
SIAM J. IMAGING SCIENCES c© 2020 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, pp. 78–107

Automatically Controlled Morphing of 2D Shapes with Textures∗

Alexander Tereshin† , Valery Adzhiev† , Oleg Fryazinov† , Felix Marrington-Reeve† , and

Alexander Pasko‡

Abstract. This paper deals with 2D image transformations from a perspective of a 3D heterogeneous shape
modeling and computer animation. Shape and image morphing techniques have attracted a lot of
attention in artistic design, computer animation, and interactive and streaming applications. We
present a novel method for morphing between two topologically arbitrary 2D shapes with sophisti-
cated textures (raster color attributes) using a metamorphosis technique called space-time blending
(STB) coupled with space-time transfinite interpolation. The method allows for a smooth transition
between source and target objects by generating in-between shapes and associated textures without
setting any correspondences between boundary points or features. The method requires no prepro-
cessing and can be applied in 2D animation when position and topology of source and target objects
are significantly different. With the conversion of given 2D shapes to signed distance fields, we have
detected a number of problems with directly applying STB to them. We propose a set of novel and
mathematically substantiated techniques, providing automatic control of the morphing process with
STB and an algorithm of applying those techniques in combination. We illustrate our method with
applications in 2D animation and interactive applications.
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1. Introduction. 2D imagery is a well-established area dealing with generation and trans-
formation of both raster and vector images. Image dynamics is a more complex field con-
cerned with time-variant image transformations. 2D shape modeling is also considered a
well-researched area with its own established set of operations on shapes. However, these
areas are not always well connected to each other. It is time to revisit some fundamental
problems and algorithms of 2D imagery, taking into account recent advances in 3D model-
ing and aiming at some specific applications oriented toward particular usage scenarios with
distinctive constraints.

Morphing (or metamorphosis) means the visually smooth transition between two given
images or shapes. It is a commonly used operation in computer animation, visual effects, and
computer art and design, and it is especially relevant for consideration in the above-defined
context. There are several well-known solutions for 2D image and shape metamorphosis, all
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of which require establishing some form of one-to-one correspondences between two given
images, between boundaries of two given shapes, or between their particular features [3, 13].

The general case where no correspondences between two given shapes or their features and
no foreground image segmentation are provided has not been fully investigated yet, although
several usage scenarios exist. For example,

1. in-between frames generation in a situation where there is no prior information about
the source and target frames, such as in a game environment, where characters and
assets are procedurally generated on the fly [36];

2. in a live TV show or any streaming online content, which changes dynamically with
no time available for establishing correspondences between frames;

3. in interactive applications aimed at nonprofessional users, or at users with specific
requirements, where the input can be generic and no correspondences between source
and target frames can be established.

All of the above cases are united by a lack of resources (time, information) or skills
(cognitive, educational) for establishing correspondences between two given shapes or images.
The important thing is that in all mentioned cases there is no need or no opportunity to
establish point-to-point or feature-to-feature correspondences. It is made automatically, and
no additional in-between frames should be drawn or any parameters of the process changed
by the user. In this paper, we deal with the metamorphosis of 2D shapes defined by raster
images with various backgrounds. The whole process can be described as heterogeneous
object transformations, where a shape and its texture (as a 2D spatial attribute) are changing
synchronously and interconnectedly.

The core idea of our method comes from the recent advances in 3D heterogeneous object
modeling, which is a rapidly emerging area where geometric shapes are considered in concert
with their internal attributes defined for each point of the shape [17, 31]. These attributes
represent such physical properties as material, density, and color. In the case of 2D hetero-
geneous objects considered in the context of the imagery, shape attributes can be reduced to
per-point colors of 2D images.

Thus, to obtain morphing between two shapes with no correspondences we utilize a revised
version of the metamorphosis technique called space-time blending (STB) [30] for geometry
and space-time transfinite interpolation (STTI) for colors/textures [34, 35].

By doing that, we allow for obtaining a smooth transition between source and target
images without requirements for shape alignment or topological conformity or for establishing
correspondences. The method is computationally inexpensive and artist friendly and can be
used in various interactive applications, including educational games.

The contributions of our work can be formulated as follows:
• We formulate the metamorphosis problem in the context of 2D imagery in the most

general way from the heterogeneous object modeling point of view, combining the
object shape and its properties into a single entity.
• We propose a novel method for solving the problem of metamorphosis between topo-

logically arbitrary 2D shapes with textures. The shapes are represented by signed
distance fields [14] in a continuous form. For generating intermediate shapes of the
metamorphosis, we apply the STB technique for handling geometry morphing coupled
with the STTI method for handling texture morphing.
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• We present several novel mathematically substantiated technical solutions for solving
the drawbacks of the proposed method for an automatic metamorphosis between 2D
shapes.
• The proposed method is based on geometric and algebraic techniques and, unlike the

PDE-based approaches, does not use heavy numerical computations.

2. Related works. Out of many existing methods for solving the 2D metamorphosis prob-
lem, we will consider two main groups of methods, namely, those that are feature-based and
those that are automatically controlled with a particular emphasis on morphing colored or
textured objects.

2.1. Feature-based morphing. In this subsection, we consider nonautomatic methods for
morphing with additional user control. An early example of an in-between metamorphosis
for 2D images can be found in [4], where the authors present a system for morphing between
hand-drawn contour shapes with in-between shape generation. For this, the line stroke to
stroke mapping along with establishing the correspondences between the shapes is essential
for the in-between interpolation. To fully utilize the system, a skeleton must be set up. A
similar method was presented in [9] where pixel tiles are moved from one image to another
according to the optical flow while changing their colors.

Some attempts to introduce more flexible user control over morphing were undertaken
with user-defined feature segmentation. A feature-based image metamorphosis technique was
presented in [3] for obtaining smooth transitions between two images. This allows the user
to define the pairs of corresponding features in the source image and the target image that
are further used for computing in-between frames. This, however, heavily relies on the linear
interpolation between shapes, which does not produce acceptable results in most cases. Higher
quality interpolation with provided corresponding boundary point pairs is described in [1].

The simplest technique for transforming one digital image into another in terms of in-
place morphing (when the input and target shapes are superimposed on one another) is cross-
dissolving [37], where one image gradually disappears and another appears through a per-pixel
color interpolation. This method can only handle image morphing. According to [18, 39],
cross-dissolving without prewarping the initial and target shapes produces a poor result with
a double-exposure effect. For obtaining best results, two images should be prewarped to make
the shapes similar by specifying control pixels. This leads to the nonautomatic approaches
described, for example, in [3, 37, 39].

Dalstein, Ronfard, and van de Panne [7] introduced a feature-based method using the
vector animation complex, which is a vector graphics data structure. Their approach uses a
space-time concept that is based on a parameterized model for obtaining in-between frames.
The suggested method is topology-aware, can work with overlapping objects, and supports
coloring of the 2D faces. Unfortunately, this method can produce discontinuous results because
of the employed linear interpolation, and it also does not support color/texture transformation
between frames.

2.2. Automatically controlled morphing. Averbuch-Elor, Cohen-Or, and Kopf in [2] in-
troduced a data-driven method based on the inner-distance shape context technique to handle
geometry transformations and globally affine RGB transformations for color blending. Their
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in-between images are created by warping and blending an input image toward a target image
to align them. This method cannot handle objects with different topology, and also does not
take into account the interior texture of the object.

Gao et al. introduced a data-driven mesh morphing method in [10]. Their method is based
on patch-based and linear rotationally invariant coordinates that can handle the deformations
of models in a shape collection. This method works with objects of the same topology and
does not handle texture or color transformations.

Liao et al. [21] proposed an automatic method for optimization-guided image morphing
that also supports the presence of greater dissimilarities between images. The optimization
can take into account user-drawn points for better aligning of structural image features. While
providing intuitive results, this work does not provide a method for dealing with objects of
radically different topology.

A hybrid stroke-based solution [13] deals with the automatic generation of in-betweens
for 2D facial cartoon animations. The key idea of the suggested hybridization is to combine
the information about the approximate 3D geometry with multiple views of a character’s face
from key frames to overcome the lack of information. It facilitates automatic establishing of
stroke correspondences. However, the strokes can be incorrectly annotated, and this method
cannot handle morphing between radically different images such as drawings with dissimilar
strokes or shapes.

An interesting approach was introduced by Neumann, Alexander, and Neumann in [27]
where a random walk algorithm was applied for obtaining evolutionary image morphing. The
proposed algorithm is based on the usage of fitness functions for a per-pixel image transfor-
mation using random walks and is only texture-aware.

The most relevant group of methods for automatically controlled metamorphosis is related
to optimal mass transport (OMT). The OMT methods provide a solution for the Monge–
Kantorovich optimization problem [15]. This solution provides the optimal way for moving a
mass distribution from one domain to another with minimal transportation cost. Typically
the solution is obtained in the form of the L2 Kantorovich–Wasserstein distances by solving
the differential equation defining the metric. In the context of the metamorphosis method it
is important to note that OMT-based methods are parameter free and not feature-based.

In [12] and [40] an intensity-based OMT method was introduced. The process of obtaining
the in-between frames assumes computation of the Kantorovich–Wasserstein distances, which
are used for generating the warping transportation map between the initial and target images.
Then the cross-dissolving method is applied. In [40], to overcome the double-exposure effect
caused by cross-dissolving, the authors introduced an intensity penalty term to the mass
moving energy functional.

A vector-valued OMT method was introduced in [5]. This method allows handling of the
mass flow between vectorial entries across a discrete or continuous space. The authors claimed
that their approach is suitable for a number of applications, in particular for color image
processing and for morphing between color distributions. They have provided an example of
color interpolation for real-life images in the form of photos. However, this is a pure image
processing example without taking into account geometry.

The variational OMT approach [22] was applied to grayscale textures with sharp features.
A method for topology-aware shape morphing using cluster-based Earth mover’s distance
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flows was introduced in [23]. Unfortunately, it cannot handle any color or texture morphing.
In [19] the author introduced a numerical topology-aware method for dealing with geometric
metamorphosis only. It is based on computing the OMT between density in the form of a
piecewise linear function and a sum of Dirac masses. The authors in [38] and [6] introduced
a topology-aware method for solving the OMT optimization problem using convolutional
Wasserstein distances that are approximated using entropic regularization. This method can
only handle interpolation between blocks of pure color. In [32] a GPU-based approach for
solving the OMT optimization problem was suggested and applied to high-frequency grayscale
images. Elsewhere [26] the authors introduced a new solver for computing an approximated
OMT that is derivative free and converges within a few iterations. This method is topology-
aware and preserves sharp features during metamorphosis but does not support texture or
color transformations.

2.3. Summary. Many of the described methods work reasonably well with pure image
data (raster arrays or textures) rather than with textured 2D shapes. There are several
methods for creating a metamorphosis between two 2D geometric shapes, between images,
or between textured shapes. These methods commonly assume establishing correspondences
between points or features of the objects. The stroke-based techniques mentioned above are
not always intuitive. The most relevant method in the context of automatically controlled
metamorphosis is OMT. These methods are parameter free and topology-aware; they can
handle the morphing in terms of geometry and images. However, the reviewed works did
not provide the implemented examples of metamorphosis between objects with sophisticated
textures, especially in the context of applications that we consider paramount in our work.

3. Background. In this section, we outline those specific concepts and methods that will
serve as a basis for the development of a theoretical and practical framework for executing
automatically controlled morphing between 2D shapes with textures. We will introduce a
representational schemes for 2D heterogeneous objects as well as the specific methods called
space-time blending (STB) and space-time transfinite interpolation (STTI). These methods
will then serve as the basis for a novel method for solving the automatic metamorphosis
problem without establishing any correspondences between two images (section 4) as well as
for several mathematically substantiated new technical solutions for more visually impressive
results (section 5).

3.1. Function representation. The representation that describes geometric objects as
closed subsets of n-dimensional Euclidean space En with x = (x1, x2, . . . , xn) using a a real-
valued continuous function F (x) ≥ 0 is called function representation (FRep) [28]. FRep has
the following characteristics:

F (x) > 0 for points inside the object,

F (x) = 0 for points on the boundary of the object,

F (x) < 0 for points outside the object.

Note that the function changes its sign at the shape boundary. The FRep function can be
defined analytically, or with a function evaluated algorithm, or with a discrete scalar field.
FRep is closed under a rich set of operations. These means that any operation on FRep objects
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produces a resulting FRep object also represented by a continuous real-valued function. There
exist many well-developed FRep operations taking single or multiple shapes and producing
a new shape in 2D, 3D, or higher dimensional space. In particular, there are set-theoretic
operations based on R-functions introduced in [33] that formed the basis for the definition
of several types of FRep blending operations [28]. The defining function can be generated
for point clouds using interpolating surfaces, shapes with a curve skeleton, mesh surfaces, or
voxel arrays. This makes FRep essentially a hybrid representation of volumetric objects. The
concept of a heterogeneous object [29], defined as a combination of its geometric shape and
the physical properties associated with the object’s internal structure, underlies our method.
For a 2D heterogeneous object, a color attribute is mapped to each interior point. In the
current work we consider 3D space (X,Y, Z), where a point is defined as x = (x, y, t), with
the third coordinate Z defined as a time t.

3.2. Signed discrete distance transform. A functionally based object can be represented
as a discrete scalar field. For a given closed 2D shape S representing a discrete boundary
of some volumetric object O, the most natural way to obtain a defining function for O is to
introduce a signed distance field (SDF) [14] in a discrete form. In the current work we choose
the convention that the sign of the SDF is positive inside and negative outside of the object
O. The absolute value of the SDF at any given point p is the minimal Euclidean distance
from this point to some point ps belonging to the surface SO of the object O: d(p,ps) =
sign(p) · infps∈SO

d(p,ps), where d(p,ps) is the Euclidean distance between two points.
The most common way to obtain the distance property for an arbitrary discrete scalar

field is to use the signed discrete distance transform (SDDT) operation [8, 20]. Formally,
the SDDT for a 2D image is a mapping from a binary image Ib(x, y) to a multivalued vector
image Iv(x, y) = (dx, dy). Here dx and dy are distances from the point (x, y) to the image
background in the X and Y directions, respectively. The resulting distance to shape S is
defined as the Euclidean norm: D(x, y) = ||d2x + d2y||. If it is essential to obtain a continuous
resulting function, the SDDT can be smoothed using a B-spline, bicubic, wavelet, or any other
type of interpolation between grid values [16].

3.3. Space-time blending. The main method that we are going to use for the realization
of metamorphosis between two geometric shapes defined by SDFs with different topology
without any prior knowledge of their correspondences will be space-time blending (STB) [30].
In its essence (see Figure 1), STB is a geometric operation of bounded blending performed in
a higher dimensional space. If we consider 2D shapes in that higher dimensional space, the
Z axis will be associated with time t. Blending between the initial shape S1 and the target
shape S2 (see Figure 2) happens in the time interval t ∈ [0, 1], where, while at t ≤ 0 only the
first shape S1 exists, then at t > 0 it disappears and at time t = 1 the second shape appears
and exists for any t ≥ 1. Let us outline the basics of this method.

Let us introduce two input shapes, S1 and S2, represented in that higher dimensional space
by functions f1t(x, y, t) and f2t(x, y, t), respectively. Then the resulting function Fb(f1t , f2t , f3t)
representing the blending between those two shapes is

Fb(f1t , f2t , f3t) = F (f1t , f2t) + a0 · dispb(dr(f1t , f2t , f3t)),(3.1)

F (f1t , f2t) = f1t(x, y, t) + f2t(x, y, t) +
√

f2
1t

(x, y, t) + f2
2t

(x, y, t),
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Figure 1. The concept of space-time blending: two given 2D shapes (two disks and a cross, top left) are
extended to 3D space as half-cylinders (top center) with a gap between them. Then a blending union operation
is applied, adding material (top right). Intermediate shapes are presented by cross-sections (bottom center).

Figure 2. The space-time blending scheme.

where dr(f1t , f2t , f3t) is a generalized distance function and F (f1t , f2t) is a set-theoretical
union of two shapes defined by the R-functions introduced by Rvachev [33]. The resulting
shape S2 obtained using the STB function Fb(f1t , f2t , f3t) is affected by the bounding solid
defined by the function f3t(x, y, t). The bounding solid is a functionally defined object which
restricts the area in which the actual blending happens. In most cases it is convenient to use
an intersection of two cutting planes which can be seen in Figure 2. In the case discussed
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here, the blending operation will be bounded only along the time axis.
The displacement function dispb(dr(f1t , f2t , f3t)) is set up as

dispb(dr(f1t , f2t , f3t)) =

{
(1−d2r(f1t ,f2t ,f3t ))

3

1+d2r(f1t ,f2t ,f3t )
, dr(f1t , f2t , f3t) < 1,

0 otherwise,
(3.2)

where d2r(f1t , f2t , f3t) is defined as

d2r(f1t , f2t , f3t) =


d2r1

d2r1+d2r2
, dr2 > 0,

1 otherwise,
d2r1(f1t , f2t) =

(
f1t(x, y, t)

a1

)2

+

(
f2t(x, y, t)

a2

)2

,

d2r2(f3t) =

{(f3t (x,y,t)
a3

)2
, f3t(x, y, t) > 0,

0 otherwise.
(3.3)

The function dr1(f1t , f2t) is a generalized distance function between two shapes f1t(x, y, t)
and f2t(x, y, t). This function dr1(f1t , f2t) provides the algebraic distance measure to both
initial S1 and target shapes S2. The function dr2(f3t) controls the influence of the function
f3t(x, y, t) on the overall shape of the blend.

Coefficients a0, a1, a2, a3 ∈ < are nonzero numerical parameters. To describe their geomet-
rical meaning let us consider the example shown in Figure 3. Let us assume that f1t(x, y, t) =

x, f2t(x, y, t) = y, and as a bounding solid we use disk f3t(x, y, t) = 1−
(
x
4

)2−(y4)2. We apply
the STB method to these. The coefficient a0 defines the total displacement of the blending
surface from two initial surfaces S1 and S2, defined by f1t(x, y, t) and f2t(x, y, t), and controls
how much material will be added or subtracted from the overall blend (see Figure 3). Coeffi-
cients a1 and a2 are proportional to the algebraic distance between the blending surface and
the original surfaces S1 and S2 defined by f1t(x, y, t) and f2t(x, y, t) and control the blend
symmetry (see Figure 3). The coefficient a3 is proportional to the algebraic distance between
the blending surface and the surface of the bounding solid (see Figure 3) and controls the
influence of function f3t(x, y, t) on the overall blend.

It is not always intuitive to describe a complex shape using FRep. That is why we suggest
using signed distance fields (SDFs) in the discrete form introduced in subsection 3.2 to define
both shapes S1 and S2. This representation allows one to describe any type of geometrical
shape of any complexity in a predictable way.

In the 2D case, the basic STB algorithm can be described as follows:
Step 1. Two shapes, S1 and S2, are defined by the functions f1t(x, y, t) and f2t(x, y, t). These

shapes are represented by scalar fields on the X,Y plane (see Figure 1, top left). Note
that both shapes can have radically different topologies.

Step 2. Each shape is used as a cross-section of a half-cylinder in 3D space by extending them
in the Z dimension, with a gap in between (see Figure 1, top middle).

Step 3. The blending union operation adding material to the gap is applied to the two half-
cylinders (see Figure 1, top right). The blending operation can be user controlled by
varying ai coefficients.

Step 4. The Z dimension is used as time t. The cross-sections of the blending process along
the Z axis between the source S1 and target S2 shapes are marked with numbers
(Figure 1, top right) and are shown at the bottom of Figure 1.
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Figure 3. The intersection of two objects defined by the equations f1t(x, y, t) = x and f2t(x, y, t) = y,

restricted by the bounding solid represented by the function f3t(x, y, t) = 1−
(
x
4

)2− (
y
4

)2
defining the bounding

disk. This is a simple illustration of the geometrical meaning of coefficients ai, i ∈ [0, 3].

The implementation in 3D is essentially the same, but raises the shapes into 4D and uses
the fourth axis to represent time t.

3.4. Space-time transfinite interpolation. As we are not only dealing with geometry but
also with textures, we need a specific technique for texture transformations. This means that
in addition to a geometric shape metamorphosis, it is essential to independently define color
and other attribute transformations taking into account the initial and in-between shapes.
One possible way was described in [35], where the authors proposed to apply transfinite inter-
polation [34] to attributes such as color. The main idea of space-time transfinite interpolation
(STTI) is that two scalar fields defining an initial and a target shape are used for calculat-
ing normalized weights ω1(x, y, t) and ω2(x, y, t) in (3.4) that are further used for computing
intermediate colors.

Let us introduce mathematical expressions for the STTI which we are going to use in the
next sections. Let us assume that the initial shape is S1 and that the target shape is S2, which
are defined by the functions f1t(x, y, t) and f2t(x, y, t). The attribute interpolation between
single-partitioned objects can then be defined as follows:

c(x, y, t) = ω1(x, y, t)c1 + ω2(x, y, t)c2,(3.4)

ω1(x, y, t) =
f2t(x, y, t)

f1t(x, y, t) + f2t(x, y, t)
, ω2(x, y, t) =

f1t(x, y, t)

f1t(x, y, t) + f2t(x, y, t)
,

where c1 is the color of the input shape S1, c2 is the color of the target shape S2, t ∈ [0, 1],
and ω1(x, y, t) as well as ω2(x, y, t) are weights. The following constraints should be satisfied:

• at the initial time step, t = 0: ω1(x, y, 0) = 1;ω2(x, y, 0) = 0; f1t(x, y, 0) ≥ 0;
• at the final time step, t = 1: ω1(x, y, 1) = 0;ω2(x, y, 1) = 1; f2t(x, y, 1) ≥ 0;
• ω1(x, y, t) + ω2(x, y, t) = 1.
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Figure 4. The process of generating the SDF: (a) a textured shape is used as an input; (b) the input shape
is binarized; (c) the binarized shape is used for computing the SDF.

In the general case, if the given shapes S1 and S2 have complex textures with multiple
semidisjoint partitions with a constant attribute c̃j assigned to the jth partition, the contri-
bution of these partitions to the resulting attribute ci(x, y) at a given external point (x, y) is

(3.5) ci(x, y) =

∑N
j=1 w̃j(x, y)c̃j∑N
j=1 w̃j(x, y)

, w̃j(x, y) =
1

_
fj(x, y)

, i = 1, 2,

where N is the number of partitions, w̃j(x, y) is the weight of each partition, and
_
fj(x, y)

is a function defining the quadratic Euclidean distance from the external point (x, y) to the
pixel in the interior of the object. In the current work we consider textured objects as single-
partitioned objects and use (3.5) for computing the interpolated colors c1 and c2, where N
in this case is the number of pixels inside the textured shape.

4. Automatic metamorphosis between 2D shapes. In this section we describe in a step-
by-step manner a novel method for solving the problem of metamorphosis between 2D hetero-
geneous objects for generating in-between textured shapes without the need to set any corre-
spondences. The suggested method combines the techniques described in section 3. However,
as our practical example demonstrates, a basic algorithm for using those techniques in their
standard form does not produce completely satisfactory results. We will therefore identify the
drawbacks of these techniques.

Let us formulate the problem of metamorphosis between two objects with textures as
follows: Given two textured objects defined by SDFs f1(x, y) and f2(x, y), we aim at realizing
an automatic metamorphosis between those objects with a smooth transition between both
geometric shapes as well as their textures without establishing any correspondences between
them.

4.1. Description of the basic metamorphosis method. Let us provide a systematic de-
scription of the method. Initial and target shapes S1 and S2 are represented as 2D images on
a monocolored background, e.g., black or white. The steps of the algorithm are as follows:
Step 1. First we convert both input images (see Figure 4(a)) with shapes S1 and S2 to

binary images (see Figure 4(b)) and then apply one of the SDDT-based methods
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[8, 20, 11] to obtain discrete SDFs (see Figure 4(c)) D1(p) : p 7→ D1(p) ∀p ∈ Ω and
D2(p) : p 7→ D2(p) ∀p ∈ Ω representing those images in a pixel domain Ω where
p = (x, y) is a pixel. The sign of both functions f1(x, y) and f2(x, y) changes on the
boundary of the binarized shapes.

Step 2. For smoothing the discrete SDFs D1(x, y), D2(x, y) and converting them into a con-
tinuous representation in the form of the functions f1(x, y) and f2(x, y), we apply an
interpolation procedure between the discrete SDF values.

Step 3. The next step is applying STB to shapes S1 and S2 represented by the SDF functions
f1(x, y) and f2(x, y) in a continuous form for generating intermediate frames of the
metamorphosis. The texture transformation is not considered yet, as STB works only
with geometry.

Step 4. To obtain the texture transformations we apply the STTI method described in sub-
section 3.4 to the input images. We calculate the sum of the color attributes weighted
by the distance from the current pixel to other pixels using (3.5) without establishing
correspondences. The resulting images can be created with a transparent background
and superimposed onto any background image.

Figure 5. The result of applying the basic algorithm to compute the metamorphosis between two shapes.
See the accompanying supplemental video file (figure5.mpg [local/web 792KB]).

4.2. Advantages and drawbacks of the method. Figure 5 demonstrates how the sug-
gested method works. It shows a sequence of frames, demonstrating metamorphosis between
an initial shape S1 represented as three overlapping disks with different topology and various
colors, and a target shape S2 which is a red cross. We use (3.1)–(3.3) with manually set coeffi-
cients a0, a1, a2, and a3. As there was no automatic procedure for setting those coefficients, we
had to experimentally select the values a0 = 2, a1 = 1.3, a2 = 1.5, and a3 = 1, which resulted
in the most acceptable results. The outcome of this example allows us to make the following
conclusions regarding advantages and drawbacks of the suggested method. The method has
the following obvious advantages:

• It allows for generating in-between shapes in terms of both geometry and textures.

figure5.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure5.mpg
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• Initial and target shapes S1 and S2 can be of an arbitrary complexity in terms of
geometry and topology. In particular, they do not need to have similar shapes and
can include disjoint components.
• Initial and target shapes S1 and S2 can overlap each other in place or they can be

separated in space. The latter is a major issue when attempting cross-dissolving.
The following drawbacks pertain to this method:
• A problematic smooth transition can occur: some in-between shapes (see Figure 5,

frames 1–3) appear overly similar, while there is an obvious nonsmooth jumpwise
transition between some neighboring shapes (see Figure 5, frames 4–5). This is true
for both geometry and color.
• An additional unexpected inflation in some in-between shapes appears (see Figure 5,

frames 3, 5).
• The manual control for choosing the working set of parameters is problematic, es-

pecially for nonspecialist users. To realize an adequate automatic STB control, one
needs to have a set of well-defined default parameters a0, a1, a2, and a3 in (3.1)–(3.3).
However, the method for specifying those parameters, especially taking into account
specific features of the initial and target objects, has not been developed yet.

In the next section a number of substantiated solutions for the mentioned problems are
described.

5. New techniques enhancing the basic method. In this section we are going to intro-
duce new techniques for solving the drawbacks of the method for automatic metamorphosis
between 2D textured shapes introduced in section 4. A solution for these can be achieved by
using either one of the following techniques or a combination of them. Let us briefly outline
them:

• Half-cylinder smoothing: In subsection 3.3 it was mentioned that both initial and
target shapes are considered as cross-sections of half-cylinders in 3D space. As the
STB method assumes that half-cylinders are defined using set-theoretical operations,
a rapid change in the gradient of the resulting shape in the time interval t ∈ [0, 1] can
appear because of the influence of those operations. This rapid change visually results
in a “jump” during shape metamorphosis, which can be seen in Figure 5, frames 4–5.
This problem can be solved by smoothing sharp edges of half-cylinders by additionally
applying STB to them using (3.1)–(3.3).
• Automatic control of the STB parameters: It is nontrivial for a nonexpert user to

select the satisfactory values for coefficients a0, a1, a2, and a3 defined in (3.1)–(3.3).
To simplify this we introduce an algorithm for the automatic control of the coefficients
a0, a1, a2, and a3. For this we use both image processing–based techniques and interval
arithmetic–based estimations for the coefficient a0 as well as exploiting the geometric
meaning of the generalized distance dr1(f1t , f2t) in (3.3).
• New bounding solid functions: Some undesirable additional inflation of the shape dur-

ing metamorphosis can appear even with automatic control of the coefficients a0, a1, a2,
and a3. For better shape transformation control between the initial and target objects,
we suggest using two specific functions, each defining a new bounding solid. One of
these functions defines a truncated cone, and the other defines a truncated pyramid.
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• Affine translation: We need to introduce a certain restriction on the distance between
initial and target shapes S1 and S2. If the distance exceeds the defined limit, STB
can produce disjoint in-betweenings. The problem can be solved by applying an affine
translation to either initial shape S1 or to target shape S2 to satisfy the defined
distance limit between them. In addition to this, an affine translation can be used
as a shape inflation control while conducting the metamorphosis using the suggested
method described in subsection 4.1.

All four proposed techniques will be discussed in detail in this section.

Figure 6. The blending operation conducted between two circles and a cross that are extended to 3D space.
(A) The result of the blending operation before applying the smoothing operation. (B) The result of the blending
operation after applying the smoothing operation. (C) In-between cross-sections for the unsmoothed (C, top)
and smoothed cases (C, bottom).

5.1. Smoothing the half-cylinders. One of the drawbacks of STB is the presence of fast
transitions or “jumps” in the t ∈ [0, 1] interval (see Figure 2) in which the most significant
shape transformation happens. The cause of this is that when STB is applied to a half-cylinder,
the result is bounded by a plane orthogonal to the time axis. The set-theoretic subtraction of
the half-space from the infinite cylinder results in a sharp edge for a half-cylinder boundary
(see Figure 6, A), and the sharp edge remains a significant feature in the resulting blend (see
Figure 6, A (bottom)). To avoid this effect, instead of using the set-theoretic subtraction of
the half-space, we will use a bounded blending subtraction. Smoothing can be achieved by
applying a blending intersection operation, removing material between the infinite cylinder
and the bounding planar half-space for both shapes (see Figure 6, B):

Fb(f1t , f2t , f3t) = F (f1t , f2t) + a0 · dispb(dr(f1t , f2t , f3t)),(5.1)

F (f1t , f2t) = f1t(x, y, t) + f2t(x, y, t)−
√

f1t(x, y, t)
2 + f2(x, y, t)2,
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where Fb(f1t , f2t , f3t) is the resulting blending function defining a smoothed half-cylinder,
dispb(dr(f1t , f2t , f3t)) is the displacement defined in (3.2)–(3.3), and F (f1t , f2t) is an FRep
set-theoretical intersection operation. If we compare the two bottom pictures, A.2 and B.2
in Figure 6, we notice that smoothing the sharp edges of the cylinders results in a smooth
transition between the two shapes (B, bottom).

The smoothing process for initial and target shapes S1 and S2 can be described as follows:

S1 : f1t(x, y, t) = fSDF1(x, y, t); f2t(x, y, t) = −t; f3t(x, y, t) = t + Pc, t ≥ −Pc,(5.2)

S2 : f1t(x, y, t) = fSDF2(x, y, t); f2t(x, y, t) = t− 1; f3t(x, y, t) = Pc − t, t ≤ Pc,(5.3)

where f1t(x, y, t) is the SDF function raised into 3D space defining either the initial shape S1 or
the target shape S2, f2t(x, y, t) is the function defining a smoothing object as the subtraction
of the negative half-space along time-axis t, f3t(x, y, t) is the bounding function restricting
the area where the STB bounding intersection happens, and Pc is the position of the cutting
plane on the time-axis t. These functions are substituted in (5.1) for obtaining the smoothed
result. For smoothing both the initial shape S1 as well as the target shape S2, we need to
manually set the coefficients a0, a1, a2, and a3.

In the lower half of Figure 6 (part C), we compare the results before (C, top) and after
(C, bottom) application of the suggested smoothing method to both the initial shape S1 (two
circles) and the target shape S2 (a cross). As the figure shows, after applying the smoothing
operation to the half-cylinders, “jumps” between the frames have disappeared and there are
no more similar in-between shapes.

5.2. Automatic control of the space-time blending parameters. Automatic control of
the coefficients a0, a1, a2, and a3 allows us to make our approach more user-friendly. Here
we describe the derivation of the expressions for estimating the coefficients a0, a1, and a2.
We intend to make these coefficients geometry-dependent for better control of the blending
shape in cases of both in-place as well as spaced image morphing. These coefficients should
be greater than or equal to 1 to guarantee that a transition between the initial and target
shapes is visible. This procedure depends on the geometrical properties of both initial and
target objects and the geometrical meaning of the coefficients a0, a1, and a2 described in
subsection 3.3.

Let us assume that a3 = 1. Then, according to (3.3), it does not affect the bounding
solid defined by the function f3t(x, y, t). At the initial step we need to find the circumscribed
circles around initial shape S1 and target shape S2 shown in Figure 7. It is not essential that
these two circles overlap. The radii of the circumscribed circles R1 and R2 and their center
coordinates O1 and O2 are known. As the input data is represented by the images, all the
calculations are made in a normalized coordinate system: x = x/Iw, y = y/Ih, where Iw and
Ih are image width and height.

The proposed estimation, instead of using the bounded blending function Fb(f1t , f2t , f3t)
defined in (3.1), relies on a blending equation [30] without time dependence introduced in the



92 A. TERESHIN, V. ADZHIEV, O. FRYAZINOV, F. MARRINGTON-REEVE, AND A. PASKO

Figure 7. Geometrical scheme for estimating the coefficients a0 and a1 = a2, where S1 is the initial shape
and S2 is the target shape.

following form:

Fblend(f1, f2) = f1(x, y) + f2(x, y) +
√

f1(x, y)2 + f2(x, y)2 +
a0

1 + dr1(f1, f2)
,(5.4)

dr1(f1, f2) =

√(
f1(x, y)

a1,2

)2

+

(
f2(x, y)

a1,2

)2

,

where f1(x, y) and f2(x, y) are functions with distance property and dr1(f1, f2) is a generalized
distance between the initial and target shapes represented by functions f1(x, y) and f2(x, y).

The estimation process starts by finding the values for coefficients a1 and a2. For sim-
plification let us assume that the blending process will be symmetric. This means that
a1 = a2 = a1,2. As stated in [30], coefficients a1 > 0 and a2 > 0 are proportional to the
algebraic distance between the blending surface and the original surfaces S1 and S2 defined
by functions f1(x, y) and f2(x, y).

To estimate coefficient a1,2 we suggest the following algorithm: The generalized distance
d2r1(f1, f2) used in (5.4) is equal to the quadratic distance ||s||2 (see Figure 7) between two
shapes, S1 and S2. To calculate this distance we need to solve two equation systems for both
circles as well as segment O1O2 to define the coordinates of points K1 and K2. Then the
distance ||s||2 between K1 and K2 can be defined as

(5.5) ||s||2 = (xK2 − xK1)2 + (yK2 − yK1)2.

Let us assume that the generalized distance d2r1(f1(xK2 , yK2), f2(xK1 , yK1)) between shape
S1 and shape S2 is equal to the quadratic Euclidean distance ||s||2 between these two shapes
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(see Figure 7). Then we obtain the final estimation for a1 = a2 = a1,2:

(5.6) a1,2 =

√
f1(xK2 , yK2)2 + f2(xK1 , yK1)2

||s||2
.

To estimate coefficient a0 we suggest using interval arithmetic [25]. Here we provide an
outline of the solution for the interval of the coefficient a0. The whole derivation for this
interval is provided in SupplementaryMaterials1.pdf [local/web 215KB]. Let us assume for
simplicity that the two input shapes S1 and S2, defined by functions f1 and f2, respectively,
are represented by circumscribed circles (to simplify further, we will use f1 and f2). We bound
the blending operation defined by (5.4) using two tangential lines, m1 and m2 (see Figure 7),
which can be written in the general case as

m1(x, y) = A1x + B1y + C1, m2(x, y) = A2x + B2y + C2,

where A1, B1, C1 and A2, B2, C2 are constants that can be obtained by solving the following
system of equations: 

Aix1 + Biy1 + Ci = R1,

Aix2 + Biy2 + Ci = R2,

A2
i + B2

i = 1,

where i = 1, 2, (x1, y1) are the coordinates of point O1, (x2, y2) are the coordinates of point
O2, R1 is the radius of the circumscribed circle with the center point O1, and R2 is the radius
of the circumscribed circle with the center point O2.

The final intervals for a0 can be written in simplified form assuming that the intervals for
the functions [f1] = [f1min , f1max ] and [f2] = [f2min , f2max ] are as follows:a0 ≤ (A1x + B1y + C1 − (f1 + f2 +

√
f2
1 + f2

2 ))(1 + 1
a21,2

(f2
1 + f2

2 )),

a0 ≥ (A2x + B2y + C2 − (f1 + f2 +
√
f2
1 + f2

2 ))(1 + 1
a21,2

(f2
1 + f2

2 )).
(5.7)

The inequality system of equations (5.7) can be rewritten using interval arithmetic as

a0 ≤ [min[g1minb1max , g1maxb1min , g1minb1min , g1maxb1max ],(5.8)

max[g1minb1max , g1maxb1min , g1minb1min , g1maxb1max ]],

a0 ≥ [min[g2minb1max , g2maxb1min , g2minb1min , g2maxb1max ],

max[g2minb1max , g2maxb1min , g2minb1min , g2maxb1max ]],

[g1] = [A1xmin + B1ymin + C1 − fsmax , A1xmax + B1ymax + C1 − fsmin ],

[g2] = [A2xmin + B2ymin + C2 − fsmax , A2xmax + B2ymax + C2 − fsmin ],

[b1] =

[(
f1minf1max + f2minf2max

)
1

a21,2
+ 1,

(
f2
1max

+ f2
2max

)
1

a21,2
+ 1

]
,

[fsmin , fsmax ] =
[
f1min + f2min +

√
f1minf1max + f2minf2max ,

f2max + f2max +
√
f2
1max

+ f2
2max

]
.

https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/SupplementaryMaterials1.pdf
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Figure 8. Blending between shape S1 consisting of three circles, two of which have a hole, and an orange
cross S2 using the STB and STTI techniques. See the accompanying supplemental video file (figure8.mpg
[local/web 788KB]).

The final interval for a0 can then be obtained depending on the following cases:
• if a0 ≤ [a0min1

, a0max1
] ∧ a0 ≥ [a0min2

, a0max2
] and a0min1

< 0; a0min2
< 0, then the final

interval will be a0 ∈ [a0max1
, a0max2

];
• if a0 ≤ [a0min1

, a0max 1 ] ∧ a0 ≥ [a0min2
, a0max2

] and 0 ≤ a0min1
≤ 1; 0 ≤ a0min2

≤ 1, then
the final interval will be a0 ∈ [1,max(a0max1

, a0max2
)];

• if a0 ≤ [a0min1
, a0max1

]∧ a0 ≥ [a0min2
, a0max2

] = ∅, this may be an overestimation for a0
and the final interval will be formed as a0 ∈ [a0min1

, a0max2
]; a0min1

≥ 1.
Figure 8 shows an example of applying the smoothing operation to the half-cylinders with

automatic control of the coefficients a0, a1, a2, and a3. Comparing these results with those
shown in Figure 5, generated using the basic algorithm described in section 4, one can conclude
that here the transition between initial shape S1 and target shape S2 is smooth and there is
no additional inflation within in-betweens.

In cases where circumscribed circles are not overlapping and their centers coincide, the
estimation procedure for a0 (5.7) should be slightly modified. The coefficients a1 = a2 = a1,2
should be set to 1 and inequality (5.7) rewritten as

a0 ≤
(

(x− xi)
2 + (y − yi)

2 −R2
i − (f1 + f2 +

√
f2
1 + f2

2 )

)(
1 +

1

a21,2

(
f2
1 + f2

2

))
,

where i = 1, 2, depending on the chosen radius of the biggest circumscribed circle max(R1, R2).
In this case the blending area is restricted by the circumscribed circle with the biggest ra-
dius. Then, using interval arithmetic, we can obtain the final interval (for more details see

figure8.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure8.mpg
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SupplementaryMaterials1.pdf [local/web 215KB])

a0 ≤ [min[fcminb1max , fcmaxb1min , fcminb1min , fcmaxb1max ],(5.9)

max[fcminb1max , fcmaxb1min , fcminb1min , fcmaxb1max ]],

[fc] = [(xmin − xi)(xmax − xi) + (ymin − yi)(ymax − yi)−max(R2
1, R

2
2),

(xmax − xi)
2 + (ymax − yi)

2 −max(R2
1, R

2
2)],

i =

{
1 if max(R2

1, R
2
2) = R2

1,

2 if max(R2
1, R

2
2) = R2

2,

where the interval for [b1] was introduced in (5.8).

Figure 9. New functions for defining the bounding solid f3t(x, y, t): (a) truncated cone; (b) truncated
pyramid. S1 is the initial object and S2 is the target object.

5.3. Truncated cone and truncated pyramid as a bounding solid. An additional inflation
caused by the lack of the STB control can be reduced using a different technique. We suggest
using a tighter bounding solid f3t(x, y, t), represented as either a truncated cone or as a
truncated pyramid (Figure 9).

We assume that the circumscribed circles have already been obtained for both initial object
S1 and target object S2. To avoid shape inflation, we specify that the entire metamorphosis
process happens within the new bounding solid defined by function f3t(x, y, t).

Let us introduce a truncated cone with circumscribed circles around initial and target
shapes S1 and S2 as its two bases. To obtain the defining function f3t(x, y, t)cone for the
truncated cone (Figure 9(a)), a simple linear interpolation between the centers and radii of
the circles is applied, where the parameter k is defined in the interval k ∈ [0, 1], which is

https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/SupplementaryMaterials1.pdf
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dependent on time t:

f3t(x, y, t)cone = R2
m − (x−

_
Xm)2 − (y −

_
Y m)2,(5.10)

Rm = R1 + (R2 −R1)k,
_
Xm = xc1 + (xc2 − xc1)k,

_
Y m = yc1 + (yc2 − yc1)k, k =

t− t1
t2 − t1

, t1 = −10; t2 = 10.

Here (xc1 , yc1) are the center coordinates O1 of the circumscribed circle around initial shape
S1, (xc2 , yc2) are the center coordinates O2 of the circumscribed circle around target shape
S2, R1 and R2 are the radii of the two circumscribed circles, and t1 and t2 are the minimum
and the maximum values of the interval time t. We use the values recommended for t1 and t2
from the article on STB [30].

A truncated pyramid is defined (Figure 9(b)) with circumscribed rectangular bounding
boxes for initial and target shapes S1 and S2 as its two bases. For this case we need to define
each base of the pyramid as a result of the FRep set-theoretic intersection operation and linear
interpolation between the widths l1, l2, the heights h1, h2, and the centers of the rectangles:

f3t(x, y, t)pyramid = (Lm − |x−
_
Xm|) ∧ (Hm − |y −

_

Y |m),(5.11)

Lm = l1 + (l2 − l1)k, Hm = h1 + (h2 − h1)k,
_
Xm = xr1 + (xr2 − xr1)k,

_
Y m = yr1 + (yr2 − yr1)k, k =

t− t1
t2 − t1

, t1 = −10; t2 = 10.

Here (xr1 , yr1) and (xr2 , yr2) are the coordinates of the rectangles’ centers O1 and O2.
To define a new function for the bounding solid as either a truncated cone or a truncated

pyramid we need to use the FRep set-theoretic intersection operation ∧ between either the
cone defined by Fsolid(x, y, t) = f3t(x, y, t)cone or the pyramid defined by Fsolid(x, y, t) =
f3t(x, y, t)pyramid with the two time-cutting planes (t + 10) and (10− t):

(5.12) f3t(x, y, t) = Fsolid(x, y, t) ∧ (t + 10) ∧ (10− t).

In Figure 10 we present the results of applying three different methods with automatic
control of the coefficients a0, a1, and a2: (a) is the result of using two half-planes defined
by function f3t(x, y, t)planes = (t + 10) ∧ (10 − t), (b) is the result of using the truncated
pyramid defined by function f3t(x, y, t)pyramid, and (c) is the result of using the truncated
cone defined by function f3t(x, y, t)cone. The metamorphosis shape obtained using the two
half-planes defined by function f3t(x, y, t)planes is quite similar to the metamorphosis shape
obtained using function f3t(x, y, t)pyramid, set up as a truncated pyramid.

From Figure 10, it follows that
• using the truncated pyramid (see Figure 10(c)) as the new bounding box provides a

more visually accurate result compared to that obtained by the two half-plane bound-
ing solid (see Figure 10(a)), but it produces a slightly more inflated result;
• using the truncated cone (see Figure 10(b)) as the new bounding box results in less

inflation. The in-between shapes in this case are also quite different. Note that for the
truncated cone, better (smoother) results can be obtained when the number of frames
in the animation sequence is increased.
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Figure 10. Blending operation conducted between two shapes, S1 (caterpillar) and S2 (butterfly), using (a)
two half-planes as bounding solid function f3t(x, y, t)planes; (b) truncated pyramid as bounding solid function
f3t(x, y, t)pyramid; (c) truncated cone as bounding solid function f3t(x, y, t)cone. See the accompanying sup-
plemental video files (figure10a.mpg [local/web 944KB], figure10b.mpg [local/web 1.16MB], and figure10c.mpg
[local/web 900KB]).

Figure 11. Blending operation conducted between two shapes, S1 (caterpillar) and S2 (three butterflies),
in the case of an in-place morphing using (a) two half-planes as bounding solid function f3t(x, y, t)planes; (b)
truncated pyramid as bounding solid function f3t(x, y, t)pyramid; (c) truncated cone as bounding solid function
f3t(x, y, t)cone. See the accompanying supplemental video files (figure11a.mpg [local/web 112KB], figure11b.mpg
[local/web 116KB], and figure11c.mpg [local/web 108KB]).

The criterion for using one of the suggested new bounding boxes is as follows: If the
distance d (see Figure 9) between the centers of two circumscribed circles satisfies the condition
d ≤ (R1 + R2), the blending shape obtained with automatic estimation of coefficients ai,
i = 0, 1, 2, 3, might still have some additional inflation. In the case of an in-place animation, for
example, when there is one big object transformed into several smaller ones (see Figure 11(a)),
it is recommended to apply one of the introduced bounding solids. As seen in Figure 11(b),
using the truncated pyramid produces slightly less inflated results compared to the bounding
solid defined as two bounding planes in Figure 11(a). Using the truncated cone provides even
better results (see Figure 11(c)).

figure10a.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure10a.mpg
figure10b.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure10b.mpg
figure10c.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure10c.mpg
figure11a.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure11a.mpg
figure11b.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure11b.mpg
figure11c.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure11c.mpg
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5.4. Affine translation for space-time blending shape control. If two shapes, S1 and S2,
are placed too far away from each other, there is a chance that disconnections in in-between
shapes might appear. To avoid this, shape S1 can be left static and target shape S2 should be
shifted closer to shape S1, or vice versa. This can be achieved by applying an affine translation
to shape S2.

The criterion for applying the affine translation is the following: If the distance d (see
Figure 9) between the centers of two circumscribed circles satisfies the condition d� (R1+R2),
where R1 is the radius of the first circle and R2 is the radius of the second circle, then the two
objects S1 and S2 are too far from each other. In this case there is a chance that the algorithm
for automatic estimation of the coefficients ai, i = 0, 1, 2, 3, will not produce satisfying results,
so additional enhancement is essential.

Affine translation allows for reducing the additional shape inflation during the STB meta-
morphosis. According to the algorithm presented in subsection 4.1, at the first step we need
to calculate the SDDT for both input and target shapes S1 and S2. Then the geometric
centers of the two shapes are superimposed at the initial time step. If two shapes are inside
each other, we need to calculate the interval for a0 according to (5.9). Then we need to check
whether the shifted shape S2 is still within the borders of the circumscribed circle around the
static shape S1. This can be achieved by solving the system of equations for both circles.

Two tangential lines can be drawn to these two circles when this system has two non-
coincident real solutions. In that case the algorithm for automatic control of coefficient a0
described in subsection 5.2 can be used for the rest of the motion of shape S2. After defining
a0, a1, and a2, at each step we apply mapping of the SDDT values from the initial position
of shape S2 to its current position to compute the in-between shapes.

After each SDDT mapping is done, STB is calculated according to (3.1)–(3.3) and an
affine translation is applied to the result. The image sequence obtained after applying the
affine translation can be seen in Figure 12, where the butterfly (target shape, S2) is emerging
from the caterpillar (static initial shape S1) while moving toward its initial position. This
operation does not produce any additional shape inflation. At each step we use automatic
control for recalculation of the coefficients a0, a1, and a2 described in subsection 5.2 and apply
a smoothing half-cylinder operation to both shapes as described in subsection 5.1.

6. Implementation and results. In this section we will demonstrate how the proposed
method described in section 4 and the techniques introduced in section 5 are applied in
combination. We will describe our implementation and discuss its efficiency.

6.1. Algorithmic implementation. We have implemented our algorithm using C++, the
OpenCV library for the basic image handling, and OpenMP for multithreading. All examples
were computed on a laptop with a 2.6 GHz Intel Skylake 6700 processor and 16 GB of RAM.
The implementation of the method is available on GitHub.1

Following the basic algorithm described in subsection 4.1, as the first step we need to
binarize the input images and use them for calculating the SDDT. We implemented this using
the 8-Points Signed Sequential Euclidean Distance Transformation algorithm from [20], which
was later improved in [24].

1https://github.com/teshaTe/2D-heterogeneous-metamorphosis
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Figure 12. Blending operation conducted between two shapes, S1 (caterpillar) and S2 (butterfly), using
affine translation. See the accompanying supplemental video file (figure12.mpg [local/web 1.01MB]).

Table 1
Comparison table of execution speeds for the image metamorphosis used in the article with timings given as

frames per second (FPS). In the case of an affine translation (Figure 12) the final two columns are left empty
as intervals a0 and a1,2 are dynamically recalculated at each step.

Execution: Sequential / Parallel / Parallel + Scaled Image
Figure Average FPS Min FPS Max FPS a0 interval a1,2

Fig. 8 1.69 / 3.37 / 18.82 40.19/ 32.33 / 46.25 0.10 / 0.22 / 2.82 [2.49, 3.85] 1.12
Fig. 10

(a) 0.78 / 1.64 / 13.46 38.98 / 31.08 / 42.38 0.08 / 0.17 / 2.21 [0.48, 3.26] 1.78
(b) 1.23 / 2.42 / 16.18 38.32 / 30.61 / 42.63 0.14 / 0.29 / 3.76 [0.48, 3.26] 1.78
(c) 0.52 / 1.20 / 10.47 35.32 / 27.66 / 40.33 0.07 / 0.17 / 2.22 [0.48, 3.26] 1.78

Fig. 12 0.10/ 0.14 / 2.52 0.09/ 0.10 / 1.63 0.02/ 0.03 /1.07 - -
Fig. 13 0.71 / 1.88 / 9.36 33.82 / 27.12 / 41.19 0.05 / 0.13 / 0.34 [-20.22, 2.58] 1.00
Fig. 15 0.59 / 1.29 / 12.30 33.70 / 26.88 / 40.20 0.04 / 0.10 / 1.21 [1.75, 2.85] 1.30
Fig. 16 0.49 / 1.26 / 12.72 37.36 / 26.40 / 40.32 0.04 / 0.09 / 1.33 [-21.01, 2.57] 1.00
Fig. 18 1.23 / 2.44 / 20.10 34.28 / 29.62 / 41.10 0.06 / 0.14 / 1.93 [-18.58, 2.06] 1.00
Fig. 19 0.49 / 1.11 / 12.72 37.36 / 28.61 / 40.32 0.04 / 0.09 / 1.33 [3.57, 3.76] 1.00

To create two positive distance fields for input and target shapes S1 and S2, which contain
the distances to the surfaces, the algorithm employs two grids. The generation procedure for
the SDDT can be described as follows:
Step 1. We use the binarized images for initializing both grids: one of the grids is initialized

with zeros outside the shape and with a maximum value inside the shape, while
another grid is filled with maximum values outside the shape and zeros inside the
shape.

Step 2. The grids are traversed multiple times in order to compare the distance written at
the current point with the distances stored in its 8 neighbors. If the result of this
distance comparison is less than the one stored at the current point, the value is
updated.

figure12.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure12.mpg
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Figure 13. Metamorphosis between two textured shapes using SDF, STB, and STTI techniques, where
initial shape S1 is a textured sun and target shape S2 is a textured cross. See the accompanying supplemental
video file (figure13.mpg [local/web 88.0KB]).

Step 3. Two grids are merged together, and the result is stored in the final SDDT grid.
We then implement the second step described in the basic algorithm from subsection 4.1.

Before executing the third step of the basic algorithm, we evaluate the coefficients a0, a1, a2,
and a3 using the algorithm described in subsection 5.2. We also apply the smoothing of the
half-cylinder algorithm described in subsection 5.1 to both shapes S1 and S2, both represented
with SDFs. We can then proceed to the third step of the basic algorithm from subsection 4.1
and calculate the blending between the two shapes. If there is a need to reduce possible
unwanted inflation during the STB operation, we suggest using one of the bounding solids
defined with functions introduced in subsection 5.3 as a new function f3t(x, y, t) in (3.1)–(3.3).

Finally, we apply the last step of the basic algorithm to obtain a smooth color interpolation
between S1 and S2 using the STTI technique described in subsection 3.4.

If it is essential to use the affine translations described in subsection 5.4, these should
be applied between the second and third steps of the basic algorithm. Note that coefficients
a0, a1, a2, and a3 should be evaluated at each step of the shape translation using the algorithm
described in subsection 5.2.

6.2. Examples. In this subsection we will discuss the results of application of the proposed
method, shown in Figures 8, 10, 12, 13, 15, 18, and 19. We provide the corresponding
animation sequences in the supplementary video files for those figures. In Table 1 we present
the comparative timing results in frames per second (FPS) to demonstrate that interactive
frame rates have been achieved.

For the examples shown in Figures 8, 13, 15, 16, 18, and 19 we use the following values
as coefficients a0, a1, a2, and a3 for smoothing half-cylinders (see subsection 5.1), which
were obtained from a number of conducted experiments. On the basis of this we suggest
the following values for the initial shape S1: the position for the cutting plane Pc = 5 and
coefficients a0 = −0.3, a1 = a2 = a3 = 1. For the target shape S2 we suggest the following

figure13.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure13.mpg
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Figure 14. Comparison of the loss in quality between scaled and unscaled images while conducting meta-
morphosis; (a) image scaled from 512× 512 to 256× 256 and after application of STB and STTI scaled back to
512× 512; (b) original picture without scaling.

Figure 15. Metamorphosis between two textured shapes, S1 (text “LOTUS”) and S2 (lotus flower), using
SDF, STB, and STTI. See the accompanying supplemental video file (figure15.mpg [local/web 86.0KB]).

values: the position for the cutting plane Pc = 5 and coefficients a0 = −0.5, a1 = a2 = a3 = 1.
In Figures 8, 13, 15, 16, 18, 19, and 20 we show the results obtained using the combination

of the suggested basic method with automatic control of the coefficients a0, a1, and a2 and
smoothing of the half-cylinders. As follows from the figures, this combination of the techniques
produces good quality in-between shapes with a smooth transition between them and without
an additional undesired inflation. From Table 1, it can be seen that this combination of
methods works with interactive rates.

In Figure 10 we demonstrate the result obtained using the combination of the suggested
basic method with automatic control of the coefficients a0, a1, and a2, smoothing of the half-
cylinders, and applying two new bounding solids. As discussed in subsection 5.3 the result
will be slightly inflated when using a truncated pyramid, and the shape of the in-betweens

figure15.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure15.mpg
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will be different; however, they will be without an additional inflation when using a truncated
cone instead. From Table 1 it can be seen that both new bounding solids slow down the
calculation, albeit not drastically. For this example on the basis of some experiments that we
conducted, we suggest setting up the parameters for automatic control as follows:

• For the truncated cone coefficient a3 = 0.03 ·min(R1, R2): for smoothing of the half-
cylinders, the coefficients should be a0 = −0.8, a1 = a2 = a3 = 1 for the initial shape
S1, and a0 = −0.5, a1 = a2 = a3 = 1 for the target shape S2.
• For the truncated pyramid coefficient a3 = 0.13 · min(R1, R2): for smoothing of the

half-cylinders the coefficients should be a0 = −0.3, a1 = a2 = a3 = 1 for the initial
shape S1, and a0 = −0.5, a1 = a2 = a3 = 1 for the target shape S2.

Figure 16. Metamorphosis between a multiply subdivided, textured star shape S1 and a textured moon S2

using the SDF, STB, and STTI techniques for a radical topology change. See the accompanying supplemental
video file (figure16.mpg [local/web 100KB]).

In Figure 12 we demonstrate the result obtained using the combination of the suggested
basic method with automatic control for the coefficients a0, a1, and a2, smoothing the half-
cylinders technique, and applying an affine translation to the target shape. As the figure
shows, applying an affine translation produces the results without any additional inflation.
Note that according to Table 1, applying an affine translation can significantly reduce the
calculation speed for the whole metamorphosis.

In Figures 15, 16, 18, 19, and 20 we demonstrate that the introduced method with
automatically controlled metamorphosis can handle transformations between multiple objects
and objects with complex topologies and different textures while simultaneously preserving
smoothness of the transition and without undesired inflation. In Figures 16, 18, 19, and 20 we
also demonstrate that our method can handle in-place morphing between initial and target
shapes, in most cases producing semantically meaningful in-betweens.

In Figure 20 we present the morphing sequence of the textured curved symbol into the
textured cross. The texture applied to the curved symbol can be considered as a texture with
big changes in color contrast. As can be seen in this figure, our method produces reasonably
good results.

In Figures 16 and 19 the initial shapes consist of disjoint, colored patterns that are then

figure16.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure16.mpg
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Figure 17. Metamorphosis between two textured shapes using the suggested method ((a) and (c)) and cross-
dissolving ((b) and (d)), where the initial shape S1 is the bud and the target shape S2 is the flower. See the
accompanying supplemental video files (figure17a.mpg [local/web 62.0KB], figure17b.mpg [local/web 738KB],
figure17c.mpg [local/web 754KB], and figure17d.mpg [local/web 752KB]).

morphed into a target shape. In these examples, using tiled shapes we imitate the partitioning
of textured objects and show that our method produces satisfactory color interpolation results
without establishing any correspondences between partitions. To make the segmentation of
the textured shape a fully automatic method, establishment of correspondences between the
partitions is required, which is a matter for future work. In Table 1 we show that the generation
of the frame sequences for these examples is relatively fast, even for full image resolution.

With our method we can achieve interactive frame rates by conducting calculations on
scaled images and then scaling them back to full size. This results in a loss of image quality
of around 15–20 percent, which can be seen in Figure 14.

As a potential application, we consider an educational game for children with cognitive
deficits, including those who are severely disabled. The concept is illustrated in Figure 15, and
an animation sequence can be seen in the supplementary video file application example.mpg
[local/web 35.2MB]. We have already started working on such a much-needed game with
psychologists.

In Figure 17 we compare the results of using our basic method with automatic control of
the coefficients a0, a1, and a2 and smoothing of the half-cylinders with results obtained using
the cross-dissolving method. From Figure 17 it follows that even though cross-dissolving is a
quick linear interpolation, it does not work for gradually changing shapes or for shapes that
are placed distantly from each other. Methods working with user-defined correspondences can
produce more intuitive image transformations, but using these methods is beyond the scope
of this work. In addition, providing sensible correspondences in the case of radically different

figure17a.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure17a.mpg
figure17b.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure17b.mpg
figure17c.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure17c.mpg
figure17d.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure17d.mpg
application_example.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/application_example.mpg
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Figure 18. Metamorphosis between two textured shapes using SDF, STB, and STTI techniques and
smoothed cylinders, where the round object is the initial shape S1 and “i” is the target shape S2. See the
accompanying supplemental video file (figure18.mpg [local/web 78.0KB]).

object topology is not an easy or obvious task, especially for nonexpert users.

7. Conclusions and future work. In this paper we have presented a novel theoretical and
practical approach for dealing with 2D image transformations in a dynamic context, namely,
such a popular time-variant image transformation as a metamorphosis. Our method provides a
smooth transition between source and target textured objects with different topologies without
requirements for shape alignment or establishing any correspondences.

Most other methods do not provide automatic metamorphosis without establishing some
form of correspondences between two given objects or their features. In the context of auto-
matically controlled metamorphosis, the most relevant methods with which to make a compar-
ison are the OMT-based methods, which do handle the morphing in terms of both geometry
and images—even if the published works do not provide many examples of metamorphosis be-
tween textured objects. Our method can produce the in-between frames of reasonable (though
not always the highest) quality. It is computationally light and oriented toward nonprofes-
sional users in the context of mainly artistic applications, especially requiring interactive rates,
such as games and live streaming.

The proposed basic algorithm relies on a combination of three relatively new techniques
borrowed from 3D modeling of heterogeneous objects. These are signed distance functions
(SDFs), space-time blending (STB), and space-time transfinite interpolation (STTI). SDF
techniques serve as a representation tool for functionally based objects. The STB technique
serves to generate a smooth sequence of in-betweens in terms of their geometry, and the
STTI method produces visually convincing metamorphosed textures within those intermediate
geometric shapes.

Subsequently we have identified a number of drawbacks inherent in our basic algorithm and
proposed several mathematically substantiated techniques to address these. These techniques
allow the automatic generation of visually smooth transitions between initial and target shapes

figure18.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure18.mpg
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Figure 19. Metamorphosis between two textured shapes, S1 (tiled textured sun) and S2 (textured ark), using
SDF, STB, and STTI techniques for the case of in-place morphing. See the accompanying supplemental video
file (figure19.mpg [local/web 82.0KB]).

Figure 20. Metamorphosis between two textured shapes, S1 (curved shape with high-frequency texture)
and S2 (textured cross), using SDF, STB, and STTI techniques for the case of in-place morphing. See the
accompanying supplemental video file (figure20.mpg [local/web 90.0KB]).

without “jumps.” They also reduce an additional inflation in some intermediate shapes which
commonly appears during the metamorphosis process. These new techniques can be applied
separately and in combination. Overall, this is the first implementation of the metamorpho-
sis effect using a combination of these methods: converting images to SDFs, subsequently
computing STB between their carrying shapes, and applying STTI to their colored textures.

We have also conducted numerous experiments to find the most suitable values for param-
eters on which various morphing effects depend. Finally, we have implemented a number of
representative test examples proving that the approach does work for in-place morphing and
spaced images morphing and that it provides interactive frame rates, which is important for
many emerging applications.

figure19.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure19.mpg
figure20.mpg
https://epubs.siam.org/doi/suppl/10.1137/19M1241581/suppl_file/figure20.mpg
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This work could be expanded in the future by exploring alternative approaches for inter-
polating attributes between two heterogeneous objects as well as by introducing an automatic
feature-based color segmentation to achieve more sophisticated interpolation between textured
objects. In order to achieve further improvements, it would be beneficial to focus on other
areas that were not touched upon in this work, such as optimization of the color averaging al-
gorithm or the use of a quad-tree or similar data structures for acceleration. It is also possible
to implement the functionality in 3D.
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