Contributions to the Archaeology of Egypt, Nubia and the Levant

CAENL

Edited by Manfred Bietak

Volume 9

2019
Harrassowitz Verlag · Wiesbaden
The Enigma of the Hyksos
Volume I

ASOR Conference Boston 2017 –
ICAANE Conference Munich 2018 – Collected Papers

Edited by
Manfred Bietak and Silvia Prell

2019
Harrassowitz Verlag · Wiesbaden
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 668640).

This publication has undergone the process of international peer review.

Open Access: Wo nicht anders festgehalten, ist diese Publikation lizenziert unter der Creative Commons Lizenz Namensnennung 4.0
Open access: Except where otherwise noted, this work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/
Table of Contents

Preface .. 7
by Manfred Bietak and Silvia Prell

Before the Cultural Koinè. Contextualising Interculturality in the ‘Greater Levant’ during the Late Early Bronze Age and the Early Middle Bronze Age ... 13
by Marta D’Andrea

The Spiritual Roots of the Hyksos Elite: An Analysis of Their Sacred Architecture, Part I 47
by Manfred Bietak

Amorites in the Eastern Nile Delta: The Identity of Asiatics at Avaris during the Early Middle Kingdom .. 69
by Aaron A. Burke

Trophy or Punishment: Reinterpreting the Tell el Dab’a Hand Cache within Middle Bronze Age Legal Traditions .. 95
by Danielle Candelora

A Ride to the Netherworld: Bronze Age Equid Burials in the Fertile Crescent 107
by Silvia Prell

Burial Customs as Cultural Marker: a ‘Global’ Approach ... 125
by Silvia Prell

A Maritime Approach to Exploring the Hyksos Phenomenon ... 149
by Ezra S. Marcus

Im Jenseits Handel betreiben. Areal A/I in Tell el-Dab’a/Avaris – die hyksoszeitlichen Schichten und ein reich ausgestattetes Grab mit Feingewichten ... 165
by Silvia Prell und Lorenz Rahmstorf

The Impact of the Hyksos as Seen at Thebes .. 199
by Christine Lilyquist

“One Ticket to Egypt, Please!”. Migration from Western Asia to Egypt in the Early Second Millennium BCE ... 209
by Elisa Priglinger

On Cultural Interference and the Egyptian Storm God ... 225
by Anna-Latifa Mourad

Tell El-Yahudiyeh Ware in the Eastern Nile Delta: Production, Distribution and Fabric Use Specialization at the Site of Tell El-Maskhuta during the Second Intermediate Period 239
by Aleksandra E. Ksiezak
Imported Levantine Amphorae at Tell el-Dab’a:
A Volumetric Approach to Reconsidering the Maritime Trade in the Eastern Mediterranean 277
by Cydrisse Cateloy

Is Imitation the Sincerest Form of Flattery?
New Light on Local Pottery Inspired by Cypriot Wares at Tell el-Dab’a .. 305
by Sarah Vilain

The Hyksos in Egypt: A Bioarchaeological Perspective ... 315
by Nina Maaranen, Holger Schutkowski, Sonia Zakrzewski, Chris Stantis, Albert Zink

Stable Isotope Analyses to Investigate Hyksos Identity and Origins .. 321
by Chris Stantis and Holger Schutkowski

Hidden in Bones: Tracking the Hyksos Across the Levant .. 339
by Nina Maaranen, Holger Schutkowski, Sonia Zakrzewski

Radiocarbon Dating Comparée of Hyksos-Related Phases at Ashkelon and Tell el-Dab’a 353
by Hendrik J. Bruins and Johannes van der Plicht

Game of Dots: Using Network Analysis to Examine the Regionalization in the Second Intermediate Period ... 369
by Arianna Sacco

Urban Morphology and Urban Syntax at Tell el-Dab’a ... 397
by Silvia Gómez-Senovilla

Concluding Remarks .. 415
by Manfred Bietak
Stable Isotope Analyses to Investigate Hyksos Identity and Origins

by Chris Stantis and Holger Schutkowski

Abstract
With collaboration from universities and museums worldwide, we seek to integrate multiple lines of isotopic evidence using the human remains from Tell el-Dab’a and comparative sites to pinpoint similarities (and differences) across the region. Strontium (\(^{87}\text{Sr}^{86}\text{Sr}\)) and oxygen (\(\delta^{18}\text{O}\)) analyses will elucidate childhood residence of individuals and therefore identify local versus non-local provenance at any given site, while carbon, nitrogen and sulphur (\(\delta^{13}\text{C}, \delta^{15}\text{N}, \delta^{34}\text{S}\), respectively) will provide clues about cultural groupings related to diet and socially and ecologically mediated food access.

Though isotope analyses on this scale will take time to provide statistically meaningful insights, we discuss our experiences of baseline collection, initial collection endeavours and research expectations to set the stage for what evidence we might contribute towards ‘the Hyksos Enigma’. We provide a ‘case study’ of a selection of previous isotopic studies of mobility in the Nile Valley in order to highlight the utility of larger-scale metadata analyses and bring attention to the potential difficulties of palaeomobility assessment using stable isotopes data. Though collection, processing and analysis is underway for the collections at the time of writing this proceeding, we will instead use this opportunity to bring attention to the growing corpus of stable isotopes research in Egypt and the Near East that will be strong comparative data when engaging with the ‘Hyksos Enigma’.

Stable Isotopes in Archaeology
Like all subfields of archaeology, archaeological chemistry is best outside the vacuum of its specialization, integrated in a multidisciplinary approach with other lines of data to tackle the pressing questions in the wider field. Thus, it is in the best interest of archaeologists integrating stable isotopes research into their interpretations to understand some of the basic principles of this toolset, just as it is imperative that destructive analyses such as stable isotopes begin from a solid foundation of site- and region-specific research questions. More detailed treatises on the principles of stable isotopes in biological systems are available, but we provide a brief overview of the isotopic analyses we plan to utilize.

Isotopes are variants/forms of a chemical element that have the same number of protons and electrons but different numbers of neutrons. The difference in the number of neutrons creates variation in atomic mass between isotopes. Isotopes of the same element, due to their difference in atomic mass, will behave differently during physical reactions, while the chemical properties of these isotopes remain largely the same, as chemical reactions generally involve electron activity rather than neutrons.

Heavier isotopes have a lower vibrational frequency relative to lighter isotopes; this results in a proportional decrease of energy and velocity in the heavier isotopes. The lower energy results in stronger covalent bonding when the heavier isotope forms a molecule, but increases the amount of energy needed to form a bond. As sample collection, processing and analysis is currently underway for the collections at the time of writing this proceeding, we will instead use this opportunity to bring attention to the growing corpus of stable isotopes research in Egypt and the Near East that will be strong comparative data when engaging with the ‘Hyksos Enigma’.

Introduction
The investigation of human remains from archaeological contexts in the Near East have incorporated theoretical and methodological refinement in the last few decades to produce research capable of addressing complex questions. Within our research group, we aim to integrate palaeopathology, ancient DNA, stable isotopes, and morphological studies in order to address questions of population affinity, social identity and demographic changes through time using an integrated biocultural approach.

This paper focuses on the application of stable isotopes in archaeological contexts. Isotopic analysis is a potentially powerful toolset to investigate mobility and diet, and the data can be integrated with existing archaeological knowledge in order to elaborate on complex topics such as economic exchange networks and culturally mediated access to foodways. We have experience with carbon and nitrogen stable isotopes analysis of bone samples in the Levant and Near East spanning a time period from the Early Bronze Age to the modern era, along with experience in the application of stable isotope systems for the reconstruction of provenance and palaeo-diet and their interpretation in a wider biocultural context and will follow established protocols for extracting high-quality, publishable stable isotopes data.

As sample collection, processing and analysis is underway for the collections at the time of writing this proceeding, we will instead use this opportunity to bring attention to the growing corpus of stable isotopes research in Egypt and the Near East that will be strong comparative data when engaging with the ‘Hyksos Enigma’.

References
For recent reviews, see: Schutkowski and Ogden 2011/2012; Saltyshak and Schutkowski 2015; 2018.

1 Bournemouth University, cstantis@bournemouth.ac.uk.
2 Rose 2017; Sheridan 2017.

3 Schutkowski and Ogden 2011/2012; Saltyshak and Schutkowski 2015; 2018.
4 Stantis et al. 2015; Stantis et al. 2016.
5 Brown et al. 1988; Evans, Chennery and Fitzpatrick 2006.
6 For recent reviews, see Hoefs 2009; Sharp 2017.
necessary for the molecule with the heavier isotope to react. As such, lighter isotopes preferentially diffuse out of a system, leaving the heavier isotope forms in the reservoir. These differences in reaction rates between isotope forms, also known as kinetic isotope effects or fractionation, dictate the ratio of isotopes in a sample. These differences in isotope ratios can be observed and measured using a mass spectrometer.

Some isotopes are deemed stable as they are not known to undergo radioactive decay, a stochastic process resulting in an atomic loss of energy that can transform an atom into a different element. A classic example of radioactive isotopes is radiocarbon (14C), which is constantly formed in the Earth’s atmosphere by cosmic radiation and decays into stable 14N. Most stable isotopes are primordial: they were created by cosmic forces and have existed in their current state since before the Earth was formed. Other stable isotopes are radiogenic (like 14N) and were created by the radioactive decay of another nuclide but are not themselves radioactive. While understanding radiocarbon’s rate of decay permits accurate dating of archaeological material, as stable isotopes do not decay over time, the stable isotope ratio in an organism will remain constant after death (barring diagenetic effects).

Presenting isotope data as absolute isotope abundances tends to provide long, unwieldy ratios with no guarantee to the reader that the sample has been compared to international reference standards. In most studies, the absolute isotopic ratio is of less interest than knowing the differences between samples. To compare these differences easily, an equation is used and the result is designated by delta notation (δ):

$$\delta = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right)$$

Carbon (δ^{13}C), nitrogen (δ^{15}N), sulphur (δ^{34}S) and oxygen (δ^{18}O) isotopes are presented in this fashion. Since the fractionation processes typically cause very small changes in ratios, these isotope ratio values are reported as per mil, or parts per thousand (%). A sample with a more positive δ value contains more heavy isotopes relative to the international reference standard and a more negative δ value indicates the sample has more of the lighter isotopes relative to the international reference standard. The exception is strontium isotope values, which are presented as a ratio, 87Sr/86Sr.

International standards are samples used to calibrate isotopic compositions in laboratories to ensure reliable and accurate measurements for all researchers in the world. If isotope studies do not report calibrating to an international reference standard, then the data are essentially useless. These agreed-upon international standards are very scarce (and very expensive), and not used in everyday laboratory procedures. The international standards are agreed-upon standards. The international standards are created that are identical for practical purposes, named VPDB (Vienna PDB) and VCDT (Vienna CDT). AIR (Ambient Inhalable Reservoir) is the Earth’s air, which has a constant 18O/16O ratio and, at the time of writing this, has not been depleted.

Isotope analysis could potentially be conducted using any body tissue, as all tissues reflect the diet and movement of the individual. However, due to the rarity of soft tissue survival in many archaeological settings, bone and teeth are most often sampled, even though the dry conditions in Egypt have provided opportunities for skin, organ tissue, hair and fingernails to be analysed in mummified human and animal remains, even preserved bread and egg yolk. Soft tissues are also more susceptible to diagenetic effects, the chemical and physical changes that occur after deposition, though there are means of assessing the degree to which tissues have been altered (discussed later).

Isotopes for Interpreting Diet

The analysis of the carbon, nitrogen and sulphur stable isotopes is based on the principle that we build our body out of the food we eat and the water we drink, and that our tissues reflect these dietary inputs: that “we are what we eat”, to paraphrase Feuerbach. Using this principle, bioarchaeological studies aim to place humans within the food web of the local ecological community, to understand the relative proportions of consumption of certain types of foods. A common context for dietary isotope research is investigating culturally mediated food access within stratified societies and how...
Stable Isotope Analyses to Investigate Hyksos Identity and Origins

this differential access creates differences in these relative proportions between social groups; but dietary isotope research can also address more complex diachronic changes, such as shifting subsistence strategies in the face of environment change and/or urban development over time.

Carbon primarily enters the food web through primary producers (plants), and, thus, most of the differences in carbon isotopic values ($\delta^{13}C$) between food webs arises from the varying $\delta^{13}C$ values of autotrophs. Carbon stable isotope ratios of bone and dentin collagen are used to differentiate between the consumption of terrestrial C plants, i.e., most cultivars and domesticates of temperate climates, and marine foods in past populations. Marine food webs display higher $\delta^{13}C$ values due to differences in the oceanic carbon reservoirs. C plants, such as maize, millet and sorghum, display higher $\delta^{13}C$ values compared with terrestrial C plants such as wheat and barley, and their values tend to overlap with marine foods.

Examining nitrogen stable isotope values ($\delta^{15}N$) in bone collagen allows researchers to understand an organism’s trophic level, or where they are on the food web and largely reflects intake of animal protein. In a closed model system, a herbivore would display $\delta^{15}N$ values ~3–5‰ higher than the plants it consumes, and a carnivore would display $\delta^{15}N$ values ~3–5‰ still higher, with omnivores somewhere in between. Marine food webs tend to be more complex with higher trophic levels. Used in conjunction with $\delta^{13}C$ values, $\delta^{15}N$ values of human and animal bone collagen can be used to assess on organism’s reliance on marine and terrestrial resources.

Sulphur stable isotope ($\delta^{34}S$) analysis for dietary reconstruction is not as well established as carbon and nitrogen isotope analyses but is emerging as a method for differentiating between terrestrial and marine food sources. Marine seaweeds and plankton have extremely uniform $\delta^{34}S$ values consistent with the $\delta^{34}S$ range of sea-salt sulphates. Terrestrial and freshwater plants draw upon sulphur from a variety of sources and will show more variation than marine plants. Additionally, the sulphur composition of the underlying geological substrate and microbial processes in the soil are often the main contributors in terrestrial ecosystems, inspiring some researchers to use $\delta^{34}S$ analysis as a tool for the geographic origin of human remains.

Isotopes for Interpreting Mobility

Two isotopes of strontium, Sr^{87} and Sr^{86}, are of interest for reconstructing the residential mobility of humans and animals in the past. The interpretation of movement using strontium isotope analysis rests upon the assumption that the $\text{Sr}^{87}/\text{Sr}^{86}$ ratios of an individual’s tooth enamel will generally reflect the $\text{Sr}^{87}/\text{Sr}^{86}$ ratios of the underlying geology in which they lived during childhood. Strontium has an atomic radius similar to the atomic radius of calcium (215 pm and 197 pm, respectively) and belongs to the same periodic group of alkaline earth elements in the periodic table. As a result, strontium readily replaces calcium in minerals, including calcium carbonate in chalk, limestone and marble, and calcium in the bones and teeth. Erosion of the underlying geological formations is the major contributor to the $\text{Sr}^{87}/\text{Sr}^{86}$ ratios of the soil, and plants display $\text{Sr}^{87}/\text{Sr}^{86}$ values nearly identical to the soil in which they grow. Plants and animals will not perfectly reflect the strontium ratios of the underlying geology due to mixing effects and differential erosion of different geological formations, and, so, bioavailable $\text{Sr}^{87}/\text{Sr}^{86}$ ratios as observed in plants and animals provide better ideas of local ratios than geological baselines.

Oxygen stable isotope ($\delta^{18}O$) analysis is another common method of examining movement in individuals. The main input of oxygen atoms in the body is drinking-water, and the difference in proportions between $\delta^{18}O$ and $\delta^{16}O$ is dependent largely on the location’s climate (e.g., mean temperature, altitude) from which the drinking-water is sourced. Because of this, $\delta^{18}O$ analysis has been used successfully to track the movement of humans in past populations. Though $\delta^{18}O$ can also provide information about breastfeeding and weaning strategies in the past due to differences in $\delta^{18}O$ values between drinking-water and breast milk, it is placed under the grouping of ‘mobility isotopes’ for this paper alongside $\delta^{13}C$ and $\delta^{15}N$, while $\delta^{18}C$, $\delta^{13}N$ and $\delta^{18}S$ are grouped as ‘dietary isotopes’.

16 AL-BASHAREH et al. 2010; GREGORIEKA and SHERIDAN 2013.
20 FRY et al. 1982; KEEGAN and DE NIEBO 1988; SCHOENINGER, DE NIEBO and TAUBER 1983.
21 SHARP 2017.
25 Vika 2009.
26 BENTLEY 2006; MONTGOMERY et al. 2005.
27 BURTON 2006.
28 EVANS et al. 2010.
30 DAUX et al. 2008.
31 CHENERY et al. 2010; MULDNER, CHENERY and ECKARDT 2011; PROWE et al. 2007.
‘Standing on the Shoulders of Giants’

There are certain challenges to sample collection and analysis this research project must face. As the project is still underway, there is currently no single geographic region that stands as a testable hypothesis for determining the origin of the Hyksos. As such, there are limitations in terms of project resource costs for collecting samples from all possible regions of the Near East from which the Hyksos might have originated. A similar set of challenges arises with the dietary data; when interpreting palaeo-diet, it is important to establish a dietary baseline specific to the region of interest. There are slight but significant variations around the globe for δ^{13}C, δ^{15}N and δ^{34}S values of plant and animal life due to variable rainfall, soil conditions, climate and other factors. The difference in δ^{13}C and δ^{15}N values has even been used to consider childhood place of origin in past populations, and the highly varied δ^{34}S values in environments have been utilized in ecological and archaeological studies to track human and animal migrations and diet.

The collection and analysis of past isotopic research data ameliorate these challenges. The increasing availability of quantitative information within bioarchaeological research has given more impact to metadata analysis, the statistical technique of combining data from multiple studies. The data produced by stable isotopes analysis is ideal for metadata analysis: it is nominal data that, thanks to standard practise of (a) calibrating to international and in-house reference material and (b) publishing the raw data with quality indicators in order to confirm the reproducibility, is comparable between quality laboratories. Already metadata analyses of stable isotope data have been conducted in Britain, Mesoamerica and Germany. The vast quantity of previous stable isotope research within the Near East provides opportunity to compile a large dataset to address questions not addressed in the individual studies, with a greater ability to conduct powerful statistical analyses.

Building a Database

Thus far, datasets from 38 studies have been incorporated to create a relational database of isotopic data from archaeological human, plant and animal samples across Egypt and the Near East. The database has been built using IsoMemo’s (isomemo.com) best practice guidelines for curating stable isotopes data, similar to IsoArch, the open access database that curates stable isotopes data from the Greco-Roman world.

A relational database is critical to complex archaeologically derived data. The core of the database is the sample description (e.g., sex, age, contextual information and dating), while one-to-many relationships tie together key site information (e.g., latitude, longitude) and the literature cited (Fig. 1). This relational database structure allows the isotope data to tie to the primary key of each sample, while also allowing room for the database to grow into other tables in future research (i.e., DNA information, detailed osteological data). The isotopes table catalogues the isotopic ratios (δ^{13}C, δ^{15}N, δ^{18}O, δ^{34}S and 87Sr/86Sr) along with relevant quality assessors and laboratory information, as well as the tissue analysed, and whether the isotopes are analysed from organic or mineral fractions in the cases of oxygen and carbon stable isotopes (which can be analysed from either). The one-to-many relationship between the individual ID key in the Sample Description table and the Isotopes table lets us include multiple samples from the same individual, as in cases where a tooth and a bone have been sampled or where serial sectioning of tooth dentine was collected in order to study changes in diet and mobility over time.

Selection Criteria

Data from grey literature and other non-peer-reviewed sources (e.g., master’s theses and doctoral dissertations) were included; though it was preferred that peer-reviewed publications were also available from those projects.

Deciding on what date range to include for comparative purposes is difficult. For mobility isotopes, geological and hydrological isotopes should not change demonstrably over the Holocene period so long as we remain aware that δ^{18}O values might reflect seasonal shifts and/or small-scale climate variability and, so, all available archaeological data within the Mediterranean/Near Eastern region is included.

For dietary isotopes, the acceptable date range for human comparative samples is narrower. Currently, information as late as Byzantine is included, though the increasingly global trade could create dietary profiles significantly different from the New Kingdom onwards, at least for the upper classes. Conversely, we cannot assume that pre-Ptolemaic Egypt was as...
isolated as previously assumed. Modern floral and faunal samples from the studied regions were also included as dietary baselines.

Contaminated samples of poor quality need to be eliminated before statistical analysis. For stable isotope analyses of collagen, collagen integrity assessments are important for identifying poorly preserved and/or contaminated tissue samples. Collagen-derived samples were not included in the database if no collagen integrity assessments were provided. As a minimum, a reported C/N ratio was required for collagen integrity assessment. DeNiro (1985) observed that modern bone displayed a C/N ratio within 2.9–3.6, though van Klinken et al. (1999) suggest the upper bounds can be higher than 3.6; any C/N ratio 2.9–4.0 was considered acceptable for this baseline. If %C, and %N were provided, %C values between 15 and 47% and %N values between 5 and 17% were required.

Exceptions were made for the data provided by Copley et al. 2004 and Basha et al. 2016; both studies assured the reader that all samples were within 2.9–3.6 C/N ratios, but did not provide the individual quality data.

For modern plant and animal tissue used as reference material, samples for dietary isolates were excluded from the database if no defatting protocol was clearly stated in the methods; lipids are depleted in 13C relative to carbohydrates and proteins due to differential metabolic processes, and, thus, it is best to reduce variation in lipid levels between tissues and species for ancient food pathway studies. Due to the long-term combustion of fossil fuels in the industrial age, shifts in the global carbon reservoirs (the ‘Suess effect’) require a correction to make modern samples comparable regarding δ^{13}C values: +1.5‰ for terrestrial samples and +0.86‰ for marine samples.

There are fewer, less universally accepted methods of assessing mineral quality of archaeological bone and teeth compared to the collagen quality indices. As such, most studies analysing isotopes from the mineral portion of teeth (87Sr/86Sr, δ^{18}O and δ^{13}C carbonate) do not report any quality assessments. Shewan (2004) rejects some modern plant samples as potentially contaminated due to modern car exhaust fumes, but all other modern samples analysed for 87Sr/86Sr are included in this database. Though new techniques for assessing mineral quality are being presented as de rigueur for stable isotopes studies, no samples were excluded for lacking these assessments, as the quality of data is deemed to be sufficiently robust.

45 Schneider 2003; Zakerzewski 2007.
Fig. 2 Year distribution of human and animal samples with mobility isotope data (δ^{18}O or 87Sr/86Sr) from the Nile Valley and Dakhla Oasis. Historic dates are mean year of site use range.

Fig. 3 Box plot of 87Sr/86Sr data for humans, by site. Sites ordered by latitude. Value of modern sea-water (0.7092), Nile River c. 3500 BP (SIP, 0.7082), and Nile River c. 2900 BP (NK, 0.7075) as dashed lines.
Stable Isotope Analyses to Investigate Hyksos Identity and Origins

87Sr/86Sr values from enamel and modern faunal bone or dentine samples were included in the database, but 87Sr/86Sr from bone or dentine samples were excluded; these tissues are more prone to leaching from the local groundwater and the exchange of Sr between the groundwater and in the mineral portion. There is no means of determining whether bone and dentine have been altered in this fashion, and it is wiser simply to exclude all 87Sr/86Sr values from archaeologically derived samples such as these. δ18O and δ13Ccarbonate are not considered to be as prone to changes due to leaching effects from groundwater as 87Sr/86Sr values and, so, could be included in the database, even if no quality assessments were presented.

Case Study: Using Metadata to Identify Residential Mobility in Egypt and Sudan

As a pilot investigation of the value of the database, we incorporate eight previous studies of Egypt and Sudan to investigate the utility of strontium and oxygen isotope analyses in identifying migrants. These studies included sites in the Nile Valley and in the Dakhla Oasis in the Western Desert, spanning 6950 BCE to 700 CE, as well as modern faunal samples (Fig. 2). No 87Sr/86Sr values from floral samples could be found in the literature. In total, 442 individuals and 63 faunal samples from these studies have δO and/or 87Sr/86Sr data.

Human Data
Strontium Isotopes

In total, 227 individual from sixteen sites throughout the Nile Valley in Egypt and Sudan have 87Sr/86Sr values. Figure 4 highlights an important research gap for strontium data, as there are no sites from the Western Desert, Eastern Desert or Sinai Peninsula, and, so, the potential utility for 87Sr/86Sr palaeomobility analysis when the drinking-water source is not the Nile River cannot be assessed.

The collated data of human 87Sr/86Sr values is summarized on Tab. 1. The median and interquartile range (IQR) are presented rather than mean and standard deviation as the data are not normally distributed and possibly skewed by immigrants with ‘deviant’ values. Some likely immigrants are observable as outliers in the box plot of values by site (Fig. 3), especially from the Nubian site of Tombos, where New Kingdom Egyptian imperial expansion caused the import of workers from other regions of the empire. However, most individuals fall within the Nile River 87Sr/86Sr values between the Second Intermediate Period and the New Kingdom as estimated by Krom et al. 2002, though of course those outliers present in each site cannot be dismissed. There are statistically significant differences in 87Sr/86Sr values between

50 Bentley 2006.
52 Buzon, Simonetti and Creaser 2007.
53 Smith 2007.
In addition, the IQRs are remarkably small for all sites, ranging from 0.0000175 to 0.000445. These IQRs would suggest that we could assert the provenience postulate: that between-sources differences must exceed within-source differences in order for provenience estimation to be possible.

Unfortunately, the differences between sources are also very small, with an overall IQR for the Nile Valley of ±0.000344. Put simply, the geographic origins of individuals from these sites cannot be confirmed without further, extensive baseline collection of samples and/or the combination of other palaeo-mobility evidence. To put these numbers into some perspective, a pan-Mesoamerican study found that Central America’s \({^{87}}\text{Sr}/^{86}\text{Sr} \) variation between sites was generally \(\approx \pm 0.001 \), fivefold the average variation between these Nile Valley sites; the researchers commented that \(\pm 0.001 \) was exceptionally low from their experience.

This lack of variation offers no surprise to geologists, as \({^{87}}\text{Sr}/^{86}\text{Sr} \) variation is largely dependent on the underlying geology of an area. With the Nile serving as the main source of drinking-water through the valley, erosion of the heterogenous and complex geological formations in Egypt, Sudan and Ethiopia combine to create a tight range of biogenically available strontium. Strontium isotope data may have utility for differentiating between Nile Valley and non-Nile Valley individuals (i.e., identifying Asiatic immigrants in Avaris for the Hyksos Project or looking beyond the Nile Valley to the desert regions in Egypt); those potential difficulties remain to be explored in a later publication.

Oxygen Stable Isotopes

Six studies present \(\delta^{18} \text{O} \) data from 244 individuals. All sites with \(\delta^{18} \text{O} \) data are within the Nile Valley with the exception of Kellis, a Roman-era site in the Dakhla Oasis (Fig. 5). One additional study analysed 297 teeth from 102 individuals associated with Kellis, but the publication (Dupras and Tocheri, 2007) only provided averaged values and not raw data for comparison and it is also unknown how many individuals were originally published in Dupras and Schwarz 2001.

Oxygen stable isotopes are a reflection of the local climatic factors such as altitude, mean temperature

54 Wiegand, Harbottle and Sayre 1977.
Fig. 6 Observed and predicted $\delta^{18}\text{O}_{\text{phosphate}}$ values plotted against observed $\delta^{18}\text{O}_{\text{carbonate}}$ values from the human $\delta^{18}\text{O}$ values given within the data collected for this metadata analysis.

Fig. 7 Box plot of $\delta^{18}\text{O}_{\text{drinking-water}}$ data for humans, by site. Sited ordered by latitude. Value of river water from Asyut.
It is important to note that oxygen stable isotopes are presented in δ-value relative to international standards, and can be standardized to two different scales: VPDB and VSMOW. All data published relative to VPDB were converted to VSMOW for comparison using the standard conversion equation.

Oxygen stable isotopes can be analysed from two forms of oxygen within the mineral portion of tissue: structural carbonate (CO$_3^{2-}$) and phosphate (PO$_4^{3-}$). There are risks and benefits related to potential preservation, financial cost and laboratory procedures when analysing these two sources of oxygen. However, they can be compared when δ$_{18}^{\text{O}}$carbonate values are converted to δ$_{18}^{\text{O}}$phosphate values using a linear equation fit from experimental data.

In the instances where the original researchers processed both carbonate and phosphate, and so, the observed values can be compared, differences between the observed values were 0.4‰ on average; this is minimal and within analytical error for many laboratories. The observed δ$_{18}^{\text{O}}$carbonate and δ$_{18}^{\text{O}}$phosphate values are plotted along with the converted δ$_{18}^{\text{O}}$carbonate in Figure 6; the three obvious outliers with δ$_{18}^{\text{O}}$carbonate values above 30‰ are from Metcalfe, Longstaffe, and White 2009 using the results from their “weak pretreatment method ‘GB50’ method” and no hypothesis for these diverging values is provided by the original researchers.

The oxygen data can be converted one final time from δ$_{18}^{\text{O}}$phosphate to δ$_{18}^{\text{O}}$drinking-water using Equation 6 from Daux et al. 2008. In this form, the individual data as plotted by site can be compared to a mean of modern δ$_{18}^{\text{O}}$values collected from Asyut and curated by IAEA/WMO 2011. As with the 87Sr/86Sr data, there is little variation between sites in Egypt and Sudan. There appears to be a slight relationship between site latitude and δ$_{18}^{\text{O}}$drinking-water values as there is an increase in δ$_{18}^{\text{O}}$drinking-water values observable with the sites ordered along the x-axis by latitude, but the gradation appears too fine to use for mobility investigation. The exceptions are the extremely high values from Hambukol, which are not contextualised by the original authors.

We can also assess δ$_{18}^{\text{O}}$ values as tools for provenancing the same way we evaluated 87Sr/86Sr variation, by examining the median and IQRs between and within sites. In Table 2 we provide median and IQRs of converted δ$_{18}^{\text{O}}$drinking-water by site, along with a total median and IQR, with Hambukol excluded due to its much higher δ$_{18}^{\text{O}}$drinking-water values. Despite the general median overlap easily observable in Figure 7, the low within-site IQRs and larger between-sites IQR suggest some potential utility for the use of δ$_{18}^{\text{O}}$ values to discern mobility along the Nile Valley.
Faunal Data

The only oxygen stable isotope values for animals were presented by Touzeau et al. 2013, who analysed eight Egyptian animal mummies (hyena, crocodile, fish and cat). However, lacking oxygen stable isotope data for local fauna is not an issue for palaeo-mobility studies, as differences in metabolic processing of drinking-water and drinking-water strategies (e.g., gazelles licking morning dew) create non-comparable δ¹⁸O values. Touzeau and colleagues advise that the data could stand as independent palaeoclimatic information if the sample size were expanded in the future, but for now these samples are not included in this case study. The only faunal samples with strontium data for the region are from Sudan (Fig. 8), highlighting a major research gap. All faunal samples (n = 63) are from Buzon and Simonetti 2013, who included modern and ancient animal enamel samples as a means of understanding the local baseline of their Sudanese archaeological sites (Fig. 9). There is a wide range in animal²⁷Sr/²⁶Sr ratios compared to the human ratios observed in Figure 3. The wide range in animal ratios could be a result of long-distance trade, with cattle displaying the widest ranges in values across sites. Another potential contributor for the wider range in²⁷Sr/²⁶Sr ratios compared to human values observed in Figure 3 could be because humans, as omnivorous top-level consumers eating foods from a variety of sources, can represent an averaged value of such foods compared to herbivorous domestcates, where herds are kept in controlled feeding ranges. Transhumance across biospheres of varying strontium ratios may cause significantly different isotope values to be captured in single samples of tooth enamel between animals of different ages; incremental sampling along animal teeth in future research could address these possibilities. With 63 samples across seven sites, the group size is too small to assess suitability of²⁷Sr/²⁶Sr effectively using the provenience postulate like with the human data (Tab. 3), and seems to be inappropriate anyway as there is clearly large between-species variation.

Discussion and Conclusions

Overall, strontium and oxygen stable isotopes appear to be poor tools for determining origins along the Nile River Valley when either is used singly, with δ¹⁸O values showing slightly more promise when tested using the provenience postulate. Mobility isotopes would likely show greater value for discerning places of origin in tandem using principle components……
analysis, but for this metadata case study that possibility cannot be assessed, as only 43 individuals from all previous studies were analysed for both isotope values.

The metadata case study presented here demonstrates the value of collating previous studies to answer larger-scale questions about methodology and identify gaps in current research knowledge. Comparative floral and faunal data is an important tool for placing human provenience, and this study highlights the lack of mobility isotopic data for floral and faunal samples. Any archaeologists interested in questions of human mobility surrounding their research should be encouraged to collect modern floral and faunal samples from their site, as time and export permits allow. As research gaps in isotopic information available for the Near East are identified, we aim to work with other researchers to amend them, or at the very least bring attention to these areas.

Regarding the database, it will continue to expand as new research is found and added. Within our research group, this baseline database has already served as a framework for a relational database to tie together all of our research group’s future data (DNA, biodistance, palaeopathology) to allow fast, efficient information sharing between the researchers involved in the holistic synergizing of data planned for the end of this project.

“This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 668640)”
Bibliography

AL-BASHAAREH, K., AL-SHORMAN, A., ROSE, J., JULI, A.T. and HODGINS, G.

ALCOCK, J.P.
2006 *Food in the Ancient World*, Westport, CT.

AMBROSE, S.H.

AMBROSE, S.H. and KRIEGBAUM, J.

AMBROSE, S.H. and NOER, L.

BALSASSE, M., SMITH, A.B., AMBROSE, S.H. and LEIGH, S.R.

BENTLEY, R.A.

BOCHERENS, H. and DRUCKER, D.

BROWN, T.A., NELSON, D.E., VOGEL, J.S. and SOUTHERN, J.R.

BRYANT, I.D. and FROELICH, P.N.

BURTON, J.

BUZON, M.R. and BOWEN, G.J.

BUZON, M.R. and SIMONETTI, A.

BUZON, M.R., SIMONETTI, A. and CREASER, R.A.

CASEY, M.M. and POST, D.M.

CHENERY, C.A., MULDNER, G., EVANS, J., ECKARDT, H. and LEWIS, M.

CHENERY, C.A., PASLEY, V., LAMB, A.L., SLOANE, H.J. and EVANS, J.A.

2015 Old World Megadroughts and Pluvials during the Common Era, *Science Advances* 1, <http://advances.sciencemag.org/content/1/10/e1500561> (last access 18 July 2019).

COOPER, H.

COPLEN, T.B.
1988 *Normalization of Oxygen and Hydrogen Isotope Data*, *Chemical Geology: Isotope Geochemistry Section* 72, 293–297.

COPLEY, M.S., SIM, S., JONES, V., ROSE, P., CLAPHAM, A., EDWARDS, D.N., HORTON, M., ROWLEY-CONWAY, P. and EVERSHEID, R.P.

Hone, J. 2009 Stable Isotope Geochemistry, Berlin.

Stable Isotope Analyses to Investigate Hyksos Identity and Origins

Junk, G. and Syve, H.J.

Katzenberg, M.A.

Keegan, W.F. and Deniro, M.J.

Krom, M.D., Stanley, J.D., Clif, R.A. and Woodward, J.C.

Lee-Thorp, J.A., Sealy, J.C. and Van Der Merwe, N.J.

Libby, W.F.

Longinelli, A.

Luz, B. and Koldony, Y.

Metcalf, J.Z., Lonstaaffe, F.J. and White, C.D.

Minagawa, M. and Wada, E.

Montgomery, J., Evans, J.A., Powlesland, D. and Roberts, C.A.

Müllerer, G., Chenery, C. and Eckardt, H.

2018 4000 years of human dietary evolution in central Germany, from the first farmers to the first elites, *PLOS ONE* 13, <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194862> (last access 18 July 2019)

Neihich, O.

O’Connell, T.C., Kneale, C.J., Taslevka, N. and Kuhnle, G.G.C.

2014 Application of Nitrogen and Carbon Stable Isotopes (15N and 13C) to Quantify Food Chain Length and Trophic Structure, *PLOS ONE* 9, <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093281> (last access 18 July 2019)

Peterson, B.J., Howarth, R.W. and Garrett, R.H.

Prowse, T.L., Schwartz, H.P., Garney, P., Kaye, M., Macchiarelli, R. and Bondoli, L.

Richards, M.P., Fuller, B.T. and Hedges, R.E.M.

Richards, M.P., Fuller, B.T., Sponheimer, M., Robinson, T. and Ayliiffe, L.

Rose, J.C.

Said, R.
SALASESE, K., FERNADES, R., DE ROCHEFORT, X., BRUZEK, J., CASTEX, D. AND DUFOUR, É.

SCHMIDT, F.L. AND HUNTER, J.E.
2014 Methods of Meta-analysis: Correcting Error and Bias in Research Findings, Thousand Oaks, CA.

SCHNEIDER, TH.

SCHOENINGER, M.J.

SCHOENINGER, M.J., DE NERIO, M.J. AND TAUBER, H.

SCHROEDER, H., O’CONNELL, T.C., EVANS, J.A., SHULER, K.A. AND HEDGES, R.E.M.

SCHUTKOWSKI, H. AND OGDEN, A.

SHARP, Z.D.

SHERIDAN, S.G.

SHIDAN, L.

SMITH, S.T.

SOLTSJEK, A. AND SCHUTKOWSKI, H.

2018 Stable Isotopic Evidence for Land Use Patterns in the Middle Euphrates Valley, Syria, American Journal of Physical Anthropology 166, 861–874.

SOTIROPOULOS, M.A., TONI, W.M. AND WASSENAAR, L.I.
2004 Effects of Lipid Extraction on Stable Carbon and Nitrogen Isotope Analyses of Fish Tissues: Potential Consequences for Food Web Studies, Ecology of Freshwater Fish 13, 155–160.

STANTIS, C., BUCKLEY, H.R., KINASTON, R.L., NUNN, P.D., JAQUEN, K. AND RICHARDS, M.P.
2016 Isotopic Evidence of Human Mobility and Diet in a Prehistoric/Protohistoric Fijian Coastal Environment (c. 750–150 BP), American Journal of Physical Anthropology 159, 478–495.

STANTIS, C., KINASTON, R.L., RICHARDS, M.P., DAVIDSON, J.M. AND BUCKLEY, H.R.

THOMAS, C.J. AND CARBON, L.B.
1993 Stable Isotopic Analyses Differeniate between Different Trophic Pathways Supporting Rocky-Reef Fishes, Marine Ecology-Progress Series 95, 19–24.

VAN KLINKEN, G.J.

VUK, E.
Stable Isotope Analyses to Investigate Hyksos Identity and Origins

WIEGAND, P.C., HARBOTTLE, G. and SAYRE, E.V.

WHITE, C.D., LONGSTAFFE, F.J. and LAW, K.R.
1999 Seasonal Stability and Variation in Diet as Reflected in Human Mummy Tissues from the Kharga Oasis and the Nile Valley, Palaeogeography, Palaeoclimatology, Palaeoecology 147, 209–222.

WILLIAMS, L.J.

ZAKRZEWSKI, S.R.

ZAZZO, A., BALASSE, M. and PATTERTON, W.P.