . 
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predicted by the fracture criteria of- Rice, Freudenthal, Cocki-oft and Latham. Atkins. 

Oyane, Ayada and Plastic strain. 

Clift et al (1990) described the use of the finite-element technique to predict fracture 

initiation in a range of simple metal forming operations, which included simple upsetting. 

axisymmetric extrusion and strip compression and tension. In the case of axisyn-ii-netric 

extrusion, their study showed the numerically predicted sites of fracture agreed witli the 

experiment when the criteria of Oyane, Freudenthal and C-L are adopted. However, the 

extrusion ratio was very small in their study and the influence of temperature rise, which 

is a very important factor for crack initiation during extrusion, was again ignored. 

In the work of Ko et al. (1996), The C-L criterion was adopted for FEM simulation and it 

was confirmed a valid predictor of crack initiation during aluminium extrusion. 

However. ) the extrusion ratio they used was also very small and the temperature rise was 

not considered. 

It is interesting to see that some studies of paste extrusion, which can be assumed to be a 

real isothermal process, have been performed previously by Domanti et al (2002). The 

C-L Criterion and the Generalised Work Criterion are discussed in their study and these 

criteria are shown to be successful in predicting the increase in fracture witli increasing 

die entry angle. They are also proved to be at least qualitatively correct in considering the 

effect of extrusion ratio on surface fracture. The work of Domanti et al is an ideal 

example of an isothermal extrusion, whach can be contrasted with the present work, in 

which the temperature evolution has to be involved. 

Some investigations (Ko 1996, Sheppard 1993, Hambli 2002) have shoNvii that it is 

difficult to choose a fracture criterion th -it is "universal" cnough in the sense that it gives 

consistent results for operating conditions outside the callbratioll range. Applications of' 

critical values of fracture criteria are only successftil when they are both characterised 

and applied under similar loading conditions. A material might crack at a relativelv sinall 
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deformation during forging, yet might be satisfactorily deformed to a very large strain by 

extrusion. The onset of cracking depends both on the details of the working process to 

which the material is subjected and on its basic ductility. 

5.1.2 Empirical model 

In addition to the criteria i-nentioned above, there also exists aii empirical method to 

predict surface cracking occurring in hot extrusion, proposed by Sheppard and Tutcher 

(1980) as shown in Figure 5.1. They investigated the incidence of speed cracking M the 

rod form of AA5456 alloy and showed that the Z parameter may be used to correlate 

results over widely varying temperature and speed conditions. 

For acceptable surface quality: 

zi 
< 

6.35 x 10 20 

A T. 7.06 
1 

(5.9) 

where Z is the Zener-Holloman parameter using the average strain rate and the initial 

temperature, 

Z exp(YRT, ) (5.10) 

is the average strain rate, which can be defined by 

6D 2 
E Bv(a + bLiiR)(c + dTano» (5.11) 

D3 _D 
3 

B F, 

17 5 



B 's the billet diameter, DE is the e>. trudate diameter, N7 is the ram speed, R is the 

extrusion ratio, ct) is the deformation zone cone semi-angle (Sheppard 1999). which is 

defined by 

co =38.7 - 6.9 LnR (5.1-1) 

a, b, c and d are constants. (a= 0.171 ,b=1.86 ,c= 38.7 ,d=6.9 ), T, is the In It Ia 

temPerature. 
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4.5 

This type of analysis has also been applied to the observed surtaces of shaped eXtI'LISIOIIS 

in 2024 alloy and IIItI"OdLICIIIg the k2 modification ror shaped CXtI'LISion acceptable 

stil-laces werc aCIIlcvcd whell: 

2 Zi 
)< 

2.113 x9 (5.13) 
A- Ti" * 866 
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for direct extrusion and 

I 
ln(, X2 

Zi2.113 x 10 

nAT. 2.866 
1 

(5.14) 

for indirect extrus i on. k is the shape fac': or. These criteria are shown in Fi gure 5.1 for a 

number of Al-alloys. 

In the case of 2014 extrusion, Patterson (1981) and Vierod (1985) both provided the 

empirical criteria. They are presented below. 

For direct extrusion, Patterson gave the following equation: 

InZ, < 
6924.2 

(Correlation: 0.9986) (5.15) 
T-0- 857 

and for indirect extruSion: 

LnZi < 
15909.5 

(Correlation: 0.9991) (5.16) 
T. 0.982 

1 

where T is the initial billet temperature m degrees Kelvin. 

Vierod (1983) also reported that differing preheat approaches affected this criterion such 

that for conventional heating (CH, indicating heating continuous to the extrusion 

temperature) 

67954 
LnZi < 11-19 

( correlation 0.998) (5.17) 
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and for material that has been presolution soaked (SS, heat solution soak temperature and 

cool to extrusion temperature). 

LnZi < 
97955 

(correlation 0.999) (5.18) 
T 1.223 

It caii be seen from the above equations that in these empirical equations, only the iiiitial 

temperature and the average strain rate are considered. Presently, with the FE method, 

the evolution of the instant Zener-Hollomon parameter, in which the real time strain rate 

and the real time temperature are used. can be conveniently obtained fi-om the Output 

program. In this paper, the instant Zener-Hollomori parameter is integrated into the FEM 

program to observe the evolution of its value during extrusion and the initial LnZ, and 

the real time Ln(Zr) values are compared. The real time Zencr-Hollomon pararneter is 

defined by: 

Zr=ý exp(YRT) (5.19) 

where t is the real time strain rate and T is the real time temperature. With the 

combination of the initial Z value anc the instant Z history, the surface cracking is 

studied again by the use of the empirical equations. 

5.2 Justification of cracking criteria by FEM simulation 

If a criterion can explain the following four phenomena, then it can be regarded as 

effectlNl,, e in predicting the surface cracking which occurs in hot extrusion of alummium 

alloy AA'20 14, 
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1. Phenomenon I (P 1): 

The cracking occurs on the extrudate surface and has not been seen at other locations. 

2. Phenomenon 2 (P2): 

The extrusion suffers surt"ace cracking seriously during extrusion at high initial 

temperatures, such as in RUN 3. It is not a serious problem for extrusion at low initial 

temperatures. 

3. Phenomenon 3 (P3) 

In some cases, for instance RUN 2 extrusion used in this study, surface cracking occurs 

in the middle period of the process and becomes more serious as the process continues. 

4. Phenomenon 4 (N) 

The severity of cracking is less in the indirect mode than in the direct mode. We should 

recall that the higher value of the damage parameters, i. e. the CI -C6 mentioned above, 

indicate the greater the chance of cracking. If the assumed "critical value" does exist, 

then the surface cracking will occur if the predicted value is higher than the "critical 

value" 

The main simulation tooling and experin-iental results used in this study is showii in 

Table 5.1. 

The data are extracted From two points (side point and centre point) and two lines (AB 

and CD) at the die land area, as shown in Figure 5.2. 
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Table 5.1 Tooling of FEM model 
Run 
code 

Extrusion 
mode 

Initial billet 
temperature 
(CO) I 

Container 1 Rarn Surface 
temperature I speed Condition* 

(111111/S) ( C') 
I 
2 

Direct 
Direct 

298 
396 

275 
350 

7.9 
7.0 

A-ý 
B+ 

3 Direct 470 375 7.3 C+ 

- 
4 Direct 474 

-- 
430 3.3 B 

5 Indirect t4464 j 375 3.4 
ýA- The Surface condition is good throughout the extrusion 
+13- The surface cracking occurs fi-om the middle stage of extrusion to tile end 
+C- The surface cracking occurs at the very beginning of extrusion 
* experimental results fi-om (Vierod 1983). 

A 

Figure 5.2 The positions ofthe ai-ca analysed 

The temperature evolutions at the side point and centre points of the entire direct 

extrusion runs are shown in Figure 5.3. For the indirect extrusion RUN 51 the positions of' 

the two Points Were ChallgIng tIlrOLlgIlOUt the extrusion because they were moving with 

the die. It is thercl'ore difficult to extract the data Continuously as performed for direct 

extrusions. The temperatures in this case are extracted fi-orn line AB at different stages of' 

exti-tision, Lis shown in Figure 5.4. 

This diffel-clice bct\N"CCII tllc tcl,, j)Cl-atLIl-C Of thC CXtl-Ll&tC face and that of the centre III 

tills palicr is closc to30'C, while in Vcnas's work (1986), tllc difterencc is statcd to 
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be 60' C. Because the billet size used in this study is quite different to that used in 

Venas's work, it is not strange that there is sorne discrepancy. The very sharp 

temperature gradient near the surface is of great significance since it is the surface 

temperature, but not average exit temperature that is critical for surface failure such as 

cracking. 

Table 5.2 shows that the predicted loads correlate well with the experimental results. The 

predicted temperatures, as shown in Table 5.3, are also in good agreement witli the 

experimental measurements. Due to the lack of exact knowledge of the friction, 

extrusion process control and critically the discard length, the differences are acceptable. 

Table 5.2 Experimental and simulation loads (experiments from Vierod 1983) 

Extrusion Experimental FEM predicted Experimental FEM 
code max load max load min load predicted min 

(tonnes) (tonnes) (tonnes) load (toniies) 
1 439.2 445.9 285.8 280. t 
2 295.6 286.1 208.6 195.7 
3 243.8 240.2 204.6 192.2 
4 193.0 190.2 179.3 160.2 
5 197.4 203.2 209.7 205.8 

Table 5.3 Experimental and simulation temperature (experiments from Vierod 1983) 

Extrusio Peak temp-ý FEM predicted Final FEM 
n code (CO) peak temp + temp predicted final 

(CO) (C 0) temp 
(cc) 

1 309.1 315.2 470.8 465.7 
2 403.5 408.9 

__ _501.2 
498.2 

3 476.1 479.2 546.3 539.6 
4 478.0 482.1 529.0 520.4 
5 471.3 478.3 488.8 493.2 

+Peak tenip means the temperature of the extrudate when the peak load occurs. Both the 
Peak tenip and the Final temp here are cbtained from the integral profile model. 
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Figure 5.4 Temperature evolution of Line A-B in the CXtl*LISIOII run 5 

The principal stress distributions at different extrusion stages along the line AB (as 

showil In Figure 5.2) are shown In FIgUre 5.5. Compared Nvith the longitudinal stress in 

paste extrusion, which is shown in Figure 5.6, the distributions of the longitudinal stress 

IltllllllllLllll extrusion are different. As can be seen fi-om Figure 5.6, the stress is linear 

along the transvci-se direction when the extrusion ratio is high in paste extrusion while it 

is totally dif'jCl-ClIt ill 110t aIL11111*1111.1111 CXtl"LlSioll. It can also be seen From FigUre 5.5 that the 

--* 5.1 .r1 

ýv 1 

I '-- a7. j 

ki n4c: e rit rep ---, i rit 
F)i n4si id e po: i i nt 

I Ti rn es 
20 

Ti n-i e 
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Figure 5.3 Tcinperature evolLition 
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maximum stress at the surface of RUN I extruslon is higher then that of RUN 3 althOLI. i4h 

the surlace quality is much better in RUN 1. 

9 Run 1, Ram travel=8.6mm 0.8 
o Run 1, Ram travel=40.3mm 

0.6 -4, 

IIA 
Run 3, Ram Travel=8.6mm 

"0 

0.4 

0.2 
(I) 
(I) 
G) 0 
r_ 
0 

ýi -0.2 

-0.4 a 

-0.6 
Distance to the die centre (mm) 

Figure 5.5 Principal stress distribution along line AB at difTerent stages in hot exti-Lision 

5.2.1 Discussion of traditional criteria 

(1) Phenomenon I 

As can be seen From Figure 5.7(a)-(t), all OI'thC SIIIILIIatIO11S with diffcrent criteria give 

the maxMIL1111 predicted value on the extrudate surface, and the predicted value decreases 

smoothly fi-om the surface to the centre of the extrUdate. The maximum predicted values 

also begin to appear near the re-entrant die corner, which can be seen in Figure 5.7(l). It 

iterion mentioned above, then this 1`61lows that ifthere is a critical value fo,, a cracking ci 

v, due WOUld be reached first on the Kirfibce, according to all of the criteria adopted m this 

StUdy. Then the cracking would appear cii the surface according to all the criteria and this 

has been proved after the crack function of the sol'tware was triggered, which can be seen 

in FIgUre 5.7(g). 

Hence we may conclude that all of Cie criteria are ct't'cctl%,, c in predicting the first 

pliciloiliclioll. 
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Figure 5.6 Principle stress distribution at transverse direction in paste extrusion (R 
represents extrusion ratio) (Domanti 2002) 
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Enlarged 
area B 

Figure 5.7(g) Surface cracking After the crack ftinction was triggered) 

Figure 5.7 The predicted value ot'different cracking criteria 

(2) Phenomenon 2 

However, Lis can bc seen from FIgUl-Cs 5.8-5.12, theSC Cl-ItCl-M, CXCCpt tllC tC]IIIICI'cltLll'C 

criterion, are not valid in prcclicting the second phenomenon. According to the criteria 

mentioned above, which all assume there is a critical value I01- Surface cracking, the 

critical valLle should be reached first in the extrusion of RUN 3, which sufters mostly 

from surface cracking in the expcrlmený. s. However, as can be scen in Figures 5.8-5.12, 

in which the Oyane, the C-L, the Ayaca, the GW criteria are employed, the predicted 

value of' RUN 3 is not the maxillILIm among all the predicted values. The predicted 

curves ofthe dillereilt Runs are convoluted and can not be used to draw the conclusion 

that the RUN 3 sLtf'fci-s mostly from surtace cracking. Meanwhile, For the criteria of' 

Ayada and GW, as can be seen from Figure 5.8, the predicted curve of' the RUN I 

extrusion has the highest position NVIIIIe thIS CXtl-LISIOII has the best SLII'tace quality in the 

experiments. III Figure 5.122, the curve of RUN 3 IS a little IOWeF than the Curve of RUN 2, 

while III CXpCI-11IICIltS SLII'l'aCe cracking which happened III RUN 2 is less serious than that 

in RUN 3. The data shown in Figures 5.8-5.10 was extracted fi-om line CD, as shown in 

FigUre 6.2, aller the ram travelled the same distance. The data shown In FIgLll'CS 

5.11-5.1 22 are extracted from the point D, as shown in Figure 5.21. 

187 



0.7 
Oyane -----Run 1 

0.6 Run 2 
Run3 

x--- Run 4 X > 0.5 Run 5 
x 

x 
>, 0.4 
0x 

xx 
0.3 

U) U 
0.2 

4k 

0.1 

012345 
Distance downstream from die re-entrant die corner 

(mm) 

6 

Figure 5.8 Simulation results using Oyane criterion for phenomenon 2 

0.375 

0.325 

0.275 

Q)0.225 

> 0.175 

C-L2 1. 

Is 

0.125 T''U 

0.075 )K Run 1 -X- - Run 2 Run 3ý1 

------- Run 4 Run 5 

0.025 

0123456 
Distance to reentrant die corner 

Figure 5.9 Simulation resilts using C-L2 for phenomenon 2 

(3) Phenomenon 

As lor the third phenomenon, it can be seen from FIgUres 5.13-5.15 that the first three 

criteria, i. e. the OYanc, the C-L I and the C-L2 criteria are valid. The predicted peak 

valucs at the illiddic Of cXtrusion are highcr thail the maximum value at the beginning of' 

extrusion. It can also bc sccii from Figures 5.16 and 5.17, that the Ayada and the GW 

ii critcria arc obviously cfTective. The predictcd values of tllcsc two critcria are 
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continuously rising through out the extrUsion, and th' is corresponds with the concept that 

if surtace cracking occurs, it will become more and i-nore severe as the process proceeds. 
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Figure 5.10 SIIIILIlation results using C-LI tor phenomenon 2 

(4) Phenomenon 4 

As Ior the fourth phenomena, it can be seen from Figures 5.11-5.12 that the Ayada and 

the GW criteria are valid. For the simulation i, eSLIltS of RUN 5, these two criteria givc the 

predicted CLII'VC OCCLIPYIIIg the lowest position in the diagram. 
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The temperature criterion is also valid in explaining the fourth phenomenoii, as can be 

seen from Figure 5.3. As has been discussed previously, the temperature rise dUrIII(Y 
C, 

extrusion results in incipient melting of the second phase particles, which form an 

intergranular network when qUenched, resulting in a brittle prodLICt WIth poor 

mechanical properties (Vierod 1983). 
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The other criteria are not cff'ccti,,,, e in predicting the 4th phenomena. 
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5.2.2 Discussion ofthe empirical criterion 

Because the empirical method is regressed from all ofthe experiments, it is evicict-it that it 

is effective in predicting the phenomena 1,2,4 and 5 mentioned above. Meanwill1c, it' 

only judged fi-om the Ln(Z, ) value, it is difficult to predict ifthe suriace cracking will 

occur at the beginning of extrusion or at the middle Of CXtl*LISIOII. However, with the FEN/I 

predicted value ot'Ln(Zr), this problem can be solved, as discussed Mow. 
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Figure 5.16 Predicted value of'Ayý, tcla criterion at cliff'crcnt SLIOCS 01'CXti'LISIOII t) 

It can be seen From Figures 5.18-5.2 1 that the pi-cdictcd Ln (Z I. ) val Lie riscs sharply at the 

beginning ofthe CXtl'LlSion, but decreases slowly tIlrOLlgIlOLlt UIC later process. It is worth 

pointing out that thc Ln(Z,. ) -tjmc curve is similar to the load-time CLII'VC, III NVIIICII ýl 

peak value appears at the beginning ol'the extrusion. 

As shown in Table 5.4, l'Ol'I'LIIIS I and 4, the predicted instant Ln(Z,. ) valLIC IS lOWCI'tlIaII 

the critical value throughout the extrusion. For RUN 2, as can he seen fi-om FIgLIrc 5.20, 

the predicted peak value is higher than tbe critical valUc at the beginning of'extruslon but 

decreases to lower values than the critical valUe at the later stage of' extrusion. FigUre 

5.2 1 indicates that for RUN 3, the pnedicted value is higher than the critical value 

tlll'OLIgIIOLlt the extrusion. It coi-rcsponds to the rcal situation In the experiments, In which 

the surflace quality remaincd good thl'OUglIOLIt the whole process for RIIIS I and 4, while 

tllC SLIl'laCe cracking OCCLlri-cd at the middle extrusion of RUN 2 and it began to appear at 

the beginning ol'RUN 3. 
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Table 5.4 Predicted terriperaLure (experinicrits From Vierod 1983) 
Extruslo I Peak tempt 
n code (CO) 

FEM predicted Final FEM 
peak temp temp predicted final 

i 

ý terrip (C) (CO) (C' )I 
1 309-1 315.2 470.8 465.7 

_ 2 _ 403.5 408.9 501.2 498.2 
3 476.1 479.2 546.3 539.6 
4 478.0 482.1 529.0 520.4 
5 471.3 478.3 488.8 493.2 

tPeak terrip means the temperature of the extruclate when the peak load occurs. Both the 
Peak ternp and the Final ternp here are cbtained from the integral profile model. 

As can be seen From the discussion above that with the combination of' Ln(Z, ) and 

Ln(Zr ), the surface cracking can be predicted. I I' the Ln(Zi )is highcr than the critical 

value given by equation 5.19, then sur, "a-ce cracking will happen, and if the Ln(Z,. ) is 

higher than the critical value throughout the extrusion then tile cxtrudate will suff'er 11-oill 

surface cracking throughout the extrusion. 
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Figure 5.17 Predicted value of G'A7 criterion at different stages or extrusion 
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5.3 Conclusion 

The discussion results are shown in Table 5.5. 

Table 5.5 Vafidilýy of the crackin2 criteria 
Criterion Phenomenon 1 

1 2 3 4 
0 Oyane x T x 
C-LI x x 
C-L2 x x 
Ayada x 
Freudenthal x 
TemperatUre 
Empirical 

ý means effective while X ineans invalid. 

I) The surface cracking is closely related to the temperature rise during extrusion. I I'the 

licat generation near the die land area increases the local temperature in excess of' tile 

SOHLIS P0111t, localiscd melting can oýxur, which cail cause severe cracking of the 

SLII'lace. This conclusion coincides NVIth Mally pl'CVIOLIS studies (Sheppard 1999a, 

Paterson 19,8 1, Vicrod 1983). 
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2) Given a so-called "critical value" that depends oii the Initial condition but not assurned 

universal, the empirical criterion can also predict all of the fi%-c pheiion-iena. 

3) The other criteria (Oyane, C-L, Ayada, etc. ) can't successfully predict all the four 

cracking mechanisms occurring in hot aluminium extrusion. Although they are capable 

of predicting some phenomena, all the criteria excepting temperature and the empirical 

formula failed in predicting phenomenon 2. 
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6 Simulation of Special Extrusion Technologies 

6.1 Pocket die extrusion 

It is well known that pocket technology if properly adopted in the extrusion process call, 

to some extent, balance the material flow. However, the literature describing or 

analysing this process is sparse although the industrial application of pocket die 

extrusion is quite common. In this chapter, the influence of the pocket oil material flow is 

modelled by three-dimensional FEM. The exit velocity profiles, the temperature 

difference, the deformation history of the material across the die orifice are clearly 

illustrated, and they correspond well with experimental data. It is shown that the i-riaterial 

flow can be more homogeneous than normal extrusion if the appropriate pocket die 

design is applied. The influence of pocket die design on material structure is also studied 

by the use of physically based models combined with FEM simulation. 

Figure 6.1 shows the crescent-like effect obtained by Northcott (1949). As with single 

hole extrusion, the heavily worked crescent zone may contain a substructure condition or 

may contain large grains, according to the conditions of the operation and subsequent 

treatment. The phenomenon was next studied in detail in the early 1970s, when Sheppard 

and Castle (1974) made a comprehensive study on multi-hole die extrusion. 

In the case of multi-hole die extrusion without pocket, the eccentricity of the die is 

defined by: 

b 

a+b 
(6-1) 

where a and b have been shown in Figure 4.21 and been revised as shown in Figure 6.2. 

When the pocket is adopted, the offset ofthe pocket is shown in Figure 6.22 as C. To aid in 

dISCLISSiOll, two points on the cut plane (which is 0.5mm under the die exit): M and N are 
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defined. M represents the extrudate side which is farthest from the cciiti-C axis ofdie. and 
N represents the side which is nearer to the die centre axis. 

I 
Figure 6.1 M icrostruct Lire of bar extruclated through a multihole (lie reported by 
Northcott (1949), showing crescent type feature indicating more severe deformation on 
the right hand side. 

The inhomogencous nature of' recrystallisation around the periphery of extrudate From 

multi-hole die extrusion is shown in Chapter 4. This IS Undesirable both III terms of' 

tI urther processing and when the extruclate is applied for normal application (i. e. is a 

finished pi-odLICt). The object of this work is to demonstrate that dies Lltl]ISIIlg pockets 

Eavourably afTect the material Ilow and subsequent recrystallisation and processing. 

Four simulations are performed in this study as shown in Table 6.1. In all of the 

simulation running, the temperature of the KiHet is 433'C, the temperatures of the tooling 

(ram, container and die) are 300 'C, and the ram speed is 5mm/sec. 

Table 6.1 Simulation runs 
Run Eccentricity C (offset, Mill) 
I (without pocket) 0.27 ---- 
2 0.27 0 
3 0.27 0.5 (offset towards die centre) 

4 0.27 -0.5 (offset away die centre) 
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Figure 6.2 Indicating the offset 'C' of the pockct 

The FEM PFOgl-Llm, FORGE3' R is used in the pi-esent study. The hyperbolic sine Function 

was combined into the FEM to describe the material behaviour. The constitutive 

eqUation can be written as: 

zz 

Ln[( + [(-) 11 + 1] 2 
AA 

(6-2) 

where U is the tlo\v stress. (x, A, n are temperature independent constants, Z is the 

Zener-Hollomon parameter 

AH 
Z= -F- exp(-) RT 

(6-3) 

Nvilcl-c, c is the mcan eqLll\'alClIt Stl-ain nate, Al-I is the activation energy and T is the 

tellIPCIlItUl-C (SIICPPLII-Cl 1993). 
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The friction and the thermal boundary conditions are introduced in detail in Chapter 3 

and 4 and they are not repeated here. An example of the input data file can be found in 

Appendix D. 

6.1.1 Simulation results on velocity field 

To demonstrate the simulation results, iso-velocity vector planes and surfaces of the 

value of the velocity vectors are presenteld. Each of the figures has been extracted during 

the 'steady state' portion of the ram travel (20mm) and from the element delimit plane 

(MN in Figure 6.2). In most of the figures below, only half of the extrusion setting 

(including die and billet) is shown which is perfectly valid when considering the 

symmetry of the problem. 

The velocity contour lines and the iso-velocity surfaces of the first run are shown in 

Figures 6.3(a) and 6.3(b) individually. 

As can be seen from Figure 6.3(a), in, which there is no pocket, the velocity field is 

inhomogeneous at the die bearing area. The material flows faster at the die bearing area 

nearer to the die centre axis (N in Figure 6.2) than at the opposite site (M). This is 

demonstrated more clearly in Figure 6.3(b) by stereo visage results, in which both of the 

two iso-velocity surfaces, whose velocity are lower than the average exit velocity, 

expanding further at the side of M than at the opposite site N. 
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Radius direction 

Die 
cent 
axis 

N 

157.307 

220.23 

283.153 

M 

Figure 6.3a Material iso-velocity vector field of run I (mm/sec) 

Die centre ams lob 
40 mmIs 

230 

Figure 6.3b Iso-velocity surfaces of run I (40mm/sec and 230 mm/sec) 

Figure 6.3 FEM simulation output in run 1. 

These observations indicate that the material flows faster at the N side than at the 

opposite M site in the defonnation area. 
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In Figure 6.4, an example of the experimental and simulation results of run I are s1lown. 

The reader should note that the scale of this figure is considerably greater than Figure 6.3 

in order that comparison with the micro, ý)-raph is possible. It can be seen clearly fi-om the D 
simulation results that the extrudate bends outwards, which is identical to the 

experiments. This feature is a direct result of the die land length being constant wilereas 

in the industrial context the length would differ around the periphery. 

The pocket die, which is expected to improve the balance of the metal flow, is added 

without offset in simulation 2. However, as can be seen from Figures 6.5(a) and 6.5(b), 

although some improvements concerned with the homogeneity of flow pattern could be 

observed, the metal flow is still not as homogeneous as would be required. As can be 

seen from Figure 6.5(b), the iso-velocity surface of 40nu-n/s has a spherical shape, which 

indicates a nearly balanced flow, while the iso-velocity surface of 230mm/s has no such 

symmetrical distribution, the velocity is still faster at the die bearing nearer to the die 

centre (the N side). 

In run 3, aii offset of +0.5 mm of the pocket is employed (the positive directioil of the 

offset was showii iii Figure 6.2). The calculated velocity field is shown in Figure 6.6(a) 

and the iso-velocity surfaces are shown iii Figure 6.6(b). 

It can be seen in these two figures that the material flow is observed to be almost a mirror 

image of run 2. The velocity is higher at the die bearing area that is furthest from the die 

centre axis (M side). The material flows faster at the location where the flow velocity is 

lowest in runs I and 2. The metal flow in this run is still quite inhomogeneous suggests 

that the offset of the pocket is incorrectly positioned. 

It is should be noted that the offset (0.5rnm) is small compared with the dimension of the 

die. The fact that a small offset can lead to such a significant change in the metal flow 

velocity ficld indicates the complex nature of the material flow and the challenge for the 

die designer to reniedy defects. 
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(a) Experimental results of material flow 

Fol 

r 

18 
A 

-I-- 

16 

Extrude co- niliiellc, ýJff to 

(b) SIIIILdatlOll results ofmaterial flow (numbers represent the flow velocity nim/sec) 

Figure 6.4 Materlai, tlow observed from run 1. 

The f'oul-th I-Lill, Nvltll all offset of' -0.5m. n in the opposite direction is simulated and the 

I-CSLlltS can be scen in Figures 6.7(a) and 0.7(b). It can be seen from these two figures that 
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the material flow is far more balanced than the three runs discussed above. At the die exit 

area, the contours of the velocity lines are almost symmetrical to the die orifice centre. 

The iso-velocity surfaces with the velocity of 40mm/sec and 230mm/sec are also in the 

configurations of a quarter of a sphere, which indicates the homogeneous nature of the 

material flow. 

Die 

cent 
axis 

208.023 

277.364 

312.034 

346.705 
m 

Figure 6.5a Material iso-velocity vector field in run 2, pocket offset C=Omm, (mm/sec) 

Die c entre 

40nurds 

30 mrnis 

Figure 6.5b Iso-velocity surfaces in run 2 (40mm/sec and 230 mm/sec) 

Figure 6.5 FEM simulation output in run 2. 
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Figure 6.6 and 6.7 also indicate the variation in dead metal zone around the 

circumference of the pocket, which is partially caused by the offset. 

Radius direction 

Die 

centre 
axis k 

165.335 

231.469 

Die centre wds 

40nurds 

230mmls 

Figure 6.6(b) Iso-velocity surfaces in run 3 (40mm/sec and 230 nu*n/sec) 

Figure 6.6 FEM simulation output in run I 
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Radius direction Die centre 
I axis 

Figure 6.7a Material iso-velocity vector field in Run 4, pocket offset C=-0.5mm, 
(mm/sec) 

230n 

Figure 6.7b Iso-velocity surfaces in run 4 (40mm/sec and 230 nu-n/sec) 

Figure 6.7 FEM simulation output in run 4. 

6.1.2 Effect of pocket on temperature rise 

It is well known that there is also an intrinsic relationship between the metal flow and the 

temperature distribution at the deformation area. The more homogeneous flow should 

lead to a more homogeneous temperature and hence homogenous extrudate properties. 
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In this section we shall discuss the evolvtion of temperature throughout the ram stroke as 

well as the temperature d1stributions In and surroundIng the dle and dle pocket In the 

transverse and the cross section of the extrudate. The cross sections discussed have been 

evaluated on the deletion plane MN which is 0.51m-n from the die exit. Similar to the 

preceding section the data has been extracted after a ram travel of 20mm. 

In Figure 6.8(a), the temperature field contour lines are shown for run 1. The temperature 

distribution on the plane (MN) is shown in Figure 6.8(b). As can be seeil from these two 

figures, the temperature is higher at the M side of the extrudate, in which the Ilowiilg 

velocity is slower. 

In Figure 6.9(a), the temperature field contour lines are shown for run 2. The temperature 

distribution on the plane MN is shown in Figure 6.9(b). The temperature is still higher at 

the M side, which is similar to run 1. 

In Figure 6.1 O(a) and 6.1 O(b), the temperature field is shown for run 3. The temperature 

is higher at the N side than at the M location, which differs from the previous two runs. 

The locations with higher temperature correspond with those locations where the 

velocity is lower. 

In run 4, with an appropriate offset of the pocket, the temperature is more homogeneous. 

As can be seen from in Figure 6.11 (a) and 6.11 (b), both the temperature contour lines and 

cut plane indicate the temperature is balanced at the M and N side. 

The complete histories of the temperature rise at side M and N in run 4 are shown in 

Figure 6.12, in which the temperatures at the two sides can be seen to equal throughout 

the extrusion. In contrast, the complete histories of the temperature of M and N in run 

are shown in Figure 6.13. A temperature difference between M and N side of the 

extrudate was found throughout the extrusion. 
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Figure 6.8(a) Temperature contour lines in run I (in Celsius) 
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Figure 6.8(b) Cut plane of run I (in Celsius), Temperatures decrease towards the centre 
of the rod 

Figure 6.8 Temperature distribution in run I 
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Figure 6.9(a) Temperature contour lines in run 2 (in Celsius), pocket offset C=Omm 
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Figure 6.9(b) Cut plane of run 2 (in Celsius), Temperatures decrease towards the centre 
of the rod 

Figure 6.9 Temperature distribution in run 2. 
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Figure 6.1 O(a) Temperature contour lines in run 3 (in Celsius), pocket offset C=+0.5mm 
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Figure 6.1 O(b) Cut plane of run 3 (in Celsius), Temperatures decrease towards the centre 
of the rod 

Figure 6.10 Temperature distribution in run 3. 
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Figure 6.11 (a) Temperature contour lines in run 4 (in Celsius), pocket offset C=-0.5mm 
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Figure 6.11 (b) Cut plane of run 4 (in Celsius), Temperatures decrease towards the centre 
of the rod 

Figure 6.11 Temperature distribution in run 4. 
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Figure 6.13 Temperature rise in run 1. 
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6.1.3 Homogeneous substructure as a result of balanced material now 

The discussions above indicate that, in rUn 4. the material flow is more balanced. The 

tCHII)CI-atUre and lience we assume the substructure distribution in the extrudate of run 4 

have been proved to be more homogeneous than the other rUns. However, the most 

1111portant propci-tics ofthe extrudate depend oil tile Structure and substructure. AlthOUgh 

over the range of I'low stress studied no clear variation In mechanical propertles within 

experimental error, bctween the multi-hole extrudates (two CXtrUdatcs from difTei, erit 

holes) was Cound, the properties within and across an CXtl-Lidate are indeed influenced by 

tile ecccntricity. Direct evidcn. cc has A eady been shown in Figure 6.1. A variation of 
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hardness is also found in the cross-section of the extruded rod, which is produced fi-om 

two hole extrusion (Castle 1974, p. 169), as shown in Figure 6.14. 

1"? 0 

1' 

-4-0 
_4 

0 
X, 

ften 'I re (rr ýýi 

Figure 6.14 Hardness variation aci-oss the extmdate (Castle 1974, p. 169) 

The values ot'grain bOUndary area per unit area Sv (calculatcd from equation 2) across 

the extrudate is shown in Figure 6.15. As can be seen in these two graphs, the value of' 

Sv increases sharply on the sub-SLII-fi-ice area of' the extrudate. This is dLie to the shear 

deformation suffered at the surface area Of thC CXtrUdate, which has been reported in 

many studies (Castle and Sheppard 19-/6). Aukrust etc. (1997) also give a quantitative 

StUdy of the sheared surlacc ofalumMIL1111 extrudates. 

In the analyses performed by Aukrust, a transition fi-om grains that are lamella to the 

point at which the lamella structure Is broken up was found. It was reported to take place 

about -700 pin below the surface. ReSUILS in another experiment carried out by the same 

aUtI101' reported that the transition from a bulk region with a rolling type of texture to a 

surl'ace boundary layer Nvith shear type of texture takes place between 400 pili and 165 

pin . The main component of the textLIl-e in the surface in both cxperiments niciitioncd 

above is close to (113)[3322], which corresponds to the Idealiscd shear texture, the skew 

cube (00 1 )[ I 101, rotated approximately 25' about the transvcrsal axis. 
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Figure 6.15 The sharp increase of Sv at the subsurl'ace area 

In the present study, the transition points dISCLIssed above are found to locate below the 

surface approximately at 500pm at the N side and 900piii at the M side, dLIC tO the 

asymmetric nature ol'two-hole die extrLISIOrl, where the sharp rise of' Sv occurs (marked 

as the cross point bctween the cui-vc or Sv and sti-aight line A and B individLially) as 

shown in Figure 6.15. 

According to the physically based model, the density of nucleation sites is much higher 

and the recrystallised grain size is therefore expected to be smaller at this subSLIITcaCC 

VOIIIIIIC Under shear deformation than tVe volume below. However, in experiments, this 

phenomenon has not been observed, onl. y a relatively small decrease of the grain size was 

found in this area. Two facts COUld leac! to this phenomenon: one is that the physically 

based model needs to be improved to predict the recrystallisaton in extremely sheared 

StRIctures, and the second is that secoi,, clary rccrystallisation is likely to occur in this 

sliccial area. Ho\vcvci-, with the lack of expainiental evidcncc, it is difficult to make any 

COIICILISIOII. 
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According to the experiments (Vierod 1983), the 11LIClei number at this sui-face volume 

was approximately 1.4 tinics more thail the volume below. The s1mulatlon reSUlts are 

shown in Figure 6.16, in which the asymmetry can be seen clearly in tile normal 

extrusion and the improvement to a balanced structure can be discerned in tile pocket 

extrusion. The position ofthe dashed lines A and B correspond to the position orthe 

same line shown in Figure 6.15, indicating from where the shear deformation occurs. The 

predicted average grain size of normal extrusion is 41.2ýtm , which is in reasonable 

agreement with the experimental results ( 43ýtm ). However, these discussions should be 

regarded as qualitative until Further detailed experimental justifications become 

available. 
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6.2 Isothermal extrusion 

Although there are many benefits that cculd be attained, there are also some uncertainties 

with regard to isothermal extrusion. It was pointed out by Pinkham (2002) that "If the 

velocity gradient varies it could cause -. part to bend or twist, thereby creatmg stresses 

and this is also true for variations in temperature. Hence it is important to understand 

how the material flows through the die. The material flow pattern has been studied 

previously by many experiments, but among them there are few concerning material 

flow in isothermal extrusion. Valberg (1986) discussed the formation ofthe outer surface 

layers of the extrudate in direct and indirect conventional extrusion based on the 

advanced grid pattern technique. Complex effects were found and reported by Akeret 

(1988) and Valberg et al. (1995). For the modelling of Isothermal extrLISion, Hardoum 

studied (1992) die design by starting froni classic plasticity theory and taking account of 

temp erature/s train rate-dependent criteria linked to those of Tresca and von Mises. He 

made detailed studies of the pattern of rietal flow from the press container througli dies 

of I many configurations, with or without feeders of different designs, into a wide range of 

section shapes and multiple holes. 

In the present work, the material flow pattern in isothermal extrusion is produced by 

FEM simulation. FEM simulation was proved to be effective in predicting the material 

flow and the formation of the extrudate surface by Velay (2003) and it is not repeated 

here. Iii this paper, isothermal extrusion is predicted by both of the methods mentioned 

above. 

The material flow pattern and the form. ition ofthe extrudate surface are showri by the 

output ofthe simulation. The influence of the tapered billet and the varying ram speed on 

the flow pattern during extrusion is d. scussed in detail. All of the simulations were 

performed to the very end stage of extrLSion. The temperature history and the load-time 

history are extracted to assist in understanding of the isothermal extrusion process. 
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The simulation process used In this study is shown In Table 6.2. The billet length Is 

95mm. The extrusion ratio is 30. 

Table 6.2 Process parameter for FEM model 
RUN Extrusion Initial billet Container Ram 

mode I temperature ( C) temperature I speed 

-------------------- 
I 

------- - -- ... ... ...... 

(Co) ý (11111-L/S) 
Conventional 530 580 10 

2 Tapered 5 30(front)-495 (back) 580 10 

3 Vary ram 
T-530 580 10 (initial) 
] speed (1) 

_________ 4 -- _ Vary ram 530 --i 580 1 0(initial) 

soced (2) 

Run I is a conventional extrusion, Run 2 is an isothermal extrusion established by 

employing a tapered billet, in which the temperature decreases noil-lincarly From the 

1'ront of' the billet to the end. The temperatLffe field is set Up by the software and the 

distribution can be secri in Figure 6.1-/. The i-riaximum temperature is 542'C and the 

is 520'. 

In Run 3, the ram speed is controlled by the FEM program according to the max, 11jull, 

allowed exit temperature, which is set at 565'C. When the exit temperaftffe falls under 

the pre-set allowed temperature, the rain speed will be increased and when the exit 

temperature exceeds the tipper Iii-rut, the program will decrease the ram speed to keep the 

exit temperature at approximate y5 

III RLM 4, the ram speed at different stages was determined according to the ram speed 

history in Run 3. The detail of the experiment will be discussed later. 

The hyperbolic sine lunction was Integrated into the FEM to describe the material 

behaviour. For -IILIIIIIIIILIIII alloy AA6063, the constants Lised in eqUation 3.12 are: 
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AH=144408KJ/niol, u=0.0152111 2/ MN ý n=5.27, LnA= 24.41 (Sheppard and Jackson 

1997).. 

53464+02 
&3222P+02 
5.29 78e+O 2 
5.2733e+02 
&2489e+02 
5.2244e+(12 

0 Mill= 5.2000P+Oo 
5.4200e+02 

Temperature distribution along the billet 
545 ý 
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CL 525 
E 
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0 20 40 60 80 

Distance to the die (mm) 

Figure 6.17 Tempei-atLli-c distribLItIOll 

6.2.1 Effect of isothermal extrusion oa temperature rise and load 
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In this study, both of the two methocs mentioned above were adopted to establish 

isothermal extRISIon. The nomenclature Used in the regiolls near the die land is shown in 

Figure 6.18. The positions oftlic points that Nvill bC Used in the following discussion are 

also shown in this picture. 

The tciliperatLli*c evolution at the extrudate centre and surface (extracted ti-om the centre 

point and the sidc point, as shown in Figurc 6.18) ofthe first three extrusions showil I,, 

Table 6.2 can be seen in Figs 6.19-6.2 1. 
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Figure 6.19 Temperature history in Run I 

As can be seen in Figure 6.19, the temperature rises throughout conventional eXtrLISIOII. 

On the surt'ace, the tenipcrature rises from 530'C to 570'C gradually and at the extrudate 

cciltre, it rises from 530'C to 550'C . 'Flle temperature difference between the surface 

and the cciiti-e of the extrudate rcmains at approximately 15 'C tlll'OLICIIIOLlt tllC CXtl'US* t- 1011. 

This pliclionienoil had becii rcportcd previously by Herberg ( 1993), wherc the ditTerence 

Nvas found to be 60'C . Because the bi II el size Lised III th IS StUdy was qUite difTerent to that 
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employed in the work of Venas's work, it is not surprising that the values do not 

coincide. 

The temperature evolutions at the surtace and centre of the extrudate in Run 2 are shown 

in Figure 6.20. 
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Figure 6.20 Temperature history in Run 2 
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Figure 6.21 Temperatui-e history in Run 3 
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The temperature rises to 562'C at the surface at the beginning of extrusion, theil it 

remains approximately unchanged until the end of' extrusion. As in the conventional 

eXtl-LISIOII, tile tCIIIPCI'atLll'C Oll tile surface is approximately 15 'C lilgher than that of' the 

centre point throughout the extrusioll. 
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Isothermal extrusion was also simulated utilising the varying speed method in Run 3. In 

this run, the maxii-nuin allowed exit temperature is set at 565 'C 
. When the exit 

temperature is lower than the pre-set temperature, the ram speed will be increased Lintil 

the exit temperatUre exceeds the upper Emit, and then the program Nvill decrease the ram 

speed to keep the exit temperatUre at approximate 564'C . The exit tempffatUre and the 

history of the rarn speed of Run 3 are shown in Figures 6.2 1 and 6.22 respectively. At the 

side point, the exit ternperature rises sharply at the beginning of' extruslon and tlien 

remains at about 565 'C thrOUgllOUt tile extruslon. The temperatUl'C at the centre of' the 

extruclate is about 15 'C lower than that on tile surfiace, which is the same as the 

temperature discrepancy between the surface and the centre that was found In the first 

two simulations. It has been statcd pr:, Mously that, M lsothcrmal extrusion, the cxit 

temperature along the transverse direction of the extrudate should be more homogenous, 

but it is obviously not the case in the presellt Study. Because the dimension ot' the 

extrudate employcd in this study is con-iparatively small, It WOUld be ot'great interest to 

StUdy the exit temperature in the extl-LIS', Oll ofrods of comparatively larger size and find 

OLIt thC I'actors that can influence the temperatUre distribution along the transverse 

direction. 
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Figure 6.22 Ram speed history 
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We should note that there is a significar., t difference between the surface and centre 

temperature since it is the surface temperature but not the average exit temperature that is 

critical for surface failure such as cracking. 

As for the ram speed history in Run 3, the initial ram speed was 10 mm/s and was 

increased to 19.4i-nm/s at the beginning of extrusion. Then the rarn speed was decreased 

to lower speeds gradually to 9.4 mrn/s. The extrusion time for the ram travel ol'70 inin is 

about 5.3 seconds, which is much less than in the iso-speed extrusioii (7 seconds). This 

has been discussed frequently and is regarded as one of the benefits of isothermal 

extrusion. 

Depending on the simulation output of Run 3, a different ram speed setting, which is 

varying in a non-continuous manner, was developed. The initial ram speed applied was 

10mm/s over a ram displacement of 3mm (upsetting stage). Then it was increased to 

18min/s and subsequently decreased to 11.5 mi-n/s and finally to 9.0i-ru-n/s. The profile of 

the ram speed varying with ram travel distance is shown in Figure 6.22. The temperature 

rise during this simulation was similar to Run 3, which is shown in Figure 6.23. The peak 

temperature remains at 565'C and the oentre temperature is still 15'C lower than the 

surface temperature. The total extrusion time is about 5.1 seconds, which is also niucli 

less than the time used in conventional extrusion. Significantly the figure indicates that 

better control is possible with varying ram speed compared to a taper heated billet. The 

reader should note that the actual exit temperature could be more easily and more 

accurately set when using the variable speed of isothermal extrusion. 
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The load on the ram, the container and tne die ofthe RLIn 3 is also shown in FIgUre 6.24. 

The Friction force, which is caused by the friction between the container and the billet, 

, ot' contact area. This decreases gradually during the eXtRISion with the decreasing 

SIMUlation FCSLIlt COI*I'CSI)OIldS well with previous StLICIICS alld experimcnts (Renne and 

Sumarokova 1989). 
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Figure 6.24 Load on the tooling in RUn 3 
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It can bc sccii from the load-time (ram travel) curves that the peak load on the tooling 

Liplicars at the bcgliming of' cxtrusion and dcci-cascs during the subsequent extrusioll. 
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Therefore, it is necessary to draw attention to the need to consider the load oi-i the die 

during the initial acceleration stage. This could lead to the associated problem of 

distortion of, or damage to, the extrusion product. The speed profile setting must 

therefore take account of the peak load on the tooling (Bryant and Dixon 1999). As caii 

be seen from Figure 6.25, there are some discontinuous changes in the load-time curves 

in Run 4. The sudden drop of the load was discussed previously by Chanda et al. (200 1 

and has also been reported experimentally. It has been observed in FEM simulations that 

there were some slight fluctuations in the calculated load-time curves, which can be 

attributed to the remesh in the FEM simulation process and the discontinuous variatiori 

of contact conditions at different time steps. The sharp drop foutid here is nitich more 

significant than the fluctuations mentioned above and could only be caused by the speed 

variation. As reported by Chanda, the drop of pressure is regarded as beneficial since the 

positive principle stresses (tensile stresses) at critical regions will be redUced, thereby 

reducing the tendency of friction-related tearing. However, the sudden variation can also 

create stresses and cause the product to bend or twist, hence influencing product quality. 

The abrupt change in speed could also cause surface 'stop' marks. However, there seems 

to be no reported literature on this feature. It was reported by Pinkharn (2002) that the 

sudden drop could also happen in tapered billet extrusion. However, in this study, no 

sudden variation of load or stresses was found in Run 2. The reason could be that the 

temperature decreases smoothly from 
i 
the front to the back and here is no sudden 

temperature variation. The sudden drops could be avoided when sudden variation is 

avoided, as in the extrusion of Run 3, in which a gradual ram speed variation was 

adopted and the sudden drop in pressure was not observed. We should also observe, 

however, that it appears that the extrusion is closer to isothermal extrusion in Run 4. 
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Figure 6.25 Load on the Ram in Run 4 

6.2.2 Effect of isothermal extrusion on surface formation and material flow 

The methodology and the procedUITS Used m the StUdy on surface torinatioii can be IMilld 

in the literatUrC (Velay et al. 2003) and are not i-cl)e, -, ited here. The billet was eXtI'Lided 

down to a length of'30mm in all Ot'tllC SlInUlations as shown in Table 6.2. 

One vertical line (AB, with a length of 2000 nim, as shown In Figure 6.26) that is 0.05 

111111 Under the extrLidate surface is adopted to study the flow behavIOUr ofthe billet skin. 

The surl, ace location points are shown in Figure 6.26 in detail. It can be determined with 

good precision the location in the billet from which the Outer surt1ace layers ofthe profile 

originates. As can be seen from Figure 6.26, a 0.05mm thick outer surface layer of the 

rod in axisyrnmetric direct extrusion would form from a relatively small crescent 

wedge-shaped region located near to the dead metal zone during the extrusion. This has 

been rcported previously in the Study Of Outer surl'ace layer lormation in extrusion of 

AlMgSi ailloy (Valberg 1986). In Valberg's study (1986), the experiments were 

perf'ormed by implanting a complete gj, 1d pattern inside the billet, as shown in Figure 

6.27. 

The same analysis was perlormed t-Or the other extrusions. The results are shown in 

Figure 0.28. The material flows From tile xvcdge-shaped region gradually during 
I Cý 
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extrusion to form a surface layer that umpletely covers the rod. We can clearly discern 

the crescent wedge to be of thicker section for the varying speed extrusion wlien 

compared to the taper heated billet. In such cases the quality of' the SLII*I'a'ce could be 

expected to be improved. 

A 

uciormaLlOll iLXrCa aL 
beginning ol'extrusion 

Deformation area sho 

variation of'origin of' 

surface from A to B 

Surt'ace formation 

Figure 6.26 Surface formation in the conventional extrusion 

The area of the undefornied zone (Including the slow flowing zone, which will be 

introduced below) at the varying speed extrusion was found to be larger than that of the 

iso-speed extrusions. It has been reported previously by Sheppard and Tutcher 

( 1980,198 1) that di fTerci-it CXtrUSIOFi temperatures can lead to significant changes in the 

del'ormation zoile. llowevcr, in this study, the billet temperature In Run I is only sliglitly 

difTcrent to RLIn 3 and the reason Ior the vanation in the deformatioll zone may be mainly 

attributed to the varying speed. L- 
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The following zones have been identified previously in direct extrusion by experiments. 

as shown in Figure 6.29 (Herberg 1993, Renne and Sumarokova 1989): 

Central Zone: Metal located in the centre of the deformation zone, which will be 

extrudated through the die orifice early in the extrusion stroke to form the central section 

of the extrudate. 

oextrusion Zone: Outside the central zone, material is located, which deforms strongly 

iii shear. The material in this zone would coextiude into the surface layers of the rod 

throughout the extrusion stroke. As discussed before, the metal inside the wedge-shaped 

region is part of the coextrusion zone, which is near the slow flowing zone in both 

conventional and isothermal extrusions. 

Slow flowing Zone: In the region betweim the coextrusion zone and the dead zone, sorrie 

material flows without sufficient speed to reach the die exit during extrusion. 

Dead metal zone (Undeformed Zone): At the interface where the container rneets the die 

face, some material does not flow durin)- the extrusion stroke. iD 

Ari additional deformation zone, which has also been reported by the previous studies 

(Sheppard and Tutcher 1980) is defined as a buffer zone. It is located between the central 

zone and the coextrusion zone and inay include part of the coextrusion zone. The 

deforniation of this zone is less than either the central zone or the coextrusion zone. The 

material in this zone feeds to the zones identified above. 
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Figure 6.27 Grid clements ot'the billet in direct CXtI'LISIOII (R: --: 40) 601-111111g the OLItCr 
surl'ace layers ofthe rod (Valberg 1986) 

The five deformation zones are the typical detbrination zones established in steady state 

direct extrusion. 

Figure 6.28 SLII-I', -ICC formation area in isothermal extrusion (Left: the tapered billet 

eXtI'LISIOII; Right: varying speed CXtI-LISIOII) 

In this study, a ret'crence grid pattern, as shown oil the left offigure 6.30, was employed 

to study the flow pattern. The techniqLIC is based on comparing the deformed grid pattern 
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II In with the original undeformed pattern introduced into the billet. It has been Used i 

previous experiments and is termed an 'emptying diagram' (Walbert 1992). Presently, 

with the development of FEM, the technology can be used in a more precise but 

econornic way and it indeed gives a pertinent description of the metal flow and 

deformation in simulation of the extrusion process. 
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Figure 6.29 Regions inside the as-cas'. billet which flow diffei-ently clui-ing extrusion 
(Venas, Herberg and Skauvik 1993) 

In Figure 0.30, the flow pattern at the so-called "steady state" in conventional extrusion 

is shown, the central zone, the coextrusion zone and the dead metal zone can be observed. 

The del'ormation was observed to increase From the centre of the extrLidate towards the 

surl'ace ofthe rod, but in the outer layers of the rod the deformation was not completely 

recorded becaLISC the material forming these layers cleformed so heavily in shear that 

sonic of' the grid ilicsh was crased Ouring extrusion. This has been SLIpported by 

experiments III the StUdy of Valberg (1992). The slow flowing zone lies between the 

COCXtl'LISIOII zone aild the dead metal zone and the buffer zone lies between the central 

Zolle alICI the COCXtl*LISIOII zoile and they can be regarded as the transition zones. From the 

shape of' the elements the overall def'ormation can be estimated. The reference grid 

del'ormed Ileavil)' in the centre area and the COCXtl"LlSion area. In the bLIl't'el* area and the 
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slow flowing area, the detbri-nation of the grid is at a medium level and In the dead metal 

zone, the reference grid remains unchanged. In the sub-surface layers near to the billet 

skin the transverse lines are located very close to each other. The material flow at the 

interface of' the billet and the container is influenced strongly by sticking Friction. The 

simulation results correspond well wilh the experimental result, which is shown III 

Figure 6.3 1. The flow patterils ofisothermal extrusions are shown In FIgUre 6.32. Taper 

heating of' the billet appears to result in a different deformation pattern; the speed 

variation extrusion produces deformatio, i at the horizontal closure, which is more intense. 

This supports the con-iment above concuning the effect of the crescent wedge. 

Figui-c 6.30 Rel'crence grid pattern (Let'll: before deformation, Right: after deformation) 

As can be seen in FigUres 6.30-6.32, the five zones can be discerned in all of the 

extrusion processes. The area of the de. ---id metal zone in the varying speed extrusion is 

largcr than that in the first two runs. 

Hoxvc,,, ci-, it is difl-icult to observc the c'etail of the material floxv From the macro-scale 

aIjaIySIS I-CSLI]tS. III thIS StLidy, a gI'OLIP of material points (reference points) located 

230 

DLIC tO CXtl'CIIICIY Fierce det'ormation, 
the grids here are indiscernible. 



different deformation areas is selected and the traces of these points are shown 1rom the 

output of the prograni, as shown in Figure 6.33. By tracing back the travel route of these 

points, t ie difTerence between the deformation zones can be discerned clearly. The initial 

and final coordinates (after a rarn travel of 40mm) oftliese ret'erence points are shown in 

Table 6.3. 

Figure 6.31 Example ot'gi-idded billet wl1CII CXtFacted fi-om the 'steady state' location 
(Tutcher 1979) 

All the rel'erence points flow along the direction to the container during the LIPSCttJIIg 

stage and then flow to the die exit along a curved I'OLIte when the extrLISIOll commences. 

Figure 6.32 The material flow pattern in tapered billet exti-Lison (left) and in varying 
speed extrusion (right) 
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Figure 6.33 Ti-aces of the points 

The traccs ofthe points III RLM 2 are al-, o similar to those in cow, -entional CXtl*LISIOI1. III 

Run 3, where the ram speed Nvas varying in a continuous manner, the points 4 and 5 

travelled along a Nvcdge shaped I'OLlte for a short distance during the varying speed 
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extrusion and were not extrudated out of the die. We may observe that they have been 

recorded within the slow flowing zone. Comparing the traces of the point 3 with those in 

the first two Runs, differences can also be observed. Point 6 relocated to the slow 110wing 

zone in all of the simulations. 

As can be seen in Figure 6.33, there are some differences among the traces of the points 

with identical initial coordinates in different extrusions. In the conventional extrusion 

Run 1, Point I is located at the central extrusion area, Point 2 located in the buffer zone, 

Points 3,49 5 located at the coextrusion zone and Point 6 located at the slow flowing area. 

In the tapered billet extrusion, the points are located at identical positions. 

Table 6.3 Initial and final coordinates of theDoints 
Point Run X 

(Initial) 
mm 

y 
(Initial) 
nuTi 

x 
(Final) 

I 
mm 

Y (Final) 
mm 

Average 
speed 
(Min/S) 

I 1 0.1 25.0 0.039 -1420 362.5 
2 -- -- 0.051 -1420 362.5 
3 -- -- 0.030 -1030 415.76 

2 1 15 8.0 5.87 -1400 354.25 
2 -- -- 5.83 -1410 356.75 
3 -- -- 6.04 -1060 430.8 

3 1 28.41 8.46 6.58 -544 143.5 
2 -- -- 6.58 -655 171.25 
3 6.69 -553 233.2 
4 -- -- 17.4 20.1 6.4 

4 1 28.41 4.0 6.72 -313 85.42 
2 -- -- 6.67 -459 114.75 
3 -- -- 20.1 0.963 3.53 

5 1 28.41 3.0 6.71 -245 68.39 
2 -- -- 6.71 -398 99.5 
3 -- -- 21.7 0.851 2.81 

6 1 28.41 2.0 18.92 0.62 2.40 
2 -- -- 20.21 0.65 2.07 

F3 --T -- 
23.1 68 2.19 

The coordinate systern is shown in Figure 6.33. 

The avcrage flow speed of each point can be determined from the co-ordinates shown in 

Table 6.3. The i-riaterial flow velocity decreases from the centre to the edge of the 

extrudate. Although the material in the coextrusioi-i zone experiences the heaviest 
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deformation, the material flow speed is not as high as M the central zone. It can also be 

seen from Table 6.3 that the slow flowing zone can be regarded as a transitional zone, in 

which the average material flow speed decrease gradually from the coextrusion zone to 

the dead metal zone, which can be judged from the final coordinate of the reference 

points. 

- ram speed occurred in Run 4, the route oftlie It was noticed that when the drop of the 

reference point deviated slightly, as can be seen from the trace of V3' in Figure 6.33. It 

can also be seen from the trace that Point, 3 moves into the slow flowing zone, which has 

not been extrudated out of the die during extrusion. 

The variation of the trace indicated that the material flow is unstablc in varying speed 

extrusion, which combined with the w riation of the stress, can influence the product 

quality during extrusion. It is thus confirmed that a sudden alteration of ram speed should 

be avoided during extrusion. 

The loci shown in Figure 6.33 imply that there are indeed differences in the flow of the 

extrusions simulated. However, the differences are small and unlikely to cause large 

property variation in the differing modes of extrusion. 

6.2.3 The unsteady nature of flow during extrusion and the influence of FEM inesh 

on the simulation result 

Although in the above discussions, the term 'steady state extrusion' was adopted, it 

should be pointed out here that non-Steady characteristics throughout the complete 

extrusion process are found. It is reflected in the expanding coextrusion zone and 

shrinking undeformed zone (as well as the slow flowing zone). Figure 6.34 shows the 

evolution of the undeformed zone (including the slow flowing zone). The simulation 

results correspond well with former cxperimental results, as sho\vn in Figure 6.35 

(Tutcher 1979). 
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In Figure 6.34, the material flow patterns at different extrusion stages are clearly shown. 

The dead metal zone appears at the beginning of extrusion and the deformation zone 

extends back into the billet. Regions of significant shear can be seen extending froin die 

entry and along the central axis and from die entry to the periphery of the billet bounded 

by the dead metal zone and the container/billet interface. The interface of the dead metal 

zone and the co-extrusion zone migrate to the dead metal zone and the volume of dead 

metal zone shrinks during extrusion. 

Considering the unsteady character of extrusion, the comparison betwcen the 

conventional and isothermal extrusion may be influenced. However, in this study, as 

mentioned before, all comparisons are performed at the extrusion stage with the same 

ram travel distance. In this way, the influence of the unsteady extrusion can be 

eliminated. 

It has been reported previously that the i tiesh and remesh setting used in FEM simulation 

can influence the simulation results (Herberg 1993). The predicted load, the strain rate 

and the stress fluctuate slightly at each time step. Although the deviation does not 

influence the normal FEM output (such as the calculated flow stress or strain) 

significantly, it would be critical if it can influence the sin-iulated trace of the points in the 

present study. By comparing the simulation output at different mesh settings, the 

influence of the mesh was checked carel'ully as discussed below. 
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Figure 6.35 Expenmental i-esults cor,, --enilng the microscopic flow at 'steady state' 
(TLIICIICI', 1979) 

Two simulations concerning one identical extrusion (RLIII 1, as shown in Table 4) but at 

different mesh setting (as shown in Figure 6.36) are performed. The calculatcd traccs of 

the rel'erence points 2 and 3, which Nvci, e Llscd III tllC 111'eVIOLIS section, are compared as 

shown in Figurc 6.37. 

As can be secii from Figure 6.37, the traces ofthe points with identical mitial locations 

are coincident. It is clear that the intILICIlCe Ol'tllC 111CS11 SIZC Oll the SIMUlation ofmaterial 

can be ignored according to this test result. The medium inesh was adopted in this study 

with the objection of shortening the simulation time. Furthermore, the mesh setting in all 

of' the four SIIIILI]atlOlIS is identical to each other and the influence of' the mesh can be 

evcii smallcr. Then it can be said that the simulation is effective in predicting the matcrial 

flow history. 
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(a) Fine mesh (With the size of 1.2) (b) Medium mesh (With the size ot'3.0) 
Figure 6.36 Diffei-ent mesh 

6.3 Conclusion 

(1) Balanced material I'low and tempe-'atUre distribution can be achieved by suitable 

location of'pockets. The material substracture is also shown to be homogeneous around 

the extrudate perimeter when the OptllllLllll pocket position IS SItUated. 

(2) Even a small oft'set of the pocket can cause a significant change of the nictal flow 

during extrusion. Unsuitable design of the pocket die 1'eSLlltS in a deterioration ot'velocity, 

temperature and hence Stl'UCtLiral homogeneity al-OLInd the surlace. 

(3) These results demonstrate that the problems presented in Chapter 4 can be at least 

partially solved by the method presented here. 

(4) The location and extent of the coexticusion zone in varying speed extrusion is higher 

than that in conventional extrusion, which indicates that varying ram speed can Influence 

the flow pattcrn significantly. 

(5) By comparing the cleformed grid-pattern inside the billet xvith the original 

underl'ormcd pattcrn, precise informa'ion concerning the location of the ditTerent 

deformation zones can be provided in dc-tail by FEM SIMUlation. 

238 



9 

8 

7 

E 
E 

+.. 0 
04 

+_o 

1 

0 

P2 P2' P 3. 
PT 

P4, 
P4' 

10 20 
Distance to the centre axis (mm) 

30 

Figtire 6.37 The inlItience of inesh size on the trace sinjulatioll 

(6) The loads on the tooling drop sharplN when the ram speed is dccreased suddenly. This 

could a(Tcct the product quality. B. v the Lise oftgyracluall. v changing ram spced or smootlj 

distribution ofthe temperatUl'C 11, the bIllet, the sharp drop can be avolded. 
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(7) Isothermal extrusion could be approximately established by either the tapered 

temperature billet or by varying the extrusion speed. The extrusion time can be saved 

significantly when varying speed extrusion is employed. However, the exit temperature 

in the transverse direction of the extrudate in isothermal extrusion is not as homogenous 

as expected. True 'isothermal' extrusion is therefore impossible using conventional 

tooling. 

(8) The flow pattern at the very final stage was reported to be quite different from the 

so-called steady state extrusion, which reflects the "unsteady" character of the extrusion 

process. 
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7 Conclusion and suggestion for future work 

(1) FEM and other numerical models have been successfully applied to the modelling 

and simulation of hot extrusion processes and subsequent heat treatment processes. 
FEM has been proved to be effective in predicting the thermal-mechanical parameters. 

such as temperature, strain, stress, velocity, etc. 

(2) Detailed and visualised studies of the mechanical deformation history (i. e. material 
flow) by FEM have been realised. 

(3) Most of the important information required by industry, such as extrusion load, 

velocity control and extrusion die optimisation has beeii predicted by FEM simulation. 

(4) FEM has been integrated with other numerical models, such as physically based 

metallurgical models, cellular automata models and Taylor-Bishop models, which are 

the basic meso-scale models of computational material science. 

(5) Integrated modelling commenced by using FEM and these results were used as 

subsequently the initial settings for the substructural models. Detailed studies of the 

metallurgical behaviour after extrusion and during the heat treatment have been 

performed and agree with published experimental results. 

(6) The empirical models, the internal state variables model (physically based model) 

and cellular automata are effective in simulation of the recrystallisation process 

occurring in the extrusion and heat treatment of aluminiurn extrudes. The 

recrystallisation dynamics, recovered structure and the recrystallised grain size could be 

approximately predicted. 

(7) Typical applications of the integrated model are the analysis and synthesis of the 

individual influence of forming parameters during extrusion using the Taguchi method 

and the comprehensivc modelling of complex shape extrusions. 
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(8) The visualisation of both the deformation history and structural evolution after 

extrusion have been computed using the integrated model reported in this thesis 

(9) The calculated recrystallised grain size, the subgrain size and the volume fraction 

recrystallised in the study of T shape extrusion are in agreement with the pi-cvlously 

reported experimental results. It is also shown that the FEM method can predict 
deformation in three dimensional complex shape extrusions. 

(10) In multi-hole die extrusion, the peak load increases as the number of holes 

increases for any given reduction ratio. The extrusion pressure can be reduced by 

choosing the most suitable value of eccentricity. 

(11) In multi-hole die extrusion, there is no significant difference aniong the 

recrystallised grain sizes in the centre of bars that are extruded from the different die 

orifices. For the bars extruded from the side hole, the surface recrystallised grain sizes 

are different at different areas. The recrystallised grain size on the surface, whicli is 

nearer to the die centre, is smaller than the grain size on the opposite surface. The 

substructure is also heterogeneous. 

(12) The unbalanced material flow caused by multi-hole die extrusion can be partially 

solved by adding pocket to the die. Balanced material flow and temperature distribution 

can be achieved by suitable pocket design. The material substructure is also shown to 

be homogeneous around the extrude perinieter. 

(13) During pocket die extrusion, even a sinall offset of the pocket can cause a 

significant change of the metal flow during extrusion. Unsuitable design of the pocket 

die results in a deterioration of structure homogeneity around the surface. 

(14) The influence of the scaled down modelling on the predicted results of numerical 

simulation is significant. Although the average strain rate, tile temperature and tile 

Zener-Hollomon parameter could be similar to the model with tile original size in 

separate runs, it is difficult to reproduce all of the variables in one simulation run. 

Scaled modelling could reproduce some information at the macro Icvel: for 
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example, the material flow pattern. However, quantitatiN, e analysis using scaled doNvii 

numerical modelling should be avoided. Full size modelling is recommended for the 

simulation of manufacturing processes, but requires detailed comparison \vith 

parameters collated from industry with suitable mesh. Industrial scale extrusion can be 

simulated without loss in computing time. 

(16) Using subroutines integrated into con-u-nercial software Forge 2 and Forge3, 

special studies of quality control, such as the commencement of surface cracking have 

been performed. 

(17) A study of isothermal extrusion has been achieved by FEM simulation. The flow 

pattern at the very final stage was reported to be quite different from the so-called 

steady state extrusion, which reflects the "unsteady" character of the extrusion process. 
Control by ram speed was more accurate than by utilising a taper heated billet. 

Suggestions for future work: 

The range of possible applications of the finite element method extends to all 

engineering disciplines, but civil, mechanical and aerospace engineers are the most 
frequent users of the method. The method is also finding acceptance in 

multidisciplinary problems where there is a coupling between one or more of the 

disciplines. 

However, to give a precise simulation of virtual manufacturing processes, much work 

is still required. For example, when modelling the hot extrusion process in the present 

work, the extrusion tooling is assumed to be rigid. The heat transfer between the billet 

and the tooling exists in the software. However, the deformations of the dies are 

ignored. Although the influence of the rigid model on the simulation result is generally 

regarded as minimal, there is an uncertainty concerning the simulation result. 

To act as a general numerical modelling tool to study material cvolution, FEM has to 

be integrated with other numerical models, such as physically based metallurgical 

models, cellular automata models and Taylor-Bishop models, which are the basic 

ineso-scale model of computational material science. Integrated modelling commences 
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by using FEM and subsequently transfers the simulation results to the initial settings of 

the substructural models. Recrystallisation dynamics, the recovered structure and the 

recrystallised grain size can be approximately predicted. Most of these physically based 

models have not been well researched and in this area work is required to 

experimentally determine the constant involved. 

The advantage of the integrated model comes from grouping the disciplines from 

different research fields, which are related to each other. However, the individual 

models may have assumptions and uncertainties. For example, the incomplete and 

vague understanding of the physical principle of recrystallisation strongly limits the 

development of the metallurgical models. Either the cellular automata or the physically 
based models have limits in their applications concerning the deformation conditions 

and material components. In almost all of the numerical models, assumptions are 

unavoidable since it is impossible to consider minor factors. Therefore, wheii 
developing the integrated model, precautions have to be taken for the application field 

and the limitations of the model. This also requires further study. 

It should also be borne in mind that there is no intrinsic scale limitation of the 

application of either the FEM or the CA model. Although most of the work in the 

present study concentrated on continuum macro or meso-scale simulations, both the 

FEM and the structural model can be applied to i-nicro-scale simulations. 

In future studies, the numerical modelling by FEM and metallurgical model could be 

refined and developed according to the directions below. 

(1) Subroutines of Forge2 and Forge3 have been developed to predict the metallurgical 

behaviour required to be stanclardised regarding the material and defon-nation 

conditions. 

(2) Texture models are to be integrated into the FEM program to pi-edict the deformed 

structure, such as the orientation and misorientations of the grains, which is one of the 

most critical inputs for the initial state of metallurgical models. 
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(3) Effects of secondary particles should be studied further and more precise structural 

modelling by CA as regards the retardation of recrystallisation by small particles or tile 

promotion of recrystallisation by large particles should be examined. 

(4) With the development of the computing hardware, more complicated extrusion 

simulations with the deformable dies can be established. 

(5) Experiments using EBI and EBSD are required to give detailed information of the 

deformed structure and as a means to justify the simulation results. 

The contour of an expert system is emerging which is shown in Figure 7.1. However, 

because of the lack of experimental justification, the constants used in the various 

continuum models and metallurgical models require standardisatioll. The integration of 

the varying content of the system into a single software package is required. 
Considerably greater computing times would, at the present, be a deterrent. 

Extrusion process design 

....................................................................................................................... ............................................................................................... 

Extrusion Extrusion requirement Mechanical properties 
models FEM Model Surface quality 

Metallurgical Model Microstructure 
Fracture Model 

The 
system 

Avoid defects 0-otimisation of Optirnise the structure 
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Figure 7.1 The function of the system 
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Appendix A: Metallurgical Model 

By empirical and physical means, a modest degree of prediction of nucrostructure can 

now be achieved. Excellent reviews on modelling of static recrystallisation (SRX) have 

been given by Gottstein et al. (1999,2000) and by Shercliff and Lovatt ( 1999). Sorrie of 

the modelling work has been achieved in the field of hot rolling (Chen 1992, Duan 

2002 , and recently in the field of hot extrusion by Duan and Sheppard (2004). Some 

models introduce many tuning parametzxs, especially for the physically based models. 

These parameters depend mainly on the material. To estimate their real values, specific 

and nurrierous experiments would be required. Recently, the inverse method combined 

witli FEM has been adopted to define the values of these parameters from those in the 

literature. The FEM is run iteratively until the appropriate value is found to match the 

experimental measurement. Duan and Sheppard (2002,2003) have used the inverse 

method to give the parameters for alloy 5083 and 2014. 

The relationship between the volume fraction recrystallised (Xv) and the holding time 

(t) is generally represented by the Johnson-Mehl (1939)-Avrami (1939)-Kolmogorov 

(1937) equation (JMAK), which predicts the relationship betweeii the volurne fraction 

recrystallised. (Xv) and the holding time (t) and is generally represented as: 

tk) 
Xv -1- exp ý-0.693( 

t50 
(Al) 

where t is annealing time, k is the Avraini exponent with a commonly reported value of 

2, is the time to 5011,6 recrystallisation. For the calculation oft the physical t50 50 

model is commonly regarded as re\'ealing the inechanics driving the transf'ormation. 

Previous studies (Furu etc. 1999) have shown that the physical models describe tile 

cxperimental results well for uniform processing conditions. Tile model I- was also 

successFully applied to tests in which the strain rate was increased (when 
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microstructure transients were not observed). Recently, Sheppard and Duan (2003) 

have confirmed that the physical model will give better computed results than the 

empirical model in the simulation of aluminiurn extrusion. Only the physical model 

proposed by Furu and Zhu et al (1999,2000) has been used in this study. 

In equation (Al), t50 is calculated based on the stored energy (PD ) and the density 

of recrystallisation nuclei (N V) (Furu 1999). 

t50 -- 
c(I) 1/3 

MGBPD NV 
(A2) 

where C is a calibration constant. M GB Is the boundary mobility. Nv is the density 

of nucleation sites and defined as: 

N, V = (C d/ Ö')S V (F-) (A3) 

where Cd is a further calibration constant, 8 is the subgrain size, Sv is the grain 

boundary area per unit volume 

Sv (F-)= (2/do)[exp(F-)+exp(-F-)+II (A4) 

(I is the grain size after homogenisation. The stored energy PD Is approximated by 
0 

PD ":::::: 
Gb I 

[pi (I - Ln(I Obpj + 
20 

(1 + Ln( 
0 'ý 

10 b6 0 (A5) 
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where G is the shear modulus, b is the burgers vector, p, is the internal dislocation 

density, 0 is the misorientation and 0, is the critical misorientation for a high angle 

boundary(-15'), dois the initial grain size. 

The evolution of6, pi and 0 has been explicitly expressed in differential form 

based on the most classical theories of work hardening and dynamic recovery. 

d8 =6 (8ss - 6)dc (A6) 
F-66ss 

dü =1 (Oss - 0)dc (A7) 
E0 

+ 1/2 dPr = dPr + dP r= (ClPr C2 CTf 
p, )dc (A8) 

z 

where 6ss and Oss are the subgrain size and misorientation at steady state deformation. 

F-8 and F-0 are characteristic strains, p, is random dislocation density, C1 and C2 are , 

constants. The internal dislocation density consists of two parts, Pr and pg (the 

geometrical necessary dislocation density). 

Pi ..: Pr +Pg (A9) 

(A 10) 
b Rg 8 

where pi is the internal dislocation densitý'. 11R, is the local lattice curvature. 
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For site-saturated nucleation, the recrystallised grain size is simply calculated from 

nucleation density as: 

DN -1/3 
rex v 

where D is a constant. 

11) 

The constants used in this study are taken from previous studies by Furu ( 1999): 

CIMGB 
=3. IxIO" and Cd=1.48 x 10-4 (when grain size and subgrain size are in Units 

of 'ineters), G =2.05 x 10 MPa (Duan 2002), b=2.86 x 10-" in (Duan 2003), 

po = 1011 in' (Furu 1999), J" = 1.8 X 10 -" M, 00 = 00 -F, 5 =9XI Oll z -1 

CO =8X 
10-5ZI14 (zhu 2000), 11Rg =5XIO-4in-' (Baxter 1999), CI = 90, 

C =2x 10', D= 2.347 (Furu 1999). While some of the constants (activation energy, 

Burgers vector, etc. ) have been determined experimentally (fundamental tuning), it 

should be pointed out that some other constants are necessarily adjustable parameters 

that must be determined from a range of values as part of an experimental tuiiing 

procedure. For example, the initial dislocation density is reported to be in the range of 

10' to 10'' in' (depending upon alloy composition and pre-heat treatment) and 

CIM is given the range of 10'to 10"for different alloys (Duan 2003, Furu 1999, GB 

Sellars 2000, Duan 2002). 

10-6 C,, is reported in tile range of (Duan 2002) to 10-3(Duan 2002) for different 

alloys. For the constants Cl and C2, Sellars lias givcn equatiolls expressed as: 

C, =M/b 12) 

268 



where M is the Taylor factor, b is the Burgers vector, 

C2 = Mobý (A 13) 

where Do is the diffusion coefficient, Pis the drag force. The relationship betweeii 

these two parameters is given as: 

1/2 C2 ::::::: (Z/GfPr )ssCl (A 14) 

where ss means steady state, (Tf is the friction stress, effectively driving dislocation 

motion. Although the relation was giveii in equation A14, it is still difficult to give a 

precise value for any of the two parameters due to the lack of experimental 

measurements. The method of "curve fitting" or "Inverse iteration" had to be adopted 

to give the precise values of these constants. Although the exact value should be 

determined from the experiments, the approximate values are critical as starting points 

tor their exact determination. 

The procedure of tuning the constants is of primary importance for the prediction of 

metallurgical behaviour by these models. Although the sensitivity test of these have 

being performed previously by Shercliff and Lovatt (1999), further discussion should 

be continued because the integration of the defon-ned structure into the metallurgical 

model is of paramount interest. 
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Appendix B: Analysis of the gap 

To eliminate the gap between the material and the die at the die land area, several 
methods are employed and results are reported below: 

Rod extrusion: 

Table B1 Numerical experiments to eliminate the orifice between the material 
and the die 

Test Experimental 
result Different methods tried to eliminate the orifice 

Master Master Smaller Elastic RK2 Time visco- 
With 6.2 With element* plastic step plastic 

6.1 fi-iction 
GAP 0.4191 0.3298 0.2310 0.3929 0.6976 0.3470 0.3358 

(1111TI) (nim) (111111) (111111) (111111) (111111) (111111) 

TIME 2: 54 3: 25 38: 39 2: 55 4: 24 3: 09 2: 51 

Peak 669.41 260 280 256 264 276 '168 264 
load ]VIN/M2 Tons Toils Tons Tons Tons Toils Toils 

295.6 Tons 

voluill Begin 
e loss 100600 100600 100600 100600 100600 100600 100600 

End 
99499 99633 99457 99452 99852 99571 99571 

Remark Step76 Step77 Step 121 Step70 Step45 Step86 Step74 
s 
( conta 
ct) 

*Smaller element: 0.2mm, normal: 0.5 

Extrusion Con itions: 

(original experimental settings can be found in the PhD thesis of Vierod 1983, as 
D4343A in Appendix 11) 

material: AA2014 
Ratio: 30 Storage : 400 
Die diameter: 27.38 Rod travel distaricc: 5.5mm, speed: 7mnl/s 
Friction : container: 0.9 . rod : 0.8 . 

die: 0.4 
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FEM Mesh setting up: 

Cylinder Mesh size: BoxI SIze: 5.0 
52 0 160 0 0 -50 

Box2 Size: 2.0 
12 0 34 0 0 -30 

Box3 Size: 1.0 
10 2 32 0 0 -30 

Box4 Size: 0.5 
9 3.6 31 0 0 -30 

Box5 Size: 0.2 (only used in smaller element) 
8 4.8 15.6 0 0 -15 
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Appendix C: Communication concerning subroutines 

(1) Some paraineters used in subroutines: 
In subroutine "loiv_intg", there is a parameter "delta_t", how to use It in subroutine 
"Ioiv Util" 
In subroutine Aoiv 

- 
util", there are "gs 

- 
eta" and "gs_eta_poh1C, but in subroutine 

"1oiv_intg", there is only "gs 
- 

etaO" or "gs_etal" but no "XXX-Point". Can we add 
the "gs_eta_pointO" or "gs-eta_pointl" in Aoiv-intg"? 

(2) How can I get the real value of a defined gs_eta parameter in Aoiv 
- 

intg". 
The output of a parameter from the subroutine Aoiv 

- 
intg" always shown as "XXX 13D 

Element]". It is different from "loiv_util", from which we can get the real values from 
the output. 

For example, I define an OYANE parameter in "loiv_intg", 

....................................................................................................... 
else if (nom. eq. 'OYANE') then 

C Oyane damage criterium / Critere d endommagement d'Oyane: 

C Oyane=lntegrale[(] -aa*press/Sigec, )dEpsb] 
c 
C LOW INTG 
C OYANE 
C PAR AA <valeur/value> 
C PAR EQ_STRESS= EXIST 
C PAR STRAIN_RATE= EXIST 

C ETA OYANE <valeur/value> 
C ETADt=O 
C FIN LOI 

* 

if ((nbpar. ne. 3). or. (nbeta. ne. 2)) goto 99 

aa - gs_parO(I) 
si geq= gs_parO (2)+ 1- d- 10 

ebp = gs_parO(3) 

gs_etaO(I) = gs_etaO(I)+dniax I (OdO, (I. dO - aa*pressO/sigeq) 
*cbp*delta-t) 

gs_etaO(2) = delta-t 
ITTY K 
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The output of the parameter Oyane is shown below: 

1-twe 1 [billet_32. fg3l] 

Currený 1-'calar Fields 
................................................................... UYANE (I -f ., D element] 

. ......... - .................................................................. Cuiieii ec: tofF ie I cls 
.... Current Displacement 

palts 

... billet- 
bille t- 

billet- -2 
billet J 

: .... :0ets 
.... Cutting Plaries 

sourfa --- es 

.... Partic-le Traceýý 

10atior IS 

jects -pace F'Iot,: - Results L, 

View 1 
Case 1 
Frin [273) 

mmw- 1 

11.7 

I-I. R 

A. 

11.4 

0.1 

1-17-14-1 Ti rn e 
TI I-vl E -. 0. Tl 4J, H- '--'Cl. l: ll I 

As You C, "MI SCe, there is Oyane 13D elementl (With the value range 0-1). What is the 
different between the Oyane and Oyanc 13D element]. If I want to get the real values 
of the paranictcr, must I define it in "loiv-util". 1 

(3) 1 nict some prob1cm wlicii I try to build the progranis Usci-PrOjects-03 in Fortran: 
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File Edit ', hev. ) Insert Project Build Took V/indov. ) Help 

J 
ck JEQ 2ý 610 It 71 

-STRAIN-BOX 

-, /orkspace uhl': 2 pole 

f 8.1 

----------------------------------------------------------- - 
SUhIC"-It 1 1-1 Ei Cl 1 7- t1 

-1 
TIL h( 

-1 
JIL_11-V=lDi 1-1 hý ;l =ý IIi hý ef . =ý de- , 

-- 
It 11-it ,t P-- A r---IILPFJ , ýl Ie SS, C-I r- 

positionO, vites. cEpe-IJ, 
gra. ddO, qradviD, gs . 5.2: Ll , -: I: - pf.:; II 
t pl-I Ll 

Ready 

bu ci 7)1.... Find ii Trii F ii Iý ý-l 
r, FiIe-, 2 

Ln 414, Col 2P, 

I clon't know what does it mean. When I run the projccts, a dialog always POI)S OLIt: 

F1 'IN 1ý, q, """I II 

na r-I e- elqt ii -: -, ior 

)SIPI ocessing 

This application has Failed to star t because mpich, dll ý, vas riot f ound. P e-htalling the application rna-y- fix Ns pit oblem , 

I CIK 
I 

I re-install the program a few times, bUt it seems still doesn't work. However, 
Usei-Pro 

- 
jects_v70 works perfectly. 

(4) Where can I find the English definitions for all the defincd parameters (for exalliple, 
Incr, elt, lilt, tPSO, tclllpoý Presso, f0l'CCO, l)OSItIOllO. N'ItCSSCO) LISCd III the subrout I ties'? 
Do we llave some parameters defined for controlling tile ram speed (ill direct extl. usioll) 
In the filc of "10iv-Util". 

-------------------- cc 
Link ing ... LINY 

. warning LNP: 41D89 

........ ....... .......... ...... ... . ----- s e, -q fg 
-' --n--, igura ,I . -: I -ý= -------------------- t iril 1 :2 Reie, 5: = 

all references to "C, LEkUT--,., 
-, '. dil" disca. rded hy /C)FT: REF 

---qf, 93 veN. exe -0 err-or (s) c- 
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Dear Sir, 

Please find enclosed my reply to the queries. 

(1) Parameters used in subroutines: 
In subroutine "loiv 

- 
intg", there is a parameter "delta 

- 
C, Which I can not find it iii 

"loiv-util". How to define it in subroutine "loiv_util' "? 

Please find enclosed the difference between the loiv_intg subroutine and tile loivutil 
subroutine. 

Volume user state variable SV creation/modification 
(Oyane damage criterion, Vickers hardness, ... ) 

In LOW UTIL the state variables SV can be defined : 

as a function from parameters wliicl-ý can be 
themselves defined in other laws as SV or 
DV: 

a= 4PIýP2iP35 ... P.. ) (type 

as a particle derivative 
function of the law parameters: 

Aa/At :::: f(Pli[)2ýP3i* 
--Pill) (typC 11) 

The Oyane darnage criterion is an example of the latter 
AOyaile/At=(l -aa*pressure/Sigeq)*Ebp 
In LOW UTIL it is not possible to create dynamic 
variables DV. 

LOW UTIL 

(file loiv-util. f) 

Volume user state variable SV creation/modification 

In LOW INTG the state variables SV can be defined : 

as a function of parameters which can be themselves defined 
in other laws as SV or DV : 

a= 4PIT2T3i 
... Pill) (type 1) 

- as an integrated transportequation 

SUrnmed for each time step At as 
a(') = f(a At, pi P2("), ---Pm PI P2(), ---Pm (type 111) 

a(o) is the state variable SV %'alue at the beginning of the time step, a(') 
its \, alue at the end of the time step and pi(('), I)i('), are the m 
parameters VIILICS respectively at the beginning and the end of the 
time Stcli. 

i- in LOI\/'UI'IL or ill type I state vai-iablc,,, can be programilled ci! Ile] I 
IV INTG. 

LOW INTG 

(f iii e 
loiv_intg. 1) 
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As said previous, in the lolv_intg subroutine you can defined the parameter as ail 
integrated equation. That's why we hav.. ý the parameter DELTA 

- 
T. 

In the lolv_liitg it is not an integration, that's why we didn't need this parameter. 

In subroutine "loiv 
- 

util", there are "gs 
- 

eta" and "gs_eta_point", but in subroutine 
Aoiv-intg", there is only "gs 

- 
etaO" or "gs-etal" but no "XXX_point". Can wc add 

the "gs_eta_pointO" or "gs 
- 

eta_pointl. " in '1oiv_intg"? 
No it is not possible to add them 

(2) How can I get the real value of a defined gs_eta parameter in "loiv 
- 

intg". 
The output of a parameter from the subroutine "loiv_intg" always shown as "XXX 13D 
Element]". It is different from "loiv-util", from which we can get the real values fi-orn 
the output. 
Im am not sure to understand this querie, GLVIEW INOVA (the post processor) write 
automatically 3D ELEMENT when the variable in calculated in the volume. GLVIEW 
INOVA write Node if the variable is calculated to the node. 

For example, I define an OYANE parai-. ieter in Aoiv 
- 

intg", 

. ..................................................................................................... 
else if (nom. eq. 'OYANE') then 

C Oyane damage criterium / Critere d endommagement d'Oyane : 

C Oyane=lntegrale[(l -aa*press/Sigeý)dEpsb] 
c 
C LOW INTG 
C OYANE 
C PAR AA <valcur/value> 
C PAR EQ_STRESS- EXIST 
C PAR STRAIN_RATE= EXIST 

C ETA OYANE 
C ETADt=O 

- <valeur/value> 

FIN LOI 

if ((iibpar. iie. 3). or. (iibeta. ne. 2)) goto 99 

aa - gs_parO( I) 
sigeq= gs_l)ai-0(2)+I. d-10 

ebp - gs_parO(3) 

(Ts-etaO(I) = -, -'s-etao(l)+dmax 
I (Od0. (l. dO - aa*pi-essO/sigeq) 

*ebp*delta-t) 
ctaO(2) delta t 

........................ ......................................................................... 
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The output of the parameter Oyane is shown below: 

___j 

a -ý F-j 1 

I Curfel it -1 c -. ý: -alar Field, ý- 
....................... ..... ......... (AN E[ -'D element] 

0' 

.................................................... 

.... Curreil 'Vector F1 e Id s 

.... splacement Current Dii. 
I_;.. Parts 

.... billet 

.... billet 

.... billet -2 

.... billet 3j 
.... . De t s. 
.... Cutting Planes- 

I so -Surfaces 

.... Particle Traces 
6. nnotahons, 

sRP-, ý- uIýs0b1ec ts. PI 

View 1 
Case 1 
Frin 

AR 

1-1.7 
F, 

Ti rr-i e: 1-1.7 '14 
TIE: Cl. 7 14 H- 90.1111 

As you can see, there is Oyane 13D clement] (With the range 0-1). What is tile 
different between the Oyane and Oyane 13D elemenfl. If I want to get tile real values 
of the parameter, must I define it in "loiv-util"'. 1 
There is ilo difference, Inova add automatically this dcfinition 

(3) 1 met some problem when I try to build the programs Usei-Pi-Oiccts-v63 in Fortran: 

-P File Edit ý-iev-ý In. 
-ilt 

Ploject Bijild Tools Windol.. 'o HPIp 151 x 

T1 W ýý EQST RAI N -B OX A 10 j 
X --------------------------------------------------------------- 

1 -1 t -g ( noirt, ric'm I hec, I, nbpal I-ih, e t. =a 
17'ý-Vorkspace'util': 2 pio PIt 111t, týýSO, t P- T(L ýý 0 C-, tI 

positionfl, vitesseO, 
gr, =ý610, gra'JI-70, cls et3l] 
tpsl, teJ(Lrll, forc-el, por 

Linking. 
LINK : warning LNPACIN-19 

tjquratloný seqf, g3_-b ý Fý. - ------------ 

all ieferences to "l-11EAUT32' dll" ý,:? T REF 
jseqfq3_vb, 

3U exe -0 errorýs) .1 warninci(s) 

7\, Build , ý` Ele[D 

Ready 

Find in Fileý, 1X Find in File: -ý 2 41 
Ln 414, Ccd 2P, 

I don't know what docs it 111CM1. Wilcii I run the projects, a dialop, always pops out: 
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I ý' I -' 

h -ý pe-r ii si ci r 

stpi ocessim-1 

This appliCatilYl haS failed to start because ri- pich. dll FlOt f DlJnid, Re-hStallinq the application rna-y- fix thic; Fir oblern . 

I i-c-install the program a Jew times, but it secins doesn't work. I Io\vCvcI-, 
UserProjects-v70 works perfectly. 

Did You follow this procedure to prepare and rLin YOLIr SHIlUlation '? 

* FORGE3 multi-processors 

Step I: Writing the command. file 

The LISCI' 111USt COPY the file named "parfg3_63. bat" from the "tempo" directory 
into "Usei-Exe" directory with the n.,, me "parfg3_63U. bat". Then, lie must edit this 
file and change the localisation and the name of the new Forge3 executable file 

gcneratcd after the i-ccompilation of the project. 

4ý parfg3-k, 63. bat" initial file 

cmd /c "copy C: \FOIýGE3-V6.3\Usci-f'3\UserExe\l)ai-fg3_v63. exe I)ai-fg3_v63. exc" 
cmd /c "copy C: \FORGE3-V6.3\MPICII\Iib\iiil)icli. dlI mpichAll" 

cnid Ic "111l)1RIII. eXC -np 2 parfý)-3_N,, 63. --xe & paLISC" 
cnict /c "del /F 6parfg3_N,, 63. exe 
cmd Ic "del /F OmpicliAll 

66 

parfgy3_v63U. bat- modified rile 

cmd Ic "copy C: \FORGE3-V6.3\Usei-F3\Usci-Exc\l)ai-fo, 3_N, 63U. exe 
parfgj3_v63LJ-exC" 
cmd /c "copy C: \FORGE3-\/6.3\NIPICH\Iibýlll)icli. dlI mpich. dil" 
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cmd /c "mpirun. exe -np 2 parfg3_N, 63U. exe & pause" 
cmd /c "del /F %parfg3_v63U. exe 
cmd /c "del /F %mpich. dll 

Step 2: Writing the "utilexe. 3d "file 

It is possible (cf. Reference Guide of the Forge3 desktop) to add a user's illcilu M 
the Forge3 launcher. The user needs to create a file named "utilexe. 3d" ill the 
"Util-directory from Forge3 package, with this syntax : 

First line (title ofthe user's menu) : Forge3 MUItI-PrOCeSSOrS 
Second Ime (localisation of the command File) C: \Iý-orge3-ý,, 6.3\Uset'3\Usei-E-xe\pai-1'93- 
v63U. bat 
Third line (Type of the file) fic-ref 

4iACIFi 

Status Working Directory Browse 

PreProcessina computatiolls i. ssin Exit 

FORGE3 Solver 

Tools 

User's rotitines i 

Forge3 Multi-Processors 

Step 3: Preparation ofthe computation 

Before 111111111lg tile COMPLIMhOll, tilt' LISel' Must generate the necessary files to Rill 
COMI)LItation. To do this tile User has just to Select tile IllCIlLI 
"Coiiiptitatioiis/Tools/Pi-epai-e a comptitation", fill in the different fields and then 
click oil the "Oh, "' bUttOIl- 

Step, 4: Runnim), the computation 

To IIIII tJjC CojjjpLjtýjtlOll. thC LISCI' 111LISt SCICCt 

"Computatious/User's routines/For(, 10 Nlulti-Processors". 

I-11c coil, ptitýlt ion xvill bc startcd MIWIMIHCý111ý'. 
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(4) Do we have a list for all the defined parameters in the subroutines (for example, iiicr, 
elt, int, tpsO, pressO, forceO, positionO, vitesseO) with both the English and Frencll 
definitions. 
No we didn't not have this list, but there are some information contained in the 
USER 

- 
ROUTINES documentation (English and French). 

See C: \Forge3-V6.3\DOC\ENG\User 
- 

Routines 
- 

V63 
- 

Eng. doc 
and also before each soubroutine in the diorectory C: \FORGEY,, 1--oi-ge3-V6.3- 
S GR\U SERF3\v63 \source\. 

Do we have some parameters defined fc., - controlling the ram speed (in direct exti-LIS1011) 
in the file of "loiv Util". 
Could you please give me more infori-notioii about what you want to do 
We will be please to help you to define 411is, but we need more information. 
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Appendix D: An example of the input file 

File Type: FORGO V7.0 Data File 
Creator: GLPre Version 2,3,0,20-Release 
Author: Peng_Zhi 
Creation Date: 2004-06-23 15: 06: 37 
GLPre active language: English 
Systein language: English (United States) 
Data File Name: 723. ref 
Data File Location: C: \pz\Autotrim\TsfiLpe-extrusloii-2P. tsv\723 

................................................................................ 

. OBJETS 
ProjectName = Tsliape-extrusion-2P 
SimulationName = 723 

Fout = 723. out 
Fres = results\723. res 
Faux = results\723. vtf 

NBSD =I 

objet 1, NAME::::: Billet 

objet 1, FMAY=billet. may 

objet 1, NoniGen=i-esults\bil let_ 

objet 1, rheol-I 

outil 1, NAME=Die 

outil 2, NAME=Ram 

outil 3, NAME=Container 

TIN OBJETS 

OBJECTS Block 

APPROXIMATION Block 

APPROXIMATION 
Pei-lode Meca =I 

FIN APPROXIMATION 

UNITS Block 

. UNIT[S 
MM-MPA-t%INI. K(i. S 
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. FIN UNITES 
1--:: 7= -- --- ---------------------- 

RHEOLOGY Block 

. RHEOLOGIE 

..................... 

MATERIAU 1! (object Billet) 

..................... 
EVP 
LOW SIGO 

ZENER-H 
PAR DH = 148880. dO 
PARR = 8.31dO 
PAR alpha = 0.0 l6dO 
PAR n:::::: 4.27dO 
PARA= 325215956.1 dO 

FIN LOI 

ITherinal Coefficients 

involurnique 2.8000OOe-06 Mensity 

ci-nassique 1.230000e+09 ! Specific Fleat 

conductinat = -1.500000e+05 ! Conductivity 

epsilon = 5.0000OOe-02 ! Ernissivity 

-------------------------------- 
OUTILI ! Die 

! Friction between deforinable objcct and rigid die 

Tresca ! Friction Law 

inbarre = 4.0000OOe-01 

! Thermal Exchange between part and rigid die 

! Unit = si 
alphat 2.000000e+03 I Transfert coefficient 
Effus = 1.1 76362E+04 ! tool effusivity 

Temp = 300.000000 

FIN OUTIL 

I -------------------------------- 

OUTIL2 I Ram 
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Triction between deforinable object and rigid die 
Tresca ý Friction Law 

mbarre = 4.000000e-O I 

Mermal Exchange between part and rigid die 

! Unit si 

alphat 2.000000e+03 ! Transfert coefficient 
Effus 1.176362E+04 ! tool effusivity 

Temp = 300.000000 

FIN OUTIL 

OUTIL3 ! Container 

Triction between deforniable object and rigid die 
Tresca ! Friction Law 

rnbarre = 9.5000000e-O I 

Menrial Exchange between part and rigid die 

! Unit = si 

alphat = 2.000000e+03 ! Transfert coefficient 
Effus = 1.176362E+04 ! tool effusivity 

Temp = 400.000000 

FIN OUTIL 

! Therinal Exchange between deforinable object and air 
AlphaText = 2.000000e+001 Global Transfert Coeff. 

TempExt = 50.000000 Ambient Temperature 

! Initial temperature has been set in inesh file: already exists in i-nesh file 

FIN MATERIAU 

LOW MECA 

Signia I 

Par STRESSTENSOR(O) ýý EXIST 

Var SIG I=0. 

FIN LOI 
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! *** User Variable Law: Sigl_direction 
LOW MECA 

Sigl_direction 

Par STRESSTENSOR(6) = EXIST 
Var SIG I VECTOR(3) = 0,0,0 

FIN LOI 

!*** User Variable Law: BOX 
LOW UTIL 
BOX 

Par XMIN = -100 
Par XMAX = 100 
Par YMIN = -100 
Par YMAX = 100 
Par ZMIN = -15 
Par ZMAX = -13 
Par EQ_STRAIN = EXIST 
Eta EQ_STRAIN-BOX = 0. 

FIN LOI 

LOW UTIL 
OYANE 

PAR AA 3.0 
PAR EQ_STRESS= EXIST 
PAR STRAIN_RATE= EXIST 

ETA OYANE 0 

FIN LOI 

LOW UTIL 

LATANDCO 

PAR SIG I EXIST 

PAR STRAIN_RATE = EXIST 

ETA LATANDCO = 0.0 

FIN LOI 

LOW UTIL 

LATANDCN 
PAR SIG I FAIST 

PAR STRAIN_RATE FXIST 

PAR EQ_S'FRESS EXIST 
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ETA LATANDCN =0 
FIN LOI 

LOW UTIL 
Ayada 

PAR STRAIN_RATE = EXIST 
PAR EQ_STRESS = EXIST 

ETA Ayada :::::: 0.0 
FIN LOI 

LOW UTIL 
GW 

PAR STRAIN_RATE = EXIST 
PAR EQ_STRESS = EXIST 

ETA GW = 0.0 
FIN LOI 

TIN RHEOLOGIE 

I --------------- TOLERCONV Block 
JOLERCONV 

. FIN TOLERCONV 

INCREMENT Block 

. INCREMENT 

Deformation= 1.000000e-002 

. FIN INCREMENT 

EXECUTION Block 

. EXECUTION 
Inertia 
dtMin 2.0000OOe-004 

dtMax 1.000000e-002 

dliSto = 1.000000e-00 I 

Fine Sto = 1.000000e+000 

Calcul Outillage 

Folds Detection 

. FIN EXECUTION 
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- ------- THERMAL Block 

. THERMIQUE 

. FIN THERMIQUE 

MESH BOXES Block 
BOITE 

OBJETI 

BOX I 

Type= 10 BOX 
Eulerian 
Size= 3 
! Param Info: NbPar, Xmin, Ymin, Zmin, Length, Width, Height 
Pararneters:, 6,0,0,0,81.6585,41.2335,65 
Matrix:, 1,0,0, -40, 

0,1,0, -2.24175, 
0,0,1, -50, 
0,0,0,1 

END BOX 

BOX 2 

Type= 10 BOX 
Eulerian 
Size= I 
! Parain Info: NbPar, Xrnin, Ymm, Zmin, Length, Width, Height 

Parameters:, 6,0,0,0,40,25,55 
Matrix:, 1,0,0, -20, 

0,1,0, -2.24175, 
0,0,1, -50, 
0,0,0,1 

END BOX 

BOX 3 

Type- 10 BOX 

Eulerian 
Size= 0.6 

! Pararn Info: NbPar, Xi-nin, Ymin, Zrnin, Length, Width, Height 

Parameters:, 6,0,0,0,4,11.2,51.2 

Matrix:, 1,0,0, -7, 
0,1,0, -2.24175, 
0,0,1, -50, 
0,0,0,1 

END BOX 

BOX 4 

Tvpc:: ý 10 ! BO'X 
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Eulerian 
Size= 0.6 
! Param Info: NbPar, Xmin, Ymin, Zmin, Length, Width, Height 
Parameters:, 6,0,0,0,17,5.2,51.2 
Matrix:, 1,0,09 -7ý 

0,1,092, 

0,0,1, -50, 
0,0ý 05 1 

END BOX 
BOX 5 
Type= 10 BOX 
Eulerian 
Size= 0.6 
! Param Info: NbPar, Xmin, Ymin, Zmin, Length, Width, Height 
Parameters:, 6,0,0,0,4,6.2,51.2 
Matrix-, 1,0,0,6ý 

0,1,0, -2.24175, 
0,0,1, -50, 
0,0,0,1 

END BOX 
FIN OBJET 

TIN BOITE 

. CAPTEURS 

TfN CAPTEURS 

------------ 

. CONDLIM 

TIN CONDLIM 

. DAMAGE 
Name = EQ_STRAIN-BOX 

Trigger Value = 0.000 1 

TIN DAMAGE 

SENSORS Block 

BOUNDARY CONDITIONS Block 

DAMAGE CONDITIONS Block 

287 



. MAUTO 

OBJETI 

periode = 20 
lbase =6 

FIN OBJET 

. FIN MAUTO 

. 
CINEMAT_OUT 

OutlI2 Ram 

maitre 
Axe= 3 

Fin Outil 

. FIN CINEMAT_OUT 

. PILOT 
NbPass= I 

Pass I 

Fin Pass 

. FIN PILOT 

. Histoire 

reprise: incr=14158 

. Fin Histoire 

REMESHING Block 

KINEMATICS Block 
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