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Abstract:  

This paper presents a study of corrosion behavior of electrodeposited Ni, Ni-Al2O3, Ni-ZrO2, and 

Ni-Graphene (Gr) coatings in moist SO2 environment. Nanocomposite coatings were deposited 

on steel substrate by pulse electrodeposition technique with an average thickness of 9 ± 1 μm. 

Coatings were characterized by using nanoindentation and scratch tests to measure their 

mechanical properties prior to conducting corrosion tests. The corrosion resistance of coatings 

was evaluated according to G87-02 Method B, employing SO2 cyclic spray in the presence of 

moisture followed by drying. The results indicated that the addition of nanoparticles is beneficial 

both for enhancing mechanical properties and improving the corrosion resistance of these 

coatings. Higher surface corrosion resistance was observed for Ni-Gr coating. Corrosion 

behavior of coating was also quantified by open circuit potential measurement in 0.5 M H2SO4 

environment. The results suggest that the nanocomposite Ni coatings have improved corrosion 

resistance compared to pure Ni coating. This work will bring significant impacts in terms of 

industrial applications such as architectural, automotive and marine industries in the presence of 

S-pollutants because it can cause corrosion either due to acid rain or by the reaction of moisture 

with dry deposition of Sulfur.  
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1. Introduction 

Ni coatings are mainly applied for protection against corrosion, erosion, and abrasion. Ni coating 

by electrodeposition method is one of the most technologically and economically suitable 

techniques. Electrodeposition can be performed in three ways: (i) direct current (DC), (ii) pulse 

current (PC), and (iii) pulse reverse current (PRC) electrodeposition. The coating developed by 

DC electrodeposition suffers from poor adhesion, porosity, and undesirable microstructure 

defects, whereas PC and PRC provide better physical, mechanical, and corrosion properties [1-

3]. Additionally, pulse electrodeposition technique can also be used for deposition of composite 

coatings. Electrodeposition of composite involves co-deposition of various micro or nano 

metallic, non-metallic or polymer particles within the electrolytic bath with suitable 

electroplating conditions. Quality of nanocoating is mainly governed by pulse physical 

parameters, nano constituents, substrate roughness, and coating thickness. 

Corrosion failure of coatings combined with wear has been studied recently to develop 

synergistic wear-corrosion models for prediction of coating failures. Recently reported models[4] 

attempt to predict wear-corrosion in bulk materials or metals only; therefore, these models lack 

the capacity to predict the performance of nanocomposite coatings subject to wear and corrosion 

during their applications. It has been always remained the key issue to predict the precise role of 

Eigen-stresses, grainsize, porosity and thermal mismatch of nano-composites, as intrinsic nano-

mechanics parameters in synergistic wear-corrosion phenomenon [4]. Following from the above 

rationale and its significance a unified Khan-Nazir II numerical model has been developed and 

reported [4]. Interfacial characteristics have been studied recently and have suggested that 

interfacial strength between Ni coating and the substrate can be obtained by controlling interface 
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roughness and coating thickness [5]. The influence of Ni ion concentration has also been 

observed to evaluate its effects on the tribological and corrosion properties of pure Ni and Ni-

Al2O3 composite coating due to surface roughness and wettability [6]. Some of the Ni composite 

coatings and their properties are listed in Table 1.  

Table 1. Properties of electrodeposited Ni-nano composite coatings. 

Coating Particle size Mechanical 

properties 

Electrochemical 

properties 

Reference 

Ni-SiC SiC: 1.2 μm Knoop Hardness = 

900 (4.5 times 

higher than the steel 

substrate)   

- [7] 

Ni-SiC SiC: 20 nm Friction coefficient 

(μ) of composite 

coating = 0.25, μ of 

Ni = 0.35 

Corrosion potential 

(Ecorr) of composite 

coating = -212.5, (Ecorr 

of pure Ni = -281.6) in 

0.5M Na2SO4 

[8] 

Ni-SiC SiC: 50 nm Microhardness 

(HV) of composite 

coating = 720, HV 

of pure Ni = 540 

Ecorr of composite 

coating = ~0.35 V, 

Ecorr of pure Ni = 0.45 

V in 0.5 M NaCl 

solution 

[9] 

Ni-Al2O3 Al2O3: 0.6 

μm 

HV of composite 

coating ~ 525, HV 

of pure Ni ~375 

- [10] 

Ni-carbon nano 

tube (CNT) 

- HV of composite 

coating = 600, HV 

of pure Ni = 300 

- [11] 

Ni-CNT - - Ecorr of composite 

coating = -0.55 V, Ecorr 

of Ni ~0.48 V in 3.5 

wt.% NaCl 

[12] 

Ni-ZrO2 ZrO2: 10 μm HV of composite 

coating ~ 1100, HV 

of pure Ni ~ 210. 

Ecorr of composite 

coating = -0.34 V in 

0.5 M K2SO4 

[13] 

Ni-Graphene (Gr) - HV of composite 

coating ~ 375, HV 

of Ni ~ 275 

Ecorr of composite 

coating = -0.398 V, 

Ecorr of pure Ni = -

0.492 V in 3.5 wt.% 

NaCl 

[14] 

Ni- Al2O3, Ni-SiC 

and Ni-ZrO2 

- HV for composites: 

Ni-Al2O3=380, Ni-

- [15] 



4 

 

SiC=500, ZrO2=400 

and for pure Ni = 

450  

 

From Table 1, it can be seen that micro-nano particles improve both mechanical properties and 

enhance corrosion properties. Extensive work on nanocoating failure, prediction, and prognosis 

have been conducted at NanoCorr, Energy & Modelling Research Group, UK [16]. A 

comprehensive study of thin coating-substrate system deterioration enhanced by a combination 

of fracture and corrosion has been reported and modeled as Khan-Nazir I model [16,17]. This 

study provides an understanding of bi-material characteristics of coatings, mixed mode 

interfacial cracks, and combination of mechanics and diffusion concepts within the context of 

corrosive degradation. Wear-corrosion synergistic model Khan-Nazir II has been reported, which 

provides more accurate prediction compared to the conventional model, which were reported 

earlier [4]. Modeling of metal coating failure due to environmental factors has been published in 

[18]. Corrosion behavior of several Ni-based nanocomposite coating to include Ni-Al2O3, Ni-

SiC, Ni-ZrO2, and Ni-Graphene have been reported [19]. Recently, mathematical models have 

been developed for the prediction of uniform corrosion rate of structural steel subjected to acid 

rain, low pH conditions, the study investigated corrosion performance of steel in moist sulfur 

dioxide environment [20]. Lopez et al. [21] tested the electrodeposited Ni-Samarium (Sm) 

coating in NaCl environment as per ASTM B117 and ISO 10289 standards. Authors reported 

6000 hours of salt spray exposure time without any corrosion in the presence of 34.6 mM of 

Sm
3+

.  

However, these coatings have not been tested in moist air containing SO2, which is a major air 

pollutant and causes aggressive corrosion due to catalytic effect of iron oxide and hydroxide on 
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the formation of H2SO4 from SO2, H2O, and O2. Limited accelerated corrosion studies have been 

conducted to asses nanocoating in moist SO2 environment. Therefore, it is important to study the 

corrosion behavior of Ni nanocomposite coatings in moist SO2 environment for real world 

applications such as automotive, architecture and marine applications where S-pollutants can 

cause corrosion due to formation of sulfuric/sulfurous acids either by acid rain or by reaction 

between moisture and dry deposition of Sulfur. 

The present work is aimed to evaluate the corrosion behavior of electrodeposited Ni-nano 

composite coatings in moist SO2 environment. This paper presents a detailed experimental study 

of four various types of nanocomposite coatings: Ni, Ni/Al2O3, Ni/ZrO2, and Ni/Graphene (Gr). 

ASTM Standard G87-02 Method B has been applied during the investigation of the nanocoatings 

mentioned above. Corrosion behavior of these coatings was also monitored by using Open 

Circuit Potential (OCP) in H2SO4 environment. These coatings were analyzed by using surface 

characterization methods, including Scanning Electron Microscopy (SEM), Energy-Dispersive 

X-ray Spectroscopy (EDS) and nano-hardness testing. 

2. Experimental Procedure  

2.1 Coating preparation: 

Pure Ni, Ni-Gr, Ni-ZrO2, and Ni–Al2O3 nanocomposite coatings (9 ± 1 μm in thickness) were 

produced by pulse electrodeposition method. Prior to coating, steel substrates were conditioned 

with acetone by ultra-sonication for 5 min, followed by rinsing with deionized water. For 

electrodeposition, pulse current condition was controlled by using a Pulse Interface connected to 

pulse power supply. Pulse current conditions were kept as current density 3 A/dm
2
, pulse on/off 

time (20–80 ms), and a duty cycle of 20%. An optimized Watt’s bath chemical composition was 
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used for the deposition process as listed in Table 2[6]. For the development of nano-enhanced 

composite coating, Gr platelets (6-8 nm), ZrO2 (30-40 nm), Al2O3 (50-60 nm) nanoparticles were 

added into an electroplating bath that was under continuous magnetic stirring process. Moreover, 

to ensure better suspension of particles, the chemical solution was ultrasonically stirred during 

the deposition process. A nickel sheet of 99.9% purity was used as an anode, and a section of 

steel circular plate was coated while using it as a cathode. Standard surface conditioning was 

deployed before the coating development process. Flat plate samples with a surface area of 0.09 

dm
2
, was mechanically polished to an average roughness of 0.05 μm and ultrasonically 

conditioned with ethanol followed by acetone and then coating was conducted. Surface 

morphology of electrodeposited samples was studied by using a SEM. Elemental analysis was 

conducted by using an EDS. 

Table 2. Chemical and nanoparticle composition of bath for electrodeposition of Ni and Ni nanocomposite coatings. 

Coating 

Chemical composition (g/L) 

Nickel sulfate Nickel chloride Boric acid Nanoparticles 

Ni 265 48 31 - 

Ni-Al2O3 265 48 31 20 

Ni-ZrO2 265 48 31 20 

Ni-Gr 265 48 31 0.1 

 

2.2 Nanoindentation and scratch test 

To determine the hardness of Ni and Ni-nanocomposite thin coating, indentation hardness 

measurements were conducted. The tests were conducted using a diamond Berkovich tip in a 

nanoindentation system under depth-controlled setup with a maximum 1 m displacement. The 
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choice of indentation depth was to utilize 10% of the thickness of the coating to avoid the 

coating to substrate transitioning hardness measurement. The indentations were made with a 

dwell period of 10s at maximum load.  

Nano-scratch tests were performed on the coating by using spherical indenter with a gradual 

increase in load from 0 to 150 mN, and total distance was 1500 μm as shown in Figure 1.  

 
Figure 1. Loading profile during scratch tests on coatings using spherical indenter. 

 

2.3 Corrosion tests 

According to ASTM Standard G87-02 Method B alternating exposure[22], synthetic industrial 

atmosphere tests in moisture containing SO2 were conducted to quantify the protection provided 

by the coating. This test is more correctly a porosity test because it finds (and sometimes creates) 

holes through the coating to the substrate. Testing was conducted in an alternating atmosphere by 

using a dosing volume of 2000 cm
3
 of SO2. The test duration was two cycles, each cycle 

consisting of 8 hours of SO2 exposure at 40 °C +/- 3 °C followed by 16 hours under ambient 

conditions. Only the coated sections of the circular steel disc were exposed to a moist SO2 

environment, and the rest of the steel surface was covered with wax, as shown in Figure 2.  
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Corrosion behavior of Ni nanocomposite coatings was quantitatively measured by open circuit 

potential (OCP) in 0.5 M H2SO4 solution. The OCP was measured by using three electrode setup. 

A graphite electrode was employed as a counter electrode, and a saturated calomel reference 

electrode (SCE) was used as a reference electrode.  

`  
Figure 2. Ni and Ni-nanocomposite coated steel samples during moist SO2 exposure tests. 

3. Results and discussion 

3.1 Nanoscale characterization 

Hardness and elastic modulus measured by nanoindentation using a Berkovich indenter are 

plotted in Figure 3 and Figure 4, respectively. Due to the addition of the nanoparticles, the mean 

hardness and elastic modulus have increased significantly compared to pure Ni coating. Ni-Gr 

was observed to have 3.74 GPa mean hardness, which is the highest among all of the coatings 

and it is 19.9% higher than Ni coating. Similarly, mean elastic modulus was ~86% higher for Ni-

Gr and Ni-Al2O3 as compared to Ni coating.  
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Figure 3. The hardness of the electrodeposited Ni and Ni-nano composite film by nanoindentation using Berkovich indenter. 

 

 

Figure 4. Elastic modulus of the electrodeposited Ni and Ni-nano composite film by nanoindentation using Berkovich 

indenter. 

Scratch resistance of the coating was analyzed using a spherical indenter with a gradual increase 

in load up to 150 mN. All the four coatings showed a similar trend with ~ 2000 nm depth after 

1500 μm scratch as presented in Figure 5. However, after two cycles of corrosion tests in moist 

SO2 environment, the maximum scratch depth increased by one order of magnitude compared to 

non-corroded samples. This increase in scratch depth is due to the formation of corrosion 

products on the surface of the coatings. The maximum scratch depth on the corroded samples is 
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shown in Figure 6. The maximum scratch depth of 32 μm was observed for pure Ni coating. 

Whereas nanocomposite Ni coatings yielded a maximum scratch depth of 24-25 μm.  

 
Figure 5. Scratch test profile on (a) Ni, (b) Ni-ZrO2, (c) Ni-Al2O3 and (d) Ni-Gr using a spherical indenter with a gradual 

increase in load up to 150 mN 

 

 
Figure 6. Maximum scratch depth on Ni-based coatings after two cycles of corrosion tests in moist SO2 environment. 
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3.2 Surface corrosion  

Figure 7 shows the corrosion status of bare steel, Ni, and Ni-nanocomposite coatings before and 

after two cycles of moist SO2 exposure. The images of pre and post corrosion surface clearly 

show that the highest surface corrosion on the bare steel surface (Figure 7(a)), where Ni-ZrO2 

and Ni-Al2O3 were observed to have some brown spots that suggest ferrous corrosion. In the case 

of pure Ni and Ni-Gr coatings, no ferrous corrosion was observed. This behavior is also in good 

agreement with the accelerated corrosion on these coatings during salt spray testing of 450 h 

[19], where lowest surface corrosion was observed on Ni-Gr coating.  

 
Figure 7. Pre and post corrosion status of (a) bare steel, (b) Ni, (c) Ni-ZrO2, (d) Ni-Al2O3, and (e) Ni-Gr electrodeposited 

coatings. 

Pre-corrosion SEM micrographs for all the coating surfaces are shown in Figure 8 along with 

their chemical compositions observed by EDS. The EDS spectrum confirms the presence of 

nanoparticles in the matrix. It also indicates that large particle size in Ni-Al2O3 (Figure 8 (e)) and 

Ni-ZrO2 (Figure 8 (c)) coatings accounted for the large porous structure that can make the 

surface prone to ferrous corrosion. However, the Ni-Gr coating has the smallest particle size and 

formed a very smooth coating, which has also been observed in the previous study [19].  
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Figure 8. Pre-corrosion surface morphology of (a) Ni, (c) Ni-ZrO2, (e) Ni-Al2O3 and (g) Ni-Gr with chemical composition 

observed by EDS.   
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Post-corrosion SEM micrographs for the coatings are shown in Figure 9. It can be observed that 

all the top surfaces of the coating start breaking into small fragments due to corrosion. Ni-ZrO2 

(Figure 9 (b)) and Ni-Al2O3 (Figure 9 (c)) coatings were observed to have smaller fragments 

compared to Ni and Ni-Gr coating. Smaller fragments have larger surface fraction of boundaries 

that can cause subsurface corrosion. It can also be the reason for observed ferrous corrosion in 

Ni-Al2O3 and Ni-ZrO2.   

 
Figure 9. Post-corrosion surface morphology of (a) Ni, (b) Ni-ZrO2, (c) Ni-Al2O3 and (d) Ni-Gr. 

 

3.3 Open circuit potential  

The OCP was measured in 0.5 M H2SO4, as shown in Figure 10. The OCP of pure Ni coating 

was found to be stable around -1.72 V. Whereas the OCP for Ni-ZrO2 coating was -1.14 V, a 

little higher than the pure Ni coating. The OCP for Ni-Al2O3 and Ni-Gr coating was further 

increased and found to be around -0.42 V. Increase in OCP value suggests that the corrosion 
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resistance of Ni nanocomposite coatings are higher than Ni coating. Similar behavior has been 

observed for Ni-CeO2 nanocomposite coating due to the addition of nanoparticles [23].  

 
Figure 10. Open circuit potential of Ni coatings measured in 0.5M H2SO4 

 

4. Cost estimation of nanocomposite coatings for large scale production 

Electrodeposited Ni coatings are commercially available for different sizes of parts [24]. For 

nanocomposite Ni coatings the additional requirement is nano particles of required materials. 

These can contain nano particles in the range of 10 – 30 vol.%  [25-27]. The required amount of 

nanoparticles for 10 μm thick coating over 1×1 m
2
 with 10-30 vol.% of nanoparticles is 

calculated in Table 3. The calculated cost for the required amount of materials to coat an area of 

1 m
2
 is approximately 1.5 to 3 USD. This slight increase in cost can be easily accommodated to 

provide significant improvement in the mechanical and corrosion performances.  

Table 3. Amount and cost of nanoparticles for 10 μm thick coating over 1×1 m2. 

Material Density 

(g/cm
3
) 

Cost 

(USD/kg) 

Amount of material 

required (g) 

Cost for required weight 

(USD) 
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Al2O3 3.95 150 [28] 3.95-11.85 1.77 

ZrO2 5.68 200 [28] 5.68-17.04 3.04 

Gr 2.26 220 [29] 2.26-6.80 1.49 

 

Conclusions  

Nickel nanocomposite coatings were prepared by electrodeposition and their mechanical and 

corrosion performance were evaluated. Mechanical properties evaluated by nanoindentation on 

the nanocomposite coatings showed that Ni-Al2O3, Ni-ZrO2, Ni-Gr have higher mean hardness 

and elastic modulus than the pure Ni coating. The improved mechanical properties of the 

nanocomposite coatings can enhance the durability and applicability of the coating. Prior to 

corrosion testing, all coatings showed the same scratch depth of 2 m at the end of the scratch. 

After the two cycles of moist SO2 corrosion test, the nanocomposite coatings have a lower 

scratch depth compared to pure Ni coating. The lower scratch depth suggests that the 

nanocomposite coatings have higher wear resistance compared to pure Ni coating. After two 

cycles of moist SO2 exposure, lower surface corrosion was observed for Ni-Gr followed by Ni-

ZrO2, Ni-Al2O3, and pure Ni. The OCP of Ni-Gr, Ni-Al2O3 is more positive than that of pure Ni, 

it suggests improved corrosion resistance. 
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