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A B S T R A C T

Currently, high dimensional data processing confronts two main difficulties: inefficient similarity measure
and high computational complexity in both time and memory space. Common methods to deal with these
two difficulties are based on dimensionality reduction and feature selection. In this paper, we present a dif-
ferent way to solve high dimensional data problems by combining the ideas of Random Forests and Anchor
Graph semi-supervised learning. We randomly select a subset of features and use the Anchor Graph method
to construct a graph. This process is repeated many times to obtain multiple graphs, a process which can
be implemented in parallel to ensure runtime efficiency. Then the multiple graphs vote to determine the
labels for the unlabeled data. We argue that the randomness can be viewed as a kind of regularization. We
evaluate the proposed method on eight real-world data sets by comparing it with two traditional graph-
based methods and one state-of-the-art semi-supervised learning method based on Anchor Graph to show
its effectiveness. We also apply the proposed method to the subject of face recognition.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High dimensional data classification problems have been ubiq-
uitous due to significant advances in computing technology, i.e.
bag-of-words representation of documents classification with a huge
dictionary, gene expression classification, multimedia classification,
etc. High dimensionality poses significant mathematical challenges
to traditional classification methods because of computational time
and space complexity. We analyze two difficulties in high dimen-
sional data processing. One difficulty is the problem of inefficient
similarity measure. Actually it makes sense for Euclidean distances
in about 2 to 10 dimensional spaces, which is usually used as sim-
ilarity measure between data points. However the comparability of
Euclidean distance between data points does not exist in high dimen-
sional space due to the sparsity of high dimensional data. Its effec-
tiveness as the similarity measure declines along with the increase of
the dimensions. The other difficulty is the so-called Curse of Dimen-
sionality. Increasing dimensions can bring about an explosive growth
in calculation time and memory space.
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Two common methods to deal with high dimensional data are
Dimensionality Reduction and Feature Selection. Dimension Reduction
techniques try to obtain a low dimensional embedding from high
dimensional data, which is essentially divided into two categories:
the linear methods and the nonlinear methods. Linear methods such
as Principle Component Analysis (PCA), Independent Component
Analysis (ICA) and Linear Discriminant Analysis (LDA) and nonlinear
methods such as Laplacian Eigenmaps (LE), Local Linear Embed-
ding (LLE), MultiDimensional Scaling (MDS), Isometric Mapping
(ISOMAP), and Kernel PCA (KPCA), are all commonly used. See [1] as a
tutorial. Feature Selection techniques try to select the more effective
features and eliminate the irrelevant ones [2]. Nowadays research on
feature selection focuses on search strategy and evaluation criteria.
See [3] as a tutorial. Generally speaking the core idea behind the two
methods is to use fewer significant and discriminatory features to
represent the original data.

However this paper proposes a different way to handle high
dimensional data. We consider the semi-supervised setting based on
the following points. Firstly the data acquisition is more and more
easy due to technology improvements. Thus the amount of data
is becoming more and more large scale with much higher dimen-
sions. This is what we called Big Data. Secondly it is very common
in application domains that labeled data is scarce and expensive
but unlabeled data is large and cheap. Supervised learning does
not suit this scenario, while semi-supervised learning which uses a
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large amount of unlabeled data to help improve the classification
performance was born for this purpose.

To solve the difficulties of high dimensional data processing men-
tioned above, we observe two facts. One is the Random Forests [4]
method, it can handle high dimensional data without dimensionality
reduction or feature selection. It has good generalization perfor-
mance and is not easy to overfit due to the randomness. We adopt
a similar idea to inject randomness in graphs by randomly select
a subset of features to create a graph. The size of the feature sub-
set is usually far smaller than the original dimension. Thus in this
selected feature space similarity measure based on Euclidean dis-
tance can be effective again due to its lower dimensions. Another fact
is the subset-based large scale graph construction method Anchor
Graph [5]. It uses a small subset of data points called anchors to con-
struct the whole graph of a data set. It scales linearly with the size
of the data set and can deal with very large scale data sets. We uti-
lize the Anchor Graph method to construct a graph in the randomly
selected feature space and do semi-supervised inference on this
graph. So combing the idea of Random Forests with semi-supervised
learning based on Anchor Graph, we propose a new semi-supervised
framework named Random Multi-Graphs to deal with high dimen-
sional and large scale data problem. We randomly select a subset of
features and use Anchor Graph to construct a graph. The above pro-
cess is repeated to obtain multiple graphs which can be implemented
in parallel to ensure the runtime efficiency and then the multiple
graphs vote to determine the labels for the unlabeled data.

We evaluate the proposed method on eight real-world data sets;
compared with two traditional graph-based methods and one state-
of-the-art semi-supervised learning method based on Anchor Graph
to show its effectiveness. As an application of the proposed method,
we will analyze data for the purpose of face recognition from images.

The main contributions of this paper are as follows:

• We present a new graph-based semi-supervised learning
framework to handle high dimensional and large scale data
problem by injecting randomness to the graph.

• We show that the randomness can be viewed as a kind of reg-
ularization technique to avoid the curse of dimensionality and
overfitting.

• Experiments show the performance increase in high dimen-
sional data problem.

The rest of this paper is organized as follows. In Section 2 we
give a brief introduction to graph-based semi-supervised learning,
Random Forests and Anchor Graph. The proposed framework is
described in Section 3. In Section 4, the experiments are presented,
and Section 5 concludes this paper.

2. Background

In this section, we briefly review three related topics: 1) graph-
based semi-supervised learning framework; 2) Random Forests; and
3) Anchor Graph.

2.1. Graph-based semi-supervised learning framework

Graph-based semi-supervised learning (GSSL) methods have
been successfully used in large number of applications [6–14] cover-
ing many application domains where labeling data is very expensive
and time-consuming while unlabeled data is very cheap and easy
to collect. The GSSL methods use an undirected graph to model the
data set and the relationships among the data points. Given a data

set D = {(xi, yi)}l
i=1

⋃{(xj)}l+u
j=l+1, the vertices of the graph repre-

sent the l labeled data (xi)l
i=1 and u unlabeled data points (xj)l+u

j=l+1.
The edges with weights represent the similarity between the affil-
iated nodes, and are usually represented by a weight matrix W =
{wij}, i, j = 1 · · · n, n = l+u. Once the graph is built, the label informa-
tion is injected into the graph and propagated throughout the whole
graph to obtain the labels for the unlabeled data. The main idea is
that if the weight wij is large, then the labels of the adjacent ver-
tices xi and xj are expected to be the same. This is called smoothness
assumptions (cluster assumption or manifold assumption). Tradi-
tional graph-based semi-supervised methods include MinCut [15],
GRHF [16], LLGC [17], and MR [18], etc. See [19–22] for tutorials.

These traditional graph-based semi-supervised learning methods
can be formulated as, or are closely related to the following quadratic
optimization problem [23],

min
f

(f − y)T C(f − y) + fT Lf, (1)

where the vector y = (y1, · · · , yl, 0, · · · , 0)T ∈ R
n, yi ∈ {+1, −1}, f ∈ R

n

is the predicted labels, L ∈ R
n×n is the regularization matrix, and C ∈

R
n×n is a diagonal matrix with its ith diagonal elements ci = al > 0

for 1 ≤ i ≤ l and ci = au ≥ 0 for l + 1 ≤ i ≤ l + u. al and au are two
parameters.

The first term of Eq. (1) is the fitting term which uses quadratic
loss to measure the error between the predicted labels f and the
known labels y. The second term of Eq. (1) is the regularization term
which uses a regularization matrix L to evaluate how smooth the pre-
diction f varies along the data manifold which is usually represented
by a graph.

The popular choice for L is the graph Laplacian [24]. It is defined
as

L = D − W, (2)

where W is the weight (similarity) matrix of the graph and com-
monly computed by the Gaussian Kernel as

wij = e
− ‖xi−xj‖2

2s2 i �= j, wii = 0 (3)

where s is the kernel width parameter to be tuned. The diagonal
matrix D is the row sum of W with its ith diagonal element di =∑n

j=1 wij. The normalized graph Laplacian is the normalized version
of L which is defined as

L̃ = I − D− 1
2 WD

1
2 . (4)

Computing the partial derivative w.r.t L and letting it equal to 0,
a closed-form solution of the problem (1) can be obtained as

f = (L + C)−1Cy. (5)

Then the predicted labels can be easily obtained from f by looking
at the signs of the predicted values yi = sgn(fi), l + 1 ≤ i ≤ l + u.

It is easy to extend the objective function (1) to deal with multi-
class classification problems. For a c-class problem, one can use
the one-in-c representation to represent the labels. The objective
function for multi-class semi-supervised learning is defined as

min
F

tr((F − Y)T C(F − Y)) + tr(FT LF), (6)

where tr( • ) is the trace function, F ∈ R
n×c is the prediction matrix to

be learned, Y = (y1, · · · , yl, 0, · · · 0)T ∈ R
n×c, yi is the label vector for
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data point xi and it is an indicator vector with yij = 1 if xi belongs to
the jth class and yij = 0 otherwise. 0 is the all 0 vector. Then each xi

can be classified to the jth class if Fij is the largest one in the ith row
of F which can be written as yi = argmax j Fij, j = 1 · · · c.

Note that problem (1) represents several famous traditional
graph-based learning methods summarized in Table 1.

However the traditional graph-based semi-supervised learning
methods are not suitable for high dimensional and large scale prob-
lems due to the following reasons. Firstly, the accuracy depends a lot
on the graph which describes the relationships among data points,
and reflects the true structure (manifold) of the data set. However
in high dimensional feature space the data points are much more
sparse, the distance-based measure loses its effectiveness to mea-
sure the (dis)similarity between points. Secondly, they do not scale
well for high dimensional and large scale data set because of the
high complexity involved. It can be seen that the major processes
in graph-based semi-supervised learning methods are graph con-
struction and an n-by-n matrix inversion which needs O(n2) and
O(n3) respectively. We will solve these two problems in our proposed
framework.

2.2. Random Forests

Breiman gave the definition of Random Forests in [4] that a Ran-
dom Forests is a classifier consisting of a collection of tree-structured
classifiers {h(x, hk), k = 1, . . .} where the {hk} are independent iden-
tically distributed random vectors and each tree casts a unit vote for
the most popular class at input x. It can be seen that Random Forests
is an ensemble approach whose main principle is that a group of
weak learners can come together to form a strong learner. It starts
with a standard machine learning technique called decision tree
which, in ensemble terms, corresponds to the weak learner. In a deci-
sion tree, an input is entered at the top and as it traverses down the
tree the data gets bucketed into smaller and smaller sets.

Here is how such a Random Forests is trained [25]. Given a data
set with N samples, and for some given number of trees T:

• Sample N cases at random with replacement to create a subset
of the data. The subset should be about 66% of the total set.

• At each node: For some number M, select M features at random
from all the features. Use the M features that provide the best
split, according to some objective function, to do a binary split
on that node. The value of M is held constant during the forest
growing. At the next node, choose another M features at ran-
dom and do the same until a tree has been created. Note that
there is no pruning.

• Repeat the above process until T trees have been created.

When a new input is entered into the Random Forests, it runs
down all of the trees. The result may either be an average or weighted
average of all of the terminal nodes that are reached, or, in the case
of categorical variables, a voting majority.

Some benefits of Random Forests are listed below.

• High accuracy;
• Runs efficiently on large data sets;
• Handles thousands of input features without feature deletion

and selection;

Table 1
Choices of graph Laplacian and parameters in three famous graph-based methods.

Methods Choice of L al au

GRHF Graph Laplacian ∞ 0
LapRLS Graph Laplacian A finite number 0
LLGC Normalized graph Laplacian 0 < al = au < ∞

• Gives estimates of what features are important in the classifi-
cation;

• Easy for distributed processing;
• etc.

The drawback of Random Forests is that with imbalanced training
sets the classification results tend to the categories which have more
samples, so the number of training samples of all categories must be
the same. Chen et al. [26] considered the problem and gave differ-
ent weights on the judgment of the decision trees according to the
proportion of samples, but the experiment results showed that this
method was still not good enough at solving the imbalance problem.
Another drawback of Random Forests is that the more trees a Ran-
dom Forests has, the more stable the performance is. If the number
of trees is not high enough, the performance may be not stable.

2.3. Anchor Graph

The idea of Anchor Graph is from [27,28]. They worked with large
scale data and made the label prediction function to be a weighed
average of the labels on a subset of anchor (landmark) samples. As
such, the label prediction function f can be represented by a subset
A =

{
aj

}m
j=1 ⊂ R

d in which each aj is an anchor point,

f (xi) =
m∑

j=1

Pij f (aj), (7)

where Pij is the data-adaptive weight. If we define two vectors f =
[ f (x1), . . . , f (xn)]T and fa = [ f (a1), . . . , f (am)]T, then Eq. (7) can be
rewritten as

f = Pfa, P ∈ R
n × m, m 	 n. (8)

This formula reduces the solution space of unknown labels from
the larger space f to a smaller space fa. The problem here is how to
choose the anchor points. Liu et al. [5] suggested the use of K-means
clustering centers as anchors instead of randomly sampled points
because K-means clustering centers have a stronger representation
power to adequately cover the full data set.

Another problem here is how to design the matrix P. Liu et
al. [5] proposed a method called Local Anchor embedding (LAE) to
reconstruct any data point xi as a convex combination of its clos-
est anchors. The data-anchor mapping problem can be formulated as
follows:

minP∈R n ×m J(P) = 1
2 ‖ X − PA‖2

s.t. Pij ≥ 0, Pi1 = 1, (9)

where X ∈ R
n×d stands for the data matrix in which every row is a

data sample, A ∈ R
m×d is the anchor matrix in which every row is

an anchor, P∈Rn×m is the data-anchor mapping matrix which is to be
learned.

Using matrix P , the adjacency matrix can be designed as W =
PK−1PT in which the diagonal matrix K ∈ R

m×m is defined as Kkk =∑n
i=1 Pik. This is where the name Anchor Graph comes from, because

a graph can be fully represented by its adjacency matrix.

3. Random Multi-Graphs

Fig. 1 shows the proposed method. The details are presented
below.
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Fig. 1. Random Multi-Graphs (RMG) algorithm is summarized in this figure. First randomly select a subset of kf features and use Anchor Graph to construct a graph. The above
process is repeated to obtain kg graphs which can be implemented in parallel to ensure the runtime efficiency. And then the multiple graphs vote to determine the labels for the
unlabeled data.

3.1. Notations

Given a data set X = Xl
⋃

Xu ∈ R
d, d is the dimension of

the feature space. Xl = {x1, · · · , xl} is a labeled set with the labels
yi ∈ {1, · · · , c}, Xu = {xl+1, · · · , xl+u} is an unlabeled set, and u is the
number of unlabeled data. n = l + u is the size of the total data set.

3.2. Algorithm

The whole framework of Random Multi-Graphs is described as
below.

• Step 1: Randomly select kf features from all the d features;
• Step 2: Create a graph: Choose m anchor points to cover the

data manifold denoted by an anchors matrix A; compute the
mapping matrix P to represent the rest of the data points via
anchors;

• Step 3: Run semi-supervised inference on this graph utilizing
graph Laplacian Regularization;

• Step 4: Repeat the above steps to get kg graphs;
• Step 5: kg graphs vote to determine the labels for the unlabeled

data points.

3.3. Graph construction

Graph construction is essential in graph-based semi-supervised
learning. The most common method is to build a full-connected
graph using Gaussian kernel described in Eq. (4). Other sparse graphs
such as k-NN and 4-NN are also commonly used. Even more accurate
graphs can be learned via the metric learning method [29–32] which
can effectively use label information in graph construction.

In this paper we adopt the Anchor Graph method to construct
the graph because of its better efficiency. While the optimization of
mapping matrix described in Eq. (9) is slow [33]. Here we use a pre-
defined way to design the mapping matrix P by Nadaraya-Watson
kernel regression [5,34] that defines Pik as

Pik =
Ks (xi, ak)∑

k′∈A< i>Ks (xi, uk′)
∀ak ∈ A<i>, (10)

where Ks is a kernel function with a bandwidth s which we use
Gaussian kernel function as common, and A<i> is the r nearest
anchors of xi. Intuitively we set Pik = 0 ∀ak /∈ A<i>. The assumption
here is that Pik should be larger if xi is close to ak, and vice versa.

Using matrix P, the graph can be represented by its adjacency
matrix W = PK−1PT in which the diagonal matrix K ∈ R

m×m is
defined as Kkk =

∑n
i=1 Pik.

3.4. Semi-supervised inference

We adopt the traditional semi-supervised learning objective
function described in Eq. (6), and use the same semi-supervised
learning framework as Liu et al. [5]. Based on the anchor-based
label prediction model described in Eq. (8), we only need to solve
the labels for the anchors denoted by a one-in-c label matrix FA =
{a1, · · · , am}T ∈ R

m×c. The labels of other data points can be repre-
sented by F = PFA. Then the formulated objective function is as
follows

Q(FA) = tr
(

(Fl − Yl)T (Fl − Yl)
)

+ ctr(FT LF)

=‖ PlFA − Yl ‖2
F +ctr

(
(PFA)T L(PFA)

)

=‖ PlFA − Yl ‖2
F +ctr

(
FT

ALrFA

)
(11)

where Pl is the sub-matrix of P according to the labeled partition,
Yl is the labels of the labeled data, ‖ •‖F is the Frobenius norm of the
matrix, and c is a regularization parameter. We define Lr = PTLP, L
is the graph Laplacian matrix defined as L = D − W = I − PK−1PT.
Then the computation of Lr is as follows

Lr = PT LP = PT (I − PK−1PT )P = PT P − (PT P)K−1(PT P). (12)

Obviously a global optima for the objective function described in
Eq. (11) can be easily obtained by setting the partial derivative w.r.t
FA to zero:

F∗
A =

(
FT

l Fl + cLr

)−1
FT

l Y. (13)

Then the labels of unlabeled data can be determined by

yi = arg maxj∈1,··· ,c Pi.FAj., i = l + 1, · · · , n, (14)

where Pi. denotes the ith row of P, FAj. denotes the jth column of FA.

3.5. Inductive extension

After solving the labels of anchors, a very natural inductive exten-
sion is that if a new data xnew comes, we first compute the mapping
weights by Eq. (10), then using Eq. (14), we can get the label of xnew.
Although, for high dimensional data, to avoid the curse of dimension-
ality, it still needs to go throughout kg graphs and vote to determine
the labels for xnew.
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3.6. Randomness as regularization

The core idea of our proposed framework is injecting random-
ness into the graphs. More particularly, we select a random subset
of features to create a graph. We illustrate two advantages of this
approach. One is that it can deal with the high dimensional data very
well, the other is that it can also help to avoid overfitting.

For the former, we adopt the idea of divide and conquer to only use
a small subset of features to participate the construction of a graph,
and use multiple (i.e. 100) graphs to make up the representation defi-
ciency caused by fewer features. Thus every graph is constructed in a
relatively low feature space. Using this method we can avoid two of
the problems caused by high dimensional data sets: the effectiveness
of Euclidean distance and high complexity .

For the latter, we show that it can be regarded as a kind of regu-
larization. We all know that if we have too many features the learned
model may fit the training set very well, but fail to generalize to new
examples. This is called overfitting. The most common solution to this
problem is regularization. That is, to keep all the features but reduce
the magnitude of the parameters. This works well when there are
a lot of features, each of which contributes a bit to train the model.
This means we minimize the empirical error and we add a series of
penalties to the parameters of the model. Another interpretation to
the penalties is to introduce some priors to the model parameters. In
this sense our approach can also be regarded as a kind of regulariza-
tion because we select a small subset of features to construct a graph
by penalizing the weights for the other features to become zero. Also
there are some similar statements from previous works by other
authors. In [4] it has been stated that the two kind of randomness can
help to avoid overfitting. In [35,36] it has also been confirmed that
the randomness introduced in the model can be viewed as a kind of
regularization.

4. Experiments

We evaluate the proposed method on eight real-world data sets
to show its effectiveness.

4.1. Data sets

We use eight real-world data sets in our experiments, which
are USPS data set1, 20Newsgroups data set2, YaleB data set3,4, and
five data sets from the UCI machine learning data sets5 [37]. These
data sets come from various application domains; including image
processing, text classification, face recognition, handwritten recogni-
tion, medical diagnosis and protein analysis. The feature dimensions
of these data sets vary from tens, to hundreds, to thousands. Table 2
shows the properties of these eight data sets.

4.2. Experimental results

We ran the experiments in the computing environment: Intel(R)
Xeon(R)CPU E5506@2.13 GHz, 72 GB memory, Windows Server 2012
64 bit operation system, and Matlab version 8.4.0.

We compared the proposed method Random Multi-Graphs (RMG
for short) to the state-of-the-art method AnchorGraphReg [5] and
two traditional graph-based semi-supervised learning methods:
Gaussian Field and Harmonic Function (GFHF) [16] and Learning
Local and Global Consistency (LLGC) [17] on both classification
accuracy and runtime. The experimental results are shown in

1 http://statweb.stanford.edu/tibs/ElemStatLearn/data.html.
2 http://qwone.com/jason/20Newsgroups/.
3 http://vision.ucsd.edu/leekc/ExtYaleDatabase/YaleFaceDatabase.htm.
4 http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html.
5 http://archive.ics.uci.edu/ml/.

Table 2
Eight data sets used in the experiments.

Data set # of data points # of dimensions # of classes

Protein 116 20 6
Image segmentation 2310 19 7
Dermatology 366 34 6
Waveform40 5000 40 3
YaleB 2432 241 38
20Newsgroups 16,242 100 4
USPS 9298 256 10
DBWorld emails 64 4702 2

Tables 3 and 4. For every data set, we ran each method 20 times and
for each run we randomly chose 10% of the data as labeled. The fol-
lowing tables report the average performance, the boldface items in
these tables represent the best performance.

Table 3 shows the average classification accuracy. It can be seen
from Table 3 that our proposed method reports the best average
accuracy on these eight data sets. And the traditional graph-based
semi-supervised methods are not perform well especially on high
dimensional data sets.

Table 4 shows the average runtime. We didn’t get the result of
20Newsgroups data set for GFHF and LLGC because of too long run-
time. It can be seen from Table 4 that our proposed method does not
perform well in runtime because we create multiple graphs (100 in
our experiments) to vote. Actually these multiple trees are indepen-
dent of each other. Thus it can be implemented in parallel. We use
one GeForce GTX TITAN X GPU to accelerate the proposed method
and the results are listed in the last column of Table 4. It can be
seen that runtime of small data sets like Protein and DBWorld emails
are increasing, mainly because the expenditure of data transmission
exceeds the computational acceleration. It can achieve 2–5 times of
speed-up ratio for the rest of the data sets. It is not enough of course.
We will try some other methods to solve this problem in the future.

4.3. Effect of parameters

There are two parameters in our framework: kg and kf repre-
senting the number of graphs and the number of randomly selected
features, respectively.

With respect to kg, Random Forests is very robust when han-
dling different numbers of trees. We use four data sets to verify
whether the proposed method holds the same characteristics as Ran-
dom Forests or not. The four data sets used in this experiment include
Protein, YaleB and DBWorld emails, whose properties can be found
in Table 2, and an unbalanced data set Glass with 223 samples of 6
classes and 9 feature dimensions. We choose the values of kg from a
set of {5, 10, 50, 100, 500}. For every data set and every value of kg we
run the proposed method ten times to get the results. The parameter
kf is fixed as 2sqrt(d) in this experiment. Fig. 2 shows the results. We
can see from the figure that when kg is larger than 50 the accuracy is
almost the same. Thus the proposed method is also robust as to the
number of graphs. So we fix the number of graphs kg as 100 in our
experiments.

Table 3
Average classification accuracy.

Data set GFHF LLGC AnchorGraphReg RMG

Protein 0.2398 0.2972 0.5130 0.6167
Image Segmentation 0.1722 0.1570 0.9006 0.9158
Dermatology 0.2406 0.3414 0.9319 0.9456
Waveform40 0.3633 0.3770 0.7241 0.7988
YaleB 0.1493 0.0692 0.7410 0.8792
20Newsgroups – – 0.8214 0.8938
USPS 0.1480 0.1717 0.9257 0.9551
DBWorld emails 0.5415 0.5932 0.8602 0.8831

http://statweb.stanford.edu/tibs/ElemStatLearn/data.html
http://qwone.com/jason/20Newsgroups/
http://vision.ucsd.edu/leekc/ExtYaleDatabase/YaleFaceDatabase.htm
http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html
http://archive.ics.uci.edu/ml/
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Table 4
Average runtime.

Data set GFHF LLGC AnchorGraphReg RMG RMG_GPU

Protein 0.0630 0.0585 0.0300 1.5344 4.0456
Image segmentation 17.8723 49.7439 2.7811 180.6050 79.9740
Dermatology 0.7001 0.8904 0.0682 1.0589 4.3412
Waveform40 129.6673 346.1910 14.6079 968.9694 338.9526
YaleB 65.2389 96.1705 5.6422 311.6759 135.3131
20Newsgroups – – 597.6964 6230.7799 2266.1678
USPS 1147.8508 2439.3654 127.6280 5993.5319 1390.3187
DBWorld emails 0.2543 0.4963 0.0950 1.6619 2.1047

As for kf, Brieman suggests three possible values for kf: 1
2

√
m,

√
m,

and 2
√

m [4]. We try to find the relationship between kf and the per-
formance on the same four data sets mentioned above. For every data
set we run our algorithm ten times with kf =

{
1
2

√
m,

√
m, 2

√
m

}
. The

number of graphs kg is fixed as 100. Fig. 3 shows the average accu-
racy. We can see that the number of features randomly selected for
every graph does not affect the performance too much except the
YaleB data set. The main reasons are that the number of classes of
the YaleB data set is 38 which is much more than the other three
data sets, and its feature dimension is 241 which is also a little
high. Thus fewer features can not provide enough information to

distinguish these many classes. We fixed kf as 2
√

m in our experi-
ments. But a larger number of randomly selected features is strongly
recommended for high dimensional and many classes data sets, i.e.
4
√

m or 8
√

m.

4.4. Face recognition application

We also apply the proposed method on the application of face
recognition, which is a classical application domain in computer
vision. Many researches have been done in this field. Unlike those
feature extraction based methods [2,38] or learning accurate features

(a) glass (b) protein

(c) YaleB (d) DBWorld emails

Fig. 2. Relationship between the number of graphs and the performance evaluated on four data sets.
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(a) glass (b) protein

(c) YaleB (d) DBWorld emails

Fig. 3. Relationship between the number of features and the performance evaluated on four data sets.

for face recognition [39–41], we use the raw pixels of 4096 dimen-
sions directly with 64×64 resolution of every face image in ORL data
set.6 There are ten different images of each of 40 distinct persons in
this face data set. For some persons, the images were taken at differ-
ent times, varying the lighting, facial expressions (open/closed eyes,
smiling/not smiling) and facial details (glasses/no glasses). We ran-
domly choose 10%, 20%, 30%, and 40% per class (person) as labeled
data and the rest is unlabeled. Table 5 shows the average accuracy
and average runtime of ten times running.

5. Conclusion and future work

We focused on the graph-based semi-supervised learning of
high dimensional data. Combining the ideas of Random Forests and
Anchor Graph we propose a new framework to deal with high
dimensional data, which can effectively avoid the curse of dimen-
sionality and efficiently obtains better classification accuracy. We
randomly choose a subset of the features to create a graph based on

6 http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

anchors, repeat the above process to obtain multiple graphs, then
vote to determine the labels of unlabeled data.

We tested the proposed method with traditional and state-of-
the-art methods including GFHF, LLGC, and AnchorGraphReg. The
experiments show that the proposed method can give an obvi-
ous improvement in the classification accuracy with 10% labeled
data.

However there is still some work to be done in the future. One
thing is the bottleneck of the runtime. We consider to use more GPUs
to accelerate the proposed method. Or we can try to learn a “strong”
graph with multiple “week” graphs thus to avoid the bottleneck of
runtime. Another thing is that we estimate there should exist some
certain relationship among the number of randomly selected fea-
tures kf, the number of graphs kg, the feature dimensions d, and the
number of classes of the data set c. Further study will be needed
to determine if this relationship exists, and its’ rules. The next step

Table 5
ORL face recognition results.

ORL (percentage of labeled data) 10% 20% 30% 40%

Ave. accuracy 0.5956 0.7047 0.7411 0.7708
Ave. runtime(s) 7.0307 7.0766 6.9363 7.1025

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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will be to obtain more experiments’ results and to try to train a
regression model to predict the values of kf and kg for a given data
set.
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