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Abstract

Physical interaction with a partner plays an essential role in our life experience and is the

basis of many daily activities. When two physically coupled humans have different and partly

conflicting goals, they face the challenge of negotiating some type of collaboration. This

requires that both participants understand their partner’s state and current actions. But, how

would the collaboration be affected if information about their partner were unreliable or

incomplete? We designed an experiment in which two players (a dyad) are mechanically

connected through a virtual spring, but cannot see each other. They were instructed to per-

form reaching movements with the same start and end position, but through different via-

points. In different groups of dyads we varied the amount of information provided to each

player about his/her partner: haptic only (the interaction force perceived through the virtual

spring), visuo-haptic (the interaction force is also displayed on the screen), and partner visi-

ble (in addition to interaction force, partner position is continuously displayed on the screen).

We found that incomplete information about the partner affects not only the speed at which

collaboration is achieved (less information, slower learning), but also the actual collaboration

strategy. In particular, incomplete or unreliable information leads to an interaction strategy

characterized by alternating leader-follower roles. Conversely, more reliable information

leads to more synchronous behaviors, in which no specific roles can be identified. Simula-

tions based on a combination of game theory and Bayesian estimation suggested that syn-

chronous behaviors correspond to optimal interaction (Nash equilibrium). Roles emerge as

sub-optimal forms of interaction, which minimize the need to account for the partner. These

findings suggest that collaborative strategies in joint action are shaped by the trade-off

between the task requirements and the uncertainty of the information available about the

partner.

Author summary

Many activities in daily life involve physical interaction with a partner or opponent. In

many situations, they have conflicting goals and need to negotiate some form of
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collaboration. Although very common, these situations have rarely been studied empiri-

cally. In this study, we specifically address what is a ‘optimal’ collaboration and how it can

be achieved. We also address how developing a collaboration is affected by uncertainty

about partner actions. Through a combination of empirical studies and computer simula-

tions based on game theory, we show that subject pairs (dyads) are capable of developing

stable collaborations, but the learned collaboration strategy depends on the reliability of

the information about the partner. High-information dyads converge to optimal strategies

in a game-theoretic sense. Low-information dyads converge to strategies that minimize

the need to know about the partner. These findings are consistent with a game-theoretic

learning model which relies on estimates of partner actions, but not partner goals. This

similarity sheds some light on the minimal computational machinery which is necessary

to an intelligent agent in order to develop stable physical collaborations with a human

partner.

Introduction

Many activities in daily life involve coordinating our movements with those of a partner or

opponent. A couple of dancers, a couple of fighters, a team of players, two workers carrying a

load or a therapist interacting with a patient are just the first examples which come to mind. In

all these situations, each participant in the interaction needs to know what his/her partner is

doing and/or intends to do. On this basis, he/she must then select their own action [1, 2]. To

do this, the two players (a ‘dyad’) may communicate verbally or non-verbally, or may watch

each other. If the dyad participants are in physical contact, the forces they exchange are a rich

source of information on their partner’s ongoing actions [3]. However, mechanical coupling

places restrictions on individual movements, so that the choice of what to do or not do must

account for what the partner is doing. Less coupling is more robust to individual inaccuracies

in control—the most skilled player may still reach the goal even when the least skilled fails—

thus ultimately favoring coordination, whereas more coupling may facilitate coordination

only if the players have comparable skills. Further, stronger coupling provides more reliable

information about partner’s actions and is therefore more informative [4].

These situations have been often studied in contexts in which there is one common and

shared goal—for instance, control of isometric force [5, 6], reaching the same fixed [7, 8] or

moving target [4, 9, 10], or operating a tool [3]. In these situations, dyads generally perform

better [7, 9] than a person performing the same task alone. The improved performance result-

ing from training as a dyad also transfers to subsequent individual performance [9]. The

advantage of dyad with respect to solo performance may be due to sharing of efforts—because

of the signal-dependent characteristics of motor noise, less effort leads to less motor errors

[11]—and/or the greater accuracy of a shared estimation of external events [9].

Specialized behaviors (i.e., ‘roles’) have been consistently observed within a dyad [12]. A

common distinction is between leader and follower roles—leaders are commonly described as

initiating the action and contributing most effort [6]; they also set the pace and adjust less or

not at all to the partner [13]—which are commonly observed in forms of interaction in which

the coupling is acoustic or visual, like joint tapping [14] and mirror games [15] but have been

also reported when the coupling is physical [16].

What happens if the information about our partner is incomplete or partial? For instance,

when two players can only partly see or hear each other, or when they wear padded gloves

which limit tactile perception? In this case we can expect a dramatic degradation in their ability
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to predict their partner’s actions. However, how does such uncertainty affect the decision of

which action to perform? We can expect little differences when there is a shared goal—the

action to perform is the same anyway. However, if the two partners have different and partly

conflicting goals, and therefore they must negotiate a collaboration, how would uncertainty

affect the emerging joint coordination?

Although they are especially critical in social situations [2], these forms of interaction have

received much less attention. These situations are characterized by a continuous interplay of

two processes: understanding the ‘world’—dyad and environmental dynamics, partner actions

and possibly partner goals—and negotiating a mutually satisfactory coordination strategy. A

series of studies [17, 18] focused on ‘motor’ versions of classic non-cooperative games (like the

prisoner’s dilemma)—in which position-dependent force fields encoded the player-specific

costs or rewards of the interaction—or very simple motor games (e.g. tug-of-war). Bimanual

versions of these tasks—in which there is only one controller—ended up in a cooperative solu-

tion. The dyad versions—two independent controllers—converged to the optimal non-cooper-

ative solution—Nash equilibrium—a situation in which no partner can improve his/her

strategy by acting unilaterally [19]. A combination of Bayesian estimation and game theory is

the natural framework to address these scenarios in presence of partial information, but has

never been applied to joint action involving continuous coordination with physical coupling

and conflicting goals.

Collaborative behavior, if any, is the end result of learning and adaptation through repeated

performance, during which the players gradually gain knowledge about dyad dynamics, the

task requirements, and the partner’s actions. Nash equilibria describe optimal collaborative

behaviors, but do not explain how they are achieved. Several mechanisms have been proposed

[20] to account for learning a collaboration, which differ in terms of how information about

the partner’s intentions and/or ongoing actions is represented. For instance, at each trial each

player may form beliefs about the partner’s play and behaves rationally with regard to these

beliefs—fictitious play [21, 22]. In this case, players don’t need to know about their partner’s

goal (i.e. their intentions); they just need to form beliefs about how their partners will play (i.e.

their actions). Alternatively, each player forms a model of the partner’s goals or, equivalently,

their control law. The mechanisms through which collaborations are developed are as yet

unclear and relatively unexplored.

In principle, learning to collaborate requires that both players know everything about their

own and possibly their partner’s goals. In individual participants, adaptation to a novel

dynamic environment, for instance a new tool, requires reliable information on the conse-

quences of own actions; incomplete information may slow down learning and/or may affect its

outcome [23–26]. In dyads, if the information about the partner is partial or incomplete, opti-

mal collaboration may be difficult to achieve [27]. It is unclear how partial information affects

establishing a collaboration in two physically interacting humans.

Here we address how ‘optimal’ collaboration can be defined when two partners have partly

conflicting goals. Further, we investigate how such collaboration can be ‘learned’. Finally, we

address how the learned collaboration is affected by amount and quality of information about

the partner.

Results

We designed a novel interactive task in which—somewhat resembling the classic ‘battle of

sexes’ game [28]—participants must reconcile different goals with an overall preference to stay

close together. Two participants were mechanically connected but could not see each other.

They were instructed to perform reaching movements with the same start and end positions,
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but through different via-points (VP); see Fig 1a and the Methods section for details. Both par-

ticipants were also instructed to keep the interaction force as low as possible during move-

ment. They had the option of establishing a collaboration—negotiating a path through both

VPs, which would lead to a minimization of the interaction forces—or to ignore each other, by

only focusing on their own goal. We manipulated the information available on partner’s

Fig 1. Experimental apparatus and protocol. (a) Players in a dyad were connected through a virtual spring. Both players were

instructed to perform reaching movements in the vertical plane, between the same start point and the same target point but through

different via-points (VP). Each player could only see his/her own VP, but not their partner’s. Both were instructed to keep the

interaction force as low as possible during movement. The experimental protocol consisted of three phases: baseline, training and

after-effect. During the baseline phase the interaction forces were turned off, and each player performed on their own (‘solo’

performance). The players were mechanically connected during the training phase, and the connection was permanently removed

during the after-effect phase. (b) We manipulated the information available on partner’s actions by providing it either haptically,

through the interaction force (Haptic group, H) or by additionally displaying the interaction force vector on the screen (Visuo-

Haptic group, VH) or displaying partner’s cursor itself (Partner Visible group, PV). The yellow and white circles denote, respectively,

the start and target position. The green circle is the cursor location. In the VH group, direction and magnitude of the interaction

force is depicted by a line originating from the cursor. In the PV group, partner’s cursor is shown by black circle. (c) Movement

paths in baseline (unconnected), early-training, late-training and washout phases of the experiment from three typical H, VH and

PV group dyads.

https://doi.org/10.1371/journal.pcbi.1006385.g001
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actions by providing it either haptically, through the interaction force (haptic group, H); by

additionally displaying the interaction force vector on the screen (visuo-haptic group, VH); or

by continuously showing the partner movements (partner visible, PV); see Fig 1b.

Collaboration in dyads and the role of information

As expected, the recorded movements were not perfectly planar. In 25/30 participants the

average Z displacement over trials was less than 2 cm, with a between-participants average of

1.6 cm. Nevertheless, as the Z displacement is task-irrelevant, we excluded no data from fur-

ther analysis.

In all three haptic (H), visuo-haptic (VH) and partner-visible (PV) groups, all dyads con-

verged to stable and consistent behaviors; see Fig 1c–1e. When the connection was removed,

both players quickly returned to the baseline situation. These observations are confirmed

when looking at the score, the interaction force and the minimum distance from the partner’s

VP. All these quantities are expected to improve if the participants establish a collaboration.

As we examine different indicators at the same time, there is indeed an increased chance of

falsely rejecting the null hypothesis for some of the indicators (Type I error). As there are four

indicators (score, IF, MD21, MD12) we took a Bonferroni adjusted statistical level (P = 0.05/

4 = 0.0125).

The temporal evolution of score for participant pairs is summarized in Fig 2a. Overall

the subject pairs improved their movement score with training—significant Time effect

Fig 2. Dyads develop a collaboration, and learning depends on the amount of information available about the partner. (a)

Temporal evolution of score over trials, for the haptic (H), visuo-haptic (VH) and partner-visible (PV) groups respectively. (b) Score

at the beginning, middle and at the end of training. (c) Magnitude of the average interaction force over trials. (d) Interaction force at

the beginning, middle and at the end of training. (e), Magnitude of the distance from partner’s VP for Player 1 over trials for the H,

VH and PV groups. (f) Minimum distances of Player 1 from his/her partner’s VP at the beginning, middle and at the end of training.

(g,h), As in (e,f) for Player 2. The areas in grey denote the training phase. All plots indicate the population means. Error bars and

shaded areas denote the standard error (SE). Asterisks indicate statistically significant differences (�P< 0.05, ��P< 0.01,
���P< 0.001).

https://doi.org/10.1371/journal.pcbi.1006385.g002
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(F2,24 = 51; P< 10−4) and exhibited significant Group differences (F2,12 = 12; P = 0.0015), but

we found no significant Group × Time interaction (F4,24 = 2.7; P = 0.0523).

The average interaction force (IF) is the main determinant of the score, and its temporal

evolution exhibits a gradual decrease in all three groups—see Fig 2c. Overall, we found signifi-

cant Time (F2,24 = 37.4; P< 10−4) but not Group effects (F2,12 = 6.2; P = 0.014), and no signifi-

cant Group × Time interaction (F4,24 = 3.33; P = 0.026)—see Fig 2d. In summary, both score

and IF improve with time, but exhibit no Group-related differences.

A similar behavior can be observed in the temporal evolution of the minimum distance

from the partner’s via-point, as depicted in Fig 2e–2h. In both groups and in both players in a

dyad, the minimum distance (MD) decreases over trials. The effect quickly washes out when

the connection is permanently removed (after-effect phase). The magnitude of the decrease is

very similar in all groups. Statistical analysis confirmed this observation. We found a signifi-

cant Time effect for both Player 1 (F2,24 = 40; P< 10−4) and Player 2 (F2,24 = 36.4; P< 10−4).

We also found significant Group effects (F2,12 = 7.8; P = 0.0067) for Player 1 and (F2,12 = 8.9;

P = 0.004) for Player 2. We found a significant Group × Time interaction for both Player 1

(F4,24 = 5.21; P = 0.0036) and Player 2 (F4,24 = 4.32; P = 0.009).

Post-hoc analysis showed that for Player 1, in the groups (PV-H) the MD value is signifi-

cantly different (lower in the PV group) in the late time (P = 0.0296) and also group combina-

tions (PV-H and PV-VH) differ significantly at the middle time (P = 0.0002, P = 0.01

respectively). For Player 2, post-hoc analysis showed that group pairs (VH-H and PV-H, but

not PV-VH) differ significantly at the late time (P = 0.0009, P = 0.0003 respectively) and

groups (PV-H, but not VH-H and PV-VH) significantly differ at the middle time (P = 0.04).

In other words the three groups—specially H and PV, with VH somehow in between—dif-

fered in both magnitude and rate of decrease of their minimum via-point distances. Fig 2f and

2h summarizes the effects of learning in all three groups. This also suggests that in the H group

learning is less complete at via-point 1 (Player 2) than at via-point 2 (Player 1).

Overall, the above findings suggest that in the PV group learning is faster and results in a

better performance (greater score, lower interaction force, lower distance from partner VP),

followed by VH and then H.

Optimal interaction and the emergence of roles

The above results still say little on the nature of the collaboration and on how the collaboration

has emerged. To address this, we developed a computational model, based on differential

game theory [29], to predict the ‘optimal’ interaction behaviors—see the Methods section for

details. We modeled dyad dynamics as two point masses connected by a spring. We assumed

that each subject operates his/her own body—one point mass—by applying a force to it. We

also assumed that each partner’s sensory system provides visual and proprioceptive informa-

tion about his/her own position, plus haptic information about the interaction force, which

indirectly provides information about the partner’s position.

The task is specified by a pair of quadratic cost functionals (one per partner). Consistent

with the score provided to participants at the end of each trial, each cost functional is a combi-

nation of distance from own via-point and interaction force with the partner, plus an effort

term—see the Methods section for details. Consistent with computational models of individual

movements based on optimal control [30], the interaction strategy is completely specified by a

pair of controllers (one per partner). Using the model, we simulated an optimal collaboration

(Nash equilibrium) [19], in which no partner can improve his/her strategy unilaterally.

Another possibility is that the participants determine their control actions by assuming that

they are alone in controlling the dyad dynamics. As a consequence, they focus on their own
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via-point and on minimizing the interaction. In this case, information on what the other part-

ner is doing is not accounted for during action selection. This alternative scenario defines the

maximum compliance with the task achievable with the minimum amount of collaboration

between partners. We refer to this scenario as the ‘no-partner’ strategy—see Fig 3a.

Fig 3b summarizes the model predictions. The movement trajectories look similar in the

two models, but a closer look suggests that in the no-partner case each subject actively moves

toward his/her own via-point—thus behaving as a ‘leader’, but is pulled by the partner when

getting closer to the other via-point—thus switching to a ‘follower’ role. This effect is clearly

visible when looking at the average interaction power calculated just before crossing the via-

point—see Fig 3. As a consequence, the no-partner scenario exhibits temporal delays between

the via-points crossing times and a greater magnitude of interaction force and interaction

power. In contrast, in the optimal (Nash) scenario the two participants approximately follow

the same trajectory, by crossing each via-point at approximately the same time. Both the

Fig 3. Predictions based on game theory. (a) Definition of Nash equilibria vs ‘no-partner’ strategies in two-players non-cooperative

game. Nash equilibrium is determined by the intersection of the partners’ reaction curves—locus of optimal control action calculated

for each value of the partner action [29] (blue and red lines). The ‘no-partner’ solution is determined as the optimal action calculated

by each player by assuming that partner’s control is zero. (b) Simulated movements under Nash equilibria, ‘no-partner’ and

unconnected conditions, for Player 1 (blue) and Player 2 (red). From top to bottom: movement paths, interaction force and

interaction power profiles. (c) Interaction power, Pi, is defined as the scalar product of the interaction force (Fi) and the velocity(Vi).

(d) Leader-follower strategy in the no-partner (left) and Nash strategy (right). The plots depict the Leadership index (LI) for both

players and both via-points, calculated as the average power in the 300 ms interval (in gray) just before crossing the via-point by its

homologous player.

https://doi.org/10.1371/journal.pcbi.1006385.g003
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interaction force and the interaction power remain low over the whole movement, and there

are no clear leader-follower roles. Therefore, a distinctive feature of the ‘no-partner’ scenario

is the alternation of ‘leader’ and ‘follower’ roles—each participant acts as a ‘leader’ when cross-

ing his/her own via-point, and as a ‘follower’ when crossing that of the partner. This is also

reflected in the different crossing times (with respect to the ‘leader’, the ‘follower’ lags behind).

In conclusion, establishing roles can be seen as a form of compensation for poor integration of

the partner’s intended actions into the player’s own control strategy.

Based on these predictions, we looked into the emergence of distinct leader-follower roles

in our experimental data at the end of the training phase. Fig 4a and 4b summarizes the

leadership indices (LI)—average interaction power in the 300 ms interval before via-point

crossing—calculated in the late epochs at VP1 (Fig 4a) and VP2 (Fig 4b).

We then calculated the difference in the interaction power for both partners at VP1 and

VP2. As regards ΔLI2 = LI12 − LI22—difference in leadership indices for Player 1 and Player 2

at VP2—we found significant group differences (F2,12 = 5.84;P = 0.016). Planned comparison

confirmed significant differences between H and VH (t7.75 = 2.63, P = 0.03), H and PV (t7.31 =

3.29, P = 0.01) but not VH and PV (P = 0.43). In contrast, we found no significant effects for

the difference in leadership indices at VP1.

We also compared the difference in the interaction power for both partners at VP1 and VP2

in the different groups with the simulated Nash (green) and No-partner (yellow) scenarios—

see Fig 4c. These results indicate that when there is limited information about the partner

(group H), the players exhibit leader-follower roles near VP2—Player 2 behaving as a ‘leader’,

Player 1 behaving as a ‘follower’. The effect decreases and tend to vanish when the amount of

available information about the partner increases (from H—minimum information—to PV—

maximum information). Although not statistically significant, a similar trend is observable

near VP1—Player 1 behaves as ‘leader’, Player 2 as ‘follower’. Overall, the experimental results

suggest that dyads with more available information (PV group) about the partner are closest to

the optimum (Nash) scenario, whereas dyads with less reliable information (H group) resem-

ble more the no-partner scenario.

Fig 4. Leadership index (LI) differences at the end of training (average within the last training epoch). (a) ΔLI at

VP1 is calculated as the difference between LI21 and LI11. (b) ΔLI at VP2 is calculated as the difference between LI12 and

LI22. Error bars denote the standard error (SE). (c) ΔLI at VP1 and VP2, for each dyad in all three groups, compared

with model predictions. The large dots denote the No partner (green) and the Nash (violet) model predictions. The

plots indicate the population means. Asterisks indicate statistically significant differences (�P< 0.05, ��P< 0.01,
���P< 0.001).

https://doi.org/10.1371/journal.pcbi.1006385.g004

Development of collaborative strategies with incomplete information about the partner

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006385 December 12, 2019 8 / 23

https://doi.org/10.1371/journal.pcbi.1006385.g004
https://doi.org/10.1371/journal.pcbi.1006385


Learning to collaborate

Consistent with computational models of sensorimotor control of individual movements [31],

we posited that each player uses a state observer to predict the dyad state from sensory and

motor information. The state observer is easily extended to also predict the partner’s control

action; see Fig 5a and the Methods section.

We simulated the process of establishing a collaboration through repeated performance.

The model uses a form of ‘fictitious play’ [21, 22], which requires minimal assumptions on

each player’s internal representation of their partner [20]. At every trial, each player indepen-

dently estimates the most likely partner’s action and incorporates it into his/her own control

policy on the next trial. This model is attractive as it requires minimum information about the

partner—it does not need to establish a model of the partner’s task or goals. We simulated all

three scenarios (H, VH, and PV) and found—see Fig 5—that more information leads to a

more Nash-like collaboration, characterized by greater synchronization and less distinct roles.

This is confirmed when looking at the leadership index; see Fig 5. Switching of roles (each

player leads when aiming at his/her own VP and follows when aiming at the partner VP)—

which denotes a lack of consideration of partner intentions when developing their own control

policy—decreases as the amount of information about the partner increases.

Discussion

In individual sensorimotor control, uncertainty affects the estimation of the state of the body

and the external environment (including tools, if any). Inaccurate state estimates may lead to

inaccurate or inefficient control, may slow down learning and may affect its outcome. In joint

action, uncertainty may also affect estimation of the partner’s ongoing actions (and possibly

Fig 5. Computational model. (a) Two players jointly control dyad dynamics (approximated as two mass-points connected by a

spring). Each player has a separate sensory system which provides information about dyad state. The controller includes a state

observer, a feedback controller and an estimate of the partner’s control action (partner model). (b) From left to right: Interaction

force and minimum distance from VP1 (MD21) and VP2 (MD12), for all three H, VH and PV scenarios. (c) Leadership index for

player 1 and player 2 at VP1 (left) and VP2 (right) for all three H, VH and PV scenarios.

https://doi.org/10.1371/journal.pcbi.1006385.g005
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their ultimate goals). This may make establishing a collaboration more difficult or even impos-

sible. Physical coupling is a major source of information about the partner’s behaviors. While

operating a pole by pulling ropes [3], dyads produce more overlapping forces than individuals

using both hands. In dyad performance, participants must keep their rope stretched to collect

information about their partner’s action. If they don’t—for instance, when the rope is loose—

they just have no way to coordinate their movements. These observations suggest that players

in a dyad need information about their partner in order to establish a collaboration. The

amount of coupling affects the quality of such information: although it may make coordination

more difficult, stronger coupling provides a more reliable source of information [4].

Previous studies on joint coordination generally assumed that players had either full or

complete lack of knowledge about partner’s goals, state and ongoing actions, and did not

explicitly address the learning process. The present study for the first time addresses the mech-

anisms underlying the development of a collaboration when the information about the partner

is incomplete.

Differential game theory as general model of joint coordination

To understand how quality of information affects the learned strategies, we developed a

computational model of the interaction, in which the physically coupled players form a single

mechanical system, which they must jointly control. Consistent with the optimal feedback

control [30] and optimal Bayesian estimation frameworks [32], which are widely used in

modeling single-player sensorimotor control [31], we assumed that each participant has his/

her own optimal feedback controller, completely specified by his/her own assigned task—this

is called a differential game—and a state (and partner) observer, which combines sensory

information and predicted dyad dynamics to estimate the dyad’s internal state and the partner

actions—see Fig 3a. The model summarizes the available knowledge on the neural basis of

joint coordination [31], but has been applied to the study of joint action in very limited situa-

tions, involving either discrete decisions [18]. or shared (e.g. bimanual) control [33].

Although the present study focuses on a purely motor task, differential game theory and

Bayesian estimation represent a general modeling framework which can be easily extended to

a broad range of tasks and situations. Game theoretic concepts are implied—although not

explicitly stated—in the notions of effort sharing [34] and co-confident motion [15], but their

application is relatively novel in the study of joint sensorimotor interaction. Few studies have

focused on motor versions of classical games, like the prisoner’s dilemma and rope pulling [17,

18]. Although these tasks involved movements, their primary focus was on discrete decisions.

These games have distinct cooperative and non-cooperative solutions, in which the players

either agree or individually determine their actions. The focus here is exclusively on non-coop-

erative situations—in fact, in our task the cooperative and non-cooperative strategies are not

distinguishable. The present study specifically uses game theory to study optimal forms of

interaction and to contrast them with possible alternatives.

All dyads gradually develop stable strategies

We argued that in physically connected dyads the development of an effective interaction is

profoundly affected by information uncertainty. We focused on three groups of dyads, charac-

terized by different amounts of information about their partner. The Haptic (H) group only

relied on haptic information—from a relatively weak coupling, hence a rather unreliable infor-

mation. The other groups (Visuo-Haptic, VH and Partner-Visible, PV) were provided with

increasingly rich and reliable information about their partner.
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We observed that dyads in all three groups gradually converge to stable interaction strate-

gies, characterized by low interaction forces and low distances from the partner’s via-points.

When two players are rigidly coupled, the development of stable coordination is relatively fast

[12] or even instantaneous [8]. The rapid emergence of stable coordination in rigid coupling

may be due to the fact that the partner actions are easier to predict and a joint coordination

strategy is simpler to develop, at least if two players share the same goal. When the coupling is

softer, learning is more gradual [4, 9]. However, dyads need more time to develop an interac-

tion strategy when the task is more challenging [4, 10], because the coupling is softer [4, 9]

or—as in the present study—when the players have different and partly conflicting goals.

Learning a collaboration is the end result of the interplay of two distinct processes: adapta-

tion of an internal representations of plant dynamics (the state and partner observer) to

changes in the environment—in our case, the onset of mechanical coupling—and the modifi-

cation of the control policy to updated predictions of the partner’s actions.

The learned interaction is influenced by the amount of available

information

Nevertheless, dyads in different groups exhibited subtle but clear differences in their learned

strategies. The computational model allowed to identify one specific signature of the extent to

which participants use information about their partner’s actions when planning their move-

ments. In simulations in which each player computes his/her control action by ignoring the

partner, players alternate ‘leader’ and ‘follower’ roles within the same movement. Player 1

leads in via-point 1 and then follows his/her partner in via-point 2. Conversely, Player 2 fol-

lows his/her partner in via point 1 and leads at via point 2. This behavior can be interpreted in

terms of the ‘minimum intervention principle’ of optimal feedback control [30]. For Player 1,

via-point 2 is task-irrelevant and therefore getting close to this point is not controlled explic-

itly; vice versa for Player 2.

These predictions are confirmed by our experimental results. We found that dyads charac-

terized by less reliable partner information (group H) are qualitatively very similar to the pre-

dicted ‘no-partner’ behaviors. In contrast, leader-follower patterns tend to disappear when

information is more reliable. The dyads with more information about the partner (PV group)

exhibit a form of collaboration which is very close to optimal (Nash strategy). The dyads in the

VH group lay somehow in between. Consistent with these observations, leader-follower roles

are observed in imitation tasks, like joint tapping [14] or mirror games [15], when partners

lack feedback about their partner’s actions.

Are the roles affected by training? In a study involving joint generation of isometric forces

[6], leader-follower relations were observed in novice-experienced pairs but were not affected

by practice. In contrast, in both simulations and experiments, we found that roles evolve with

the knowledge gained about the partner. As a consequence, in all groups, early trials exhibit

distinct roles. In high-information dyads (VH and PV group) roles gradually disappear and

the collaboration strategy is closer to Nash equilibrium. In contrast, in low-information dyads

(H group), roles are preserved until the end of training. Overall, these observations suggest

that leader-follower strategy is a sub-optimal form of collaboration, consequent to an incom-

plete co-activity. In conclusion, incomplete information prevents more efficient forms of col-

laboration, which require reliable estimates of the partner’s state and current actions. The

notion that roles emerge as a sub-optimal form of collaboration when partner information is

uncertain or absent is consistent with the recent observation [13] that roles assigned a priori

tend to be detrimental to coordination, unless they are determined by the lack of perceptual

access to partner’s actions.
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How is collaboration learned?

We used the computational model not only to predict optimal behaviors, but also to under-

stand how these behaviors are learned. We suggest that the development of optimal collabora-

tion may be accounted by fictitious play [21], an iterative process in which two players play the

game repeatedly. In every round each player determines its best response against the empirical

strategy distribution of his/her partner.

In our implementation of fictitious play, at each iteration each player determines his/her

optimal controller by accounting for the partner’s most likely action, assumed to correspond

to the action estimated on the previous trial. The optimal controller has a feedback part, driven

by the estimated plant state, and a feedforward part which reflects the partner’s predicted

action.

Like plant state, prediction of the partner’s action mostly relies on the available sensory

information. Our learning model specifically predicts that dyads converge to a Nash equilib-

rium if players have reliable information about their partner. When information uncertainty

increases, action prediction becomes less reliable. In this case, consistent with the experimental

findings, the dyad establishes a pragmatic form of collaboration, which largely ignores what

the partner does/is doing.

The model also captures another empirical finding, i.e. an asymmetry of behaviors between

Player 1—aiming at VP1—and Player 2—aiming at VP2 in the low-information group (H). In

particular, Player 2 is systematically less accurate at reaching VP1, than Player 1 at reaching

VP2—in other words, MD21 tends to be greater than MD12; see Fig 2e–2h. Conversely, the

leadership index tends to be greater in VP2 than in VP1; see Fig 4a and 4b. The model captures

both asymmetries, between Players and/or VPs—see Fig 5b and 5c. In particular, the simula-

tions suggest that the early part of the trajectory, including the portion around VP1, exhibits

more variability because the players initially have poorer estimates of their partner’s motor

command. In empirical results this effect is further emphasized, possibly because the players

don’t start their movements exactly at the same time (this is not accounted for in the model).

This model adds computational substance to previous models of joint action, which only

address the representation level [35] or the dynamics of the coupling [36]. Our proposed

model also has possible technological implications, as it sheds some light on the minimal

computational machinery which is necessary to an intelligent agent in order to develop stable

physical collaborations.

Do players understand each other’s intentions?

In our proposed control model we show that reliable estimation of partner’s action can be

achieved through a simple extension of the state observer. In other words, we assume that part-

ner’s action recognition is obtained through a optimal (in Bayes’ sense) combination of predic-

tions and observations. Our results provide no direct information on the possible neural

substrates of action observation, which is often associated with the mirror neuron system [37].

However, our prediction that estimation of partner actions during joint action is no different

from estimating other aspects of plant state points at a role of the cerebellum—which is

involved in the representation of body and environment dynamics—in conjunction with brain

areas like the superior temporal sulcus that have been associated to action observation [2].

The empirical findings and the model simulations are consistent with the notion that each

player establishes a model of the partner’s current actions. Similarly, in a sensorimotor coordi-

nation game, human players against computer partners adapted their behavior to the partner’s

willingness to cooperate [38]. One crucial question in joint action is whether and to what

extent the two partners within the dyad develop a deeper form of understanding, related to
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their partner’s goal. While there is some evidence [39] that participants in a dyad do develop

and maintain models of their partner goals even when not strictly necessary (e.g. when acting

individually), and even when this is detrimental to individual performance, other studies [40,

41] report little evidence of players modeling their partners’ goals or intentions. Our conclu-

sions are also consistent with Noy et al. [42], claiming that coupled forward models are neces-

sary for producing ‘co-confident motion’ without a leader and a follower. This conclusion

seems to imply that partners need to predict each other’s actions.

In our study, the gradual decrease in the leadership indices suggests that participants incor-

porate information about their partner into their motor plans. Our experiment was carefully

designed so that participants had no explicit clue on the partner’s task. After the end of each

experiment, the participants gave no consistent answer when asked what they thought the

partner was doing. This is consistent with the fictitious play model of learning, which does not

require to model the partner’s task explicitly—this is what should properly be referred as inten-

tion—but simply requires to account for the partner’s most likely action, inferred from previ-

ous trials. Therefore, both experiments and simulations suggest that at least in this task,

players only need minimal information about their partner to converge to quasi-optimal

behaviors (Nash equilibrium). Nevertheless, it may be entirely possible that in dyads of the PV

group seeing the partner’s cursor could have provided informative cues about their task, espe-

cially if players assumed that their partner’s task was similar to theirs (i.e., moving to a target

via a point in between). Therefore, our findings do not rule out the possibility that in other

more complex forms of interaction the players estimate their partner goals. Indeed, the pro-

posed Bayesian model of action estimation can be easily extended to estimation of partner’s

goals. Future experiments, possibly involving generalization to other tasks or interacting with

a virtual partner will be necessary to clarify this important point.

Study and model limitations

Each experimental group involved a total of ten participants, i.e. five dyads. Dyads perfor-

mance was quite consistent within each group. Nevertheless, due to the limited sample size,

the generalizability of the above findings must be taken cautiously.

Optimal feedback control models of individual sensorimotor control [30] typically assume

that process noise increases its magnitude with that of the motor command—signal-dependent

or multiplicative noise. Multiplicative noise is ubiquitous in the motor system. To keep the

model simple, as in related studies [4] we only included a large, additive Gaussian noise term.

This may have underestimated the between-trial variability. In spite of this limitation, the

model predictions closely resemble empirical observations. However, the model can be

extended where necessary by using results in differential game theory in which multiplicative

noise is used in differential games with both finite [43, 44] and infinite horizon [45].

Materials and methods

Experimental apparatus and task

Each experiment involved one pair of participants (a dyad). Participants sat in front of two

separate computer screens and grasped the handle of a three-dimensional haptic interface

(Novint Falcon). They could not see or hear each other, and were not allowed to talk. The

experimental apparatus is depicted in Fig 1. The participants were instructed to perform

reaching movements in the vertical plane, between the same start point (displayed as a white

circle,⊘ 1 cm) and the same target point (yellow circle,⊘ 1 cm), but through different via-

points. In a reference frame centered on the robot workspace (one for each participant), with

the X axis aligned with the left-right direction and the Y axis aligned with the vertical direction,
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the start point was placed in the (-5, 0, 0) cm position and the target point was placed in the (5,

0, 0) cm position. Hence the start and the target point had a horizontal distance of 10 cm. The

current positions of the end effector were continuously displayed to each participant as a⊘ 0.5

cm circular cursor on his/her respective screens. The participants were also instructed to keep

their movements as planar as possible, i.e. by keeping the Z component of end effector position

within a ±4 cm range with respect to the XY (vertical) plane. To encourage them to do so, the

cursor was displayed in green if the depth was within limits, in red otherwise.

A trial started when both participants placed their cursor inside the start region. Then the

target and a via-point (⊘ 0.5 cm circle) appeared. The via-points were different for the two

participants and were placed, respectively, at locations VP1 = (-3,-2,0) cm and VP2 = (3,2,0)

cm. The haptic interfaces generated a force proportional to the difference of the two hand posi-

tions:

F1 ¼ � kðx1 � x2Þ ð1Þ

F2 ¼ � kðx2 � x1Þ ð2Þ

with k = 150 N/m. Hence, the two participants were mechanically connected.

The participants were also told that they might experience a force while performing the

task, and were instructed to keep this force to a minimum. We decided to introduce this addi-

tional requirement because of a technical limitation of our robots, which are unable to gener-

ate large forces. With a low stiffness. the haptic perception of the interaction force is less

reliable, and introducing an explicit requirement on low interaction forces made sure that all

players were provided with exactly the same task requirements irrespective of the information

they had available about their partner.

At the end of each movement, each subject received a 0-100 reward, calculated as a function

of the minimum distance of their movement path from his/her own via-point and of the aver-

age interaction force:

scorei ¼
100

1þ exp hðdi � d0Þ
ð3Þ

where di ¼ dVPi
þ c � d12 and i = 1, 2. The quantities dVPi

and d12 are, respectively, the mini-

mum distance between the movement trajectory and the subject’s own ‘via-point’ (VPi)
and the average distance between the two participants’ hand positions. In the disconnected

trials we took c = 0, i.e. the score only depended on how close the participants got to their

own via-point. Parameters h and d0 were calculated so that the score was maximum (100) for

di�0.005 m (i.e., the VP radius), and minimum (0) for di� 0.02 m. Audio cues were provided

at the start and end of the movements. To encourage participants to establish a collaboration,

in trials in which the two participants were mechanically connected we took c = 0.5, so that in

order to get a maximum score participants also had to keep their relative distance as low as

possible. The participants were encouraged to aim at maximizing this score. Specifically, they

were told that performance depends on how close they would get to the via-point. They were

also warned that the perceived force magnitude also affects the score. It should be noted that

the score is only meant as a reinforcement signal to sustain players’ motivation and to speed

up learning. As such, it specifically focuses on few aspects of the task (pass through the via-

point; keep the interaction forces low). Other task requirements, like reaching the target,

require no reinforcement.

The interaction force and the calculated score only took into account the X and Y compo-

nents of the trajectories. Hence the Z component of the end effector can be considered as
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task-irrelevant. To encourage participants to maintain an approximately constant movement

duration, after each movement a text message on the screen and changes in the color of the

target (either green or red) warned the participants if the movement was either too fast

(duration < 1.85 s) or too slow (duration > 2.15 s). However, the participants received no

penalization if their movement duration did not remain within the recommended range.

The participant pairs were randomly assigned to three groups depending on the feedback

provided about the interaction force. In the haptic (H) group, interaction could only be sensed

haptically. In the visuo-haptic group (VH), interaction force (magnitude, direction) was also

displayed as an arrow attached to the cursor (scale factor: 10 N/cm). In the partner-visible

group (PV), the participants could see their partner’s cursor. Therefore, these participants

have a more reliable information about partner’s movement. The experiment was organized

into epochs of 12 movements each. The experimental protocol consisted of three phases: (i)

baseline (one epoch), (ii) training (ten epochs) and (iii) after-effect (two epochs) for a total of

13 × 12 = 156 movements. During the baseline phase the interaction forces were turned off,

and each participant performed on their own. During the training phase the participants were

mechanically connected. During this phase, in randomly selected trials (catch trials) within

each epoch (1/6 of the total, i.e. 2 trials per epoch) the connection was removed. The connec-

tion was permanently removed during the after-effect phase. During the training phase the

participants had the option to establish a collaboration—negotiating a path through both via-

points, which would lead to a minimization of the interaction forces and a maximum score for

both—or to ignore each other—each partner would only focus on their own via-point and on

maximizing his/her own score. We developed a custom software application using CHAI3D,

an open source software environment for control of haptic devices [46].

Subjects

A total of 30 subjects participated in this study, recruited among the graduate and undergradu-

ate students of University of Genoa. All participants were right-handed, as assessed using the

Edinburgh Handedness Inventory [47], naïve to the task and with no known neurological or

motor impairment at the upper limb. From the list of participants, we formed 15 dyads with

similar body size (assessed through the body mass index) which were randomly assigned to

the H (25 ± 5 y; 9 M + 1 F), VH (24 ± 3 y; 8 M + 2 F) and PV groups (24 ± 3 y; 6 M + 4 F). The

two participants within the same dyad were randomly labelled as, respectively, Player 1 and

Player 2.

The research conforms to the ethical standards laid down in the 1964 Declaration of Hel-

sinki that protects research participants and was approved by the competent ethical committee

(Comitato Etico Regione Liguria). Each subject signed a consent form conforming to these

guidelines.

Data analysis

Hand trajectories and robot-generated forces were sampled at 100 Hz and stored for subse-

quent analysis. The data samples were smoothed by means of a 4th order Savitzky-Golay filter

with a 370 ms time window. We used the same filter to estimate velocity and acceleration. We

identified the start and end times of each trajectory as the time instants at which the speed

crossed a threshold of 2 cm/s.

In the analysis, we specifically focused on the temporal evolution of the trajectories and on

signs of collaboration between players within the same dyad. Collaboration can be character-

ized in terms of both movement kinematics and movement kinetics. The average interaction
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force (IF) is calculated as IF ¼ 1

N

P
t kFðtÞk, where F(t) is equal and opposite for the two part-

ners in the dyad—see Eq 2. Less interaction force would point at a greater collaboration.

A sign of collaboration is that each player, while passing through his/her own via-point,

also gets very close to his/her partner’s. This can be quantified in terms of the Minimum via-

point Distance (MDij), defined as the minimum value of the distance of Player i to the j-th via-

point: MDij ¼ mintkxiðtÞ � xVPjk with i, j = 1, 2. If i 6¼ j this quantity reflects how close each

player gets from his/her partner’s via-point.

Looking at the power developed by each player would provide information on whether the

players move actively, or are passively pulled by their partner through the mechanical cou-

pling. To quantify this, we calculated the power (Pi), defined as the scalar product of the inter-

action force Fi(t) and the velocity vector vi(t) of each of the players. At a given time, a negative

power would mean that the player is moving against the mechanical coupling. We operation-

ally define this behavior as that of a ‘leader’. Conversely, a positive power would indicate that

the player is being pulled toward the other, i.e., he/she is behaving as a ‘follower’—see Fig 3c.

We specifically focused on the average power calculated in the 300-ms interval taken just

before the crossing of each via-point. We denote as LIij this value for the i-th player and the j-
th via-point. For each dyad we also calculated a cumulative leadership index associated to

either VP1 and VP2, respectively calculated as ΔLI1 = LI21 − LI11 and ΔLI2 = LI12 − LI22. Large

positive values of these quantities denote greater role specialization around that via-point.

All quantities (trajectories, velocities, interaction force, interaction power) were computed

from the recorded movements by only taking into account the X and Y components of hand

trajectories and interaction forces. Therefore, the results do not rely on planarity of the move-

ments, which was not explicitly reinforced.

We expect that task performance at players and dyad level evolves with time (learning) and

is affected by the amount of information each player has available about his/her own partner.

To test this, for all the above indicators we ran a repeated-measures ANOVA with group (H,

VH, PV) and Time (early—training epoch 1, middle—epoch 6 and late—epoch 11) as factors.

If a significant main effect was found, Tukey’s honest significant difference (HSD) post-hoc

test was used to further examine the differences. All data were analyzed using MATLAB

(R2017b) and the statistical tests were performed using R (R Studio 1.1). Statistical significance

was considered at P< 0.05 level for all tests. Wherever necessary, we used Bonferroni correc-

tion to account for multiple comparisons.

Computational model

We compared the observed movements with simulations from a computational model, whose

purpose was to predict the ‘optimal’ behaviors and how they depend on the information avail-

able about the partner. We approximated the dyad dynamics and the participants’ sensory sys-

tems as a linear discrete-time dynamical system with additive Gaussian noise in both motor

commands and sensory measurements.

Dyad dynamics. We assume there is one single plant, reflecting dyad dynamics—i.e. both

players’ body dynamics and their mechanical interaction. Dyad dynamics was approximated

as a pair of point masses connected by a spring. We assumed that each participant operates

his/her own point mass by applying a force to it. The dyad state trajectory, x(t), is determined

by both partner’s control commands, u1(t) and u2(t). Therefore, dyad dynamics can be

described by a discrete-time linear dynamical system with two inputs:

xðt þ 1Þ ¼ A � xðtÞ þ B1 � ½u1ðtÞ þ Z1ðtÞ� þ B2 � ½u2ðtÞ þ Z2ðtÞ� ð4Þ
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The state variable x(t) accounts for position, velocity and muscle activation dynamics of

both partners (eight variables per partner). For notational convenience, we also added the

desired final position (two dimensions) and the two via-points (two 2-dimensional vectors) to

the state vector; see the S1 File. for details. We also assumed that both inputs (one two-dimen-

sional vector per player) are affected by motor noise, assumed to be Gaussian and zero-mean:

ZiðtÞ � Nð0;SZiÞ, with i = 1, 2. The noise covariance matrices SZi , i = 1, 2 reflect the non-deter-

ministic component of plant dynamics.

Sensory system. Each partner’s sensory system provides visual or proprioceptive informa-

tion about his/her own position and via-point, the target and haptic information about the

interaction force:

y1ðtÞ ¼ H1 � xðtÞ þ v1ðtÞ

y2ðtÞ ¼ H2 � xðtÞ þ v2ðtÞ
ð5Þ

where v1(t) and v2(t) are zero-mean, Gaussian sensory noise processes: viðtÞ � Nð0;Sv
i Þ, with

i = 1, 2. Eq 5 implies that each player’s sensory system has a (partial and noisy) knowledge of

the whole plant state, determined by model parameters Hi and Sv
i , i = 1, 2.

Task specification. Consistent with the optimal control model of sensorimotor control

[30], the players’ goals are specified by a pair of cost functionals (one per player):

J1½u1; u2� ¼
PT� 1

t¼1
½xðtÞT � Q1ðtÞ � xðtÞ þ u1ðtÞ

T
� R1ðtÞ � u1ðtÞ� þ xðTÞT � Q1ðTÞ � xðTÞ

J2½u1; u2� ¼
PT� 1

1¼1
½xðtÞT � Q2ðtÞ � xðtÞ þ u2ðtÞ

T
� R2ðtÞ � u2ðtÞ� þ xðTÞT � Q2ðTÞ � xðTÞ

ð6Þ

Each cost functional has an error and an effort term, respectively depending on the dyad

state and on the player’s control action. Due to the mechanical coupling within the dyad, the

movements of each player are affected by the control action of his/her partner. Therefore, each

cost functional depends on the control action of both players. This is called a linear-quadratic

discrete-time differential game [29]. In simulations, we set the cost functionals to reflect the

task requirements for each player. This includes getting to the target and staying there, passing

through their respective via-points and minimizing the interaction force; see S1 File for a

detailed description of the implementation of the cost functionals.

Optimal controllers. We first used the model to reproduce two ideal situations. The

interaction strategy can be derived from the above pair of feedback controllers. Assuming that

the two players have a perfect knowledge of the plant state, the dyad’s control system can be

modelled as a pair of feedback controllers, one per each player—see below and S1 File for

details.

uiðtÞ ¼ � LiðtÞ � xðtÞ ð7Þ

with i = 1, 2. We also assume that each player autonomously determines his/her own control

policy, {Li(�)}, with no explicit agreement with his/her own partner—which in game theory is

called a non-cooperative scenario.

The controller gains in the optimal controller can be calculated on the basis of the assump-

tions that each player makes on his/her partner. We specifically focused on two different sce-

narios: (i) each partner has a perfect knowledge of their partner’s control policy—this

corresponds to the optimal non-cooperative solution; and (ii) each player completely ignores

their partner when determining his/her control policy—these will be referred as the ‘no-part-

ner’ solution.

The optimal non-cooperative solution—Nash equilibrium [19]—corresponds to a situation

in which each partner cannot improve his/her strategy unilaterally; see Fig 3b. A pair of control
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policies ½u�
1
; u�

2
� is a Nash equilibrium if none of the players can achieve a lower cost magnitude

by unilaterally changing his/her own control policy:

J1½u�1; u
�
2
� � J1½u1; u�2� 8u1 6¼ u�

1 ð8Þ

and similarly

J2½u�1; u
�
2
� � J2½u�1; u2� 8u2 6¼ u�

2 ð9Þ

Nash equilibrium strategies of feedback type can be computed in terms of differential game

theory [29] in the same way optimal feedback control theory has been used to predict optimal

movements of a single human [30]. Nash equilibria represent the optimal form of collabora-

tion which two partners can achieve when independently planning their actions (i.e. non-

cooperatively). Importantly, these strategies require that each player has a perfect knowledge

of his/her partner’s cost function.

The ‘no-partner’ strategy implies that the two partners do not collaborate at all, in the sense

that they ignore each other when determining their control policy. We modelled this situation

by assuming that each subject develops a control strategy by considering the partner’s control

as noise. In this case, the problem reduces to separately developing two independent optimal

Linear Quadratic Gaussian (LQG) controllers. In this case, each player only needs to know his/

her own cost function.

For the task under study we calculated both controller gains—see the S1 File for details—

and simulated the resulting trajectories by assuming perfect state information; see Fig 3.

State observer and partner model. The control strategies are not the only determinants

of behavior. The above calculations of the optimal control policy assume that each player has a

perfect information on the plant state vector, x(t).
However, both partners have incomplete knowledge of the system state. In a single-player

situation, player i may predict the state at time t by combining prior knowledge of dyad

dynamics (forward model), including a copy of his/her own motor command, ui (efferent

copy) with his/her own sensory information, yi(t). The combination of using own sensory

feedback and forward model to estimate the current state—usually referred as sensorimotor

integration—is known as state observer. A state observer relies on the optimal combination of

prediction and correction. Prediction requires an accurate model of dynamics and a copy

(efferent copy) of his/her own motor command. Correction is driven by the information pro-

vided by the sensory system [32].

In the case of linear systems with Gaussian noise, the Kalman algorithm is an optimal

(Bayesian) solution to this state estimation problem. The posterior estimate of the next state,

x̂þðt þ 1Þ, has the general structure:

x̂þi ðt þ 1Þ ¼ x̂ �i ðt þ 1Þ þ Kiðt þ 1Þ � ½yiðt þ 1Þ � Hi � x̂ �i ðt þ 1Þ� ð10Þ

The two components of the observer are, respectively, the ‘prediction’ and the ‘correction’

(or ‘innovation’) terms.

In particular, the optimal ‘prior’ prediction of the next state by subject i, x̂ �i ðt þ 1Þ—i.e. the

estimation obtained before the sensory feedback yi(t + 1) is measured—is given by:

x̂ �i ðt þ 1Þ ¼ A � x̂þi ðtÞ þ Bi � uiðtÞ ð11Þ

The Kalman gain Ki(t), t = 1, � � �, T of the innovation term is determined by the Kalman

iterative algorithm and reflects the trade-off of the reliability of the prediction and correction

terms. If the prediction term is highly reliable—i.e., if we have a good knowledge about plant

dynamics—the innovation term will add little to the state estimation and the Kalman gain will
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be small. In contrast, if the sensory input is highly reliable the Kalman gain will be large and

the state estimation will be largely determined by the innovation term.

When there are two players acting on the same plant, unbiased estimation of the plant state

also requires the partner’s input, u−i(t) which is generally unknown. Several authors—among

others, [48]—have proposed general solutions to the problem of joint estimation of input and

state when no prior information about the input, thus resulting in a generalisation of the Kal-

man algorithm. The main idea is that sensory measurements at time t contain information

about the unknown input at time t − 1 and earlier. Under the reasonable assumption that part-

ner’s input is smooth, here we formulate the problem of estimating u−i(t − 1) as a simple exten-

sion of the Kalman algorithm. The smoothness assumption of the partner’s input can be

formalised in the following expression:

u� iðt þ 1Þ ¼ Au � u� iðtÞ þ ε� iðtÞ ð12Þ

where 0< Au< 1 and ε� iðtÞ � Nð0;Sε
� iÞ. Eq 12 corresponds to the prior belief that the part-

ner’s input is a low-pass filtered Gaussian noise.

We can now define, for each player, an augmented state: Xi(t) = [x(t), u−i(t − 1)]T. Eqs 4 and

12 can be grouped together as:

Xiðt þ 1Þ ¼
A B� iAu

0 Au

" #

� XiðtÞ þ
Bi

0

" #

� uiðtÞ þ wiðtÞ ð13Þ

where wiðtÞ ¼ Nð0;Sw
i Þ and Sw

i ¼ diagðBiS
Z

i B
T
i ;S

ε
� iÞ.

A key assumption of our model is that each player has a state observer for the above aug-

mented dynamics; see Eq 10. Hence the player’s state observer combines information on plant

dynamics and own sensory information to predict both dyad dynamics and partner’s input.

In particular, estimation of partner’s input combines prediction, expressed by Eq 12, with a

correction term which reflects the sensory information. Parameters Au and Sε
� i define the

prior knowledge on partner’s input. The ‘partner’ portion of the Kalman gain regulates the

importance of the prediction and correction terms. If sensory information is highly reliable,

the contribution of prediction is neglectable. Conversely, if sensory information is less reliable,

the estimate is mostly driven by the prediction. As a consequence, we expect that more uncer-

tain is the sensory information, less reliable will be the partner’s action estimation.

In summary, the above formulation assumes that in joint action each player has his/her

own sensory system, control policy and state observer. The latter also includes an internal

representation of the partner’s input. We will refer to this as the player’s ‘partner model’. In

other words, the model assumes that joint action requires that each player infers what the

other partner is doing. The model—summarised in Fig 3a—only constitutes a reference to

understand the consequences of the different assumptions.

Learning through fictitious play. In the previous sections we introduced a general opti-

mality framework to account for dyad behaviours. In the case of perfect information about the

plant, the task and the partner, Nash equilibrium is the predicted optimal behaviour if the two

players act independently in determining their respective control policies (non-cooperative

play). However, Nash equilibria describe the optimal collaborative behaviour but do not tell us

how do players achieve it. Collaborative behaviour results from repeated task performance,

during which the players gradually gain knowledge about dyad dynamics, the task require-

ments, and the partner’s actions. This suggests that collaboration, if any, is a result of learning

and adaptation.

One possible solution of the problem of iteratively calculating a Nash equilibrium is repre-

sented by the classical learning process known as fictitious play or as the Brown-Robinson
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learning process, originally introduced by [21] as an algorithm for finding the value of a zero-

sum game, and first studied by [22]. In fictitious play, two players play the game repeatedly.

After arbitrary initial moves in the first round, in every round each player determines its best

response against the empirical strategy distribution of his/her partner.

In fictitious play, strict Nash equilibria are absorbing states [20]. In other words, if at any

time period all the players play a Nash equilibrium, then they will do so for all subsequent

rounds. Further, if fictitious play converges to any distribution, those probabilities correspond

to a Nash equilibrium of the underlying game. Convergence does not occur in general, but

many authors have identified classes of games for which such convergence holds; see [49] for

review.

Fictitious play has two basic properties: (i) It is only adequate if the partner uses a stationary

strategy; (ii) It does not require that each player knows the partner’s task as it only requires a

model of the strategy distribution. In other words, players don’t have to know anything at all

about their opponent’s payoffs. All they do is to form beliefs about how their opponents will

play [20]. Alternatively, players need to incorporate beliefs about opponent’s strategies or

require players to have a ‘model’ of the game. While many studies agree that humans can form

‘models’ of their opponents and/or they ‘understand’ their intentions, the exact nature of these

models remains elusive. Here we use fictitious play as it represents the simplest form of ‘part-

ner model’.

Within our modelling framework we implemented a simplified version of fictitious play by

assuming that each player ‘sees’ a plant that incorporates partner’s input estimated at the previ-

ous trial. For Player i, the augmented dyad dynamics is defined as:

xðt þ 1Þ

1

" #

¼
A B� i � û � iðtÞ

0 1

" #

�
xðtÞ

1

" #

þ
Bi

0

" #

� ½uiðtÞ þ ZiðtÞ� ð14Þ

where û � iðtÞ is the contribution of the partner, estimated at the previous trial. This augmented

dynamics can be used to calculate the optimal control policy by using the LQG algorithm. The

controller has the form of Eq 7 involves a feedback component, which depends on the esti-

mated dyad state. The dummy state variable also results in a feedforward component, which

reflects the contribution of the partner. Our implementation of fictitious play only uses the

most recent estimate of partner’s input. This is less robust than estimating the distribution of

partner inputs over multiple repetitions, but may be adequate for practical purposes.

Wherever possible, we set the model parameters to values that were empirically motivated.

When this was not possible/feasible, we used values which resulted (in the H group, taken as

reference) in figures of interaction force, minimum via-point distance and leadership indexes

which were similar to the experimental observations—see the S1 File for details.

All simulations were performed using MATLAB and Simulink. The simulation results were

analyzed in exactly the same way as the experimental results. In particular, for both models we

calculated both dyad- and subject-level indicators. The simulation results are summarised in

Fig 5.

The model is not meant to exactly reproduce the experimental data, but rather to make gen-

eral predictions. Different from the score used during experiments, in the model the task is

completely specified by a quadratic cost functional which reflects all the instructions that we

gave to the participants, including those that were not included in the score—for instance,

reaching the target and stopping there. The cost functional also includes an additional essential

requirement –minimizing the effort—which is biologically motivated and is implicit in any

motor task.
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Supporting information

S1 File. Supplementary note with model implementation details.

(PDF)

S1 Data. Zip file containing data from all indicators and all groups (H,VH, PV)—one file

per indicator and per group. Each file has 5 rows (one per dyad) and 156 columns (one per

trial).
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