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Abstract

We present a novel self-supervised framework for monocular image depth learn-

ing and confidence estimation. Our framework reduces the amount of ground

truth annotation data required for training Convolutional Neural Networks

(CNNs), which is often a challenging problem for the fast deployment of CNNs

in many computer vision tasks. Our DepthNet adopts a novel fully differential

patch-based cost function through the Zero-Mean Normalized Cross Correlation

(ZNCC) to take multi-scale patches as matching and learning strategies. This

approach greatly increases the accuracy and robustness of the depth learning.

Whilst the proposed patch-based cost function naturally provides a 0-to-1 con-

fidence, it is then used to self-supervise the training of a parallel network for

confidence map learning and estimation by exploiting the fact that ZNCC is a

normalized measure of similarity which can be approximated as the confidence

of the depth estimation. Therefore, the proposed corresponding confidence map

learning and estimation operate in a self-supervised manner and is a parallel

network to the DepthNet. Evaluation on the KITTI depth prediction eval-

uation dataset and Make3D dataset show that our method outperforms the

state-of-the-art results.
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1. Introduction

The human vision system is amazingly complex and extremely delicate. It

can perceive depth through stereopsis, which relies on the displacement of the

same object between the images received by the left and right retinas [1]. With

extensive visual experience and through trial and error, humans develop the5

ability to use contextual depth cues to achieve good and reliable perception of

depth and better understanding of spatial structure. Among these depth cues,

most of them do not rely on stereopsis (the perception of depth from binocular

vision), such as object occlusion, perspective, familiar and relative size, depth

from motion, lighting and shading. Therefore, if blind in one eye or if performing10

a monocular task such as endoscopic surgery, we can still judge distance from

these many different intuitive depth cues. In contrast, when using machine

vision it is hard to infer the non-stereopsis depth cues.

With the recent development of Deep Convolutional Neural Networks (DC-

NNs), machines can solve many computer vision problems when provided with15

very large human annotated datasets such as ImageNet [2], which is known as

supervised learning. Acquisition of labelled datasets is one of the biggest chal-

lenges for supervised learning, however, which is an expensive, time-consuming

and labour-intensive task.

In this paper, we propose a novel self-supervised computational framework20

that mimics the process of how a human learns varies of contextual depth cues

from stereopsis. We propose to ”teach” the neural networks to ”learn” the depth
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Figure 1: Our proposed framework can simultaneously estimate depth and the confidence of

estimated depth.
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by themselves from ”looking” to stereo image pairs. To be more specific, we

construct a patch-based loss function that leverages the epipolar constraint [3] of

stereo vision to minimize the depth prediction error from the context of a single25

image for each training iteration. Our approach does not require the ground

truth depth for supervised training. Instead, we derive the implicit function of

estimating depth from monocular images by the epipolar constraint of the stereo

image pair, which is very easy to acquire compared with the ground truth depth

that can only be obtained from LiDAR measurements. Therefore, our method30

can be regarded as self-supervised learning.

Compared with previous work [4] [5] [6] addressing the same problem, we

propose a novel patch-based depth learning strategy, inspired by the classic

patch matching algorithms for finding the best-matched patches between the

left and right images. We use the Zero-Mean Normalized Cross Correlation35

(ZNCC) to measure the normalized similarities between these patches. A fully-

differential patch-based ZNCC cost function is implemented to guide the depth

synthesis process for more accurate and robust results. Visual assessment shows

that our approach can produce more accurate and reliable depth estimations in

both texture-rich and texture-less areas due to the enlargement of matching field40

from a pixel to a patch (see Figure 5). Empirical evaluations on KITTI dataset

demonstrate the effectiveness of our approach and produce a state-of-the-art

performance in monocular depth estimation task.

Our second contribution is that we train a parallel DCNN to evaluate the

performance of the monocular depth estimation which can output a 0 to 1 con-45

fidence map. The parallel DCNN is also trained in a self-supervised manner

thanks to our ZNCC similarity measurement function. As ZNCC is a nor-

malized measure of similarity, which can be approximated as the confidence

of the depth estimation, we take the ZNCC loss to self-supervise the parallel

DCNN (ConfidenceNet) during training so that we can estimate the confidence50

of the depth estimated from the first DCNN (DepthNet) during testing mode

as shown in Figure 1. A confidence map is extremely useful for the monocu-

lar depth estimation task trained in an unsupervised manner, as the learned
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epipolar constraint only works well when there are clear corresponding pixels

between the image pairs; it will fail and produce uncertain depth when occlusion55

and specularity exist in the images. Our confidence map can give a real-time

assessment of the reliability of the predicted depth, which can then be further

integrated into many applications such as monocular dense reconstruction [7],

SLAM-based depth fusion [8], and many tasks need crucial accurate and con-

fidence such as the monocular endoscopic surgery and the perception task for60

self-driving.

2. Related Work

2.1. Stereo Depth Estimation

The problem of stereo images depth estimation has been well studied for

a long time [9] [10]. With the theory of epipolar constraint, accessing depth65

from stereo images can be regarded as a well-posed problem when ignoring the

occlusions and depth discontinuities. Many stereo vision algorithms managed to

achieve comparable results to ground truth depth acquired from depth sensors

[11] [12].

2.2. Monocular Depth Estimation70

In contrast, estimating depth from monocular images is an ill-posed problem

that is inherently ambiguous [13], and many research efforts have been devoted

to the problem of monocular image depth estimation. One of the classic methods

is Shape from Shading (SFS) [14], which is based on the gradual variation of

shading as a cue to estimate the shape and depth. However, SFS has a strict75

prior assumption of Lambertian reflectance, uniform color and texture, and

fixed light source direction, which are not applicable to most of the images

in the real world. Saxena et al [15][16][17][18] used Markov Random Field

(MRF) incorporated with multiscale image features to learn monocular cues

in a supervised manner. However, the hand-craft local features used in these80

approaches limit the expressive power of supervised learning, and lack a global

contextual understanding of the scene for learning consistent depth.
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2.3. DCNNs based Monocular Depth Learning

More recently, DCNNs [13] [19] are introduced to solve the challenge of

monocular depth estimation problem, and has pushed the state-of-the-art for-85

ward in this area. Building on the success of this approach, several improvements

have been made by incorporating probabilistic models such as Conditional Ran-

dom Fields (CRFs)[20] [21] [22] [23] [24], advanced network structures such as

Resnet [25], fully convolutional Resnet [26], two-streamed networks [27], multi-

task joint training [28] [19] [29] [30] [31] and novel loss functions such as sparse90

semi-supervision [32] [33], relative depth [34] [35] and depth as classification

[26]. Impressive as these works are, ground-truth depth data are still needed for

the supervision of training these DCNNs. Recently,

2.4. Unsupervised Monocular Depth Learning

Driven by DCNNs, view synthesis technology [36] has proven to be effective95

on synthesizing new views by sampling pixels from existing views [37] [38], which

enables novel frameworks of unsupervised learning of monocular depth from

stereo pairs, e.g., Deep3D [39], Garg et al [4]. The works by Godard et al [5] and

Zhou et al [6] advanced the networks by incorporating left-right consistency and

pose estimations. Further improvements including introducing Visual Odometry100

(VO) or Multi-View Stereo (MVS) to learn depth from monocular videos [40]

[41] [42] [43]. However, a common weakness of these approaches is the use

of pixel-wised photometric loss (L1-norm) to construct loss functions to guide

the back-propagation process. Gradients are derived from the pixel intensity

difference [6], which will lead to ambiguous gradients in texture-less areas and105

also in the regions that contain the mixture of thin structures and texture-less

areas. Although multi-scale and smoothness loss functions are used to prevent

such issue [4] [5] [6], the results are still not desirable and gradients are still

likely to converge to local minimums due to the ambiguous pixel-wise loss. As

shown in Figure 5, in a common speed limitation board area from the KITTI110

dataset, the direct pixel-wise photometric loss will lead to many local minimums

shown in the right curve chart. While as the left curve chart shows the result of
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using our proposed patch-based ZNCC loss, the loss is more smooth and likely

to converge to the global minimum in the epipolar line. And the experiment

result (the last row in Figure 5) shows our proposed method can effectively115

generate accurate depth in complex regions.

2.5. Novelty Compared to Previous Work

We propose a novel multi-scale patch-based cost function that adopts the

ZNCC as a similarity function to explicitly enlarge the matching field and in-

crease the matching robustness. From another point of view, our proposed120

patch-based cost function implicitly integrates the classic Patch Matching (PM)

algorithm as a minimization problem in our loss function. Although Garg et al

[4] have discussed a straightforward idea of using the stereo matching algorithm

as a pre-processing method to generate “quasi ground-truth” depth for train-

ing, their result is not desirable due to the poor quality of “quasi ground-truth”.125

Similarly, Guo et al [44] proposed a more advanced method by training a proxy

stereo network from synthetic, then fine tuned it on real data, and finally used it

to train a monocular network. Due to the good quality of the fine tuned stereo

network, the distilled monocular network can achieve good results. In contrast,

Luo et al [45] also proposed a similar framework that firstly use a DCNN to130

synthesize stereo pairs from single images, and then use conventional stereo

matching to get depth for monocular depth training. Essentially different from

these works which separate the stereo matching with monocular depth learning,

we treat the stereo matching as a minimization problem and implement a fully

differential Patch-Matching algorithm as a cost function that is seamlessly in-135

tegrated into our neural network. As the loss of the PM cost function can be

passed through the whole network during a backward propagation, our network

can produce more robust and consistent depth by large-scale self-supervised

training, which will not be limited by the performance of off-the-shelf stereo

matching algorithms.140

Another novelty of our work is the confidence map. As monocular depth

estimation itself is an ill-posed problem, although learning-based approaches
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Figure 2: Framework for proposed self-supervised monocular depth learning and confidence

estimating networks.

achieve comparable results to stereo depth estimation, there are still many un-

avoidable mistakes in the predicted depth map. For the first time, our method

is able to provide a pixel-wise confidence of the predicted depth by using a par-145

allel DCNN to capture and learn the confidence during training. The confidence

map will greatly improve the usability of deploying monocular depth estimation

into many practical tasks.

3. Method

3.1. Framework Overview150

Figure 2 illustrates the entire framework for our self-supervised monocu-

lar depth learning and confidence estimation networks. Since the ground-truth

depth Dgt is absent for supervised training, we treat the monocular depth es-

timation as a problem of image synthesis error minimization during training.

Specifically, during training, we use the left images Il of the stereo pairs to syn-155

thesize per-pixel depth D using an encoder-decoder network D = Fdepth(Il, θ),

which is converted into disparities maps d by the Equation 2. The disparities

map d is then used to guide the stereo view reconstruction Îr = Fwarp(Il, d) and

the sampling of patches Nx−d,y = Fsample(Ir, d). After that, the loss function

Ltotal is calculated based on Patch Matching Loss LPM , View Reconstruction160
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Figure 3: Depth synthesis network structure. ”k” is the kernel size, ”s” for the stride, ”c”

for the channel number. For simplicity, we do not draw the conv layers after each conv and

deconv layer, which have the same kernel and channel size as previous layers but with stride

1.

Loss LV R, Disparity Smoothness Loss LDS , and Disparity Consistency Loss

LDC . As these processes are differentiable, back propagation can be used to

update the parameters θ of our depth learning network to minimize the total

loss Ltotal.

∂Ltotal

∂θ
=
∂LPM + ∂LV R + ∂LDS + ∂LDC

∂Fwarp(Il, d) + ∂Fsample(Ir, d)
× ∂Fwarp(Il, d) + ∂Fsample(Ir, d)

∂d

(1)

× ∂d

∂D
× ∂D

∂Fdepth(Il, θ)
× ∂Fdepth(Il, θ)

∂θ

Since our patch-based ZNCC loss map LPM (x, y) represents the normalized165

inverted similarity between each pixel of the Il and Ir, it can be approximated as

the inverted confidence of the depth estimation result. We use the LPM (x, y) to

self-supervise the training of a second encoder-decoder network – ConfidenceNet

to generate the confidence P̂d of the per-pixel depth estimation of our DepthNet.

3.2. Depth Synthesis Network170

The core part of our framework is the depth synthesis and generation. Our

goal is to learn an implicit function Fdepth that estimates a per-pixel depth from

a single input image. Inspired by the architectures of FlowNet [46], DispNet [47]

and the network of Godard et al [5] and Zhou et al [6], we employ a VGG-like
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Figure 4: The difference between forward mapping and backward mapping.

fully convolutional neural network architecture [48] in order to generate per-175

pixel depth from a single image. Our encoder-decoder model is illustrated in

Figure 3. The input image is encoded by 7 conv layers with stride 2 each followed

by a conv layer with stride 1, which efficiently compress the input image into a

feature tensor with 1/27 original size and 512 channels. Then, the feature tensor

is up-sampled by 7 deConv layers with stride 2 each followed by a conv layer180

with stride 1, which decode the feature tensor into a full original size depth.

Following the method in [46], 6 skip connections are implemented for preserving

high-level information to ensure the high quality per-pixel prediction after up-

sampling. Multi-scale depth images are outputted and used for further steps to

constraint the network for a coarse-to-fine up-sampling.185

3.3. Warping-based Stereo View Reconstruction

View warping is an enabling technology for self-supervised learning frame-

work [4] [5] [6]. Given the per-pixel disparity map estimated from a single image

in the previous step, the target view of the stereo pairs can be reconstructed by

the epipolar relationship in stereo vision. According to the epipolar constraint:

the projection of a pixel xl on the right camera plane xr must be contained in

the epipolar line. For calibrated stereo pairs discussed in this paper, xl and xr

must be in the same row y, and the disparity d describes the horizontal displace-

ment of the corresponding pixels xl and xr . Through the stereo triangulation,
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we can get that

Dxy =
bf

d
⇒ d = xl − xr =

bf

Dxy
(2)

where Dxy is the depth estimated in the pixel at (x, y), b and f are the camera

baseline and focal distance. By the relationship discussed in the above equation,

the target view in a stereo pair can be reconstructed given the source view and

the corresponding depth (estimated through our depth synthesis network).190

However, the direct mapping from one known view to the other view (forward

mapping) will result in holes in the target image that are not differentiable.

Therefore, we use the inverse mapping: for each pixel in the target view, by

picking points from the source to reconstruct the target view guided by the d.

Thus, a complete and differentiable target view can be generated. Then the195

bilinear sampling [49] is used to get the interpolated pixel value from the source

view.

3.4. Disparity-guided Patch Sampling

Inspired by the stereo view reconstruction described above, we propose a

novel patch sampling process guided by the estimated disparity from our Depth-200

Net. Nx,y is defined as a patch with window size n, centered at the coordinate

(x, y). We sample patches on each pixel in the left image {x, y ∈ Il|Il(Nx,y)},

and the corresponding patches shifted by disparity values d of each pixel in

the right image, {x, y ∈ Ir|Ir(Nx−d,y)}. According to Equation 2, if d is cor-

rect, then we have Il(Nx,y) = Ir(Nx−d,y). And this relationship will be used205

to construct the patch matching loss. These sampled patches are computed

and stored vectorized so that can be deployed parallelly on GPU for accelerated

computation.

The patch sampling size is very important and can affect the final perfor-

mance of similarity measurement. However, there is no optimal patch size and210

the performance varies greatly across different images and local details. When

small patch size is used, little information will be captured, and the similarity

comparison robustness will be decreased. If we use a large patch size, compu-

tational complexity will be greatly increased and also cannot recover accurate
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depth at stereo occlusion and depth discontinuous. Therefore, we use a multi-215

scale patch sampling scheme and sample a combination of 4 different patch sizes

in an image to fully exploit the effects of different patch sizes. We will discuss

the choice of patch sizes in Section 4.1.3.

3.5. Loss Function Construction

We define a loss function Ltotal with multiple strategies to effectively train

our networks for accurate, smooth and realistic depth.

Ltotal = ωpLPM + ωvLV R + ωdLDS + ωcLDC (3)

where from left to right is: Patch Matching Loss, View Reconstruction Loss,220

Disparity Smoothness Loss and Disparity Consistency Loss. ω is the corre-

sponding weights to balance the effects of gradients back propagation. Each

loss function will be explained in details below:

3.5.1. Patch Matching Loss

Inspired by patch matching algorithm that by finding the best-matched225

patches in the left and right image to get correct disparities. We propose a

patch matching loss that maximize the similarities (minimize the differences) of

patches in left image Il(Nx,y) and the shifted patches in right image Ir(Nx−d,y)

to get correct disparities. Here, the ZNCC measure of similarity is used to

compute a normalized similarity between the patches Il(Nx,y) and Ir(Nx−d,y):230

CZNCC (Il(Nx,y), Ir(Nx−d,y)) =

∑
i,j∈Nx,y (Il(i,j)−Īl(Nx,y))·(Ir(i−d,j)−Īr(Nx−d,y))√∑

i,j∈Nx,y (Il(i,j)−Īl(Nx,y))
2·
∑
i,j∈Nx,y (Ir(i−d,j)−Īr(Nx−d,y))

2 (4)

where Ī (Nx,y) = 1
n

∑
x,y∈Nx,y I (x, y) is the mean intensity of the patch Nx,y

centered at the coordinate (x, y).

The ZNCC returns a similarity ranging from [−1, 1]. We first normalize it

into [0, 1] then invert it to get the patch matching loss:

LPM =
∑
x,y

1− 1 + CZNCC (Il(Nx,y), Ir(Nx−d,y))

2
(5)
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Figure 5: Comparison of our proposed patch-based ZNCC loss (left image) with the photomet-

ric loss used in previous works (right image) to demonstrate that a patch naturally encodes

more information than a single pixel and our loss function is more smooth and convex than

other methods, therefore is more likely to converge to global minimum in the epipolar line.

Our patch matching loss is computed at all 4 patch sizes to cover both small235

structures and large areas. There are several advantages of using our patch-

based ZNCC loss to regularize the depth synthesis:

(1) Our patch matching loss uses patches for measurement that involve larger

regions than the direct pixel-wise photometric loss used in previous work, which

is more robust and can achieve sub-pixel accuracy. Figure 5 demonstrates the240

effect of our patch-based ZNCC loss. We charted the values of our patch-based

ZNCC loss and the photometric loss against the disparity value of a pixel located

at the center of the image patch ”6”. It is obvious that by using our proposed

patch-based ZNCC loss, the loss is more smooth and likely to converge to the

global minimum. Whereas the direct pixel-wise photometric loss will lead to245

many local minimums shown in the right curve chart.

(2) Compared to other similarity measures such as Sum of Absolute Dif-

ferences (SAD), Census, and Normalized Cross Correlation (NCC), ZNCC is
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especially robust against Gaussian noise and variation between the compared

patches, which can help to recover more accurate depth in our self-supervised250

framework.

(3) As a zero-mean normalized similarity measurement function, our patch-

based ZNCC loss can provide a similar value ranging from [−1, 1]. After nor-

malized to [0, 1] as shown in Equation 5, it can be regarded as the confidence of

the generated depth at each pixel, which can be further used to self-supervise255

the training of our confidence network.

3.5.2. View Reconstruction Loss

We use the view reconstruction loss as a second supervision on the depth

synthesis. Guided by the synthesized depth, the right views can be reconstructed

by collecting pixels from left images. The view reconstruction loss is defined as

the L1 loss between the reconstructed view Îr and the original view Ir:

LV R =
∑
xy

∣∣∣Ir(x, y)− Îr(x, y)
∣∣∣ (6)

Compared to the patch matching loss, the view reconstruction L1 loss is more

sensitive to small structures and depth discontinuities and can provide more

detailed depth information.260

3.5.3. Disparity Smoothness Loss

We use a disparity smoothness term to regularize our network to produce

more smooth depth. Similar to [4] [5] [6], we use the sum of the L1 norm of

the disparity gradients along the x and y directions as a smoothness factor.

The edge-aware terms are used to reduce the penalty on edges where depth

discontinuities usually happen, which can prevent over-smoothing.

LDS =
1

XY

∑
x,y

∣∣∣∣∂d(x, y)

∂x

∣∣∣∣ e−‖ ∂I(x,y)∂x ‖ +

∣∣∣∣∂d(x, y)

∂y

∣∣∣∣ e−‖ ∂I(x,y)∂y ‖ (7)

3.5.4. Disparity Consistency Loss

The left-right disparity consistency loss proposed in [5] has achieved a great

improvement for monocular depth generation. Here, we adopt this loss function
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into our framework. The left and right image disparities are both generated,

and the difference of left disparity map and the reconstructed left disparity map

from right disparity is computed and minimized. This loss will ensure the left

and right disparities coherence.

LDC =
1

XY

∑
x,y

|dl(x, y)− dr(x− dl(x, y), y)| (8)

3.6. Confidence Estimation Network

One of the advantages of our proposed patch matching loss is that a nor-

malize similarity measurement can be generated for each pixel at the training265

time. With the well-known epipolar constraint, the per-pixel confidence of the

estimated depth can be approximated as the normalized similarity measurement

of the left patches and the corresponding patches in the right image.

Pd(x, y) ≈ CNormalized(Il(Nx,y), Ir(Nx−d,y)) = (1− LPM (x, y)) (9)

Here, we propose to use another encoder-decoder network to learn the confi-

dence map generated by our depth estimation network during training, so that

the confidence map can be preserved and generated during the testing time. We

tried to train the confidence and depth in one network like [28] [19] [29] [30],

but the multi-task training would reduce the depth estimation performance.

Therefore, we use a parallel encoder-decoder network to learn the confidence

supervised by the per-pixel ZNCC loss of our depth estimation network. The

loss of our ConfidencNet is shown below:

LConfidenceNet =
∑
x,y

∣∣∣(1− LPM (x, y))− P̂d(x, y)
∣∣∣ (10)

where P̂d(x, y) is the generated confidence map, LPM (x, y) is the patch match-

ing loss from our depth estimation network described in above sections. The270

static copy is used here to prevent the gradients propagating back to the depth

estimation network. The 1−LPM (x, y) operation inverts the loss to confidence,

and L1 loss is used to access the confidence estimation error.
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Instead of using the same encoder-decoder network structure as our Depth-

Net, we employ a simpler structure by only using first 5 conv-layer and last 5275

deconv-layer without skip layers as described in Figure 3 for two reasons:

(1) To reduce memory usage and training time, as training two neural net-

works at the same time is very computationally expensive. The second network

can be replaced by a deeper and more complex encoder-decoder network to pro-

duce sharper and more accurate confidence, but the main purpose of our work is280

to prove that our self-supervised monocular depth learning and confidence esti-

mation framework is feasible and helpful for depth prediction, hence we choose

to use a simple network structure as the proof of concept.

(2) We intend to use a simpler network with fewer weights to prevent over-

fitting to noises and to learn more generic confidence – high confidence in285

texture-rich areas, low confidence in texture-less, blurry and occluded areas,

which is what we design this confidence net for.

4. Experiments

In this section, we evaluate our framework and compare the results with

prior approaches both quantitatively and qualitatively on KITTI dataset. We290

use the rectified stereo image pairs for training our networks. For testing time,

we use the left image to generate depth, and the corresponding sparse LIDAR

data is served as the ground truth for benchmarking.

4.1. Implementation Details

Our networks are implemented in Tensorflow and trained on a workstation295

with a single Nvidia Titan X GPU (12G Memory). Our models take around 60

hours to train for 50 epochs. When in testing mode, our networks can output

depth and confidence map at around 20 frames per second.

4.1.1. Hyper Parameters

All input images are scaled to 512x256 with a batch size of 4. Adam Opti-300

mizer is used with β1 = 0.9, β1 = 0.999, and initial learning rate λ = 0.0001 that
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decays after half of the training process. The weights to construct our total loss

function for depth estimation network are wp = 0.5,wv = 1,wd = 0.1,wc = 1.

4.1.2. Data Augmentation

The same data augmentation approach in [5] is used to randomly flip the im-305

age and change the gamma, brightness, and color shifts to increase the network

robustness and prevent over-fitting.

4.1.3. Multi-scale Implementation

We employ a multi-scale strategy to ensure a coarse-to-fine up-sampling. As

can be seen from Figure 3, 4 depth scales are outputted with 1/8, 1/4, 1/2 and a310

full resolution. All of our loss functions are computed for each of these 4 scales,

and for each of left and right images/disparities. We take the means of these

loss functions as the final loss.

4.1.4. Patch Size

By applying different patch sizes on different image scales, we can get very315

large equivalent patch sizes with less computation. For patch size choices, based

on our empirical test, we use n = 5, 5, 7, 9 pixels for our patch-based ZNCC loss

on 4 different scales, which is equivalent n = 5, 10, 28, 72 pixels’ windows on full

resolution images.

4.2. Training dataset320

To be able to compare with the state-of-the-art monocular depth learning

approaches, we trained and evaluated our networks using two different train/test

splits: Godard and Eigen.

4.2.1. Godard Split

We use the same train/test sets that Godard et al [5] proposed in their work.325

200 high quality disparity images in 28 scenes provided by the official KITTI

training set are served as the ground truth for benchmarking. For the rest of 33

scenes with a total of 30,159 images, 29,000 images are picked for training and

the remaining 1,159 images for testing.
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4.2.2. Eigen Split330

For fair comparison with more previous works, we also use the test split

proposed by Eigen et al [13] that has been widely evaluated by the works of

Garg et al [4], Liu et al [23], Zhou et al [6] and Godard et al [5]. This test split

contains 697 images of 29 scenes. The rest of 32 scenes contain 23,488 images,

in which 22,600 are used for training and the remaining for testing, similar to335

[4] and [5].

4.3. Results

4.3.1. Quantitative Evaluation

Evaluation Metrics. To access the quantitative performance of our pro-

posed depth prediction network and compare with previous works, we evaluate

each method using several error and accuracy metrics from [13] [5] [4] [6]. The

error metrics we use include Absolute Relative Difference (AbsRel), Squared

Relative Difference (SqRel), Root Mean Square Error (RMSE) and Root Mean

Squared Logarithmic Error (RMSElog). The accuracy metrics [4] [23] that we

use are the percentages of estimated depth dest that subject to

max(
dest
dgt

,
dgt
dest

) = δ < threshold (11)

Results on KITTI dataset.The evaluation results on the KITTI dataset

are reported in Table 1. We use different combinations of train/test splits (E340

for Eigen, G for Godard) and cap distances (80m and 50m) to compare with

different works. For Eigen et al [13], Liu et al [23], Zhou et al [6] and Godard et

al [5] , the Eigen split with 80m cap distance are used. For Garg et al [4], Zhou

et al [6] and Godard et al [5], the Eigen split with 50m cap distance are used. We

also report our result on Godard split with 80m cap. For the ablation study of345

the ZNCC loss, we have implemented a patch-based Sum of Absolute Differences

(SAD) loss that is a common and basic similarity measurement used for stereo

matching algorithm to replace the ZNCC loss and keep the same multi-level

patch setting. The results for the multi-level patch-based SAD loss are reported

as ours-SAD, which shows that our dedicated multi-level patch-based loss with350
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Table 1: Comparison with state-of-the-art methods on KITTI dataset.

Method
Super-

vision
Split Cap

Error (Lower better) Accuracy (Higher better)

AbsRel SqRel RMSE RMSElog D1-all δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al [13] Yes E 80 0.203 1.548 6.307 0.282 - 0.702 0.890 0.958

Liu et al [23] Yes E 80 0.201 1.584 6.471 0.273 - 0.680 0.898 0.967

Zhou et al [6] No E 80 0.208 1.768 6.856 0.283 - 0.678 0.885 0.957

Godard et al [5] No E 80 0.148 1.344 5.927 0.247 - 0.803 0.922 0.964

ours-SAD No E 80 0.147 1.302 5.901 0.246 - 0.805 0.922 0.964

ours-ZNCC No E 80 0.145 1.267 5.786 0.244 - 0.811 0.925 0.965

Garg et al [4] No E 50 0.169 1.080 5.104 0.273 - 0.740 0.904 0.962

Zhou et al [6] No E 50 0.201 1.391 5.181 0.264 - 0.696 0.900 0.966

Godard et al [5] No E 50 0.140 0.976 4.471 0.232 - 0.818 0.931 0.969

ours-SAD No E 50 0.140 0.959 4.463 0.232 - 0.821 0.931 0.969

ours-ZNCC No E 50 0.138 0.937 4.399 0.231 - 0.825 0.933 0.969

Godard et al [5] No G 80 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975

ours-SAD No G 80 0.121 1.358 6.073 0.215 29.937 0.842 0.936 0.976

ours-ZNCC No G 80 0.117 1.202 5.953 0.210 29.612 0.845 0.938 0.976

SAD similarity measurement can already improve the benchmark results, but

more improvements came with our proposed multi-level patch-based loss using

the advanced ZNCC similarity measurement (reported as ours-ZNCC), which

achieved the state-of-the-art results for monocular depth estimation problem on

KITTI dataset.355

Results on Make3D dataset. To further access the generalization ability

of our proposed methods and compare with other methods, we also evaluate

our trained networks on Make3D dataset [18]. For supervised methods [50] [21]

[25], they are trained using ground truth depth data from the Make3D train-

ing set. For unsupervised methods [6] [5] and ours, are trained on KITTI +360

Cityscapes datasets without the presence of any image from Make3D dataset.

For evaluation, we measure the error metrics (AbsRel, SqRel, RMSE and RM-

SElog) using the test image with ground truth from Make3D dataset. As can

be seen from Table 4.3.1, although our method scored similar results to Zhou

et al [6] regarding relative errors, for the RMSE, our methods outperform all of365

the state-of-the-art unsupervised methods.
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Table 2: Comparison with state-of-the-art methods on Make3D dataset [18].

Method Supervision Cap
Error (Lower better)

AbsRel SqRel RMSE RMSElog

Karsch et al [50] Yes 70 0.428 5.079 8.389 0.149

Liu et al [21] Yes 70 0.475 6.562 10.05 0.165

Laina et al [25] Yes 70 0.204 1.840 5.683 0.084

Zhou et al [6] No 70 0.383 5.321 10.47 0.478

Godard et al [5] No 70 0.544 10.94 11.76 0.193

Ours No 70 0.393 5.714 8.908 0.186

Compared among unsupervised methods, our method produced better re-

sults regarding RMSE (RMSE and RMSElog) and at large cap distance (70m

and 80m), and not significantly improve the relative error metrics (AbsRel,

SqRel) at small cap distance (50m). This is totally what we expect as our multi-370

scale patch-based loss function performs better results when the distances of

left-right corresponding pixels are large (meaning the pixel is at large distance),

which the pixel-based loss function will prone to fail.

4.3.2. Qualitative Evaluation

The qualitative comparison to some of the related methods on KITTI dataset375

is shown in Figure 6. While our network structure is similar to that of Godard

et al [5], both generate clear and accurate depth than other works. We also

provide a detailed comparison with the results of Godard et al [5] in the lower

part of Figure 6. Our network can generate more accurate depth in complex

regions with thin structures and texture-less areas such as the pillars and traffic380

signs. This verified the theory we explained in Figure 5 that our patch-based

loss function is more robust and easier to converge to the global minimum in

complex regions.
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Input Ground-truth Garg et al[4] Zhou et al[6] Godard et al[5] Ours

Godard et al [3] OursInput Image Details

Figure 6: Upper part: comparison of monocular depth estimation on KITTI dataset between

Garg et al [4], Zhou et al [6], Godard et al [5], and ours. Lower part: comparison of details with

Godard et al [5]. All of the results are generated using authors’ provided pre-trainned model.

The ground-truth depth map is interpolated from sparse point map only for visualization.
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Figure 7: Confidence estimation results. A colorbar from red to yellow is used to represent 0

to 1.

4.3.3. Confidence Map Evaluation

We show the confidence estimation results in Figure 7. A colorbar from385

red to yellow is used to represent 0 to 1. We can see that the estimated con-

fidence can nicely represent the inverted ZNCC loss but less noisy due to the

small network we use to prevent over-fitting. The overlaid confidence on input

image shows that our ConfidenceNet has learned to generate confidence from

contextual information. For example, in texture-less areas (sky, building), dark390

areas (trees under shadow), occluded areas (around thin structures) and reflec-

tive areas (car window), the estimated confidence is usually very low, while the

texture-rich areas and edges usually have high confidence.

5. Discussion

In this paper, we have presented a novel self-supervised framework for monoc-395

ular depth learning and confidence estimation. We incorporate the patch match-

ing theory into a fully differential DCNN and achieve self-supervised training

of both depth and the confidence of depth. Our proposed loss function exploits

the epipolar constraint of stereo vision and also provides a normalized similarity

that is further used to supervise the confidence estimation. Our method not only400

outperforms the state-of-the-art results on the KITTI benchmark evaluation,

but also for the first time, we are able to simultaneously generate depth from

monocular images and estimate the confidence of the generated depth. This is

a step change for monocular depth estimation as it significantly increases the
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feasibility of using monocular depth estimation into many practical applications405

such as autonomous driving and monocular endoscopic surgery [7], where the

accuracy of estimated depth is crucial.

Why Our ConfidenceNet Works? As there is certain limitation of un-

supervised monocular depth learning from stereo pairs (ambiguous depth esti-

mation in texture-less area, reflection, etc.). Our ConfidenceNet is supervised410

by the per-pixel ZNCC loss of our depth estimation network (which can be re-

garded as the confidence of current depth), it explicitly learns the regions where

our depth estimation network performs well and badly. But on a deeper level,

our ConfidenceNet actually implicitly learns the inherent defect of the patch

matching algorithm – it would fail on texture-less regions and performs badly415

near stereo view occlusions, reflections and blurred areas. Therefore, after suf-

ficient training steps, our ConfidenceNet can capture and memory where the

DepthNet would perform good or bad, and give an estimation of the confidence

of our DepthNet, although they are two different networks.

In Future Work. We will continue optimizing our model and explore the420

possibility of using adaptive window size for patch sampling to decrease the

training time and increase accuracy in small structures.
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